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Introduction

Introduction

In "Probability for Finance" (Roger, 2014) we presented the essential
tools from probability theory which are useful in one-period financial mod-
els'. We assume here that the reader is comfortable with these elements of
probability theory. This second book is an extension to multi-period models,
either in the discrete or continuous-time framework.

When dealing with multi-period models, one of the key problems is to
take into account the revelation of information over time, especially the in-
formation transmitted by the observation of economic variables like prices,
interest rates or exchange rates. We already referred to this problem when
conditional expectations were developed in "Probability for Finance". This
technical tool will be used extensively in the chapters of this book.

As mentioned before, there are several approaches to study multi-period
models, depending on the way time is measured. Roughly speaking, financial
models can be divided in two families. In discrete-time models, markets are
open on a finite or countable set of dates, denoted 0,1, ..,7. In continuous-
time models, markets are always open and the set of dates is an interval
[0; 7.

These two categories have their own advantages and drawbacks. Discrete-
time models are easier to understand and sometimes allow to solve valuation
problems that cannot be easily managed in continuous-time. This is the case
for the valuation of American options. However, continuous-time models
often provide simple analytical solutions (also called closed-form solutions)
when discrete-time models only provide untractable solutions and/or bulky
formulas.

It is also clear that discrete-time models use a less sophisticated mathe-
matical machinery and make easier economic interpretations. It is the rea-
son why chapter 1 starts with the presentation of discrete-time stochastic
processes. A section is devoted to Markov chains which are common tools, es-
pecially in credit risks models. A particular subset of discrete-time processes,
namely martingales, is especially important in finance, leading to devote a
large part of this chapter to these processes (in their discrete-time version).

'For example in portfolio choice models like the one developed by Harry Markowitz
(1952, 1959).
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Introduction

The second chapter addresses continuous-time processes. Financial mod-
els started to use these tools at the end of the sixties’. On a mathematical
point of view, they are more demanding and more difficult to understand. In
some cases, they reveal "strange" objects like continuous and nowhere dif-
ferentiable functions. One more time, the subset of continuous martingales
is of primary importance in valuation models but one particular process,
called "Brownian motion" or "Wiener process" is the main building block of
a broad category of processes used in financial models. Consequently, a non
negligible part of this second chapter is devoted to the study of the Wiener
process.

Chapter 3 introduces stochastic calculus. When managing a portfolio in
continuous-time, one has to combine quantities of assets with price variations
to calculate the return of the portfolio. In discrete-time, it is simply written
as a sum (over the set of dates) of products (quantities times price variations)
and aggregated over the different stocks in the portfolio. In continuous-time,
it is technically more difficult to perform these calculations. This problem is
solved by using stochastic integrals.

Moreover, a usual problem in finance is to determine the dynamics of
prices of derivative securities (like futures contracts or options), knowing the
dynamics of the underlying asset of the contract. It can be achieved by using
[to’s lemma, which can be seen as a Taylor series expansion for stochas-
tic processes. It is constantly used in continuous-time valuation models of
derivative securities.

Finally, it can be shown (in arbitrage-free pricing models), that the today
price of a security is its expected tomorrow price® discounted at the risk-
free rate, the expectation being calculated under a so called risk-neutral
probability measure. It means that in the risk-neutral world, risky assets do
not deliver a risk premium. But they deliver such a premium in the real world.
Therefore, a mathematical tool is needed to express the dynamics of a security
price in the risk-neutral world, knowing the corresponding dynamics in the
real world. Girsanov theorem is the right tool to perform this transformation;
it is presented at the end of chapter 3.

2See Merton (1969, 1971)
3We assume that no dividends are paid between today and tomorrow.
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Chapter 1

Discrete-time stochastic
processes

1.1 Introduction

In one-period models, the only uncertainty is about the state of nature oc-
curing at date 7', trading being realized only at date 0. There is neither
learning by investors nor information disclosure at intermediate dates for the
simple reason that there are no intermediate dates.

In this chapter, we introduce a multi-period market in a simple frame-
work. It is not the most general context since the set of relevant dates is
assumed finite. Continuous markets will be described in the next chapter. In
section 1.2 we introduce stochastic processes in this constrained framework.
Section 1.3 addresses the question of information revelation over time. The
good understanding of this section is essential, not because it is technically
difficult, but because it describes the formal model of information revelation
and the assumptions commonly used in multi-period financial models. In
section 1.5 we enter the core of the subject by presenting martingales and
their use in financial models.

Three questions are addressed.
1) The Doob decomposition of a martingale, useful to decompose the
return on a financial asset in two components, a predictable one and a zero-

mean "surprise"!.

I This term has a precise mathematical translation but for now the reader can keep in
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2) We show that in a market without arbitrage opportunities, there
doesn’t exist a dynamic strategy allowing to "beat the market".

3) We prove that even if one chooses the date of entry and the liquidation
date in a smart way, one cannot beat the market. The financial gain/loss
of the strategy has the same characteristics as the one obtained using the
standard buy and hold strategy.

Obviously, the results obtained in (2) and (3) are based on disputable
assumptions, like market perfection, which are not always satisfied on real
markets. However, this approach provides solid foundations to the theory
of financial valuation. Deviations occur temporarily but, in most cases, the
activity of arbitrageurs bring back prices toward the theoretical values.

1.2 The general framework

As mentioned in the introduction, we consider a discrete-time economy with
a relevant set of dates denoted as 7 = {0, 1, ..., T} where T' < +o0. The latter
assumption is not mandatory but finite-horizon models cover the major part
of the financial literature. The financial market is open at dates in the set
7 ={0,1,...,T — 1}; the last transactions are realized at date 7' — 1 and
the securities pay a liquidating dividend or a terminal payoff by date T'. It is
equivalent to assume that agents consume their remaining wealth at date T
and die just after!

Uncertainty is described by a probability space (€2, A, P) where (2 is the
set of states of nature, A is a tribe on €2 and P is a probability measure on
A.As the market is open at different dates, prices and returns are sequences
of random variables indexed by time. Such a sequence is called a stochastic
process.

Definition 1 A discrete-time stochastic process is a sequence of random
variables X = (X, ..., X7) defined on (Q, A) and taking values in * R.

This definition may seem restrictive because variables X; are real random
variables. We could also assume that they are n-dimensional random vectors

mind the usual meaning of this word.
2The set R is always equipped with the Borel tribe Bg.

10

Download free eBooks at bookboon.com



Stochastic Processes for Finance Discrete-time stochastic processes

but it will not be necessary in the present chapter. In the same way, index-
ation could be done by any ordered set but it is of little interest in financial
models where time is the natural index.

The variables X; can be either discrete or continuous. For example, when
the binomial distribution of stock prices was presented in the first book, it
was referred to a stochastic process of stock prices X written as:

X=X xY,

where the variables Y; were taking values v and d with probabilities p and
1 — p. When a positive initial value X is defined arbitrarily, X is a sto-
chastic process and the X; are discrete random variables (with finite support
in this case). On the contrary, if the X; were assumed to be lognormally
distributed, the variables would be continuous because they could take any
value in R*. So it is important to distinguish what is discrete. There ex-
ist discrete(continuous)-time stochastic processes with discrete (continuous)
variables. The time dimension and the state dimension are clearly different.

11
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State | Xi(w) | Xao(w)
w1 100 95

wWo 100 106
w3 105 102
Wy 105 109

Table 1.1: Definition of X; et X5
1.3 Information revelation over time

1.3.1 Filtration on a probability space

The definition of a stochastic process shows that the time-dimension must
be explicitly included in the description of a financial market and in the
sequence of prices. Specifying the distributions of the X, is not sufficient
to describe what really happens on the market. In particular, even if X,
and X, (a stock price at two successive dates) follow the same probability
distribution, the value of X; is known at date 1 when the value of X5 is not
yet revealed. Moreover, it is important to note that all the variables in the
process (whatever their time-index is) are defined on the same space (2.

To illustrate the point in a simple framework, consider Q2 = {w;,7 =1, ...,4}
and A = P(Q); assume that X; and X, are defined by table 1.1.

Observing X; at date 1 provides some information®. For example, X; =
100 reveals that the event {w;,ws} occurs. On the contrary, observing X; =
105 means that the pair {ws, w4} occurs. Two remarks can be done at this
stage. First, the conditional probabilities related to the possible values of
Xy are changed after the observation of X;. If {wq,ws} is true, only prices
95 and 106 remain possible at date 2. Second, even if observing X; reveals
information, uncertainty remains because the terminal date (7" = 2) has not
yet been reached. We do not know exactly at date 1 what will be the value
of X5 at date 2.

Obviously this example is overly simplified. But the definitions of X; and
X, seems to possess reasonable properties when comparing to real markets.
Agents accumulate information over time but uncertainty remains about fu-
ture prices (at least for risky assets). We let the reader check that the

3This type of example was already studied in the chapter of "Probability for Finance"
dealing with conditional expectations.
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description of X; and X is relevant because the o-algebra generated by X,
is strictly included in the o-algebra generated by the pair (Xi, X3) .

To build a consistent financial model, it is then necessary to choose a
relevant definition of information revelation over time. In particular, at a
given date ¢, agents observe date-t prices which are no more random at
future dates. Moreover, it seems reasonable to assume that the quantity of
information held by investors increases over time (corresponding to the idea
that investors don’t forget anything!).

In technical terms, these points can be summarized as follows. The list
of events you know to be true or false at a given date s is included in the
corresponding list at a future date ¢. It also means that if an event is true at
a given date it will also be true at any future date. Filtrations are the right
mathematical tool to translate these ideas.

Definition 2 A filtration on a probability space (2, A, P) is an increasing
sequence F = {Fo, Fi,...,Fr} of sub-tribes of A.The quadruple (Q, A, P, F)
is called a filtered probability space.

Increasingness of tribes F; is understood here as:
Fi1 CF

for any t > 1.

In a model ending at date T, it is reasonable to assume that no uncertainty
remains at the terminal date 7. Consequently, it is often assumed that Fp =
A. In what follows, we always consider this assumption as satisfied without
recalling it systematically.

In the same way, we assume that nothing is known at date 0, that is
Fo = {0;Q}. Despite the fact you know nothing, you are able to say that
the impossible event doesn’t occur and that the sure event occurs.

In the example of table 1.1, the relevant filtration is:

Fo = {0,Q}
-,Fl = {0)7{“}17“}2}7{"‘)37(")4}79}
F = PO

13
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At the intermediate date ¢ = 1 you are able to say if {wy,ws} or {ws, w4}
occurs because you observe X; which brings the necessary information. Con-
sequently, at date 0, you can describe the events you will know to be true or
false at future dates. The reader has to be conscious that it is a strong as-
sumption. In the real life (and especially on financial markets), many events
occur which were even not imagined by investors before they occured?.

1.3.2 Adapted and predictable processes

The information carried by a stochastic process X is increasing over time
and we need to specify what is meant by "agents do not forget" and "X,
is not random after date t". Consider that the future price of IBM stock
is a stochastic process, that is a sequence of random variables. At date t,
investors observe the stock price X; and X; will not change at date ¢t + 1 (it
will be X1 at this future date). It means that X; is random up to date ¢
and becomes a number (or a constant random variable) after date ¢.

If 7 ={Fo, Fi1,..., Fr} describes the evolution of information over time,
F; is the date-t list of events you know as true or false. In particular, you
know if, for example, {X; < 100} is true or not, where X; is the IBM stock
price. It simply means that X; is measurable with respect to F; (the same
remark applies to any date t).

Definition 3 1) A stochastic process X = (Xy,..., Xr) is adapted to the
filtration F if, for any t, X, is F;-measurable.

2) The natural filtration of a stochastic process X is the sequence FX of
sub-tribes of A such that F7 is the tribe generated by the variables X, s < t.

Consider one-more time the Cox-Ross-Rubinstein model (1979) with X; =
X;_1Y;, the Y; being independent and taking values v and d with probabilities
pand 1 —p. If T = 2, there are four possible paths for X between ¢ = 0 and
T = 2. Then, 4 states are necessary to describe the evolution of prices. We
note 2 = {uu, ud, du, dd}; at date 1, X; is observed and we know if the price
lies on a path starting by an up move or a down move. As mentioned before,
the events {uu,ud} and {du, dd} are known to be true or false by that date.

4Probably, the number of investors who were considering the bankruptcy of Lehman
Brothers as possible was very low, one year before it occured in September 2008.
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Fr1 = {0, {uu,ud} , {du,dd} ,Q} is then the relevant tribe to describe the
information known at date 1. X; is defined by:

Xl(uu) = Xl(ud):qu

This variable is JF;-measurable and in fact F = FX. This is a general
remark; when only one risky asset is traded on the market, the natural filtra-
tion of the price process is sufficient to modelize the information revelation
in the economy.

15
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State Xo Xl(w) Xg(u))
w1 1 U u?

Wo 1 U ud

w3 1 d du

Wy 1 d d2

Table 1.2: Definition of the price process X

When  is finite with Card(§2) = n, any random variable can be identi-
fied to a vector with n components. The space L? (€, A, P) is itself identified
to R"™. Moreover, L? (0, F;, P) , the space of F-measurable random variables
is a vector subspace of L? (€, A, P) (see the geometric interpretation of con-
ditional expectations in the first book).

Obviously, the dimension of this subspace increases with ¢. In the former
example, L? (2, F1, P) was two-dimensional, characterized by:

L*(Q,F1, P) = {(z,y,7,t) € R* such that z = y and z =t}

In other words, the tribe F; separates neither the first pair of states, nor
the second pair. Table 1.2 shows the entire price process. To simplify, it is
assumed that Xy = 1 in table 1.2.

Consider now an investor taking a position on a market where K assets
are traded, whose price processes are denoted as X* k= 1,..., K.

He takes a position at date ¢ and rebalances his portfolio at date ¢t + 1. He
still holds the date-t portfolio at date ¢ + 1 just before the rebalancing. We
then need to choose notations, either 0 = (6;,...0;) or 0, = (6,41, ...01,)
for the portfolio held between t et ¢t + 1.

In discrete-time, the two choices are equivalent but, to keep the vocab-
ulary consistent with the choices to be made in continuous-time in next
chapters, it is preferable to select the second notation. However, one has to
remark that ;. is revealed at date t. This corresponds to what is called a
predictable process.

Definition 4 A stochastic process X = (X;..., Xr) is predictable if, for any
t > 1, X; is F;_1-measurable.

The essential interest of predictable processes will appear in the section
devoted to martingales. The process in definition 4 starts with an index ¢t = 1

16
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since X7 is Fg-measurable. When a process 6 denotes quantities of stocks,
one can argue that the agent may already possess some stocks at date 0, as an
initial endowment. In this case, it is convenient to denote 6 this endowment,
knowing that the first transactions realized at date 0 will transform 6, in 6;.

Example 1 Other stochastic processes than quantities are naturally pre-
dictable. Consider a market on which it is possible to invest at each date
and for one period in a locally risk-free asset (savings account); let ry be the
rate of return on this account on the time-period [t;t + 1] and B, the amount
obtained at date t by a rolling investment of one dollar in the savings account
since date 0.

Recall that ry is known at date t and the process r is adapted to the
filtration F, explaining the expression "locally risk-free” (only risk-free one
period ahead). The process B is then predictable. In fact, it can be written:

t—1

B, = H(l +7s)

s=0

By is known at date t — 1, then By is F;_1-measurable.

1.4 Markov chains

1.4.1 Introduction

Rating agencies like Moodys, Standard & Poor’s or Fitch, regularly publish
statistics about the evolution of the ratings of a number of financial instru-
ments. From time to time they publish tables like the one on figure 1.1. The
first column with elements identified from AAA (the best grade) to CCC
(the worst grade before default) provides possible grades given by the rating
agency, on a given year p, to given financial instruments like corporate bonds.

The first line gives the possible states of the rating process on year p + 1.
There are two more elements in this line. "D" means default and "NR"
means "not rated". The numbers in the matrix provide the proportion of
firms moving from a rating to another one. For example, 88.46% on the top
left means that 88.46% of bonds rated AAA on year p are still rated AAA
on year p+ 1. The number just on the right is 8.05. It signifies that 8.05% of

17
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AAA | AA | A |BBB | BB B [CCC| D NIt
8846 300 072 006 011 000 000 ODOO) 267
063 8827 747 056 005 013 o0?| 000 2?87
0.08| 232/8764 L2 065 022 01| D.OS| 401
BER 003 0729 H54|82 49 468 10?2 01| O17F] K67
BB 002 011 058 7014|7383 704| 089 098 893
B ool 009 021 020 L9872 T6 34| 4921223
OCC 0.17| 000 0.34| 1.02| 220/ 9.64|53.13| 19.29) 14.21|

AAA
AA
A

Figure 1.1: One-year ratings migration

the bonds rated AAA on year p have been downgraded to AA on year p+ 1.
This kind of matrix is called a transition matrix or a migration matrix.

On a mathematical point of view, these transition matrices are linked to
a category of stochastic processes called Markov processes. They are defined
as follows.

18
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1.4.2 Definition and transition probabilities

Definition 5 A process X defined on (2, A, P, F) is a Markov process if
for any (By, ..., B,) € BE and any (t1,...,t,) € T™ such that t; < .... < t,:

P (X, € By|Xi, €Bj,j=1,.,n—1) =P (X, € B, |Xy,_, € By_1)
The Markov property says that the history of the process up to date t,,_1
does not matter to determine what happens between t,_; and t,,. The only

important information is to know where is located the process at date t,_;.

If the state space is finite, the set of values taken by the variables (X,,p € N)
is denoted (1, ...,x,) and Markov processes have specific properties. They
are called finite Markov chains.

Definition 6 Let (X, p € N) a finite Markov chain taking values in (1, ..., Ty,) ;
1) Transition probabilities of order 1 are the quantities:

m(z;,p—1,p,x;) = P(X, = 2; | X1 = x;) (1.1)

2) The matriz 11, = (7(x;,p— 1,p,x;),i,j = 1,...,n) is the transition
matriz of the Markov chain at date p — 1.

2) When the transition probabilities do not depend on p, the Markov chain
is said homogeneous (or stationary) and notations are simplified by writing

W(.Ti,p - 17p7 x]) = Tij

m(x;,p — 1,p, x;) is the probability for the process X to be in state z;
at date p knowing it is in state x; at date p — 1. These probabilities are a
specific case of the probabilities appearing in definition 5.

If two lines (corresponding to "D" and "NR") are added to the transition
matrix in figure 1.1 (with ones as diagonal terms and zero otherwise), the
resulting square matrix is the transition matrix of a Markov chain with 9
states.

1.4.3 Chapman-Kolmogorov equations

Figure 1.1 showed the one-year transition probabilities. But it is also impor-
tant to estimate the transition probabilities for 2 years, 3 years and, more
generally m years. For example, a bank lending money to a firm for 5 years
is interested in the 5-year default probability.

19
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For a homogeneous Markov chain, the Chapman-Kolmogorov equations
allow to deduce the m-year transition probabilities from the corresponding
one-year transition probabilities.

Proposition 1 Let X = (X,,,p € N) denote a N-state homogeneous Markov
chain with one-period transition probability matriz m = (m;j,4,j =1,...,N).
Let 7r§;”+”) = P(Xy4n = xj|Xo =1;) denote the m + n-period transition
probability from state v to state j.

m-+n n m n
7TZ(-]» ) = Zk:l 7TZ(-k )W,(Cj) (1.2)

To keep things simple, suppose m =n =1 and N = 3. For example, 7r§22)

is the probability for the process to be in state x, at date 2, knowing the
date-0 state was x;. The graph below shows the 3 possible paths with the
corresponding transition probabilities.

7} xl T12
T12 ™22
ry — T9 — X9
m13 T3 m32
We then deduce:
(2) _
My = 1112 + M12T22 + T137T32 (1.3)

More generally, the Chapman-Kolmogorov equations "count" the possi-
ble paths from z; to x; in m + n steps and simply cumulate the probabili-
ties of all these paths. However, the formulation is very interesting because
WZ(;RM) is the inner product of the i-th row of the m-period transition ma-
trix (7?1(-;”), 1,7 =1,.., n) with the j-column of the n-period transition matrix

(W(”) ,7=1,..., n) . We then have the useful property.

gy 0
Corollary 1 Let X = (X,,p € N) denote a N-state homogeneous Markov
chain with one-period transition probability matrix m = (m;j,4,j =1,...,N).
Let 7T§;n) = P(X,, = zj |Xo = x;) denote the m-period transition probability
from state i to state j and ™ the m-period transition matriz containing the
.
ij
am = gm (1.4)

™ is the m-th power of the one-period transition matriz m.

where

20
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1.4.4 Classification of states
Accessibility and communication

Definition 7 1) A state x; of a Markov chain X is accessible from a state
x; if there exists an integer k > 0 such that:
k
) >0 (1.5)
2) Two states x; and x; of a Markov chain communicate if there exist
integers k and k' such that:
ng) >0 and F;kl) >0 (1.6)

Example 2 Consider the following matrix .

06 04 0 0
03 07 0 0
™1 0 0 05 05 (L.7)

0 0 07 03

It can be observed that when the process starts in state x1 or xo, states x3
and x4 are never reached; they are mot accessible. We can also see that x;
and xo communicate. The same is true for xs and x4. When starting from
one of these two states, 1 or xo are not accessible. In fact, for this specific
chain, there exists 2 "closed" classes {x1, 2} and {3, x4} .

The following proposition generalizes the above remark.

Proposition 2 Let X = (X, p € N) denote a N-state homogeneous Markov
chain with one-period transition probability matriz ™ = (m;j,4,7 =1,...,N).
There exists a partition (Cy,Cs,...Cyy) of the N states such that two states
communicate if and only if they are in the same class®. The sets Cy, are called
communicating classes.

When looking at figure 1.1, we easily see that the set of ratings AAA to
CCC communicate even if some transition probabilities are equal to 0. But
the state D corresponding to default does not communicate with the others.

4 . . . . .
°The relation R, defined by z; R z; iff x; and z; communicate, is an equivalence
relation (reflexive, symmetric and transitive).
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The implicit assumption is that a defaulted instrument never recovers. It
does not mean that D is not accessible from the other states. In fact, the
column "D" on figure 1.1 contains non zero entries. For example, a corporate
bond rated CCC has a probability 19.29% to default on the next year. D is
not in the same communicating class as the other states because reaching D
prevents to come back to an other state.

The state NR is particular because we don’t know if a non rated financial
instrument will be rated in the future. However, a simplifying assumption is
to consider that NR instruments at a given date will stay NR in the future.

Definition 8 A Markov chain is said irreducible if all states communicate,
in other words there is only one communicating class.

Periodicity

Consider a binomial model for the evolution of a stock price S defined for
any date t + 1 by
g uS; with probability p (1.8)
171 dS, with probability 1 — p '

A usual calibration for this model is to assume d = 1/u. In this case, if
the initial price Sy is $100, you are sure that the price cannot come back to
$100 in less than two periods.

Definition 9 Let X = (X,,,p € N) denote a N-state homogeneous Markov
chain with one-period transition probability matriz m = (m;;,4,j =1,...,N).
1) The periodicity of a state x;, denoted t(i) is the greatest common
divisor of numbers m such that 7™ (i,i) > 0. By convention, (i) = 0 if for
any m, w™(i,i) = 0.
2) A Markov chain X is aperiodic if t(i) =1 for any i.

In the binomial model viewed as a Markov chain, the periodicity of states
is equal to 2.

Definition 10 Let X = (X,,p € N) denote a homogeneous Markov chain
with one-period transition probability matrix .
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1) Let p;(n) denote the probability of coming back to state i after n periods.

A state i is recurrent if
+oo
ZH pi(n) =1 (1.9)

2) A state which is not recurrent is said transient.
3) A state i is said positively recurrent if
(m)

. m
lim m;
m——+00

=q; >0 (1.10)

The chain comes back almost surely on any recurrent state after a first
passage. When the state ¢ is positively recurrent, the transition probability of
coming back to state ¢ in n states never vanishes, even when the length of the

transition period tends to infinity. When all states are positively recurrent,
the chain is called positively recurrent.
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1.4.5 Stationary distribution of a Markov chain

Proposition 3 Let X = (X,,p € N) denote an aperiodic, positively recur-
rent, homogeneous Markov chain. We get:

+oo
=) 0T (1.11)

+oo
with Z'—1 q¢; = 1. Moreover, the probabilities q; are uniquely determined by
the following relationships:

Vi,g; > 0 (1.12)
+oo
> g =1 (1.13)

1=1

+o00
q = Z qjTij (1.14)

i=1

vV

The probability measure by the q; on the states of the chain is called the
stationary distribution of the Markov chain.

In fact, for a finite Markov chain, looking for the stationary distribution
of the chain consists in calculating the powers 7™ of the one-period transi-
tion probability matrix. When m tends to infinity, the lines of 7 become
identical. Each line represents the probability measure (¢;,i = 1,...,n).

Example 3 Consider the very simple case of a two-state chain characterized
by the following transition matriz.

0.6 0.4
= l 0.4 0.6} (1.15)

This chain obviously satisfies the assumptions of proposition 3. The suc-
cessive powers of m give:

> _[052 048
~ | 048 0.52

3 [ 0.504 0.496

~ | 0.496 0.504} and hm :[

m—-+0o

0.5 0.5
0.5 0.5 ]
(1.16)
The stationary distribution of the chain means that the probability of being
i one state on the long run does not depend on the initial state.
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1.5 Martingales

We first recall the essential properties of conditional expectations, already
presented in chapter 4 of Roger (2010).

Proposition 4 Let (Y, Z) be two random variables in L? (0, A, P) and B, B’
two sub-tribes of A satisfying B C B':

1) If Z is a constant c € R, E(Z|B) = ¢

2)Y(a,b) € R?, E(aZ +bY |B) =aFE (Z|B)+ bE (Y |B)

5) 112 <Y, E(Z|B) < E(Y|B)

4) E(E(Z|B")|B)=E(Z|B) (law of iterated expectations)
5) If Z is B-measurable E (ZY |B) = Z E (Y |B)

6) If Z is independent of B, E (Z |B) = E(Z)

We can now define the stochastic processes known as martingales.

Definition 11 a) Let (2, A, F, P) a filtered probability space; a stochastic
process X = (Xo, ..., X71) is a (F, P)-martingale if:
i) X is adapted to F
i)Vt e T, X, € L' (Q, A, P)
i) Vt € T*, Xy = E[ Xy |Fia]
b) X is a (F, P)-supermartingale if (iii) is replaced by X;—1 > E [X; |Fi-1]
c) X is a (F, P)-submartingale if (iii) is replaced by X;—1 < E [ Xy |Fi_1]

In this definition, we specify (F, P)-martingale because being a martin-
gale depends simultaneously on the filtration and the probability measure as
shown in (i) to (iii).

In the following, we will simply write "martingale" when no confusion is
possible or P-martingale when we want to specify the probability-measure.

Point iii) of the definition may also be written E [X; — X; 1 |F_1] =0
because X is F-adapted and X;_; is F;_j-measurable (see (4) of proposition
4).

25

Download free eBooks at bookboon.com



Stochastic Processes for Finance Discrete-time stochastic processes

Remark 1 Using the law of iterated expectations, it is obvious to see that
if X is a martingale (supermartingale, submartingale) we have, for any pair
(s,t), s <t:

E X |F] = (<,2) X

This relationship could also be used equivalently in point (iii) of definition
11.

Just look at E [Xy11|Fi—1]. Using definition 11, we know that X, 1 =
E X |Fi_1] and Xy = E[ X1 |F]. It implies

Xi1=FE[E[X | F]|Fia] (1.17)
Using now point (4) of proposition 4 leads to
X1 = E X1 | Fia] (1.18)
because Fy_1 C Fyyq.

The properties of conditional expectations show that, if X is a square in-
tegrable martingale, F [X; |F;_1] is the best F;_;-measurable approximation
of X; (in the OLS sense). Consequently, for a martingale X, X; i is the best
approximation of X; conditioned on the information known at date ¢t — 1. In
geometrical terms, X; i is the orthogonal projection of X; on the subspace
of F;_1-measurable variables.

This kind of process is then very well fitted to modelize "fair games"
because F(X;) is constant’.

The most standard examples of martingales are the random walk (for
example the gambler’s wealth in a repeated fair game) and the Doob mar-
tingale. They are described hereafter.

Definition 12 A random walk is a stochastic process X such that Xg = c €
R and:
Xi=Xi 1+ Y,

where the variables Y; are independent.

6Properties of conditional expectations lead to

E(E[X¢|Fi1]) = E[X¢] = E[X; ]
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Example 4 A gambler starts a fair game at date 0 with a wealth Xo; his
date-t wealth X; is defined by:

Xe=Xi 1 +Y,

where Yy is the gain/loss of the t-th draw. The Yy are independent and zero-
mean (insuring the fairness of the game) random variables.
Equivalently, the date-t wealth can be written:

t
Xe=Xo+) Y
s=1

Assume that F is the natural filtration of the process Y, that is Fs is the
tribe generated by Y,,u < s. As Yy is the result of the s-th draw and X, the
gambler’s wealth after s draws, X is F-adapted and we get:

E[Xi|Fioi] = B[ X1+ Y| Fa]
= EXiy1|Fa] + EY: | Fia]

X being F-adapted, the first term on the RHS is equal to X;_1; moreover,
the variables Y; are independent of each other, implying that Y; is independent
of Fi_1. It follows that E Y |Fi_1]| = E Y] = 0= FE[X;|Fi_1| = Xi_1, then

proving that X is a martingale.
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Example 5 Doob’s martingale
Let Y € L' (Q, A, P); define the stochastic process X as:

Xy = E[Y|F]

X s obviously a martingale. Using the law of iterated expectations, it
follows immediately

E [Xt |7:t—1] = E [E [Y |~7:t] |~7:t—1]
= E[Y|Fa] =X

However, it is worth to mention that a process with a constant expectation
(E [X] independent of t) is not always a martingale. The following example
illustrates this point

Example 6 Consider an urn containing an even number of balls T, half of
them being white, the other half being black. At each date t < T a ball is
randomly drawn without replacement. LetY (resp. Z) the stochastic process
counting the number of white (black) balls having been drawn. The relevant
filtration is the natural filtration of Y (or equivalently Z).

Let Xy =Y, — Z; the difference between the number of white and black
balls after t draws. The stochastic process satisfies Xo = 0 and we can write:

Xi= X1+ 0
with 0y = 1 if the t-th ball is white and 6y = —1 if it is black. Consequently:
E[Xi|Fio1] = Xooq + E 04 |[Fi1]

The essential difference between this process and the random walk is that
0¢ 18 no more independent of F;_1. In fact, assume thatY; = s and Z; =t —s.

We then get:

L5

Pl =1, =5) = Z—

as soon as s #* %, and 1 this case,

1

This quantity is different from s

E6141]Y; = s] #0.

It shows that X is not a martingale. However, for anyt, E(Y;) = E(Z;) =
% leading to E[X;] = 0. X is then an example of a constant mean stochas-
tic process which is not a martingale. Obviously, this feature comes from
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the "without replacement” characteristic of the draws. After each draw, the
probability of drawing a white (black) ball in the next draw is changed. But
seen from date 0, it is a fair game since the mean number of white(black)
balls drawn between 0 and t s equal to %

It is worth to note that the "problem” comes from the fact that the ter-
minal value of Y and Z is perfectly known at date 0. In fact, before the first

draw, one already knows that Yy = Zp = % implying Xt = 0. In technical

terms, these three variables are Fo-measurable.

1.5.1 Doob decomposition of an adapted process

The result stated hereafter shows that martingales come naturally in the
description of any adapted process.

Proposition 5 Let X be a stochastic process adapted to F, each X; being
integrable. X may be decomposed in the following way:

\V/t E T, Xt — X() + Mt ‘I— At (119)

where M is a martingale satisfying My = 0 and A is a predictable process
such that Ag = 0. If X is a sub-martingale, A is increasing (A < Ayiq)

Proof. If X; = Xy + M, + A;, we can write:
EXy = X |Fio] = E[My — My | Fooi ]+ E[Ay — Ay | Fea ]

As M is a martingale, the first term on the RHS is 0. A being predictable,
the second term is equal to A; — A; ;. Summing over the time-index leads
to:

t
A=) E[X,— X, 1|Fq]
s=1

(We check on this equation that if X is a sub-martingale, A is increasing).
Defining M as follows:

t
My =X, — Xo— Y E[X,— Xo 1 |Fou]

s=1

gives the desired result. m
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The Doob decomposition 2.6 has a simple economic interpretation. Let
X; be the cumulative return on a financial asset between 0 and ¢. The decom-
position means that in each period [s; s + 1], the return has two components:
a predictible one and a zero-mean "surprise" (the martingale part). In fact:

Xe—Xea =My — M1+ A — Ay
It leads to:
EX:—Xi 1| Fia| =E[A— A1 |Fia]) = A — A

In an economy populated by risk-neutral agents, A; — A;_1 would be the
variation linked to the (locally) risk-free rate.

1.5.2 Martingales and self-financing strategies

Consider a market where K stocks are traded. Their date-t prices are denoted
as X; = (X}, ..., X/). They are measured in units of a numéraire. Assume
that the price processes X* are martingales and denote 6, = (6}, ...., 65) the
portfolio held by an agent between t — 1 and ¢. The date-t portfolio value is:

K
Vi) =Y o5 x;
k=1

To be able to compare V;(0) and V;(f) in a meaningful way, it is necessary
that no additional funds are invested and no funds withdrawn at intermediate
dates s, 0 < s < t. Moreover, prices at different dates have to be measured
in the same unit (called the numéraire”). This remark allows us to introduce
the notion of self-financing (or self-financed) strategy. But first consider the
example described in table 1.3. There are three dates and two stocks. The
initial endowment of the investor is 5 units of stock 1 and 10 units of stock
2. The initial value of the position is then 5 x $100 + 10 x $60 = $1100.

At date 1, before transactions, the investor still holds the same quantities
and the value of the portfolio is 5x $130+10x$65 = $1300. After transactions,
we see in the table that he holds 6 units of stock 1 and 8 units of stock 2.

"In most common cases, these prices are measured in date-0 or date-T" monetary units
depending on the choice between discounting and capitalization.
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Quantities Prices (in §) Position
Date | Stockl | Stock2 | Stockl | Stock2 | Value (in $)
0 5 10 100 60 1100
1 6 8 130 65 1300
2 4 11 120 80 1360

Table 1.3: Self-financing strategy S

It means that he bought one unit of stock 1 for a cost of 130 and sold 2
units of stock 2, then receiving 130. It turns out that the purchase of stock
1 is exactly financed by the sale of stock 2. Obviously, when calculating the
portfolio value at date 1 after transactions, we get 6 x $130+8 x $65 = $1300,
that is the same value.

This is the intuition of a "self-financing" strategy. If you want to hold
more units of stock 1, you have to sell the equivalent amount of stock 2. We
let the reader check that, at date 2, the strategy is still self-financing.
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Definition 13 a) A portfolio strategy is a bounded predictable process 6.
b) A strategy 0 is self-financing if, at any date t:

K K
SO0kt = Y0k, (120
k=1 k=1

The LHS is equal to the date-t liquidation value of the portfolio #,. The
RHS of equation 1.20 is the cost of the new portfolio 6, built at date t.
Therefore, the equality means that funds are neither added to, nor withdrawn
from, the strategy. On a practical point of view, it means that buying stocks
at an intermediate date must be financed by selling other stocks already in
the portfolio.

The following proposition shows that if price processes are martingales,
the value process of any self-financing strategy is also a martingale.

It means that you cannot beat the market by picking stocks when price
processes are martingales, or equivalently, that you cannot transform a fair
game into a favorable game.

Proposition 6 Let X = (X', ..., X®) be a martingale taking values in R¥
and 0 = (01, .05 ) a self-financing strategy; the process Y defined by:

K
Yo = ) 0Xg
k=1

K
Y, = ) 0iX}
k=1
s a martingale.

Proof. Remark first that Y; is the date-t value of the strategy 6, Y, being
the initial cost of the portfolio

EY;—Yi1|Fia]=E

K
> (05X — 07 X[ ) |Ft1]
k=1

The self-financing hypothesis allows to write:

K
E%Wuwﬂmj

k=1

ElY, =Y |Fa]=FE
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K ok K gk
because =", 0, XF =370, 07, X7

As 0 is predictable, 0; can be put outside the conditional expectation in
the last term. It is the same for the summation term since the expectation
operator is linear. Consequently:

=

ElY, =Y |Fa] = ZHfE [(XF = XE0) [Fia ]

k=1

But X is a martingale, so the conditional expectations on the RHS are
equal to 0. We finally get:

ElY; =Y 1|Fia] =0

or equivalently:
EY |Fia] =Y

|
Proposition 6 has a "financial smell" but it is a consequence of the fol-
lowing mathematical result.

Proposition 7 Let X = (Xl, e XK) a martingale taking values in RX and
0= (01, .., 0K ) a bounded predictable process; the stochastic process Z defined
by:

Z() - O
K t

Zy = Z 0’; (Xj_Xf—l)
k=1 s=1

s a martingale.

Proof. It is sufficient to write:
K
E(Z = Zia|Fia]l = E |07 (X = X[0) | Fia
k=1
The same arguments as in proposition 6 can be used to get:

K
E(Zi = Zia|Fia] = Y OB [(Xf = XF ) | Fia]
k=1
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and the conditional expectation is 0 because X is a martingale. m

The definition of Z in proposition 7 gives an idea of what will be the
stochastic integral described in chapter 3. To show the analogy with the usual
Stieltjes integral, remember the way expectations of continuous variables are
defined. Let Y be a random variable with density fy and CDF Fy-.

B = [ Tuna= [y iRo)

—00 —00

The expectation is in fact the Stieltjes integral of the identity function
with respect to the CDF. This formulation is linked to the preceding chapter
by writing E(Y) = E(Y1q) = (Y, 1q),. . Consequently, 1, represents (as in
the Riesz theorem) the expectation operator which is linear.

Suppose now that Y is a discrete random variable taking values y; <
Y2, ... < Yp; we then have:

—+o00

E(Y) = Zyz (Fy (yi) — Fy (yi-1)) = / y dFy(y)

—0o0

One can note that this formulation is close to the one used in the definition
of Z which could be written:

K t
Zi=Y / ok dx*k
k=10

Each integral fot 0¥dX" is the gain/loss of strategy 6 on asset k between
0 and t. Without entering the details now, there is an essential difference
between E(X) and Z;; E(X) is a real number but Z; is a random variable.
Moreover the CDF of Y is increasing but there is no reason for X* to be
increasing. These differences are "heavy" and impose some precautions in
defining the stochastic integral.

1.5.3 Investment strategies and stopping times

A second important question concerning investment strategies is the follow-
ing: is there a way to select optimally the liquidation date of the portfolio?
The intuition is simple. If a position is liquidated as soon as it generates
a positive profit, it is surely a gain. The answer to the question is yes if
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the time-horizon of the investor is infinite and if he can bear any level of
intermediate losses! In other cases (that is on real markets populated by real
agents), the answer is no.

The most simple example is a heads or tails game where 18 is won (tails)
or lost (heads) each time the (fair) coin is flipped. Successive results are
assumed independent.

Let X; be the gambler’s wealth at date ¢; it is defined by:

t
Xi=Xo+ ) Y,

s=1

where the Y, are random variables taking values 1 and -1 with equal proba-
bilities (corresponding to gain or losses), X, being the initial wealth of the
gambler.

Consider the strategy in which the player stops gambling at the first date
t such that X; = Xy + 1. This strategy is clearly a winning one because
the gambler ends the game with Xy 4+ 1 with probability 1. However, to
get such a result, any intermediate loss must be acceptable and an infinite
time-horizon is necessary. If the gambler knows he has to stop after, say, T’
games, he cannot be sure to end with a profit.

These two conditions don’t seem reasonable (especially on financial mar-
kets). A finite horizon and bounded intermediate possible losses prevent to
transform a fair game into a favorable game, as we will see now. The notion
of stopping time arises naturally to formalize this kind of situation.
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Definition 14 A stopping time is a random variable v defined on (2, A, P)
taking values in T such that:

VieT {v=t}= {weQ such that v(w) =1t} € F

This definition may, at a first glance, seem very abstract but it is easily
interpretable if v is seen as a date at which a decision must be taken (typically,
liquidating a portfolio for example). With this view in mind, {v =1t} €
F; simply means that liquidating the portfolio at date ¢ can be decided
only using past and present information. In other words, saying that the
liquidation date is a stopping time means that you don’t read in a crystal
ball (revealing the future) before taking the decision.

To give more intuition, assume that you send the following order to your
broker: "buy 100 IBM stocks at the minimum price between now and the end
of the month". The execution date is a random variable but to know that
the price on the 25th day of the month reaches the minimum, you must know
the prices on the following days! Consequently, the execution date is not a
stopping time (in technical words it is Fr-measurable, not F;-measurable).
Obviously, no broker would accept such an order.

Remark that in discrete-time models with a finite €2, it is equivalent to
define a stopping time by replacing {v = ¢} in definition 14 by {v < t}, or
equivalently by {v > t} . The reason comes from the definition of a filtration.
As F,y CF, {v=t—1} € F_1 and so {v=1t— 1} € F,. This reasoning
can be done with any date t —k with £ < ¢. Finally, as F; is a tribe, {v <t} €
Fi={vt} ={v>t}eF.

The Doob’s optional stopping theorem answers the question asked
before concerning the existence of an optimal liquidation date.

Proposition 8 Let v be a stopping time and X a martingale; if one of the
following conditions is satisfied, then X, is integrable and E(X,) = E (Xo) .
1) v is bounded
2) X is bounded, that is there exists K such that for every t € T and
every w € Q, | Xi(w)| < K.

This proposition is interpreted as follows. Point (1) says that if the num-
ber of draws is finite, the expected gain is zero. Point (2) means that, if X

36

Download free eBooks at bookboon.com



Stochastic Processes for Finance Discrete-time stochastic processes

denotes the date-t wealth of the agent, resulting from investments in financial
assets when prices are martingales, the expected wealth at the liquidation
date v is equal to the initial wealth, as soon as wealth is bounded in absolute
value at any date. In other words, if you are not ready to bear arbitrary large
intermediate losses, you cannot beat the market, even by choosing intelli-
gently a liquidation date. It is interesting to note that a purely mathematical

result has such an intuitive financial interpretation.

Obviously, in the abovementioned heads and tails game, conditions (1)
and (2) are not satisfied if the game is pursued as long as a gain of 1 unit is
not reached.

To illustrate the point, define the stochastic process Y by:

. thft<U
Y;_{XviftZU

Y is called the stopped process of X, sometimes denoted X” where v is a
bounded stopping time. The following result is then obtained.

Proposition 9 If v is a bounded stopping time and X a stochastic process
adapted to F, the stopped process Y 1is also adapted to F. Moreover, if X is
a martingale (super-martingale), it is also the case for'Y.

Proof. Let {, = 1{,>}; this variable is valued 1 when {v > s} occurs and 0
otherwise. Y can be decomposed as follows:

t
Yo=Xo+ Y & (X~ Xoo)

s=1

In fact, if ¢ < v, the indicator functions in the sum are equal to 1 and,
consequently Y; = X;. On the contrary, if ¢ > v the indicator functions are
equal to 1 for s < v and 0 beyond. We then get as expected Y; = X,. As
{v>t} ={v<t—1}°it follows that the process ¢ is predictable implying
that Y is adapted.

Moreover, if X is a martingale (super-martingale), Y is also a martingale
because ¢ is predictable.In fact we can directly write:

EY, =Y |FR] = El& (X — Xe1) |[F] (1.21)
= §E[(X = Xi) | F] (1.22)
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X is a martingale, therefore

El(X;:—Xi1)|F]=0 (1.23)

This proof in fact uses some of the properties of conditional expectations
recalled in proposition 4. m

Example 7 A doubling strategy
A little bit more sphisticated strateqy is to double the stake after each
losing draw and to stop the game after the first win. Suppose, to keep things

simple, that the gambler starts with Xo = 0 and bets one unit on the first
draw.

If t unfavorable draws occur in a row, the gambler’s wealth is:

t t—1
Xp==>) 2t =-3"2
s=1 s=0

We recognize the sum of the t first terms of a geometric sequence. We
then get:

2 —1

X, = —
t 21

—(2' - 1)
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The stake for the t + 1-th draw is 2¢. In case of winning, the final wealth
1s then X1 =1= Xo+ 1.

Observe that the expectation of the stopping time v =1inf {t /| X; =1} is
finite because the mean number of draws is:

It can be rewritten as:

(1) 55 (1)

s=1 s=1 u=s

But Zqﬁz (2%) = 23%1 implies:

However, v does not satisfy conditions of theorem 8 because it is not
almost surely bounded. In the same way, X is not almost surely bounded
because the doubling strateqy can generate incredibly high intermediate losses
(if you are especially unlucky!), a situation that cannot be easily dealt with
on real financial markets®.

1.5.4 Stopping times and American options

An American (European) put option with maturity 7" and strike price K is
a contract giving the right to his holder to sell a given underlying asset like
a stock, an index or a currency, at a given price K, at any date before 7' (at
date T).

Denote Y; the payoff received by the holder if he exercises the put at date
t.We get Y; = max(K — S;;0), S; being the date-t price of the underlying
asset. Obviously, we assume that investors never exercise their option at
date t when K < S;. It would be irrational to sell the underlying asset for K
when you can sell it for a higher price on the market.

8Think to the cases of LTCM, Lehman Brothers, etc.
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Moreover, the decision to exercise early is taken by comparing K — S; to
the value of the option if not exercised. To value this kind of option, the
notion of "Snell envelope" of a stochastic process is very useful.

Definition 15 Let Y be a stochastic process adapted to F; the process X
defined by :
XT = YT
{ Xy =max (Y E (X1 | F)) sit<T

15 called the Snell envelope of Y.
We then get the following proposition.

Proposition 10 The Snell envelope X of Y is the smallest super-martingale
greater than Y, that is satisfying X; >'Y; for any t.

Proof. From the definition it follows immediately X; > F (X1 |F;); X is
then a super-martingale. Let Z be a super-martingale greater than Y. We
are going to show that V¢, Z; > X, . This relationship is true for t = T
because of the definition of X. Let us use backward induction by assuming
that Z; > X, for s >ty and proving that Z;,_1 > X, 1.

As 7 is a super-martingale, we can write :
Zto—l > B (Zto |‘7:t0—1) > F (Xto |~’T;50—1) (1'24)

The second inequality comes from the recurrence assumption. Moreover
Z is greater than Y'; consequently:

Ziy—1 2 Y1 (1.25)
Inequalities 1.24 and 1.25 imply:
Zt0,1 2 max (}/;,071; E (Xto |E071 )) = Xt0,1

Using backward induction, we get the same result for any t.

]

The optimal exercise date of the American put will be the first date ¢ at
which X; =Y.
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Proposition 11 Let v the random variable defined by:
v=inf(t / X; =Y)
v 18 a stopping time and the stopped process X" is a martingale.

Proof. The definition of X implies v < T . We can also write:
s—1
{v=ys}t= m {Xu >Yu}ﬂ{Xs =Y}
u=1
Each of the events appearing on the RHS is in F, since the variables
Xy, Yy, u < s are Fy-measurable; consequently {v =s} € F; and v is a
stopping time.
X¢ may be decomposed using the variables {, = 1y,>}, defined in propo-
sition 9, as follows :

t
XP=Xo+ ) & (X~ Xon)
s=1
Using X, = max (Y;; B (Xsy1 | Fs)) we deduce XV(w) = Xs(w) for w €
{v > s}, which leads to:

Xs(w) = E (X1 |Fs) (w) pour w € {v > s}

It is then sufficient to prove that X! — XV | =&, (Xs — E (X, |Fs-1)) -
But if {v > s}, the LHS is equal to X, — X,_; and the RHS too by definition
of X,. On the event {v < s}, the LHS is 0 because X! = X? |, =Y,. It is
also the case for the RHS because the indicator function is 0 on the event
{v < s}.

We finally get:

E (X: - X:—l |~7:s—1) =FE (55 (Xs - E (Xs |'7:s—1)> |~7:s—1)

¢ being predictable, £, goes out the conditional expectation which is then
equal to 0. We have shown that:

E (X! = X' |Fsr) =0

that is X" is a martingale. m

To conclude this section, the following proposition shows that the stop-
ping time v is the solution of the early exercise problem for American put
options.
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Proposition 12 In® the set of T -valued stopping times, denoted as T, the
stopping time v defined by:

v=inf{t /| X; =Y}
solves the optimization problem.:

EY,] =sup E[Y,]

u€eT

The interpretation of this result for American options is clear. The ran-
dom variable Y; = max(K — S;; 0) is called the intrinsic value of the option
at date t. The difference X; — Y; is called the speculative value of the put
which is always positive or equal to 0. The above proposition means that it
is optimal to exercise an American put as soon as its speculative value is 0.
When early exercise is done at the optimal date, the price process of the put
option (in numéraire units) is a martingale.

9For the proof, see for example Bingham-Kiesel (1998),p 80.
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Chapter 2

Continuous-time stochastic
processes

2.1 Introduction

The discrete-time processes presented in chapter 1 are easy to understand
because they are managed without complex mathematical tools. Moreover,
when the number of states of nature is finite, elementary algebraic properties
can be used to make easier the understanding. The counterpart is that no
"beautiful" analytical formula is obtained, and sometimes it may be difficult
to take into account the way real markets work (in continuous time).

The price to pay to enter the continuous-time world seems large to many
students who do not have a mathematical background. All vector spaces
are infinite dimensional, price paths are functions of time with non intuitive
properties. For example, they may be everywhere continuous and nowhere
differentiable.

In this chapter, we first present the general definition of a continuous-
time process which is not much different of the equivalent notion in discrete-
time. We then describe the properties of the paths commonly encountered in
the financial literature, and the concepts of filtration, adapted process and
predictable process as well.

The next section is devoted to Markov and diffusion/It6 processes. The
definition of Markov processes in continuous-time is the same as the one given
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in discrete-time, except that the set of dates is different. Diffusion and It6
processes introduce more conditions on the paths.

The most important stochastic process in financial models is the Brownian
motion (also called Wiener process). We hope that our presentation will look
intuitive to the reader. The final section studies the fundamental properties
of the Brownian motion, especially those linked to martingales, very useful
in finance.

2.2 General framework

The basic notations are the same as in the preceding chapter. ({2, A, P) is
a probability space. The set of relevant dates is still denoted 7 but now
7 =1[0;T], T < 4o0. It means that markets are open in continuous-time.

Definition 16 A stochastic process is a family of random variables X =
(X, t € T) taking values in (R, Bg) .

As mentioned in the introduction, the definition is identical to the one
given in discrete-time but the set of indices 7 is different. In particular, it
is not countable.

Definition 17 The mapping t — Xi(w) for a given w € § is called a path
(or trajectory) of the process X.

In discrete-time, a path of a stochastic process is simply a sequence of
values taken by the process on the (discrete) set of dates. Here a path is a
function defined on an interval [0; 7] of the real line.

Three kinds of paths are usually encountered in financial models.

e The description of prices or interest rates dynamics commonly assumes
that paths are continuous functions. It is the case in the Black-Scholes
(1973) option pricing model for the dynamics of the underlying asset of
the option contract. It is also the assumption for the short-term rate
in the models of Vasicek (1977), Cox-Ingersoll-Ross (1985) or in the
model of Heath-Jarrow-Morton (1992) for forward rates.
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Figure 2.1 illustrates this continuity assumption. It represents the evo-
lution of daily closing values of the S&P500 index from 1950 to May
2010' (more than 12 000 points). We observe that the path of the index
is represented as a continuous function, even if it seems to have many
points where the function t — X;(w) is not differentiable.
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Figure 2.1: S&P500 daily values from 1950 to 2010

e In some cases, it is assumed that paths are cadlag, meaning (in French?)
"continues & droite et possédant une limite & gauche". The English
translation is right-continuous with left limit (RCLL). In fact, con-
tinuous paths are not always the right tool to describe some economic
variables, especially when jumps are possible. For example, it is now
well known that stock returns are not normally distributed because ex-
treme returns occur much more frequently than what is predicted by
the Gaussian distribution hypothesis.

Introducing discontinuities in paths may be a way to describe this phe-
nomenon (see Merton (1976), Cox-Ross (1976), etc...), for example by

!Dates are in the format JJ/MM/YY on the graph
2We provide the French expression because the acronym cadlag has become standard
in many books or papers, even in English ones.
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using Poisson processes (see definition 22). Figure 2.2 shows the daily
returns of the S&P500 index in October 2008. We observe a contin-
uous curve simply because successive values have been joined, but it
is largely artificial. Daily variations are very large (around 10% in ab-
solute value on some days®) and it could be more relevant to take jumps
into account to represent the evolution of the index.

15.00%
10 60%

.0

R IR

Figure 2.2: S&P500 daily returns in October 2008

3October 2008 was a "crazy" month, partly because it followed the bankruptcy of
Lehmann Brothers in September. Many other difficult periods were to follow.
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e Paths of some stochastic processes may also be caglad ("continues
a gauche et possédant une limite a droite"), that is left-continuous
with right limit (LCRL). This assumption is relevant to describe
the quantity of a given asset held by an investor. Obviously, portfolio
rebalancing occurs in discrete-time. Choosing left continuity instead of
right continuity is based on the following idea. When a path is left-
continuous, X;(w) is known as soon as the X (w),s < t are known.
In other words, if you know the composition of your portfolio at any
past instant, you also know it now. Remember what we wrote in the
preceding chapter about predictable processes for quantities. The idea
is the same here and we will come back to this point later on.

Continuous-time stochastic processes are a little bit more complicated
when the state-space is not countable. In fact, there may be non-empty but
negligible subsets of states of nature and also subsets of dates with Lebesgue
measure zero on 7. The following definition is then useful to manage this
technical problem.

Definition 18 1. A process Y is called a modification of X if for any
t € T, the set = {X; =Y.} has probability 1. Y s also called a
version of X.

2. Two processes X andY are indistinguishable if they have in common
"almost all” their paths; more precisely:

30" € A such that P(QY*) =1 and Vw € Q*Vt € T, X;(w) = Yi(w)

These two notions, though seemingly close, are different. Let Q = [0;1],7 =
[0; 1] and X defined by X; = 0 for any ¢ and any w. Let now Y be defined as:

Yiw) = lift=w
= 0 elsewhere
It is obvious that P ({X; =Y;}) = 1 when P is the Lebesgue measure

on 2. Y is then a modification of X. On the contrary, X and Y are not
indistinguishable because (1), €; = (). We cannot find two identical paths!

We have here an illustration of the technical difficulties evoked in chap-
ter 1 of "Probability for Finance" (Roger, 2010) when defining probability
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measures and tribes. The problem is that a countable intersection of sets of
probability 1 is also a set of probability 1. It is not true when the intersection
under consideration is uncountable.

These are only technical difficulties but we have to mention them to be
rigorous. However, in financial models, we are rarely concerned with such
questions when dealing with real life problems, simply because continuous-
time models are an idealization of what is really happening on financial mar-
kets.

2.2.1 Filtrations, adapted and predictable processes

The notion of filtration is still relevant in continuous-time models but some
more conditions are needed to ensure tractability.

Definition 19 1. A filtration on () is an increasing family F = {F,t € T}
of sub-tribes of A. The quadruple (2, A, F, P) is called a filtered prob-
ability space.

A filtration F is right-continuous if for anyt < T, F, = (o, Fs-
A filtration F is complete is any tribe F; contains all negligible events.

A process X is adapted to a filtration F if for any t, X, is F;-measurable.

Grod o e

The natural filtration of a process X, denoted as FX, is the smallest
tribe with respect to which X is adapted. F;X is the tribe generated by
the variables X, s <'t.

When (2 is finite, it is generally assumed that P(w) > 0 for any state w.
When (2 is uncountable, assuming complete tribes is a convenient assumption
for purely technical reasons. Without this assumption, we could imagine that
some set B € F; satisfies P(B) = 0 but a subset A of B is not in F;. The
definition of a probability measure implies that P(A) < P(B) when A C B
but P(A) would not be defined if A was not an event!

In what follows, we always assume that the filtrations we refer to are
right-continuous and complete, even if this assumption is not recalled. These
two assumptions are sometimes called (with some sense of humor) "usual
conditions".
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In discrete-time, a predictable process has an intuitive definition. A
process is predictable when its date-t value is revealed at date ¢t — 1 or,
more generally, when X; is F;_j-measurable. It appears immediately that
generalizing "X; is F;_i-measurable" to continuous-time is not natural and
may be quite involved.

To avoid the reader technical difficulties, we give a restricted (and then
disputable) definition of predictability. It is sufficient for what we deal with
in finance and is much more intuitive than the completely general definition.

Definition 20 X is a predictable process if it is adapted to F and if its

paths are left-continuous®.

To give an intuition of the definition, consider a function f : R —R and
suppose that you know all the values f(x) for < xy. When is it sufficient
to know f(x0)?

Simply when f is left-continuous, because left-continuity means:

lim f(z) = f(zo)

T—T0
x<xQ

The notation combining x+ — zy and = < x( is sometimes denoted z —
g -

In the same way, left-continuous paths for a stochastic process mean that
if you know the values at any date t < t(, you can infer the date-t value of the

process. It corresponds pretty well to the intuitive notion of predictability.
Definition 21 Let X be a process defined on (2, A, P);

1. The increments of X are independent if for any t; <ty < ... < t,,
the variables Xy, — Xy, , are independent.

2. The increments of X are stationnary if for anyt € T and h > 0 such
that t + h € T, the probability distribution of X, — X; depends only
on h (and not on t).

4To be completely rigorous, we should consider the tribe B, on 2 x 7 generated by the
processes with left-continuous paths. Predictable processes are then the B,-measurable
processes (see Duffie, 1988, p140).
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Example 8 The most simple process satisfying definition 21 in discrete-time
1s a random walk X defined by:

X() - 0
Xy = Xi1+Y

where the Y; are v.1.d. It is obuvious in this case to check that increments
are i.1.d because the increments of X are exactly the variables Y;. In a next
section, we will see that the Brownian motion is the typical example of such
a process in continuous-time.

When X, is the logarithm of a stock price (whose process is denoted S),
the difference Xy — X is the continuous return of the asset on the interval
[s;t]. In fact, Xy = 1n(S;) and then

X, — X, = In(S;) — In(S,) = In (%) (2.1)

Assuming that X has independent increments is then linked to the efficient
market hypothesis (EMH). If current prices reflect all past and present in-
formation, X; — X, doesn’t depend on past returns. It is not useful to know
past prices to infer the distribution of future prices, only the current price is
important.

The stationnarity hypothesis is often used (at least implicitly) in empirical
studies, for example when the variance of returns is estimated using a time-
series of daily returns.
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A second important example of a process with independent increments is
the Poisson process.

Definition 22 A process X is a Potsson process with parameter \ if:

CL) Xg =0

b) X has independent increments

c¢) For any pair (s,t) € Ry x Ry with s < t, the variable X; — X follows
a Poisson distribution with parameter A(t — s).

AT (-2 -s)) (22

It is worth to notice that the Poisson process is a continuous-time process
but the state-space is discrete. The variables X; takes values in the set of
positive integers N which is countable.

These processes are commonly used in insurance to represent the arrival
of damages; they are then linked to a process Y representing the amount of
the claim. For example, at date ¢, the cumulated amount to be paid by the
insurance company is written:

VkeN,P(X,— X, = k) =

X
Claim; = ZY;» (2.3)
i=1

where X, is the number of claims up to date ¢.

The other field where Poisson processes arise naturally is the microstruc-
ture of financial markets. The arrival of buy and sell orders on a stock market
is often represented by such a process.

Equation 2.2 means that the probability of an increment greater than one
on a very short interval of length h is negligible with respect to h. In fact

2 2
P(Xpyn— X, =2) = (AS) exp (—Ah) ~ %hQ (2.4)

At the same time, the probability of a unit increment on a short interval
of length h is proportional to h and approximately equal to Ah.

2.2.2 Markov and diffusion processes

In this section, we introduce several categories of continuous-time stochastic
processes, namely Markov, diffusion and It6 processes. They cover almost
all the processes used in financial models.

51

Download free eBooks at bookboon.com



Stochastic Processes for Finance Continuous-time stochastic processes

Markov processes

Definition 23 A process X defined on (2, A, P,F) is a Markov process
if for any (By, ..., By) € B and any (ti,...,t,) € T™ such that t; < .... < t,:

P (X, € By|X,, € Bj,j=1,.,n—1)=P(X,, € By|Xs,_, € By-1)

The financial interpretation of this definition is the same as the one given
for independent increments. Economic information carried over by X, for
dates s < t,_; is the same as the one contained in X;, ,.The reader can
recognize definition 5 given in chapter 1 but with a different set of dates.

Markov processes are sometimes called "no memory" processes because
the path used to reach the set B, _; at t,_; has no influence on the probability
distribution of the future variations X;, — X;, ,. Only the state reached at
date t,,_1 matters.

When stock prices are Markov processes, strategies based on technical
analysis are useless. There was, and there still is, an intense debate in the
financial literature to know if stock prices are Markovian. On one side, propo-
nents of the efficient markets hypothesis believe in the Markovian character
of stock prices. One of their arguments is that you cannot become "rich" by
trading on past information. On the other side, numerous empirical stud-
ies show that some portfolios built on past information provide abnormal
returns. To give a simple example, De Bondt and Thaler (1985) show that
markets overreact. Buying past losers and short-selling past winners allow
to get an abnormal return.

Diffusion processes and Itd processes

Definition 24 a) A diffusion process is a Markov process with continuous
paths.

b) A process X is an Ité process if X is a diffusion process and if there
exist two functions i and o defined on Rx7T and taking values respectively
in R and R* defined by:

FE [Xt+h — Xt ‘Xt = l’]

Xeon — X¢ | Xy =
az(x,t) _ hmv[ t+h ¢ | Xy = x]
h—0 h
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To interpret p and o think of X; as the logarithm of the date-t price of
a stock. The increment X;,, — X; is the return of the stock on the interval
[t;t + h]. The function u(x,t) is then the instantaneous expected return at
date ¢t when the process X is at level x. Dividing by h ensures that p is
expressed per time-unit. The most common time-unit in financial models is
the year.

1 measures the direction of evolution of the process. It is generally called
the drift. In the same way, o2 is the instantaneous variance of returns
per unit of time. o is called the diffusion coefficient of the process. In
the financial literature, authors generally do not make a distinction between
diffusion and Itd processes, the latter ones being almost always considered.
As we will see later on, the dynamics of such processes may be written as a
"stochastic differential" involving p and o.

It6 processes are pretty well suited for describing prices, returns or interest
rates. Nevertheless, assuming continuous paths is sometimes a restriction, as
mentioned before.

2.2.3 Martingales

As in discrete-time, martingales play an important role in continuous-time
valuation models. The principles and interpretations are quite close and the
definition of continuous-time martingales is almost the same as the definition
in discrete-time.

Definition 25 Let (2, A, F, P) a filtered probability space;

1. A (F, P)-martingale is an integrable process X adapted to F, satis-
fying:
V(s,t) € T? s <t= E[X;|F] = X, (2.5)

2. X is a (F, P)-super-martingale if equality 2.5 is replaced by E [ Xy | Fs] <
Xs.

3. X is a (F, P)-submartingale if equality 2.5 is replaced by FE [ X |Fs| >
Xs.
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We simply write "martingale" instead of (F, P)-martingale when no con-
fusion is possible about the filtration or the probability measure. When X is
a martingale, one can always assume that paths are right-continuous, that is
X is assumed cadlag. Using the vocabulary describing the different possible
paths, we could say that there exists a cadlag version of the martingale X.

Some important results on discrete-time martingales are still valid in con-
tinuous time. It is especially the case for the Doob decomposition.
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Proposition 13 Let X be an integrable process adapted to F; X can be
decomposed as follows:

\V/t € T, Xt = X[) + Mt + At (26)

where M is a martingale with My = 0 and A is a predictable process such
that Ag = 0. If X is a submartingale, A is increasing.

The typical example of martingale in continuous-time is the Brownian
motion presented in the next section.

2.3 The Brownian motion

2.3.1 Intuitive presentation

The Brownian motion, also called the Wiener process, is surely the most
commonly used stochastic process, in finance and in other sciences as well.
It is for the set of stochastic processes what is the Gaussian distribution for
the set of probability distributions. It is the reason why we devote a few
pages to provide an intuitive feeling of what is a Brownian motion®.

For pedagogical reasons, we start with discrete-time random walks. Re-
member that a random walk is a stochastic process X defined by:

XU = a
Xn = anl—i_yn

where ¢ is a constant and the Y,, are assumed i.i.d.

Let T' be a given time horizon; [0; 7 is divided in N sub-periods of length
h = T/N and we look at what happens when N tends to infinity, 7" being
fixed. The limit process (in a sense to be precised) will be a continuous-time
process.

Then, for the moment we assume 7 = {0,1,..., N} .

Proposition 14 Let X be a random walk with the Y, taking values o and
—o with equal probabilities p = 1/2

This section is largely based on Merton (1982). This paper was reedited in Merton’s
book (1990) entitled "Continuous-time Finance".
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1. X has independent and stationary increments
2. Cov(X,,, X,,) = 0® min(n, m)

Proof. Point 1 is obvious by definition of the Y,,. For point 2, suppose that
m < n. We can write:

Cov(Xp, X)) = Cov(Xpm+ > Vi, Xip)

k=m+1
n

= Cov(Xpm, Xin) + Z cov(Yy, Xon)

k=m+1

= V(Xn) + i Cov (Y, Xon)

k=m+1

The second equality is obtained through the linearity of the covariance
operator. The last equality comes from the equality Cov(X,,, X,,) = V(X,n).
Moreover the covariances Cov (Y, X,,) are equal to zero for k& > m due to
the independence of the Y}, and X, = X, + >, ., Yi. Finally, we use the
assumption V(Y;) = 02 to obtain V(X,,) = > /", V(V%) = mo?.

Obviously, if n < m, we get Cov(X,,, X,,) = V(X,,) =no?. =

Suppose now that X, is the logarithm of the date-t price of a financial
asset where t = nh, starting at Xy = 0 (in other words, the initial price of
the asset is equal to 1). X, is then also the cumulated return of the asset
on the interval [0;¢]. The set 7 = {0, 1, ..., N} is the set of transaction dates
occurring in [0; 7.

Assuming N — +oo is equivalent to suppose that the market approaches
a continuous-time market. If the cumulated continuous return on [0;77] is
denoted A7, we need Ar = limy_. o Xy to get a consistent model.

o is the standard deviation of returns on a given sub-period. It should
depend on N because the cumulated variance is No? on [0;7]. If T is 3
months, weekly data corresponds to N = 13 and N = 91 corresponds to
daily data. Obviously the daily volatility of returns is different from the
corresponding weekly volatility.

6For example, T may be the maturity date of an option contract we try to evaluate.
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So, the question is to link ¢ to N in a consistent way. It is also the
typical question you need to answer to calibrate the Cox-Ross-Rubinstein
model (1979). When the period length changes, u and d must be changed.

Let now (YnN ,n=1..,N ) denote the increments of the random walk
when 7 = {0,1,..., N}. Denote o}, the standard deviation of Y. The
intuitive idea is to define the date-T" logarithm of the price as Xy = Xo +

N
Zn:l YnN‘

Note that for any N, Xy —X defines the cumulated return of the asset
on [0; 7], that is Ar. Consequently when N tends to infinity and h tends to
0, we should get a consistent description of the continuous-time process of
returns.

2.3.2 The assumptions

To ensure the consistency of the approach, some precautions are needed.
Careful assumptions are necessary about the evolution of parameters when
N changes. We introduce hereafter the three "reasonable" assumptions pro-
posed by Merton (1982).

1. There exists A; > 0, independent of N, such that:

YneT, V(X,) > A

2. There exists A; > 0, independent of N, such that:

V(Xy) < Ay

3. There exists A3 > 0, independent of N, such that, for any n € 7 :
V(Ya)
maxj’, V(Yj) ~

Comments

e Assumption 1 says that uncertainty never disappears, even if the length
of subperiods tends to 0. Consequently, the cumulated return between
0 and ¢ remains stochastic on continuous-time markets.
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e Assumption 2 is, in some sense, symmetrical to the first one. It says
that variance of returns on [0; 7] doesn’t explode when time is cut in
finer and finer slices. This assumption illustrates what was already
said in the Cox-Ross-Rubinstein framework. When the number of sub-
periods increases, parameters u and d have to be changed. If they are
held constant, the variance of returns would become unbounded.

e Assumption 3 has a specific meaning. It stipulates that the variance
of returns remains greater than a given proportion of the maximum
variance. This assumption rejects cases in which uncertainty is concen-
trated in some sub-periods. An example allows to understand why this
assumption is reasonable to deal with risky assets. Assume you buy a
lotto ticket on Tuesday when the official draw is on the next Saturday.
Obviously, you buy a risky asset but it doesn’t satisfy assumption 3.
The problem is that nothing happens between Tuesday and Saturday.
Consequently, the value of the ticket remains the same (no uncertainty
about the return on intermediate periods). The value of the ticket
changes only during the draw, depending on whether the numbers you
chose show up in the official draw. In other words, the lotto ticket is
locally risk-free!

e An alternative justification (possibly more serious!) of assumption 3 is
that on a continuous market, new information is generated in a con-
tinuous flow, implying possible price variations at any moment. For
the lotto ticket, no new information becomes available before the Sat-
urday draw starts. We except the case where the sponsor of the game
announces bankruptcy on Wednesday!

58

Download free eBooks at bookboon.com



Stochastic Processes for Finance Continuous-time stochastic processes

Remark that, if the process under consideration has stationnary incre-
ments, assumption 3 is satisfied because the variance is constant on sub-
periods of a given length. For the random walk considered at the beginning
of the section we could choose A3 = 1.

This set of three assumptions, intuitive at the economic level, allows to
specify which processes are good candidates to represent prices and returns
of financial assets. We first recall the Landau notations O and o.

Definition 26 Let f and g be two functions defined on R and taking values
in R. We write f(h) = O(g(h)) if limp, o ‘%‘ < +oo and f(h) = o(g(h)) if

=0.

hmh—)O ‘ %

f(h) = O(g(h)) means that the values of f and ¢ have the same magnitude
when h tends to 0. In the same way, f(h) = o(g(h)) means that f is infinitely
small with respect to g when h tends to 0.

The following proposition specifies the behaviour of the variance o when
the length of the interval between two trading dates shrinks to 0.

Proposition 15
o7 = O(h) and o} # o(h) (2.7)

where O(h) and o(h) denote the Landau notations.

Proof.
N

V(Xy) =) V(V,Y)=Noj

n=1
This equality is a direct consequence of the independence Y,¥. Assumption
2 implies No7 < A,. Replacing N by L leads to:
A
2 <22 2.8
Op > T ( )

It means that o7 = O(h).
In the same way, assumption 1 implies:

No? > A (2.9)

or, equivalently, o7 > 4th. it shows that o7 # o(h). m
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If the variance of Y,, is O(h), the values taken by Y, can be written
as 0, = cv/h and —cVh with ¢ a positive constant. In other words, the
magnitude of the return is O(v/h) on a period of length h.

Consider now the special case ¢ = 1; the process X may be written:
Xn = Xn—l + 571,\/5

where the §,, are zero-mean independent variables taking values +1 and —1.

Figure 2.3: A random walk with h =1

Figure 2.3 represents a path with h = 1 and figure 2.4 a path with h = 0.2.
The points for successive dates have been joined by straight lines.

To understand how trajectories of the Brownian motion look like, it is
enough to remark that the slope of the successive segment on the two figures
is i%, or equivalently j:ﬁ.

We observe that when h decreases, the slope increases. We advice the
reader to simulate such paths for different values of h to observe the phenom-
enon (on an Excel sheet for example). When & tends to 0 the path looks like
the price paths provided by any financial website or economic newspaper (or
by figures 2.1 and 2.2 at the beginning of this chapter).
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+1.5

Figure 2.4: A random walk with A = 0.2

Define now Ay = limy_, \/%ij:l 0, where the §,, are defined as

before. The central limit theorem allows to conclude that Ar follows a Gaussian
distribution with standard deviation /7. Here, weak convergence is used.

If two dates T and T” are considered, with 7" < T", it is clear that A7 —Arp
is Gaussian with standard deviation /17 — T and that A7 — At is indepen-
dent of Ar — Ayg.

Following this intuitive presentation, we can now define more formally the
Brownian motion which is the limit process of the random walks developed
before when the duration between two transaction dates shrinks to 0. .

2.3.3 Definition and general properties

Definition 27 Let (2, A, P) be a probability space; a standard Brownian
motion (or Wiener process) is a stochastic process Z satisfying:

1. Zy =0 P.a.s’

2. The increments of Z are independent and stationnary

"Remember that a.s means "almost surely", that is "with probability 1".
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3. V(s,t) eERT xR, s<t, Zy— Zy ~ N(0,\/t—s)
4. Z has continuous paths.

Without technical words, the idea behind the brownian motion is the
same as the one behind the Gaussian distribution. When a phenomenon is
the addition of a large number of independent components, the result should
be driven by a Gaussian distribution. Moreover, combining points 1 and 3 of
the definition shows that Z; is a zero-mean Gaussian variable with standard
deviation v/1.

In finance, price variations come from a continuous flow of information
leading to demands and supplies of assets by investors. Therefore, if informa-
tion is immediately reflected in prices (efficient market hypothesis), successive
returns should be independent. If it was not the case, investors would take
into account this dependency...and it would be ruled out.

The preceding section based on random walks illustrated that variations
of Z between two dates t and t + h are of order VA , infinitely large w.r.t
h (see Landau notations). It explains why Brownian motion paths are very
irregular. It is in fact impossible to draw a trajectory of a Brownian motion,
because of the following proposition.
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Proposition 16 Brownian motion paths are continuous but nowhere differ-
entiable.

Most properties of random walks can be transferred witout difficulties to
the Brownian motion.

Proposition 17 1. The Brownian motion Z is a Markov process.
2. 7 is a martingale with respect to its natural filtration.
3. cov(Zy, Zs) = min(t, s)

Proof. Point (1) is a direct consequence of the independent increments.

When you deal with Brownian motion, the independence of increments
is used in most proofs. The idea is always to write something like 7Z; =
Zs+ (Zy — Zs) (with s < t) and use the fact that Z; and (Z; — Z;) are
independent. Moreover, (Z; — Z,) is also independent of FZ, the natural
filtration of Z.

To prove point (2), let s and ¢ denote two dates such that s < t. We can
write:

E|Z|F?] = E|Z+(Z— Z,) |F7]
= E|Z|F?)+E |2 - Z,|F7]

The second term in the RHS is equal to 0 because Z; — Z, is independent

of FZ:
E|Z—Z|F/|=EZ— 2] =0 (2.10)

As 7 is adapted to FZ, Z, is FZ-measurable. The properties of conditional

expectations imply:
E|Z|F?] = Z, (2.11)

We finally get the martingale relationship
E[Z|F?] = Z, (2.12)
To prove point (3), the same "trick" is used (assume that s < ¢) :
cov(Zy, Zs) = cov(Zy — Zs+ Zs, Zs)
= cov(Zy — Zs, Zs) + V(Zy)
= cov(Zy — Zg, Zs— Zp) + 8

= S
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One more time, independent increments imply that the covariance be-
tween Z; — Z, and Z, — Zy is zero.

Obviously, if ¢t < s, Z, is decomposed in Z; — Z; + Z; and the same
reasoning applies. m

The definition of diffusion and It6 processes in section 2.2.2 introduced
the following functions:

E [Xt—l-h - Xt |Xt = I’]

X, — X, | X, =
02(33,25) = limv[ th 1 X = z]
h—0 h

It appears that the standard Wiener process is an Itd process with zero drift
(u(z,t) = 0) and a diffusion coefficient o(x,t) equal to 1.

2.3.4 Usual transformations of the Wiener process

Some functions of the Brownian motion are also martingales; the two most
simple examples are summarized in the following proposition.

Proposition 18 Let X and Y be defined by:

X, = Z}—t

2
Y; = exp (th - 77)

where 7y is a real number. X and Y are martingales w.r.t. FZ.

Proof. 7 is square-integrable so X, is integrable; 7, is Gaussian so Y; is
log-normal. The two processes are then integrable.

To prove the martingale relationship, we use one more time the decompo-
sition Z, = Z,+(Z,— Z,) with s < t. The conditional expectation E (X, |FZ)
is transformed in the following way:

EX|FS) = E(Z|F7) —t
= E((Z— Z,) +22,Z, — Z2 |F7) —t

We use now:
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1) the linearity of conditional expectations
2) the fact that Z, is FZ —measurable

3) the fact that Z is a martingale

4) the independence of Z; — Z, w.r.t. FZ.

We then get:
E(X|F?) = E((Z- 2 |F?) + 28 (2.2,|F7) - E (22 |F?) — 1
= E((Z— Z,)*|FZ)+2E (Z:Z,|F?) — Z2 — t
E((Z— 2 |F?) +22,E (2, |F?) - 22 —t
= E((Z - ZS)Q\ff)JrzZ?—Zf—t
E((Z— Z,)*) + Z¢
(t—s)+22—t
= 7 —s=X,

We now show that Y is a martingale, using the same properties of condi-
tional expectations.

E(}ﬂ}"z) = exp

S

_L) F (eXp ("}’(Zt - Zs)) exp(’st) “F8Z>

2
~ exp <—72t) E (exp (1(Z: — Z.))) exp(17,)

Remark now that exp (y(Z; — Z5)) follows a log-normal distribution with

parameters 0 and v/t —s. Consequently E (exp (v(Z: — Zs))) = @
Replacing in the last equality leads to:

2
E(Y;|F) =exp <m—§) =Y,

and ends the proof. m

The processes X and Y in proposition 18 are in fact specific transforma-
tions of the Brownian motion by the following functions:

(z,t) — f(z,t) =2t

(0.t) — glxt) = exp (m—’%)
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Let z(x,t) stands for the density of Z;, defined by:

1 22
z(m,t):\/rmexp 5

The functions f and ¢ are solutions of the equation:

R(0,s) = /_+oo h(u,t + s)z(u,t)du

oo

In fact, for f, we have f(0,s) = —s; the RHS is written:

+oc0 +oo u2
e stutan = o= [t e g)en (5 ) do

+o0 u2
— \/Q_t/ uzexp( 2t)du—(t+s)
Tl J—o00

\/% fj;o u? exp (—g—j) du is the variance of Z;, equal to t. For g, we have:

400 oo . )
/_OO glust+5)2(ut)du = —=— / exp (vu— g (2+ 5) gt) "

V2(t + ) /+°° u? p
= €X — €ex u— = U
P 2 \/_zm L P Ty

The integral is transformed by the usual method:

2 1 ’t
exp (’yu — Z—t) = exp (_2_75 (u—yt)* + 77)

which leads to:

/_:Og(u,t—i-s)z(u,t)du _ eXp(
(

_28 1 /+oo _i(_t)Qd
—Qfmf . exp o7 u Y U

s
2
rs
2

) =409
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2.3.5 The general Wiener process

Using a standard Brownian motion as a model for stock returns has at least
two serious drawbacks. The first one is that E(Z;) = 0 for any ¢. Therefore,
the expected stock returns are always 0. The second problem comes from
the variance V(Z;) = t meaning that a dotcom stock and an industrial firm
(pharmaceutical, automobile, etc.) have the same variance. It does not
correspond to empirical observations.

Introducing the general Wiener process allows to solve these two difficul-
ties by introducing a drift (which may be positive or negative) and a per
time-unit variance (which may be lower or greater than 1). The natural ex-

tension of the standard Brownian motion introduces parameters p and o, p
being the drift, and o2 the instantaneous variance per time-unit.

Definition 28 A process W is a general Brownian motion with parameters
w and o if Wy writes:

Wo = 0
Wy = pt+oZzy

where Z is a standard Brownian motion.
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Properties of W are easily deduced from those of Z.

Proposition 19 1. W s a process with independent and stationnary in-
crements

2. Fors <t, Wy — Wy ~ N(u(t —s),0/t —s)
3. cov(Wy, Wy) = a%(t — s)
4. W is a sub(super)-martingale w.r.t. its natural filtration if p > (<)O0.

5. The paths of W are (a.s) continuous and nowhere differentiable.

Think of a stock with an initial price of 1. If W, is the cumulated return
of this stock on [0;¢], 1 > 0 means that the expected return is positive. If
there is a risk-free asset traded on the market with a non stochastic return
r, risk aversion of agents implies generally that yu > r. Investors require a
premium to invest in a risky stock.

Remark 2 1) Let h be a real number close to 0; the variation of W on
[t;t + h] is written as:

Wign — Wi = ph + 0(Zypn — Z)

When building Z, starting with random walks, we observed that Z;., — Z;
18 O(\/E), that is infinitely large w.r.t. h when h tends to 0. It is also true for
W and the economic consequences are important. Even if the expected return
1 s different from zero, it is mot possible to predict short-term variations.
The term o(Zyyn — Zy) is much larger (in absolute value) than ph when h
s close to 0. It is the reason why observing very short term variations in
prices (intraday variations for example) says nothing about the evolution on
a longer horizon (yearly variations for example).

2) One has to be careful with intuitions about the Brownian motion. For
example, assume j = 0, corresponding to a process without any drift. It is
natural to think that paths will stay "around" zero. However, we will show
that paths of such a Brownian motion cross any boundary (starting from 0,
the value goes outside any interval [a; b)) in a finite time). Consequently, if
you observe just one path, you could conclude that there is a drift when it is
not the case.
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Figure 2.5: Simulation of a standard and a general Brownian motions (u =
10% and o = 20%)

Remark 3 Figure 2.5 shows an example. We simulated a path of a standard
Brownian motion on one year (the time-unit) at a daily frequency. It corre-
sponds to the thin blue line. The bold red line is the corresponding general
Wiener process with parameters p = 10% and o = 20%, that are reasonable
values for a stock return. Looking at the path on the 9 first months (up to
t = 0.75), the curve shows a "strong positive drift" but in fact the simulation
was obtained with a zero drift.

Before proving the abovementioned "crossing boundary" result, it is nec-
essary to introduce stopping times in continuous-time.

2.3.6 Stopping times

Definition 29 Let (2, A, F, P) be a filtered probability space; a stopping
time is a random variable T taking values in T | J{+oo} such that {T <t} €
Fi foranyt e T.

This definition is close to the one given in discrete-time. The essential
difference is that it uses events {7 < t} instead of {7 = t}. Time being con-
tinuous, it could happen that P({T = t}) = 0 for any ¢.
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As mentioned before, stopping times come naturally in the valuation of
American options for which early exercise is possible. The exercise decision
must be based only on past and present information, it cannot be based on
future prices which are not yet known.

The value +o00 has been added to the set of possible values of a stopping
time. It is used to take into account that, sometimes, it is never optimal to
exercise the option, even at the maturity date. In that case, it is conventional
to write 7 = 4-00.

Consider now a corporate bond with maturity 7" paying coupons (C1, ..., Cr).
This bond may default at date ¢ meaning that it really pays F; < C;. The
first default date is the stopping-time 7 defined as 7 = inf {t / F; < C;}. We
write 7 = 400 if default never occurs before the maturity date T.

Proposition 20 Let 7 and 7" be two stopping times w.r.t. a filtration F.
7+ 7', min(7,7"), max(7,7’) are stopping times.

A common alternative notation for min(7,7') is 7 A 7/ and 7 V 7’ for
max(7,7’).

Stopping times like 7 A 7/ and 7 V 7" are frequently encountered in life
insurance policies. If 7 and 7’ are the dates of death of two married people,
some contracts stipulate that the insurance company will pay a given amount
to the survivor at the first death date (min(7,7’)) , some other contracts
paying to the heirs at the last death date (max(7,7’)). A usual joke is to
remark that |7 — 7/| takes low values when the spouse dies first, but takes
very large values when the husband dies first.

More seriously, it must be noted that a sure date ¢ is a stopping-time.
Consequently, ¢ A 7 is also a stopping time.

A tribe F, is linked to any stopping time 7. It contains all the sets
ANA{r <t} with A € A. We then get the following proposition.

Proposition 21 Let 7 be a stopping time and X a stochastic process.

1. 7 is F,-measurable
2. If T is bounded and X adapted to F, then X, is F,-measurable

3. If T and 7' are two stopping times such that T < 7', then F, C F
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2.3.7 Properties of the Brownian motion paths

We come now to the "crossing-boundary" property.

Proposition 22 Let W be a Wiener process with parameters (0,0); let a
and b denote two real numbers such that a < 0 < b and T denote the stopping
time defined by:

T:inf{t€R+/ Wi=ua orWt:b}

We then get:
b
P(W, = =
( a) P
—ab
E(T) = 7

Proof. 7 is the first date at which the process reaches either a or b. First,
remark that the probability of reaching a at date 7 (instead of b) doesn’t
depend on o, because at date 7 the process is in a or b. It is then intuitive
that o only plays a role on the delay to reach one of the bounds but not on
the probability of reaching one of these bounds. It follows that P (W, = a) =
P(Z, =a).

Consider X, the martingale defined in proposition 18 :

X, =72t

Let 7 = 7 A s with s a positive real number; the stopped process
X7 satisfies:
E(X])=E(X])=0

from which we deduce:
E(Z3,.)=E{tAT")<(b—a)

In fact, the definition of 7 implies that before this date, the process Z
has reached neither a nor 0. But this relationship is true for any s, implying:

E(r) = lim E(r*) < (b—a)®

§——+00

7 is then a bounded stopping time, implying F(Z,) = E(Z;) = 0 by the
optional stopping theorem. We can then write:

E(Z.) = aP(Z; = a) + b(1 — P(Z, = a)) =0
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which leads to: )

:a):b—a

P(Z,
The same reasoning applied to X allows to write:
E(X])=0=E(Z:-71)
or

b 5 —G
b_a—i-b b—a__ab

As W, = 0Z;, we then get the desired result. m

E(Z%) = a

This result shows that Z crosses one of the boundaries in a finite expected
time. It also illustrates why interest rates cannot be easily represented by a
Brownian motion. First, they could take negative values, and second they
would go higher than any given threshold in a finite expected time...even if
the threshold is 100% or 200%. The intuitive idea we can have about the
dynamics of interest rates is that the drift should be negative when interest
rates are high and positive when they are near zero. We then need more
general diffusion processes than the Brownian motion to adequately modelize
many economic variables. These processes are presented in the next chapter.
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Chapter 3

Stochastic integral and It6’s
lemma

3.1 Introduction

In the preceding chapter we presented the elementary properties of the Wiener
process. The way we built the Brownian motion was based on random walks
with zero-mean binary increments Y,,. Then we deduced a formulation of the
general Wiener process by allowing non zero-mean increments and a vari-
ance proportional to the delay between two dates. However, the parameters
(expectation and variance per time unit) were constant. In particular they
depended neither on the date nor on the value already reached by the sto-
chastic process. It may be a restrictive assumption, even for relatively simple
economic processes like interest rates or stock prices.

Assume for example that we want to model the stochastic process driving
the evolution of a stock price. Using a Wiener process generates several prob-
lems but we will focus on just one for the moment. Think to the economing
meaning of a constant expected change per time unit. It means for example
that a price will have a yearly expected change of $10, whatever the current
price is. Obviously a $10 change is not the same when the stock price is $20
or when it is $200. Therefore, the Brownian motion is not a good candidate
to model stock prices, even if it seems adequate for returns (except during
financial crises!!!).

The Brownian motion assumptions are then restrictive when one wants to
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describe specific economic variables. As mentioned at the end of the preced-
ing chapter, real data suggest that the probability of an increase (decrease)
in interest rates is lower when rates are high (low). A mean-reverting process
comes naturally to mind for describing such phenomena. In the same way,
it seems intuitive that the volatility of interest rates is higher (lower) when
rates are high (low). Figure 3.1 illustrates the point. It represents the so-
called U.S Fed rates on a period of 55 years. It seems reasonable to consider
a stochastic process with non constant volatility and a varying drift. For
example, the Fed rate felt to 0 at the end of the period under consideration
due to the financial crisis. The drift cannot be negative after that date.

Figure 3.1: Interest rates for Federal Funds (Source: Federal Reserve,
http://www.federalreserve.gov)

The definition of It6 processes assumes there exist two functions u(x,t)
and o(x,t) depending on time and on the level reached by the process under
consideration. These processes are good candidates to take into account the
abovementioned problems (however, keep in mind that the Brownian motion
is a special case of Itd process with constant parameters).

In this chapter we are going to "build" Itd processes using the concept
of stochastic integral. We will then present It6’s lemma (also called Funda-
mental theorem of stochastic calculus) which is the mathematical tool used
to price derivative securities in continuous-time. The price of such securities
can be written as a regular function of the price of an underlying asset. Ito’s
lemma helps to find the dynamics of prices of derivative securities, being
given the dynamics of the price of the underlying asset.

74

Download free eBooks at bookboon.com



Stochastic Processes for Finance Stochastic integral and Itd’s lemma

Finally, we introduce the Girsanov theorem which allows to change the
drift of an Itd6 process without changing its variance. In arbitrage pricing
models, this is an important question because derivative contracts are valued
under the assumption of no arbitrage. The valuation technique consists in
writing the dynamics of prices in a risk-neutral world in which the expected
returns are equal to the risk-free rate (which is different from the physical
rate!).

3.2 The stochastic integral

3.2.1 An intuitive approach

As mentioned before, a brownian motion assumption is not a good way to
describe the random evolution of stock prices, even if it may be a good idea
to model the logarithm of stock prices. In the following, we continue to refer
to the logarithm of a stock price but the stochastic integral we are going to
build is a much more general approach than the one used before.

To keep things simple, we nevertheless adopt the same pedagogical ap-
proach as in the preceding chapter by starting with random walks. Let a
time-interval [0; 7] be given, and assume that it is divided in N sub-periods
of equal length h with h = T'/N. For example, 0, h, 2h, ...., Nh are the dates

at which the market is open and trades occur.

Let X stands for the stochastic process of the logarithm of a stock price
defined by:

X[) - 0
Xn = anl—i_yn

for n € T = {1,...,N}. This formulation means that X, (w) is the value
of the process X at date nh in state w since h is the duration between two
successive trading dates. Y, is still interpreted as the stock return on a period
of length h.

"'We do not use the term "real" rate because it usually refers to rates of return after
having taken into account inflation. Here, "physical" refers to the expected return in the
real world where agents are risk-averse.
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The definition of the random walk Y,, is now a little bit more involved:
Yn = :unflh + On—1 (Znh — Z(nfl)h) (31)

where Z is a standard brownian motion. It is assumed that p, ; and 0, are
F(n—1)n-measurable random variables where F is the natural filtration of Z.
This formulation is very general and, for the moment, no other assumptions
are made on p,,_q, 0p_1.

i, is the per time-unit conditional expectation of the increment of X
on the time-interval [(n — 1)h; nh| and o,_; is the corresponding conditional
standard deviation. Conditional moments are defined here with respect to the
o—algebra F(,_1),. It also means that o, and Z,,, — Z(;,_1), are independent
and V (Zun — Zn-1yn) = h.

In the preceding chapter, we described Merton’s assumptions (1982) about
the processes X and Y and we still assume they are satisfied.

Let Ar the cumulated return of the stock on [0; T]; we want to write Ar
as the limit (in a sense to be defined) of Xy when N tends to infinity. We
then have:

N N N
XN = ;Yn = h;un—l + Zlo—nl (Znh - Z(n—l)h)

Replacing h by %, we get:

N 1 N N
Xy = ZYn =T (N Z’u”_1> + Za'n—l (Znh - Z(n—l)h)
n=1 n=1 n=1

= Ay + By

with Ay = T (% N uH) and By — (ij:l ns (Zon — Z(,H)h))

To get a consistent continuous-time model, we need to define precisely
A= th*}Jroo AN and B = th*}Jroo BN-

Let oV a continuous-time process defined by:

ol =p, 4 if s € [(n— 1)h;nh|
For a given state of nature, oV (w) is then constant on each interval
[(n — 1)h;nh[. In other words, o™ (w) is then a step function.
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For any w, we can write:

where the integral is a usual Riemann-Stieltjes integral. When N — 400,
we can define, for each state w, A(w) as:

4@ = [ atods

where o, (w) = limy_, o ¥ (w). Here, the limit process « is defined "state-by
state".

Unfortunately, we cannot use the same simple approach to define the limit
of By, simply because the values taken by the random variables (Znh — Zn-1) h)
are of order V.

If 0 and Z were usual functions and not stochastic processes, we would
get the following formulation:

T
lim BN:/ o.dZ,
0

N—+o0

by using a standard Stieltjes integral. However, this approach does not work,
as shown in the following example.
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3.2.2 Counter-example

Let Cy and Dy defined by :
N
C’N = Z Znh (Znh - Z(nfl)h)
n=1

N
Dy = Z Zn-n (Zuh — Zin-1yn)
n=1

with Z a standard Brownian motion. If Z was not a random process but an
integrable function, we would get:

T 2 2 2

YA Z

hm CN: hm DN:/ stZS:u:_T
N—+o00 N—+oco 0 2 2

But we can easily show that the expectations of Cy and Dy are different
and do not depend on N. One more time, the "trick" 7, = Z;+ (Z; — Zs) is
useful.

E(Cy) = E (Z Zon (Zoy, — Z(nl)h)> (3.2)

= Y E(Zon (Zun = Zin-yn)) (3.3)

n=1
Using Znn = Zn—1yn + (Znh — Zn—1)n), We get:

E(Cy) = Z E [(Zo-vn + (Zun = Zn-1)) (Zan = Zn-1yn) ] (3.4)

n=1

= E (Z Zin—vyn (Zon — Z(n_l)h)> (3.5)

n=1

+E <Z (Z — Z(n_l)h)2> (3.6)

n=1
N

N
= ) E [(Znh - Z(H)h)z] + > E [ Zoin (Zon — Znn)d7)
n=1 n=1
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We use now the properties of the Brownian motion. As Z,;, — Z,_1);, is
zero-mean, we can write:

E ((Zun = Zo-9)*) =V (Zun = Zina) = nh = (n = 1)h = h
After summation, the first term in expression (3.4) is equal to Nh = T.

To evaluate the second term, we use the independence of increments of
the Brownian motion.

N N
> E(Zg-vn (Zon = Zin-1p)) = Y E(Zw-1n) E (Zon = Zm-1iB-8)
n=1 n=1

— 0

We then obtain the following result:
E(Cy)=T

It is important to notice that it does not depend on the way the interval
[0; T is sliced. Equivalently, it does not depend on N.

Remark now that E(Dy) has already been calculated in equation (3.8)
and it is equal to 0. Consequently, the two sequences C'y and Dy cannot
converge to the same limit since they have different expectations.

This counter-example is interesting because it shows that we can define
at least two stochastic integrals (in fact an infinity).

In the following, we choose the one based on Dy. This choice can be
easily understood if one refers to the way the gain of a strategy is calculated.
Remember that it was defined in discrete-time as:

gn = Z Onn (th - X(n—l)h)
s=1

where the coefficients 6,,;, denote quantities (assumed F,,—1),-measurable be-
cause 0 is a predictable process).

It is also the reason why ¢,,_1 was used in the definition of Y,, (see equation
(3.1)) and assumed F,_1),-measurable.

To get a square-integrable limit, we need to assume that By is square-
integrables.
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E (B%) may be written as:

E(BY) = E((Bx—Bn-1+By1))
E ((By — By ) + E (Bx_1) + 2E (By_1(By — Bn-1))
= (U 1 (Znn— Zw 71)h)2) +FE (312\/—1) +2E (By_1) E(By — Byn-1)

= hE(o%_,) + E(Bx_1)
The last term in the RHS is zero because of the independence of incre-

ments of B. Moreover, (ZNh — Z(N,l)h) is independent of 0% _, and F/ ((ZNh — Z(N,l)h)Q) -
h. We then get, by a recurrence argument:

N
1
2\ _ 2
B (B =T (ﬁ 2E<>)
Remark now that if 5V is defined on [0;77] by:

Y =0, 4 for s € [(n — 1)h;nh]

S

) =e ([ @)

The sequence 5V converges to a process which is (naturally) denoted o.
The latter equality shows that £ ( fOT (0s)? ds) < 400 is a sufficient condition

for By to be square-integrable.
We can now define more formally the stochastic integral of a stochastic
process w.r.t. the Brownian motion.

we finally get:

3.2.3 Definition and properties of the stochastic inte-
gral

Definition 30 Let Z be a standard Brownian motion defined on (Q, A, FZ, P)
and o a process adapted to FZ. Suppose that o satisfies:

E ( /0 ' aids) < +00 (3.9)
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The Ito stochastic integral of o on [0;T] w.r.t. Z, denoted as fOT o.dZ,
is the random variable defined by:

T N
/ Osts = lim Z On—1 (Znh - Z(n—l)h)
0 n=1

N—+oco
where the limit refers to convergence in quadratic mean.

It is important to remark that the index n in the RHS of the preceding
equation is discrete and corresponds to the subdivision of [0;77] in N sub-
periods. An equivalent alternative formulation would be to divide [0; 7] in
sub-intervals [t;;¢;11[ such that ty =T and to write the limit as:

T N
/0 osdZy = Nl—i>r—Ii-100 ; Oty (th - th‘_l)

with max(t; —t;_1) converging to 0 when N — +o00. Moreover, this formula-
tion is valid for any horizon up to T'. Consequently, the family ( fou osdZs,u €T )
of random variables is a stochastic process sometimes written as (1,(o),u € 7).

It is also worth noting that if o is predictable, o,,_; can be replaced by
o, in definition 30. For example, for a stochastic process 6, representing
quantities of stocks in a portfolio, the integral fOT 0,dZ is the gain of the
strategy if the price process is Z.

81

Download free eBooks at bookboon.com



Stochastic Processes for Finance Stochastic integral and Itd’s lemma

Proposition 23 Let X and Y be two adapted processes such that f(f X dZ,

and f(f YidZ, exist for any t < T and are square-integrable (see definition
30). We then get:

1. Y(a,b) € R%, [[(aX, + bY,)dZ, = a [ XodZs + b [} bY,dZ,
2. V(tu) €T x Tt <u, [)' X,dZ = [} X,dZ, + [ X, dZ,

3. V(tu) €T x Tt <u, E(f)XdZ|F) = [} X.dZ,
L YteT, E ((fg XSdZS>2) —E (fot des)

Point (1) means that the mapping associating a process X to its stochastic
integral is linear. Point (2) is a standard property of integrals. Point (3) is
crucial for financial applications because it shows that ( fou XdZs,u € T) is

a martingale. Finally, the last point stipulates that fot X,dZ, belongs to L?.

Recall that building the stochastic integral in this way aims at looking
for a continuous-time limit for the process X with

XO — 0
Xn - Xn—l + Yn - Xn—l + ,unflh +op—1 (Znh - Z(nfl)h)

Consequently, the limit process (still denoted X to save some notations)
is formulated as:

t t
X = Xo+ / peds + / o.dZ (3.10)
0 0

When the stochastic integral can be defined, X is an It6 process as intro-
duced in the preceding chapter. The simplified notations u, = u(Xs, s) and
os = 0(Xs, s) leads to write equation 3.10 in the general form as a stochastic
differential:

dXy = (X, t)dt + o(Xy, t)dZ,

Remark 4 [t is important to keep in mind that it is only a way to translate
that X is written as a stochastic integral. Obviously, dZ; is not a usual
differential because the paths of the Brownian motion, though continuous,
are nowhere differentiable.
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If the process X is the general Brownian motion W with parameters p
and o (which are some constants), we write:

AWy = pdt + odZ,

We come back to the initial formulation by writing (remember that Wy = 0):

t t t
/dI/Vs = Wt:/ ,uds—i—/ odZ,
0 0 0
t t
= M/ ds—i—a/ dz,
0 0

= w+oZ

3.2.4 Calculation rules

The following proposition summarizes the calculation rules applied to incre-
ments of the Brownian motion (equivalently dZ;). To avoid technical diffi-
culties, the reader can think of dZ; as a difference Z; 4 — Z; where dt is an
infinitesimal time-period®. The general intuition is that the higher order (>1)
terms in dt may be neglected in developments because, on markets working
in continuous-time, the higher order terms are infinitely small w.r.t. dt.

Proposition 24 1. E(dZ;) =0 et V(dZ;) = dt
2. V(dZ?) = o(dt)
3. dZy.dt = o(dt)
4. E(dZydZ,) =0 fort; # ts
5. If Z and Z* are two Wiener processes, we get:

E(dZ,dZ;) = rdt
V(dZ,dZr) = ol(dt)

Point (1) is obvious when dZ; is identified to Z; 4 — Z; since the standard
Brownian motion is zero-mean and V(Z; — Z,) =t — s for t > s.

2This interpretation is clearly disputable but it allows an intuitive presentation of the
results.

83

Download free eBooks at bookboon.com



Stochastic Processes for Finance Stochastic integral and Itd’s lemma

Point (2) says that (dZt)2 is not random or, more precisely, has a negligible
variance. Remember the discrete-time approach with random walks. The
increment of Z was v/dt or —V/dt with equal probabilities. Therefore (dZt)2
is a constant equal to dt.

For point (3), dZ, = O(v/dt) implies dZ,.dt = O(dt2) = o(dt).

As soon as t; # t9, dZ;, and dZ;, are independent because the increments
of a Brownian motion are independent. It proves point (4).

Finally, r; is the correlation coefficient between increments of two Brown-
ian motions, each being O(v/dt). The product is then O(dt). In the same way,
the variance of the product is O(dt?), that is o(dt).

These rules are useful to understand It6’s lemma presented hereafter.
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3.3 Itd’s lemma

In many valuation models, especially for derivative securities, one has to look
for the dynamics of a regular function of an Itd process. The most well-known
example is the valuation of a Furopean call option with maturity 7" and strike
price K. The final payoff of such an option is written:

CT = Imax (XT — K; O) . (311)

A valuation model needs the determination of the dynamics of the option
price process C' = (Cy,t € T) over its lifetime. The initial value Cy is espe-
cially important for financial purposes. We assume that Cy; = g(X;,t) where
g is a function defined on Rt x 7 taking values in R*. If X is an Itd process,
the problem is to characterize the process C.

The same kind of problem arises when one wants to express prices (re-
turns) starting from returns (prices). If X is an It6 process representing the
cumulated continuous return of a financial security, what is the dynamics of
the corresponding price process Y; = exp(X;)? Obviously, the question can
be asked the other way. If the dynamics of the price process Y is given, what
is the dynamics of the continuous rate of return X; = In(Y;)?

An other example is the dynamics of bond prices as functions of the
interest rate process. The problem is more complex because a bond price is
determined by the term structure of interest rates, not by only one interest
rate. To keep things very general, the bond price dynamics is a function of
a family of processes driving interest rates. The models used in the financial
literature are a simplified version of this complex reality. Some models are
based on the assumption that bond prices only depend on the dynamics of
the short rate, some others assume that they depend on the short rate and
a long-term rate3. These simplifying assumptions are generally justified for
practical implementation reasons.

The mathematical tool allowing to answer the preceding questions is the
so-called Itd’s lemma which is a kind of Taylor’s series expansion for Ito
processes.

3See for example Vasicek (1977), Cox, Ingersoll and Ross (1985), Longstaff and
Schwartz (1992), Heath, Jarrow and Morton (1992) and Brace, Gatarek and Musiela
(1997).
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3.3.1 Taylor’s formula, an intuitive approach to Ité’s
lemma

Let f denote a twice differentiable function defined from R? to R; the Taylor’s
series expansion of f at (xg,to) is written as:

f(I, t) = f(l’g, tg) + %(Io,to)(l’ — X ) + %(Io,t())(t - to) (312)
82 2
—i—%a—é(xo,to)(x _ )+ Ea—tf(xo,to)(t )2
2
o°f

o o to) (@ — 2o)(t — to) + &(20, %o)

where e(z9,t0) ~ o((z —z0)? + (t — tg)?). The condition on & shows that
third-order terms are negligible w.r.t. first and second—order terms. In most
cases, a first-order development is used in economic applications; it corre-
sponds to the first line of the equation (3.12).

The story is a little bit different when x is an It6 process which is written
as a stochastic integral w.r.t. a Brownian motion. The variation of this
process on a time-interval of length ¢ — ¢, is of order 1/t — ty. Consequently,
the second-order term g—zé(xo, to)(x — x0)? cannot be neglected because it is
O(t — tp). It has the same magnitude as 8{(%, to)(t — to).

Let us now denote df (xg, tg) = f(z,t)— f(xo,to) ; t—tg=dt and z—xy =
dx; equation 3.12 becomes :

10°f
2 0x?
(1‘0, to)dl‘dt + 6(370, to)

0 0
a—i(ﬂfo, to)dﬂf + (9{ (l‘o, to)dt + =

10%f 02 f

-2 J 2
+5 5 (To o) (dh)"+ 5

df (zo,to) = —=(z0,t0)(dz)* (3.13)

Replace x by X; with X a stochastic process characterized by:
dXt = M(Xh t)dt + U(Xt7 t)dZt

Equation 3.13 (giving up the arguments of partial derivatives to simplify
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notations) becomes, for (Xj,t) :

0 B
df (X, t) = 8_:JUC [u( Xy, t)dt + o(Xy, t)dZy] + 8_{dt
102
58—;; [1(Xy, t)dt + o (X, 1)dZ,]?
107 02
+§a—t§(dt)2 + axgt [1( Xy, t)dt + o( Xy, t)dZy) dt 4 e(X;, 1)

Applying now the calczulation I‘lzlleS defined in proposition 24 allows to see
E‘hﬁm the coefficients of % and % are negigible (they are o(dt)). It then
ollows:

of

%ty = 2, e+ o, 0z + P

ot
+1ﬁ[ (X, t)dt + o(X t)dZ]2+5’(X t)
292 10T AR DA ;

with &’ = o(dt).

When developing the term [u(X,, t)dt + o(X;,t)dZ]* , one negligible term
(O(dt?)) appears, one term dZ,dt is also negligible (because it is O(dt?)) and,
finally, one term dZ? which is O(dt) and then not negligible. After all possible
simplifications, it remains:

0 B
df (Xi,t) = a—i(ﬂ(Xt,t)dtJra(Xt,t)dZt)+a—{dt
162
+§—8$€02(Xt,t)dt~|—s”(Xt,t)

with €” = o(dt).

We can now write the process f(X;,t) as a stochastic differential by group-
ing dt terms on one hand and dZ; terms on the other hand:

of of 10%f of

df (Xp,t) = | == (X, t) + = + = =—02(Xp, 1) ) dt+o( Xy, t)==dZ+e" (X, t
%) = (G0 + 5 + 55020000 ) dera et dzie (X,

This brief presentation gives the intuition of the result but to prove rig-
orously It6’s lemma needs more precautions. Especially, the e(X;,t) are
stochastic and saying "e is negligible w.r.t. dt" is not sufficiently precise.
Readers can find a complete demonstration of Itd’s lemma in specialized
books?.

4For example Karatzas-Shreve (2000), chapter 3.
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3.3.2 Itd’s lemma

We can now write more formally Itd’s lemma which is nothing else than a
Taylor formula in a specific stochastic environment.

Proposition 25 Let X be an Ité process characterized by
dXt = M(Xh t)dt + O'(Xt7 t)dZt (314)

and let f : R? — R a function with continuous partial derivatives up to order
2. The process Y defined by Y; = f(Xy,t) is an [to process with a stochastic
differential given by:

_(9f of | 10°f , of
d}/;g == (ax/L(Xt,t) + 815 + 20:[)20 (Xt,t) dt+ U(Xt,t> ag[;dZt

If we write the stochastic differential of Y in the following form:

dY; = py (Y;, 1) dt + oy (Y, 1) dZ,

we get:
_of of 19f ,
py (Vi) = %M(Xtﬂf) t o5 T 3927 (X, 1)
0
oy (Y;,t) = O-<Xt7t)a_£

py (Yi, t) is the drift of the process f(Xy,t) and oy (Yy,t) is the corre-
sponding diffusion coefficient.

3.3.3 Applications
From return to price

Let W denote a Wiener process with parameters p and o (which are constant
for W) and Y the process defined by Y; = f(WW;) = exp (W;). Y is then the
transformation of the Brownian motion by the exponential function. Remark
that ¢ does not enter the transformation implying %—t = 0. The dynamics of
Y is obtained by applying [t6’s lemma.

of of 18°f

02 02
py (Yit) = sopt o0+ 5550 =exp (W) <u+7>=Yt<u+7>

oy (Yi,t) = o= =0Y,
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or, equivalently:
dYy

Y,

Y (which may represent the price of a stock) is called a geometric
Brownian motion.

0.2

From price to return

Symetrically, let Y denote a price process characterized by” :

Yo = 1
dY, = uY,dt+ oY,dZ,

Let X be defined as X; = ¢g(Y;) = In(Y;). In this case, we get:

dg dg  1%g , Jg 1% ,
(Y t) + = + —=—202(Y,t) = —=2uY,+ ——=0%,
g Yol + 5 T 5527 (Vo) ot T 3027
0.2
- ET Yy
Jg
Y— =
O'tax o

These equalities lead to:
o2
Interest rates and the Ornstein-Uhlenbeck process

An Ornstein-Uhlenbeck process is a process X with the following stochastic

differential:
dXt = OZ(B — Xt)dt + O'dZt

This stochastic process is often used to describe the dynamics of short-
term rates®. We observe that the drift is positive when the short rate X, is

®This process is called "geometric Brownian motion". It is the usual process to modelize
stock prices, especially in the option valuation model of Black and Scholes (1973).
0 Vasicek (1977) was the first to propose this process for short term rates.
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low (lower than /) and the short rate tends to rise in the short run. On the
contrary, when X; is high, the short rate tends to decrease. So this process
is said "mean-reverting". The short rate evolves around its long term mean’
B. The coefficient o measures the strength of mean reversion.

In discrete-time, we encountered such a process when we described ran-
dom draws in an urn (with white and black balls) without replacement.

Interest rates and the square root process

In the Ornstein Uhlenbeck process, the diffusion coefficient o doesn’t depend
on X;. As variations of Z during an interval of length dt are of order V/dt,
this process can take negative values because, on the short run, the variation
of Z is much larger than the variation coming from the drift.

To solve this problem, Richard (1978) and then Cox-Ingersoll-Ross (1985)
proposed the "square root process" defined as follows:

dXt = 04(6 — Xt)dt + o/ XtdZt

We observe that the variance of the short rate variations is proportional
to the level of the short rate. Especially, if the rate reaches 0, only the drift
term afdt remains and is positive. Consequently, this process cannot take
negative values.

"Warning: /3 is the long-term mean of the short rate, not a long-term rate!
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3.4 The Girsanov theorem

3.4.1 Preliminaries

Let W denote a Brownian motion with parameters (u, o), defined on a fil-
tered probability space (£2, A, F, P) where F is the natural filtration of W.
It is also the natural filtration of Z, since W; = ut 4+ 0Z;. Assume that
W, = In(S;) where S; is a stock price. W; — W is then the logarithmic return
of the stock on the time period [s;t]. Denote r the risk-free rate (assumed
constant). The no arbitrage assumption implies there exists a risk-neutral
probability measure ) under which the drift of W is equal to . As we deal

with two probability measures P and () in this section, we denote Ep and
Eq the expectation with respect to P and Q).

Girsanov theorem is the technical tool that allows to transform a process
with drift 4 in a process with drift r # p.

In order to introduce this result, we first present the method which allows
to change the mean of a Gaussian random variable.

Proposition 26 Let X ~ N (0,1) defined on (2, A, P) and Q defined by:

VAe A, Q(A) = Ep [1A exp (aX — %)}

Q is equivalent to P and X ~ N (a, 1) under Q.

Proof. As Ep [exp <aX — %2 } = exp (%‘2) Ep[exp (aX)] and exp (aX)
is lognormal with parameters (0, ) , the properties of the lognormal distrib-

ution imply that Ep [exp (aX)] = exp (%) :

We then get Q(2) = Ep [exp (aX — "‘72)] = 1. The fact that the proba-

bility measures P and () are equivalent is obvious because of the exponential
transformation which takes only strictly positive values.
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We can write:
2
EolX] = /XdQ:/Xexp (aX— O‘—) dP
Q Q 2
+o0 a2
= / T exp (aw - ?> fx(z)dx
_100 +oo 042 .CCQ
= E /_oo X exp <a:v — ?> exp (—3) dx

1 too 1
= — zexp ( —= (z —a)® ) de = o
V21 J oo 2

where fx is the density of X under P. We observe that X is, under @, a
Gaussian variable with expectation a and variance 1. Therefore, the variable

exp (aX — %) is the Radon-Nikodym derivative of () w.r.t. P, denoted %.

|

In a second step, a more sophisticated transformation may be introduced
by considering X; ~ N (ut,o%t) with ut = Ep(X;) and 0%t = Vp(X3).
Suppose you want to transform X; in a Gaussian variable satisfying rt =
FEqo(X:) and 0%t = Vg (X;). In economic terms, it means that you start in
an economy with risk averse agents and you go in another economy with risk
neutral agents (the expected return on the risky asset is now the risk-free
rate).

Rewrite X as:

Xe=put+oZ; :,ut—l—(j\/EYt

where Z is a standard Brownian motion and Y; ~ N (0, 1) . To get the desired
result, you need to transform Y; in a gaussian variable following N («a, 1) with
a coefficient « to be defined. However, you look for () such that:

Eq (X, = ut + ovta = rt
It implies that o must be chosen as follows:

I GEIORY;

Proposition 26 says that the following transformation is necessary:

9Q _ o [<r—:)¢%yt_1 <(7"—u)\/7t)2] - [_u;rzt_%(u—rﬂ

dP 2 o o
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We can now present Girsanov theorem which generalizes the transformation
presented above.

3.4.2 Girsanov theorem

Let A = (A, t € [0;T]) denote a process adapted to F and L = (L, t € [0;T])

defined by:
t 1 t
L:ump(—/ﬁ&¢&—~—/‘ﬁd%
0 2 0

Definition 31 ) satisfies the Novikov condition if and only if:

1 /7
Ep [exp {5/ )\ids}] < 400
0

Proposition 27 If \ satisfies the Novikov condition, we get the following
properties:

1) The process L is a P—martingale

2) The process Z* defined by:

t
@:z+/&@
0

is a Brownian motion on (0, A, F, Q) where Q) is characterized by:

aQ _

ap L

It is worth noting that when A is constant, the martingale property for
L has already been proved in the preceding chapter. In fact, we have in this

case:
)\2
L; =exp (—/\Zt — Et)

and we proved it is a martingale.

3.4.3 Application

The most common application of Girsanov theorem comes in valuing options
by the risk-neutral approach.

93

Download free eBooks at bookboon.com



Stochastic Processes for Finance Stochastic integral and Itd’s lemma

In the Black-Scholes model, the dynamics of the stock price is:

dSt = /.LStdt + UStdZt

0_2
St = Soexp <<,u— ?> t+UZt>

The no arbitrage assuption implies that the discounted price process is a
martingale under the risk-neutral probability
But the discounted price is:

which leads to:

2
exp (—rt) Sy = Spexp (<,u —r— %) t+ aZt)

This process is transformed by Girsanov theorem in:

02
St = Soexp (—?t + OZ:)

with Z; = Z, + (&5 t.

o
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3.5 Stochastic differential equations

3.5.1 Existence and unicity of solutions

When building the stochastic integral, we proved that, under some condi-
tions, a stochastic process is written as a stochastic integral. The symmetri-
cal question is to know which assumptions on i and o have to be satisfied for
a stochastic differential to define a stochastic process (with nice properties!)
written as a stochastic integral.

In this section, it is assumed that the filtration F on (92,4, P) is the
natural filtration of a standard Brownian motion Z.

Definition 32 A stochastic differential equation is given by a stochastic dif-
ferential associated with a boundary condition, that is:

Xo = ¢ (3.15)
dXt = U (Xt; t) dt +o0o (Xt, t) dZt

In the general case, ¢ may be a random variable. However, in most
financial models, ¢ is a constant, for example the initial price of a financial
asset or the initial short-term rate of interest.

Definition 33 A stochastic process X is a solution of the equation appearing
in definition 3.15 on [0; T if:

1) X is adapted to F

2) The functions p and o satisfy:

T T
/ | (X, t)| dt < +o0 and/ 02 (X, 1) dt < +00 (3.16)
0 0
3) X satisfies:
t t
Xt:Xo—i-/ ,u(Xs,s)ds—l—/ 0 (Xs,s)dZs
0 0

The following proposition provides conditions on ; and o for a stochastic
differential equation to have a solution.
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Proposition 28 If conditions (a) and (b) hereafter are satisfied, equation
3.15 has a unique solution (P-a.s), which is a stochastic process X adapted

to F, with continuous paths, satisfying Ep ( fOT det) < +00.
a) There exists m > 0 such that Vt € [0;T],V (z,y) € R?

max (|p(z,t) — p(y, )]s lo(z,t) — o(y,1)]) < mlz —y|
wz, 1) + oz, t)> <m (1 + xz) for any pair (x,t)

b) Xy is square integrable, independent of F; for any t.

A detailed proof of this result may be found in Oksendal (2000), p66.

The condition appearing in the first part of point (a) is called a Lipschitz
condition. It limits the slopes of functions 1 and o which must be finite and
bounded by a constant which doesn’t depend on ¢. This condition is standard
when solving usual differential equations. The second part of condition (a)
puts some restrictions on the growth of ;1 and 0. As p is the instantaneous
expectation of X variations, the condition means that the LHS must be

of order (1+ x2)% . In other words, we cannot have an "exploding" drift.
If the condition were not satisfied, the drift would grow too rapidly with
the level reached by the process. For example, it would be the case with
p(z,t) = exp(z).

It is worth noting that the solution provided here is called a "strong
solution" because the Wiener process Z and the filtration are given. If we
were solving the problem for the pair (X, Z), starting from functions p and
o, we would speak about "weak solutions" (Karatzas-Shreve, 2000).

In the following, we always denote X; a solution of equation 3.15 and
assume that the conditions about existence and unicity of a solution are
satisfied.

Proposition 29 1) The solution of equation 3.15 is a Markov process whose
initial distribution is the same as the one of c.

2) If u and o are continuous functions of t, X is an Ito process with
parameters p and o.
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3.5.2 A specific case: linear equations

A stochastic differential equation (SDE in the following) is said linear if it is
written as:

X[) = C
dXt = (lXtdt—f—O'tdZt

where a is a constant.
For this type of equation, the solution is written as:

t
X; = cexp(at) + / exp [a (t — s)] o5dZs (3.17)
0
In fact, equation 3.17 may be transformed in:
t
Xiexp(—at) = c+ / exp (—as) osdZ;
0

The process in the RHS, denoted Y, may be written in the following way:

Yo = ¢
dY;, = exp(—at)o,dZ,

If we write exp(at)Y; = f (Y3, t), the partial derivatives of f are given by:

aa—{ = aexp(at)Y;
0
8—3{ = exp(at)
t
O f
avg ~

1t0’s lemma allows to write:

df (Yi,t) = aexp(at)Yydt + exp(at) exp(—at)odZ,
= aexp(at)Yydt + 0,dZ;

Replacing Y; by exp(—at)X; leads to:

dXt = aXtdt + UtdZt
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which is the initial stochastic differential.
More generally (see Malliaris-Brock (1982)), the following SDE:

X() = C
dXt = a(t)Xtdt—l—atdZt

has the following solution X:

t
X; =, {c+ / vslasdzs}
0

where 7 is a solution of the differential equation

!

f ) = a)f(1)

Application
Let Y an Ornstein-Uhlenbeck process characterized by:

Yo = wo
4 = a(f—-Y)dt+odZ,

Define X; = (Y; — B) exp(at) = f(Y;,t); the partial derivatives of f are
given by:

0
U~ aexplat) (¥~ )

of

Y, exp(at)

O f

ave — 0

Itd’s lemma leads to:
dX: = [a(Y;—B)exp(at) +exp(at)a (B — Y;)| dt + o exp(at)dZ,
= oexp(at)dZ,

As Xg = yo — 3, it follows:

t
X;=yo— B+ 0/ exp(as)dZ,
0
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The relationship between X and Y may be written as:
Y; = 8+ X exp(—at)

Therefore:

Y; B + exp(—at) [yo —B+o / exp(aS)dZs}
0

t
= [(1—exp(—at)) + yoexp(—at) + U/ exp(—a(t — s))dZ,
0
Y, follows a Gaussian distribution satisfying:

Ep[Yi|Yo=y0] = B(1— exp(—at))+yoexp(—at)

t
Ve[V |Ye = o] = o2 / exp(—2a(t — 5))ds
0

- 2"—@ [1 - exp (—2at)]
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