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Introduction

Introduction

This book is intented to be a technical support for students in finance. It
is the reason why it is entitled "Probability for finance". Our purpose is to
provide the essentials tools of probability theory useful to understand finan-
cial models. Consequently, almost all the examples illustrating probability
results are taken from the fields of economics and finance. It means that we
assume readers have elementary knowledge in finance and microeconomics,
but also in elementary linear algebra and analysis.

Since the seminal work of Markowitz (1952) on portfolio diversification,
mathematical models of financial markets have tremendously developed. The
Capital Asset Pricing Model of Sharpe (1964), Lintner (1965) and Mossin
(1966) was established in the sixties and continuous-time finance also started
at the end of the same decade (Merton, 1969, 1971). Option pricing models,
following the Black-Scholes-Merton model (Black and Scholes, 1973, Merton,
1973)) have given rise to a systematic mathematical approach of the pricing
of derivative contracts. Sophisticated financial products have been created;
they have generated a demand for valuation models. These models are es-
sentially based on mathematics, and more precisely, on probability theory
and stochastic processes.

Today, any finance student has to deal with a lot of mathematical con-
cepts, some of them being very sophisticated and going beyond what is taught
in undergraduate programs in economics and management. This book tries
to fill the gap between what students actually know, and what they should
know to enter the universe of financial models. One of our objectives is to
present these tools in a pedagogical way, but it does not mean that the read-
ing will be easy. Hard work is required to manage the tools in a performing
way.

The book is divided in four chapters. Chapter 1 is devoted to probabil-
ity spaces and random variables. Its purpose is to explain how to describe
the uncertainty on financial markets and to specify how prices and returns
can be written in a mathematical consistent way. Prices and returns can
also be summarized by some numbers measuring their average value, the dis-
persion of possible future values or the relationship between the returns of
different stocks. These quantities are called the moments of the probability
distribution of prices or returns. Their presentation is developed in chapter
2.

Beyond the synthetic presentation of random variables through moments,
a more detailed approach is necessary to specify how possible future values
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Introduction

are disseminated along the real line. It means that it is useful to characterize
probability distributions of economic variables like returns, interest rates
or exchange rates. It is done in chapter 3 where we present the essential
distributions appearing in the financial literature.

Finally, economic agents acquire (costly or freely) information over time.
New information changes beliefs about the likelihood of future events or, in
other words, changes the perceived probabilities of possible future events.
The probability distributions of relevant economic variables are then mod-
ified. It is the reason why a part of chapter 4 is devoted to conditional
distributions and conditional expectations.

The second part of this last chapter introduces limit theorems and con-
vergence, in order to make a smooth transition between one-period models
and multi-period models'. In fact, there are essentially two categories of
financial models. They can be distinguished by the way time is measured.
In discrete-time models, markets are open on a (finite or countable) set of
dates when in continuous-time models, markets are always open. It is then
important to check if a continuous-time model is the limit (in a sense to be
defined) of a sequence of discrete-time models in which the duration between
two transaction dates shrink to zero.

! These multiperiod models and the corresponding mathematical tools are described in
Roger (2010).
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Chapter 1

Probability spaces and random
variables

1.1 Measurable spaces and probability mea-
sures

To start with a simple approach, we assume that economic agents live in a
one-period economy with a starting date ¢ = 0 and a end-date 17" = 1. Some
financial securities (assets) are traded on the market at date 0 and generate
payoffs at date 1. The description of these payoffs and the valuation of
the corresponding securities at date 0 are the essential building blocks of a
financial model.

Depending on the number of assets and on the complexity you desire for
the model, you will authorize a number of possible terminal situations for the
payoffs and, more generally, for the whole economy. This set of possibilities
is called the set of states of nature and denoted Q'. 2 may be finite or
infinite depending on how you want to describe the market. The subsets of
Q) are made of states of nature which describe information about the possible
situation at date T. For example, if there is only one risky asset traded on
the market, a range of terminal prices for this asset is associated to a subset
of states of nature. For technical reasons we don’t detail here, not all the
subsets of {2 can be considered in a model when (2 is "too large"?. If P(Q)

'In mathematical books devoted to probability theory, € is often called the sample
space of a random experiment. In our context the random experiment in which we pick
some situations is the economy or the financial market.

2When 2 is not countable, a probability measure cannot be defined on P(2) in a
consistent way. It will be justified in sectionl.1.3.
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denotes the set of subsets of 2, we restrict the model to subsets satisfying
some reasonable properties allowing to define a probability measure. It is
the reason why we need the (maybe) abstract concept of o-algebra?.

1.1.1 o-algebra (or tribe) on a set )

Definition 1 Let Q denote a set of states of nature and P(QQ) the set of
subsets of 2; a o-algebra (also called a tribe) on 2 is a subset A of P(Q2)
satisfying:

1)e A

2)V B € A, B¢ € A where B° is the complement of B defined by B¢ =
{w e Q/w ¢ B}. A is then closed under complementation)

8) For any sequence (B,,n € N) of elements of A, \J.25 B, € A. In other
words, A is closed under countable unions.

The pair (2, A) is called a measurable space and the elements of A are
called events. An event containing only one state of nature is an elemen-
tary event.

At date T' = 1, only one elementary event (a state of nature) w occurs.
An event A is said to be true if w € A and A is false if w ¢ A.

Even when () is finite, it is possible to define several tribes on (2. For
example if ) contains 4 states, that is Q = {w;, ws, w3, w4}, we could choose
A = {0, Q} which is the most simple (and the smallest) tribe on  or A" =
{0, {w1,wa} , {ws,ws}, N} or A =P(), etc..

From definition 1, we easily get the following proposition.

Proposition 2 Let A be a tribe on Q;

1) for any sequence (B,,n € N) of elements in A, the intersection N> B,, €
A (A is closed under countable intersections).

2) @ e A

3The symbol ¢ is often used in finance to denote the standard deviation of the return on
a financial security (see chapter 2). Here, it has nothing to do with this usual interpretation
but o-algebra is the usual notation in probability theory for the notion defined below.
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In a financial model, a tribe describes all the possible information con-
veyed about the state of nature which will eventually occur at the terminal
date. To illustrate the point, we assume in a first step that € is finite.

Definition 3 T' = {By, ..., B} is a partition of Q) if:
1) BiN B; = @ when i # j

The information held at date 0 by an economic agent may be represented
by a subset A included in 2. It means the agent knows that the true state
of nature is in A. However, this information does not completely remove
uncertainty, because A may contain several states of nature.

Note that the set of all possible unions of elements of I', including 2 and
&, is a tribe, called the tribe generated by I' (the proof is left as an exercise).
In fact, if a given set B; of the partition is true (meaning that the state of
nature which will occur is in B;), all the unions of elements of I' containing
B; are also true and all the unions of elements of I' which do not contain B;
are known to be false. Obviously, @ is always false and € is always true.

12
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Definition 4 Let I' = {By, ..., Bk} be a finite partition of Q; the tribe gen-
erated by I, denoted as Br, is the smallest tribe containing all the elements
of .

The following proposition summarizes the properties of Br.

Proposition 5 a) The elements of Br are &, €, and all the unions of ele-
ments of .

b) Every tribe on a finite set Q) is generated by a partition.

c¢) Br has 2K elements.

1.1.2 Sub-tribes of A

In multi-period financial models (that is, when 7" > 1) with a finite number
of states of nature, the natural tribe to be chosen at the terminal date T is
P(2) since it contains all the elementary events. However, at date t < T
some uncertainty remains and it is relevant to consider sub-tribes of P(€2).

Definition 6 A subset A" of P(Q) is a sub-tribe of A if A" is a subset of
A containing 0 and satisfying points (1) to (3) of definition 1, where A is
replaced by A'.

In other words, (£2,.A") is itself a measurable space since A’ satisfies all
the properties of a tribe. For example, when 2 = {wq,ws, w3, w4}, the tribe

A = {0, {w1,wa}, {ws,ws}, N} is a sub-tribe of P ().

It is easy to check that the three properties of definition 1 are satisfied.
First, Q € A’; second, for any event B in A’, B¢ is in A’ since {wq,ws} =
{ws, w4}, Finally, any union of elements of A" is an element of A’ because
{wy,wa} U{ws,ws} = Q.

When 2 is a finite set, we saw in proposition 5 that any tribe is generated
by a partition. Therefore, we can establish a link between two tribes A and
A" such that A" C A and the partitions I' and I” generating these tribes.

*Generally speaking, even if Card(f2) is infinite (Card(Q2) denotes the number of ele-
ments of ), Card(2) < Card(P(2)). This result is due to Georg Cantor (1845-1918); it
explains why in a preceding comment, we mentioned that if € is not countable, P(2) is
“too large”.
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Definition 7 A partition T' is finer than a partition I if every element of

IV is a union of elements of I'. The partition I is then called a refinement’
of T

Proposition 8 Let A" be a sub-tribe of A; the partition I' generating A is a
refinement of the partition I generating A’.

This proposition is an obvious consequence of point (¢) in proposition 5.
As the number of elements in a tribe is always 2% for some positive integer
K, K is the number of elements of the partition generating the corresponding
tribe. It follows that A’ is a sub-tribe of A; it contains less elements and it
is also the case for the partition by which it is generated.

Example 9 One of the most popular models to describe the time-evolution
of stock prices is the so-called binomial model (Cox-Ross-Rubinstein, 1979).
The price at a given date is obtained by multiplying the preceding price by u
(d), meaning a price increase (decrease).

Let = {uu;ud; du; dd} denote the set of possible trajectories of a stock
price in the two-period binomial model. A" = {&; {uw; ud} ; {du;dd};Q} is
a tribe on Q and a sub-tribe of P(Q). In fact, {du; dd} = {uu;ud}* and Q is
the complement of the empty set; moreover, {uu;ud} | J{du;dd} = Q € A.
The price process of the stock is described on the figure below, where it is
assumed that the initial price is equal to 1.

2

uu =1u
4
1 ud (1.1)
AN du
q 7
N odd=

We observe that the subset {uu;ud} corresponds to the two price paths
starting by an up-move. In the financial model, it simply means that after
one period during which an up-move has been observed, investors know that
the final state will be an element of {uu;ud}. The same remark is valid
with the other subset when the stock price decreases at the end of the first
period. Obviously, considered as numbers, the products ud and du are equal.
However, when ud denotes a state of nature (corresponding to an up-move

5Symetrically, I'' is less fine than T
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followed by a down-move), it is not the same as du. We will come back on
this point in the next section.

Example 10 If Q2 = R, the smallest tribe containing all open intervals is
called the Borel tribe on €2 and denoted Bg. It is the commonly used tribe when
one deals with R or an interval of R. As it is a tribe, Br also contains all
countable unions of open intervals, all closed intervals...and more generally
all the subsets of the real line we need in a financial model.

15
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Even if the concept of tribe may seem abstract, the reader will understand
in the next subsection why it is required to define correctly a probability
measure.

1.1.3 Probability measures

During 2009, many economists were asked to provide predictions about the
recovery of the economy in the months to come. They had comments like
"a strong recovery is unlikely" or "we can expect a slow recovery in 2010".
Likelihood of an event is usually measured by a number between 0 and 1.
In the formalism of probability theory, the mapping linking events to such
numbers is named a probability measure and is defined as follows.

Definition 11 Let (2,.A) be a measurable space; a probability measure on
A is a mapping from A to [0;1] satisfying:

a) P(Q) = 1

b) For any sequence (B,,n € N) of disjoint® events in A:
+oo +oo
P <U Bn> => P(B,)
n=1 n=1

c)The triple (2, A, P) is called a probability space. The event ) is
called the sure event and () the impossible event.

A probability measure being defined on events, it is necessary that a
countable union of events is in the tribe for (b) not to be meaningless. Sim-
ilarly, if we consider an event B and its complement B¢, point (b) implies

P(B) + P(B°) = P(Q) = 1

from which we deduce P(B¢) = 1— P(B). The probability of the complement
of a given event B is naturally defined, as soon as B¢ is in the tribe. These
remarks explain why defining tribes or o-algebras was necessary.

The following proposition summarizes the properties induced by definition
11.

6Two events are disjoint if their intersection is empty.
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Proposition 12 Let (2, A, P) denote a probability space:
1) P(@)=0
Q)V (Bl,BQ) e A x ./4, B C By, = P(Bl) < P(Bg)

3) Let (B,,n € N) be an increasing sequence (B,, C B,11) of elements in

A:
o (1)
neN
4) Let (By,,n € N) be a decreasing sequence (B, D By,1) of elements in
A:

r1-r(0)

neN
5)¥ Be A, P(B°)=1-P(B)

Proof. 1) Q and & are disjoint, therefore P(Q2|J@) = P(Q) + P(2) =
P(Q) = 1. It implies P(@) =0

2) B1 C By = P(By) = P(BiU(B:(BY)) = P(B1) + P(B2(Bf) >
P(By)

3) As (Bp,n € N) is increasing, the sequence u,, = P (Uzzl B,,) is in-
creasing and has an upper bound (lower or equal to P(£2) = 1), it then has

a limit. But (B,,n € N) being increasing for inclusion, the limit is nothing
else than P (,cn Bn) -

4) As (B,,n € N) is decreasing, the sequence v,, = P <ﬂZ:1 Bp> is de-
creasing and has a lower bound (greater or equal to P(&) = 0), it then has

a limit. But (B,,n € N) being decreasing for inclusion, the limit is nothing
else than P ((,cn Bn) -

neN

5) Point (b) of definition 11 implies P (BJ B¢) = P(B) + P(B°) since B
and B¢ are disjoint; but as B|J B¢ = Q, we deduce P (B|JB°) = P(Q) =1
leads to P(B°) =1— P(B) .=

17
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Example 13 Let Card(Q2) = N and A = P(Q) ; the uniform probability
measure on A is the one which gives to every elementary event the same
weight, that is’ :

1

VWEQ,P((A}):N

This probability measure appears in simple experiments like coin tosses or
stmulation problems.

Example 14 Let now §2 be the unit square [0; 1] x [0; 1]; it is an uncountable
subset of R?; it has to be equipped with the Borel o-algebra, that is the tribe
containing all open sets. In this framework the uniform probability distribu-
tion is characterized in the following way. If A is an event included in the
unit square ), P(A) is equal to the area of A. P obuviously satisfies P(2) = 1;
P is usually called the Lebesgue probability measure on the unit square. The
area of the union of two disjoint subsets of [0; 1] x [0;1] is obviously equal to
the sum of the areas of these subsets.

It is important to mention that any finite or countable set of points in the
square has a Lebesque measure equal to 0. Generally speaking, the probability
of any rectangle B = [a;b] X [¢;d] is equal to (d — ¢)(b— a) < 1. This remark
points out the intuition about the equivalence between the Lebesque measure
on the square and the uniform probability measure on a finite set. Imagine
that a dart is thrown at random on the square®, the probability that it falls in
B is equal to (d — ¢)(b— a).

1.2 Conditional probability and Bayes theo-
rem

In the following, the probability space we refer to is (2,4, P) even if it
is not explicitly recalled. When investors get some information, it means
that they learn something about the state which will eventually occur. For
example, they may learn that an event B C (2 is true. Consequently, they
change the initial probability measure defined on A to take into account

"P(w) is a commonly used simplified notation. In fact, to be rigorous, we should note
P({w}) because a probability measure is defined on events, not on states.

8In a comparison which has become famous, Burton Malkiel (4 Random Walk down
Wall Street, 1973) wrote: "A blindfolded monkey throwing darts at a newspaper’s financial
pages could select a portfolio that would do just as well as one carefully selected by the
experts."

18
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this new information. To formalize this process, we introduce conditional
probabilities.

1.2.1 Independent events and independent tribes

Definition 15 1) Two events By, By in A are independent if P (By () B2) =
P(Bl) X P(BQ)

2) Let By € A such that P(Bs) # 0; the conditional probability of By
knowing Bs, denoted as P(By|Bsy), is defined by:

P(B:1() Bs)

P(Bl |B2) = P(BQ)

As said before, conditional probability has a natural interpretation. If
you learn that the event B, occurs, you also know that the true state of
nature is in Bs. Consequently, your evaluation of the probability that B;
occurs is changed; the uncertainty is reduced to By, not to the whole set
Q. In particular, if B;[)B; = &, you can be sure that B; will not occur.
Therefore, the conditional probability of B; will be 0.

Analogously, if the two events B; and B, are independent, the occurrence
of By brings no information about the occurrence of B;. In this case, the
conditional probability of B, knowing Bs should be equal to the unconditional
probability...and it is obviously the case since:

P(Bi\B,)  P(By) x P(By)

= P(B)

Example 16 To get an easily understandable illustration of independence,
consider one more time Q = [0; 1] x [0; 1] equipped with its Borel tribe and the
Lebesgue probability measure. Denote (x,y) a point in Q; let By = [0; %} X
[%; 1} and By = [O; %} X [O' 1} ; we then have:

D)

P(B,) =

X

D= Wl

P(By) =

X
DN =Wl b

Wl N -

19
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If By is known to occur and if (z,y) € By, we know that x € [O; %] and y

has a probability 1/3 to be in the range [%, %] . In fact, (x,y) € By means that

y < % For (z,y) to belong to By it is also necessary that y > %, consequently,

knowing that y € [O; %] implies a 1/3 probability that y € [1 1} .We then

3132
deduce that P(B |Bs) = % As Bi( By = [0; %] X [%, %] , we write:

1 1 1 1
P15 = (5-9) % (3-3) =15
It leads to: )
= 1
6

By s then independent of Bs.

20
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Lemma 17 Two disjoint events with non zero probability and different from
Q are not independent’.

This result is obvious because if B; and By are disjoint with non zero
probability, their intersection is empty and has zero probability. Therefore,
the conditional probability is 0, different from the one of B;, and the two
events cannot be independent. Knowing that Bj is true implies that B is
surely false.

Independence of events is then generalized to the independence of o-
algebras in the following way.

Definition 18 Two sub-tribes G and G' of A are independent if :

VB € G,VB €G ,P(BNB') = P(B) x P(B)

Two tribes are independent if any pair of events in Gx G’ is independent.
We advice readers to look for two independent sub-tribes of P(£)) on a set
Q) with 4 equally likely states. Lemma 17 may be useful to build such an
example.

1.2.2 Conditional probability measures

We mentioned before that, when an investor gets a piece of information, he
changes his beliefs. In other words, he defines a new probability measure on
(Q, A). No information means that the only event you know to be true is
and the only event you know to be false is &. Consequently, getting a piece
of information means that you know some proper subsets of €2 are true while
some non empty others are false. Conditional probability measures formalize
this process.

Proposition 19 Let B € A and define Ap by:
Ap = {A("\B with A€ A}; (1.2)

Ap is a tribe on B. In other words, (B, Ag) is a measurable space.

9We mention this obvious result because in many occasions we noticed that some
students had a tendency to mix the two notions, independence and void intersection.

21
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Proof. B € Ap because QB = B ; let (C,,,n € N) be a sequence of sets
written C,, = A, (| B; we can write:

gonzg(AnﬂB) — (nLEJNAn> ak

As A'is a tribe, |, .y An € A and then (U, oy 4s) N B € Ap.

neN

Denote now C' = A(\B € Ap and Cf the complement of C' in B. We

have:
cs = (AﬂB)CﬂB:<AcﬂB>U<BCﬂB>
= ACﬂBeAB

Proposition 20 Let B € Q such that P(B) # 0; the mapping denoted
P(.|B), which associates P(B1|B) to any event By, is a probability mea-
sure on (B, Ag) .

Proof. First, remark that P(B|B) = 1. Let (C,,n € N) be a sequence of
disjoint sets in Ap; we get:

p (U c |B> _PUeC)NB) P U GNB) g

P(B) N P(B)

neN

For every n, (), C B, then the last term in the right-hand side of equation

1.3 is written as:

P(UnEN Cn) _ ZnENP<On) ZnENP O ﬂB ZP C |B

P(B) P(B)
]

Thinking to the time-dimension of financial models provides a natural in-
terpretation of conditional probability measures. Assume that an information
is disclosed at date ¢ which reveals the occurrence of an event B. Economic
agents take this information as granted and reallocate probabilities to events
conditioned on this information arrival.

For example, statistics about the U.S economy (production, unemploy-
ment, etc.) are often disclosed on fridays at 8:30 AM, before the opening of

22
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U.S markets. Due to the time-lag, this information comes on European mar-
kets at 1:30 PM or 2:30 PM, that is when the corresponding financial markets
are open. Investors change their beliefs according to these new pieces of infor-
mation and it may have important consequences on market prices, especially
when the disclosed information is perceived as a surprise. In other words,
after the disclosure agents work on the probability space (B, Ag, P(.|B)).

23
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1.2.3 Bayes theorem

To introduce Bayes theorem, consider the following example. On a large
population of individuals, 1 over 10 000 suffers from a rare disease which
can be diagnosed by a simple test. In 1% of cases, the test result is wrong,
providing a positive result when the individual is healthy or a negative result
when he is ill. 'What is the probability of being ill if you receive a positive
test result?

If you think about the question too quickly (as many people do), you
could answer that you have 99% chance of being ill. This answer is wrong; in
fact the probability is only 1%. The question asks for the probability of being
ill, conditional on a positive test, but most people provide the probability
of getting a positive test, knowing that they are ill. To understand what is
going on, consider a set of 10 000 people, one of them being ill (the mean
proportion in the population). The test result being wrong 1% of the time,
100 people will get a positive result but only one person suffers from the
disease. Consequently, a positive test result means that you have 1% chance
of being ill.

Bayes theorem is the tool allowing to deal correctly with this kind of
question.

Proposition 21 Let (B, Bs, ..., B,) be a partition of Q and C € A, all being
non zero probability events; we then get:

P(C|B;)P(B;)
PUBIC) = pets) p(B)

Proof. The subsets B; define a partition, therefore:

CZQ(CﬂBi)

and we deduce:

n n

PC)=3_P (CﬂBz) =Y P(C|B)P(B) (1.4)
Moreover
P(C(\B;) = P(C|B;)P(Bj) = P(B; |C)P(C) (1.5)
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Replacing in (1.4) the value of P(C') coming from equation (1.5) leads to the
desired result. m

Equation (1.4) shows that the probability of an event may be written
as a weighted average of conditional probabilities, the loadings being the
probabilities of the events in the partition.

Coming back to the above example, denote C' the set of people getting a
positive test, B; the set of ill people and By = BY the set of healthy people.
P(C|By)P(By)
(C'[B1)P(B1) + P(C|B2) P(B,)

P(B[C) =

We know that

P(B)) = 1071
P(C|By) = 0.99
P(C|By) = 0.01

Bayes theorem leads to:

0.99 x 10~
P(B,|C) = ~0.01
(Bi1C) = 509 % 105 + 0.01 (1—10-%)

1.3 Random variables and probability distri-
butions

1.3.1 Random variables and generated tribes

Intuitively, a random variable (a future stock price or a return) is a quantity
not known in advance; in other words, its value depends on the elementary
event which will eventually occur at the terminal date T" = 1. It is then
natural to describe this mathematical object as a mapping from (2 onto a set
of numbers depending on the phenomenon we want to model. If, for example,
the variable is a price, the relevant set of possible values is the set of positive
real numbers!® denoted RT. When the variable is a return (possibly taking
negative values) the entire real line R is the set of possible values!'!.

10A stock price cannot be negative because of the limited liability of shareholders.
HIf a linear return is calculated as (S; — Sp)/So, the minimum possible value is -1.
However, if a logarithmic return is used, defined by In(S;/Sy), the minimum value is —oo.
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However, one of the objectives of such a financial model is to assess prob-
abilities to subsets of values taken by economic variables. For example, we
could want to define the probability that the next day return on the S&P500
index will be in the range [—2%;2%]. In the preceding section, we showed
that a probability measure must be defined on a set of events (a tribe).
The following definition translates these ideas in a consistent mathematical
language .

Definition 22 Let (€2, A) and (E,B) two measurable spaces; a random
variable is a function defined on Q taking values in E (X : Q — E) which
satisfies:

VBeB, X YB)e A

where the set X Y(B) is defined by X 1(B) = {weQ/ X(w)e B}. X is
also called a A-measurable function.

Suppose that X is a stock return; in this case £ = R. The definition
means that the reciprocal image of an interval of possible stock returns is
in the tribe A. Based on this assumption, it is possible (starting from a
probability measure on A) to define a probability measure Py on Bgr by
Px(B) = P(X'(B)). This induced probability measure will be defined
more formally in the next section.

The notion of random variable allows to answer the abovementioned ques-
tions. For example, if X denotes the tomorrow closing value of the S&P500
index and if B is a range of possible index values, Px(B) is the probability
that the index ends tomorrow in this range. The space F in which the ran-
dom variables take their values is usually R or R™ or one of their subsets,
like R™ or the set N of positive integers. If £ C R, we deal with real random
variables, and if £ = R"™ we refer to random vectors.

When some information is obtained about the values of a random variable,
we deduce that some events in A occur. For example, if X denotes a stock
return and if we know that X is in B = [—2%; +2%], we infer that the event
X~Y(B) occurs. More generally, observing the value of a random variable
defines a list of events in A known to be true or false. This intuition is
formally described in the following definition.

Definition 23 Let X denote a random variable defined on (2, A) and taking
values in (E,B). The tribe generated by X (denoted By ) is the subset of A
defined by:

Byx={A€eA | 3BeB,A=X"(B)}
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We let the reader check that By is a sub-tribe of A, that is a subset of
A satisfying the properties of definition 1.

Calling a random variable a A-measurable function puts to light another
important point; a function X may be a random variable when () is equipped
with a given tribe and may not be a random variable with respect to another
tribe. This point is fundamental when modelling the evolution of financial
or economic variables over time. In fact, the information known at a given
date t defines a sub-tribe (usually denoted F;) of the tribe generated by
information known at date s > t. It means that agents do not forget what
they knew in the past, or in technical notation, F; C F;.

For example, when we introduced the binomial model in the preceding
section, we wrote states of nature as wu or ud meaning that, at date 2,
investors remember that the stock price process started by an up-move. Fi-
nally, it is worth noting that if  is finite and A = P(Q2), any function from
2 to R is a random variable. The reason is that any subset of 2 and, «a
fortiori, the reciprocal image of any interval, is in A.
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Let us now illustrate these points with a simple example. Let Card(2) =
4 and X,Y two random variables defined in table 1.1. The main difference
between the two variables is related to the information they convey when
we observe their values. All possible values of X are different; consequently,
the state of nature is identified as soon as a value X (w) is observed. On the
contrary, suppose you observe Y (w) = 2. You cannot infer if the true state
is wo or wy. In more technical words, the tribe generated by Y is included in
the one generated by X.

State | X |V
w1 1 4
W2 6 2
w3 2 1
W4 3 2

Table 1.1: Definition of X and Y

More precisely, we can write :
Bx = P((Q)
BY = {@,Q,{wl},{wg,w4},{w3},{w1,w3},{wl,wg,w4},{w3,w2,w4}}

We observe that By does not separate states 2 and 4, simply because Y
takes the same values on the two states!2.

Example 24 Consider one more time the binomial evolution of a stock
price; let Sy the date-t price of the stock:

g _ uS;_1 with probability p
P71 dSi—1 with probability 1 — p

A two-period (three dates) model is represented by Q = {uw;ud; du; dd}
corresponding to the possible paths of the stock price. At date 0, agents know
nothing about future prices, so the tribe generated by the initial price Sy is
By = {2,Q}. The only two events agents know to be true or false are & and

Q.

At date 1, the price Sy is observed and everybody knows which one of the
two events {du;dd} or {uw;ud} occurs. The first (second) event means that
a down(up)-state has been observed. The tribe By is then defined by :

By = {2,Q, {du;dd} , {uu;ud}}

12This kind of remark led Ross (1976) to show that index options are more "efficient"
than options on individual stocks to complete a financial market.
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It is a refinement of By since By C By. It is nevertheless worth to note that,

even if By is a list of events relevant at date 1, it is built at date 0.

Finally, at date 2, an interesting phenomenon appears if the final price
1s S = udSy. It is not possible to know exactly the trajectory if S1 has been
"forgotten”. In fact, an up-state followed by a down-state leads to the same
final price as the reverse sequence (down-state followed by an up-state). Con-
sequently, the relevant tribe By is the one generated by the pair of variables
(S1,52) and not by Sy only. We let the reader determine Bgs, and show that
this tribe is strictly included in the one generated by S and S;.

1.3.2 Independent random variables

Recall that two events A and B are independent if P(ANB) = P(A) x P(B)
(definition 15).

Definition 25 Two random variables X and Y defined on (2, A, P) and
taking values in (E,B) are independent if for any pair (A, B) € B? the
events X 1(A) and Y1 (B) are independent.

Example 26 Let Q = {wy,wq,ws,ws}, A =P () and assume that the four
states are equally likely*®. Let X and Y be two random variables defined by:

1 1
-1 2
1 2
-1 1

The question of independence can be first examined in an intuitive man-
ner by asking if knowing the value taken by one of the two variables brings
mformation on the value taken by the other. When'Y =1, X is equal to 1 or
-1 with equal probabilities (states wy and wy). But whenY = 2, we get exactly
the same possible results for X (states wy and ws). Consequently, knowing
Y doesn’t change the probabilities of the events in Bx. The same arguments
could be applied by exchanging the roles of the two variables.

The independence of X and Y can be easily proved by using definition
25. The tmportant point is that the values of X and Y are not fundamental.
What is crucial is the information revealed by the variables. In other words,
if X and'Y are independent, it is also the case for aX and bY where a and

13To be precise we should say "elementary events" instead of "states".
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b are non-zero real numbers. The following proposition links independence of
variables and independence of the tribes generated by these variables.

Proposition 27 Two random wvariables X and Y are independent if and
only if is the generated tribes Bx and By are independent.

1.3.3 Probability distributions and cumulative distri-
butions

A real random variable X is, as defined before, a function defined on a mea-

surable space (£2,.4) taking values in (R, Bgr). Any random variable X then

allows to define a probability measure on By starting from the probability
measure P on A.

Definition 28 Let X denote a random variable defined on (2, A) with range
in (F,B);

a) The probability distribution of X is a probability measure Px on B,
defined by:

VBeB, Px(B)=P (X '(B))=P({weQ/ X(w)€ B})

b) When (E,B) = (R,Bg), the cumulative distribution function of X,
denoted Fx, is a function from R to [0;1] defined by:

Fx(z) = P({weQ /[ X(w) < x}) = Px ((—00;2])
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X(w) |0 1 2 3
: 3x (! 3x (7
Proba.| 3y =% | i’ = 85 | o = B | o

Table 1.2: Probability measure induced by X

This definition shows why it is interesting to define probabilities of events
linked to economic variables. The probability measure defined on A is an
abstraction because (2 is a general space describing all possible economic
situations. In real-life problems, probabilities of the Px-type, and the corre-
sponding cumulative distribution functions, are often used in place of P.

Example 29 Consider a simplified lotto game with 10 numbers, players
chosing 3 numbers among the 10. Let X denote the random variable count-
ing the number of correct numbers on a given ticket, the official draw being
giwen. The relevant set ) is the set of triples of different numbers between 1
and 10.

Denote (Z) = #lk), the number of combinations of k numbers taken

10) 10!

from a set of n numbers. The set 2 has then (3 = o3 = 120 elements.

As Q is finite, we can choose A =P(Q) and P(w) = 5.
The probability measure Px is built as follows. First remark that X can

take only 4 values from 0 to 3. Table 1.2 gives the probabilities of the events'4
{X =k} fork=0,...3.

There is only one combination with three correct numbers, so P(X = 3) =
1—§0. Concerning {X = 2}, there are 8 possible pairs of winning numbers and
we then have to draw one number in the 7 losing numbers. Consequently
P(X = 2) = 3T Using the same argument for {X =1} , there are three
possible choices for 1 winning number among the 3 and (;) = 21 couples
of losing numbers; we then deduce P(X = 1) = 3. Finally, P(X = 0) =

120°
(;)/ (130) = 35/120. We can check immediately:

63+35+21+1=120 (1.6)

14Remember that {X = k} is a shortcut for {w € 2 such that X (w) = k}.
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This simple example first shows how to build the space (£2,.4, P) and,
second, how to use binomial coefficients to define Px. Moreover, Bx is a
proper sub-tribe of A, meaning that Bx & A. Even if a player is only in-
terested in the number of winning numbers on his ticket, telling him this
number does not completely reveal the state of nature (the official draw),
except if he notched the three correct numbers.

Proposition 30 The cumulative distribution function (CDF) Fx of a
random variable X is an increasing, right-continuous function, satisfying:
lim Fx(z)=0 and lig—l Fx(z)=1

Proof. Fy is increasing due to point (2) of proposition 12 (B; C By =
P(By) < P(By)). If v <y, we have (—o0; z] C (—o0;y| and then Py ((—oo;z]) <
Px ((—o0;9]) -

Right-continuity comes directly from the definition of Fx(z) as the prob-
ability of the interval (—oo;x], closed on the right. In fact, let (z,,n € N)
denote a decreasing sequence converging to z. The sequence B,, = (—o0; ;]

is decreasing and converges to B = (—oo;z|. Point (4) of proposition 12
allows to conclude.

The results about the two limits can be proved with the same approach,
that is by using sequences going to —oo or +o0o0 when n tends to infinity. m

Example 31 In finance, the CDF is used to define a popular risk measure,
namely Value at Risk or VaR '°. Banks must hold sufficient capital to
face potential portfolio losses. To wvalue the amount of required capital, the
VaR(99%) is commonly use. It is defined as the number x such that:

P(X>xz)=1- Fx(z) =0.99
where X denotes the return of the portfolio over a given period of time.
When X follows a continuous distribution, we get:
VaR(99%) = Fx'(0.01)

In other words, the potential loss which may be borne with a probability
of 99% is lower than |x|.

15See Jorion (2000) for developments on VaR.
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Example 32 Stochastic dominance is a concept which allows to rank
financial assets'®. It is defined as follows: a financial asset which pays X
dominates an other financial asset paying Y, for stochastic dominance of
degree 1 if:

Ve e R, Fx(z) < Fy(x)

where Fx and Fy are the CDF of X and Y.

It can be proved that when X dominates Y, all agents characterized by a
strictly increasing utility function prefer X to Y, independently of their risk
attitude. This result is intuitive because the above inequality is equivalent to:

PE{X>z}) > P{Y > 1})

Consequently, for any value x, the probability of getting a payoff greater
than x s greater for asset X than for asset Y. It explains the expression
“stochastic dominance”.

16See Huang-Litzenberger (1988), chapter 2.
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1.3.4 Discrete and continuous random variables

Definition 33 a) A random variable X is discrete if there exists a sequence
(xn,n € N) such that:

> PweQ /Xw)=z})=)> P(X =1
neN neN
(xn,n € N) is called the support of X.
b) A random variable Y is continuous if there exists a positive function
fy, continuous (except at most on a finite or countable number of points)

such that: .
- / fr(y)dy

where Fy is the CDF of Y. fy is called the probability density of Y (or, in
short, the density).

Remark 34 1) Proposition 30 shows that:

+oo
fy(y)dy =1
2) When a variable X is discrete, as in example 29, the CDF is a step
function which exhibits jumps at the values in the support of X. A discrete
variable can then be expressed as a combination of indicator functions defined
as follows.

Definition 35 Let B € A ; the indicator function of the event B, denoted
15 is defined by:

13(w) = 1 ifweB

= 0 otherwise

The name of these variables is natural because their value is 1 on a state
w to indicate that w is an element of B.

Example 36 Some financial assets can be modelized by means of indicator
functions. For example, the Chicago Board Options Exchange trades binary
options on the SEP500 index'”. These contracts pay $100 to their holders
when the index is above a given value (the strike price) at the maturity date.
Suppose a strike price K = 1000 and denote Xt the value of the SEP500
at the maturity date T. The payoff of the binary contract is equal to 100 x
1¢x,>1000y where { X7 > 1000} = {w € Q / Xp(w) > 1000} .

see http://www.cboe.com/products/indexopts/bsz__spec.aspx
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More generally, indicator functions allow to present discrete variables in
an alternative way, that is as a linear combination of indicator functions.

Proposition 37 Let X denote a discrete variable with finite support {z1, ..., x,},
with x; # x; for i # j; there exists a partition I' = {By, ..., By} of Q such

that:
X = Z aji]-Bi
i=1

This result is obvious when defining B; = {w e Q / X(w)=ux;},i =

If Card(2) = N and X (w;) = z;, we get:

N

X = Zm{w} (1.7)

=1

In financial models with Clard(€2) < 400, the financial assets whose pay-
offs may be described by 1 [,y are called Arrow-Debreu securities. When
all these securities are traded, equation (1.7) shows that every financial secu-
rity is a portfolio of Arrow-Debreu securities. The market is said "complete"

in this case.

1.3.5 Transformations of random variables

The question addressed in this section is the following: knowing the probabil-
ity distribution of a given random variable X, can we deduce the probability
distribution of the random variable Y = g(X) where g is a sufficiently regu-
lar function? There are many economic and financial examples showing that
this question is relevant.

e A derivative security is a contract whose payoff is a function g of the
price of an underlying asset, like a stock or an index. For example,
a call option on a stock, with exercise price K and maturity 7', is a
contract which pays Yr = ¢g(Xr) = max(Xr — K;0) where Xr is the
date-T price of the stock.
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e An other more simple transformation lies in the link between prices
and logarithmic returns. Assume to simplify that a stock price is equal
to 1 at date 0 and equal to X; at date-t. The logarithmic return on the
interval [0;t] is defined by:

Y, =In (%) — In(X,) (1.8)

The question is then to determine the probability distribution of the
return, starting from a given distribution of the price.

e In microeconomic models, the future random wealth of an agent is
transformed by a utility function to measure satisfaction. Moreover,
to compare individual risk aversions, it is necessary to study concave
transformations of utility functions.

The following proposition formally establishes the link between fx and
fy. We will illustrate this result in chapter 3 by determinig the density of a
price starting from the density of a return and vice versa.

Proposition 38 Let X denote a variable with density fx and g a strictly
monotone, continuously differentiable function from R to R. The density fy
of Y = g(X) is defined by:

fx(g~ (2))
g’ (g7 ()]
= 0 otherwise

fr(z) if ©eY(Q)

where Y(Q) ={y €eR / y =Y (w) forw € Q}.
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Chapter 2

Moments of a random variable

The standard theory of portfolio choice, developed in the fifties by Harry
Markowitz (1952) says that investors realize a tradeoff between return and
risk when they build a portfolio. As return on a future period of time is a
random variable, investors use a measure of return called "expected return",
which is a weighted average of possible future returns. They measure risk
by a simple function of the deviations of possible returns with respect to the
expected return. It is called the variance of returns.

Mathematically speaking, investors realize a tradeoff between expectation
and variance. The notions of expectation and variance of a random variable
are then fundamental in most financial models. In this chapter, we first dis-
tinguish discrete and continuous variables to define expectation and variance,
before presenting the genaral definition. We then move on to skewness and
kurtosis which allow to analyze moresophisticated properties of stock returns
like assymetry or "peakedness" of the distribution of returns.

We introduce covariances and correlations, which measure the intensity
of the linear relationship between random variables. These tools are also im-
portant in portfolio management because of the principle of diversification.
Diversifying risk allows investors to get a better expected return without
taking more risk. It is then intuitive that including several stocks in a port-
folio achieves better diversification when the returns on these stocks are not
strongly linked, that is when the covariance between them is low.

2.1 Mathematical expectation

The mathematical expectation of a random variable is the technical transla-
tion of the intuitive concept of average of a sequence of numbers.
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Consider one more time example 29 of the lotto ticket (chapter 1) and
assume that the organizer of the game decides to attribute an equal share of
prizes to the three categories of winners. Assume that 120 players have each
bought one ticket (which costs $1) and played different combinations. The
amount of prizes to be shared is $120. Each category of winners has to share
$40. The unique winner with three correct numbers receives $40. The 21
winners with two correct numbers receive $% each and the 63 winners with
only one correct number obtain $% each. Before the official draw, a player
who wants to value his average gain weighs the amounts he can win by the
corresponding probability of winning. Before the official draw, the player can
expect the following average gain:

1 40 21 40 63
Obviously, in this overly simplified example, we find that the expected gain
is equal to the initial price of the ticket because we assume that all players’
stakes are redistributed (and they chose different combinations). In this case,
we can say the game is fair. Real lottos are not that fair because the organizer
keeps around half of the stakes.
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2.1.1 Expectations of discrete and continuous random
variables

Definition 39 1) Let X denote a discrete random variable with support
{z1,...;xp}, &y € R for any i. Let p; = P(X = x;) for i = 1,....n; the
expectation of X under probability P (also called "first-order moment") is
the quantity (if it exists), denoted E(X), and defined by:

E(X) = Z TiPi
i=1

2) Let X be a continuous variable with density fx and CDF Fy; the

expectation of X under probability P is the quantity (if it exists), denoted
E(X), defined by:

E(X) = /+0<> zfx(z)dt = /+0<> xdFx(x)

e} —00

If n and the z; are finite in point (1) of definition 39, the expectation
exists.

Moreover, if X = 15 then F(X) = E(1g) = P(B).
Therefore, if X=""  z;1p5, with B; = {X = x;}, we get :

E(X) =EK (Z xilBi) = leE (1Bi> = inpi
=1 =1 =1

To be completely rigorous, we should note Ep instead of E since the
expectation depends on the probability measure P. However, F is sufficient
when there is no ambiguity about the probability measure under which ex-
pectation is defined.

Nevertheless, it is worth to notice that arbitrage pricing models are based
on a probability change. So, financial models often distinguish the "real"
probability measure, denoted P, and the "risk-neutral" probability measure,
denoted Q. It explains why sometimes it is necessary to denote expectations
as Ep or Eq (section 2.4 gives more details about probability changes).

Discrete and continuous variables are important cases but a general de-
finition is needed because many random variables are neither discrete nor
continuous. For example, if X is discrete and Y continuous, X +Y is neither
continuous nor discrete.

39

Download free eBooks at bookboon.com



Probability for Finance Moments of a random variable

2.1.2 Expectation: the general case

The expectation of a general random variable is built through a convergence
process starting with variables with finite support (as in definition 39). It
is then generalized to positive random variables and, finally, to general vari-
ables.

Definition 40 Let V denote the set of random variables with finite support'
defined on a probability space (2, A, P) and X a positive (general) random
variable. The expectation of X, denoted E(X) or [, XdP, is the quantity
(if it exists) defined by :

B(X) = /QXdP —sup {E(Y), Y < X)

We are able to calculate E(Y) for any Y € V because Y is discrete
(definition 39). Therefore, the above definition means that the expectation
of a positive random variable X may be calculated as the upper bound of the
expectations of all discrete variables lower than X. The definition may also
be interpreted by saying that a positive random variable can be written as
the limit of a sequence of discrete random variables. In fact, the idea behing
this definition is the same as the one used to define the Riemann integral of
a function as the limit of the integrals of a sequence of step functions.

To understand the notation [, XdP, remember how we defined E(X) for
a continuous variable. The expectation was the integral of x with respect to
the CDF Fx. In the general case, the expectation is the integral of X with
respect to P. It explains the notation as an integral on (2.

To address the general case, that is when the sign of X is unknown, it is
enough to remark that a random variable X may be decomposed as follows:

X=X"-X"

with Xt = max(X;0) et X~ = max(—X;0). The definition of F(X) is then
deduced from the preceding definition.

'Variables in V are also called simple variables.
2 Assume that f is a function; the upper bound sup,¢ 4 f(z) is the lowest number greater
than all the numbers f(x) for z € A.
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Definition 41 Let X denote a real random variable; the expectation of X,
denoted E(X), is the quantity (if it exists) defined by:

E(X)=E(X") - E(X7)

This definition is consistent with definition 40 since X and X~ are
positive.

In each of the preceding definitions we mentioned that F(X) may not
exist; when it exists, X is said integrable with respect to P, or simply inte-
grable when there is no confusion about P. Finally, remark that F(X) exists
as soon as F (] X|) exists, simply because | X|= X1+ X~ .

The essential properties of expectations are summarized in the following
proposition.

Proposition 42 Let X, Z denote two integrable random variables and A, B
two events in A ;
1) X =14 = E(X)=P(A)

2)0<X<Z=0<EX)<EQZ)

3){X >0and AC B} = FE(X1,) < E(X1p)
4Nc€eR,E(cX) = cFE(X)
5)E(X+Z)=EX)+E(Z)

6) |E(X)| < E(]X])

Proof. 1) X = 1, is equal to 1 with probability P(A) and equal to 0 with
probability 1 — P(A). A direct application of definition 39 gives the result
E(X) = P(A).

2) In definition 40 choose Y = 0 as the variable in V. It follows that
E(X)>E(Y)=0.
In the same way, Z > X, implies that:

sup {E(Y), Y < X} <sup {E(Y), Y < Z} (2.1)

As a consequence, E(Z) > E(X).

3) We know that A C B and X > 0, consequently X1, < X1z and the
result is a direct consequence of (2).
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4) If X € V, the result is obvious and it is also the case if X is positive and
¢ > 0. More generally, decompose X and ¢X in X*— X~ and (¢X)"—(c¢X)™.
It is worth to note that if ¢ is negative, (¢X)”™ = —cX T and (¢X)" = —cX ™,
therefore:

E(cX)

5) The proof is the same as in point (4) when considering, first, positive
variables, and then decomposing X in X+ — X .

6) | X| = XT+X " implies £ (| X|) = E(XT)+E(X") > |[E(XT) — E(X)|;
in fact, for two positive numbers z and y, we know that x +y > = — y and
rT+y>y—z. N

Remark 43 When a sample (x1, 2, ...,2,) of a random variable X is ob-

served, an estimate of E(X) is the average T = %Z T;.
i=1
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2.1.3 Illustration: Jensen’s inequality and Saint-Petersburg
paradox

The theory of decision making under uncertainty is based on a number of
assumptions about agents’ preferences. In the usual framework of microeco-
nomic textbooks, agents maximize the expectation of a utility function by
choosing amounts of consumption and investment. In a one-period model,
agents consume at dates 0 and 1, date-1 consumption being financed by the
payoffs of investments chosen at date 0. It follows that date-1 consumption
is a random variable X and the agent maximizes E [u(X)] under a budget
constraint, where u stands for his utility function.

One of the usual assumptions is that agents are risk averse. It means
that an agent being offered a lottery paying 0 or 100 with equal probabilities
would prefer, instead of playing the lottery, to get 50 = % (0 4 100) for sure.
In other words, such an agent prefers to get the expectation E(X) for sure,
instead of getting the random consumption X.

Risk aversion can then be characterized by:
Eu(X)] < u[E(X)]
where X and u(X) are assumed integrable.

The Jensen’s inequality in the following proposition allows to characterize
the utility functions of risk averse agents.

Proposition 44 Let X denote an integrable random variable and u a con-
cave® function from R to R such that u(X) is integrable; we then have:

Eu(X)] < ul[E(X)] (2.2)

To illustrate this important result, consider a random variable taking two
values z; and x5 with probabilities p and 1 — p. Jensen’s inequality writes:

pu(r1) + (1 = plu(zs) < u(pry + (1 — p)zy)

The curve representing a concave function u(x) is then always above the
line joining (x1,u(x1)) and (z9, u(xs)).

3A function f is concave if for any (x,y) and any A € [0;1], f(Az + (1 — \)y) >
Af(e) + (1= f(y)
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Remark 45 a) If u is convez, inequality 2.2 is reversed.
b) If u is strictly concave, the inequality is strict as soon as X is not
always equal to its expectation (X is not a constant).

Strict concavity of utility functions has two different meanings. The first
one is that marginal utility of consumption is decreasing because v’ > 0 and
u” < 0. The more an agent consumes, the less a supplementary consumption
unit brings satisfaction. This is one of the first assumptions we can find
in undergraduate economics textbooks. But this decreasing marginal utility
property has nothing to do with randomness and probability.

The second interpretation, appearing in Jensen’s inequality, is risk aver-
sion which is obviously linked to randomness and probability. It is then
important to understand that the same mathematical property (concavity
of the utility function) has two completely different interpretations. It is
sometimes considered as a weakness of the expected utility theory.

Risk aversion and concavity of utility functions can be illustrated by the
Saint-Petersburg paradox®.

Example 46 The St-Petersburg paradox

In a fair coin tossing, a player wins 2" monetary units if Tails appears
for the first time on the n-th toss and the game stops. When Heads occurs,
the coin s flipped one more time.

Let N denote the random variable counting the number of tosses before
the game stops. Fach coin toss being fair, the probability of getting Heads
(Tails) is 1/2. Consequently, P(N = n) = 5= since we need a sequence of
n — 1 Heads followed by a Tuils (successive tosses are independent). But the
gain is then equal to 2". Therefore, the random gain of the player, denoted

X, has an expected value defined by:
+oo +oo 1
E(X)= 2" x P(N =n) = 2" X — =400
(X) = 32 PN =) = 322" x 5,

If economic agents were to mazximize their expected wealth, they would be
ready to pay any price to play this game since the expected gain is infinite.

4The initial contribution of Nicholas Bernoulli (1695-1726) concerning this paradox was
published in 1738 and then published in English in 1954 in Econometrica.
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All experiments show that people are much more risk averse. They accept to
bet only a small amount of money to participate.

Bernoulli proposed an alternative to wealth maximization as the maxi-
mization of the expectation of a concave transformation of wealth, namely
the logarithm of wealth. We get in this case:

E(ln(X)) =Y In(2") x 2% — In(2) 2%

n=1

and we know that:

+oo n +o0o +o00 1
Do =2 5 =2
n=1 n=1 k=n

It follows that E(In(X)) = 2In(2) = In(4); the player is then indifferent

between playing the game and getting 4 monetary units for sure. In other
words, with a logarithmic utility function, he is ready to pay 4 units to play,
not more, even if the expected value of the game is infinite. This famous
example shows that other elements than the expected final wealth play a role
in decision making.
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2.2 Variance and higher moments

As shown by the Saint Petersburg paradox, agents take into account, not
only the expected final wealth, but also the risk associated with X. Many
risk measures have been proposed in the financial literature but the most
popular, especially in portfolio choice theory, is the variance of returns. This
popularity is partly due to the statistical properties it carries and to the
simplicity of the portfolio choice models it allows to build. The variance of
returns is also a fundamental variable in option pricing models.

2.2.1 Second-order moments

Definition 47 The second-order moment of a random wvariable X, de-
noted as p15(X) is the quantity (if it exists) defined by:

pa(X) = E(X?)

When py(X) exists, X is said square-integrable.

Definition 48 Let X be a square-integrable random variable; the vartance
of X, denoted V(X) or o?(X) is the quantity’:

V(X) =0*(X) = B [(X - BE(X))*]

V(X ) is also called the central second-order moment. In fact, if ¥ =
E(X) we get V(X) = puy(Y). Y is a zero-mean random variable, that
is, E(Y)

Proposition 49 Let X be a square-integrable random variable;

V(X)=FE[(X - E(X))’] = E(X?) — E(X)? (2.3)
Proof.
E[(X - E(X))?] = E[X?-2XE(X)+ E(X)?] (2.4)
= E(X?) -2E[XE(X)]+ E(X)* (2.5)
= E(X?* —2B(X)?+ E(X)? (2.6)
= B(X?) - E(X)? (2.7)
|

’Now ¢ has nothing to do with o-algebras presented in chapter 1. We hope that this
common notation will not be confusing. In general it is not.
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Example 50 Suppose card(2) =4, P(w) = 0.25 for every w, and X defined
by:

X =

E(X) =1 and the corresponding zero-mean variable Y = X — E(X) is

equal to:
1

2

-2

- _1 -

The variance of X and Y are equal and given by:
V(X)=V(Y)=0,25 x (1> +2>+ (=2)* + (-1)%) = 2.5

This example also shows that variance is invartant by translation. In
other words:

Y —

V(X)=V(X +c¢) (2.8)
for any real number c.

Remark 51 When a sample (x1, 3, ....,x,) of a random variable X is used
in empirical studies, an unbiased estimate of the variance is given by:

n

# =S (-7 (2.9)

n—14%
=1

The coefficient n — 1 instead of n comes from the fact that the expectation
of X is not known and replaced by its estimate T.

Definition 52 Let X be a square-integrable variable; the standard devia-
tion of X, denoted o(X), is the square root of V(X):

o(X) = VV(X)

In Markowitz portfolio theory, agents are assumed to make their choices
in the expectation-variance space or in the expectation-standard deviation
space. For a given expected return, they minimize the variance (standard
deviation) of their portfolio return. However, a portfolio contains several
assets and the relationships between the individual returns must be taken into
account to evaluate the variance of the portfolio®. These relationships are
quantitatively measured by covariances and correlations. They are developed
in section 2.3.

6To give an idea, the standard deviation of yearly U.S stock returns was around 20%
over the 20th century.
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2.2.2 Skewness and kurtosis

Variance is commonly used as a measure of risk in portfolio management.
However, variance weighs in the same way returns above the mean and re-
turns below the mean. Therefore, measuring risk by the variance of returns
implicitly assumes that the distribution of returns is symmetrical with respect
to the mean. In fact, it is intuitive that agents link risk more to potential
losses than to potential gains. Consequently, when the distribution is not
symmetrical, variance may not be a good measure of risk. Skewness is a
way to measure the assymetry of a probability distribution and many em-
pirical studies show that stock returns are negatively skewed, meaning that
that they exhibit more large negative returns than large positive returns and
more small positive returns than small negative returns.

In the next chapter, we will describe the main probability distributions
appearing in financial models. The most commonly used to describe returns
is the Gaussian distribution which is symmetrical with respect to its mean.
However, when looking at stock returns, we also observe that extreme returns
are more frequent than what is expected under the Gaussian distribution.
Kurtosis is the standard measure to take into account these extreme returns.
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Definition 53 The moment of order n of a random variable X, denoted
as 1, (X) is the quantity (if it exists) defined by:

p(X) = E(X")

Definition 54 Let X denote a random wvariable with a finite moment of
order 3. The skewness of X, denoted Sk(X) is defined by:

ps(X — E(X))
Sk(X) = 2.10
() -2 (2.10)
In empirical studies using a sample (1, xo, ..., x,) of a random variable

X, Sk(X) is estimated by:

Sk = (n— 1)n(n —2) 2. (x s_T>3 (2.11)
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Figure 2.1: Histogram of 2002 PEPSI daily returns

Figure 2.1 shows the histogram of daily returns on the PEPSI stock in
2002. We observe some largely negative returns and Sk = —0.73 this year.
Skewness is used in some portfolio choice models to take into account the
assymetric perception of risk by investors. The thin line on figure 2.1 shows
what we could expect if the distribution of returns were Gaussian (see chapter
3), that is symmetrical.
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Definition 55 The kurtosis of a random variable X s defined by:

X —-FEX
o
The excess kurtosts of a random variable X s defined by:
er(X) =r(X)—-3 (2.13)

In case of Gaussian returns, x = 3. It explains the way excess kurtosis
is defined. As mentioned before, x(X) measures the importance of extreme
returns in a probability distribution. In the case of PEPSI returns, x(X) =
8.93 which is very high with respect to what is expected for Gaussian returns.
It is common for single stocks to observe a large kurtosis. When portfolios
are considered, the diversification effect often generates returns with a lower
kurtosis and a skewness closer to 0.

Before studying relationships between random variables by means of co-
variances and correlations, we give several important properties of the vector
space of integrable/square-integrable random variables. Even if they seem
abstract, they are very useful in general arbitrage pricing models.

2.3 The vector space of random variables

Let £°(€,.A) denote the set of real random variables defined on (£2,.A4).
Addition of variables and multiplication by a real number may be intuitively
defined by:

YVw € Q, (X+4Y)(w)=X(w)+Y(w)
Yw € Q,VceR, (cX)(w) =cX(w)

It is quite obvious that £° (£, A) is a vector space, the null random vari-
able being the neutral element for addition. This space is very general and it
is impossible to enrich its structure without constraints. But, if we restrict
the analysis to integrable variables, a norm can be defined on this subspace.
Moreover, considering only square-integrable random variables allows to de-
fine an inner product, inducing nice geometrical properties.

It is worth to notice that integrable or square-integrable variables can be
considered only if a probability measure P has been specified. Some technical
precautions are needed to introduce P and to consider random variables as
elements of vector spaces. They are presented in the next sub-section.
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2.3.1 Almost surely equal random variables

When we say that two n-dimensional vectors in R", say x and y, are equal,
there is no ambiguity. It means that the distance d(z,y) between x and y is
zero, as soon as a metric’ d has been defined on R”. Using the usual metric
on R", it means:

r=ye Y () =0 (2.14)
=1

or, equivalently, x; = y; for i =1, ..., n.
Consider now the set of Riemann-integrable functions defined on an in-
terval [a;b] . The usual metric on this space is defined by:

A(f.g) = / f(2) - ()| da (2.15)

In fact, it is not really a metric because we can have d(f,g) = 0 with
f # g! Assume f(x) = 0 on [a;b] and g(z) = 0 on [a;b] but g(b) = 1. It

turns out that d(f,g) = 0 because f and ¢ only differ on a set containing
one point.

It would be the same if f and g were different on a finite or countable set
of points. To deal with a "real" metric, it is necessary to avoid these cases.
The problem is solved by defining a binary relation R as follows:

fRyg if f and g are equal, except on a finite or countable set of points.

R is an equivalence relation. It is reflexive (fRf), symmetric (fRg <
gRf) and transitive (fRg and gRh = fRA).

Consequently, we do not define the metric d on the set of integrable
functions, but on the R-equivalence classes of integrable functions defined
on [a;b]. If f and § stand for two equivalence classes containing respectively
f and g, the metric d( f ,§) can be defined by using formula ??, for any pair
(f,g) of functions belonging to f x .

The same "trick" is used on the space of integrable random variables,
using the equivalence relation "almost-surely equal”.

TA metric d on a space S is a mapping from S x S to Rt such that 1) d(z,y) = 0
if z =y 2)dz,y) = dy,x) and 3) d(z,z) < d(z,y) + d(y, 2) (called the triangular
inequality).

51

Download free eBooks at bookboon.com



Probability for Finance Moments of a random variable

Definition 56 Two random wvariables X and Y defined on (2, A, P) are
equal P-almost-surely(or P-almost everywhere)® if:

PlweQ/ X(w)=Y(w)) =1
We could also write in short: X =Y a.s & P(X =Y) = 1.
An alternative presentation can be used, based on negligible events.

Definition 57 Let (2, A, P) a probability space; A € A is P-negligible if
P(A) =0.

Definition 56 is then equivalent to say that two variables are a.s equal if
they differ on a negligible event.

LY, A, P) will denote the set of P-integrable random variables defined
on (2, A, P).

Proposition 58 The binary relation R defined on L*(Q, A, P) by:
XRY & X =Y P-as

s an equivalence relation.

8We note briefly P-a.s or P-a.e or simply a.e or a.s if no confusion can arise about the
probability used in the model.
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2.3.2 The space L}(Q, A, P)

Let now L'(Q, A, P)° be the set of R-equivalence classes of random variables
in £1(Q, A, P). In the same way, L°(£2, A, P) denotes the set of R-equivalence
classes of random variables in £°(9, A).

Proposition 59 1) L'(Q, A, P) is a vector subspace of L°(Q, A, P).

2) The mapping from L*(Q, A, P) to R, denoted X — || X||, and defined

by:
X = |IXIl, = E(X])

is a norm!.

3) The mapping from L' to R which links X to E(X), denoted X —
E(X), is a positive linear mapping.

Proof. 1) The fact that L'(Q, A, P) is a vector subspace of L° (2, A, P) is
a direct consequence of points (4) and (5) in proposition 42.

2) We now prove that X — || X, is a norm. || X|[; =04 X =0 P-as.
It is then sufficient to show that:

IX + Y, < 1X + 1YL
But for any w € €2, we have | X (w) + Y (w)| < | X (w)| + |Y (w)], therefore:
E(X+Y]) < E(X]) + E(]Y])

It is also obvious to see that ||aX||; = |a||X]||,using the properties of the
absolute value function.

3) Linearity and positivity of the expectation come directly from propo-
sition 42. m

Linearity of expectations is essential for economic interpretations. In
fact, a large part of the financial literature on arbitrage uses, as we will see
later on, a probability change to express prices as expectations of discounted

Yor simply L' if no confusion can arise about the probability measure.

19A norm defined on a vector space S is a mapping from S to R*, denoted ||. |, satisfying:
a) ||zl = 0 if and only if z =0

b) Vo € §,Ve € R, |lcz|| = || ||z]|

) V(z,y) €S XS, [z +y| < [lzfl + [lyll
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future cash-flows. In this framework, the linearity property simply says that
the value of a portfolio is equal to the sum of the values of the securities
contained in the portfolio. It is also the intuitive idea behind the no-arbitrage
assumption.You cannot buy two stocks for $50 and immediately resell them
$30 each. The price of one stock must be $25 if there are no arbitrage
opportunities.

Proposition 59 allows to consider an integrable random variable as a vec-
tor (element of the vector space L'(, A, P)). As a norm induces a metric by
h(X,)Y) =X =Y, L' (22, A, P) is also a metric space as any normed vec-
tor space. Convergence associated to the metric d; is called L; convergence
or convergence in mean.

Definition 60 A sequence of random variables (X,,n € N*) converges in
L' to a limit X € L' if and only if:

lim E (X, —X|) =0

n—-+o0o
We then write X, Ix

Unfortunately, the L;-norm is not deduced from an inner product. Some
intuitive geometrical results, valid in finite-dimensional spaces like R", are
not true in L;. It is especially the case for the projection theorem and the
Riesz representation theorem. To keep these convenient properties true, it is
neccessary to restrain the space to square-integrable variables.

2.3.3 The space L*(2, A, P)

Let now £2(€Q, A, P) denote the vector space of square-integrable random
variables and L%(9), A, P) the space of equivalence classes for the binary
relation "almost-surely equal" defined on £2(£2, A, P). We get the following
proposition.

Proposition 61 1) L*(Q, A, P) is a vector subspace of L'(Q, A, P)

2) Let X and Y be 2 elements of L*(2, A, P) ; the product XY is in
LY, A, P).
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Proof. 1) It is a direct consequence of:
a) the linearity of the expectation operator;
b) the fact that a square-integrable variable is also integrable.

2) We are going to show that
E(XY)? < E(X*)E(Y?) (2.16)
Let Z =X +tY witht € R :
E(Z%) = E(X?42aXY +¢Y?) >0
E(X?) +2tE(XY) +t*E (Y?)

The second line is a polynomial of degree 2 in t. It is always positive or equal
to 0, therefore its reduced discriminant A’ is negative or equal to 0. But A’

is equal to:
A =E(XY)’-E(X?)E(Y?

It shows inequality 2.16. The RHS of this inequality is finite since X and
Y belong to L?. It implies that the LHS is also finite and shows that XY is
integrable. m

This proposition allows to define an inner product on L2.
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Proposition 62 The mapping from L*x L* to R denoted by (., .) and defined
by:
(X,Y) = (X,Y) = B(XY) (2.17)

is an inner product on L*.
The induced norm is defined by:

X1, = VI{X, X) = VE(X?) (2.18)

and the induced metric dy is defined by do(X,Y) = || X = Y]|,.

Proof. The mapping (.,.) is positive because (X, X) = E(X?) > 0 if X is
not (P-a.s) equal to 0. Bilinearity is obvious since the expectation operator
is linear. m

As it was the case for L', we can define a convergence on L? simply called
L2-convergence or convergence in quadratic mean.

Definition 63 A sequence (X,,,n € N*) converges in L? with a limit X € L?
if and only if :
lim E[(X,—-X)’] =0

n—-+o00

L? is in fact a Hilbert space'!. At a first glance this distinction appears
purely technical but it has important consequences on the properties of vec-
tors in L. There are two important well known theorems, valid on R", that
are still true on Hilbert spaces and especially on L2. These are the projection
theorem and the Riesz representation theorem.

The Riesz representation theorem

First remember that, on R?, a linear mapping f : R? — R is defined by:
Vo € R?, f(z) = a121 + azay (2.19)

where a; and ay are real numbers and 2’ = (21, x2). It means that the numbers
(a1, az) represent the mapping f. Moreover, the vector a’ = (a1, as) has the
same dimension than the vector x € R? and f(x) can be written as the inner

1A Hilbert space H is a normed vector space where the norm comes from an inner
product, and the metric induced by the norm makes H complete as a metric space (any
Cauchy sequence in H is convergent).
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product!? of @ and x. To summarize, we could say that any mapping f from
R? to R is represented by a vector a € R2. It is the Riesz representation

theorem in the two-dimensional space. Fortunately, this result is still valid
in L2(Q, A, P).

Theorem 64 Let f denote a continuous linear mapping from L* to R; there
exists Yy € L* such that for any X € L?:

f(X) = (X, Yy) = E(XY})

Suppose that X is the payoff of a financial asset and f(X) denotes the
initial price of this asset. The mapping X — f(X) is called a valuation
operator or a pricing kernel. Assume for example that Card(€2) = N. The
preceding theorem says that there exists a vector Yy such that

N
FX) = (X,Y) = B(XY)) = Y X(wi)Yy(wi) P(wi) (2.20)
i=1
Consider the simplest case where X = e; = 1y,,), the Arrow-Debreu security
contingent on w;.
flei) = (e, Yy) = P(wi)Yy(wi) (2.21)
f(e;) is the market price at date 0 of a security which pays 1 at date 1
if the true state of nature is w;. It is equal to the product of the probability
P(w;) and Yf(w;). In fact Yy(w;) depends on two elements. First, the risk-free
rate because you pay today the price f(e;) to receive the contingent payoff
at a future date. The second element influencing Yy (w;) is risk aversion. If
you are highly risk-averse, Yy (w;) will be lower because you are not ready to
pay much to receive the contingent payoff.

Consequently, Yy(w;) is interpreted as the risk-adjusted discount factor
for the state w;. But any general financial asset X, defined by its payoffs, is
a portfolio of such Arrow-Debreu securities.

N
X = E xT;€;
i=1

with X (w;) = ;. It follows that:

f(X) ={X,Y}) = inf(ei) = inYf(wi)P(wi) (2.22)

I2Remember that on R™, the usual inner product of two vectors = and y is defined by
<my>= Y wiyi.

1=1,.n
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The projection theorem

The second important result in L? is the projection theorem. To introduce
the result, consider one more time a vector z in R? and a convex!? subset C' C
R2. On figure 2.2, C is the grey ellipse. z is the point in C which is closest
to x. In other words, z is the orthogonal projection of x on C. Consider any
vector y whose extremity is in y. It is easy to see that the angle between
x —z and y — z will be between 90° and 270°. The cosine of this angle is then
negative. But the cosine of an angle between two vectors is proportional to
the inner product of these vectors!*. We then have:

<r—zy—z> <0 (2.23)

Here the convexity hypothesis is fundamental because it allows to say
that all points in C' are on the same side of the tangent to C' (on which lies

13 A subset A of a vector space is convex if:
YA€ [0;1],V(z,y) € Ax A, Az + (1 — Ny € A.
Y4Tn R, the cosine of two vectors z and y is defined by < z,y > /||z| - ||yl -
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¥

Figure 2.2: Projection theorem in R?

This result is still valid for square-integrable random variables and also
called the projection theorem.

Theorem 65 Let C denote a non-empty convex subset of L? and X € L2
There exists Z € C such that:

(X—-2,Y —-Z)<0 foranyY € C

Z is the orthogonal projection of X on C. In chapter 4, we will intro-
duce conditional expectations and show that they can also be interpreted in
terms of orthogonal projections.

2.3.4 Covariance and correlation

An economic agent investing in a portfolio of financial securities has to take
into account the relationships between assets’ returns to make an optimal
choice. For example, a portfolio containing several stocks of firms in a given
industrial sector is more sensitive to news concerning this specific sector than
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a portfolio diversified across industries. Covariance is used to measure these
relationships between returns.

Definition 66 Let X and Y denote two random wvariables in L*(), A, P);
the covariance between X and Y, denoted Cov(X,Y) (or simply oxy) is
defined as:

cou(X,)Y)=E[(X — E(X))(Y — E(Y))]

Example 67 Let X and Y be defined on a 4-state space as in table 2.1:

State | X(w) | Y(w)
w1 1 3
W2 0 1
W3 3 1
Wy 4 3

Table 2.1: Definition of X and Y

We assume that all states are equally likely, so E(X) = E(Y) = 2. The
corresponding centered variables are given in table 2.2.

State | X(w) — E(X) | Y(w) — E(Y)
w1 -1 1
Wa -2 -1
w3 1 -1
Wy 2 1

Table 2.2: Definition of the centered variables

The covariance is then calculated as follows:
1
cov(X,Y) = ) (1 x14+(=2)x(-1)+1x(-1)42x1)=05

This quantity depends, like expectation and variance, on the probability
measure P. Covariance gives a quantitative measure of the (linear) rela-
tionship between X and Y. Moreover, covariance is bilinear; in other words,
for any quadruple a,b,c,d of real numbers and any quadruple of square-
integrable random variables X, Y, Z, W we have:

Cov(aX +bY,cZ+dW) = acxoxz+ad X oxw+becXoyz+bd xoyyw (2.24)

It means in particular that Cov(aX,Y) = aCov(X,Y).
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Remark 68 Relation 2.24 also allows to write:
VIX+Y)=V(X)+V(Y)+2Cou(X,Y)
because Cov (X, X) = V(X).

The magnitude of Cov (X,Y") depends on the magnitude of the values of
X and Y. It is then difficult to compare two covariances and to give an eco-
nomic interpretation in terms of the intensity of the relationship linking two
variables. To overcome this problem, we refer to the correlation coefficient
which uses standardized variables.

Definition 69 Let X and Y denote two variables in L?; the correlation
coefficient between X and Y, denoted as pyy, is defined as:

~ Cou(X,Y)
P = 5 (X)e(Y)

where o(X) and o(Y') are the standard deviations of X and Y.

pxy can also be written C’ov(%, %), which is the covariance of two
variables with unit variance. It is the meaning we give to the word "stan-
dardization". In fact, when X and Y are zero-mean random variables, we
get:
)
XL YL

Here, pyxy may be interpreted as the cosine of the angle between the two vec-
tors X and Y. It appears that the length of the vectors, which is in fact their
standard deviation, is neutralized when measuring a correlation coefficient.
The reader must be warned about the fact that a high correlation means a
strong linear relationship between two variables, but a low correlation does
not always mean a weak relationship. It only means that a strong linear
relationship does not exist.

In the example of table 2.1, we get:

o(X) = \/i<(—1)2+(—2)2+(1)2+(2)2) —V25=158
oY) = \/i<<1)2+<—1>2+<—1)2+(1)2>=1
Pxy = %:0.316
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The correlation coefficient is positive but far from 1. We can remark
that if X and Y are multiplied by a constant, the correlation coefficient does
not change, even if covariance is different. The essential properties of p are
summarized in the next proposition.

Proposition 70 Let X and Z denote two random variables in L? and a, b, c, d
four real numbers:
Cov(aX +b,cZ+d) = acx Cow(X,Z)
Paxtbez+d — sign(ac) X pxy
Proof. The first equality comes directly from equality 2.24 by choosing Y

and W identically equal to 1. The second equality is obtained by noting that
o(aX +b) =lalo(X) and o(cY +d) = |c|o(Y). m

An important property of correlations (and covariances) is linked to in-
dependence .
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Proposition 71 If two variables X andY in L? are independent, their cor-
relation (covariance) is equal to zero.

It is important to note that the proposition is an implication, not an
equivalence. We could build counter examples of uncorrelated but non inde-
pendent variables.

2.4 Equivalent probabilities and Radon-Nikodym
derivatives

2.4.1 Intuition

To buy a financial asset, risk averse economic agents are not ready to pay the
expected present value of future cash-flows discounted at the risk-free rate.
Considering the randomness of cash-flows, they require a risk premium and
are ready to pay only a lower amount.

To translate this problem in simple terms using lotteries and keeping
the risk-free rate equal to 0, we use the following example. Let X; denote
the terminal payoff of a lottery, X; being 200 or 0 with equal probabilities.
Assume that a risk averse agent is ready to pay only Xy = 90 to play the
lottery knowing that

1
E(X;) = 5 [0 4 200] = 100 (2.25)
In financial theory, there are two ways to link the terminal expected payoff

to the initial price. In a CAPM!-like approach, the expectation is discounted
by a risk premium such that

E(Xy) =90 (2.26)

T 1F Risk _premium

The difficulty of this approach is obviously the determination of the risk
premium. If X is the equilibrium market price, the risk premium is a com-
plicated function of the utility functions of all agents.

The other approach, mainly used to value derivative securities, is to dis-
count future cash-flows at the risk-free rate (equal to 0 in our example) but
to change the probabilities coming in the calculation of the expectation.

I5CAPM = Capital Asset Pricing Model
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In the above example, we are looking for an alternative probability mea-
sure () (different from P) such that

Xo = Bo(X)) (2.27)

The probabilistic framework is very simple since there are only two states
of nature. In fact, Q@ = {w1,ws}, Xi(w1) =200 and X;(ws) = 0.

Let @ be defined by:

Q(wl) = {1 = 0.45
Qwz) = g=1—q¢ =055

It is obvious that we get the desired result Eg (X;) = 90 = Xy. The
probability () is easily obtained because we have only to solve a system of
two equations with two unknowns:

G X200+ g x0 = 90 (2.28)
nteg =1 (2.29)

This technique is now very common in finance, especially in the valuation
of options. However, the idea seems artificial because one can have the feeling
that () depends on the risky asset considered in the calculation. Nevertheless
it is very powerful when associated with the no arbitrage assumption, as
shown in the following example.

Example 72 Consider a two-state one-period economy with one risk-free
asset (the risk-free rate is still assumed to be 0) and two risky assets defined

by:

Xi(w1)) = 200 Xi(wg) =100 X, =130 (2.30)
Yi(w)) = 150 Yi(wy) =110 Yy =120 (2.31)

We first look for a probability Q such that Xy = Eq(X1). We have to solve:
130 = 200Q(w1) + 100 (1 — @ (wq))
The solution is Q(wy) = 0.3.

Look now for a probability ) such that Yo = Eqg (Y1). The equation to be
solved 1s:
150Q" (w1) + 110 (1 — Q' (wy)) = 120
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and the solution is Q'(w1) = 0.25.

Q and Q' are different. It then seems that changing the probability mea-
sure is useless since we get a different probability measure, depending on the
risky asset chosen for the calculation.

Fortunately, it is not the case if there are no arbitrage opportunities. An
arbitrage opportunity is a portfolio which costs nothing at date 0 (or has a
negative cost) and pays positive (at least zero) amounts in all states of nature
at date 1. If such opportunities exist, current prices cannot be equilibrium
prices.

We show hereafter that if Q and Q' are different, there must be an arbi-
trage opportunity or, equivalently, (Xo,Yy) cannot be a vector of equilibrium
PTICES.

Let us build a zero-cost portfolio 0 satisfying :

200 150 1 0
94100}%‘”{110}*92{1]—[o}

where 07 is the number of units of the risk-free asset whose price and pay-
offs are equal to 1 (because the risk-free rate is zero). There are infinitely
many portfolios satisfying these equations. The question is to know if it is
possible to find such a portfolio with a negative cost (it would be an arbitrage
opportunity).

Consider 0x = —2;0y = 5;0, = —350; we get :

200 150 1 0
_2[100}”{110}_35’0{1}_{0}
The cost of this portfolio is given by: —2 x 130 + 5 x 120 — 350 = —10
It happens that an agent characterized by a strictly increasing utility func-

tion is ready to "buy" (but the price is negative!) an infinite quantity of this
portfolio. Consequently (Xo,Yo) cannot be a vector of equilibrium prices.

As the arbitrage portfolio requires a short position on X; and a long po-
sition on Y1, the price Xq is too high and Yy is too low (in relative terms).
To get an equilibrium, it is necessary that —2Xy+ 5Yy = 350. As long as this
equality 1s not satisfied, it is possible to build an arbitrage portfolio. To keep
things simple, suppose that the price adjustment is realized only on Y;. The
equilibrium price is then Yy = 122.
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Recalculate now the probability Q)7 with this new price.
122 = 150Q” (w1) + 110 (1 — Q" (wy))
implies Q" (w1) = 15 = 0.3.

A kind of miracle appears in this example! ()" is exactly the probability
measure () when the market is free from arbitrage opportunities. In other
words, the probability we build does not depend on the security we use
to calculate it, if prices are equilibrium prices. () characterizes the whole
market, not a specific security. It is the reason why the change of probability
technique is so powerful for valuing derivative securities.

We let the reader check that when the risk-free rate r is not zero, that
is when the price of the risk-free asset is %M, the price of a contract X, is
written;

Xo = ——Fo(X) (2.32)
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The economic interpretation of this formula is also very interesting. If the
price of any asset is obtained by discounting the expected cash-flows at the
risk-free rate, it is as if agents were risk-neutral because they don’t require
any risk premium. It explains why the probability measure () is usually
labelled "risk-neutral probability measure".

2.4.2 Radon Nikodym derivatives

To justify the not so intuitive assumptions of the current section, we mention
an important point relative to the prices of Arrow-Debreu securities. An
Arrow-Debreu security contingent on a state w is a financial asset which
pays one monetary unit if w occurs and nothing if another state occurs. It
can be written as the indicator function 1y, .

Consider an Arrow-Debreu security contingent on a state wi, denoted as
A}, in a one-period model with a zero risk-free rate. If P(w;) > 0, the initial
price A} of this security is strictly positive but possibly lower than P(w;),
due to risk aversion. When changing the probability to write A} = Fg (A7),
one remarks that Fg (A]) = Q(w;). Consequently, the probability change
works (on the economic point of view) only if events having a positive (zero)
probability under P also have a positive (zero) probability under Q. The
reason is that the price of an Arrow-Debreu security is positive (zero) when
the probability of getting one monetary unit at the terminal date is positive
(zero).

This remark justifies the definitions hereafter.

Definition 73 a) A probability measure Q is absolutely continuous with re-
spect to (w.r.t) P if:

VBe A, P(B)=0=Q(B)=0
and we note () << P.
b) Two probability measures P and Q) are equivalent if:
VBe A, P(B)=0<Q(B)=0

Point (b) also means that () << P and P << Q.
The essential result allowing to use the change of probability method in
a rigorous way is the Radon-Nikodym theorem.
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Proposition 74 Q) << P if and only if there exists a positive A-measurable
function ¢ such that:

VB e A Q(B) = /¢dp
B

Remarks : It is clear that P(B) = 0 = Q(B) = 0 since the integral
is 0. Moreover, ¢, which is a random variable, is a.s strictly positive. If we
note that Q(B) = [ ¢dP, it allows to denote ¢ = % by analogy with usual
differential calculus. ¢ is then called the Radon-Nikodym derivative of @)

with respect to P. Finally, if P and () are equivalent, Z—g and % exist and:
Q _ 4
dP 1 dQ

Proposition 75 Let P and Q two equivalent probability measures on (£2,.A)
and ¢ = Z—?,. We have the following equality:

Eq (X1) = E(¢X1)

In the abovementioned financial interpretation involving a simple lottery
X1, Eg (X1) is the price of X;. It can also be expressed as the expectation
under P of a transformed payoff'® ¢ X;. We can also write F (¢.X;) = (¢, X;)
where the inner product is the one defined in L? (2, A, P) . ¢ then represents
(in the sense of the Riesz theorem) the linear valuation operator.

Specific case : Assume Card(2) = N, A= P(2) and P(w) > 0 for any
w; each state of nature is an event and we get:

Q{w)) = / $dP = $(w) P(w)

{w}

¢ is then defined by:
o) = 5

16Tn the usual microeconomic one-period model, ¢ is proportional to the ratio of the
date-1 marginal utility of consumption and of the date-0 marginal utility of consumption
(see Dothan, 1990).
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2.5 Random vectors

2.5.1 Definitions

In portfolio management, it is common to deal with a large number of stocks
whose returns are random variables. It is then more efficient to use vector
notations and matrices to present the calculations.

Definition 76 A n-dimensional random wvector is a random variable de-
fined on (2, A, P) and taking values in (R" Bgrn). We then write X =
(X1, ..., X,,) where'” the X; are real random variables.

The joint distribution of a random vector is defined by its cumulative
distribution function or its density (when it is relevant).

1"The “prime” denotes transposition as usual. Without other indications, vectors are
column-vectors.
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Definition 77 a) The CDF of a vector X = (Xy,...., X,)) is the function
Fx from R™ to [0;1] defined by:

Fx(z) = P (ML {Xi < x3})
where x € R™ is equal to (xl,azg..,xn)’.

b) If the X; are continuous random variables, the joint density of X is a
positive function fx from R™ to R satisfying :

e = [ [ [ ixaor.de,

The vocabulary defined for random variables is still valid for random
vectors; in particular a random vector is integrable or square integrable if all
its components satisfy this property. In this case, E(X) denotes the vector
of expectations of the X; and Vx stands for the covariance matrix defined
by:

V(Xl) CO’U(Xl,Xj> CO’U(Xl,Xn)
V= Cov(Xj, X1) V(X;)
Cov(X,, X1) V(X,)

A simplified and common notation for Vx is the following:

07 <. 015 Ol1n
VX — ) 2
Onl Un

Using random vectors is especially interesting because the rules governing
matrix calculations can be used. The following proposition summarizes these
essential calculation rules.

Proposition 78 Let X denote a square-integrable n-dimensional random

vector and U, W denote two n-dimensional vectors in R"™.
1) EU'X)=UE(X)

2)E (U'X,W'X) = UE(XX"W
V(U'X) = U'VxU
4)CoV (U'X,W'X) = UVxW
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These notations may appear confusing at a first glance because U'X =
>or, UiX; is a random variable, so V(U’X) is a number and Vy is a (n,n)
matrix. Moreover, X X’ is a n X n matrix so E(X X’) is also a n X n matrix
with generic element E(X;X;). It is important for a student in finance to be

comfortable with these notations because they are very common in portfolio
choice problems.

2.5.2 Application to portfolio choice

Consider a financial market with n traded stocks; X denotes the vector of
returns and U € R" stands for the vector of proportions invested in the n
stocks. The random return of portfolio U, denoted R, can be written as:

=1

By proposition 78, the expected return and the variance of the portfolio
return are:

E(R) = U'E(X)
V(R) = UVxU

Assume that E(X) has at least two components which differ in value. If
it was not the case, all portfolios would have the same expected return and
the problem would be trivial.

For U to be a portfolio, it is necessary that:

i=1

which may be written U’'1 =1 where 1 is a vector in R” whose components
are all equal to 1.

The standard portfolio choice problem consists in finding the minimal
variance of return, constrained by a given level of expected return, say e.
Vx is assumed positive definite!®, meaning that it is not possible to build a
risk-free portfolio with risky assets. It is not really a restrictive assumption
because a risk-free asset can be separately introduced in the model.

8A (n,n) matrix M is positive definite if anf only if Vo € R", 2 # 0 < 2/ Mz > 0.
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The optimization problem is then written:
1
min §U "V U
with the constraints
UEX)=e
U'1l =1

The coefficient % does not change the optimal solution. It is purely con-
ventional and avoids to keep coefficients 2 in the expression of the derivative.

The Lagrangian is given by:
1
LU p) = §U’VXU+ AMe—UEX)+p(1-U1)

To simplify notations in the following, let us denote Vyx = V and E(X) =
r; the first-order conditions of the problem are:

oL

oL .
a = e—Ur=0
oL

— = 1-U1=0
o

As V is invertible, the first condition gives:
U=MV ' r+uv'1
Using the two other conditions leads to:
e = MV irtur'vi
= M'Virp1'vi
After a few calculations, we get:

1 -1 -1
U= ) [(eC — A)V v+ (b — eA)V'1]

where

= r'vl1

= r'Vir

= 1v1

= BC - A

As an exercise, the reader can check that the mapping z — Va'V-1g

defines a norm on R" induced by the inner product (z,y) = 2'V~1y. Deduce
from this result that D is strictly positive.

S Q=

72

Download free eBooks at bookboon.com



Probability for Finance Usual probability distributions in financial models

Chapter 3

Usual probability distributions
in financial models

This chapter covers only the most popular probability distributions encoun-
tered in financial models, and especially in finance textbooks. Obviously, it
is not a complete tour of probability distributions and, even in finance, many
others can be found in scientific papers in the field. However, the few distri-
butions developed hereafter largely cover most of what appeared in financial
models in the 50 last years. It is then a good starting point for students in
finance.

This chapter is divided in two parts. The first one describes the prop-
erties of discrete distributions, essential the Bernoulli, binomial and Poisson
distributions. The second part deals with the most common continuous dis-
tributions, namely the uniform, Gaussian and Log-normal distributions. At
the end, we also shortly present some other useful distributions appearing
in statistical tests. These are the x2, the Student-¢ and the Fisher-Snedecor
distributions. They are deduced from the Gaussian distribution.

3.1 Discrete distributions

3.1.1 Bernoulli distribution
Definition and example

The most simple probability distribution is the so called Bernoulli distribu-
tion.

Definition 79 A random variable X follows a Bernoulli distribution with
parameter p if X takes values 1 and 0 with probabilities p and 1 — p.
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We can observe that if B € A and P(B) = p, the indicator function of B
follows a Bernoulli distribution with parameter p. It is denoted as

15 ~ B(p) (3.1)

As a natural extension, any variable taking two different values is often called
a Bernoulli distribution. In fact, if X takes values a and b (a > b) with
probabilities p and 1 — p, the variable Y = —(X — b) takes values 1 and 0
with probabilities p and 1 —p. Y is then B(p). The use of this distribution in
finance is, in many cases, pedagogical. For example, in a one-period model,
it is convenient to modelize variations of the logarithm of a stock price by a
Bernoulli distribution. In this case, the two possible values are denoted In(u)
and In(d) (u for up and d for down). If the initial (date-0) price is denoted
So, the date-1 price, denoted 57, takes two possible values u.Sy and dSy. We
observe that :
111(S1) = 111(S0) —|— X

where X is a Bernoulli variable taking values In(u) and In(d). This simple
model, extended to the multi-period case, has given rise to the so called
binomial model (see next section).

In chapter 1, we described binary options (example 36) traded on the
Chicago Board Options Exchange. These options pay $100 or 0 at the ma-
turity date, depending on the occurrence of an event B = {SPr > K} where
S Pr is the value of the S&P500 index at the maturity date of the contract, T’
and K is the exercise price. Definition 79 shows that the payoff of this type
of option follows a Bernoulli distribution. Obviously, we can expect that the
price quoted at date 0 is a function of P(B).

Expectation and variance
Proposition 80 If X ~ B(p), then E(X) =p and 0*(X) = p(1 — p)

Proof. If a random variable X follows a Bernoulli distribution with para-
meter p, the expectation F(X) is given by :

EX)=px1+(1-p)x0=p

The variance of X, denoted as 0?(X) is obtained in the same way by
using the formula!:

0*(X) = E(X*) - E(X)* =p—p*=p(1-p)

'Remark that a Bernoulli variable taking only values 0 and 1, it satisfies X = X?2.
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Example 81 Assume that a random variable Y takes two values i, and ys
with probabilities p and (1 — p). Then, we get:

o*(Y) = p(1 = p)(y1 —y2)° (3:2)
To show this equality, note that X = yliw (Y —ys) follows B(p). Writing
Y = (11 — y2)X + y2 allows to directly deduce:
EY) = (n-p)EX)+p=pn+01-p (3-3)
o*(V) = (y—12)"0*(X) = p(1 — p)(y1 — 12)* (3.4)

In the specific case of the binomial model of stock prices, introduced in
chapter 1 (example 9), and if Y denotes the logarithmic return of the stock,

we have y; = In(u) and yo = In(d). Consequently, the variance of the stock

return 1s:
(V) =p(1 ) (5) (35)
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3.1.2 Binomial distribution

Definition and example

Stock returns in a one-period model were represented by a Bernoulli distribu-
tion. Consider now a multi-period model and assume that successive returns
are independent Bernoulli random variables. Implicitly, independence of suc-
cessive returns refers to the efficient market hypothesis, meaning that all in-
formation is instantaneaously reflected in prices. If, in addition, we assume
that the parameters u and d are constant over time (constant volatility), the
log-price variations on given horizons are driven by a binomial distribution
defined as follows.

Definition 82 A variable X follows a binomial distribution with parame-
ters n and p if X is written as the sum of n independent Bernoulli variables
X;, i =1,...,n, each of them following B(p). We then have:

n

R

where (Z) = ﬁlk), is the number of combinations of k objects among n. The

distribution of X is denoted B(n,p).

The binomial distribution is very popular in finance because it is the
foundation of the famous option valuation model developed by Cox-Ross-
Rubinstein (1979). This model describes the evolution of a stock price S in
discrete-time; if S; is the date-t stock price, the date-(¢ + 1) price is defined
by:

Stp1 =St X X1

where X, takes values u and d with probabilities p and 1 — p. The variables
X; are assumed independent. S; is then equivalently defined by :

t
S, = Sy x HXS
s=1

from which we get :
St) d
In{=1] = In( X,
(%)= Xmee

The left hand side (LHS) is the stock return between s = 0 and s = ¢ and
the right hand side (RHS) is the sum of ¢ independent Bernoulli variables
taking values In(u) and In(d) with probabilities p and 1 — p.
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The probability distribution of In(S;) is B(n, p) which implies :

P (In(S;) = In(Sp) + k x u) = (Z)pk<1 —p)t*

where (Z) is the binomial coefficient counting the number of price paths

containing k& up moves (and then ¢ — k& down moves).

Expectation and variance

The expectation and variance of the binomial distribution come immediately
from the moments of the Bernoulli distribution.

Proposition 83 If X ~ B(n,p) then E(X) = np and ¢*(X) = np(1 — p)

Proof. The binomial distribution B(n,p) is defined as the sum of n inde-
pendent and identically distributed variables (obeying B(p)).

It follows immediately that if X ~ B(n,p):
E(X) = np and ¢*(X) = np(1 — p)

because expectations and variances of the n independent Bernoulli variables
entering the binomial distribution can be added?. =

In the abovementioned Cox-Ross-Rubinstein model, we get the moments
of log returns on ¢ periods of time as:

E[ln (g—;)} = t(pln(u) + (1 — p)In(d))

o2 {m (g—;)} — tp(1—p)ln (gf

These expressions put to light the advantage of logarithmic returns. The
first two moments of returns are simply the sum of the same moments on
subintervals. For example, the variance of weekly returns is the sum of the
variances of daily returns in the week under consideration. This property is

not true when returns are calculated linearly as St%;st

2Remember that independent variables are uncorrelated.
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3.1.3 Poisson distribution
Definition

This probability distribution is often used in insurance to describe the arrival
of damages or in microstructure theory to modelize the flows of buy and sell
orders on financial markets.

Definition 84 A wvariable X follows a Poisson distribution with parame-
ter X\ if X takes positive integer values and is defined by:
/\k

VEeN, P(X = k):exp(—)\)ﬁ

We then note X ~ P()\).

Figure 3.1 shows the CDF of P(2). It appears like a step-function because
the Poisson distribution is discrete.
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CDF of the Poisson distribution

Fix)
Lo L ——
08 -
i

04 -
02+

e
D.U-a....:...-J....al..-.]....al...-.lI
0 1 2 3 4 5 ]

Figure 3.1: CDF of P(2)

Expectation and variance

Proposition 85 If X ~ P()\) then E(X) =\ and 0*(X) = A

Proof. The expectation is deduced from the definition of the exponential

function as the sum of an infinite series, e* = :23 %’T
+00 +oo )\k +oo )\k
E(X) = ) kP(X =k)= Zkexp(—A)H = exp(—\) Zkﬁ
k=0 k=0 k=1
+oo )\k—l
= )\exp(—)\); =1 = Aexp(— Z - = Aexp(—A)exp(A) = A

To get the variance, the calculation is a little bit more involved:

o*(X) = E(X?) — BE(X)? = exp(— Z k:z A2 (3.6)
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We can write :

+o0 2)\k +o00 2)\k +o00 )\k—l
DM = 2R = kT
k=0 k=1 k=1
400 /\k—l +o0 )\k—l
_ 1
A (K )(k—l)!+>\z(k—1)'
k=1
+o0 \k +o0 \k
A A
_ 2 N N
= MY AL
k=0 k=0

= (A +))exp(N)
Replacing in equation 3.6 leads to o?(X) = \. m

A specificity of P(A) is the equality of expectation and variance. This
property is useful when one wants to test if a given random variable follows
this distribution.

The Poisson distribution is also commonly used to approximate a bino-
mial distribution B(n,p) when n is large and p close to 0. For example, if
you analyze the number of kjackpot winners in a 6/49 lotto games, the prob-
ability of winning the jackpot is around a chance over 15 millions. It is usual
that 20 or 30 millions tickets are bought by players. The number of jackpot
winners then follows a binomial distribution with n equal to the number of
tickets and p is the probability of winning the jackpot. The reader can easily
check that the expected number of winners is np and the variance np(1 — p)
according to the properties of the binomial distribution. But np(1 —p) ~ np
since p is almost 0. Consequently, expectation and variance are almost equal
and the distribution of the number of winners can be approximated by a
Poisson distribution with parameter A = np.

The three distributions presented in this section are discrete, the two
first taking a finite number of values and the last one, P()), has a countable
support, that is, the set of all integers. The following section is devoted
to the most common continuous distributions appearing in financial models,
especially to modelize prices and returns.
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3.2 Continuous distributions

3.2.1 Uniform distribution
Definition

Definition 86 X follows a uniform distribution on the interval [a;b],
a < b, if its density fx is given by:

ﬁ if x € [a; b]
0 elsewhere

et ={

We then denote X ~ U([a;b]).

The CDF (Fx) of X is obtained by integrating the density.

T if x € [a; b]
Fx(x) = Oifz <a

lifz >0

Figure 3.2 shows the CDF of the uniform distribution on the interval
[0;1].

From this definition we deduce that, on any interval [c;d] included in
[a; b]:

d—c
Py ([esd)) = Px (s d]) = 5—= = Fx(d) = Fx(0

The probability of a given subinterval is proportional to its length and
all subintervals of [a;b] with a given length have the same probability (this
explains the name "uniform distribution"). We will see hereafter that the
moments of a uniform distribution are simple functions of a and b.

Expectation and variance

Proposition 87 If X ~ U([a; b]) then E(X) = & and o2(X) = L=o°

Proof. If X follows a uniform distribution on [a; b] , the expectation of X is
given by:

+oo 1 b 1 :C2
E(X) = / xfx(x)dx:b_alxdx:b_a{i}

_ 1(¥*—=d®) Db+ta
2 b—a 2
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CDF of the uniform distribution on [0:1]
Fix)

10}

¥
K]

A

LE]
I =
[

Figure 3.2: CDF of the uniform distribution on [0; 1]

In the same way, the variance is given by:

) = [ e (452) - 5] - (452

3 3
— 1
= %%—Z(cﬂ—l—Zab—i—bQ)
1 1
= g(a2+ab+b2)—1(a2+2ab+b2)
_ (b—a)?
B 12

3.2.2 Gaussian (normal) distribution
Definition

The normal distribution is the most common probability distribution in all
sciences. It is due to a mathematical result called "central limit theorem" we
will present in the next chapter.Without specifying the assumptions for the
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moment, this theorem states that the sum of a large number of independent
and identically distributed (i.i.d) random variables is approximately driven
by a Gaussian distribution. As a consequence, a number of statistical tests
are based on the Gaussian distribution. It allows to modelize stock returns
with a reasonable accuracy.

Nevertheless, one has to remember that it is not the optimal fit to the
distribution of stock returns.Some empirical works show that alternative dis-
tributions (like Levy distributions) are better choices to take into account
large variations (especially crashes) regularly encountered on financial mar-
kets. However, these distributions do not have nice statistical properties, so
they are not often used in standard models. An important question nowa-
days (especially after the 2008 financial crisis) is that the "Gaussian world"
may be a dangerous assumption when defining risk measures such as Value
at Risk. This measure doesn’t take into account crashes, liquidity crises and
other extreme movements.
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Definition 88 X follows a Gaussian distribution with parameters m and
o (also written X ~ N(m, o)) if its density fx is defined by:

(o) 1 1 (m — m>2
x(z) = exp | —=
oV 2m 2 o
fx is the famous bell curve encountered in all statistical textbooks. It is
symmetric with respect to the line x = m. Without entering the details, it is
worth to recall that around 2/3 of the outcomes of a Gaussian distribution

lie in the interval [m — o;m + o] and 95% of the outcomes lie in the interval
[m — 20;m + 20] .

Figure 3.3 shows the density of the Gaussian distribution A(0,1) also
called the standard Gaussian distribution.

Density of the standard Gaussian distribution
Tix})

i

Figure 3.3: Density of A/(0,1)

Moreover, most of the probability distributions used for statistical tests
are functions of the Gaussian distribution. It is the case for the x? distribution,
the Student or the Fisher-Snedecor distributions presented in the next sec-
tion.
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Expectation and variance

Proposition 89 If X ~ N(m,0?), E(X) = m and 0*(X) = o?

Proof. The definition of the density gives, for the Gaussian distribution:
1 oo 1 (z—m\>
E(X)= rexp | —= dx
() O’\/27T/_oo p(2( o >)
Denoting y = =%
L,
EX) = —2 ay—i-m exp | —5y dy
o +°° too 1
= — ex —_—— d + — / ex (__ 2> d
NG / Yy exp ( Y ) Y Nz p 2y Y
1 oo
2
{ exp <—§y >} +m=m

Finally, F(X) = m.The last equality comes from the fact that exp (—%y2)

is the density of a standardized normal variable.
The same change y = *=™ leads to calculate the variance as follows:

1 Foo 1
oA(X) = —/ oy +m)e (—— 2>d —m?
(X) o (oy +m)~exp | —5y~ | dy
/+OO e ( L )dx—|—2m0 o e ( L Z)dx
\/% Y p Y \/— Yy exp 29

The second term of the RHS is equal to 0 as the expectation of a zero-
mean gaussian variable (times 2mo) ; the first term is integrated by parts.

\;;_W /_:Oy X 1y exp (—%gf) dx
< G (b () [ ()]
e (8] e (39)

The first term between brackets is zero and the second term is equal to
1. It proves that 0%(X) =02 =
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As can be seen in the density, the Gaussian distribution is entirely de-
termined by its two first moments. This property is especially interesting
when stock returns are gaussian. It means that portfolio choice is uniquely
guided by these two first moments. One doesn’t need to assume quadratic

utility functions to manage the portfolio problem in the mean-variance world
of Markowitz (1952).

3.2.3 Log-normal distribution

Definition

The continuous return of a financial security between dates 0 and ¢ is given
by r = In (g—é) if S; denotes the date-t price (¢ > 0). Consequently, getting
a price when starting from a return, needs an exponential transformation by

writing S; = Spe”. Using proposition 38 of chapter 1 leads to the characteri-
zation of a Log-normal random variable.
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Definition 90 X follows a Log-normal distribution with parameters m
and o? if n(X) ~ N (m,0?). The density of X is given by:

L_exp (-2 (ln(m)_m)2 if x>0
fX('r) = roV/2m b 2 o

0 elsewhere

We note X ~ LN(m,c?).

Figure 3.4 shows the density of the Log-normal distribution with para-
meters m = 0 and o = 1.

Density of the Lognormal distribution

Fixh

Figure 3.4: Density of the Lognormal distribution

Contrary to what was observed for the Gaussian distribution, the density
is not symmetric. It explains some surprising results like the one illustrated
in example 93 at the end of this chapter.

A Log-normal distribution is the usual assumption for stock prices, espe-
cially in the Black-Scholes option valuation model. It is worth to notice that
it takes only positive values, a consistent characteristic for stock prices, due
to the limited liability of shareholders.
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Expectation and variance

Proposition 91 If X ~ LN(m,c?), E(X) = exp (m+ %2> and 0*(X) =
exp (2m + 0?) (exp(0?) — 1))

Proof. The expectation is calculated as follows:

e (A () )

We use y = In(z), and rewrite the expectation as:

i e (45

Rearranging the terms in the exponentials leads to:

o = g o (4 oo )

e m+02
— X J—
P 2

The integral is equal to 1 because it is the integral of the density of a normal
random variable with mean (m + %) and variance 0.
The same method is used to calculate V(X). We first show that F(X?)

exp (2(m + 0?)) and we finally get V(X) = exp (2m + 02) (exp(c?) — 1)) I_

BE(X) =

BE(X) =

Example 92 Let Y ~ N(0,1) and X the random variable defined by:

x (=) o)

where m and o are real numbers, o > 0. X represents the date-1 price of
a stock whose return is Gaussian with parameters m and o when the date-0
price is equal to 1.

A call option contract on X with exercise price K and maturity 1 is a
financial security paying max(X — K;0) at the maturity date.

What is the expected value of this final payoff ¢
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We need to calculate E [(X — K), | where (z), =z ifz > 0 and (z), =0
elsewhere. Denoting fx the density of X, we get:

E[(X-K),] = / Fy(@) max(z — K:0)dz / Fr(@) (@ — K)de3.7)

—+00 —+00

= [atsopdo— K [ e (35)
+oo

- / v fx(p)dz — KP(X > K) (39)

K
+oo

= /fo(x)dx — KP(In(X) > In(K)) (3.10)

We know by definition of X that

2

P(n(X) > In(K)) =P Km - %) +oY > ln(K)} (3.11)
In(K) — (m - "72)
= Ply> . (3.12)

If we denote N(x) the CDF of a standard Gaussian variable, we obtain:

2

In(K) — (m - %)

P(X > K)=1-N
o

(3.13)

—In(K) + (m— %)

g

= N (3.14)

The last equality is coming from the symmetry of the density of a Gaussian
variable.

Using the technique in proposition 91, the first term in equation 3.10 may
be written as:

+/°° —In(K) + <m+%2)
rfx(z)dr =e™N . (3.15)
K
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These formulas are the basis of the famous option valuation model de-
veloped in the seventies by Fisher Black and Myron Scholes (Black-Scholes,
1973).

Example 93 Assume that the logarithmic return of the SEP500 is driven
by a normal distribution with parameters m = 3% and o = 20%. The current
value of the index is 1000 points. What is the price a risk-neutral investor
is ready to pay to buy a contract delivering $100 if the SEIP500 value in one
year is in the interval [900; 1000] . What price is he ready to pay if the interval
is [1000; 1100]? Why may it be a surprising result?
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3.3 Some other useful distributions

When using large samples of i.i.d variables, statistics like the mean follow
a Gaussian distribution according to the central limit theorem (see chapter
4). The variance is then written as a function of Gaussian random variables.
Moreover, when standardizing variables (transforming to get a zero-mean and
a unit variance) leads to use more or less complicated functions of Gaussian
variables. It is the reason why a number of useful distributions in statistics
are "derived" from the Gaussian distribution. We shortly present hereafter
the 2 distribution, the Student-¢ and the Fisher-Snedecor distributions.

3.3.1 The y? distribution

Definition 94 A random variable Y follows a x? distribution with n de-
grees of freedom if Y can be written as:

Y=Y X} (3.16)
=1

where the X; are independent standard Gaussian distributions, that is, Vi,

This distribution is useful when one wants to perform a statistical test for
the variance o2 of a random variable. If (X, ....X,,) are identically distributed

Gaussian random variables with parameters (m, c2), the variable Y defined
by:

y:jé(Xio; m)2 (3.17)

follows a x? distribution with n degrees of freedom. Equality 3.17 leads to:

2 n
oY 1 2
— = E X; —m 1
n n ( ) (3-18)

The expression on the right-hand side of equation 3.18 is the empirical

variance. If m is unknown and estimated by X = %ZX“ the variable
i=1
Y*, obtained by replacing m by X in equation 3.17 follows a 2 distribution

with n — 1 degrees of freedom. In this case ﬁ Z (X,- — 7)2 is used as an
j=1
unbiased estimator of the variance to perform the test.
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Density of the Gaussian and S mdent(é) distributions
fix)
]

Figure 3.5: Comparison of the densities of a Student and a Gaussian density

The x? distribution also appears in the well-known y? test aimed at test-
ing the independence of two distributions, and in the test comparing a em-
pirical distribution to a theoretical distribution.

3.3.2 The Student-t distribution

Definition 95 A random variable Y follows a Student—t distribution
with n degrees of freedom if Y can be written:

Y = (3.19)

Tl

where Z is a standard Gaussian distribution and X follows a x? distribution
with n degrees of freedom.

The Student-t distribution is used to test the equality of means in two
populations, or to test regression coefficients. For example, they are common
when testing the market model or the Capital Asset Pricing Model.

On figure 3.5, we can see than the Student density (bold line) has fatter
tails than the Gaussian density (thin line) when the number of degrees of
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freedom is low (6 in the example). It is then sometimes used to represent
stock returns when one wants to take into account that extreme returns
are more frequent on real markets than what is predicted by a Gaussian
distribution.

More generally, a Student(n) has a variance equal to n/(n—2) and a kur-
tosis equal to 3(n—2)/(n—4). It is only defined when n > 4. We observe that
for n = 6, the kurtosis is equal to 6, that is greater than the corresponding
moment for the Gaussian distribution.

3.3.3 The Fisher-Snedecor distribution

In a multiple regression, beyond the significance of the individual regression
coefficients, most softwares provide the so-called F of the regression. It comes
from the Fisher-Snedecor distribution, defined as follows.

Definition 96 A random variable Y follows a Fisher-Snedecor distribu-

tion if it writes:
X1
Y = % (3.20)
n2

where X1 (X3) follows a x? distribution with ny (ny) degrees of freedom.

It can be seen that a F'(ni,ns) is the inverse of a F(ng,n;) variable.
It is the reason why statistical tables of F' variables only provide values
greater than 1. When you get an observed value below 1 when testing the
equality of two variances, take the inverse, reverse n; and ny and look at
the corresponding position in the statistical table. Obviously, when testing
the relevance of a regression model, the two variances are not equivalent.
You just want to know if the variance explained by the model is significantly
greater than the unexplained variance. In this case, a I’ statistic lower than
1 simply means that your model is not the right one.
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Chapter 4

Conditional expectations and
Limit theorems

As already mentioned in chapter 1, learning a piece of information changes
probabilities of events. It then changes expectations of random variables
because these expectations are probability-weighted averages. Conditional
expectations are a natural tool to address this issue. Moreover, conditional
expectations play an important role in valuation models. One essential result
in finance theory is the following: when there are no arbitrage opportunities,
the date-t value of an asset is the discounted expected value' of date-t + 1,
conditional on the information known by date ¢. In the book to follow (Sto-
chastic Processes for Finance, Roger, 2010), conditional expectations will
play an even more important role. In muti-period models, the stochastic
processes called martingales are fundamental. But their definition relies es-
sentially on conditional expectations. It is the reason why we want to insist
now on the importance of understanding this (maybe difficult) topic.

4.1 Conditional expectations

4.1.1 Introductive example

We start with a very simple framework allowing to carefully describe what
is going on when an information is revealed. Consider a probability space
(2, A, P) where Q = {wq,ws, w3, w4}, A = P() and P(w;) = 0.25 for all
1 =1,..,4. Two random variables X and Y are defined on €2 and their values
appear in table 4.1.

I The expectation is calculated with respect to a specific probability measure called the
risk-neutral measure. In this framework, the risk-free rate is used for discounting.
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State | X |V
w1 1 1
W 2 1
Ws 3 2
W4 4 2

Table 4.1: Definition of X and Y
We get immediately:

(1+2+3+4) =25 (4.1)

g N

(1+1+2+2)=15 (4.2)
Suppose now that the value of Y is observed before the value of X is revealed.

If Y(w) = 1, the true state w may be either w; or ws. In other words,
the event {w1,ws} occurs and it is equal to the event {Y = 1}. Probabilities
of all states change and become conditional on the event {Y = 1} . The new
(conditional) probabilities for the 4 states are now:

(Plw;{Y =1}),i=1,..,4) = (% %;0; o) (4.3)

The other consequence is the change in the expectation of X which be-
comes the conditional expectation denoted E (X [{Y = 1}) with

(1+2)=15  (4.4)

N[ —

BXRY =1}) = 3 X (@) Plwi {Y = 1}) =

In other words, if E(X) is the initial price of a stock, {Y = 1} corresponds
to bad news leading to a price decrease.

The important fact here is that the change of probabilities and expecta-
tions is not linked directly to the values of Y but to the information revealed
by the observation of Y. If the values of Y, 1 and 2 in the example, had
been replaced by 100 and 200, the result would have been the same. The
conditional expectation of X would also be 1.5. Each event with respect
to which we define conditional probabilities generates an other conditional
expectation.
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4.1.2 Conditional distributions
Discrete variables
Let us first consider two discrete variables X and Y whose supports are

respectively (z;,4=1,...,n) and (y;,j = 1,...,p).

Definition 97 a) The conditional probability distribution of X knowing
{Y =y} is the mapping denoted as Pxy (.|y;) and defined by:

PAX =20 {Y =u:})
P{Y =u})
In this definition it is assumed that P({Y =y;}) # 0, but it is in fact

implicit in the definition of the support of Y. Pyy (. |y;) effectively induces
a probability measure on the support of X.

Pxyy (zlyi) = P(X =2|Y =y;) =
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Continuous variables

Denote fxy the joint density? of a couple of continuous random variables,
fx and fy being the densities of X and Y.

Definition 98 For any y satisfying fy(y) > 0, the conditional density of
X w.rt. {Y =y} is the function fx)y (.|y) defined by :

- fXY(x,y)
fX|Y<w|y>_ fY(y)

Remark 99 When X is continuous with density fx and B is an event such
that P(B) # 0 the density of X conditional on B is defined by:

LW if v e X(B)

fx(x|B) = { FE) (4.5)

0 elsewhere

We can now characterize conditional expectations, starting with the most
simple case of conditioning with respect to an event.

4.1.3 Conditional expectation with respect to an event

The introductive example shows how to define the conditional expectation
of a random variable with respect to an event in A.

Definition 100 a) The conditional expectation of a discrete variable X |
taking values 1, ..., xy, w.r.t an event B in A, is the quantity E(X |B) de-
fined by :
N
E(X|B) =Y aP({X =x;}|B)

=1

b) The conditional expectation of a continuous variable X with density
fx w.r.t an event B in A, is the quantity E(X |B) defined by :

E(X|B)—%/xfx(x)dx—/_ooooxfx(x|3)dx
X(B)

2See chapter 2, definition 77.
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In the introductive example at the beginning of this section, if {Y = 2}
we obtain:

EXKY =2}) = chiP({wi} {Y =2}) (4.6)

— 3% Plws|{Y = 2}) + 4 x Plws[{Y =2}) (47)
1

= ;(+4) =35 (4.8)

The first equality comes from P(w; |[{Y =2}) = P(ws [{Y =2}) =0.

We could have saved some place and notation if we had addressed the
problem in a more general way. In fact, we could define directly the con-
ditional expectation of X with respect to the random variable Y. Before
knowing the value of Y, we already know how to calculate the conditional
expectation if one of the two events occurs. This remark allows to propose a
more general approach.

4.1.4 Conditional expectation with respect to a ran-
dom variable

Discrete variables

Definition 101 The conditional expectation of a discrete variable X, taking
values x1,...,xn, w.r.t. a discrete random variable Y, taking different values
Y1, -, Y, denoted as E(X |Y'), is the random variable defined by:

Vwel{Y =y}, BXY)w) =) o:P({X=a}{Y =y})  (49)

=1

It leads to characterize the conditional expectation of X w.r.t. Y as in
table 4.2.

State | E(X |Y)
W1 1.5
Wo 1.5
w3 3.5
W4 3.5

Table 4.2: Conditional expectation of X with respect to Y
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Continuous variables

Suppose now that X and Y are continuous with densities fx and fy, the
conditional density being denoted fx|y (z|y) as before. The conditional ex-
pectation of X w.r.t. {Y =y} is written:

+o0
ECXIY =y) = [ afar(ely)da
More generally, the conditional expectation of X w.r.t. Y is the random
variable defined by:

—+00

Vo (Y =y}, BOXY)@) = [ afa(ely)ds

—00

Remark 102 We observe that, when Y is discrete, the subsets {Y =y;}
define a partition on Q). Second, the value of the random variable E(X |Y')
1s constant on each subset of the partition, and it is also true for Y, by
construction. In other words, the information revealed by Y is the same as
the information revealed by E(X |Y'). A key remark here is that E(X |Y") is
By -measurable. It leads to the general approach of conditional expectations.
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4.1.5 Conditional expectation with respect to a sub-
tribe

The examples provided before for discrete variables showed that the key point
when conditioning with respect to a random variable is not the values taken
by this variable but the information these values reveal about the true events.
Consequently, the more general way to define conditional expectations is to
condition with respect to subsets of events or, more precisely, with respect
to sub-tribes.

Definition 103 The conditional expectation of an integrable random vari-
able (that is X € L'(Q, A, P)), w.r.t a sub-tribe B of A, is any B-measurable
random variable Z, satisfying:

VB e B,E(Z1p) = E(X1p) (4.10)
This definition deserves several comments.

e As 7 is defined by means of integrals, two variables Z and Z' can
satisfy equality (4.10) if they differ only on negligible events. They are
called versions of the conditional expectation. Any version used
in calculations is in general denoted E(X |B).

e The definition also means that a variable X and its conditional expec-
tation E(X |B) have the same mean on any event of the tribe B. We
let the reader check it was actually the case in the former example (see
table 4.1).

e The equality 4.10 implies that if X is B-measurable, E(X |B) = X.
Example 104 Let Card(2) = 4, P(w;) = p; for each w;, and B defined by:
B ={0,{wi,wa},{ws,wa}, 0}

Denote By = {w1,ws}, By = {ws,w4} and let X be defined by? X = (x1; x9; x3;14) .
The equality 4.10 implies:

Di1T1 + P22 = D121+ P22 (4.11)
P33 + Pala = P33+ Paza (4.12)

3As Card(Q) = 4, X is defined by the vector of values it takes on the four states of
nature.
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where the conditional expectation Z takes values (z1;z9; 23;24) . Equation
4.11 refers to evant By and equation 4.12 to event Bs. Moreover, Z is B-
measurable; it means that it is constant on By and on Bs. It implies that:

21 = 29
zZ3 = 24
We finally get:
1
21 = Z9 = P+ pa [pliUl +P2$2] = E<X ’Bl)
1
23 = 24= s T Pa [p373 + pary) = E (X |By)

The result is intuitive. The conditional expectation on By (Bs) is the
(conditional probability) weighted average of the values taken by X on this
subset Bi(Bs).

We also check here that if X was already B-measurable, then E (X |B)
would be equal to X.

4.2 Geometric interpretation in L* ({2, A, P)

Conditional expectations have a natural geometric interpretation when the
analysis is restricted to square integrable random variables, that is to ele-
ments of the vector space L? (2, A, P). We then assume it is the case in this
section.

4.2.1 Introductive example

To explain what is the "geometry" of conditional expectations, first consider
a simple example in the two-dimensional space R?, endowed with the usual
metric:

A, y) = /(o1 — 90)? + (02— )
where @’ = (z1,22) et ¥ = (y1,92) -
For a given x € R2, suppose that we want to determine the point z =
(21, 21) on the bisector of the positive orthant which is the closest to . We

have to solve:
min, (1 — 21)? + (29 — 21)2

because points on the bisector have the same coordinates z; = 2.
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We find immediately z; = 3”1—;“”2 In other words, z is the orthogonal pro-
jection® of # € R? on the one-dimensional subspace defined by the bisector.

The reason is that z — z is orthogonal to z.

< z—myz>= (21 —x1)21 + (21 — x2) 2 (4.13)
- xQ;xlzI—l—ml;xzzl:O (4.14)

Suppose now that R? is endowed with the metric:

& (2, y) = \/p(@1 — 1) + q (3 — p)?

with p+q = 1,p > 0,9 > 0. It simply means that the two coordinates are
not equally weighted.
Solving the same optimization problem leads to:

21 = pr1 + qT2

21 is then a weighted average (we are tempted to write "an expectation")
of the components of x.

4.2.2 Conditional expectation as a projection in >

The preceding approach can be applied almost without modifications to the
vector space of square-integrable random variables. If X is an element of
L*(Q, A, P), the conditional expectation F(X |B) is B-measurable and so
belongs to the subspace® of B-measurable variables denoted L? (Q, B, P).

In example 104, L? (Q2, A, P) could be identified to R* and L? (2, B, P)
to R? since the variables in this subspace had only two different components.
We are going to show that F (X |B) is the orthogonal projection of X on
L*(Q, B, P). In other words, F (X |B) solves the optimization problem:

minger2@s.p B (X — 2)°] = mingerzp.pmd(X, Z)? = E (X — E (X |B))’]

To keep things simple, we just show this property with the data of example
104. As E (X |B) is B-measurable, we know that

21 = 29 (415)
23 = 24 (416)

4Remember that two vectors are orthogonal when their inner product is zero.

’To be completely rigorous, we should adopt a different notation for P (for example
Pg because it is defined on the sub-tribe B in L?(£2, B, P). For the sake of simplicity, we
keep P to denote the probability measure on B.
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Therefore,
E [(X - Zﬂ = p1(z1—21) 2 +p2(xa— 21) > +p3(23— 23)° +pa(wa— 23)° (4.17)

The partial derivatives with respect to z; and z3 must be zero to obtain
an optimum.

OF [(;{Zl— 2 pr(e1—21) + polws —21)] =0 (4.18)
OF [(;fzg— 2 (ps(s — 23) + pawa — 2)] =0 (4.19)

The minimum is obtained with:

1

Z1 = z9= 1+ 02 (plxl +p2$2) = E(X |B) (Wl) = E(X |B) (WQ()‘LQO)
1

23 = 24= st P (P33 + paxy) = E(X |B) (w3) = E (X |B) (wq#.21)

The reader can check that the second partial derivatives are positive,
ensuring that the stationary point is a minimum (also because the cross-
derivatives are 0). We are done.

The properties of conditional expectations can now be presented in a
more intuitive way, using this geometrical interpretation.
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4.3 Properties of conditional expectations

Proposition 105 Let (X,Y) be two random variables in L? (0, A, P) and
B, B' two sub-tribes of A satisfying B C B':

1) If X is a constant c € R, E(X |B) = ¢
2)¥(a,b) € R2, E(aX +bY |B) = aE (X |B) + bE (Y |B)
) IFX<Y, E(X|B)<E(Y|B)

4) E(E(X|B)|B) = E(X |B)

5) If X is B-measurable E (XY |B) =X E (Y |B)

6) If X is independent of B, E (X |B) = E(X)

We do not provide all the details of the proof but it is worth to underline
the intuitions leading to some of these results.

First, a constant ¢ can also be written clg. It is then a random variable
measurable with respect to any tribe, especially w.r.t. B. The projection
theorem then implies that c is its own projection on L? (2, B, P) . Remember
that L2 (Q, B, P) being a vector sub-space of L% (Q, A, P), it is a convex set.

Points (2) and (3) are direct consequences of the definition of conditional
expectations.

Point (4), which doesn’t seem obvious at first glance, may be easily un-
derstood using the geometric interpretation of the conditional expectation.
E (X |B') is the orthogonal projection of X on L? (2,8, P). E (E (X |B') |B)
is the projection on L? (2, B, P) of E (X |B').

Point (4) simply says that projecting first on L? (2, 8’, P) and then on
L?*(Q, B, P) is equivalent to make directly the projection on the smallest
space L2 (Q, B, P) . It is a well-known property of projections on finite-dimensional
spaces. Moreover, it is worth to notice that if B = {@,Q}, £ (X |B) = E(X)
and then F (E (X |B')) = E(X) whatever B’ is.

Point (6) could be written £ (X — E(X) |B) = 0 since F(X) is a constant

(see point (1)). In other words, X — E(X) independent of any variable Y in
L? (9, B, P) means.

E((X — B(X))Y)=E (X — BE(X))B(Y) =0 (4.22)
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The first term on the left-hand side of equality 4.22 is the inner product
of X — E(X) and Y. Two vectors with an inner product equal to zero are said
orthogonal. So, there is a close link between independence and orthogonality
in the space of square-integrable variables.

4.3.1 The Gaussian vector case

To end this section on conditional expectations, we present the specific case
of Gaussian vectors®. Such conditioning with Gaussian vectors is common
either in the microstructure literature or in the "information" literature in
which investors are supposed to receive private signals’. Equilibrium prices
are more easily obtained when the private signals follow a joint Gaussian
distribution.

Definition 106 A random vector X = (X1, ...., X,,) is said Gaussian if every
linear combination Z a; X; 18 a Gaussian variable.
i=1

Denot m' = (E(X4),..., E(X,)) the vector of expectations and Vx the
covariance matrix of X. The density fx of X is given by:

1 \" 1 1
Ve e R", f(x) = ex ——m—m'V‘lm—m)
0= (75) Tpams e (g -V -m
(4.23)
where Det(Vx) is the determinant of the covariance matrix (assumed differ-

ent from zero).

Proposition 107 Let X = (Xy,....,X,) be a Gaussian random vector with
parametersm and V x; forp < nletYs = (Xi, ..., X,) and Yo = (Xpi1, ..., Xp) -
Decompose V x in the following way:

| Xn X
VX‘{EQI 222}

where ¥;; s the covariance matriz of Y; and X;; is the matriz containing
covariances between the components of Y; and Y; for i,5 = 1,2,% # j. The
probability distribution of Y1 conditioned on Ys = yo € R"7P is Gaussian with
the following two first moments:

E(Yi|Ys=ys) = E(1) + 2155 (y2 — E(Y2)) (4.24)
Vyiye=y. = 211 — Y1255 Yot

6Random vectors have been presented in chapter 2, section 2.5.
"One of the seminal papers in the field is Grossman (1976).

105

Download free eBooks at bookboon.com



Probability for Finance Conditional expectations and Limit theorems

Casep=1and n =2
Applying the above proposition when p = 1 and n = 2 gives:
o
EXi|Xo=129) = mi+ %(92 — my)

2
2

g

2 12
VXl\X2=$2 = 01— P}
02

If p,5 stands for the correlation between the two variables, we obtain:
VX1|X2:362 = O-%(l - :0%2>

This result may be obtained by using the definition of the conditional

density (with 2’ = (x4, z2)).

o,
Fruxe (@1 los) = ffi{(x(hx;) _ eoy/Ibavl :
X2 ) 1 exp <_l (M) )

ooV 2T 2 o2

2p (~3(z — m)' V(& — m))

o9 exp (—3(z —m)'Vy'(z —m))

V21 otos — o2, exp <_% (x2m2)2)
o2
= 72 exp 1 (x —m)' Vit (z —m) — 27 2
V21 otos — o2, 2 X P

Calculating the distinct parts leads to:

2
vl — 1 O3 —012
x = — 2

o303 — o2, \ —012 O]

Denoting A = (v — m)' V' (z —m), we get:

A = O'%CC% — 20%$1m1 — 2£U10'12£C2 —+ 2x1012m2
o 2 .2 2

0103 — 013
2,2 2,.2 2 2,2
oMy + 2mi012T2 — 2my019Mma + 01T5 — 207TaMa + 01M5

2 2 2
0105 — 079

Consequently, the conditional density can be written as:

2
fx(xy,29) 02 1 (=03z1 + 03mi + 01975 — T19my)
B 0?02 — o? P 2 03 (0i05 — 0%y)
192 12 2 1¥2 12

fx,(72)
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If we look now to what is given in the proposition:

012
E(Xl |X2 = 132) = mp+ ? (132 —m2)
2
2
o
Vx | Xo=xy — U% -
1 2 2 O_%
the corresponding density g is:
. 2
1 1 [ 21— my = % (g —my)
g(z1) = - exp | —5 —
(0%—‘;—1%2%/2# 01— oF

2 2 2
B o9 1(—021:1 + 03my + 012T9 — T12My)
B P 03 (0203 — 03,)
0102 — 0712 2\0105 12

We then come to the desired result g(z1) = fx,|x, (z1|72).

The financial interpretation of Vi, x,—., = 03(1 — pi,) when X, = z,
is a signal received by an investor is quite natural. The variance of X, is
lower after receiving the signal but the decrease depends on the correlation
of the signal with the variable X; under consideration. Obviously, the sign
of p;, does not matter because a negatively correlated signal brings as much
information as a positively correlated signal.
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4.4 The law of large numbers and the central
limit theorem

In numerous real situations, we have to add a large number of random vari-
ables and the question is to know the behavior of the sum or of the average
of these variables. For example, when studying the return of an equally
weighted portfolio, we calculate an average return across a set of stocks.

The return on a long-term (say 20 years) investment in a given security is
the sum of around 5000 daily returns. When successive returns are assumed
independent, a large number of i.i.d random variables are added to get the
long-term return. Can we say something about the probability distribution
of this variable? This question is important in finance, for example when
studying the equity premium puzzle initially presented by Mehra and Prescott
(1985). Historical data show that stocks outperform bonds on the long run
by around 5 to 6% in many countries. To analyze this premium, a first point
is to assume a reasonable distribution for returns.

In other models like Ross” APT (Arbitrage Pricing Theory, 1976), the 3
coefficients on the different risk factors are obtained by building a (almost
risk-free) arbitrage portfolio with a large number of assets. The specific risk
is neglected because of the diversification provided by the large number of
assets in the portfolio.

What is the mathematical result allowing to neglect the specific risk in
a portfolio containing a large number of stocks? On the mathematical point
of view, the tools used in these models are the law of large numbers and
the central limit theorem. They are based on convergence of sequences of
random variables. We already saw convergence in L' and L2 We start this
section by presenting three other types of stochastic convergence and then
address the two essential theorems. It is worth to mention that a version
of the central limit theorem shows the convergence of an option price in the
Cox-Ross-Rubinstein (1979) model to the one obtained in the Black-Scholes
model (1973).

4.4.1 Stochastic Convergences

Definition 108 Let (X,,n € N) be a sequence of random variables and X
a random variable defined on a probability space (2, A, P);

1) (Xn,n € N) converges to X in probability (denoted as X, Ll X) if
for any e > 0:
lim P(|X,—X|>e)=0

n—-+o0o
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2) (X, n € N) converges to X almost surely (denoted as X, > X ) if
there exists a set Qg C Q with P () = 1 such that:
Vw € Qp, lim X,(w) = X(w)

n—-+00

3) Let Px, (Px) be the probability distribution of X,, (X) ; (Xn,n € N)
converges to X in distribution (denoted as X, £ X ) if, for any bounded
continuous function f:

lin_ [ 1(0)dPx,(@) = [ fla)dPs(a)

n—-+o0o

This convergence s also called weak convergence.

These three notions of convergence appear in the limit theorems of the
next section.

4.4.2 Law of large numbers

"It is difficult to understand why statisticians commonly limit their inquiries
to averages, and do not revel in more comprehensive views. Their souls seem
as dull to the charm of variety as that of the native of one of our flat English
counties, whose retrospect of Switzerland was that, if its mountains could be
thrown into its lakes, two nuisances would be got rid of at once”. F. Galton

We study here the behavior of the average of a large number of random
variables, by characterizing the expectation and the variance of the mean.
Preliminary results will be useful to get laws of large numbers.

Proposition 109 Markov inequality
Let X be a random variable taking positive values, being integrable with
E(X) = u. For any A > 0 the following inequality is satisfied:

1
> < —
P(X_MA)_A

Obviously this result is interesting only if A > 1. Remark that no assump-
tion is made on the type of probability distribution followed by X. It gives
a bound for the probability that a given random variable goes above a given
multiple of its own expectation. Markov inequality is valid in a very general
framework. In particular, it is not assumed that X has a finite variance. But
if it is the case, a more specific result is obtained as follows.

81 borrowed this citation in Koch-Medina and Merino (2003), p221.
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Proposition 110 Byenaimé-Tchebychev inequality
Let X € L*(Q, A, P) such that E(X) = m and V(X) = o% for any

B > 0 we have:

0.2

PX —ul > B)< T

A financial illustration of this result is given by Jorion (2000) in his book
Value at Risk (see chapter 1, example 31). The Basel committee requires
a 99% level and a 10-days horizon to calculate the VaR. The amount of
required capital obtained by this calculation is then multiplied by a security
coefficient equal to 3. The preceding inequality can also be written as:

1
P(|X —p[ > Ao) Sﬁ
where A is a positive constant. If X has a symmetrical distribution, we get:

For the RHS to be equal to 0.01, we need A = ,/ T(l).ol = 7.0711. However,

banks often assume Gaussian returns. With Gaussian returns A = 2.32, that
is 3 times less than the number obtained without this assumption.

110

Download free eBooks at bookboon.com



Probability for Finance Conditional expectations and Limit theorems

Proposition 111 Weak law of large numbers

Let (X,,,n € N) be a sequence of square integrable and identically distrib-
uted random wvariables (with expectation p and variance o), pairwise inde-
pendent. Let Z, = %Z?:l X; ; (Zn,n € N) converges in probability to the
(constant) random variable p. Moreover, for any e > 0:

0.2

P(lZ,—ul>e) < —

17—l > ) < 2
Remark : The second part of the proposition is obtained by applying

proposition 110.

Convergence in probability is not very intuitive. A sufficient condition
can be obtained when square integrable variables are considered.

Proposition 112 Let (X,,,n € N) be a sequence of square integrable random
variables; X,, converges to X in probability (X is also assumed in L?) if the
two following conditions are satisfied:

a) lim, 1, E(X,) = E(X)
b) limy oo V(X — X) =0

Proposition 113 Strong law of large numbers
Let (X,,n € N) be a sequence of square integrable i.i.d random variables
and Z, = 25" | Xi.

(Zn,n € N) converges almost surely to .

On the contrary, if E(|X,|) = 400, the sequence Z, is almost surely
unbounded.

Laws of large numbers insure the dividends of insurance companies share-
holders. A large number of identical but independent policies reduces the
variance of future liabilities. Taking into account risk aversion of agents, com-
panies are able to require more than the expected damage (pure premium) to
clients. The diversification of the portfolio of liabilities of a company allows
to reduce their dispersion, generating, in most cases, a profit.

In the APT model, a multifactor structure of returns is assumed as fol-
lows.

K
ri=E(r)+ > ByFr+e (4.25)
k=1
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where r; is the random return of asset 7, Fi,..., Fx are random variables
representing common factors. [3,; is the sensitivity of stock ¢ to the variations
of factor k£ and, finally, ¢; is a random variable representing the specific risk
of firm i. The common factors are assumed uncorrelated (Cov(Fy, Fj) = 0
for j # k) and uncorrelated with specific risks (Cov(Fj,e;) = 0). Finally,
specific risks are uncorrelated (Cov(g;, g,,,) = 0 for @ # m).

The return on a given asset is then divided in two parts. The first one
is linked to the common risk factors and the second to a specific factor.
More precisely, consider a large number of stocks N; the return of an equally
weighted portfolio is written as:

| N | N | MK LN
ST = NZ 2D Babkt Y s (426)
i=1 i=1 i=1 k=1 i=1
| XN K (1N XN
S OILUND €D BTN ERE S SRpTES
i—1 k=1 i=1 i=1
Large portfolios allow to diversify away the specific risk, because of the
N
law of large numbers. In other words the variance of + Z €; tends to 0 when
=1

the number of stocks in the portfolio tends to infinity.

4.4.3 Central limit theorem

The central limit theorem explains why the Gaussian distribution is so impor-
tant in all scientific fields. We provide hereafter two versions of the theorem.
The first one assumes that the variables entering the mean are distributed
according to the Bernoulli distribution and gives the intuition of why the
Cox-Ross-Rubinstein model converges to the Black-Scholes model.

Proposition 114 Central limit theorem (CLT)
Let (Xp,n € N) be a sequence of i.i.d Bernoulli random variables with
parameter p; the sequence T, defined by:

_ Z?:l Xi;—mnp
np(l — p)

converges weakly to the standard Gaussian distribution.

This version of the CLT is not sufficient to obtain the convergence of the
binomial model to the Black-Scholes model because the parameter p doesn’t
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depend on n. In the Cox-Ross-Rubinstein model, parameters u and d depend
on the delay between two trading dates and this delay tends to 0 when the
number of sub-periods increases. The probability of an up-state also depends
on the number of sub-periods. We then need a "dynamic" version of the
theorem.

Definition 115 Let’ YV = (Yln, ...,Yk’fn),n > 1) a triangular array of zero
mean random variables. For any n, let s2 =V <Zf$) Y;”) .Y satisfies the

Lindeberg condition if, for any e > 0, the sequence U = <Uf, e U,?(n), n > 1)
defined by:

Ur = Y7 si Y7 <es,
= 0 stnon
satisfies :
v (S v
lim > =1
n— 400 S

n

The following proposition provides the right version of the CLT to study
the convergence of the discrete-time option pricing model to the continuous-
time model.

Proposition 116 Let Y = (Yf‘, e Yﬁn),n > 1) a triangular array of ran-
dom variables such that the zero mean sequence <Y1" —EM), Yy — B <Y,§En)> ,n > 1)

satisfies the Lindeberg condition. For any integer n > 1, let Z, = Zfﬁ) Y.
If E(Z,) — p and V (Z,) — o2 # 0, the sequence Z, weakly converges to a
standard Gaussian variable Z.

This proposition is useful in calibrating the discrete-time model of Cox-
Ross-Rubinstein where you need to define the parameters u and d character-
izing the stock price process. v and d are chosen to keep constant the yearly
expected return and variance, independently of the duration of sub-periods
(see Hull, 2009, p 248-249).

9This definition and the following proposition can be found in Duffie, 1988, p244-246.
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