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Introduction

CIT 211 - Introduction to Operating Systems israé¢h(3) credit unit course of tweniyo units. |
deals with the various operating system designeatiscand techniques.

It also gives an insight into evolution of opergtisystems. Since operating systems is the
important software in the computer system, thisreeuakes you through the various type
operating system depending on the environmentjdisegn considerations, the functions perfor
by the operating ystem and how these are achieved/implemented eititeugh hardware

software..

This course is divided into six modules. The fimsbdule deals with the basic introduction to
concept of Operating Systems such as definition fandtions of operatingystem, history ai
evolution of operating system.

The second module treats, extensively, the vatigpess of operating system.

The third module deals with concept of process mament and discusses the concepts ¢
operating Processes, Threads, and CPU Scheduling.

The fourth module discusses process synchronizasismes such as Race Condition, Mt
Exclusion, Critical Section Problem, and other SSia Problems of Synchronization.

The fifth module treats deadlock issues such adldela Charactezation and methods for deal
with deadlocks.

The last i.e. the sixth module discusses memoryagement functions of the operating systen
issues such as memory management algorithms ligenggasegmentation, contiguous men
allocation with their peculiar features were disads

This Course Guide gives you a brief overview of terse contents, course duration, and c
materials.

What you will learn in this course

The main purpose of this course is to provide theessary tools foresigning and Operati
system. It makes available the steps and toolswilhenable you to make proper and acct
decision on designs issues and the necessarythlgsrifor a particular computing environm
Thus, we intend to achieve this through the follayvi

Course Aims

I. Introduce the concepts associated with Operatistesys;



II. Provide necessary tools for analysing a computingirenment and choosing/design
appropriate operating system.
[ll. Provide you with the necessary foundation in opegatystem designs

Course Objectives

Certain objectives have been set out to ensuretligatourse achieves its aims. Apart fromr
course objectives, every unit of this course haobgctives. In the course of the study, you
need to confirm, tathe end of each unit, if you have met the obyediset at the beginning of e
unit. By the end of this course you should be &dle

Define an OS

State the major functions of the OS

State the importance of the OS in the computeegys$t
Enumerate the various services rendered the usieh®S
Discuss the history and evolution of operating esyst
Describe the functions/responsibilities of the ledrn
Distinguish a process from a program

List the possible states of a process

Describe a process control block (PCB)

10 Describe process creation and process termination
11.Describe the concept of co-operating processes
12.State reasons for allowing process co-operation
13.Explain interprocess communication

14.Distinguish between a thread and a process
15.Enumerate the advantages of threads over processes
16.Distinguish between preemptive and non-preemptbeduling
17.State the goals for CPU scheduling

18.Give comparative analysis of the various CPU sclheglalgorithms
19.Describe the various CPU scheduling evaluationrdlyus.
20.Define Race condition

21.Describe some real life examples of race condition
22.Define process synchronization

23.Describe ways to enforce mutual exclusion

24 .Explain the critical section problem

25.Define deadlock

26.State the necessary conditions for deadlock toroccu
27.Describe some of the methods for handling deadlocks
28.Describe address binding

29.Define logical and physical address space
30.Distinguish between dynamic loading and dynamikilig
31.Describe contiguous memory allocation and its wexieariants
32.Distinguish between internal and external fragmima
33.Describe methods of solving external fragmentation
34.Describe the principle of overlays and its uses
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35.Explain the differences between paging and segmentat
36.Describe a method for solving the problems of lp@hing and segmentation

Working Through This Course

In order to have a thorough understanding of thessunits, you will need to read and unders
the contents, practise the steps by designing fannhation system of your own, and be comm
to learning and implementing your knowledge.

This course is designed to cover approximately r#ees weeks, and it will require your dev
attention. You should do the exercises in the Fitarked Assignments and submit to your tutc

Course Materials

These include:

1. Course Guide

2. Study Units

3. Recommended Texts

4 A file for your assignments and for recordsnonitor your progress.

Study Units
There are twenty-two study units in this course:
Module 1: Operating System Fundamentals
Unit 1. Definition and Functions of Operating Syat€OS)
Unit 2: History and Evolution of Operating System
Unit 3: The Kernel
Unit 4: Types of Operating Systems
Module 2: Types of Operating System
Unit 1: Disk operating system
Unit 2: Real-time operating system
Unit 3: Time-Sharing and Object-oriented operasggtem
Module 3: Process Management
Unit 1: Processes

Unit 2: Co-operating Processes

Unit 3: Threads



Unit 4: CPU Scheduling

Unit 5: Algorithm Evaluation

Module 4: Process Synchronization

Unit 1: Race Condition

Unit 2: Synchronization

Unit 3: Mutual Exclusion

Unit 4: Critical Section Problem

Unit 5: Classic Problems of Synchronization

Module 5: Deadlocks

Unit 1;: Deadlock Characterization
Unit 2: Methods for Dealing with Deadlocks

Module 6: Memory Management

Unit 1: Memory Management Fundamentals
Unit 2: Memory Management Algorithms |
Unit 3: Memory Management Algorithms Il

Make use of the course materials, do the exertaseshance your learning.
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Assignments File

These are of two types: the self-assessment egsraisd the Tutor-Marked Assignments. The-
assessment exercises will enable you monitor yasfopnance by yourself, while the T
Marked Assgnment is a supervised assignment. The assignrtek#sa certain percentage of
total score in this course. The Tutdarked Assignments will be assessed by your tutitnifm e
specified period. The examination at the end of dourse will aim at dermining the level «
mastery of the subject matter. This course inclusledve TutorMarked Assignments and e:
must be done and submitted accordingly. Your bestes however, will be recorded for you.
sure to send these assignments to your tutor beferdeadline to avoid loss of marks.

Presentation Schedule



The Presentation Schedufeluded in your course materials gives you theartamt dates for tl
completion of tutor marked assignments and attendinorials. Remember, you are reqdine
submit all your assignments by the due date. Ykl guard against lagging behind in \
work.

Assessment

There are two aspects to the assessment of theecoufirst are the tutor marked assignm
second, is a written examination.

In tacKing the assignments, you are expected to appbrimition and knowledge acquired du
this course. The assignments must be submitteduo tytor for formal assessment in accord
with the deadlines stated in the Assignment Filgee Work you submito your tutor for assessm
will count for 30% of your total course mark.

At the end of the course, you will need to sitddiinal threehour examination. This will also cot
for 70% of your total course mark.

Tutor Marked Assignments (TMAS)

There are twentywo tutor marked assignments in this course. Yoedn& submit all tf
assignments. The total marks for the best threag8ignments will be 30% of your total col
mark.

Assignment questions for the units in this courgecantained irthe Assignment File. You shol
be able to complete your assignments from the mn&bion and materials contained in your
textbooks, reading and study units. However, yay mish to use other references to broaden
viewpoint and provide a deeper understanding ottlgect.

When you have completed each assignment, senddther with form to your tutor. Make s
that each assignment reaches your tutor on or de¢ha deadline given. If, however, you ca
complete your work on time, comtayour tutor before the assignment is done toudiscth
possibility of an extension.

Examination and Grading
The final examination for the course will carry 7@#rcentage of the total marks available for
course. The examination will cover evegpect of the course, so you are advised to religeul

corrected assignments before the examination.

This course endows you with the status of a teaghérthat of a learner. This means that you-
yourself and that you learn, as your learntagabilities would allow. It also means that yoe iar



better position to determine and to ascertain thatwthe how, and the when of your langt
learning. No teacher imposes any method of learomgou.

The course units are similarly designeilwthe introduction following the table of contenthen
set of objectives and then the dialogue and so on.

The objectives guide you as you go through thesuwitascertain your knowledge of the reqt
terms and expressions.

Course Marking Scheme

This table shows how the actual course markingakdn down.

Assessment Marks

Assignment 1- 4 Four assignments, best three mairkbe four
count at 30% of course marks

Final Examination 70% of overall course marks

Total 100% of course marks

Table 1: Course Marking Scheme

Course Overview

Unit | Title of Work Weeks Assessment
Activity (End of Unit)

Course Guide Week 1
Module 1: Operating System
Fundamentals

1 Definiton and  Functions  of Week 1 Assignment 1
Operating System (OS)

2 History and Evolution of Operating Week 1 Assignment 2
System

3 The Kernel Week 2 Assignment 3
Types of Operating Systems Week 2 Assignment 4
Module 2: Types of Operating
System
Disk operating system Week 3 Assignment 5

2 Real-time operating system Week 3 Assignment 6
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3 Time-Sharing and Object-oriented operating | Week 3 Assignment 7
system
Module 3: Process Management
1 Processes Week 4 Assignment 8
2 Co-operating Processes Week 4 Assignment 9
3 Threads Week 5 Assignment 10
4 CPU Scheduling Week 6-7| Assignment 11
5 Algorithm Evaluation Week 7 Assignment 12
Module 4: Process Synchronization
1 Race Condition Week 8 Assignment 13
2 Synchronization Week 8 Assignment 14
3 Mutual Exclusion Week 9 Assignment 15
4 Critical Section Problem Week 9 Assignment 16
5 Classic Problems of Synchronization Week 10 Assignment 17
Module 5: Deadlocks
Deadlock Characterization Week 11 Assignment 18
2 Methods for Dealing with Deadlocks Week 12 Assignment 19
Module 6: Memory Management
Memory Management Fundamentals Week 13 Assignment 20
Memory Management Algorithms | Week 14 Assignment 21
Memory Management Algorithms Il Week 15 Assignment 22
Revision Week 16
Examination Week 17
Total 17 weeks

How to get the best from this course

In distance learning the study units replace the/ersity lecturer. This is one of the great advayas of distance learnin yot
can read and work through specially designed stadyerials at your own pace, and at a time and plheg suityou best. Thir
of it as reading the lecture instead of listeningatlecturer. In the same way that a lecturer riggt you some readirig do, th
study units tell you when to read your set booksther material. Just as a lecturer might give yauinclass exercise, yo

study units provide exercises for you to do at apgate points.

Each of the study units follows a common formatie Tirst item is an introductioto the subje
matter of the unit and how a particular unit isegrated withthe other units and the course

11




whole. Next is a set of learning objectives. Thelgctives enable you know what you shoul
able to do by the time you have completed the uvidu should use these objectives to guide
study. When you havinished the units you must go back and check wdreyiou have achiev
the objectives. If you make a habit of doing thauywill significantly improve your chances
passing the course.

Remember that your tutor’s job is to assist youheWyou need g, don’t hesitate to call and ¢
your tutor to provide it.

1.

2.

10.

Read this Course Guide thoroughly.

Organize a study schedule. Refer to the ‘Courser@ew’ for more details. Note the til
you are expected to spend on each unit and hoastsignments rate to the units. Whate\
method you chose to use, you should decide orditaaite in your own dates for working
each unit.

Once you have created your own study scheduleydoyining you can to stick to it. T
major reason that students fail is that they ldgrixkin their course work.

Turn to Unit 1 and read the introduction and thgcives for the unit.

Assemble the study materials. Information abouatwou need for a unit is given in
‘Overview’ at the beginning of each unit. Yaeull almost always need both the study
you are working on and one of your set of bookyaur desk at the same time.

Work through the unit. The content of the unieitras been arranged to provide a sequ
for you to follow. As you work through the unityaevill be instructed to read sectior
from your set books or other articles. Use the tinguide your reading.

Review the objectives for each study unit to canfihat you have achieved them. If you
unsure about any of the objectives, review theystadterial or consult your tutor.

When you are confident that you have achieved &sunlbjectives, you can then start on
next unit. Proceed unit by unit through the cowase try to pace your study so that you |
yourself on schedule.

When you have submitted an assignment to your fotomarking, do not wait for its rett
before starting on the next unit. Keep to youresithe. When the assignment is retur
pay particular attention to your tutor's commetusth on the tutomarked assignment fo
and also written on the assignment. Consult yotartas soon as possible if you have
questions or problems.

After completing the last unit, review the coursedaprepare yourself for the fir

examination. Check that yduave achieved the unit objectives (listed at thgirbeng o
each unit) and the course objectives (listed is @ourse Guide).

12



Tutors and Tutorials

There are 1hours of tutorials provided in support of this caurYou will be notified of the dat
times and location of these tutorials, togethethwite name and phone number of your tutc
soon as you are allocated a tutorial group.

Your tutor will mark and comment on your assignmsekeep a close watch on your progress
on any difficultiesyou might encounter and provide assistance to ywung the course. You m
mail or submit your tutornarked assignments to your tutor well before the date (at least tv
working days are required). They will be marked ymur tutor and returned tgou as soon .
possible.

Do not hesitate to contact your tutor by telephamesmail if you need help. The following mig
be circumstances in which you would find help neaeg Contact your tutor if:

. you do not understand any part of the study umitb® assigned readings,

. you have difficulty with the self-tests or exer@se

. you have a question or problem with an assignmeiity your tutor's comments on
assignment or with the grading of an assignment.

You should try your best to attend thitorials. This is the only chance to have factat® conta
with your tutor and to ask questions which are ared instantly. You can raise any prok
encountered in the course of your study. To gam ieximum benefit from course tutori
prepae a question list before attending them. You valirh a lot from participating in discussi
actively.

Summary

Introduction to Operating systems introduces yothconcepts associated waperating syste
development and functions  which is critical in arstanding the various commd
environments/hardware platform§he content of the course material was plannetvaritten tc
ensure that you acquire the proper knowledge aill$ $&r the appropriate situations. R
situations have beearreated to enable you identify with and create sofmgur own. The esser
Is to help you in acquiring the necessary knowledgd competence by equipping you with
necessary tools to accomplish this.

We hope that by the end of this course you wowdehacquired the required knowledge to
operating systems and the computing environmerdsiew way.

We wish you success with the course and hope thatwll find it both interesting and useful.
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Module 1: Operating System Fundamentals
Unit 1: Definition and Functions of Operating Systen (OS)

Table of Contents

1.0 Introduction
2.0 Obijectives
3.0 Main Body
3.1What is an Operating System?
3.2 Goals and Functions of OS
3.3 Views of OS
3.4 Services Provided by the OS
Conclusion
Summary
Tutor Marked Assignment
References/Further Reading

~No o1 b~

1.0 Introduction

Having just read through the Course Guide, younare to go through this first unit of
the course which is very fundamental to the undadshg of what an Operating system
is and the role it plays in the whole computer ayst

Now let us go through your study objectives fos thinit.
2.0 Objectives

At the end of this unit, you should be able to:
o Define an OS
o State the major functions of the OS
o State the importance of the OS in the computeegys$t
o Enumerate the various services rendered the usiieb®S

4.0 Main Body
3.1 What is an Operating System?

An Operating System(OS) can be defined as a set of computer programsntaatge
the hardware and software resources of a compliteis the core of computer
programming that primarily deals with computer aetture. Operating system is
basically an application program that serves asinégrface to coordinate different
resources of computer. An operating system prosessg system and user input and
responds by allocating and managing tasks andniitsystem resources as a service to
users and programs of the system.

17



But simply put, an (OS) can be defined as a ss#® ©f programs implemented either in
software or firmware (hardwired instructions onpshiusually in ROM) or both that
makes the hardware usable.

At the foundation of all system software, an opagasystem performs basic tasks such
as controlling and allocating memory, prioritiziegstem requests, controlling input and
output devices, facilitating networking and manggifile systems. Most operating

systems come with an application that provides @terfiace to the OS managed
resources. These applications have had commandinileepreters as a basic user
interface, but more recently have been implemeated graphical user interface (GUI)
for ease of operation. Operating Systems themsehase no user interfaces, and the
user of an OS is an application, not a person.oerating system forms a platform for
other system software and for application softw&#ndows, Linux, and Mac OS are

some of the most popular OS's.

3.2 Goals and Functions of OS

OS can further be described by what they do i.e¢hby functions, goals and objectives.
Therefore, we will quickly run you through sometloé goals of the OS which are:

3.2.1 Convenience for the User

When there is no OS, users of computer systermedd to write machine-level program
in order to manipulate the hardware. With OS, usarsnow easily and conveniently use
the computer with no stress of directly programmihg hardware. OS provide a
convenient interface for using the computer system.

3.2.2 Efficiency

An OS allows computer system resources to be usedni efficient manner. This
particularly important for large shared multi-usgstems which are usually expensive. In
the past, the efficiency (i.e. optimal use of tleenputer resources) considerations were
often more important than convenience.

3.2.3 Evolutionary Capabilities

Ability to evolve also happens to be one of thelga# the OS. An OS should be

constructed in such a way that it permits the ¢iffecdevelopment, testing and

introduction of new system functions without ingethg with its service.

3.3 Views of OS

OS can be viewed from the perspective of what they These views are diverse
depending on the particular view point of a usart 8&me of these views are discussed

below.

3.3.1 OS as a User/Computer Interface

18



A computer system can be viewed as a layered oargigical structure consisting of the
hardware, operating system, utilities, applicapoograms and users.

The users of application programs are called thd-umers and are generally not
concerned with the computer’s architecture. The-wset views the computer system in
terms of an application.

The application is developed by the applicationgpaonmer who uses a programming
language and a language translator. A set of pnog@alled the utilities is provided to
assist the programmer in program creation, file ag@ment and the control of
Input/Output (I/O) devices.

The most important system program, operating systasks the details of the hardware
from the programmer and provides a convenientfaterfor using the system. it acts as
a mediator, making it easier for the programmer fmdapplication programs to access
and use the available services and facilities.

User User User User
1 2 3 n
A 4 A 4 A 4 A 4
Compiler Assembler Text editor Databasg
System

Operating System

Computer Hardware

Figure 3.1: Abstract View of the Components of ai@puter System

3.3.2 OS as a Resource Manager

19



A computer system has a set of resources for theement, storage and processing of
data. The OS is responsible for managing theseuress. Note that resources include
CPU, file storage space, data, programs, memoigesi® devices, etc.

The OS is like any other computer program in thaprovides instructions for the
processor. The key difference is in the purposehef program. The OS directs the
processor in the use of the other system resoamésn the timing of its execution of
other programs. The processor, in order to do drifiese things, must cease execution
of the OS program to execute other programs. Tthes,OS relinquishes control long
enough to prepare the processor to do the nex¢ piework.

The portion of the OS that is always in main memergalled the kernel or nucleus and
it contains the most frequently used functionshe ©OS. The remainder of the main
memory contains other user programs and data. l[dwaton of this resource (i.e. main
memory) is controlled jointly by the OS and the noeynmanagement hardware in the
processor.

3.3.2 Services Provided by the OS

The services provided by the OS can be categoinsedwo:

3.3.2.1 Convenience for the Programmer/User

The conveniences offered the user are in diverddalowing ways:

I. Program Creation: Although editors and debuggessnat part of the OS, they
are accessed through the OS to assist programmersdting programs.

li. Program Execution: OS ensures that programs adcedbanto the main memory.
I/O devices and files are initialised and otheroteses are prepared. The
program must be able to end its execution eithematly or abnormally. In
case of abnormal end to a program, it must indieatar.

lii. Access to I/O devices: Each 1/O device requiresous set of instructions or
control signal for operation. The OS takes careth&f details so that the
programmer can think in terms of reads and writes.

Iv. Controlled Access: In the case of files, contralunles an understanding of the
nature of the I/O device (e.g. diskette drive, CINR@rive, etc.) as well as the
file format of the storage medium. The OS dealf whese details. In the case
of the multi-user system, the OS must provide @ted@ mechanisms to
control access to the files.

v. Communications: There are many instances in whiploaess needs to exchange
information with another process. There are two omajays in which
communication can occur:

o It can take place between processes executingeosaiine computer.

o It can take place between processes executingftaredit computer
systems that are linked by a computer network.

20



Communications may be implemented via a shared meordoy a technique
of message passing in which packets of informaao@ moved between
processes by the OS.

vi. Error Detection: A variety of errors can occur vehd computer system is running.

These errors include:

o CPU and memory hardware error: This encompassesomesmror, power
failure, a device failure such as connection failon a network, lack of
paper in printer.

o Software errors: Arithmetic overflow, attempt tacass forbidden memory
locations, inability of the OS to grant the requafsan application.

In each case, the OS must make a response thatsniakdess impact on
running applications. The response may range froding the program that
caused the error, retrying the operation or simglyorting the error to the
application.

3.3.2.2  Efficiency of System: Single and MultUser
In the area of system efficiency, the OS offerftilowing services:

I. System Access or Protection: In the case of a dhargyublic system, the OS
controls access to the system and to specific systsources by ensuring that
each user authenticates him/herself to the sysigsuoally by means of
passwords to be allowed access to system resouta@dends to defending
external 1/0 devices including modems, network &elgpfrom invalid access
attempts and to recording all such connectionsiébection of break-ins.

ii. Resources Allocation: In an environment where thatgtiple users or multiple
jobs running at the same time, resources must lbeat¢d to each of them.
Many different types of resources are managed &Y. Some (such as CPU
cycles, main memory and file storage) may have igénmequest and release
codes. For instances, in determining how best éothe CPU, the OS have
CPU-scheduling routines that take into accountsiteed of the CPU, the jobs
that must be executed, the number of registersiadlai and other factors.
These routines may also be used to allocate piott@odems and other
peripheral devices.

lii. Accounting: This helps to keep track of how muclanél what types of computer
resources are used by each user. Today, this réeeqing is not for billing
purposes but for simply accumulating usage stesistThis statistics may be
available tool for researchers who want to recamgthe system to improve
computing services.

Ilv. Ease of Evolution of OS: A major OS will evolve owme for a number of
reasons such as hardware upgrades and new typesdvfare e.g. The use of
graphics terminals may affect OS design. This abee such a terminal may
allow the user to view several applications atdame time through ‘windows’
on the screen. This requires more sophisticatedatm the OS.
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v. New Services: In response to user demands or thé okesystem managers, the
OS may expand to offer new services.

vi. Error corretion: The OS may have faults which maydiscovered over the course
of time and fixes will need to be made.

Other features provided by the OS includes:

» Defining the user interface

» Sharing hardware among users

» Allowing users to share data

» Scheduling resources among users
» Facilitating 1/0

* Recovering from errors

* Etc.

The OS interfaces with, programs, hardware, usech s administrative personnel,
computer operators, application programmers, sygt@grammers, etc.

4.0 Conclusion

As you have learnt in this unit the OS is very imignt software in the computer system
that provides a variety of services to the applicet running on the system and the user.
It also adds to the efficiency and performancehefdcomputer system.

5.0 Summary

The OS forms the bedrock of the computer systemisatite platform on which all other
software run. But the OS has not always been oorecwith the computer system. It
evolved over time as you are going to learn inriéet unit.

6.0 Tutor Marked Assignment

You are to attempt the following assignments arahstiyour answers to your tutor for
this course. Here we go:

1. What do you understand by the term ‘Operating 3y$te
2. List and briefly explain the various services remdeto the users by the OS
3. Enumerate the goals and functions of the OS

7.0 References/Further Reading
1) T. Y. James (1999)Introduction to Operating Systen®® Edition

2) Silberschatz, Abraham; Galvin, Peter Baer; GagneegG(2004). Operating
System Conceptbloboken, NJ: John Wiley & Sons. ISBN 0-471-69466-
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1.0 Introduction

Operating system was absent in the first commerimain of electronic computer
launched in 1940's. Rows of mechanical switchesewsed to enter programs. At that
time, programming languages were not in use. Idiyyrthere was hardly any idea
about operating systeni.he user had sole use of the machine and wouldeaatimed
with program and data, often on punched paper fBipe.program would be loaded into
the machine, and the machine would be set to watk the program completed or
crashed. Programs could generally be debugged ¥rana panel using switches and
lights. It is said that Alan Turing was a mastertlug on the early Manchester Mark |
machine, and he was already deriving the primit@aception of aroperating system
from the principles of the Universal Turing Machine

Later machines came with libraries of support codeich would be linked to the users’
program to assist in operations such as input aridud This was the genesis of the
modern-day operating system. However, machinekratil a single job at a time; at
Cambridge University in England the job queue wasre time a washing line from
which tapes were hung with different coloured déstipegs to indicate job-priority.

As machines became more powerful, the time neealed fun of a program diminished
and the time to hand off the equipment became haegge by comparison. Accounting for

and paying for machine usage moved on from checkiegwall clock to automatic
logging by the computer

2.0 Objectives
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By the end of this unit, you should be able to:

o Discuss the history and evolution of operating esyst
o State the basic functions of the operating system
o Differentiate the various features of each genenadif the operating system

3.0 Main Body
3.1 History of Operating Systems

To see what operating systems are and what opgrsystems do, let us consider how
they have developed over the last 30 years. Byngatat evolution we can identify the

common elements of operating systems, and see &mvwhy they developed as they
are now.

Operating systems and computer architecture hageeat deal of influence on each
other. To facilitate the use of the hardware, ojpegasystems were developed. As
operating system were designed and used, it becarieus that changes in the design
of the hardware could simplify the operating systémthis short historical review, not

ice how the introduction of new hardware featuresthie natural solution to many

operating system problems.

Operating systems have been evolving over the ydatsus briefly look at this
development. Since operating systems have histlyrideeen closely tied to the
architecture of the computers on which they run,wilelook at successive generations
of computers to see what their operating systente \Wee. This mapping of operating
systems generations to computer generations isttdiyi crude, but it does provide
some structure where there would otherwise be none.

Since the history of computer operating systemslleds that of computer hardware, it
can be generally divided into five distinct timeripds, called generations that are
characterized by hardware component technologywaoé development, and mode of
delivery of computer services.

3.1.1 The Zeroth Generation

The term zeroth generation is used to refer topgred when there was no OS. This is
the period before the commercial production and eacomputer equipment. The period
might be dated as extending from the mid-1800s, @hdrles Babbage’s Analytical
Engine, to the development of the first commerc@hputer in 1951. In particular, this
period witnessed the emergence of the first elaatsodigital computers on the ABC,
designed by John Atanasoff in 1940; the Mark |Jtbdwy Howard Aiken and a group of
IBM engineers at Harvard in 1944; and the ENIACsigeed and constructed at the
University of Pennsylvania by Wallace Eckert andinddMauchly. Perhaps the most
significant of these early computers was the EDVAE&yeloped in 1944-46 by John von
Neumann, Arthur Burks, and Herman Goldstine, sihees the first to fully implement

24



the idea of the stored program and serial execuifanstructions. The development of
EDVAC set the stage for the evolution of commerciainputing and operating system
software. The hardware component technology of peisod was electronic vacuum
tubes.

The actual operation of these early computers folaice without the benefit of an
operating system. Early programs were written irclmrge language and each contained
code for initiating operation of the computer ifsel

The mode of operation was called "open-shop" aislrtteant that users signed up for
computer time and when a user’s time arrived, thiree (in those days quite large)
computer system was turned over to the user. THwidual user (programmer) was
responsible for all machine set up and operatiomj aubsequent clean-up and
preparation for the next user. This system wasrlgleaefficient and depended on the
varying competencies of the individual programnsoperators.

3.1.2 The First Generation, 1951-1956
The first generation marked the beginning of conaiaécomputing.

Operation continued without the benefit of an opegasystem for a time. The mode was
called "closed shop" and was characterized by ppearance of hired operators who
would select the job to be run, initial programddae system, run the user’'s program,
and then select another job, and so forth. Progtaegan to be written in higher level,
procedure-oriented languages, and thus the op&ratmutine expanded. The operator
now selected a job, ran the translation progranmagsemble or compile the source
program, and combined the translated object progaong with any existing library
programs that the program might need for inputht® linking program, loaded and ran
the composite linked program, and then handleahéxé job in a similar fashion.

Application programs were run one at a time, anteviilanslated with absolute computer
addresses that bound them to be loaded and run fh@se pre-assigned storage
addresses set by the translator, obtaining theéa ftam specific physical I/O device.

There was no provision for moving a program to ediéht location in storage for any
reason. Similarly, a program bound to specific desicould not be run at all if any of
these devices were busy or broken.

The inefficiencies inherent in the above methodspdration led to the development of
the mono-programmed operating system, which elitathasome of the human
intervention in running job and provided programsnevith a number of desirable
functions. The OS consisted of a permanently resikernel in main storage, and a job
scheduler and a number of utility programs kepsecondary storage. User application
programs were preceded by control or specificatands (in those day, computer
program were submitted on data cards) which infdrthe OS of what system resources
(software resources such as compilers and loadatshardware resources such as tape
drives and printer) were needed to run a particalpgplication. The systems were
designed to be operated as batch processing system.
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These systems continued to operate under the ¢afiteohuman operator who initiated
operation by mounting a magnetic tape that contathe operating system executable
code onto a "boot device", and then pushing the (iRitial program load) or "boot"
button to initiate the bootstrap loading of the rapi@g system. Once the system was
loaded, the operator entered the date and timethemdinitiated the operation of the job
scheduler program which read and interpreted tidralostatements, secured the needed
resources, executed the first user program, redaiideng and accounting information,
and then went back to begin processing of anoteer program, and so on, as long as
there were programs waiting in the input queuest@xXecuted.

The first generation saw the evolution from handssperation to closed shop operation
to the development of mono-programmed operatingesys At the same time, the
development of programming languages was movingyaisam the basic machine
languages; first to assembly language, and latgoré@edure-oriented languages, the
most significant being the development of FORTRANrfnula Translator) by John W.
Backus in 1956. Several problems remained, howeVee most obvious was the
inefficient use of system resources, which was megtent when the CPU waited while
the relatively slower, mechanical 1/0 devices werading or writing program data. In
addition, system protection was a problem becauseperating system kernel was not
protected from being overwritten by an erroneouydiegtion program. Moreover, other
user programs in the queue were not protected @i@struction by executing programs.

3.1.3 The Second Generation, 1956-1964

The second generation of computer hardware was moistably characterized by

transistors replacing vacuum tubes as the harde@mgonent technology. In addition,

some very important changes in hardware and saftamarhitectures occurred during this
period. For the most part, computer systems rerdataed and tape-oriented systems.
Significant use of random access devices, thalis&s, did not appear until towards the
end of the second generation. Program processig fwathe most part, provided by

large centralized computers operated under mongrpnomed batch processing
operating systems.

The most significant innovations addressed the Iprolof excessive central processor
delay due to waiting for input/output operationgcRIl that programs were executed by
processing the machine instructions in a striclgjuential order. As a result, the CPU,
with its high speed electronic component, was ofteoed to wait for completion of 1/0
operations which involved mechanical devices (caaters and tape drives) that were
order of magnitude slower. This problem led to ititeoduction of the data channel, an
integral, special-purpose computer with its owriringion set, registers, and control unit
designed to process input/output operations sepasatl asynchronously from the
operation of the computer's main CPU near the ehdhe first generation, and its
widespread adoption in the second generation.
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The data channel allowed some 1/O to be bufferéat 7S, a program’s input data could
be read "ahead" from data cards or tape into ai@pagock of memory called a buffer.
Then, when the user’s program came to an inputrsiatt, the data could be transferred
from the buffer locations at the faster main memacgess speed rather than the slower
I/O device speed. Similarly, a program’s outputlddae written another buffer and later
moved from the buffer to the printer, tape, or camhch. What made this all work was
the data channel's ability to work asynchronoushd aconcurrently with the main
processor. Thus, the slower mechanical I/O couldhdggening concurrently with main
program processing. This process was called |/@lave

The data channel was controlled by a channel pnoget up by the operating system I/O
control routines and initiated by a special indiarc executed by the CPU. Then, the
channel independently processed data to or from lioéfer. This provided
communication from the CPU to the data channehiteaie an 1/O operation. It remained
for the channel to communicate to the CPU suchtevedata errors and the completion
of a transmission. At first, this communication weshdled by polling. The CPU stopped
its work periodically and polled the channel toattetine if there were any message.

Polling was obviously inefficient (imagine stoppiggur work periodically to go to the
post office to see if an expected letter has adjivend led to another significant
innovation of the second generation - the interrdibie data. channel was now able to
interrupt the CPU with a message- usually "I/O clatg" In fact, the interrupt idea was
later extended from 1/O to allow signalling of nuenlof exceptional conditions such as
arithmetic overflow, division by zero and time-rant. Of course, interval clocks were
added in conjunction with the latter, and thus epeg system came to have a way of
regaining control from an exceptionally long orefiditely looping program.

These hardware developments led to enhancemettis operating system. I/O and data
channel communication and control became functanthe operating system, both to

relieve the application programmer from the diffiadetails of 1/0O programming and to

protect the integrity of the system to provide ioy@d service to users by segmenting
jobs and running shorter jobs first (during "pritm@e") and relegating longer jobs to

lower priority or night time runs. System libraribecame more widely available and
more comprehensive as new utilities and applicagmftware components were available
to programmers.

In order to further mitigate the 1/0O wait problesystem were set up to spool the input
batch from slower I/O devices such as the carderé&n the much higher speed tape
drive and similarly, the output from the higher sgg¢ape to the slower printer. Initially,
this was accomplished by means of one or more palgiseparate small satellite
computers. In this scenario, the user submittedbaatf a window, a batch of jobs was
accumulated and spooled from cards to tape "of,'lithe tape was moved to the main
computer, the jobs were run, and their output vadiected on another tape that later was
taken to a satellite computer for offline tape-to¥er output used then picked up their
output at the submission windows.
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Toward the end of this period, as random accesgelebecame available, tape-oriented
operating system began to be replaced by diskimdersystems. With the more

sophisticated disk hardware and the operating systgporting a greater portion of the
programmer’s work, the computer system that usans was more and more removed
from the actual hardware - users saw a virtual nm&ch

The second generation was a period of intense opgraystem development. Also it
was the period for sequential batch processing.tBaitsequential processing of one job
at a time remained a significant limitation. Thukere continued to be low CPU
utilization for 1/0 bound jobs and low I/O devicdlzation for CPU bound jobs. This
was a major concern, since computers were stiy V@mge (room-size) and expensive
machines. Researchers began to experiment withpmagtamming and multiprocessing
in their computing services called the time-shasggtem. A noteworthy example is the
compatible Time Sharing System (CTSS), developadiatduring the early 1960s.

3.1.4 The Third Generation, 1964-1979

The third generation officially began in April 19&4ith IBM’'s announcement of its
System/360 family of computers. Hardware technolbggan to use integrated circuits
(ICs) which yielded significant advantages in bgpleed and economy.

Operating system development continued with thedhiction and widespread adoption
of multiprogramming. This marked first by the apmeee of more sophisticated 1/0O
buffering in the form of spooling operating systenssich as the HASP (Houston
Automatic Spooling) system that accompanied the IBB/360 system. These systems
worked by introducing two new systems programsysdesn reader to move input jobs
from cards to disk, and a system writer to moveqatput from disk to printer, tape, or
cards. Operation of spooling system was, as befi@esparent to the computer user who
perceived input as coming directly from the candd autput going directly to the printer.

The idea of taking fuller advantage of the compstelata channel I/O capabilities
continued to develop. That is, designers recognikatl /O needed only to be initiated
by a CPU instruction - the actual 1/0 data transiois could take place under control of
separate and asynchronously operating channel gmogrhus, by switching control of
the CPU between the currently executing user progthe system reader program, and
the system writer program, it was possible to k&ep slower mechanical 1/0 device
running and minimize the amount of time the CPUngpeaiting for 1/0O completion. The
net result was an increase in system throughputeswlrce utilization, to the benefit of
both user and providers of computer services.

This concurrent operation of three programs (morepgrly, apparent concurrent
operation, since systems had only one CPU, anddcdbkrefore execute just one
instruction at time) required that additional featiand complexity be added to the
operating system. First, the fact that the inputuguwas now on disk, a direct access
device, freed the system scheduler from the fiostve-first-served policy so that it could
select the "best" next job to enter the systemk(fap for either the shortest job or the
highest priority job in the queue). Second, sirfoee €PU was to be shared by the user
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program, the system reader, and the system wetene processor allocation rule or
policy was needed. Since the goal of spooling wasease resource utilization by
enabling the slower 1/0O devices to run asynchrolyowgh user program processing, and
since 1/O processing required the CPU only for sipariods to initiate data channel
instructions, the CPU was dispatched to the re#uemriter, and the program in that
order. Moreover, if the writer or the user prognams executing when something became
available to read, the reader program would preghgturrently executing program to
regain control of the CPU for its initiation insttion, and the writer program would
preempt the user program for the same purpose.riilds called the static priority rule
with preemption, was implemented in the operatiggtesn as a system dispatcher
program.

The spooling operating system, in fact, had mugpamming since more than one
program was resident in main storage at the same. tiLater this basic idea of
multiprogramming was extended to include more tloare active user program in
memory at time. To accommodate this extension, bHuthscheduler and the dispatcher
were enhanced. The scheduler became able to mémagkverse resource needs of the
several concurrently active use programs, and tispatther included policies for
allocating processor resources among the compasiagprograms. In addition, memory
management became more sophisticated in ordestweathat the program code for each
job or at least that part of the code being exetwtas resident in main storage.

The advent of large scale multiprogramming was maalesible by several important
hardware innovations. The first was the widespraaailability of large capacity, high
speed disk units to accommodate the spooled irtpearas and the memory overflow
together with the maintenance of several concugrexttive program in execution. The
second was relocation hardware which facilitatesl fioving of blocks of code within
memory without an undue overhead penalty. Third was availability of storage
protecting hardware to ensure that user jobs aeqied from one another and that the
operating system itself is protected from user @og. Some of these hardware
innovations involved extensions to the interrupgteyn in order to handle a variety of
external conditions such as program malfunctionstage protection violations, and
machine checks in addition to I/O interrupts. Inli&idn, the interrupt system became the
technique for the user program to request senviikea the operating system kernel.
Finally, the advent of privileged instructions alled the operating system to maintain
coordination and control over the multiple acte#tinow going on within the system.

Successful implementation of multiprogramming opktiee way for the development of
a new way of delivering computing services-timersita In this environment, several
terminals, sometimes up to 200 of them, were attd¢hard wired or via telephone lines)
to a central computer. Users at their terminalggged in" to the central system, and
worked interactively with the system. The systeapparent concurrency was enabled by
the multiprogramming operating system. Users shaotdonly the system’ hardware but
also its software resources and file system diskep
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The third generation was an exciting time, indded{he development of both computer
hardware and the accompanying operating systemin@uhis period, the topic of
operating systems became, in reality, a major ehktwiethe discipline of computing.

3.1.5 The Fourth Generation, 1979 - Present

The fourth generation is characterized by the amea of the personal computer and
the workstation. Miniaturization of electronic aits and components continued and
large scale integration (LSI), the component tetim of the third generation, was

replaced by very large scale integration (VLSI), iahh characterizes the fourth

generation. VLSI with its capacity for containifgtisands of transistors on a small chip,
made possible the development of desktop computihscapabilities exceeding those

that filled entire rooms and floors of building juaenty years earlier.

The operating system that control these desktoghimas have brought us back in a full
circle, to the open shop type of environment wheareh user occupies an entire computer
for the duration of a job’s execution. This workstter now, not only because the
progress made over the years has made the vidogbuter resulting from the operating
system/hardware combination so much easier to yse the words of the popular press
"user-friendly."

However, improvements in hardware miniaturizatiomd dechnology have evolved so
fast that we now have inexpensive workstation-cle@sputer capable of supporting
multiprogramming and time-sharing. Hence the opegasystems that supports today’s
personal computers and workstations look muchthkese which were available for the
minicomputers of the third generation. Examples &fierosoft's DOS for IBM-
compatible personal computers and UNIX for workstat However, many of these
desktop computers are now connected as networkdtobuted systems. Computers in
a networked system each have their operating syatggmented with communication
capabilities that enable users to remotely log artg system on the network and transfer
information among machines that are connecteddmétwork. The machines that make
up distributed system operate as a virtual singbegssor system from the user’s point of
view; a central operating system controls and makassparent the location in the
system of the particular processor or processodsfiga systems that are handling any
given program.

4.0 Conclusion

As you have learnt in this unit, first computerd diot have operating systems, but as
technology advances through the 1960s, severalrmajwepts were developed, driving
the development of operating systems. In this wyoity have been introduced to the brief
history and evolution of operating system. The kieolge of OS, being an important
system software without which today’s computers Mawot function, is crucial to your
being able to work with the computer system.

5.0 Summary
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Since you are going to be interacting with the cotep machine in your day-to-day
activities as a computer user or professionag iacessary to have the basic knowledge
of OS. In the next unit, you are going to be introed to the various types of OS in the
market today based on several criteria.

6.0. Tutor Marked Assignment

You are to attempt the following assignments arahstiyour answers to your tutor for
this course. Here we go:

PoONPE

7.0

What is an OS?

What led to the invention of the OS?

Describe the characteristic features of the segemnération OS

What distinguishes the fourth generation OS froettiird generation OS an what
improvement in the computer architecture led tezhi

References/Further Reading

Per Brinch Hansen (2001(;lassic operating systems: from batch processing to
distributed system®New York,: Springer-Verlag, 1-36. ISBN 0-387-931X.
Deitel, Harvey M.; Deitel, Paul; Choffnes, DavidO(). Operating Systems
Upper Saddle River, NJ: Pearson/Prentice Hall. |SBN8-182827-4.
Silberschatz, Abraham; Galvin, Peter Baer; Gagmeg@004)Operating System
ConceptsHoboken, NJ: John Wiley & Sons. ISBN 0-471-69466-

Tanenbaum, Andrew S.; Woodhull, Albert S. (20@Bjperating Systems. Design
and ImplementationUpper Saddle River, N.J.: Pearson/Prentice HaBN 0-13-
142938-8.

Tanenbaum, Andrew S. (200Nlodern Operating SystemBpper Saddle River,
N.J.: Prentice Hall. ISBN 0-13-092641-8.

31



Module 1: Operating System Fundamentals
Unit 3: The Kernel
Table of Contents

1.0 Introduction

2.0 Obijectives

3.0 Main Body

3.1 Kernel Overview

3.2 Kernel basic responsibilities
3.2.1 Process management
3.2.2 Memory management
3.2.3 Device management
3.2.4 System calls

3.3  Kernel design decisions
3.3.1 Fault tolerance
3.3.2 Security
3.3.3 Hardware-based protection or language-bassdction
3.3.4 Process cooperation
3.3.5 1/0 devices management

3.4  Kernel-wide design approaches
3.4.1 Monolithic kernels
3.4.2 Microkernels
3.4.3 Monolithic kernels Vs. Microkernels
3.4.4 Hybrid kernels
3.4.5 Nanokernels
3.4.6 Exokernels

4.0 Conclusion

5.0 Summary

6.0 Tutor Marked Assignment

7.0 References/Further Reading

1.0 Introduction

In the previous unit we discussed the history avmlutgion of the operating system. In
this unit you will be taken through the core comginof the operating system which is
the kernel.

2.0 Objectives
At the end of this unit, you should be able to:

» Define the kernel
» Describe the functions/responsibilities of the lekrn
* Explain its design philosophies/decisions
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» Describe the various kernel-wide design approaches
3.0 Main Body
3.1 Kernel Overview
A kernel connects the application software to theltvare of a computer.

In computer science, thieernel is the central component of most computer opagatin
systems (OS). Its responsibilities include managihg system's resources and the
communication between hardware and software compsnas a basic component of an
operating system, a kernel provides the lowesttabstraction layer for the resources
(especially memory, processors and 1/O devicesj #pplications must control to
perform their function. It typically makes thesecifdies available to application
processes through inter-process communication mestha and system calls.

These tasks are done differently by different kissndepending on their design and
implementation. While monolithic kernels will trg aichieve these goals by executing all
the code in the same address space to increaseetiermance of the system,

microkernels run most of their services in usercepaiming to improve maintainability

and modularity of the codebase. A range of possésl exists between these two
extremes

applications
kernel
! E——
CPU memory devices

Figure 3.1: The kernel connecting the applicationofware to the hardware of a
computer.

Most operating systems rely on the kernel conCEpe. existence of a kernel is a natural
consequence of designing a computer system asies s&r abstraction layers, each
relying on the functions of layers beneath itsd@lhe kernel, from this viewpoint, is
simply the name given to the lowest level of aletioa that is implemented in software.
In order to avoid having a kernel, one would hawedésign all the software on the
system not to use abstraction layers; this wontteiase the complexity of the design to
such a point that only the simplest systems coedgdibly be implemented.
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While it is today mostly called theernel the same part of the operating system has also
in the past been known as thecleusor core. (You should note, however, that the term
core has also been used to refer to the primary membaycomputer system, typically
because some early computers used a form of meratiegd Core memory.)

In most cases, the boot loader starts executingggh®el in supervisor mode, The kernel
then initializes itself and starts the first prazeAfter this, the kernel does not typically
execute directly, only in response to external &/ge.g. via system calls used by
applications to request services from the kermeljainterrupts used by the hardware to
notify the kernel of events). Additionally, the ket typically provides a loop that is

executed whenever no processes are available tthians often called thelle process

OS and applications

kernel

assembler

firmware

hardware

Figure 3.2: A typical vision of a computer architege as a series of abstraction layers:
hardware, firmware, assembler, kernel, operatingsgym and applications.

Kernel development is considered one of the moshptex and difficult tasks in
programming. Its central position in an operatiggtesm implies the necessity for good
performance, which defines the kernel as a critmake of software and makes its
correct design and implementation difficult. Forigas reasons, a kernel might not even
be able to use the abstraction mechanisms it pgevid other software. Such reasons
include memory management concerns (for exampleeamode function might rely on
memory being subject to demand paging, but as ¢neek itself provides that facility it
cannot use it, because then it might not remaimemory to provide that facility) and
lack of reentrancy, thus making its developmentneweore difficult for software
engineers.

A kernel will usually provide features for low-ldvescheduling of processes
(dispatching), Inter-process communication, procggschronization, context switch,
manipulation of process control blocks, interrupandlling, process creation and
destruction, process suspension and resumptiorp(eeess states in the next module).
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3.2 Kernel Basic Responsibilities

The kernel's primary purpose is to manage the ctenpuresources and allow other
programs to run and use these resources. Typithdyesources consist of:

- The CPU (frequently called the processor). Thighis most central part of a
computer system, responsible flamning or executingprograms on it. The
kernel takes responsibility for deciding at anydimhich of the many running
programs should be allocated to the processoramegsors (each of which can
usually run only one program at once)

- The computer's memory. Memory is used to store patigram instructions and
data. Typically, both need to be present in meniorgrder for a program to
execute. Often multiple programs will want accessmemory, frequently
demanding more memory than the computer has alaildthe kernel is
responsible for deciding which memory each processuse, and determining
what to do when not enough is available.

« Any Input/Output (I/O) devices present in the comgpusuch as disk drives,
printers, displays, etc. The kernel allocates rstpudrom applications to
perform 1/O to an appropriate device (or subsectiba device, in the case of
files on a disk or windows on a display) and pregi¢convenient methods for
using the device (typically abstracted to the pevhere the application does
not need to know implementation details of theic®v

Kernels also usually provide methods for synchratiin and communication between
processes (calladter-process communicatiar IPC). This is discussed in module 3.

A kernel may implement these features itself, &y o some of the processes it runs to
provide the facilities to other processes, althoungthis case it must provide some means
of IPC to allow processes to access the facilgiesided by each other.

Finally, a kernel must provide running programshwa method to make requests to
access these facilities.

3.2.1 Process Management

The main task of a kernel is to allow the execubbapplications and support them with
features such as hardware abstractions. To rurpplication, a kernel typically sets up

an address space for the application, loads thec@ihtaining the application's code into
memory (perhaps via demand paging), sets up a &tatcke program and branches to a
given location inside the program, thus startisgetecution.

Multi-tasking kernels are able to give the user ithusion that the number of processes
being run simultaneously on the computer is higthem the maximum number of
processes the computer is physically able to mmléaneously. Typically, the number of
processes a system may run simultaneously is dquidle number of CPUs installed
(however this may not be the case if the processsupport simultaneous
multithreading).
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In a pre-emptive multitasking system, the kerndl give every program a slice of time
and switch from process to process so quickly ithadll appear to the user as if these
processes were being executed simultaneously. @imekuses scheduling algorithms to
determine which process is running next and how hmumme it will be given. The
algorithm chosen may allow for some processes te hagher priority than others. The
kernel generally also provides these processesyatavaommunicate; this is known as
inter-process communication (IPC) and the main @gpgres are shared memory,
message passing and remote procedure calls (saden®)d

Other systems (particularly on smaller, less powedomputers) may provide co-
operative multitasking, where each process is atbww run uninterrupted until it makes
a special request that tells the kernel it may@wib another process. Such requests are
known as "yielding”, and typically occur in respento requests for interprocess
communication, or for waiting for an event to occ@ider versions of Windows and
Mac OS both used co-operative multitasking butavad to pre-emptive schemes as the
power of the computers to which they were targgreav.

The operating system might also support multipreicgs (SMP or Non-Uniform
Memory Access); in that case, different programd #mreads may run on different
processors. A kernel for such a system must bguledito be re-entrant, meaning that it
may safely run two different parts of its code ditaeously. This typically means
providing synchronization mechanisms (such as epkd) to ensure that no two
processors attempt to modify the same data atiine sime.

3.2.2 Memory Management

The kernel has full access to the system's menmmudyaust allow processes to access this
memory safely as they require it. Often the fitspsin doing this is virtual addressing,
usually achieved by paging and/or segmentatiortusiraddressing allows the kernel to
make a given physical address appear to be anatligess, the virtual address. Virtual
address spaces may be different for different mse® the memory that one process
accesses at a particular (virtual) address mayifberaht memory from what another
process accesses at the same address. This ailevyspeogram to behave as if it is the
only one (apart from the kernel) running and thusvents applications from crashing
each other.

On many systems, a program's virtual address niay tieedata which is not currently in
memory. The layer of indirection provided by virtwaddressing allows the operating
system to use other data stores, like a hard diovetore what would otherwise have to
remain in main memory (RAM). As a result, operatsygtems can allow programs to
use more memory than the system has physicallyadai When a program needs data
which is not currently in RAM, the CPU signalsth@ kernel that this has happened, and
the kernel responds by writing the contents of maciive memory block to disk (if
necessary) and replacing it with the data requdsgdtie program. The program can then
be resumed from the point where it was stoppeds Sbheme is generally known as
demand paging.

36



Virtual addressing also allows creation of virtpaktitions of memory in two disjointed
areas, one being reserved for the kernel (kerreetegpand the other for the applications
(user space). The applications are not permittedhle processor to address kernel
memory, thus preventing an application from damggthe running kernel. This
fundamental partition of memory space has contedbumhuch to current designs of actual
general-purpose kernels and is almost universaliah systems, although some research
kernels (e.g. Singularity) take other approaches.

3.2.3 Device Management

To perform useful functions, processes need adoefi®e peripherals connected to the
computer, which are controlled by the kernel thloutpvice drivers. For example, to
show the user something on the screen, an applicatould make a request to the
kernel, which would forward the request to its thgpdriver, which is then responsible
for actually plotting the character/pixel.

A kernel must maintain a list of available devic&hkis list may be known in advance
(e.g. on an embedded system where the kernel avitetwritten if the available hardware
changes), configured by the user (typical on ol@@s and on systems that are not
designed for personal use) or detected by the bpgraystem at run time (normally
called Plug and Play).

In a plug and play system, a device manager festopms a scan on different hardware
buses, such as Peripheral Component Interconn€t} P Universal Serial Bus (USB),
to detect installed devices, then searches foapipeopriate drivers.

As device management is a very OS-specific topiesé drivers are handled differently
by each kind of kernel design, but in every cake, kernel has to provide the 1/O to
allow drivers to physically access their device®tigh some port or memory location.
Very important decisions have to be made when degigthe device management
system, as in some designs accesses may involvextewitches, making the operation
very CPU-intensive and easily causing a signifiggrtormance overhead.

3.2.4 System Calls

To actually perform useful work, a process musable to access the services provided
by the kernel. This is implemented differently bgck kernel, but most provide a C
library or an API, which in turn invoke the relatkernel functions.

The method of invoking the kernel function variesni kernel to kernel. If memory
isolation is in use, it is impossible for a useogqass to call the kernel directly, because
that would be a violation of the processor's accestrol rules. A few possibilities are:

« Using a software-simulated interrupt. This methedvailable on most hardware,
and is therefore very common.

- Using a call gate. A call gate is a special addvdssh the kernel has added to a
list stored in kernel memory and which the processmws the location of.
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When the processor detects a call to that locattoimstead redirects to the
target location without causing an access violatlequires hardware support,
but the hardware for it is quite common.

- Using a special system call instruction. This teghe requires special hardware
support, which common architectures (not ably, x8&)y lack. System call
instructions have been added to recent models ®px8cessors, however, and
some (but not all) operating systems for PCs make of them when
available.

- Using a memory-based queue. An application thatewalarge numbers of
requests but does not need to wait for the redudtach may add details of
requests to an area of memory that the kernel gheatly scans to find
requests.

3.3  Kernel Design Decisions
3.3.1 Fault Tolerance

An important consideration in the design of a keisefault tolerance; specifically, in
cases where multiple programs are running on destgmputer, it is usually important
to prevent a fault in one of the programs from iegly affecting the other. Extended to
malicious design rather than a fault, this alsoliappto security, and is necessary to
prevent processes from accessing information witheing granted permission.

Two main approaches to the protection of sensiff@mation are assigning privileges
to hierarchical protection domains, for exampleulsing a processor's supervisor mode,
or distributing privileges differently for each pess and resource, for example by using
capabilities or access control lists.

Hierarchical protection domains are much less lfliexias it is not possible to assign
different privileges to processes that are at #mesprivileged level, and ca not therefore
satisfy Denning's four principles for fault tolecan(particularly the Principle of least

privilege). Hierarchical protection domains alsovénaa major performance drawback,
since interaction between different levels of pcttn, when a process has to manipulate
a data structure both in 'user mode' and ‘supervismde’, always requires message
copying (transmission by value). A kernel based capabilities, however, is more

flexible in assigning privileges, can satisfy Dergis fault tolerance principles, and

typically does not suffer from the performance éssaof copy by value.

Both approaches typically require some hardwar@mrvare support to be operable and
efficient. The hardware support for hierarchicabtpction domains is typically that of
"CPU modes." An efficient and simple way to provitlrdware support of capabilities is
to delegate the MMU the responsibility of checkiagcess-rights for every memory
access, a mechanism called capability-based adiugedglost commercial computer
architectures lack MMU support for capabilities. Alernative approach is to simulate
capabilities using commonly-support hierarchicalmams; in this approach, each
protected object must reside in an address spatéhn application does not have access
to; the kernel also maintains a list of capabsitie such memory. When an application
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needs to access an object protected by a capaliiliperforms a system call and the
kernel performs the access for it. The performaiost of address space switching limits
the practicality of this approach in systems wittmplex interactions between objects,
but it is used in current operating systems foeoty that are not accessed frequently or
which are not expected to perform quickly. Apptoeswhere protection mechanism are
not firmware supported but are instead simulatecigher levels (e.g. simulating
capabilities by manipulating page tables on hardvilaat does not have direct support),
are possible, but there are performance implicatiblack of hardware support may not
be an issue, however, for systems that chooseettanguage-based protection.

3.3.2 Security

An important kernel design decision is the choiteahe abstraction levels where the
security mechanisms and policies should be impléesenOne approach is to use
firmware and kernel support for fault tolerancee(sdove), and build the security policy
for malicious behaviour on top of that (adding teas such as cryptography mechanisms
where necessary), delegating some responsibilitythto compiler. Approaches that
delegate enforcement of security policy to the aten@nd/or the application level are
often calledanguage-based security

3.3.3 Hardware-Based Protection or Language-Based®ection

Typical computer systems today use hardware-erdorgkes about what programs are
allowed to access what data. The processor morthergxecution and stops a program
that violates a rule (e.g., a user process thabait to read or write to kernel memory,
and so on). In systems that lack support for cditiabj processes are isolated from each
other by using separate address spaces. Calls dsam processes into the kernel are
regulated by requiring them to use one of the afsteseribed system call methods.

An alternative approach is to use language-basedegifon. In a language-based
protection system, the kernel will only allow cadeexecute that has been produced by a
trusted language compiler. The language may thestebgned such that it is impossible
for the programmer to instruct it to do somethingttwill violate a security requirement.

Advantages of this approach include:

« Lack of need for separate address spaces. Swittlgtvgeen address spaces is a
slow operation that causes a great deal of overlaatia lot of optimization
work is currently performed in order to prevent ecessary switches in
current operating systems. Switching is completelgecessary in a language-
based protection system, as all code can safelyatgoen the same address
space.

- Flexibility. Any protection scheme that can be desd to be expressed via a
programming language can be implemented usingnkitiod. Changes to the
protection scheme (e.g. from a hierarchical sysiera capability-based one)
do not require new hardware.
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Disadvantages include:

- Longer application start up time. Applications mubst verified when they are
started to ensure they have been compiled by ttreatacompiler, or may need
recompiling either from source code or from bytexod

- Inflexible type systems. On traditional systemspligations frequently perform
operations that are not type safe. Such operatansot be permitted in a
language-based protection system, which meansafipications may need to
be rewritten and may, in some cases, lose perfarenan

Examples of systems with language-based protectnmtude JX and Microsoft's
Singularity.

3.3.4 Process cooperation

Edsger Dijkstra proved that from a logical point wiew, atomic lock and unlock
operations operating on binary semaphores arecmifti primitives to express any
functionality of process cooperation. However thjgproach is generally held to be
lacking in terms of safety and efficiency, wher@amessage passing approach is more
flexible.

3.3.5 1/0 devices management

The idea of a kernel where I/O devices are handt@tbrmly with other processes, as
parallel co-operating processes, was first prop@setlimplemented by Brinch Hansen
(although similar ideas were suggested in 1967)Hémsen's description of this, the
“common” processes are calla@aternal processeswhile the 1/0O devices are called
external processes

3.4  Kernel-Wide Design Approaches

Naturally, the above listed tasks and featuresbmaprovided in many ways that differ
from each other in design and implementation. Whilenolithic kernels execute all of
their code in the same address space (kernel spadegrease the performance of the
system, microkernels try to run most of their se#siin user space, aiming to improve
maintainability and modularity of the codebase. Magnels do not fit exactly into one
of these categories, but are rather found in betwkese two designs. These are called
hybrid kernels. More exotic designs such as namaterand exokernels are available,
but are seldom used for production systems. The bgrervisor, for example, is an
exokernel.

The principle ofseparation of mechanism and policy the substantial difference
between the philosophy of micro and monolithic leksn Here amechanismis the
support that allows the implementation of manyediéht policies, while golicy is a
particular "mode of operation”. In minimal microket just some very basic policies are
included, and its mechanisms allows what is runmingop of the kernel (the remaining
part of the operating system and the other apphieg) to decide which policies to adopt
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(as memory management, high level process scheddiie system management, etc.).
A monolithic kernel instead tends to include mawyigies, therefore restricting the rest
of the system to rely on them.

3.4.1 Monolithic kernels

Kernel

LT

Software

Figure 3.3: Graphical overview of a monolithic kegh

In a monolithic kernel, all OS services run alonighvihe main kernel thread, thus also
residing in the same memory area. This approachiges rich and powerful hardware
access. Some developers maintain that monolithetesys are easier to design and
implement than other solutions, and are extreméigient if well-written. The main
disadvantages of monolithic kernels are the dep®ide between system components - a
bug in a device driver might crash the entire systeand the fact that large kernels can
become very difficult to maintain.

3.4.2 Microkernels

Kernel

IPC

Servers Software
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Figure 3.4: Diagram of Microkernels Approach

In the microkernel approach, the kernel itself oplpvides basic functionality that
allows the execution of servers, separate progtaatsassume former kernel functions,
such as device drivers, GUI servers, etc.

The microkernel approach consists of defining apgenabstraction over the hardware,
with a set of primitives or system calls to implerheninimal OS services such as
memory management, multitasking, and inter-proa@@samunication. Other services,
including those normally provided by the kerneltsas networking, are implemented in
user-space programs, referred tosasvers Microkernels are easier to maintain than
monolithic kernels, but the large number of systaiis and context switches might slow
down the system because they typically generate maerhead than plain function calls.

Microkernels generally underperform traditionaliges, sometimes dramatically. This is
due in large part to the overhead of moving in antlof the kernel, a context switch, to
move data between the various applications andesenBy the mid-1990s, most
researchers had abandoned the belief that camefihg could reduce this overhead
dramatically, but recently, newer microkernels,imjted for performance, such as L4
and K42 have addressed these problems.

A microkernel allows the implementation of the rémrag part of the operating system
as a normal application program written in a highel language, and the use of different
operating systems on top of the same unchangeelkdtris also possible to dynamically
switch among operating systems and to have moredha active simultaneously.

3.4.3 Monolithic kernels Vs. Microkernels

As the computer kernel grows, a number of probleesome evident. One of the most
obvious is that the memory footprint increases.sTiki mitigated to some degree by
perfecting the virtual memory system, but not cmputer architectures have virtual
memory support. To reduce the kernel's footprixtemsive editing has to be performed
to carefully remove unneeded code, which can be \dficult with non-obvious
interdependencies between parts of a kernel witlons of lines of code.

Due to the problems that monolithic kernels pokeytwere considered obsolete by the
early 1990s. As a result, the design of Linux usanghonolithic kernel rather than a
microkernel was the topic of a famous flame wamieein Linus Torvalds and Andrew
Tanenbaum. There is merit on both sides of the raegti presented in the
Tanenbaum/Torvalds debate.

Some, including early UNIX developer Ken Thompsargued that while microkernel
designs were more aesthetically appealing, monolikbrnels were easier to implement.
However, a bug in a monolithic system usually ceastine entire system, while this does
not happen in a microkernel with servers runnipgrafrom the main thread. Monolithic
kernel proponents reason that incorrect code dagsbelong in a kernel, and that
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microkernels offer little advantage over correctie€oMicrokernels are often used in

embedded robotic or medical computers where crashance is important and most of
the OS components reside in their own private, guted memory space. This is

iImpossible with monolithic kernels, even with madenodule-loading ones. However,

the monolithic model tends to be more efficienbtlgh the use of shared kernel memory,
rather than the slower IPC system of microkernaligies, which is typically based on

message passing.

3.4.4 Hybrid kernels

Servers Kernel
Software

Figure 3.5: Diagram of Hybrid kernels Approach

Hybrid kernel is a kernel architecture based on combining aspaicimicrokernel and
monolithic kernel architectures used in computeerapng systems. The category is
controversial due to the similarity to monolithierkel; the term has been dismissed by
some as just marketing. The usually accepted caesgare monolithic kernels and
microkernels (with nanokernels and exokernels sagnmore extreme versions of
microkernels).

The hybrid kernel approach tries to combine thedmnd simpler design of a monolithic
kernel with the modularity and execution safetyahicrokernel.

Hybrid kernels are essentially a compromise betwkermmonolithic kernel approach and
the microkernel system. This implies running somises (such as the network stack or
the file system) in kernel space to reduce thegperdnce overhead of a traditional
microkernel, but still running kernel code (such device drivers) as servers in user
space.

The idea behind this quasi-category is to haveraekestructure similar to a microkernel,
but implemented as a monolithic kernel. In conttasa microkernel, all (or nearly all)
services are in kernel space. As in a monolithimék there is no performance overhead
associated with microkernel message passing anxoswitching between kernel and
user mode. Also, as with monolithic kernels, thare none of the benefits of having
services in user space.
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3.4.5 Nanokernels

The term is sometimes used informally to refer teesy light-weight microkernel, such
as L4.

A nanokernel or picokernel is a very minimalist operating system kernel. The
nanokernel represents the closest hardware abstrdayer of the operating system by
interfacing the CPU, managing interrupts and irdiéng with the MMU. The interrupt
management and MMU interface are not necessaaillyqd a nanokernel; however, on
most architectures these components are directigextied to the CPU, therefore, it often
makes sense to integrate these interfaces intketime!.

A nanokernel delegates virtually all services Huding even the most basic ones like
interrupt controllers or the timer — to device ény to make the kernel memory
requirement even smaller than a traditional microke

software.
Advantages and Disadvantages
Nanokernels Versus Monolithic kernels

A nanokernel is considered to be slower than ac&pmonolithic kernel due to the

management and communication complexity causetidgdparation of its components.
Contrariwise this abstraction potentiates conshlgrafaster development, simpler

modules and higher code quality. Additionally thamagement effort of such code is not
ably decreased because monolithic implementatiensl to be more complex and

intradependent. As a result of its lower module plaxity nanokernel modules tend to
be more accurate and maintainable.

Furthermore APIs of monolithic kernels (as preserfor example the Linux kernel) are

often considered to be very unstable and quite Inheitdt is often argued that this applies
only to some implementations, but in reality motiod drivers use more internal

structures than separated modules.

Another key aspect is the isolation of the nano&lemmodules by architecture. Monolithic
kernels generally suffer from a considerably baduggy architecture because an
inaccurate and insecure part directly affects thelevoperating system.

Nanokernels Versus microkernels
Generally microkernels have integrated IPC, memdhyead- and process management
and elementary drivers. A nanokernel in contrastdssentially none of those, therefore

nanokernels are not independently executable bpgraystems, which is why they are
not an operating system kernel in the traditicease.
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Nevertheless this significant difference potentsagxtremely powerful techniques like
multi scheduling or operating system emulation. Timultaneous execution of a
realtime- and pre-emptive scheduler on multi precesnachines or the emulation of an
entire operating system like UNIX in heterogeneensironments are some application
areas of this technique. But in general this swopikyi applies and occurs only
significantly in parallel- or distributed computiegvironments.

3.4.6 Exokernels

Kernel
Library Library Library
Software

Figure 3.6: Graphical overview of Exokernel

An exokernel is a type of kernel that does nottrals hardware into theoretical models.
Instead it allocates physical hardware resourags) as processor time, memory pages,
and disk blocks, to different programs. A programning on an exokernel can link to a
library operating systenthat uses the exokernel to simulate the abstrectod a well-
known OS, or it can develop application-specifistedictions for better performance.

4.0 Conclusion

In this unit you have been taken through the conoégkernel and its importance in
operating systems design. Also, its various regpdities in the computer environment
had been deeply discussed not leaving behinddeheekdesign issues and trade-offs.

5.0 Summary

Strictly speaking, an operating system (and thu&emael) is not required to run a
computer. Programs can be directly loaded and ¢sdaon the "bare metal® machine,
provided that the authors of those programs arkngito work without any hardware
abstraction or operating system support. Most easimputers operated this way during
the 1950s and early 1960s, which were reset ammhdetl between the execution of
different programs. Eventually, small ancillary grams such as program loaders and
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debuggers were left in memory between runs, orddalom ROM. As these were
developed, they formed the basis of what becamlg eperating system kernels. The
"bare metal" approach is still used today on someosgame consoles and embedded
systems, but in general, newer computers use maghemrating systems and kernels.

6.0 Tutor Marked Assignments

1. In the context of Kernel design decisions, dgatish between harware-based and
language-based protection.

Differentiate between monolithic kernels andnokernels.

Briefly describe the hybrid kernel concept.

Itemize and briefly explain the various issirekernel design.

Enumerate the various responsibilities of thenk&l.

akrwn
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1.0 Introduction
In the last unit you have been introduced to thecept and history of operating system
and how it evolved with each discovery and improgetrin the technology of computer
architecture. In this unit, you are presented wtfes of operating system based on:

(i) The types of computer they control and the sogpglications they support

(i) The nature of interaction that takes placewm®n the computer user and
his/her program during its processing.

2.0 Obijectives
At the end of this unit, you should be able to:

o Categorise operating systems based on variousiarite
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0 List the basic features of each type of operatysesn
o Distinguish between one type of operating systethaarother

3.0 TypesofOS

OS can be categorised in different ways based mppetives. Some of the major ways
in which the OS can be classified are explorediatmdduced in this unit.

3.1 Types of Operating Systems Based on the Typek @omputer they Control
and the Sort of Applications they Support

Based on the types of computers they control aadstnt of applications they support,
there are generally four types within the broadifarof operating systems. The broad
categories are as follows:

3.1.1 Real-Time Operating Systems (RTOS):

They are used to control machinery, scientific rinstents and industrial systems. An
RTOS typically has very little user-interface capgh and no end-user utilities, since
the system will be a sealed box when deliveredul®. A very important part of an
RTOS is managing the resources of the computenadoat particular operation executes
in precisely the same amount of time every timecdurs. In a complex machine, having
a part move more quickly just because system ressuare available may be just as
catastrophic as having it not move at all becdlisesystem is busy. RTOS can be hard
or soft. A hard RTOS guarantees that critical taglesperformed on time. However, soft
RTOS is less restrictive. Here, a critical realditask gets priority over other tasks and
retains that priority until it completes.

3.1.2 Single-User, Single-Tasking Operating System:

As the name implies, this operating system is aegsigo manage the computer so that
one user can effectively do one thing at a timee Halm OS for Palm handheld
computers is a good example of a modern single-as®gle-task operating system.

3.1.3 Single-User, Multi-Tasking Operating System:

This is the type of operating system most people os their desktop and laptop
computers todayWindows 98 and theMac O.S. are both examples of an operating
system that will let a single user have severafjfams in operation at the same time. For
example, it is entirely possible for you as a Wwdaiser to be writing a note in a word
processor while downloading a file from the Intdraed at the same time be printing the
text of an e-mail message.

3.1.4 Multi-User Operating Systems:

A multi-user operating system allows many differeisers to take advantage of the
computer's resources simultaneously. The operaysgem must make sure that the
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requirements of the various users are balancedratdeach of the programs they are
using has sufficient and separate resources sa fiablem with one user does not affect
the entire community of usertnix, VMS, and mainframe operating systems, such as
MVS, are examples of multi-user operating systens.iftportant to differentiate here
between multi-user operating systems and single-aperating systems that support
networking.

Windows 2000 and Novell Netware can each support hundreds or thousands of
networked users, but the operating systems thessalie not true multi-user operating
systems. The system administrator is the only tmewWindows 2000 or Netware. The
network support and the entire remote user lodiesnetwork enables are, in the overall
plan of the operating system, a program being sutiné administrative user.

3.2 Types of OS based on the Nature of Interactiotnat takes place between the
Computer User and His/Her Program during its Procesing

Modern computer operating systems may be classifitnl three groups, which are
distinguished by the nature of interaction thaetklace between the computer user and
his or her program during its processing. The tlyeeaips are: called batch, time-shared
and real time operating systems.

3.2.1 Batch Processing OS

In a batch processing operating system environnueset;s submit jobs to a central place
where these jobs are collected into a batch, ahsesiuently placed on an input queue at
the computer where they will be run. In this cdbe,user has no interaction with the job
during its processing, and the computer’s respaoinse is the turnaround time (i.e. the

time from submission of the job until executiorc@mplete, and the results are ready for
return to the person who submitted the job).

3.2.2 Time Sharing OS

Another mode for delivering computing services lievided by time sharing operating
systems. In this environment a computer providesprding services to several or many
users concurrently on-line. Here, the various uaseessharing the central processor, the
memory, and other resources of the computer systearmanner facilitated, controlled,
and monitored by the operating system. The usethigrenvironment, has nearly full
interaction with the program during its executiangd the computer’s response time may
be expected to be no more than a few second.

3.2.3 Real Time OS

The third class of operating systems, real timgatpeg systems, are designed to service
those applications where response time is of tleere® in order to prevent error,
misrepresentation or even disaster. Examples dftiraa operating systems are those
which handle airlines reservations, machine tooitimd, and monitoring of a nuclear
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power station. The systems, in this case, are degitp be interrupted by external signal
that require the immediate attention of the compsystem.

In fact, many computer operating systems are hgbpdoviding for more than one of
these types of computing service simultaneouslys lespecially common to have a
background batch system running in conjunction itle of the other two on the same
computer.

3.3 Other Types of OS based on the Definition of hSystem/Environment

A number of other definitions are important to gagn a better understanding and
subsequently classifying operating systems:

3.3.1 Multiprogramming Operating System

A multiprogramming operating system is a systent #flaws more than one active user
program (or part of user program) to be stored ammmemory simultaneously.

Thus, it is evident that a time-sharing systemmsudtiprogramming system, but note that
a multiprogramming system is not necessarily atgharing system. A batch or real
time operating system could, and indeed usuallysdbave more than one active user
program simultaneously in main storage. Anotherartgnt, and all too similar, term is
‘multiprocessing’.

A multiprocessing system is a computer hardwardigoration that includes more than
one independent processing unit. The term multgssing is generally used to refer to
large computer hardware complexes found in majolensific or commercial
applications.

3.3.2 Network Operating Systems

A networked computing system is a collection of 9pbgl interconnected computers. The
operating system of each of the interconnected cbenp must contain, in addition to its
own stand-alone functionality, provisions for hangl communication and transfer of
programs and data among the other computers wikthwhis connected.

In a network operating system, the users are awdhréhe existence of multiple

computers, and can log in to remote machines apy €ites from one machine to

another. Each machine runs its own local operasiygfem and has its own user (or
users). Network operating systems are designed wiibre complex functional

capabilities.

Network operating systems are not fundamentalljeint from single processor
operating systems. They obviously need a networkface controller and some low-
level software to drive it, as well as programsathieve remote login and remote files
access, but these additions do not change thetedsgructure of the operating systems.
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3.3.3 Distributed Operating Systems

A distributed computing system consists of a nundfecomputers that are connected
and managed so that they automatically share thepjocessing load among the
constituent computers, or separate the job loadpgsopriate particularly configured

processors. Such a system requires an operatitgnsyshich, in addition to the typical

stand-alone functionality, provides coordinationtloé operations and information flow
among the component computers.

The distributed computing environment and its opegasystems, like networking
environment, are designed with more complex fumetiocapabilities. However, a
distributed operating system, in contrast to a peétwoperating system, is one that
appears to its users as a traditional uniprocesgstem, even though it is actually
composed of multiple processors. In a true distetisystem, users should not be aware
of where their programs are being run or wherer thles are located; that should all be
handled automatically and efficiently by the opeigsystem.

True distributed operating systems require moren thest adding a little code to a
uniprocessor operating system, because distribatetl centralized systems differ in
critical ways. Distributed systems, for examplggenfallow program to run on several
processors at the same time, thus requiring momaplex processor scheduling
algorithms in order to optimize the amount of pl@tem achieved.

4.0 Conclusion

The earliest operating systems were developed fonframe computer architectures in
the 1960s and they were mostly batch processingatipg systems. The enormous
investment in software for these systems causedt mbsthe original computer
manufacturers to continue to develop hardware @edating systems that are compatible
with those early operating systems. Those earl{esys pioneered many of the features
of modern operating systems..

5.0 Summary

This unit has taken you through some of the varmassifications of OS we have based
on different criteria. You will need this knowledgs you work in different computer
environment. In the next unit we will be discussihg disk operating system.

6.0 Tutor Marked Assignment

You are to attempt the following assignments arlthstiyour answers to your tutor for
this course. Here we go:

1. Network operating systems are not fundamentaffgdint from single processor
operating systems. Discuss
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7.0

Distinguish between Network OS and Distributed OS.
How is a soft RTOS different from hard RTOS
List the major features of a multi-user OS.

Pwp
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Module 2: Types of Operating System
Unit 1: Disk operating system
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1.0 Introduction

The previous unit introduced the various types &f liased on different criteria. In this
unit, you will be taken through the disk operatgygtem and its various characteristics
and examples.

2.0 Obijectives
At the end of this unit, the students should be &dvl

o Describe the disk operating system (DOS)
0 Listthe classes of DOS we have
o State what distinguishes the different classes@$D

3.0 Disk operating system

Disk Operating System (specifically) anddisk operating system(generically), most
often abbreviated aBOS (not to be confused with the DOS family of digkeaating
systems for the IBM PC compatible platform), refeoperating system software used in
most computers that provides the abstraction andagement of secondary storage
devices and the information on them (e.g., filetesys for organizing files of all sorts).
Such software is referred to as a disk operatirgjesy when the storage devices it
manages are made of rotating platters (such asdneksl or floppy disks).

In the early days of microcomputing, memory spaaes Wwften limited, so the disk
operating system was an extension of the operaystem. This component was only
loaded if needed. Otherwise, disk-access wouldntieed to low-level operations such as
reading and writing disks at the sector-level.

In some cases, the disk operating system compdgaeriven the operating system) was
known as DOS.
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Sometimes, a disk operating system can refer ternhiee operating system if it is loaded
off a disk and supports the abstraction and maneagerof disk devices. Examples
include DOS/360 and FreeDOS. On the PC compatilddopm, an entire family of
operating systems was called DOS.

In the early days of computers, there were no diskes; delay lines, punched cards,
paper tape, magnetic tape, magnetic drums, we inseead. And in the early days of
microcomputers, paper tape or audio cassette ssgeKansas City standard) or nothing
were used instead. In the latter case, programdama entry was done at front panel
switches directly into memory or through a compuieminal/keyboard, sometimes

controlled by a ROM BASIC interpreter; when powessaturned off after running the

program, the information so entered vanished.

Both hard disks and floppy disk drives require wafe to manage rapid access to block
storage of sequential and other data. When micrpatens rarely had expensive disk
drives of any kind, the necessity to have softwanmanage such devices (i.e. the 'disks’)
carried much status. To have one or the other waar& of distinction and prestige, and
so was having the Disk sort of an Operating Syst&snprices for both disk hardware
and operating system software decreased, theremaamg such microcomputer systems.

Mature versions of the Commodore, SWTPC, Atari Apgle home computer systems
all featured a disk operating system (actuallyechIDOS' in the case of the Commodore
64 (CBM DOS), Atari 800 (Atari DOS), and Apple llachines (Apple DOS)), as did (at
the other end of the hardware spectrum, and mudle®@dBM's System/360, 370 and
(later) 390 series of mainframes (e.g., DOS/360skDOperating System / 360 and
DOS/VSE: Disk Operating System / Virtual Storageefxled). Most home computer
DOS'es were stored on a floppy disk always to batdzbat start-up, with the not able
exception of Commodore, whose DOS resided on RONpsclin the disk drives
themselves, available at power-on.

In large machines there were other disk operatysgems, such as IBM's VM, DEC's
RSTS /RT-11/VMS / TOPS-10 / TWENEX, MIT's IT®TSS, Control Data's assorted
NOS variants, Harris's Vulcan, Bell Labs' Unix, awdon. In microcomputers, SWTPC's
6800 and 6809 machines used TSC's FLEX disk operatystem, Radio Shack's TRS-
80 machines used TRS-DOS, their Color Computer @38eD, and most of the Intel
8080 based machines from IMSAI, MITS (makers of thgendary Altair 8800),
Cromemco, North Star, etc used the CP/M-80 diskaipey system. See list of operating
systems.

Usually, a disk operating system was loaded frodis. Only a very few comparable
DOSes were stored elsewhere than floppy disks; grtiese exceptions were the British
BBC Micro's optional Disc Filing System, DFS, oftdras a kit with a disk controller
chip, a ROM chip, and a handful of logic chipsb®installed inside the computer; and
Commodore's CBM DOS, located in a ROM chip in edisk drive.

3.1  Brief History of MS-DOS
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The history of Microsoft disk operating system (N@®S) is closely linked to the IBM
PC and compatibles. Towards the end of the 1920 mber of PCs appeared on the
market, based on 8-bit microprocessor chips suc¢htas8080. IBM decided to enter this
market and wisely opted for a 16-bit microprocessbe Intel 8088. IBM wanted to
introduced the PC to the market as quickly as ptssnd released it without having
enough time to develop its own OS.

At that time, CP/M (by Digital Research) dominatéte market. In 1979, a small
company Seattle the Computer Products developaahitsOS, 86-DOS to test some of
its Intel based products (86-DOS was designed teitpdar to CP/M). IBM purchased

86-DOS and in collaboration with Microsoft develdpg commercial product. MS-DOS
Version 1.0 was also referred to as PC-DOS MS-D@& dome similarities to CP/M,

(such as the one level file storage system fompijogisks) which was important in terms
of market acceptance in those days although MS-O@dSoffer several improvements
over CP/M such as:

* Alarger disk sector size (512 bytes as opposd@&bytes)
* A memory-based file allocation table.

Both of which improved disk file performance.

Here is a summary of the most significant featwfegersions of MS-DOS:

Version Date Features

1.0 1981 » Based on IBM PC

» Designed to cater for floppy disks and therefore
used a simple file storage system, simlar to
CP/M.

* A memory-based file allocation table

* A larger disk sector 512 bytes

2.0 1983 e Based on IBM PC/XT with 10MB hard disk

» A hierarchical file directory to simplify the vast
storage

* Installable device drivers.

3.0 1984 » Based on IBM PC/AT with 20MB hard disk
» Supported RAM disks
* Read-only files

3.1 1984  Some support for networks (file sharing,
locking, etc.)
3.2 1986 * 3.5inch disks

o Support for IBM Token Ring Network
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3.3

1987 e Support for new IBM PS/2 computers
* 1.44 MB floppies

* Multiple 32MB disk partitions

* Support for Expanded Memory system

4.0

1988 » Simple window-based command shell
* Up to 2 gigabyte disk partitions

5.0

1991 * Improved memory management

* Doubling the disk space by compressing files
for floppies and hard disks

* Interlink a program that transfers files
between computers

* Improved data protection facility

* Antivirus facility that can remove more than
800 viruses from your system.

* Improved extended commands.

3.2

Examples of disk operating systems that were texsions to the OS

- The DOS operating system for the Apple Computerfspl@d 1l family of

computers. This was the primary operating systenths family from 1979

with the introduction of the floppy disk drive unti983 with the introduction
of ProDOS; many people continued using it longraftat date. Usually it was
called Apple DOS to distinguish it from MS-DOS.

« Commodore DOS, which was used by 8-bit Commodorepcers. Unlike most

other DOS systems, it was integrated into the diskes, not loaded into the
computer's own memory.

- Atari DOS: which was used by the Atari 8-bit famadff computers. The Atari OS

only offered low-level disk-access, so an extretagalled DOS was booted
off a floppy that offered higher level functionschuas filesystems.

« MSX-DOS, for the MSX computer standard. Initial sien, released in 1984, was

nothing but MS-DOS 1.0 ported to Z80; but in 198&volved to version 2,
offering facilities such as subdirectories, memomanagement and
environment strings. The MSX-DOS kernel residedRi@M (built-in on the

disk controller) so basic file access capacity &aailable even without the
command interpreter, by using BASIC extended contsan

« Disc Filing System (DFS) This was an optional comgdt for the BBC Micro,

offered as a kit with a disk controller chip, a R@Nip, and a handful of logic
chips, to be installed inside the computer. See &dvanced Disc Filing
System.

« AMSDOS, for the Amstrad CPC computers.
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- GDOS and G+DOS, for the +D and DISCIPLE disk irdeds for the ZX
Spectrum.

3.2 Examples of Disk Operating Systems that were ¢hOS itself

- The DOS/360 initial/simple operating system for tB& System/360 family of
mainframe computers (it later became DOS/VSE, amld wventually just
called VSE).

- The DOS operating system for DEC PDP-11 minicomguféhis OS and the
computers it ran on were nearly obsolete by the tih€s became common,
with various descendants and other replacements).

- DOS for the IBM PC compatible platform

The best known family of operating systems name@3Dis that running on IBM

PCs type hardware using the Intel CPUs or theirpadible cousins from other
makers. Any DOS in this family is usually just netxl to as DOS. The original
was licensed to IBM by Microsoft, and marketed hgmh as "PC-DOS". When
Microsoft licenced it to other hardware manufaatsiret was called MS-DOS.

Digital Research produced a compatible variant kmew "DR-DOS", which was

eventually taken over (after a buyout of DigitalsRarch) by Novell. This became
"OpenDOS" for a while after the relevant divisiohNovell was sold to Caldera
International, now called SCO. There is also a t@sion named "FreeDOS".

4.0 Conclusion

The earliest operating systems were developed fanframe computer architectures in
the 1960s and they were mostly batch processingatipg systems. The enormous
investment in software for these systems causedt rabsthe original computer
manufacturers to continue to develop hardware g@edading systems that are compatible
with those early operating systems. Those earliesys pioneered many of the features
of modern operating systems.

5.0 Summary

This unit has taken you through some of the vargarmple of early OS. The DOS is no
longer popular because of the advanced GUI packagé® market now. But you still
find it in some computing environment.

6.0 Tutor Marked Assignment

You are to attempt the following assignments aruhstiyour answers to your tutor for
this course. Here we go:

1. Disk operating system can be the operating sygself or not . Discuss.

2. Distinguish between DOS that is the OS itsetf tie one that is not .
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3. Give two examples each of DOS that are the G&8fiand DOS that are the
extension of the OS.
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Introduction

The previous unit discussed the disk operatingesysind its various characteristics and
examples. In this unit you will be exposed to thalitime operating system (RTOS), its
design philosophies and some of its other chariatitefeatures like scheduling, interrupt
handling, etc.

2.0

Objectives

At the end of this unit, you should be able to:

3.0

» Define and describe the real-time OS
* Explain its design philosophies
» Describe how its handles tasks such as memoryadito; scheduling, interrupt

handling, intertask communication, etc.

» State how it is different from the disk OS
* Give examples of RTOS

Real-Time Operating System(RTOS)

A real-time operating system(RTOS) is a multitasking operating system intended for
real-time applications. Such applications includebedded systems (programmable
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thermostats, household appliance controllers, raobdlephones), industrial robots,
spacecraft, industrial control (see SCADA), an@stfic research equipment.

An RTOS facilitates the creation of a real-timetsgs, but does not guarantee the final
result will be real-time; this requires correct dmpment of the software. An RTOS does
not necessarily have high throughput; rather, &8 provides facilities which, if used
properly, guarantee deadlines can be met gengisly real-time) or deterministically
(hard real-time). An RTOS will typically use spd@ad scheduling algorithms in order
to provide the real-time developer with the tookcessary to produce deterministic
behavior in the final system. An RTOS is valued enfar how quickly and/or predictably
it can respond to a particular event than for lrergamount of work it can perform over
time. Key factors in an RTOS are therefore at malimterrupt latency and a minimal
thread switching latency.

An early example of a large-scale real-time opegatystem was the so-called "control
program” developed by American Airlines and IBM tbe Sabre Airline Reservations
System.
Debate exists about what actually constitutes tiga-computing.
3.1 Design philosophies
Two basic designs exist:

- Event-driven (priority scheduling) designs swit@sks only when an event of

higher priority needs service, called preemptiviery.
- Time-sharing designs switch tasks on a clock iorand on events, called

round-robin.

Time-sharing designs switch tasks more often tkastrictly needed, but give smoother,
more deterministic multitasking, the illusion thatprocess or user has sole use of a
machine.

Early CPU designs needed many cycles to switctstaking which the CPU could do
nothing useful. So early OSes tried to minimize tigs CPU time by maximally
avoiding unnecessary task-switches.

More recent CPUs take far less time to switch fmm task to another; the extreme case
is barrel processorghat switch from one task to the next in zero egcNewer RTOSes
almost invariably implement time-sharing schedulingh priority driven pre-emptive
scheduling.

3.2  Scheduling

In typical designs, a task has three states:

1) Running
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2) Ready
3) Blocked.

Most tasks are blocked, most of the time. Only task per CPU is running. In simpler
systems, the ready list is usually short, two oeeftasks at most.

The real key is designing the scheduler. Usuaklydata structure of the ready list in the
scheduler is designed to minimize the worst-casgtleof time spent in the scheduler's
critical section, during which preemption is inhéa, and, in some cases, all interrupts
are disabled. But, the choice of data structureedép also on the maximum number of
tasks that can be on the ready list (or ready queue

If there are never more than a few tasks on theyrdist, then a simple unsorted
bidirectional linked list of ready tasks is likebptimal. If the ready list usually contains
only a few tasks but occasionally contains morentthne list should be sorted by priority,
so that finding the highest priority task to runedonot require iterating through the
entire list. Inserting a task then requires walkihg ready list until reaching either the
end of the list, or a task of lower priority thdrat of the task being inserted. Care must
be taken not to inhibit preemption during thisiensearch; the otherwise-long critical
section should probably be divided into small pgea® that if, during the insertion of a
low priority task, an interrupt occurs that makesigh priority task ready, that high
priority task can be inserted and run immediatddgfdre the low priority task is
inserted).

The critical response time, sometimes called fileack time, is the time it takes to
gueue a new ready task and restore the state ofiginest priority task. In a well-
designed RTOS, readying a new task will take 3#&ructions per ready queue entry,
and restoration of the highest-priority ready tagk take 5-30 instructions. On a 20MHz
68000 processor, task switch times run about 20aséconds with two tasks ready. 100
MHz ARM CPUs switch in a few microseconds.

In more advanced real-time systems, real-time tatlege computing resources with
many non-real-time tasks, and the ready list camarbérarily long. In such systems, a
scheduler ready list implemented as a linked listilt be inadequate.

3.3 Intertask communication and resource sharing

A significant problem that multitasking systems masldress is sharing data and
hardware resources among multiple tasks. It isllystiansafe" for two tasks to access

the same specific data or hardware resource sinadtsly. ("Unsafe" means the results
are inconsistent or unpredictable, particularly wbee task is in the midst of changing a
data collection. The view by another task is bestedeither before any change begins, or
after changes are completely finished.) There lareet common approaches to resolve
this problem:

. Temporarily masking/disabling interrupts
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. Binary semaphores
Message passing

General-purpose operating systems usually do flotv aser programs to mask (disable)
interrupts, because the user program could cotielICPU for as long as it wished.
Modern CPUs make the interrupt disable controlditinstruction) inaccessible in user
mode to allow operating systems to prevent uséstaem doing this. Many embedded
systems and RTOSs, however, allow the applicatiselfito run in kernel mode for
greater system call efficiency and also to perhetdpplication to have greater control of
the operating environment without requiring OS rnéation.

On single-processor systems, if the applicationsrum kernel mode and can mask
interrupts, often that is the best (lowest overfesadution to preventing simultaneous
access to a shared resource. While interrupts asked, the current task hasclusive
use of the CPU; no other task or interrupt can tedetrol, so the critical section is
effectively protected. When the task exits itsicait section, it must unmask interrupts;
pending interrupts, if any, will then execute. Temgyily masking interrupts should only
be done when the longest path through the criseation is shorter than the desired
maximum interrupt latency, or else this method wniiErease the system's maximum
interrupt latency. Typically this method of protect is used only when the critical
section is just a few source code lines long andains no loops. This method is ideal
for protecting hardware bitmapped registers when litis are controlled by different
tasks.

When the critical section is longer than a few seucode lines or involves lengthy
looping, an embedded/real-time programmer mustrrésausing mechanisms identical
or similar to those available on general-purposeraing systems, such as semaphores
and OS-supervised interprocess messaging. Suchameats involve system calls, and
usually invoke the OS's dispatcher code on exitheg can take many hundreds of CPU
instructions to execute, while masking interruptsyrtake as few as three instructions on
some processors. But for longer critical sectidhgre may be no choice; interrupts
cannot be masked for long periods without incrgage system's interrupt latency.

A binarysemaphoreis either locked or unlocked. When it is lockedjugue of tasks can
wait for the semaphore. Typically a task can semaout on its wait for a semaphore.
Problems with semaphore based designs are well rkngwiority inversion and
deadlocks.

In priority inversion, a high priority task waits because a low priorigsk has a
semaphore. A typical solution is to have the tasit has a semaphore run at (inherit) the
priority of the highest waiting task. But this silisfic approach fails when there are
multiple levels of waiting (A waits for a binaryre@phore locked by B, which waits for a
binary semaphore locked by C). Handling multiplerels of inheritance without
introducing instability in cycles is not straigbivard.

In a deadlock two or more tasks lock a number of binary semeggh@nd then wait
forever (no timeout) for other binary semaphoresating a cyclic dependency graph.
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The simplest deadlock scenario occurs when twaosthsik two semaphores in lockstep,
but in the opposite order. Deadlock is usually pregd by careful design, or by having
floored semaphores (which pass control of a senmaptwothe higher priority task on
defined conditions).

The other approach to resource sharing is for teslksendmessagesin this paradigm,
the resource is managed directly by only one taslen another task wants to interrogate
or manipulate the resource, it sends a messagketananaging task. This paradigm
suffers from similar problems as binary semaphoRsgority inversion occurs when a
task is working on a low-priority message, and rgsoa higher-priority message (or a
message originating indirectly from a high priorigk) in its in-box. Protocol deadlocks
occur when two or more tasks wait for each othesetad response messages.

Although their real-time behavior is less crisprits#maphore systems, simple message-
based systems usually do not have protocol deladiazards, and are generally better-
behaved than semaphore systems.

3.4 Interrupt handlers and the scheduler

Since an interrupt handler blocks the highest piyidask from running, and since real
time operating systems are designed to keep thisgadcy to a minimum, interrupt
handlers are typically kept as short as possiblee Tnterrupt handler defers all
interaction with the hardware as long as possitylgically all that is necessary is to
acknowledge or disable the interrupt (so that itwad occur again when the interrupt
handler returns). The interrupt handler then quevek to be done at a lower priority
level, often by unblocking a driver task (througdleasing a semaphore or sending a
message). The scheduler often provides the ahiityinblock a task from interrupt
handler

3.5 Memory allocation
Memory allocation is even more critical in an RT&n in other operating systems.

Firstly, speed of allocation is important. A startdanemory allocation scheme scans a
linked list of indeterminate length to find a sbit free memory block; however, this is
unacceptable as memory allocation has to occufiiked time in an RTOS.

Secondly, memory can become fragmented as freengdiecome separated by regions
that are in use. This can cause a program to stadble to get memory, even though
there is theoretically enough available. Memoryo@tion algorithms that slowly
accumulate fragmentation may work fine for deskiogchines—when rebooted every
month or so—but are unacceptable for embeddedmagdteat often run for years without
rebooting.

The simple fixed-size-blocks algorithm works asstimgly well for simple embedded
systems
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4.0 Conclusion

As you would have seen or discovered while reatlimgugh this unit the design of the
RTOS is more complex and involving than that of @S. The RTOS is not found in
most computer environment because of its comple®ity it is most suitable for use in
life and time critical environment.

5.0 Summary

This unit has extensively describe and discussedRROS and the way it carries out
various OS functions such as memory allocatiohedaling, interrupt handling and

interprocess communication (You will learn more atbsome of these functions of the
OS in later units in these course). You are to ammjall these with what you have learnt
about DOS in the previous unit.

6.0  Tutor Marked Assignment

You are to attempt the following assignments arahstiyour answers to your tutor for
this course. Here we go:

1. Memory allocation is even more critical in an RT@%®n in other operating
systems. Discuss

2. Name some of the environment in which the RTOShmafound

3. List and explain the two basic design philosoplfiieshe RTOS

4. Describe how interprocess communication and resosinaring are implemented
in the RTOS.

7.0  Further Reading

1. Deitel, Harvey M.; Deitel, Paul; Choffnes, Davido@®). Operating SystemdJpper
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1.0 Introduction

In the previous unit, you been exposed to the tie®-operating system, its history and

application areas. This unit will extensively dissuhe time-sharing operating system as
well as the Object-oriented operating systemsthadrarious attempts (citing examples

where necessary) that had been made to develop them

2.0  Objectives

At the end of this unit, you should be able to:

* Explain what is meant by object-oriented OS
* Compare with examples the various attempts thatbesmsh made to develop an
object-oriented OS

3.0 Main Body
3.1 Object-oriented operating system

An object-oriented operating systemis an operating system which internally uses
object-oriented methodologies.
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An object-oriented operating system is in conttasin object-oriented user interface or
programming framework, which can be placed abovweom-object-oriented operating
system like DOS, Microsoft Windows or Unix.

It can be argued, however, that there are alrebggctoriented concepts involved in the
design of a more typical operating system such as<.UWhile a more traditional
language like C does not support object orientadie fluidly as more recent languages,
the not ion, for example, of a file, stream, oridewdriver (in Unix, each represented as a
file descriptor) can be considered a good examptd@ct orientation: they are, after all,
abstract data types, with various methods in thenfof system calls, whose behavior
varies based on the type of object, whose impleatemt details are hidden from the
caller, and might even use inheritance in theirautythg code.

3.1.1 Examples
3.1.1.1 NeXTSTEP

During the late 1980s, Steve Jobs formed the coenmampany NeXT. One of NeXT's
first tasks was to design an object-oriented opegatystem, NEXTSTEP. They did this
by adding an object-oriented framework on top oftMand BSD using the Objective-C
language as a basis.

NEXTSTEP's basis, Mach and BSD, are not objearnbed. Instead, the object-oriented
portions of the system live in userland. Thus, NEXEP cannot be considered an
object-oriented operating system in the stricteshs.

The NeXT hardware and operating system were natessful, and, in search of a new
strategy, the company re-branded its object-orcertechnology as a cross-platform
development platform.

Though NeXT's efforts were innovative and noveéytlyained only a relatively small
acceptance in the marketplace. NeXT was later aediury Apple Computer and its
operating system became the basis for Mac OS X wsibly in the form of the "Cocoa"
frameworks.

3.1.1.2 Choices

Choices is an object-oriented operating system ezt developed at the University of

lllinois at Urbana-Champaign. It is written in CHahd uses objects to represent core
kernel components like the CPU, Process and stnberitance is used to separate the
kernel into portable machine independent classebk samall non-portable dependent

classes. Choices has been ported to and runs oRGP#6 and ARM.

3.1.1.3 Athene

Athene is an object based operating system fitsased in 2000 by Rocklyte Systems.
The user environment is constructed entirely frobojects that are linked together at
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runtime. Applications for Athene can also be créatising this methodology and are
commonly scripted using the object scripting largguaDML' (Dynamic Markup
Language). Objects can be shared between prodegsesating them in shared memory
and locking them as required for access. Athengacb framework is multi-platform,
allowing it to be used in Windows and Linux envinoents for the development of object
oriented programs.

3.1.1.4 BeOS

One attempt at creating a truly object-orientedratpeg system was the BeOS of the mid
1990s, which used objects and the C++ languagetherapplication programming
interface (API). But the kernel itself was writtenC with C++ wrappers in user space.
The system did not become mainstream though endaytit has its fans and benefits
from ongoing development.

3.1.15 Syllable
Syllable makes heavy use of C++ and for that re@ésoften compared to BeOS.
3.1.1.6 TAJ

TAJ is India’s first object oriented operating syst It is made in C++ with some part in
assembly. The source code of TAJ OS is highly marizéd and is divided into different
modules, each module is implemented as class. Mdogct oriented features like
inheritance, polymorphism, virtual functions ete a&xtensively used in developing TAJ
Operating System. TAJ OS is a multitasking, muigdding and multiuser operating
system.

The kernel of TAJ Operating System is of monolittyipe. i.e. all the device drivers and
other important OS modules are embedded into kétsedf. This increases the speed of
execution by reducing context switching time (titaken to execute a system call).

TAJ OS is developed by Viral Patel. You can dowdldlae image file for TAJ OS at
http://www.viralpatel.net or http://www.geocitiesro/taj_os

Features of TAJ Operating System:

« 32-bit Protected mode Operating System

- Paging enable

- Secure Exception handling

- Interrupt management system

- Work with different kinds of CPU (80386 onwards).
« Fully functional built in keyboard driver

- Total DMA control

- Floppy driver

- Mouse driver

- Fat file system driver
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« Multitasking
« Multithreading
« Multiuser

3.1.1.7 Java-based operating systems

Given that Sun Microsystems' Java is today onehefrhost dominant object-oriented
languages, it is no surprise that Java-based apgatstems have been attempted. In this
area, ideally, the kernel would consist of the bareimum required to support a JVM.
This is the only component of such an operatingesyshat would have to be written in a
language other than Java. Built upon that JVM aamsldbhardware support, it would be
possible to write the rest of the operating systedava; even parts of the system that are
more traditionally written in a lower-level langwaguch as C, for example device
drivers, can be written in Java.

Examples of attempts at such an operating systelmde JNode and JOS
3.2 Time-sharing
Time-sharing refers to sharing a computing resource among maaks by multitasking.

Because early mainframes and minicomputers wenereely expensive, it was rarely
possible to allow a single user exclusive accedhd¢omachine for interactive use. But
because computers in interactive use often sperth wiutheir time idly waiting for user
input, it was suggested that multiple users coblites a machine by using one user's idle
time to service other users. Similarly, small dioé time spent waiting for disk, tape, or
network input could be granted to other users.

Throughout the late 1960s and the 1970s computairials were multiplexed onto large
institutional mainframe computers (central computgystems), which in many
implementations sequentially polled the terminalsee if there was any additional data
or action requested by the computer user. Latémnogy in interconnections were
interrupt driven, and some of these used parakiéh dransfer technologies like, for
example, the IEEE 488 standard. Generally, compateninals were utilized on College
properties in much the same placesdasktop computersr personal computersire
found today. In the earliest days of personal cdemsy many were in fact used as
particularly smart terminals for time-sharing sysse

With the rise of microcomputing in the early 1980tsne-sharing faded into the
background because the individual microprocesser® wufficiently inexpensive that a
single person could have all the CPU time dedicatdly to their needs, even when
idle.

The Internet has brought the general concept oe-sharing back into popularity.

Expensive corporate server farms costing millioas bost thousands of customers all
sharing the same common resources. As with thg sarial terminals, websites operate
primarily in bursts of activity followed by periods idle time. The bursty nature permits
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the service to be used by many website customeysca, and none of them not ice any
delays in communications until the servers stagdbvery busy.

3.2.1 The Time-Sharing Business

In the 1960s, several companies started providinge-sharing services as service
bureaus. Early systems used Teletype K/ASR-339AER-35s in ASCII environments,
and an IBM teleprinter in EBCDIC environments. Theguld connect to the central
computer by dial-up acoustically coupled modemsragpey at 10-15 characters per
second. Later terminals and modems supported 3G:&facters per second. The time-
sharing system would provide a complete operatmgrenment, including a variety of
programming language processors, various softwackgges, file storage, bulk printing,
and off-line storage. Users were charged rent ler terminal, a charge for hours of
connect time, a charge for seconds of CPU time aacttarge for kilobyte-months of disk
storage.

Common systems used for time-sharing included & $40, the PDP-10, and the IBM
360. Companies providing this service included Tiyans (founded in 1966), Dial Data
(bought by Tymshare in 1968), and Bolt, Beranekl, lewman. By 1968, there were 32
such service bureaus serving the NIH alone.

3.2.2 History

The concept was first described publicly in ea®% 7 by Bob Bemer as part of an article
in Automatic Control MagazineThe first project to implement a time-sharing teys
was initiated by John McCarthy in late 1957, on adified IBM 704, and later an
additionally modified IBM 7090 computer. Althougle heft to work on Project MAC
and other projects, one of the results of the ptpjenown as theCompatible Time
Sharing Systerar CTSS, was demonstrated in November, 1961. Q¥S8S good claim
to be the first time-sharing system and remainagsauntil 1973. The first commercially
successful time-sharing system was Bretmouth Time-Sharing SystgiidTSS) which
was first implemented at Dartmouth College in 1964l subsequently formed the basis
of General Electric's computer bureau services. ®Ti8luenced the design of other
early timesharing systems developed by Hewlett &alckControl Data Corporation,
UNIVAC and others (in addition to introducing th&8IC programming language).

Other historical timesharing systems, some of teglinn widespread use, include:

« IBM CMS (part of VM/CMS)

« IBM TSS/360 (never finished; see OS/360)

« IBM Time Sharing Option (TSO)

« KRONOS (and later NOS) on the CDC 6000 series
« Michigan Terminal System

- Multics

- MUSIC/SP

« ORVYL

« RSTS/E
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6.0

7.0

« RSX-11
« TENEX
- TOPS-10
« TOPS-20

4.0 Conclusion

As you have learnt in this unit, several attemptad hbeen made at
developing a truly object-oriented operating systéhe unit has also discussed the basic
features of some the object-oriented OS in exigtid¢oday.

5.0 Summary

This unit has briefly discussed the time-sharinggrapng system as well as object-
oriented OS and the various attempts that have beste to develop them. In the next
unit you will be learning about some of the basindtions of the OS and how they are
achieved.

Tutor Marked Assignment

You are to attempt the following assignments arlthstyour answers to your tutor for
this course. Here we go:

1. What do you under by object-oriented OS
2. Discuss at least three of the attempts that haea beade to develop object-oriented
OS stating the characteristic features of eachetkamples of these attempts.
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1.0 Introduction

Early computer systems allowed one program to leewted at a time. This program has
complete control of the system, and had accesk tloeasystem’s resources. Current-day
computer systems allow multiple programs to be éolaitito memory and to be executed
concurrently. This evolution requires firmer comtamd more compartmentalization of
the various programs. These needs resulted in dheon of a process, which is a
program in execution. A process is the unit of warle modern time-sharing system.

Although, the main concern of the OS is the executif user programs, it also needs to
take care of various system tasks that are betteoutside the kernel itself. A system

therefore consists of a collection of processeser@mg system processes executing
system code, and user processes executing userAlbtleese processes can potentially
execute concurrently, with the CPU (or CPUs) midkpd among them. By switching

the CPU between processes, the operating systemma® the computer more

productive.

2.0 Obijectives

At the end of this unit, you should be able to:
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» Define a process

» List the possible states of a process

» Describe a process control block (PCB)

» Describe process creation and process termination

3.0 Main Body
3.1 The Process

Informally, a processis a program in execution or simply an instanceaaiomputer
program that is being executed. It is more thanptogram code, which is sometimes
calledtext section While a program itself is just a passive collectof instructions, a
process is the actual execution of those instrostidt includes the current activity, as
represented by the value of the program counterthadcontents of the processor’'s
registers. In addition, a process generally incdutitee process stack, which contains
temporary data (such as method parameters, retisinesses, and local variables), and a
data section which contains global variables.

You should note the emphasis that a program bif iss@ot a process; a program is a
passiveentity such as the content of the file stored isk,dvhereas a process is attive
entity, with a program counter specifying the nadtruction to execute and a set of
associated resources.

Several processes may be associated with the saogeam - each would execute
independently (multithreading - where each threagrasents a process), either
synchronously (sequentially) or asynchronouslyp@nallel). Although, two processes
may be associated with the same program, they tieless considered two separate
execution sequences. For instance, several usgrdenaunning different copies of the
mail program, or the same user may invoke manyesopf the editor program. Each of
these is a separate process, and although theetetdns are equivalent, the data sections
vary. It is also common to have a process that spanany processes as it runs.

Modern computer systems allow multiple programs anacesses to be loaded into
memory at the same time and, through time-shaongngltitasking), give an appearance
that they are being executed at the same teoacurrently even if there is just one
processor. Similarly, using a multithreading OS/andomputer architecturgarallel
processes of the same program may actually exsoutdtaneouslyon different CPUS)
on a multiple CPU machine or network.

In general, a computer system process consist®rofs(said to ‘own’) the following
resources:

- Animageof the executable machine code associated witbhgrgm.

- Memory (typically some region of virtual memory);high includes the
executable code, process-specific data (input ampud), a call stack (to keep
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track of active subroutines and/or other events)d a heap to hold
intermediate computation data generated duringment

- Operating system descriptors of resources thataoeated to the process,
such as file descriptors (Unix terminology) or hiesd(\Windows), and data
sources and sinks.

- Security attributes, such as the process owner thed process' set of
permissions (allowable operations).

- Processor state (context), such as the contenegséters, physical memory
addressing, etc. Thstateis typically stored in computer registers when the
process is executing, and in memory otherwise.

3.2 Process states

As a process executes, it changes state. Thedtaterocess is defined in part by the
current activity of that process. Each process b&in one of the following states:

* New: The process is being created.

* Running: Instructions are being executed.

» Waiting: The process is waiting for some event to occuri{ag1/O completion
or reception of a signal)

* Ready:the process is waiting to be assigned to a process

» Terminated: The processor has finished execution.

Terminated

Admitted
Interrupt

Ready Running

Scheduler dispatch

I/O or Event completion I/O or Event wait

Figure 3.1: Process State

These state names are arbitrary, and they vangssaaperating systems. The states that
they represent are found on all systems, howeventa(® operating systems more finely

delineate process states. Only one process ceumhagon any processor at any instant,

although many processes mayrbadyandwaiting. The state diagram corresponding to

these states is presented in Figure 3.1. The \sapoocess states, are displayed in the
figure, with arrows indicating possible transitidietween states.
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3.3 Process Control Block (PCB)

Each process is represented in the operating sysyeaprocess control block (PCB) —
also called a task control block. A PCB containswynpieces of information associated
with a specific process as shown in Figure 3.2Welo

Pointer Process State

Process number

Program counter

Registers

Memory limits

List of open files

Figure 3.2: Process Control Block (PCB)

The content of the PCB include:

* Process StateAs you have learnt in the previous sectithre state may be new,
ready, running, waiting, halted, etc.

* Program counter: The counter indicates the address of the nextucistn to be
executed for this process.

» CPU registers: the register vary in number and type, dependinghencomputer
architecture. They include accumulators, index stegs, stack pointers, and
general-purpose registers, plus any condition-doftermation. Along with the
program counter, this state information must beedavhen an interrupt occurs, to
allow the process to be continued correctly aftedwéFigure 3.3)

* CPU-Scheduling information: This information includes a process priority,
pointers to scheduling queues, and any other sthgdrarameters.

* Memory-management information: this information may include such
information as the value of the base and limit seys, the page tables, or the
segment tables, depending on the memory systembysid operating system.

» Accounting information: this information includes the amount of CPU and rea
time used, time limits, account numbers, job orcpss numbers, etc.
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* |/O status information: the information includes the list of I/O devicefahted
to this process, a list of open files, etc.

The PCB simply serves as the repository for angrmation that may vary from
process to process.

proces$, operating system proces$;

interrupt or system c:

Executing‘ /—
v v 3

\ save state into PCa
> Idle
reload state from PG / J
) Executing
> Idle interrupt or system c:
v 1T
save state into PG
> Idle
} reload state om PCEa

J
Executing l ‘¥

Figure 3.3: Diagram showing CPU switch from proce&sprocess

3.4  Process Scheduling

The objective of multiprogramming is to have somecpss running at all times so as to
maximize CPU utilization. The objective of time-ghg is to switch the CPU among
processes so frequently that users can interabtegith program while it is running. A
uniprocessor system can have only one running psodemore processes exist, the rest
must wait until the CPU is free and can be rescleedu

3.4.1 Scheduling Queues
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As processes enter the system, they are put ijub gueue This queue consists of all
processes in the system. The processes that adexges; main memory and are ready
and waiting to execute are kept on a list calledréady queue This queue is generally
stored as a linked list. A ready-queue header amaointers to the first and final PCB
in the list. We extend each PCB to include a poifiedd that points to the next PCB in
the ready queue.

The operating system also has other queues. Whawocass is allocated the CPU, it
executes for a while and eventually quits, is mfeted, or waits for the occurrence of a
particular event, such as the completion of anréquest. In the case of 1/0O request, such
a request may be to a dedicated tape drive, oshaeed device, such as a disk. Since the
system has many processes, the disk may be bubkythatl/O request of some other
process. The process therefore may have to waitherdisk. The list of processes
waiting for a particular I/O device is called a t®vqueue. Each device has its own
queue.

A common way of representating process schedubnigyi using agqueueing diagram,
such as that in Figure 3.4. Each rectangular bpresents a queue. Two types of queues
are present: the ready queue and a set of devieaegqu The circles represent the
resources that serve the queues, and the arrowsatedhe flow of processes in the
system.

A new process is initially put in the ready quelievaits in the ready queue until it is
selected for execution (or dispatched). Once tloeqss is assigned to the CPU and is
executing, one of several events could occur:

» The process could issue an I/O request, and thetabed in an I/O queue.

* The process could create a new sub process andowag termination.

» The process could be removed forcibly from the C&result of an interrupt, and
be put back in the ready queue.

* In the first two cases, the process eventuallyches from the waiting state to the
ready state, and is then put back in the readyeu&process continues this cycle
until it terminates, at which time it is removedrr all queues and has its PCB
and resources deallocated.

3.4.2 Schedulers

A process migrates between the various schedulirryies throughout its lifetime. The
operating system must select, for scheduling p@gmoprocesses for these queues in
some fashion. The selection process is carriethythe appropriatecheduler.

In a batch system, often more processes are sentithn can be executed immediately.
These processes are spooled to a mass-storagee,deNiere they a re kept for later
execution. The long-term scheduler, or job schedwelects processes from this pool
and loads them into memory for execution. The stesrh scheduler, or CPU scheduler,
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selects from among the processes that are reaglketute, and allocates the CPU to one
of them.

—> ready queue — >
> » CPL
. I/O queue P I/O request

time slice expired

A

A

A

child execute fork a child

A

interrupt occur interrupt <

@ wait for an

Figure 3.4: Queuing-diagram representation of pragescheduling

The primary distinction between these two schedukethe frequency of their execution.
The short-term scheduler must select a new prdoeshie CPU frequently. A process
may execute for only a few milliseconds before imgitfor an 1/0 request. Often, the
short-term scheduler executes at least once ev¥ryrilliseconds. Due to the brief time
between executions, the short-term scheduler neutdi.

The long-term scheduler, on the other hand, exsautech less frequently. There may be
minutes between the creation of new processeseirsystem. The long-term scheduler
controls the degree of multiprogramming - the nambf processes in memory. If the

degree of multiprogramming is stable, then the ayemrate of process creation must be
equal to the average rate of processes leavingsystem.. therefore, the long-term

scheduler may need to be invoked only when prdees®s the system.

3.4.3 Context Switch

Switching the CPU to another process requires gathe state of the old process and
loading the saved state for the new process. Hsis is known as context switch. The
context of a process is represented in the PCBmbeess; it includes the value of the
CPU registers, the process state (Figure 3.1), machory-management information.
When a context switch occurs, the kernel savesdnéxt of the old process in its PCB
and loads the saved context of the new processisidteto run. Context-switch time is
pure overhead, because the system does no usekilwide switching. Its speed varies
from machine to machine, depending on the memoegdpthe number of registers that
must be copied, and the existence of special icistns. Typical speeds range from 1 to
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1000 micro seconds. Also, context-switch times highly dependent on h/which
support.

3.5 Operations on Processes

The processes in the system can execute concytrami they must be created and
deleted dynamically. Therefore, the operating systaust provide a mechanism (or
facility) for process creation and termination.

3.5.1 Process Creation

A process may create several new processes,criate-process system call, during the
course of execution. The creating process is callpdrent process, whereas the new
processes are called tohildren of that process. Each of these new processes may i
turn create other processes, forming a tree ofgsses (Figure 3.5).

In general, a process will need certain resoursesh(as CPU time, memory, files, 1/0
devices) to accomplish its task. When a procesat&sea subprocess, that subprocess
may be able to obtain its resources directly frdv@ bperating system, or it may be
constrained to a subset of the resources of thenparocess. The parent may have to
partition its resources among its children, or @ynbe able to some resources (such as
memory or files) among several of its children. tReting a child process to a subset of
the parent’s resources prevents any process frarioading the system by creating too
many subprocesses.

When a process is created it obtains initializatata (or input) that may be passed along
from the parent process to the child process intiaddo the various physical and logical
resources. For instance, consider a process whostidn is to display the status of a
file, sayF;, on the screen of a terminal. When it is createalill get, as an input from its
parent process, the name of the kg and it will execute using that datum to obtaia th
desired information. It may also get the name & tutput device. Some operating
systems pass resources to child processes. Onassgsiem, the new process may get
two open files,F; and the terminal device, and may just need tosfeanthe datum
between the two.

When a process creates a new process, two posssékist in terms of execution:

1. The parent continues to execute concurrently vatichildren.
2. The parent waits until some or all of its childieave terminated

There are also two possibilities in terms of thdrads space of the new process:

1. The child process is a duplicate of the parentgssc
2. The child process has a program loaded into it.

In UNIX, every process except process 0 (the swappereated when another process
executes the fork system call. The process thakiew fork is theparent processnd the
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newly-created process is tlohild process Every process (except process 0) has one
parent process, but can have many child processes.

In UNIX, a child process is in fact created (usfogk) as a copy of the parent. The child
process can then overlay itself with a differemtggam (usingexec) as required.

Each process may create many child processes tiuhavie only one parent process,
except for the very first process which has no miar€he first process, calledit in
UNIX, is started by the kernel at booting time ax@yer terminates.

The kernel identifies each process by its processtifier (PID). Process O is a special
process that is created when the system boots;fafteng a child process (process 1),
process 0 becomes the swapper process. Processvin lasi ni t, is the ancestor of
every other process in the system.

When a child process terminates execution, eithiaralling theexit system call, causing
a fatal execution error, or receiving a terminatangnal, an exit status is returned to the
operating system. The parent process is informedsothild's termination through a
SIGCHLD signal. A parent will typically retrievesichild's exit status by calling theait
system call. However, if a parent does not dottse,child process becomeszambie
process.

root

page daemon swapper init

User 1 User 2 User 3

Figure 3.5: A tree on a typical UNIX system
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On Unix and Unix-like operating systemszambie processor defunct processis a
process that has completed execution but stillamasntry in the process table, this entry
being still needed to allow the process that sfiattee zombie process to read its exit
status.

Example

Here is some sample C programming language coillestrate the idea of forking. The
code that is in the "Child process” and "Parentcess" sections are executed
simultaneously.

pid t pid;
pid = fork();
if(pid == 0)
{

/* Child process:

* When fork() returns O, we are in

* the child process.

* Here we count up to ten, one each second.

*/
int j;
for(j=0; j < 10; j++)
{
printf(“child: %\n", j);
sl eep(1);
}
_exit(0); /* Note that we do not use exit() */
}
else if(pid > 0)
{
/* Parent process:
* Oherwise, we are in the parent process.
* Again we count up to ten.
*/
int i;
for(i=0; i < 10; i++)
{
printf("parent: %\n", i);
sl eep(l);
}
}
el se
{

/* Error handling. */
fprintf(stderr, "could not fork");
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exit(1);
}

This code will print out the following:

parent: O
child: O
child: 1
parent: 1
parent: 2
child: 2
child: 3
parent: 3
parent: 4
child: 4
child: 5
parent: 5
parent: 6
child: 6
child: 7
parent: 7
parent: 8
child: 8
child: 9
parent: 9

Figure 3.6: C program forking a separate process
The order of each output is determined by the Kerne

Windows NT operating system supports both moddtg Garent’'s address space may be
duplicated, or the parent may specify the name mfogram for the operating system to
load into the address space of the new process.

3.5.2 Process Termination

A process terminates when it finishes executin@nisl statement and asks the operating
system to delete it by using exit system call. Adttpoint, the process may return data
(output) to its parent process (via the wait systait). All the resources of the process —
including physical and virtual memory, open filasid 1/0O buffers — are deallocated by
the operating system.

Termination occurs under additional circumstanéeprocess can cause the termination
of another process via an appropriate system aalladort. Usually, only the parent of
the process that is to be terminated can invokk awystem call. Otherwise, users could
arbitrarily kill each other’s jobs. A parent, thene, need to know the identities of its
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children. Thus, when one process creates a neveggpthe identity of the newly created
process is passed to the parent.

A parent may terminate the execution of one otlt#dren for a variety of reasons, such
as these:

 The child has exceeded its usage of some of theuress that it has been
allocated. This requires the parent to have a nmesimato inspect the state of its
children.

* The task assigned to the child is no longer require

» The parent is exiting, and the operating systens @élew a child to continue if its
parent terminate. On such systems, if a processirtates (either normally or
abnormally), then all its children must also benteated. This phenomenon,
referred to as cascading termination, is normailyated by the operating system.

To illustrate process execution and terminatiomsater that in UNIX, we can terminate
a process by using the exit system call; its papemtess may wait for the termination of
a child process by using wait system call. The veggtem call returns the process
identifier of a terminated child, so that the parean tell which of its possibly many
children has terminated. If the parent terminabesyever, all its children have assigned
as their new parent the init process. Thus, thiel@n still have a parent to collect their
status.

4.0 Conclusion

This unit has introduced you to the concept of psses. It has extensively discussed
process control block, process scheduling and énews operations that can be carried
out on processes.

In the next unit, you will be taken through co-cgierg processes and the means through
which these co-operating processes communicateonghanother.

5.0 Summary

As you have learnt in this unit, a process is ag@m in execution. As a process
executes, it changes state. The state of a prosedsfined by that process current
activity. Each process may be in one of the follayvistates: new, ready, running,
waiting, or terminated. Each process is represemdtie operating system by its own
process-control block (PCB).

A process, when it is not executing is placedams waiting queue. The two major
classes of queues in an operating system are ¢f@es¢ queues and the ready queue. The
ready queue contains all the processes that ady teaexecute and are waiting for the
CPU. Each process is represented by a PCB, arféiGBecan be linked together to form
a ready queue. Long-term (or job) scheduling isd&n of processes to be allowed to
contend for the CPU. Long-term scheduling is nolnahfluenced by resource —
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allocation considerations, especially memory manmegd. Short-term (or CPU)
scheduling is the selection of one process frome¢ady queue.

6.0 Tutor-Marked Assignment

What do you understand by the term ‘Process’?

Distinguish between a process and a program

List and explain the possible states of a process

Describe a process control block (PCB).

What are possible information that a PCB will canfea

Describe the actions taken by the kernel to swataiitext between processes.
Describe process creation and process termination.

What do you understand by process scheduling?

Explain the various types of scheduling we have.

CoNO~WNE
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1.0 Introduction

The previous unit has introduced you to the cona#pprocesses and the various
operations that can be carried out on processasetsues, when you have more than
one process running on the computer system, thayeb@ need for them to interact with
one another. This unit takes you through the dffiemways that these various processes
that may be running on the computer system atadhedime interacts with one another.

2.0 Objectives

At the end of this unit, you should be able to:

» Describe the concept of co-operating processes

» State reasons for allowing process co-operation

» Explain interprocess communication

» Describe message passing

» Describe some methods for logically implementingnk and the send/receive
operations

» Describe means of ensuring synchronization comnatinig processes

» Describe the concept of buffering and the varioagsnt can be implemented.

3.0 Main Body
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3.1 Co-operating processes

The concurrent processes executing in the operajstem may be either independent
processes or co-operating processes. A proc@sdependentif it cannot be affected by
the other processes executing in the system. @leary process that does not share any
data (temporary or persistent) with any other pgeds independent. Whereas, a process
Is co-operating if it can be affected by the other processes dxggun the system.
Clearly, any process that shares data with othrmrgsses is co-operating process.

We may want to provide an environment for processperation for several reasons:

» Information sharing: since several users may be interested in the g@gue of
information, e.g. a shared file, we must provide emvironment to allow
concurrent access to these types of resources.

» Computation speedup:if we want a particular task to run faster, we nmustak it
into sub-tasks, each of which will be executingarallel with the others. Such a
speedup can be achieved only if the computer hdspfeuprocessing elements
(such as CPUs or I/O channels).

* Modularity: We may want to construct the system in a modwalsinibn, dividing
the system functions into separate processes eadhbr

» Convenience:even an individual user may have many tasks omhwvto work at
one time. For instance, a user may be editingtipgnand compiling in parallel.

Concurrent execution of co-operating processes inegjumechanisms that allow
processes to communicate with one another andhichsynize their actions.

To illustrate the concept of co-operating procesetsis consider the producer-consumer
problem, which is a common paradigm for co-opegapnocesses. Aroducer process
produces information that is consumed bgansumer process. For example, a print
program produces characters that are consumecklprititer driver.

To allow producer and consumer processes to ruoucantly, we must have available a
buffer of items that can be filled by the produeerd emptied by the consumer. A
producer can produce one item while the consumeswuing another item. The
producer and consumer must be synchronised, sat tha¢s not try to consume an item
that has not yet been produced. In this situatise.consumer must wait until an item is
produced.

The unbounded-buffer producer-consumer places aotipal limit on the size of the
buffer. The consumer may have to wait for new iteim#t the producer can always
produce new items. The bounded-buffer producerwoes problem assumes a fixed
buffer size. In this case, the consumer must Vdltd buffer is empty and the producer
must wait if the buffer is full.

The buffer may either be provided by the operataygtem through the use of an
interprocess-communication (IPC) facility (this wihbe discussed fully in the next
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section), or explicitly coded by the applicationogmammer with the use of shared
memory.

3.2 Interprocess Communication (IPC)

Processes can communicate with each other viapnteess communication (IPC). This
Is possible for both processes running on the saashine and on different machines.

IPC provides a mechanism to allow processes to agmuate and to synchronise their
actions without sharing the same address spacesiparticularly useful in a distributed
environment where the communicating processes reagle on different computers
connected with a network. An example of this idhatg@rogram used on the World Wide
Web (WWW).

IPC is best provided by message-passing systemnassage-passing system can be
defined in many ways. We are now going to look iffecent issues when designing
message-passing systems.

3.2.1 Message-Passing system

The function of a message system is to allow psE®$ communicate with one another
without the need to resort to shared data. An IBGIlify provides at least the two
operationssend(message) anceceive(message).

Messages sent by a process can be of either fixe@r@able size. If only fixed-sized
messages can be sent, the system-level implenwmntasi straightforward. This
restriction, however, makes the task of programnmgge difficult. On the other hand,
variable-sized messages require a more compleemygvel implementation, but the
programming task becomes simpler.

If processes” and Q want to communicate, they must send messagesdaeneive
message from each otherg@mmunication link must exist between them. This link can
be implemented in a variety of ways. We are coregimere not with the link’s physical
iImplementation (such as shared memory, hardwargdsusetwork), but rather with its
logical implementation. Here are several methodddgically implementing a link and
thesend/receive operations:

» Direct or indirect communication

e Symmetric or asymmetric communication
* Automatic or explicit buffering

» Send by copy or send by reference

» Fixed-sized or variable-sized messages

We are going to look at each of these types of agessin the following section.

3.2.2 Naming
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Processes that want to communicate must have donayer to each other. They can use
either direct or indirect communication.

3.221 Direct Communication

With direct communication, each process that waot€ommunicate must explicitly
name the recipient or sender of the communicationthis scheme, theend and
receive primitives are defined as follows:

» send (P, message) — Send message to process P
* receive (Q, message) — Receive a message from process Q

A communication link in this scheme has the follogvproperties:

* a link is established automatically between evey pf processes that want to
communicate. The processes need to know only edbbkr's identity to
communicate.

* Alink is associated with exactly two processes.

» Exactly one link exists between each pair of preess

This scheme exhibits symmetry in addressing; thaboth the sender and the receiver
processes must name the other to communicate. mntaof this scheme employs
asymmetry in addressing. Only the sender namesrdbipient, the recipient is not
required to name the sender. In this schemed andreceive primitives are defined as
follows:

» send (P, message) — Send message to process P
» receive (id, message) — Receive a message from any prabesgriable id is set
to the name of the process with which communicatias taken place.

The disadvantage in both symmetric and asymmetciterses is the limited
modularity of the resulting process definitions.a@fing the name of a process may
necessitate examining all other process definitidigefrences to the old name must
be found, so that they can be modified to the name this situations is not
desirable from the viewpoint of separate compitatio

3.2.2.2 Indirect Communication

With indirect communication, the messages are seand received from mailboxes

or ports. A mailbox can be viewed abstractly aslject into which messages can be
placed by processes and from which messages caentmed. Each mailbox has a
unique identification. In this scheme, a process cammunicate with some other

process via a number of different mailboxes. Twacpsses can communicate only if
they share a mailbox. Tls®end andreceive primitives are defined as follows:

* send (A, message) — Send a message to ma#box

88



* receive (A, message) — Receive a message from masbox
In this scheme, a communication link has the follmaproperties:

* Alink is established between a pair of process#g b both members of the
pair have a shared mailbox.

A link may be associated with more than two proesss

A number different links may exist between eachr Hi communicating
processes, with each link corresponding to onelboaxil

Now suppose that processBg P, and P; all share mailboxA. ProcessP; sends a
message t@, while P, andP; eacha receive from A. Which process will receive the
message sent 18;? The answer depends on the scheme that we choose:

* Allow a link to be associated with at most two @eses

» Allow at most one process at a time to executecaive operation.

» Allow the system to select arbitrarily which prosesill receive the message (that
Is, eitherP, or P;, but not both, will receive the message). Theesysmay
identify the receiver to the sender.

A mailbox may be owned by either a process or kyaiberating system. if the mailbox is
owned by a process (i.e. that mailbox is part efatldress space of the process), then we
distinguish between the owner (who can only receressages through this mailbox) and
the user (who can only send messages to the mailBomce each mailbox has a unique
owner, there can be no confusion about who shoetgive a message sent to this
mailbox. When a process that owns a mailbox terteg)ahe mailbox disappears. Any
process that subsequently sends a message to aililsoramust be not ified that the
mailbox no longer exists.

On the other hand, a mailbox owned by the operaysgem is independent and is not
attached to any particular process. The operafstes) then must provide a mechanism
that allows a process to do the following:

= Create a new mailbox
= Send and receive messages through the mailbox
»= Delete a mailbox

The process that creates a new mailbox is thatoowdd owner by default. Initially, the
owner is the only process that can receive mesdagasgh the mailbox. However, the
ownership and receive privilege mat be passed hergbrocesses through appropriate
system calls. Of course, the provision would resuthultiple receiver for each mailbox.

3.2.3 Synchronization
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Communication between processes takes place Is/toalénd andreceive primitives.
There are different design options for implementeach primitive. Message passing
may be either blocking or nonblocking — also knassynchronousandasynchronous

» Blocking send:the sending process is blocked until the messaggceived by the
receiving process or by the mailbox.

= Nonblocking send:the sending process sends the message and respenason.

» Blocking receive:the receiver blocks until a message is available.

= Nonblocking receive:the receiver retrieves either a valid messagemila

Different combinations osend and receive are possible. When both tkend and
receive are blocking, we haverandezvousbetween the sender and the receiver.

3.2.4 Buffering

Whether the communication is direct or indirectssages exchanged by communicating
processes reside in a temporary queue. Basicaltyy & queue can be implenmented in
three ways:

= Zero capacity: The queue has maximum length 0; thus, the linkhcarhave any
messages waiting in it. In this case, te sendert rhlosk until the recipient
receives the message.

= Bounded capacity: The queue has finite length thus, at mosh messages can
reside in it. If the queue is not full when a new@ssage is sent, the latter is placed
in the queue (either the message is copied orrdgydio the message is kept), and
the sender can continue the execution without agitiThe link has a finite
capacity, however. If the link is full, the sendheust block until space is available
in the queue.

= Unbounded capacity:The queue has potentially infinite length; thusy anmber
of messages can wait in it. The sender never blocks

The zero capacity case is sometimes referred storagssage system with no buffering;
the other cases are referred to as automatic Inter

4.0 Conclusion

In this unit, you have been taken through the cpnhoé co-operating processes, the
means through which they communicate, and the warioneans to ensure
synchronization between communicate processes.

5.0 Summary

As you have learnt in this unit, the processeshi system can execute concurrently.
There are several reasons for allowing concurrecwion: information sharing,

computation speedup, modularity,, and convenier@@encurrent execution requires
mechanism for process creation and deletion.
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The processes executing in the operating systembmagrther independent processes or
co-operating processes. Co-operating processes mawst the means to communicate
with each other. Principally, two complementary commication schemes exist: shared
memory and message systems. The shared-memory dnetgoires communicating
processes to share some variables. The processex@acted to exchange information
through the use of these shared variables. In @dhaemory system, the responsibility
for providing communication rests with the applioat programmers, the operating
system needs to provide only the shared memorynidssage-system method allows the
processes to exchange messages. The respondibiliproviding communication may
resy with the operating system itself. These tweestes are not mutually exclusive, and
can be used simultaneously within a single opeyatystem.

6.0 Tutor-Marked Assignment

What do you understand by co-operating processes
State reasons for allowing process co-operation
What do you understand by interprocess communictiRC)
What are the benefits and detriments of each ofdhewing? Consider both the
system and the programmers’ levels.

a. Direct and indirect communication

b. Symmetric and asymmetric communication

c. Automatic and explicit buffering

d. Send by copy and send by reference

e. Fixed-sized and variable-sized messages
5. Consider the IPC scheme where mailboxes are used.

a. Suppose a procegswants to wait for two messages, one from mailBox
and one from mailbo¥B. What sequence afend andreceive should it
execute?

b. What sequence afend andreceive shouldP execute ifP wants to wait
for one message from mailbéxor from mailboxB (or from both)

c. A receive operation makes a process wait until the maillsoranempty.
Devise a scheme that allows a process to wait antiilbox is empty, or
explain why such a scheme cannot exist.

6. Briefly explain buffering and the various ways d@ncbe implemented.

PwN PR
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1.0 Introduction

A thread, sometimes called lghtweight process (LWP), is a basic unit of CPU
utilization; it comprises a thread ID, a progranumir, a register set, and a stack. It
shares with other threads belonging to the sameepsaits code section, data section, and
other operating system resources, such as opes ditel signals. A traditional (or
heavyweigh) process has a single thread of control. If thec@ss has multiple threads
of control, it can do more than one task at a tiffigure 3.1 illustrates the difference
between a traditional single-threaded process andlathreaded process.

2.0 Objectives
At the end of this unit, you should be able to:
= Distinguish between a thread and a process

= Enumerate the advantages of threads over processes
= Distinguish between user and kernel threads
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= Describe various multithreading models and theuwaatages and disadvantages.
= State the advantages of thread pools and the niotivar thread pools.

3.0 Main Body
3.1 Threads

In modern operating systems, each process can $ewxeralthreads of executiofor
threads for short). Multiple threads share the same pnogode, operating system
resources (such as memory and file access) anadtomeisystem permissions (for file
access as the process they belong to). A procassdls only one thread is referred to as
a single-threadegrocess, while a process with multiple thread=isrred to as anulti-
threadedprocess. Multi-threaded processes have the adyariteat they can perform
several tasks concurrently without the extra ovadheeeded to create a new process and
handle synchronised communication between theseegses. For example a word
processor could perform a spell check as the ypest without freezing the application -
one thread could handle user input, while anotines the spell checking utility.

3.1.1 Motivation

Many software packages that run on modern desktGs Bre multithread. An
application typically is implemented as a sepapateess with several threads of control.
A web browser might have one thread display imagesext while another thread
retrieves data from the network. A word processayrhave athread for displaying
graphics, another thread for reading keystrokemftbe user, and a third thread for
performing spelling and grammar checking in thekigacund.

In certain situations a single application may éguired to perform several similar tasks.
For instance, a web server accepts client reqéesiseb pages, images, sound, and so
on. A bus web server may have several (perhapsreadsdof) clients concurrently
accessing it. If the web server ran as a traditismayle-threaded process, it would be
able to service only one client at a time. The amai time that a client might have to
wait for its request to be serviced could be enarsno

One solution is to have the server run as a simgleess that accepts requests. When the
server receives a request, it creates a sepa@eg¥ to service that request. In fact, this
process-creation method was in common use befoeadh became popular. Process
creation, as you have seen in the previous unierg heavyweight. If the new process
will perform the same tasks as the existing prqoshy incur all that overhead?

It is generally more efficient for one process tbahtains multiple threads to serve the
same purpose. This approach would multithread tlee-server process. The server
would create a separate thread that would listerclient requests; when a request was
made; rather than creating another process, itdvordate another thread to service the
request.

3.1.2 Benefits
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The benefits of multithreaded programming can bekd&m down into four major
categories:

1. ResponsivenessMultithreading an interactive application may all@rogram to
continue running even if part of it is blocked smerforming a lengthy operation,
thereby increasing responsiveness to the userinstance, a multithreaded web
browser could still allow user interaction in oreelad while an image is being
loaded in another thread.

code date files code datz files
reaister. Stacl reaister. reaister reaister.
Stacl Stacl Stacl
threa(—>

T

threac

Single-threaded Multithreaded

Figure 3.1: Single- and multithreaded processes

2. Resource sharing:By default, threads share the memory and the resswf the
process to which they belong. The benefit of coldariag is that it allows an
application to have several different threads oivag all within the same address
space.

3. Economy: Allocating memory and resources for process creai® costly.
Alternatively, because threads share resourcdseqfrtocess to which they belong,
it is more economical to create and context swilgleads. It can be difficult to
gauge empirically he difference in overhead foatirgg and maintaining a process
rather than a thread, but in general it is muchenione consuming to create and
mange processes than threads.

4. Utilization of multiprocessor architectures: Multithreading is a popular
programming and execution model that allows mudtifhireads to exist within the
context of a single process, sharing the processurces but able to execute
independently. The threaded programming model des/idevelopers with a
useful abstraction of concurrent execution. Theefismof multithreading can be
greatly increased in a multiprocessor architectuwwbere each thread may be
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running in parallel on a different processor. Agseathreaded process can only
run on one CPU, no matter how many are availableltittireading on a multi-
CPU machine increases concurrency. In single-psocearchitecture, the CPU
generally moves between each thread so quicklyoasrg¢ate an illusion of
parallelism, but in reality only one thread is ringnat a time.

3.1.3 Types of Threads

Threads can be classified into two different types user threads and kernel threads,
depending on the level at which support is provifbedhreads.

Support for threads may be provided at either g&r level in which case the thread is
referred to asiser threadsor fibers, or by the kernel, in which case it is referred to
kernel threads.

User threads (Fibers):These are supported above the kernel and arenmepled
by a thread library at the user level. The librgmnpvides support for thread
creation, scheduling, and management with no sugpon the kernel. Since the
kernel is not aware of user-level threads, fibbeation and scheduling are done in
user space without the need for kernel intervenfldverefore, fibers are generally
fast to create and manage.

However, the use of blocking system calls in fibema be problematic. If a fiber
performs a system call that blocks, the other §berthe process are unable to run
until the system call returns. A typical example this problem is when
performing I/O: most programs are written to perfd/O synchronously. When
an /O operation is initiated, a system call is maahd does not return until the
I/O operation has been completed. In the intengeperiod, the entire process is
"blocked" by the kernel and cannot run, which\sarother fibers in the same
process from executing.

As mentioned earlier, fibers are implemented elytine userspace As a result,
context switching between fibers in a process duss require any interaction
with the kernel at all and is therefore extremdfjcent: a context switch can be
performed by locally saving the CPU registers ubgdhe currently executing
fiber and loading the registers required by theerfilo be executed. Since
scheduling occurs in userspace, the schedulingypoln be more easily tailored
to the requirements of the program's workload.

User-thread libraries include POSBRthreads Mach C-threads, and Solaris 2
Ul-threads.

Kernel threads: These are supported directly by the operatingesysthe kernel

performs thread creation, scheduling and manageme@rnel space. Due to the
fact that thread management is done by the opgraimstem, kernel threads are
generally slower to create and manage than arethis=ads. However, since the
kernel is managing the threads, if a thread peroanblocking system call, the
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kernel can schedule another thread in the appicator execution. Also in
multiprocessor environment, the kernel can schedhieads on different
processors. Most contemporary operating systemackiding Windows NT,
Windows 200, Solaris 2, BeOS, and Tru64 UNIX supp@rnel threads. Most
contemporary operating systems — including Winddi¥s Windows 200, Solaris
2, BeOS, and Tru64 UNIX support kernel threads.

The use of kernel threads simplifies user code lyving some of the most

complex aspects of threading into the kernel. Theggam does not need to
schedule threads or explicitly yield the proces&tser code can be written in a
familiar procedural style, including calls to blacty APIs, without starving other

threads. However, since the kernel may switch betwikreads at any time, kernel
threading usually requires locking that would nio¢ necessary otherwise. Bugs
caused by incorrect locking can be very subtle hadl to reproduce. Kernel

threading also has performance limits. Each tintleread starts, blocks, or exits,
the process must switch into kernel mode, and themk into user mode. This

context switch is fairly quick, but programs thatate many short-lived threads
can suffer a performance hit. Hybrid threading sobe are available which

provide a balance between kernel threads and fibers

3.2  Multithreading Implementation

Operating systems generally implement threads ie oh two ways: preemptive
multithreading, or cooperative multithreading. Pn@éive multithreading is generally
considered the superior implementation, as it aldlae operating system to determine
when a context switch should occur. Cooperativeithuéading, on the other hand, relies
on the threads themselves to relinquish controédhey are at a stopping point. This can
create problems if a thread is waiting for a reseuto become available. The
disadvantage to preemptive multithreading is thatdystem may make a context switch
at an inappropriate time, causing priority invensior other bad effects which may be
avoided by cooperative multithreading.

Traditional mainstream computing hardware did nohave much support for
multithreading as switching between threads waseigdly already quicker than full
process context switches. Processors in embeddstensy, which have higher
requirements for real-time behaviors, might suppuoditithreading by decreasing the
thread switch time, perhaps by allocating a dedataégister file for each thread instead
of saving/restoring a common register file. In tage 1990s, the idea of executing
instructions from multiple threads simultaneousisbecome known as simultaneous
multithreading. This feature was introduced in letBentium 4 processor, with the name
Hyper-threading

3.2.1 Multithreading Implementation Models
Many systems provide support for both fibers andchékethreads, resulting in many

different and incompatible implementations of tlaieg. In this section we will look at
the three common types of multithreading implemigoa
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3.2.1.1 Many-to-One Model

The many-to-one model maps many user-level thréadme kernel thread. Thread
management is done in user space, so it is effjdien the entire process will block if
a thread makes a blocking system call. Also, bexam$y one thread can access the
kernel at a time, multiple threads are unable to iru parallel on multiprocessors.
Green threads a thread library available for Solaris 2, uses timodel. In addition,
fiber libraries implemented on operating systena tto not support kernel threads
use the many-to-one model.

<+— user thread

Figure 3.2: Many-to-One Model
3.2.1.2 One-to-One Model

The one-to-one model maps each user thread (fibex)kernel thread. It provides more
concurrency than the many-to-one model by alloveingther thread to run when a thread
makes a blocking system call; it also allows midtiphreads to run in parallel on

multiprocessors. The only drawback to this mod¢h# creating a fiber requires creating
the corresponding kernel thread. Most implemematiof this model restrict the number
of threads supported by the system because théenadrof creating kernel threads can
burden the performance of an application.

<+<—— user thread
kernel thread
4_
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Figure 3.3: One-to-One Model

3.2.1.3 Many-to-Many Model

The many-to-many model multiplexes many fibers soraller or equal number of kernel
threads. The number of kernel threads may be spédib either a particular application
or a particular machine (an application may becalled more kernel threads on a
multiprocessor than on a miniprocessor. whereasnthay-to-one model allows the
developer to create as many fibers as she wishesconcurrency is not gained because
kernel can schedule only one thread at a time.orteeto-one model allows for greater
concurrency, but the developer has to be carefulta@reate too many threads within an
application (and in some instances may be limitedhe number of threads she can
create) the many-to-many model suffers from neitifehese shortcomings. Developers
can create as many fibers as necessary, and thesgonding kernel threads can run in
parallel on a multiprocessor. Also when a threadgoms a blocking system call, the
kernel can schedule another thread for executiofariS 2, IRX, HP-UX, and Tru64
UNIX support this model.

+— user threac

~ kernel

Figure 3.4: Many-to-Many Model
3.3 Threading Issues
3.3.1 Thread Cancellation

This is the task of terminating a thread beforleais completed. For instance, if multiple
threads are running concurrently searching thraughatabase and one returns the result,
the remaining threads might be cancelled. Anotlieiatson might occur when a user
presses a button on a web browser that stops gag#from loading any further. Often
a web page is loaded in a separate thread. Wheargtesses the stop button, the thread
loading the page is cancelled.
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A thread that is to be cancelled is often refemsdhetarget thread. Cancellation of a
target thread may occur in two different scenarios:

1. Asynchronous cancellation: one thread immediatiyinates the target thread.

2. Deferred cancellation: the target thread can peradlg check if it should
terminate, allowing the target an opportunity tontmate itself in an orderly
fashion.

The difficulty with cancellation occurs in situati® where resources have been allocated
to a cancelled thread or if a thread was canceltate in the middle of updating data it is
sharing with other threads. This becomes espectatlyblesome with asynchronous
cancellation. The operating system will often regunlaystem resources from a cancelled
thread, but often will not claim all resources. eféfore, cancelling a thread
asynchronously may not free a necessary system-{w&burce.

Alternatively, deferred cancellation works by oheetad indicating that a target thread is
to be cancelled. However, cancellation will occatyowhen the target thread checks to
determine if it should be cancelled or not . THieves a thread to check if it should be
cancelled at a point when it can safely be cangellethreads refers to such as
cancellation point.

3.3.2 Signal Handling

In UNIX systems, aignalis used to notify a process that a particular elias occurred.
A signal may be received either synchronously gmelsronously, depending on the
source and the reason for the event being signalldgbther a signal is synchronous or
asynchronous, all signals follow the following jeait

a) A signal is generated by the occurrence of a paddicevent.
b) A generated signal is delivered to a process.
c) Once delivered, the signal must be handled.

An example of a synchronous signal includes amallanemory access or division by
zero. Synchronous signals are delivered to the gaoeess that performed the operation
causing the signal, hence the name synchronous.

When a signal is generated by an event externa tonning process, that process
receives the signal asynchronously. Examples oh signals include terminating a
process with specific keystrokes or having a tirepire. Typically an asynchronous
signal is sent to another process.

Every signal may be handled by one of two posdibledlers:

1. A default signal handler
2. A user-defined signal handler.
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Every signal has default signal handler that is run by the kernel when handling the
signal. This default action may be overridden lsar-defined signal handlerfunction.

In this instance, the user-defined function isemhlto handle the signal rather than the
default action. Both synchronous and asynchron@maks may be handled in different
ways. Some signals may be simply ignored (suchcadsging the size of a window);
others may be handled by terminating the prograroh(sis an illegal memory access.

Handling signals in single-threaded programs isightforward. Signals are always
delivered to a process. However, delivering sigilsore complicated in multithreaded
programs, as a process may have several threadsrdllg, a signal can be delivered in
any of the following ways:

» Deliver the signal to the thread to which the sigipplies.

» Deliver the signal to every thread in the process.

» Deliver the signal to certain threads in the preces

» Assign a specific thread to receive all signalsther process.

The method of delivering a signal depends on tpe tf signal generated.
3.3.3 Thread Pools

In the scenario of multithreading a web server, waver the server receives a request, it
creates a separate thread to service the requésiteds creating a separate thread is
certainly faster than creating a separate pro@essultithreaded server nonetheless has
potential problems. The first concerns the amodrtinoe required to create the thread
prior to servicing the request, compounded withft#w that this thread will be discarded
once it has completed its work. The second issuaadee problematic: if we allow all
concurrent requests to be serviced in a new threadiave not placed a bound on the
number of threads concurrently active in the systeimimited threads could exhaust
system resources, such as CPU time or memory. Glogas to this issue is to thread
pools.

The general idea behind a thread pool is to cr@atember of threads at process startup
and place them into a pool, where they sit and Yeaitvork. When a server receives a
request, it awakens a thread from this pool (if @available) passing it the request to

service. Once the thread completes its servigefurns to the pool awaiting more work.
If the pool contains no available thread, the sewadts until one becomes free.

3.3.3.1 Advantages of Thread Pools
In particular, thread pools have the following attzges:

1. It is usually faster to service a request with aisteng thread than waiting to
create a thread.
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2. A thread pool limits the number of threads thaseat any point in time. This is
particularly important on systems that cannot sup@m large number of
concurrent threads.

The number of threads in the pool can be set haally based upon factors such as the
number of CPUs in the system, the amount of phiysieanory and the expected number
of concurrent client requests. More sophisticatdutead-pool architectures can

dynamically adjust the number of threads in thel gmzording to usage patterns. Such
architectures provide the further advantage ofrigaa smaller pool, thereby consuming
less memory, when the load on the system is low.

3.3.4 Thread-Specific Data

Threads belonging to a process share the datagirtdctess. Indeed, this sharing of data
provides one of the benefits of multithreaded paogning. However, each thread might
need its own copy of certain data in some circunt&s. Let us call such dailaread-
specific data For instance, in a transaction-processing systeemight service each
transaction in a separate thread. Furthermore, ackaction may be assigned a unique
identifier. To associate each thread with its uasiglentifier we could use thread-specific
data. Most libraries, including Win32 and Pthrego®vide some form of support for
thread-specific data. Java provides support as well

4.0 Conclusion

In this unit you have been introduced to the mamncept of light-weight processes
popularly known as threads. It is believed thatitigngone through this unit you are now
conversant with threads, the main issues concethirggads, the motivation for threads,
etc.

5.0 Summary

A thread is a flow of control within a process. Alliithreaded process contains several
different flows of control within the same addregmce. The benefits of multithreading
include increased responsiveness to the user, nasaharing within the process,

economy, and the ability to take advantage of mrdtessor architectures.

Fibers are threads that are visible to the programand are unknown to the kernel. A
thread library in user space typically managesrébdhe operating system kernel
supports and manages kernel-level threads. In gkridvers are faster to create and
manage than are kernel threads. Three differemtstgh models relate fibers and kernel-
level threads: The many-to-one maps many fibes smgle kernel thread. The one-to-
one model maps each user thread to a correspokding! thread. The many-to-many
model multiplexes many user threads to a smalleequal number of kernel threads.
Other issues include thread cancellation, signatiivag and thread-specific data.

6.0 Tutor-Marked Assignment
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1. What are the two major differences between fibard &ernel-level threads?
Under what circumstances is one type better thatier?

2. What resources are used when a thread is creawdbl they differ from those
used when a process is created?

3. Describe the action taken by a kernel to contexickvbetween kernel threads.

4. Describe the action taken by a thread library totext switch between fibers.

5. Provide two programming examples of multithreadingt improves performance
over a single-threaded solution

6. Provide two programming examples of multithreadigt do not improve
performance over a single-threaded solution
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1.0 Introduction
CPU scheduling is the basis of multi-programmedrajpey systems. By switching
the CPU among processes, the operating system eke ithe computer more
productive. In this unit, you are going to be idiwoced to the basic scheduling
concepts and be presented with several different-&fheduling algorithms. The
problem of selecting an algorithm for a particidgstem will also be considered.

2.0 Objectives:

At the end of this unit, you should be able to:

» Distinguish between preemptive and non-preemptbeduling
» State the goals for CPU scheduling
» Give comparative analysis of the following schewlglalgorithms:
o FCFS
o SJF
o Priority Scheduling
0 Round-Robin Scheduling
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o0 Multilevel Queue Scheduling
o Multilevel Feedback Queue Scheduling
» Select a CPU scheduling algorithm for a particelatem.

3.0 Main Body
3.1 Ontology: Basic Concepts

The objective of multiprogramming is to have somecpss running at times, in order to
maximize CPU utilization. In a uniprocessor systemly one process may run at a time;
any other processes must wait until the CPU isdrekcan be rescheduled.

The idea of multiprogramming is relatively simpke.process is executed until it must
wait, typically for the completion of some 1/O rexgi. In a simple computer system, the
CPU would then sit idle. All this waiting time isasted. With multiprogramming, we try

to use this time productively. Several processeskapt in memory at one time. When
one process has to wait, the operating system tAke€PU away from that process and
gives the CPU to another process. This patternroges.

Scheduling is fundamental to operating system fanctAlmost all computer resources
are scheduled before use. The CPU is, of courgepbthe primary computer resources.
Thus, its scheduling is central to operating systiesign.

3.1.1 CPU-I/O Burst Cycle

The success of CPU scheduling depends on the fiolipabserved property of processes.
Process execution consists of a cycle of CPU edetand I/0O wait. Processes alternate
between these two states. Process execution b&iina CPU burst. That is followed by
an 1/O burst, then another CPU burst, then andfeburst, and so on. Eventually, the
last CPU burst will end with system request to ieate execution, rather than with
another 1/O burst (see Figure 3.1)

The duration of these CPU burst have been extdgsmeasured. Although they vary
greatly by process and by computer, they tend @ l@afrequency curve similar to that
shown in Figure 3.2. The curve is generally chammtd as exponential or hyper-
exponential, with many short CPU bursts and a femg|CPU bursts. An 1/0O-bound
program would typically have many very short CPUstaiwhile a CPU-bound program
might have a few very long CPU bursts. This disttitn can help us select an
appropriate CPU-scheduling algorithm.
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3.3.1 CPU Scheduler

Whenever the CPU becomes idle, the operating systast select on the processes in
the ready queue to be executed. The selection ggdsecarried out by the short-term
scheduler (or CPU scheduler). The scheduler seleota among the processes in
memory that are ready to execute, and allocate€fié¢ to one of them.

The ready queue is not necessarily a first-irstfout (FIFO) queue. As you shall see,
when we consider the various scheduling algoritramgady queue may be implemented
as a FIFO queue, a priority queue, a tree, or siraplordered linked list. Conceptually,

however, all the processes in the ready queudraae Up waiting for a chance to run on
the CPU. The records in the queues are generadlgeps control blocks (PCBs) of the

processes.

3.3.2 Preemptive Scheduling and Non-preemptive Scheduling
CPU scheduling decisions may take place underdf@aing circumstances:

1. When a process switches from the running stateegavaiting state (for example, 1/0
request, or invocation of wait for the terminatmfrone of the child processes)

2. When a process switches from the running statbeadady state (for example, when
an interrupt occurs)

3. When a process switches from the waiting stateh&oready state ( for example,
completion of I/O)

4. When a process terminates

In circumstances 1 and 4, there is no choice mgesf scheduling. A new process (if one
exists in the ready queue) must be selected farugiom. There is a choice, however, in
circumstances 2 and 3.

When scheduling takes place only under circumstaicand 4, we say the scheduling
scheme isionpreemptive Otherwise, the scheduling schemersemptive. Under non-
preemptive scheduling, once the CPU has been #&ldda a process, the process keeps
the CPU until it releases the CPU either by termmgaor by switching to the waiting
state. This scheduling method is used by Microgdgifidows 3.1 operating system. It is
the only method that can be used on certain haelwkatforms, because it does not
require the special hardware needed for preemptikieduling.

Some of the disadvantages of preemptive schedat@aghat:

* lItincurs a cost
* It also has an effect on the design of the opegatystem kernel.
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3.1.4 Dispatcher

Another component involved in the CPU schedulingcfion is the dispatcher. The
dispatcher is the module that gives control of @U to the process selected by the
short-term scheduler. This function includes:

» Switching context
» Switching to user mode
» Jumping to the proper location in the user progiamestart that program.

The dispatcher should be as fast as possible, ginant is invoked during every process
switch. The time it takes for the dispatcher tqpstoe process and start another running
is known as the dispatch latency.

3.2 Scheduling Criteria

Different CPU-scheduling algorithms have differenbperties and may favour one class
of processes over another. In choosing which algorito use in a particular situation,
we must consider the properties of the variousralyuos.

Many criteria have been suggested for comparing -€€héduling algorithms. The
characteristics used for comparison can make a tauiis difference in the
determination of the best algorithm. The criteneude the following:

CPU Utilization: We want to keep the CPU as busy as possible. GRization may
range from O to 100 percent. In a real systemhau&l range from 40 percent (for a
lightly loaded system) to 90 percent (for a heausggd system).

Throughput: if the CPU is busy executing processes, then werkeing done. One
measure of work is the number of processes contpjete time unit, called throughput.
For long processes, this rate may be 1 procestiqueror 10 processes per second for
short transactions.

Turnaround Time: This is the interval from the time of submissidnaoprocess to the
time of completion. It is the sum of the periodsmpwaiting to get into memory, waiting
in the ready queue, executing on the CPU and déihg

Waiting Time: The CPU scheduling algorithm does not affect dngount of time
during which a process executes or does 1/O. kctdfonly the amount of time that a
process spends waiting in the ready queue. Waiting is, therefore, the sum of the
periods spent waiting in the ready queue.

Response TimeThis is the amount of time it takes to start regpog but not the time

it takes to output the response. i.e. the time frioensubmission of a request until the first
response is produced.
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We usually want to maximize CPU utilization and otlghput, and to minimize
turnaround time, waiting time, and response timembst cases, we optimize the average
measure. However, in some circumstances we wanbptonize the minimum or
maximum values, rather than the average. For instaim guarantee that all users get
good service, we may want to minimize the maximesponse time.

3.3 Scheduling Algorithms

CPU scheduling deals with the problem of decidirgclv of the processes in the ready
gueue is to be allocated the CPU. In this sectom,describe many CPU-scheduling
algorithms that exist.

3.3.1 First-Come, First Served (FCFS) Scheduling

This is the simplest CPU-scheduling algorithm.His tscheme, the process that requests
the CPU first is allocated the CPU first. The inmpéntation of the FCFS policy is easily
managed with a FIFO queue. When a process entene#iily queue, its PCB is linked
onto the tail of the queue. When the CPU is freis, allocated to the process at the head
of the queue. The running process is the removet the queue. The code for FCFS
scheduling is simple to write.

The average waiting time under FCFS policy is ofjaite long.

Process Burst time
P, 24

If the processes arrive in the ord®yr, P,, P3, and are served in FCFS order, we get the
result shown in the Gantt Chart below:

P P, | Ps

0 24 27 30

The waiting time is 0 milliseconds for procdds 24 milliseconds for proce$%, and 27
milliseconds for procesBs;. Hence the average waiting time is (0 + 24 + 2A/37
milliseconds. If the processes arrive in the ogIP;, P, however, the result will be as
shown in the Gantt chart below:

P2 | Ps Py
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The average waiting time is now (6 + 0 + 3)/3 = 8Bliseconds. This reduction is
substantial. Therefore, the average waiting timdeunFCFS policy is generally not
minimal, and may vary substantially if the proc€$dJ-burst times vary greatly.

FCFS scheduling algorithm may lead to convoy efi@laereby all other processes wait
for one big process to get off the CPU. This resimtlower CPU and device utilization.
FCFS scheduling algorithm is non-preemptive.

3.3.2 Shortest-Job-First (SJF) Scheduling

This algorithm associates with each process thgtheof the latter's next CPU burst.
When the CPU is available, it is assigned to tlee@ss that has the smallest next CPU
burst. If two processes have the same length nekt Burst, FCFS scheduling is used to
break the tie.

Example 3.2Consider the following set of processes that ardat/time 0, wit the length
of the CPU-burst time given in milliseconds:

Process Burst time
P, 8
P 7
P4 3

Using SJF scheduling, we could schedule these pseseaccording to the Gantt chart
below:

P,| P P, P,

0 3 9 16 24

The waiting time is 3 milliseconds for proceBg 16 milliseconds for proceds,, 9
milliseconds for proced;, and 0 milliseconds for proceBs. Hence the average waiting
time is (3 + 16 + 9 + 0)/4 = 7 milliseconds. If were using FCFS scheduling scheme,
then the average waiting time would be 10.25 neilends.

The SJF scheduling algorithm is provably optimalehese it gives the minimum average
waiting time for a given set of processes. Howel@annot be implemented at the level
of short-term CPU scheduling because there is np tw&know the length of the next
CPU burst.

SJF algorithm may be either preemptive or nonpreé®mplhe choice arises when a new
process arrives at the ready queue while a preyamgess is executing. The new process
may have a shorter next CPU burst than what isolefhe current executing process. A
preemptive SJF algorithm will pre-empt the curremecuting process, whereas a
nonpreemptive SJF algorithm will allow the currgntlinning process to finish its CPU
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burst. Preemptive SJF scheduling is sometime caflbdrtest-remaining-time-first
scheduling.

Example 3.3:Consider the following four processes, with lengtithe CPU-burst given
in milliseconds:

Process Arrival time Burst time
P, 0 8
P, 1 4
P 2 9
P4 3 5

If the processes arrive at the ready queue airtestshown and need the indicated burst
times, then the resulting preemptive SJF scheduds depicted in Gantt chart below:

P, P, P, P, P,

0 1 5 1C 17 26

Procesd?; is started at time 0, since it is the only prodashe queue. Proces arrives
at time 1. The remaining time for procd3s (7 milliseconds) is larger than the time
required by procesB, (4 milliseconds), so proces$s is pre-empted, and proceBsgis
scheduled. The average waiting time for this exangp((10-1)+ (1 -1) + (17-2)+ (5
—3)/4 = 26/4 = 6.5 milliseconds.

A nonpreemptive SJF scheduling would result in &erage waiting time of 7.75
milliseconds.

3.3.3 Priority Scheduling

A priority is associated with each process andGRe&J is allocated to the process with
the highest priority. Equal-priority processes secheduled in FCFS.

An SJF algorithm is therefore simply a priority @ghm where the priority is the inverse
of the (predicted) next CPU burst. The larger thJburst, the lower the priority and
vice versa.

Priority is expressed in terms of fixed range nunsaeh as 0 to 10. however there is no
general agreement on whether 0 is the highesiveedt priority. Some systems use low
numbers to represent low priority while others lese numbers for high priority. But in
this course, we will use low numbers to represegtt priority.

Example 3.4:Consider the following set of processes, assuméadve arrived at time 0,
in the ordelPy, P,, ..., Ps, with the length of the CPU-burst time given idliseconds:
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Process Burst time Priority
Py 10 3
P, 1 1
P3 2 4
Py 1 5
Ps 5 2

Using priority scheduling, we would schedule th@secesses according to the Gantt
chart below:

P, Ps P, P; | Py

0 1 6 1€ 18 1¢
The average waiting time is 8.2 milliseconds.

Priorities can be defined either internally or ext&dly. Internally defined priorities use

measurable quantity(ies) such as time limits, mgmequirements, etc. to compute the
priority of a process. External priorities are $st criteria that are external to the
operating system such as importance of the proeeseunt being paid for use of the
compute, the owner of the process, and other {gal)tfactors.

Priority scheduling may be either preemptive orpreemptive. When a process arrives
at the ready queue, its priority is compared whit tof the currently running process. A
preemptive priority-scheduling algorithm will preptmthe CPU if the priority of the
newly arrived process is higher than that of theresuly running process. A
nonpreemptive priority-scheduling algorithm wilhgly put the new process at the head
of the ready queue.

The major disadvantage of priority-scheduling alipons is indefinite blocking or
starvation. A situation whereby low priority proses indefinitely wait for the CPU
because of a steady stream of higher-priority pees.

A solution to indefinite blocking of low-priorityrpcesses is aging. Aging is a technique
of gradually increasing the priority of procesdest wait in the system for a long time.

3.3.4 Round-Robin (RR) Scheduling
Round-robin (RR) is one of the simplest scheduling algorithfos processes in an

operating system. It assigns time slices to eaohgss in equal portions and in circular
order, handling all processes without priority. Rduobin scheduling is both simple and
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easy to implement, and starvation-free. Round-ragineduling can also be applied to
other scheduling problems, such as data packetistthg in computer networks.

The name of the algorithm comes from the roundrrgtminciple known from other
fields, where each person takes an equal sha@nwdthing in turn.

It is similar to FCFS scheduling, but preemptiomadsled to switch between processes. A
small unit of time, called a time quantum (or tislee), is defined. A time quantum is
generally from 10 — 100 milliseconds. The readyuguis treated as a circular queue. The
CPU scheduler goes around the ready queue, algctte CPU to each process for a
time interval of up to 1 time quantum.

To implement the RR scheduling, we keep the reasyg as a FIFO queue of processes.
New processes are added to the tail of the queheeCPU scheduler picks from the head
of the queue, sets a timer to interrupt after tquantum, and dispatches the process.

One of two things will then happen. The process maye a CPU burst of less than one
time quantum. In which case the process itselfasdes the CPU voluntarily. The
scheduler will then proceed to the next procesharready queue. Otherwise, if the CPU
burst of the currently running process is longanth time quantum, the timer will go off
and will cause an interrupt to the operating systAnecontext switch will be executed,
and the process will be put at the tail of the yeqdeue. The scheduler then selects the
next process in the ready queue.

The average waiting time under RR policy is oftertejlong.

Example 3.5:Consider the following set of processes, assuméadve arrived at time 0,
in the orderPy, P,, P3, with the length of the CPU-burst time given idlis¢conds:

Process Burst time
P, 24
P, 3
P 3

If we use a time quantum of 5 milliseconds, we wogkthedule these processes
according to the Gantt chart below:

Py P, | Ps Py P Py P

0 5 8 11 16 21 26 30
The average waiting time is 17/3 = 5.66 millisecand

In RR scheduling algorithm, no process is allocateel CPU for more than 1 time
guantum in a row. If a process’ CPU burst exceedsng quantum, that process is
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preempted and is put back in the ready queue. TRe sBheduling algorithm is
preemptive.

3.3.5 Multilevel Queue (MLQ) Scheduling

In this scheduling algorithm, processes are cligskihto different groups. For instance, a
common division is made between foreground (orauive) processes and background
(or batch) processes. Therefore the ready queymanstioned into several separate

gueues. The processes are permanently assignext tQueue, generally based on some
property of the process, such as memory size, psopgority, etc. Each queue has its
own scheduling algorithm. E.g. foreground mighe (&R while background might use

FCFS.

In addition, there must be scheduling among theaigsievhich is usually implemented as
fixed priority preemptive scheduling. For exampbeefground queue may have absolute
priority over background queue. Therefore no predgeshe background queue could run
except the foreground queues are empty. If a psoeetered the foreground queue while
a prcesss from the background queue is runningbdlckground queue process will be
preempted.

This will lead to possible starvation for the baakghd queue process. To address this
problem, time slice can be used between the queach queue gets a certain portion of
the CPU time which it an then schedule among th@wa processes in its queue. For
instance, in the background — foreground queue pbanthe foreground queue can be
given 80% of the CPU time for RR scheduling amotgy processes, whereas the
background queue receives 20% of the CPU to gius fwrocesses in FCFS manner.

highest priority

— system processes —

— interactive processes E—

— interactive editing processes —

— 2 batch processes —

— student processes —
(L lowest priority

Figure 3.3: Multilevel Queue Scheduling
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3.3.6 Multilevel Feedback Queue (MLFQ) Scheduling

Similar to MLQ, but here processes can move betweegueues. The idea is to separate
processes with different CPU-burst characterisfies, based on their “behavior”). A
process that uses too much CPU time is degradadbtoer-priority queue, a process that
waits too long is upgraded to a higher-priority geie This is a kind of aging that
prevents starvation.

In general, MLFQ scheduler is defined by the follogvparameters:
* Number of queues
» Scheduling algorithms for each queue
» Criteria for determining when to upgrade a prod¢ess higher-priority queue
» Criteria for determining when to demote a process lower-priority queue
* The criteria for determining which queue a procesl enter when that
process needs service.

MLFQ is the most general scheme, and also the caowsplex.

Example 3.6:Consider a MLFQ scheduler with three queu@8,with time quantum 8

milliseconds,Q1 with time quantum 16 milliseconds a@2 on FCFS basis only when
gueueQ0 andQ1 are empty.

In this scheduling algorithm a new job enters qu@ieserved by FCFS. Then job
receives 8 milliseconds. If not finished in 8 lméconds, itis moved tQ1. At Q1 job

served by FCFS. It then receives 16 milliseconfi®iot completed, it is preempted and
moved toQ2 where it is served in FCFS order with any CPUes/teft over from queues

Q0 andQ1.
>
D‘ quantum =8 »—
—>‘ quantum =16 »—
F >
FCFS b

Figure 3.4: Multilevel Feedback Queues

3.4  Multiple-Processor Scheduling
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Our discussion in this unit so far has focusednenproblems of scheduling the CPU in a
system with a single processor. If multiple CPUs available, the scheduling problem is
correspondingly more complex. Many possibilitiesyddeen tried but as you saw with
single processor CPU scheduling, there is no omsé¢ smution. In his section we will
briefly discuss some of the issues concerning plalprocessor scheduling.

If several identical processors are available, tloaa sharing can occur. It would be
possible to provide a separate queue for each gsoceln this case however, one
processor could be idle, with an empty queue, wailether processor could be very
busy. To avoid such situation, we can use a commeady queue. All processes go into
one queue and are scheduled onto any availablegsoc

In such a scheme, one of two scheduling approatiagsbe used. In one approach, each
processor is self-scheduling. Each processor exaamihe common ready queue and
selects a process to execute. However, we musteettsat no two processors choose the
same process and that processes are not losthequeue. The second approach avoids
this problem by appointing one processor as sckedat the other processors, thereby
creating a master-slave structure.

Some systems go a step further by having all sdimeddecisions, 1/0O processing, and
other system activities handled by one single msoe— the master server. The other
processors only execute user codes.

SELF ASSESSMENT TEST

Suppose that the following processes arrive forcetten at the times indicated. Each
process will run the listed amount of time. In asewg the questions, use nonpreemptive
scheduling and base all decisions on the informayiou have at the time the decision
must be made.

a. What is the average turnaround time for thesegsses with the FCFS scheduling
algorithm?

b. What is the average turnaround time for theseqases with the SJF scheduling
algorithm?

c. The SJF is supposed to improve performance,nbtitice that we chose to run
processP; at time O because we did not know that two sh@tecesses would
arrive soon. Compute what the average turnaround will be if the CPU is left
idle for the first 1 unit and then SJF schedulimgsed. Remember that procedRes
and P, are waiting during this idle time, so their wagiime may increase. This
algorithm could be known as future knowledge schedu

Process Arrival time Burst time
P, 0 8
P, 0 4
P 1 1
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4.0 Conclusion

In this unit, you have been taken through the weri6PU scheduling algorithms. It is our
belief that by now you can select a scheduling ritlgm that will be optimal for a
particular situation/system. However, there aremfrtechniques for determining the
best scheduling algorithm for a particular situataind this we will discuss this in this
next unit.

5.0 Summary

CPU scheduling is the task of selecting a waitingcpss from the ready queue and
allocating the CPU to it. The CPU is allocatedhe selected process by the dispatcher.

FCFS scheduling is the simplest scheduling algaritiut it can cause short processes to
wait for very long ones. SJF scheduling is provabptimal, producing the shortest
waiting time. SJF is a special case of the genanality scheduling algorithm, which
simply allocates the CPU to the highest prioritpgass. But both SJF and priority
scheduling may suffer from starvation. Aging iehnique to prevent starvation.

RR scheduling is more appropriate for a time shdm@ractive) system. The major
problem is the selection of the time quantum. Tameé quantum will make the RR
scheduling to degenerate to FCFS scheduling whute gmall quantum results in
scheduling overhead in the form of context-switaetbecoming excessive.

FCES algorithm is non-preemptive; RR algorithm iegmptive. SJF and priority
algorithms may be either preemptive or non-preermptilLQ algorithms allow different
algorithms to be used for various classes of psEsesMLF queues allow processes to
move from one queue to another.

6.0 Tutor Marked Assignments

1. Explain the differences in the degree to whichftll®ewing scheduling algorithms
discriminate in favour of short processes:

a) FCFS
b) RR
¢) Multilevel Feedback queues

2. Define the differences between pre-emptive andpreremptive scheduling. State
why strict non-preemptive scheduling is unlikelyb® used in a computer centre.

3. Consider the following set of processes, with thegth of the CPU-burst time
given in milliseconds as below:
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Process Burst time Priority
Py 10 3
P> 1 1
Ps3 2 3
Py 1 4
Ps 5 2

The processes are assumed to have arrived indieeRarP, P; P4 Ps all at time O.

a. Draw four Gantt charts illustrating the exeantof these processes using FCFS, SJF,
a non-preemptive priority (a smaller priority numbeaplies a higher priority), and
RR (quantum = 1) scheduling.

b. What is the turnaround time of each procesgéah of the scheduling algorithms in

(a) above?

c. What is the waiting time of each process foheaicdhe scheduling algorithms in (a)?

d. Which of the schedules in (a) results in th@imal average waiting time (over all

processes)?

7.0 Reference/Further Reading
1. Deitel, Harvey M.; Deitel, Paul; Choffnes, Davidd(). Operating Systems
Upper Saddle River, NJ: Pearson/Prentice Hall. |9BN\B-182827-4.
2. Silberschatz, Abraham; Galvin, Peter Baer; Gagneg&2004).Operating
System Conceptbloboken, NJ: John Wiley & Sons. ISBN 0-471-69466-
3. Tanenbaum, Andrew S.; Woodhull, Albert S. (2006perating Systems.
Design and ImplementatiolJpper Saddle River, N.J.. Pearson/Prentice

Hall. ISBN 0-13-142938-8.

4. Tanenbaum, Andrew S. (2001Modern Operating Systems&Jpper Saddle
River, N.J.: Prentice Hall. ISBN 0-13-092641-8.
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Introduction

How do we select a CPU-scheduling algorithm foagipular system? As you saw in the
previous unit, there are many scheduling algorith@ash with its own parameters. As a
result, selecting an algorithm can be difficulteTiirst problem is defining the criteria to

be used in selecting an algorithm. As you sawhm previous unit, criteria are often

defined in terms of CPU utilization, response timethroughput. To select an algorithm,
you must first define the relative importance adgb measures. Your criteria may include
several measures, such as:

Maximize CPU utilization under the constraint tha maximum response time is
1 second.

Maximize throughput such that turnaround is (onrage) linearly proportional to
total execution time.

Once the selection criteria have been defined, neeteen going to evaluate the various
algorithms under consideration. We describe thie@iht evaluation methods in the rest
of this unit.

2.0

Objectives

At the end of this unit you should be able to:

3.0

Describe the various CPU scheduling evaluationrélgas.

Enumerate the advantages and disadvantages oéealctation algorithms

Based on your knowledge, select the best schedalgwyithm for a particular a
particular system.

Main Body
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3.1 Deterministic Modelling

Deterministic modelling is a type of analytical Biation. Analytical evaluation uses the
given algorithm and the system workload to prodadermula or number that evaluates
the performance of the algorithm for that workload.

Deterministic modelling takes a particular predeieed workload and defines the
performance of each algorithm for that workload.

Example 1:

Assume we have the workload shown. All five proessarrive at time 0, in the order
given, with the length of the CPU-burst time givemmilliseconds:

Process Burst Time
P, 10
P, 29
P 3
P, 7
Ps 12

Consider the FCFS, SJF, and RR (quantum = 10nubisgs) scheduling algorithms for
this set of processes. Which algorithm would ghe minimum average waiting time?

For the FCFS algorithm, we would execute the preeess:

P, P, ERS e P

0 10 39 42 49 61

The waiting time is 0 milliseconds for proceBg 10 milliseconds for proced?,, 39
milliseconds forPs, 42 milliseconds for proced$’, and 49 milliseconds for process.
Therefore, the average waiting time is (0 + 10 +3& + 49)/5 = 28 milliseconds.

With nonpreemptive SJF scheduling, we execute thegsses as:

P, Py Py Pg P

0 3 10 20 32 61
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The waiting time is 10 milliseconds for proce®s 32 milliseconds for proceds,, 0
milliseconds forP;, 3 milliseconds for proced’, and 20 milliseconds for process.
Therefore, the average waiting time is (10 + 32+3+ 20)/5 = 13 milliseconds.

With RR algorithm, we execute the processes as:

Eq P, = Py Pg P, e P,

10 20 23 30 40 50 52 61

(=]

The waiting time is 0 milliseconds for proceBg 32 milliseconds for proced®,, 20
milliseconds forPs;, 23 milliseconds for proced$’, and 40 milliseconds for process.
Therefore, the average waiting time is (0 + 32 +2ZB + 40)/5 = 13 milliseconds.

You can see that in this case, the SJF resultesis than one-half the average waiting
time obtained with FCFS scheduling; the RR alganithives us an intermediate value.

Advantages of Deterministic Modelling:

* Itis simple and fast.
» It gives exact numbers, allowing the algorithm&éocompared.

Disadvantages of Deterministic Modelling:

» It requires exact numbers for input and its answapmy to only those cases.
* ltis too specific.
* It requires too much knowledge to be useful.

3.2 Queuing Models

Queuing models employ probabilistic distributiorsr ICPU and /O burstd’he computer
system is described as a network of servers. Eachers has a queue of waiting
processes. The CPU is a server with its ready queuis the 1/0 system with its device
gueues. Knowing arrival rates and service rates,care compute utilization, average
gueue length, average wait time, etc. This areatofly is called queuing-network
analysis.

For instance, leh be the average queue length (excluding the prdzssg serviced), let
W be the average waiting time in the queue, and bet the average arrival rate for new
processes in the queue (such as three processssqoerd). Then we expect that during
the time W that a process waitsx W new processes will arrive in the q. if the sysiem
in a steady state, then the number of processesdethe queue must be equal to the
number of processes that arrive. Therefore,

n=.1X%X W.
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This equation is known as Little’s formula. Therfmra is particularly useful because it
is valid for any scheduling algorithm and arrivatdbution. It can be used to compute
one of the three variables once the other two aosvk.

Advantages of Queuing Analysis:
* It can be useful in comparing scheduling algorithms
Limitations:

» The classes of algorithms and distribution thatlmamandled is presently limited

* ltis hard to express a system of complex algorstlamd distributions.

* Queueing models are often an approximation of lesyesiem. As a result, the accuracy of
the computed results may be questionable.

3.3 Simulations

This is used to get a more accurate evaluationcbéduling algorithms. Simulations
involve programming a model of the computer systBoftware data structures represent
the major components of the system. The simulasrahvariable representing a clock; as
this variable’s value is increased, the simulatadifies the system state to reflect the
activities of the devices, the processes and thedider. As the simulation executes,
statistics that indicate algorithm performancegathered and printed.

_ : performance
simulation —>»  statistics

for FCFS
ECEE

CPU 10
/O 213
actual cPU 12 performance
process o 11z ==  simulation —>»  statistics
execution eRU 2 for SJF
/O 147
GRUM7ZS .
trace tape
_ : performance
simulation —=>»  statistics
forRR (g = 14

Figure 3.1: Evaluation of CPU scheduler by Simulat.

Advantages:
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» It produces accurate results for its inputs.
Disadvantages:

» It can be expensive
» Trace tapes can require large amounts of storaapesp
» The design, coding and debugging of the simuladorlze a major task.

3.4 Implementation

Even a simulator is of limited accuracy. The onbynpletely accurate way to evaluate a
scheduling algorithm is to code it, put it in thgecating system, and see how it works.
This approach puts the actual algorithm in the matem for evaluation under real
operating conditions.

Limitations:

» This approach is very expensive. The expense igii@d not only in coding the
algorithm and modifying the operating system topsurpit as well as its required
data structure, but also in the reaction of thersuge a constantly changing
operating system.

4.0 Conclusion

This unit has taken you through the various schedwdvaluation algorithms. However,
as you have seen there is no perfect evaluatiaritdgr. There are always difficulties to
be encountered when evaluating scheduling algositidme of the major difficulties with
any algorithm evaluation is that the environmentwihich the algorithm is used will
change. The environment will change not only ie tisual way, as new programs are
written and the types of problems change, but atsa result of the performance of the
scheduler. If short processes are given priotitgntusers may break larger processes into
sets of small processes. If interactive processegg@en priority over non-interactive
processes, then users may switch to interactive use

5.0 Summary

Due to the fact that a wide variety of schedulingoathms are available, we need
methods/means of selecting among them. Analyticgthods use mathematical analysis
to determine the performance of an algorithm. Satiwh methods determine

performance by imitating the scheduling algorithm @ “representative” sample of

processes, and computing the resulting performance.

6.0 Tutor Marked Assignment

1. Briefly compare the evaluation algorithms discussedhis unit. Which one is
best? Give reasons.

122



2. Briefly describe the deterministic model. What aies advantages and
disadvantages?

7.0 References/Further Reading
1. Silberschatz, Abraham; Galvin, Peter Baer; GagnegG2004).Operating
System Conceptbloboken, NJ: John Wiley & Sons. ISBN 0-471-69466-
2. Tanenbaum, Andrew S.; Woodhull, Albert S. (2006perating Systems
Design and ImplementatiolJpper Saddle River, N.J.: Pearson/Prentice
Hall. ISBN 0-13-142938-8.
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1.0 Introduction

A race condition or race hazardis a flaw in a system or process whereby the duipu
the process is unexpectedly and critically depenhdarthe sequence or timing of other
events. The term originates with the idea of tvgmals racing each other to influence the
output first. Race conditions arise in software when separateepses or threads of
execution depend on some shared state.

2.0 Objectives
At the end of this unit you should be able to:

» Define Race condition
» Describe some real life examples of race condition
» Describe computer security in view of race conditio

3.0 Main Body

3.1 Race Condition

As said earlierrace conditionis a flaw in a system or process whereby the duipthe
process is unexpectedly and critically dependentthen sequence or timing of other

events. To illustrate this, let us look at this gienexample:

Let us assume that two threads T1 and T2 each wamsrement the value of a global
integer by one. Ideally, the following sequencepérations would take place:
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Integer i = 0;

T1 reads the value of i from memory into a register

T1 increments the value of i in the register: (ségicontents) + 1 =1
T1 stores the value of the register in memory : 1

T2 reads the value of i from memory into a register

T2 increments the value of i in the register: (ségi contents) + 1 = 2
T2 stores the value of the register in memory : 2

Integeri=2

ONoGkwNE

In the case shown above, the final value of i im.expected. However, if the two
threads run simultaneously without locking or sywociezation, the outcome of the
operation could be wrong. The alternative sequafagerations below demonstrates
this scenario:

Integer i = 0;

T1 reads the value of i from memory into a register

T2 reads the value of i from memory into a register

T1 increments the value of i in the register: (ségicontents) +1 =1
T2 increments the value of i in the register: (ségicontents) + 1 =1
T1 stores the value of the register in memory : 1

T2 stores the value of the register in memory : 1

Integeri=1

ONoGkwNE

The final value of i is 1 instead of the expectedulft of 2. This occurs because the
increment operations of the second case are nonkatétomic operations are those that
cannot be interrupted while accessing some respsuch as a memory location. In the
first case, T1 was not interrupted while accessirggvariable i, so its operation was
atomic.

For another example, consider the following twds$as pseudocode:
gl obal integer A = 0;

/1l increnments the value of A and print "RX"
/'l activated whenever an interrupt is received from the
serial controller
task Received()
{
A=A+ 1,
print "RX";
}

/'l prints out only the even nunbers
/1l is activated every second
task Ti nmeout ()

{
if (Ais divisible by 2)
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print A
}

Output would look something like:

Now consider this chain of events, which might aaoext:

o

. timeout occurs, activating ta3k meout

. taskTi meout evaluatesA and finds it is divisible by 2, so elects to execthe
“print A" next.

3. data is received on the serial port, causing aarnmpt and a switch to task

Recei ved

4. taskRecei ved runs to completion, incrementing A and printing<'R
control returns to taski meout
. task timeout executes print A, using the curretueraf A, which is 5.

N

o o

Mutexes are used to address this problem in coscuprogramming.
3.2 Real life examples
3.2.1 File systems

In file systems, two or more programs may "“collidetheir attempts to modify or access
a file, which could result in data corruption. Fllecking provides a commonly-used
solution. A more cumbersome remedy involves readmyag the system in such a way
that one unique process (running a daemon or kie¢ lias exclusive access to the file,
and all other processes that need to access thenddiat file do so only via interprocess
communication with that one process (which of ceusquires synchronization at the
process level).

A different form of race condition exists in filggems where unrelated programs may
affect each other by suddenly using up availabkousces such as disk space (or
memory, or processor cycles). Software not carefidsigned to anticipate and handle
this rare situation may then become quite fragid anpredictable. Such a risk may be
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overlooked for a long time in a system that seesry veliable. But eventually enough
data may accumulate or enough other software magdoed to critically destabilize
many parts of a system. Probably the best knowmpbeof this occurred with the near-
loss of the Mars Rover "Spirit" not long afterdiamg, but this is a commonly overlooked
hazard in many computer systems. A solution issfiftware to request and reserve all
the resources it will need before beginning a taflskhis request fails then the task is
postponed, avoiding the many points where failuald have occurred. (Alternately,
each of those points can be equipped with errodlivaq) or the success of the entire task
can be verified afterwards, before continuing oA.)more common but incorrect
approach is to simply verify that enough disk spéioe example) is available before
starting a task; this is not adequate becausemplex systems the actions of other
running programs can be unpredictable.

3.2.2 Networking

In networking, consider a distributed chat netwidtk Internet relay chat (IRC), where a
user acquires channel-operator privileges in angnobll he starts. If two users on
different servers, on different ends of the samevosk, try to start the same-named
channel at the same time, each user's respectiverseill grant channel-operator
privileges to each user, since neither serveryeillhave received the other server's signal
that it has allocated that channel. (Note that grisblem has been largely solved by
various IRC server implementations.)

In this case of a race condition, the concept ef'$hared resource" covers the state of
the network (what channels exist, as well as wisatsistarted them and therefore have
what privileges), which each server can freely geaas long as it signals the other
servers on the network about the changes so tagtcdin update their conception of the
state of the network. However, the latency acrbesetwork makes possible the kind of
race condition described. In this case, headingawfé conditions by imposing a form of
control over access to the shared resource—sawirdp one server to control who
holds what privileges—would mean turning the dmited network into a centralized one
(at least for that one part of the network opergti?Where users find such a solution
unacceptable, a pragmatic solution can have therays

1. Recognize when a race condition has occurred; and
2. Repair the ill effects.

3.2.3 Life-Critical Systems

Software flaws in life-critical systems can be disaus. Race conditions were among the
flaws in the Therac-25 radiation therapy machinkictv led to the death of five patients
and injuries to several more. Another example s Hnergy Management System
provided by GE Energy and used by Ohio-based Fiesty Corp. (and by many other
power facilities as well). A race condition existedthe alarm subsystem; when three
sagging power lines were tripped simultaneouslg, ¢bndition prevented alerts from
being raised to the monitoring technicians, delgyireir awareness of the problem. This
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software flaw eventually led to the North Ameridalackout of 2003. (GE Energy later
developed a software patch to correct the prewowrstliscovered error.)

3.3  Computer Security

A specific kind of race condition involves checkingr a predicate (e.g. for
authentication), then acting on the predicate, evthie state can change betweentitne

of checkand thetime of useWhen this kind of bug exists in security-conssiaode, a
security vulnerability called a time-of-check-toag-of-use TOCTTOU bug is created.

3.4  Asynchronous Finite State Machines

Even after ensuring that single bit transitionsusclbetween states, the asynchronous
machine will fail if multiple inputs change at tisame time. The solution to this is to
design a machine so that each state is sensitimelymne input change.

4.0 Conclusion

In this unit you have learnt about race conditibs,cause, life examples and computer
examples of race condition. In the next unit(s) yoli be exposed to ways of preventing
the occurrence of race condition especially unetqaeace condition.

5.0 Summary

A situation where several processes access andouiard the same data concurrently
and the outcome of the execution depends on theyar order in which the access
takes place is called race condition. To guide reggaiace condition, there is need for a
form synchronization of processes. Such situatamtsir frequently in operating systems
as different parts of a system manipulate resouares we want the changes not to
interfere with one another. A major portion of tmsdule is concerned with process
synchronization and coordination issues.

6.0 Tutor-Marked Assignment

1. What do you understand by the term race carditi

2. Describe any two life examples of race conditio

3. Briefly explain reason why it is desirable taal/race condition.
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1.0 Introduction

Synchronization refers to one of two distinct, but related consegiynchronization of
processes, and synchronization of d&mancess synchronizatiorrefers to the idea that
multiple processes are to join up or handshake egrtain point, so as to reach an
agreement or commit to a certain sequence of actlile Data synchronizationrefers

to the idea of keeping multiple copies of a data&setoherence with one another, or to
maintain data integrity. Process synchronizatioimipives are commonly used to
implement data synchronization. In this unit yoe going to be introduced to process
synchronization.

2.0 Obijectives
At the end of this unit, you should be able to:

» Define process synchronization

» Describe non-blocking synchronization

» Explain the motivation for non-blocking synchrortina

» Describe various types of non-blocking synchrommragalgorithms

3.0 Main body

3.1 Process synchronization
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Process synchronization refers to the coordinaif@multaneous threads or processes to
complete a task in order to get correct runtimeeprdnd avoid unexpected race
conditions.

There are many types of synchronization:

« barrier

« lock/semaphore

. thread join

« mutex

« non-blocking synchronization

- synchronous communication operations (see: Congared synchronous and
asynchronous signalling)

A synchronization point is the location, in a process or collection ofetdds or
processes, where the synchronization occurs.

3.2 Non-blocking synchronization

Non-blocking synchronization ensures that threads competing for a shared resalar
not have their execution indefinitely postponedrbytual exclusion. Non-blocking is
often calledlock-free an algorithm with guaranteed system-wide progréksvever,
since 2003, the term has been weakened to onlyeprerogress-blocking interactions
with a pre-emptive scheduler.

In modern usage, therefore, an algorithmas-blockingif the suspension of one or more
threads will not stop the potential progress @ temaining threads. They are designed
to avoid requiring a critical section. Often, thedgorithms allow multiple processes to
make progress on a problem without ever blockirdhedher. For some operations, these
algorithms provide an alternative to locking medbars.

3.2.1 Motivation

The traditional approach to multi-threaded prograngms to use locks to synchronize
access to shared resources. Synchronization pr@sisuch as mutexes, semaphores, and
critical sections are all mechanisms by which agmmmer can ensure that certain
sections of code do not execute concurrently ihgldo would corrupt shared memory
structures. If one thread attempts to acquire k tbat is already held by another thread,
the thread will block until the lock is free.

Blocking a thread, though, is undesirable for masgsons. An obvious reason is that
while the thread is blocked, it cannot accompkstything. If the blocked thread is
performing a high-priority or real-time task, ithgghly undesirable to halt its progress.
Other problems are less obvious. Certain interastioetween locks can lead to error
conditions such as deadlock, livelock, and prioiityersion. Using locks also involves a
trade-off between coarse-grained locking, which smmificantly reduce opportunities
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for parallelism, and fine-grained locking, whiclgoeres more careful design, increases
overhead and is more prone to bugs.

Non-blocking algorithms are also safe for use iterrupt handlers: even though the
preempted thread cannot be resumed, progressl ipostsible without it. In contrast,
global data structures protected by mutual exctusiannot safely be accessed in a
handler, as the preempted thread may be the odagahe lock.

Non-blocking synchronization has the potential tevent priority inversion, as no thread

is forced to wait for a suspended thread to corapldowever, as livelock is still possible

in the modern definition, threads have to wait whieey encounter contention; hence,
priority inversion is still possible depending uptre contention management system
used. Lock-free algorithms, below, avoid prioriyersion.

3.2.2 Implementation

Non-blocking algorithms use atomic read-modify-enqarimitives that the hardware must
provide, the most not able of which is compare a@whp (CAS). Ultimately, all
synchronizing algorithms must use these; howewdtical sections are almost always
implemented using standard interfaces over thesmitpmes. Until recently, all non-
blocking algorithms had to be written "natively" tvithe underlying primitives to
achieve acceptable performance. However, the engerigeld of software transactional
memory promises standard abstractions for writfifigient non-blocking code.

Much research has also been done in providing bdedia structures such as stacks,
gueues, sets, and hash tables. These allow progmmasily exchange data between
threads asynchronously.

3.2.3 Wait-freedom

Wait-freedom is the strongest non-blocking guammtieprogress, combining guaranteed
system-wide throughput with starvation-freedom. Algorithm is wait-free if every
operation has a bound on the number of stepslitaii before completing.

It was shown in the 1980s that all algorithms canrbplemented wait-free, and many
transformations from serial code, calleniversal constructiondhave been demonstrated.
However, the resulting performance does not inegganmatch even naive blocking
designs. It has also been shown that the widelytadola atomicconditional primitives,
compare-and-swap, cannot provide starvation-frggl@mentations of many common
data structures without memory costs growing liyear the number of threads. Wait-
free algorithms are therefore rare, both in reseand in practice.

3.2.4 Lock-freedom
Lock-freedom allows individual threads to starveé gpuarantees system-wide throughput.

An algorithm is lock-free if every step taken act@ie global progress (for some sensible
definition of progress). All wait-free algorithmsedock-free.
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In general, a lock-free algorithm can run in fohapes: completing one's own operation,
assisting an obstructing operation, aborting antrobsng operation, and waiting.
Completing one's own operation is complicated bg thossibility of concurrent
assistance and abortion, but is invariably theefagtath to completion.

The decision about when to assist, abort or waierwhn obstruction is met is the
responsibility of acontention managerThis may be very simple (assist higher priority
operations, abort lower priority ones), or may berenoptimized to achieve better
throughput, or lower the latency of prioritized ogieons.

Correct concurrent assistance is typically the nmsostplex part of a lock-free algorithm,
and often very costly to execute: not only does dissisting thread slow down, but
thanks to the mechanics of shared memory, thedHreang assisted will be slowed, too,
if it is still running.

3.2.5 Obstruction-freedom

Obstruction-freedom is possibly the weakest natuoal-blocking progress guarantee. An
algorithm is obstruction-free if at any point, agle thread executed in isolation (i.e. with
all obstructing threads suspended) for a boundedbeu of steps will complete its
operation. All lock-free algorithms are obstructivee.

Obstruction-freedom demands only that any parti@tignpleted operation can be aborted
and the changes made rolled back. Dropping conauassistance can often result in
much simpler algorithms that are easier to validdeeventing the system from

continually live-locking is the task of a contemtimanager.

Recent research has yielded a promising practioateation manager, whimsically
named Polka combining exponential backoff with “priority acuulation”. As an
operation progresses, it gains "priority"; whenogeration is obstructed by another with
higher priority, it will back off, with backoff imrvals increasing exponentially. Each
backoff increases the operation's priority; onlyewthts priority is greater than that of its
obstructor will it abort it. Aborted operationsait their former priority, giving their next
attempt a greater chance of success.

Polka achieves good throughput in benchmarks bedawsinimizes both wasted effort,
by prioritizing long transactions, and memory ictarnect contention, using exponential
backoff. This can inform other parallel algorithnssich as lock-free ones, to achieve
greater throughput in the common case.

4.0 Conclusion

In this unit you have been introduced to synchratin, particularly non-blocking
synchronization.

5.0 Summary
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6.0

7.0

ahrwpdE

Tutor-Marked Assignment

Define Synchronization

What is the need for process synchronization

Describe any lock-free non-blocking synchronizatidgorithm
When is an algorithm wait-free?

Enumerate the various phases in which a lock-figarighm can run.
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1.0 Introduction

In the previous units of this module you have be#roduced you to some pertinent
concepts in process synchronization. This unit Viitther expose you to another
important concept in process synchronization whishmutual exclusion. It is an
algorithm that is often used in concurrent prograngmo avoid the simultaneous use of
a common resource by pieces of computer code krasveritical section (this will be
discussed in this next unit.

2.0 Objectives
At the end of this unit, you should be able to:

» Describe what you understand by mutual exclusion
» Describe ways to enforce mutual exclusion

3.0 Main Body
3.1 What is Mutual Exclusion?

Mutual exclusion (often abbreviated tonutex) algorithms are used in concurrent
programming to avoid the simultaneous use of a commesource, such as a global
variable, by pieces of computer code called clisegtions.

Examples of such resources are fine-grained flagsinters or queues, used to

communicate between code that runs concurrentlgh sas an application and its

interrupt handlers. The problem is acute becaubesad can be stopped or started at any
time.

To illustrate: suppose a section of code is mugadirpiece of data over several program
steps, when another thread, perhaps triggered Inye sonpredictable event, starts
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executing. If this second thread reads from theespiece of data, the data, in the process
of being overwritten, is in an inconsistent and neajictable state. If the second thread
tries overwriting that data, the ensuing state \wilbbably be unrecoverable. These
critical sections of code accessing shared data thasefore be protected, so that other
processes which read from or write to the chunétadé are excluded from running.

A mutex is also a common name for a program object thgotrtes mutual exclusion
among threads, also called a lock.

Mutual exclusion is one of the control problemge@ in the case of competing
processes. The enforcement of mutual exclusiortesdeo additional control problems;
deadlock and starvation (Stallings)

Mutual exclusion has two levels of concurrency:

1. Concurrency among processes
2. Concurrency among activities (threads) with a grgbcess.

If concurrent processes or activities do not asossmMmon resources, there is no
problem, but there s a problem if they do. A solutio this problem is to keep the critical
activities sequential rather than concurrent. Bboisition is not always practical.

Problems in achieving mutual exclusion include kiep, loss of mutual exclusion,
deadlock and indefinite postponement.

3.2 Enforcing Mutual Exclusion

There exist both software and hardware solutiomsefdorcing mutual exclusion. The
different solutions are presented below.

3.2.1 MUTUAL EXCLUSION HARDWARE APPROACH (TEST-AND- SET)

On a uniprocessor system the common way to achiaweial exclusion is to disable
interrupts for the smallest possible number ofruttons that will prevent corruption of
the shared data structure, the critical sectioms prevents interrupt code from running in
the critical section.

In a computer in which several processors shareangmn indivisible test-and-set of a
flag is used in a tight loop to wait until the othprocessor clears the flag. The test-and-
set performs both operations without releasing rttemory bus to another processor.

When the code leaves the critical section, it clehe flag. This is called a "spinlock” or
"busy-wait."

The test and set instruction can be defined asvist

function testset (var i: integer) : boolean;
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begin

if i =0; then
begin
=1
testset : = true
end
else testset ;= false
end.

The instruction test the value of its argumerit the value is 0, then it replaces it by 1
and returns true. otherwise, the value is not gbdrand false is returned. The entire
testset function is carried out automatically; tilsatt is not subject to interruption

Some computers have similar indivisible multipleeggiion instructions, e.g., compare-
and-swap, for manipulating the linked lists used &vent queues and other data
structures commonly used in operating systems.

3.2.2 MUTUAL EXCLUSION: SOFTWARE APPROACH

Beside the hardware supported solution, some swodtwalutions exist that use "busy-
wait" to achieve the goal. Examples of these ineiud

. Dekker's algorithm

. Peterson's algorithm

. Lamport's bakery algorithm

. The Black-White Bakery Algorithm
. Semaphores

. Monitor (synchronization)

. Message passing

Most classical mutual exclusion methods attemptettuce latency and busy-waits by
using queuing and context switches. Some claim bleamichmarks indicate that these
special algorithms waste more time than they save.

Software approaches can be implemented for congupecesses that execute on a
single processor or a multiprocessor machine witlared main memory. These

approaches usually assume elementary mutual esnolusi the memory access level.
That is, simultaneous accesses (reading and/omgyito the same location in main

memory are serialized by some sort of memory arba&hough the order of access
granting is not specified ahead of time. Beyoni$,tmo support at the hardware,
operating system, or programming-language levassumed.

Peterson's Algorithm provided a simple and elegahition. That mutual exclusion is
preserved is easily shown. Consider process PCe Dhas set flag [0] to true, P1 cannot
enter its critical section. If P1 already is in dtstical section, then flag [1] = true and PO
is blocked from entering its critical section. Ometother hand, mutual blocking is
prevented. Suppose that PO is blocked in its wibibg. this means that flag [1] is true
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and turn = 1. PO can enter its critical section nvkéher flag [1] becomes false or turn
becomes 0. Now consider three exhaustive cases:

1. P1 has no interest in its critical section. Thisecas impossible, because it implies
flag [1] = false.

2. P1 is waiting for its critical section. This caseaiso impossible, because if turn =
1, P1 is able to enter its critical section.

P1 is using its critical section repeatedly anddf@e monopolizing access to it. This
cannot happen, because P1 is obliged to give P@pportunity by setting turn to 0
before each attempt to enter its critical section.

The algorithm for two processes is presented below.

var flag: array [0..1] of boolean;
turn: 0..1;
procedure PO;
begin
repeat
flag [O] := true
turn: =1
while flag [1] and turn = 1 do{ nothing };
<critical section>;
flag [O] : = false;
<remainder>
forever
end;

procedure P1;
begin
repeat
flag [1] := true
turn : = 0;
while flag [0] and turn = 0 do{ nothing };
<critical section>;
flag [1] : = false;
<remainder>
forever
end,;
begin
flag [O] := false;
flag [1] := false;
turn := 1;
parbegin
PO;P1
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parend
end.

This algorithm is easily generalized to the case pfocesses.

Many forms of mutual exclusion have side-effectsr Example, classic semaphores
permit deadlocks, in which one process gets a skeanapanother process gets a second
semaphore, and then both wait forever for the offsgnaphore to be released. Other
common side-effects include starvation, in whichpecess never gets sufficient
resources to run to completion, priority inversionwhich a higher priority thread waits
for a lower-priority thread, and "high latency" which response to interrupts is not
prompt.

Much research is aimed at eliminating the abovects$f such as by guaranteeing non-
blocking progress. No perfect scheme is known.

4.0 Conclusion

This unit has taken you through the concept of mluéxclusion. In the next unit, you
will see how it can be used to solve critical-satproblem.

5.0 Summary

Mutual Exclusion, as you have seen in this unit banimplemented by hardware or
software. The hardware features can make the prognag task easier and improve
system efficiency. The software forms of mutual lesion especially the classic
semaphores have side-effects one of which is tima&y lead to deadlocks.

6.0 Tutor-Marked Assignment
1. What do you understand by mutual exclusion
2. What is it used for?
3. State some of the software methods of implememtintpal exclusion algorithm
4. What do you understand by busy-wait?

7.0 References/Further Reading
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1.0 Introduction

Consider a system consisting of n proces§gsH;,..., B.1}. Each process has a segment
of code called critical section, in which the prs®es may be changing common
variables, updating a table, writing a file, etbeTimportant feature of the system is that,
when one process is executing, in its criticalise¢tno other process is to be allowed to
execute in its critical section. Therefore the exien of the critical section by the
processes is mutually exclusive in time. The @ltisection problem is to design a
protocol that the processes can use to cooperath. [ifocess must request permission to
enter its critical section. The section of code lengenting this request is thentry
section The critical section may be followed by arit section The remaining code is
theremainder section

do {

entry section

critical section

exit section

140



remainder section
} while(2);
Figure 1.1  General structure of a typical prodgss
A solution to the critical section problem mustisgtthe following three requirements:

1. Mutual Exclusion: if process Pis executing in its critical section, then no athe
processes can be executing in their critical sestio

2. Progress If no process is executing in its critical sentend some processes wish
to enter their critical sections, then only thosecpsses that are not executing in
their remainder section can participate in the sleni on which will enter its
critical sectionnext, and this selection cannotpbstponed indefinitely.

3. Bounded Waiting: there exists a bound on the number of times tiher
processes are allowed to enter their critical eastiafter a process has made a
request to enter its critical section and befoet thquest is granted.

Based on these three requirements, we will dissasse solutions to critical section
problem in this unit.

2.0 Objectives

At the end of this unit you should be able to:

» Explain the critical section problem

» State the different levels of critical section

» Define semaphores

» Define monitors

» Distinguish between monitors and semaphores

3.0 Main Body
3.1  The Critical Section Problem

A critical section is a piece of code that accesses a shared res@latze structure or
device) that must not be concurrently accessechdme than one thread of execution. A
critical section will usually terminate in fixedhie, and a thread, task or process will only
have to wait a fixed time to enter it (i.e. boundediting). Some synchronization
mechanism is required at the entry and exit ofctiitecal section to ensure exclusive use,
for example a semaphore.

By carefully controlling which variables are modii inside and outside the critical

section (usually, by accessing important state tlyn within), concurrent access to that
state is prevented. A critical section is typicalsed when a multithreaded program must
update multiple related variables without a sepgatiatead making conflicting changes to
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that data. In a related situation, a critical settnay be used to ensure a shared resource,
for example a printer, can only be accessed bypooeess at a time.

How critical sections are implemented varies amomgrating systems.

The simplest method is to prevent any change ofgssor control inside the critical
section. On uni-processor systems, this can be dgresabling interrupts on entry into
the critical section, avoiding system calls that cause a context switch while inside the
section and restoring interrupts to their previstete on exit. Any thread of execution
entering any critical section anywhere in the gsyswill, with this implementation,
prevent any other thread, including an interrugtnt getting the CPU and therefore from
entering any other critical section or, indeed, @oge whatsoever, until the original
thread leaves its critical section.

This brute-force approach can be improved upondygusemaphores. To enter a critical
section, a thread must obtain a semaphore, whigheiases on leaving the section. Other
threads are prevented from entering the criticatiee at the same time as the original
thread, but are free to gain control of the CPU arecute other code, including other
critical sections that are protected by differeerhaphores.

Some confusion exist in the literature about tHati@nship between different critical

sections in the same program. In general, a resotlrat must be protected from
concurrent access may be accessed by several ppécesde. Each piece must be
guarded by a common semaphore. Is each piece wofical section or are all the pieces
guarded by the same semaphore in aggregate a snitgtal section? This confusion is

evident in definitions of a critical section suck 'a.. a piece of code that can only be
executed by one process or thread at a time". dilisworks if all access to a protected
resource is contained in one "piece of code", whiedjuires either the definition of a

piece of code or the code itself to be somewhatriveal.

3.1.1 Application Level Critical Sections

Application-level critical sections reside in theemory range of the process and are
usually modifiable by the process itself. This @&led a user-space object because the
program run by the user (as opposed to the kenaal) modify and interact with the
object. However the functions called may jump tonkéspace code to register the user-
space object with the kernel.

Example Code For Critical Sections with POSIX pthrad library

[* Sanple C/ C++, Unix/Linux */

#i ncl ude <pt hread. h>

pthread nutex t c¢s_mutex = PTHREAD MJUTEX I NI Tl ALI ZER, [*
This is the critical section object*/

/* Enter the critical section -- other threads are | ocked
out */
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pt hread nutex | ock( &cs nmutex );
/* Do sone thread-safe processing! */

[ *Leave the critical section -- other threads can now
pt hread nmutex | ock() */
pt hread _nut ex_unl ock( &cs_nut ex) ;

Example Code For Critical Sections with Win32 API

[* Sanple C C++, Wn9x/ NT/ ME/ 2000/ XP, link to kernel 32.dll
*/
#i ncl ude <wi ndows. h>
CRITI CAL_SECTION cs; /* This is the critical section object
-- once initialized, it cannot

be noved in nenory */

/[* Initialize the critical section -- This nust be done
before | ocking */
InitializeCritical Section(é&cs);

/* Enter the critical section -- other threads are | ocked
out */
EnterCritical Section(&cs);

/* Do sonme thread-safe processing! */

/* Leave the critical section -- other threads can now
EnterCritical Section() */
LeaveCritical Section(&cs);

/* Rel ease system object when all finished -- wusually at
the end of the cl eanup code */
Del eteCritical Section(&cs);

Note that on Windows NT (not 9x/ME), the functi®ryEnterCriticalSection() can be
used to attempt to enter the critical section. Tlwtion returns immediately so that the
thread can do other things if it fails to enter tngtical section (usually due to another
thread having locked it). Note that the use of #@&icSection is not the same as a
Win32 Mutex, which is an object used forter-processsynchronization. A Win32
CriticalSection is forinter-thread synchronization (and is much faster as far as lock
times), however it cannot be shared across presess

3.1.2 Kernel Level Critical Sections
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Typically, critical sections prevent process anctdld migration between processors by
interrupts. Also, pre-emption of processes andailises prevent by interrupts.

Critical sections often allow nesting. Nesting @i multiple critical sections to be
entered and exited at little cost.

If the scheduler interrupts the current procesthigad in a critical section, the scheduler
will either allow the process or thread to run tonpletion of the critical section, or it
will schedule the process or thread for anotherpteta quantum. The scheduler will not
migrate the process or thread to another processat,it will not schedule another
process or thread to run while the current prooesisread is in a critical section.

Similarly, if an interrupt occurs in a critical $&n, the interrupt's information is
recorded for future processing, and execution tisrmed to the process or thread in the
critical section. Once the critical section is e#lit and in some cases the scheduled
guantum completes, the pending interrupt will becexed.

Since critical sections may execute only on thec@ssor on which they are entered,
synchronization is only required within the exengtiprocessor. This allows critical
sections to be entered and exited at almost zesto Mo interprocessor synchronization is
required, only instruction stream synchronizatiblost processors provide the required
amount of synchronization by the simple act of nnipting the current execution state.
This allows critical sections in most cases to bt#himg more than a per processor count
of critical sections entered.

Performance enhancements include executing pemai@gupts at the exit of all critical
sections and allowing the scheduler to run at Kiteoé all critical sections. Furthermore,
pending interrupts may be transferred to othergssars for execution.

Critical sections should not be used as a longdlilocking primitive. They should be
short enough that the critical section will be estle executed, and exited without any
interrupts occurring, from neither hardware muds lthe scheduler.

3.2 Semaphores

The first major advance in dealing with the proldeai concurrent processes came in
1965 with Dijkstra's treatise. The fundamental gipte is this: two or more processes
can cooperate by means of simple signal, suchatlpabcess can be forced to stop at a
specified place until it has received a specifiegghal. Any complex coordination
requirement can be satisfied by the appropriatecstre of signals. For signalling,
special variables called semaphores are used. ahsmit a signal via semaphores, a
process executes the primitive signal(s). To recaiwignal via semaphore s, a process
executes the primitive wait(s); if the correspomgdsignal has not yet been transmitted,
the process is suspended until the transmissi@s tplace.

To achieve the desired effect, we can view the phim& as a variable that has an integer
value upon which three operations are defined:
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1. A semaphore may be initialized to a non-negatiiaera

2. The wait operation decrements the semaphore vdfu¢ghe value becomes
negative, then the process executing the waitiskield

3. The signal operation increments the semaphore vHltlee value is not positive,
then a process blocked by wait operation is unlddck

Other than these three operations, there is notevangpect or manipulate semaphores.
Semaphores are operated on by a signal operatioohwcrements the semaphore value
and the wait operation, which decreases it. Thlnvalue of semaphore indicates the
number of wait operations that can be performethersemaphore. Thus:
V=1-W+S
where | is the initial value of the semaphore

W is the number of completed wait opera performed on the semaphore

S is the number of signal operationggrared on it

V is the current value of the semaph@rkich must be greater than or equal to
zero).

As Vis > 0then I- W+ S > 0, which gives

l+S>W

or

W<I+S
Thus, the number of wait operations must be leas tr equal to the initial value of the
semaphore, plus the number of signal operatiort@nary semaphore will have an initial
value of 1 (I = 1), thus:

W< S+ 1
In mutual exclusionyvaits always occur before signals, &aits happen at the start of a
critical piece of code, with a signal at the enditofThe above equation states that no
more than one&vait may run to completion before a signal has beefopeed. Thus no

more than one process may enter the critical Seeti@a time as required

3.2.1 The Problem with Semaphores

Semaphores work but programmers still need to ccalefully to ensure mutual
exclusion and that synchronisation operate cogrectl

3.2.2 Language Constructs
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The problem with semaphores is that they arddaolevel in nature: they are similar to
doing mutual exclusion and synchronisation in asdgrfanguage usingoto's. They
have naostructure. They are also damnably hard to prove correctregad to impossible
to test!

What is needed are high-level language constrbetisenforce the necessary discipline.
The two main contenders for this job are:

- Critical Regions, and more usefull@pnditional Critical Regions
- Monitors

3.3 Monitors

Monitors are a common high-level synchronizatioml tavhich solve some of the
problems associated with semaphores.

Monitors are actually a much nicer way of implenmegt mutual exclusion than
semaphores. One of the reasons for this is thatdte that implements mutual exclusion
is all in one place, the monitor. With semaphooesie can distributed all over the place
in the form of wait and signal semaphore functiahsc

Additionally, it is next to impossible to setup amitor incorrectly. On the other hand
with semaphores it is quite common to do a waitWBen you should have done a wait
(C). Simple little mistakes are easy to make wimaphores.

3.3.1 Process Synchronization with Monitors

Process synchronization with monitors is implemeérite much the same way as it is
implemented with semaphores. However, with monitposi use condition variables
rather than semaphores.

For this reason, it is important that you realire difference between semaphores and
condition variables. This is made more difficulchase

- both semaphores and condition variables use wait signal as the valid
operations,

- the purpose of both is somewhat similar, and

- they are actually quite different.

The main difference is the operation of signal. W\\at semaphore the signal operation
actually increments the value of the semaphore.ifSthere are not any processes
blocked on the semaphore, the signal will be "rebvened” by the incrementing of the
semaphore.

The signal function on a Monitor's condition vafmbis different. If there are no

processes blocked on the condition variable thenstgnal function does nothing. The
signal is not remembered. In order to remembemptgraignals”, you have to use some
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other form of variables. The good part of this hattusing other variables within a
monitor is simple because we can be assured thataiexclusion is being implemented.

4.0 Conclusion

In this unit, you learnt some of the methods farcyonizing co-operating processes and
how these methods are implemented as well as trentabes and disadvantages of each
approach. In the next unit we will discuss some tbé classic problems of
synchronization.

5.0 Summary

Given a collection of cooperating sequential preesshat share data, mutual exclusion
must be provided. One solution is to ensure tlaitigal section of code is in use by only
one process or thread at a time. Different algor#texist for solving the critical-section
problem, with the assumption that only storageriotk is available.

The main disadvantage of these user-coded solusahat they all require busy waiting.
Semaphores overcome this difficulty. Semaphores banused to solve various
synchronization problems and can be implementadiefitly. However, there are some
problems with using semaphores too.

Monitors overcome the problem with using semaphbezsause it is next to impossible
to setup a monitor incorrectly.

6.0 Tutor-Marked Assignment

1. Enumerate the requirements that must be satisly a solution to the critical section
problem

N

. What do you understand by critical section? Wikethused?
3. Compare Application-level critical section arettkel-level critical section.
4. What do you understand by semaphore?

5. What are the problems with using semaphorespteiment mutual exclusion and how
does monitor overcome these problems?

6. What are monitors?
7. Can monitors be incorrectly setup? Explain
7.0 References/Further Reading
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1.0 Introduction

In a multiprogramming environment, several processay compete for a finite number
of resources. A process requests resources; regmrces are not available, at that time,
the process enters a wait state. Waiting procassgsnever again change state, because
the resources they have requested are held by w#igng processes. This situation is
called deadlock. We have already mentioned thesfligrin module 4 in connection with
semaphores.

In this module, you will be taken through metholdattan operating system can use to
prevent or deal with deadlocks

Objectives
At the end of this unit, you should be able to:

* Define deadlock

» State the necessary conditions for deadlock toroccu

» Describe Resource-Allocation graph

» Explain how it can be used to describe deadlocks

» Describe some of the methods for handling deadlocks

3.0 Main Body

3.1 System Model
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A system consists of a finite number of resourcebd distributed among a number of
competing processes. The resource are partitiontd several types, each of which
consists of some number of identical instances. dbtgrapace, CPU cycles, files, and 1/0
devices (such as printers and tape drives) are @ramof resource types. If a system has
two CPUs, then the resource tyB®U has two instances. Similarly, the resource type
printer may have five instances.

A process must request a resource before usirandt, must release the resource after
using it. a process may request as many resousdéesegjuires to carry out its designated
task. Obviously, the number of resources requeasiayg not exceed the total number of
resources available in the system. i.e. a procassat request three printers if the
system has only two.

Under normal mode of operation, a process mayzatd resource in only the following
sequence.

1. Request If the request cannot be granted immediately @mample, if the
resource is been used by another process), theredoesting process must wait
until it can acquire the resource.

2. Use The process can operate on the resource (for @eanh the resource is a
printer, the process can print on the printer)

3. ReleaseThe process releases the resource.

Request and release of resources can be accontplieheugh thewait and signal
operations on semaphores. Therefore, for eachthiseperating system checks to make
sure that the using process has requested andableeated the resource. A system table
records whether each resource is free or allocatadl,if a resource is allocated, to which
process. If a process requests a resource thatresntly allocated to another process, it
can be added to a queue of processes waitingiforakource.

A set of processes is in a deadlock state whernygueicess in the set is waiting for an
event that can only be caused by another procdhks iset.

To illustrate deadlock state, consider a systenh wWitee tape drives. Suppose each of
three processes holds one of these tape driveach process now requests another tape
drive, the three processes will be in deadlock hBaavaiting for the event “tape drive is
released” which can be caused only by one of therawaiting processes. This example
illustrates a deadlock involving the same resotype.

Deadlocks may also involve different resource typay. Consider a system with one
printer and one tape drive. Suppose that proBess holding the tape drive and process
P, is holding the printer. IfP; requests the printer arfé, requests the tape drive, a
deadlock occurs.

A deadlock is also calleddeadly embrace.
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Deadlocks occur most commonly in multitasking anéent/server environments.

Therefore, a programmer who is developing multdkiesd applications must pay
particular attention to this problem: Multithreadpdbgrams are good candidates for
deadlock because multiple threads can competd&red resources.

3.2 Deadlock Characterization

In a deadlock, processes never finish executing syslem resources are tied up,
preventing other jobs from starting. Before we dgscthe various methods for dealing
with the deadlock problem, we shall describe to yfeatures that characterized
deadlocks.

3.2.1 Necessary Conditions

A deadlock situation can arise if the following ditions hold simultaneously in a
system:

1. Mutual exclusion condition: At least one resource must be held in a non-skarab
mode; i.e. only one process at a time can usedbeurce. If another process
requests that resource, the requesting processbaugtlayed until the resource
has been released.

2. Hold-and-wait condition: A process must be holding at least one resourde an
waiting to acquire additional resources that areerily being held by other
processes.

3. No-preemption condition: Resources cannot be preempted; i.e. only a @oces
holding a resource may voluntarily release theussoafter completing its task.

4. Circular-wait condition: two or more processes form a circular chain wieaieh
process waits for a resource that the next praoetbe chain holds. i.e. A se&@(

P, ..., B) of waiting processes must exist such tAgis waiting for a resource
that is held byP,, P; is waiting for a resource that is held By, ..., P,.1is waiting
for a resource that is held By, andP, is waiting for a resource that is held By

Deadlock only occurs in systems where all these domditions hold. You should note
that the hold-and-wait condition leads to the dacwvait condition implies. So, the four
conditions are not completely independent.

3.2.2 Resource-Allocation (R-A) Graph

Deadlocks can be described more precisely in tefnasdirected graph called a system
resource-allocation graph. This graph consists sétaof vertices V and a set of edges E.
The set vertices V is partitioned into two differéypes of node® = {P,, P, ..., R}, the

set consisting of all the active processes in ffstesn, aniR = {R;, R, ..., Ry}, the set
consisting of all resource types in the system.

A directed edge from proces$s, to resource typ® is denoted by, — R; it signifies

that proces®; requested an instance of resource tgpand is currently waiting for that
resource. A directed edge from resource tRp® process; is denoted byR — P;; it
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signifies that an instance of resource tf#§éas been allocated to procé3sA directed
edgeP, — R is called arequest edge a directed edg® — P, is called amssignment
edge

Pictorially, each procesB; is represented as a circle, and each resourceRype a
square. Since resource tyBamay have more than one instance, we representse@th
instance as a dot within the square. You should tiwt a request edge points only to the
square whereas an assignment edge must also desigreaof the dots in the square.

When a procesB; request an instance of resource tigyea request edge is inserted in the
resource-allocation graph. When this request canfutfdled; the request edge is
instantaneously transformed to an assignment edpen the process no longer needs
access to the resource it releases the resourdeasaa result the assignment edge is
deleted.

M

R. Ry

Figure 3.1: Resource-Allocation Graph (RAG)
The resource-allocation graph shown in figure 3dias the following situation:
* The setd, RandE

0 P=(P, Py, Py
0 R=R, R, R, Ry
0 E={Pi1> R P> R3Ri— P, RR— P, RR— P; Rg— P3}

* Resource instances:
0 One instance of resource tyRe
o Two instances of resource tyBg
o One instance of resource tyRe
o Two instances of resource tyBe
* Process states:
o Process i, is holding an instance of resource type and is waiting
for an instance of resource tyRe
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0 Process i$, is holding an instance of resource tyReandR,, and is
waiting for an instance of resource tyRge
0 Process i®; is holding an instance of resource tyfe

Given the definition of a RAG, it can be shown thathe graph contains no cycles,
then no process in the system is deadlocked. Igtaph does contain a cycle, then a
deadlock may exist.

If each resource type has exactly one instance, dheycle implies that deadlock has
occurred. If the cycle involves only a set resousgees, each of which has only a
single instance, then a deadlock has occurred. pemtess involved the cycle is
deadlocked. In this case, a cycle in the graphoth la necessary and a sufficient
condition for the existence of deadlock.

If each resource type has several instances, tluiela does not necessarily imply
that a deadlock has occurred. In this case, a aydlee graph is both a necessary but
not a sufficient condition for the existence oad®ck.

To illustrate this concept, let us return to the RpAph depicted in figure 3.1 above.
Suppose procesB; requests an instance of resource type Since no resource
instance is currently available, a request €dige R, is added to the graph (see figure
3.2). At this point, two minimal cycles exist iretlsystem:

P1—>R1—>P2—>R3—>P3—>R2—>P1

P2—>R3—>P3—>R2—>P2

Ry
Rs
[
\ [

NN
& &

[
MNP
R Ry

Figure 3.2: Resource-Allocation Graph with a Deadlo

ProcesseP, P,, andP; are deadlocked. ProceBsis waiting for resourcés, which is
held by process P;. Process P;, on the other hand, is waiting for either
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process P; or P, to release resourde,. In addition, proces®; is waiting for P, to
release resourck;.

Now consider the R-A graph in figure 3.3.

R, /

@
/ |
@ P3
R
@

Figure 3.2: Resource-Allocation Graph with a cydit no Deadlock
In this example, you also have a cycle:
P1—> R1—> P3—>R2—>P1

However, there is no deadlock. Observe that proégssay release its instance of
resource typer, and that resource could then be allocateBsidreaking the cycle

Conclusively, if a resource-allocation graph does have a cycle, then the system is not
in a deadlock state. On the other hand, if theeeagcle, then the system may or may not
be in a deadlock state. This observation is importghen you deal with deadlock
problem.

3.3  Methods for Handling Deadlocks

Principally, we can deal with the deadlock problerone of three ways:

* We can use a protocol to prevent or avoid dead]aaksuring that the system will
never enter add state.

* We can allow the system to enter a deadlock slatect it, and recover.

* We can ignore the problem altogether, and preteatideadlocks never occur in
the system. This method is use by most operatistgsyincluding UNIX.

We shall elaborate briefly on each method. Theth@later units, we shall present you
detailed algorithms.
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To ensure that deadlocks never occur, the systenusa either deadlock-prevention or a

deadlock-avoidance scheme. Deadlock-preventiorset af methods for ensuring that at

least one of the necessary conditions (unit 2) otanimold. These methods prevent

deadlocks by constraining how requests for resauced be made. These methods are
discussed in unit 2.

Deadlock avoidance, on the other hand, requirestbeoperating system be given in
advance additional information concerning whichoteses a process will request and
use during its lifetime. With this additional knatlge, we can decide for each request
whether or not the process should wait. To dewtiether the current request can be
satisfied or must be delayed, the system must denshe resources currently allocated
to each process, and the future requests and esled®ach process. These schemes are
discussed in later units.

If system does not employ either a deadlock-preeenor a deadlock-avoidance
algorithm, then a deadlock situation may occurthHis environment, the system can
provide an algorithm that examines the state of diigtem to determine whether a
deadlock has occurred, and an algorithm to rectyeen the deadlock (if a deadlock has
indeed occurred). This issue is discussed in unit 2

If the system does not ensure that a deadlockneiter occur, and also does not provide
a mechanism for deadlock detection and recoveen the may arrive at a situation
where the system is in deadlock state yet hasayoi recognizing what has happened.
In this case, the undetected deadlock will resumltthe deterioration of the system
performance, because resources are being heldbggses that cannot run, and because
more and more processes, as they make requestssfmurces, enter a deadlock state.
Eventually, system will stop functioning and wikted to be restarted manually.

Although this method does not seem to be a viapjgoach to the deadlock problem, it
iIs nevertheless used in some operating systemsnany systems, deadlocks occur
infrequently like once in a year. Therefore, thigethod is cheaper than the costly
deadlock-prevention, deadlock-avoidance, or de&etimtection and recovery methods
that must be used constantly.

4.0 Conclusion

In this unit, you have been exposed to the conocépteadlock problem, necessary
conditions for its occurrence and some of the wagan be handled when it occurs. In
subsequent units, you will be taken through sonexifip algorithms on each of the
methods for handling deadlock problems.

5.0 Summary

A deadlock state occurs when two or more procemsewaiting indefinitely for an event
that can be caused only by one of the waiting Eees

As discussed in this unit, a deadlock situation megur if and only if four necessary
conditions hold simultaneously in the system aretdhare three principal methods for
dealing with deadlocks. You will learn about thesethods in the next unit.
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6.0 Tutor-Marked Assignment

1. Consider the traffic deadlock depicted below:
(a) Show that the four necessary conditions fadttkxk indeed hold in this example.
(b) State a simple rule that will avoid deadlok¢his system.

"

—

List three examples of deadlocks that are nelated to a computer system
environment.

Is it possible to have a deadlock involving ooihe process? Explain your answer.
Using R-A graph, describe deadlocks

State the necessary conditions for deadlock¢aro

What are the various methods for handling dekdi®

N

o0k W

7.0 References/Further Reading

1. E. W. Dijkstra "EWD108: Een algorithme ter voorkemi van de dodelijke
omarming" (in DutchAn algorithm for the prevention of the deadly encleya

2. Lubomir, F. Bic (2003)Operating System PrincipleBrentice Hall.
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Module 5: Deadlocks

Unit 2: Methods for Dealing with Deadlocks
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1.0

As you have seen in the previous unit, for a deadto occur, each of the four necessary
conditions must hold. You were also introduced dms of the methods for handling a
deadlock situation. In this unit you will be fullxposed to deadlock prevention and
deadlock avoidance approaches. As discussed beafeagllock prevention is all about
ensuring that at least one of the four necessargitons cannot hold, we will elaborate
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3.4  Distributed Deadlock
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Conclusion
Summary
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Introduction

further by examining each of the four conditiongagately.

Deadlock avoidance is an alternative method foidawrg deadlocks which takes care of
some of the shortcomings of deadlock-preventiorhsas low device utilization and
reduced system throughput. In this unit, you whlkrefore learn how some of the
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algorithms for deadlock prevention, deadlock amomk and deadlock detection and
recovery are implemented.

2.0  Objectives

At the end of this unit you should be able to:

» Describe deadlock prevention

» Explain what is meant by deadlock avoidance

» Describe Banker’s algorithm

» Describe Resource-Allocation graph algorithm

» Explain what is meant by safe state

* Describe Deadlock lock detection algorithms and htowrecover from
deadlock

3.0 Main Body
3.1 Deadlock Prevention

As you have seen in unit 1 of this module, for adleck to occur, each of the four
necessary conditions must hold. By ensuring thaleast one of the four necessary
conditions cannot hold, you can prevent the oenwe of a deadlock. Now, we will

elaborate on this approach by examining each ofaitneconditions separately.

3.1.1 Mutual Exclusion

The mutual exclusion condition must hold for nomusible resources. For instance, a
printer cannot be simultaneously shared by seyeaesses. Sharable resources, on the
other hand, do not require mutually exclusive ascand thus cannot be involved in a
deadlock. Read-only files are a good example dfaaable resource. If several processes
attempt to open a read-only file at the same tithey can be granted simultaneous
access to the file. A process never needs to waitafsharable resource. In general,
however, we cannot prevent deadlocks by denyimgg rttutual-exclusion condition:
Some resources are intrinsically nonsharahlgorithms that avoid mutual exclusion are
called non-blocking synchronization algorithms.

3.1.2 Hold and Wait

To ensure that the hold-and-wait condition nevecueg, in the system, we must
guarantee that, whenever a process requests argesdudoes not hold any other
resources. One protocol that can be used requads@ocess to request and be allocated
all resources before it begins execution. We caplé@ment this provision by requiring
that system calls requesting resources for a psquesede all other system calls.

An alternative protocol allows a process to requesburces only when the process has
none. A process may request some resources antherse Before it can request any
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additional resources, however, it must releasetral resources that it is currently
allocated.

To illustrate the difference between these two qumols, we consider a process that
copies data from a tape drive to a disk file, stirésdisk file, and then prints the results to
a printer. If all resources must be requested athihginning of the process, then the
process must initially request the tape drive, dilgkand printer. It will hold the printer
for its entire execution, even though it needsptteter only at the end.

The second method allows the process to requestllyionly the tape drive and disk
file. It copies from the tape drive to the dislefilThe process must then request the disk
file and the printer. After copying the disk file the printer, it releases these two
resources and terminates.

These protocols have two main disadvantages:

I.  Resource utilization may be low, since many ofrésources may be allocated but
unused for a long period. In the example given,ifigtance, we can release the
tape drive and disk file, and again request thk filis and printer, only if we can
sure that our data will remain on the disk filewié cannot be assured that they
will, then we must request all resources at thermagg for both protocols.

ii.  Starvation is possible. A process that needs sepeplar resources may have to
wait indefinitely; because at least one of the weses that it needs is always
allocated to some other process.

3.1.3 No Pre-emption

The third necessary condition is that there be meepnption of resources that have
been allocated. To ensure that this condition e¢shold, we can use the following
protocol.

If a process is holding some resources and reqaesther resource that cannot be
immediately allocated to it (that is, the processshwait), then all resources are pre-
empted. In other words, these resources are iriplictleased. The pre-empted

resources are added to the list of resources faochwtine process is waiting. The

process will be started only when it can regairolts resources, as well as the new
ones that it is requesting.

Alternatively, if a process requests some resounvesfirst check whether they are
available. If they are, we allocate them. If theg aot available we check whether
they are allocated to some other process thatishwiaiting for additional resources.

If so, we pre-empt the desired resources from thidivg process and allocate them to
the requesting process. If the resources are itbherevailable or held by a waiting

process, the requesting process must wait.
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While it is waiting, some of its resources may bve-empted, but only if another
process requests them. A process can be restarlgdvben it is allocated the new
resources it is requesting and recovers any ressuhat were pre-empted while it is
waiting.

This protocol is often applied to resources whosgestan be easily saved and
restored later such as CPU registers and memocgsfiadannot generally be applied
to such resources as printer and tape drives.

3.1.4 Circular Wait

The fourth and final conditiofor deadlocks is the circular wait condition. Ciauwait
prevention consists in allowing processes to wait resources, but ensure that the
waiting cannot be circular. One approach mightd@ssign a precedence/ordering to
each resource and force processes to allocatercesan order of increasing precedence.
That is to say that if a process holds some ressuaad the highest precedence of these
resources isn, then this process cannot request any resourteprecedence/ordering
smaller thanm. This forces resource allocation to follow a par&r and non-circular
ordering, so circular wait cannot occur.

Another approach is to allow holding only one resewper process; if a process requests
another resource, it must first free the one uisently holding (or hold-and-wait).

3.2 Deadlock Avoidance

Deadlock can be avoided if certain information alocesses is available in advance of
resource allocation. For every resource requestsyistem sees if granting the request
will mean that the system will enter ansafestate, meaning a state that could result in
deadlock. The system then only grants requesiniidead tosafestates. In order for the
system to be able to figure out whether the nexteswill be safe or unsafe, it must know
in advance at any time the number and type ofeslburces in existence, available, and
requested.

Each request requires that the system considere$eurces currently available, the
resources currently allocated to each processtrenfliture requests and releases of each
process, to decide whether the current requesbeasatisfied or must wait to avoid a
possible future deadlock.

The various algorithms differ in the amount andetypf information required. The

simplest and most useful model requires that easbegs declare the maximum number
of resources of each type that it may need. Giaepriori information, about the

maximum number of resources of each type that neaequested for each process, it is
possible to construct an algorithm that ensuretsthi@gasystem will never enter a deadlock
state. This algorithm defines the deadlock-avoidaapproach. A deadlock-avoidance
algorithm dynamically examines the resource-aliocastate to ensure that a circular
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wait condition can never exist. The resource-atiocastate is defined by the number of
available and allocated resources, and the maxigemmands of the processes.

One known algorithm that is used for deadlock aanak is the Banker's algorithm,
which requires resource usage limit to be knowadwance. However, for many systems
it is impossible to know in advance what every psswill request. This means that
deadlock avoidance is often impossible.

Two other algorithms are Wait/Die and Wound/Wadégcle of which uses a symmetry-

breaking technique. In both these algorithms thests an older process (O) and a
younger process (Y). Process age can be deterrbyadtimestamp at process creation
time. Smaller timestamps are older processes, Wdngger timestamps represent younger
processes.

Table 1

Wait/Die Wound/Wait

O is waiting for a
resource that is O walits Y dies
being held by Y

Y is waiting for a
resource that is Y dies Y waits
being held by O

It is important to note that a process may be isafm state but would not result in a
deadlock. The not ion of safe/unsafe state onlgrsetio the ability of the system to enter
a deadlock state or not . For example, if a procegaests A which would result in an

unsafe state, but releases B which would preveatlar wait, then the state is unsafe but
the system is not in deadlock.

3.2.1 Safe State

A state is safe if the system can allocate resgsutoeeach process (up to its
maximum) in some order and still avoid a deadlddkre formerly, a system is in a
safe state only if there exists a safe sequensegfience of processeB;<P,,..., B>

is a safe sequence for the current allocation dtater eachP;, the resources th#
can still request can batssfied by the currently available resources phesresources
held by all theP;, with j <i. In this sitwation, if the resources that proc&sseeds are
not immediately available, théh can wait until allP, have finished. When they have
finished,P; can obtain all its needed resources, completieggynated task, return its
allocated resources and terminate. Wikerierminates,P,,; can obtain its needed
resources and so on. If no such sequence exists,tkie system state is said to be
unsafe.
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A safe state is not a deadlock state. Conversetieadlock state is an unsafe state.
Not all unsafe states are deadlocks, howevernaafe state may lead to a deadlock.
As long as the state is safe, the operating systemavoid unsafe (and deadlock)

state. In an unsafe state, the operating systemotaprevent processes from request

resources such that a deadlock occurs: The behadiidhie processes controls unsafe
states.

Unsafe

Deadlock

safe

Figure 3.1: Safe, Unsafe, and Deadlock State Spaces

To illustrate, let us consider a system with 12 nedigrtape drives, and processes:
P, ,andP,. Proces$,, requires 10 tape drives, procégsmay need as many as 4, and
processP, may need up to 9 tape drives. Suppose that att§jrpeocess, is holding

5 tape drives, procedd,; is holding 2, and procesB, is holding 2 tape drives.
Therefore, there are 3 free tape drives.

Table 2
Processes Maximum Current
Needs Needs
Po 10 5
P]_ 4 2
P, 9 2

At time to, the system is in a safe state. The sequerfeg Ry P> satisfies the safety
condition, since proced®, can immediately be allocated all its tape drived #iren
return them (the system will then have 5 availaape drives), then proceBscan get
all its tape and return them ( the system will thewe 10 available tape drives), and
finally processP, could get all its tape drives and return them @pstem will then
have all its 12 tape drives available).
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A system may go from a safe state to an unsafe. SSafppose that at timg proces$,
requests and is allocated one more tape drive sysiem is no longer in a safe state. At
this point, only procesB; can be allocated all its tape drive. If we had efgdwait until
either of the other processes had finished anésettits resources, then we could have
avoided the deadlock.

Given the concept of safe state, we can definedawnge algorithms that ensure that the
system will never deadlock. The idea is simply tswe that the system will always
remain in a safe state. Initially, the system ig isafe state. Whenever a process requests
a resource that is currently available, the systamt decide whether the resource can be
allocated immediately or whether the process must. Whe request is granted only if
the allocation leaves the system in a safe state.

In this scheme, if a process requests a resousateighcurrently available, it may still
have to wait. Therefore, resource utilization maylower than it would be without a
deadlock-avoidance algorithm.

3.2.2 Resource-Allocation Graph Algorithm

If we have a resource-allocation system with omg anstance of each resource type, a
variant of the resource-allocation graph definedsection 3.2.2 of the last unit can be
used for deadlock avoidance.

In addition to the request and assignment edgesntnaduce a new type of edge, called
aclaim edge A claim edgeP; — R, indicates that process Pi may request resogreg
some time in the future. This edge resembles aestqadge in direction, but is
represented by a dashed line. When process Pisequsource Rj, the claim edge—

R is converted to a request edge. Similarly whersource Rj is released by Pi, the
assignment edg® — P; is reconverted to a claim ed— R. Note that the resources
must be claimed a priori in the system. That i$pteeprocess; starts executing, all its
claim edges must already appear in the resouroeatibn graph. We can relax this
condition by allowing a claim eddg — R, to be added to the graph only if all the edges
associated with proce8&sare claim edges.

Suppose proced3 request resourd®. The request can be granted only if converting the
request edgeB; — R, to an assignment edég — P; does not result in the formation of
a cycle in the resource-allocation graph. You chiecksafety by using a cycle-detection
algorithm. An algorithm for detecting a cycle inisttgraph requires an order of
operations, wherr is the number of processes in the system.
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Figure 3.2 Resource-Allocation graph for deadlock avoidance

If no cycles exists, then the allocation of theortgse will leave the system in a safe state.
If a cycle is found, then the allocation will plietsystem in an unsafe state. Therefore,
process; will have to wait for its requests to be satisfied.

To illustrate this algorithm, we consider the rasesallocation graph of Figure 3.2.
Suppose thaP, request®R,. AlthoughR;, is currently free, we cannot allocate itRg

since this will create a cycle in the graph (FigBr&). A cycle indicates that the system is
in an unsafe state. H; request$,, andP, request®;, then a deadlock will occur.

Ry

N
N
N
N
N
N
N
N
A

R>

Figure 3.3 An unsafe state in a Resource-Allocatigraph

3.2.3 Banker’s Algorithm

The resource-allocation graph algorithm is not liapple to a resource-allocation system
with multiple instances of each resource type. ddéadlock-avoidance algorithm that we
describe next is applicable to such a system, ®Uess efficient than the resource-
allocation graph scheme. This algorithm is commoRklyown as the “Banker’s

Algorithm”. The name was chosen because this dlgaricould be used in a banking
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system to ensure bank never allocates its avaitash such that it can no longer satisfy
the needs of all it customers.

3.23.1 Algorithm

The Banker's algorithm is run by the operating eystwhenever a process requests
resources. The algorithm prevents deadlock by dengr postponing the request if it
determines that accepting the request could pusyetem in an unsafe state (one where
deadlock could occur).

3.2.3.2 Resources
For the Banker's algorithm to work, it needs towkribree things:

- How much of each resource each process could ppssipuest?
- How much of each resource each process is currealtijng?
- How much of each resource the system has available?

Some of the resources that are tracked in reakmgstare memory, semaphores and
interface access.

Example 1

Assuming that the system distinguishes betweentjg#s of resources, (A, B, C and D),
the following is an example of how those resourmasld be distributedNote that this
example shows the system at an instant before aevpyest for resources arrives. Also,
the types and number of resources are abstractedl &/stems, for example, would deal
with much larger quantities of each resource.

Avai | abl e system resour ces:

ABCD

4 3 33

Processes (currently allocated resources):
ABCD

P1 1221

P2 1 0 3 3

P31 110

Processes (maxi mum resources):
ABCD

P1 3322

P2 1 2 3 4

P31 150

3.2.3.3 Safe and Unsafe States
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A state (as in the above example) is consideredl ifaif is possible for all processes to
finish executing (terminate). Since the system oannknow when a process will
terminate, or how many resources it will have rete@ by then, the system assumes that
all processes will eventually attempt to acquireirtrstated maximum resources and
terminate soon afterward. This is a reasonablengsson in most cases since the system
is not particularly concerned with how long eaclbgess runs (at least not from a
deadlock avoidance perspective). Also, if a prodesminates without acquiring its
maximum resources, it only makes it easier on yisees.

Given that assumption, the algorithm determinea #tate is safe by trying to find a
hypothetical set of requests by the processes wlatld allow each to acquire its

maximum resources and then terminate (returningegeurces to the system). Any state
where no such set exists is an unsafe state.

Example 2

We can show that the state given in the previoasngte is a safe state by showing that
it is possible for each process to acquire its maxn resources and then terminate.

1. P1acquires 2 A, 1 B and 1 D more resources, acigets maximum
o The system now still has 1 A, no B, 1 C and 1 uese available
2. P1 terminates, returning 3 A, 3 B, 2 C and 2 D ueses to the system
o The system now has 4 A, 3 B, 3 C and 3 D resowacasable
3. P2 acquires 2 B and 1 D extra resources, then netes, returning all its
resources
o The system now has 5 A, 3B, 6 C and 6 D resources
4. P3 acquires 4 C resources and terminates
o The system now has all resources: 6 A, 4 B, 7 Céalnd
5. Because all processes were able to terminatestttis is safe

Note that these requests and acquisitionshgpethetical The algorithm generates them
to check the safety of the state, but no resouatesactually given and no processes
actually terminate. Also note that the order in efththese requests are generated — if
several can be fulfilled — does not matter, beeallshypothetical requests let a process
terminate, thereby increasing the system's frezuress.

For an example of an unsafe state, look at whatduvoappen if process 2 were holding 1
more unit of resource B at the beginning.

3.2.34 Requests

When the system receives a request for resourcesns the Banker's algorithm to
determine if it is safe to grant the request. Tlgprathm is fairly straight forward once
the distinction between safe and unsafe statesdsratood.

1. Can the request be granted?
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o If not, the request is impossible and must eitherdenied or put on a
waiting list
2. Assume that the request is granted
3. Is the new state safe?
o If so, grant the request
o If not, either deny the request or put it on a imgitist

Whether the system denies an impossible or unssfaest or makes it wait is an
operating system specific decision.

Example 3

Continuing the previous examples, assume procesgugsts 2 units of resource C.
1. There is not enough of resource C available tatgte request
2. The request is denied

On the other hand, assume process 3 requests df uegource C.
1. There are enough resources to grant the request

2. Assume the request is granted
o The new state of the system would be:

ABCD

Free 310 2

P1 1221

P2 1033

P3 1120

1. Determine if this new state is safe

1. P1 can acquire 2 A, 1 B and 1 D resources and neitei
2. Then, P2 can acquire 2 B and 1 D resources andiniaten
3. Finally, P3 can acquire 3 C resources and terminate
4. Therefore, this new state is safe

2. Since the new state is safe, grant the request

Finally, assume that process 2 requests 1 unésafurce B.

1. There are enough resources
2. Assuming the request is granted, the new statednmeil

ABCD
Free 3 01 2
P1 1221
P2 1133
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P3 1110

1. Is this state safe? Assuming P1, P2, and P3 requast of resource B and
C.

P1is unable to acquire enough B resources

P2 is unable to acquire enough B resources

P3 is unable to acquire enough C resources

No process can acquire enough resources to teemisathis state

is not safe

2. Since the state is unsafe, deny the request

O O O O

Note that in this example, no process was ablestminate. It is possible that some
processes will be able to terminate, but not &lthem. That would still be an unsafe
state.

3.2.35 Trade-offs

Like most algorithms, the Banker's algorithm invadvsome trade-offs. Specifically, it
needs to know how much of each resource a proamsdd possibly request. In most
systems, this information is unavailable, making Banker's algorithm useless. Besides,
it is unrealistic to assume that the number of @sses is static. In most systems the
number of processes varies dynamically. Moreoves,requirement that a process will
eventually release all its resources (when the gg®derminates) is sufficient for the
correctness of the algorithm, however it is noffisient for a practical system. Waiting
for hours (or even days) for resources to be rekbasusually not acceptable.

3.3 Deadlock Detection

Often neither deadlock avoidance nor deadlock prigme may be used. Instead,
deadlock detection and process restart are usesimpjoying an algorithm that tracks
resource allocation and process states, and ralt& bnd restarts one or more of the
processes in order to remove the deadlock. Detedindeadlock that has already
occurred is easily possible since the resources dhah process has locked and/or
currently requested are known to the resource sidedr OS.

Detecting the possibility of a deadlobkforeit occurs is much more difficult and is, in
fact, generallyundecidable, because the halting problem can fimased as a deadlock
scenario. However, ispecificenvironments, usingpecificmeans of locking resources,
deadlock detection may lgecidable In thegeneralcase, it is not possible to distinguish
between algorithms that are merely waiting for aywenlikely set of circumstances to
occur and algorithms that will never finish becaatdeadlock.

3.4 Distributed deadlock
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Distributed deadlocks can occur in distributed elyst when distributed transactions or
concurrency control is being used. Distributed ¢mad can be detected either by
constructing a global wait-for graph from local whar graphs at a deadlock detector or
by a distributed algorithm like edge chasing.

Phantom deadlockare deadlocks that are detected in a distribuystesh but do not
actually exist - they have either been already Ivesb or no longer exist due to
transactions aborting.

3.5 Recovery from Deadlock

When a detection algorithm determines that a deaddaists, several alternatives exists.
One possibility is to inform the operator that adleck has occurred, and to let the
operator deal with the deadlock manually. The otbessibility is to let the system

recover from the deadlock automatically. Theretau@ options for breaking a deadlock.
One solution is simply to abort one or more proess® break the circular wait. The
second option is to pre-empt some resources fromm @anmore of the deadlocked

processes.

3.5.1 Process Termination

To eliminate deadlocks by aborting process, we aise of two methods. In both
methods, the system reclaims all resources allddatthe terminated processes.

» Abort all deadlocked processesthis method clearly will break the deadlock
cycle, but at a great expense; these processefhavaycomputed for a long time,
and the results of these partial computations nbestdiscarded and probably
recomputed later.

» Abort one process at a time until the deadlock cyelis eliminated:this method
incurs considerable overhead, since, after eachepsois aborted, a deadlock-
detection algorithm must be invoked to determinetiver any processes are still
deadlocked.

Aborting a process may not be easy. If the proeessin the midst of updating a file,
terminating it will leave that file in an incorrestate. Similarly, if the process was in the
midst of printing data on the printer, the systemshreset the printer to a correct state
before printing the next job.

If the partial termination method is used, thewvegia set of deadlocked processes, we
must determine which process (or processes) shmutdrminated in an attempt to break
the deadlock. This determination is a policy decisisimilar to CPU scheduling
problems. The question is basically an economic We should abort those processes
the termination of which will incur the minimum ao&)nfortunately, the term minimum
cost is not a precise one. Many factors may determvhich process is chosen,
including:

1. What the priority of the process is?
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2. How long the process has computed, and how mucelothe process will
compute before completing its designated task.?

3. How many and what type of resources the processise (for example, whether
the resources are simple to pre-empt)?

4. How many more resources the process needs in mrdemplete?

5. How many processes will need to be terminated?

6. Whether the process is interactive or batch?

3.5.2 Resource Pre-emption

To eliminate deadlocks using resource pre-emptie@, successfully pre-empt some
resources from processes and give these resouradbkdr processes until the deadlock
cycle is broken.

If pre-emption is required to deal with deadlodk&n three issues need to be addressed:

1. Selecting a victim which resources and which processes are to bempted?
As in process termination, w must determine thewoa pre-emption to minimize
cost. Cost factors may include such parametershasntimber of resources a
deadlock process is holding, and the amount of #irdeadlocked process has thus
far consumed during its execution.

2. Rollback: if we pre-empt, a resource from a process, whatilsl be done with
that process? Clearly it cannot continue withnibsmal execution; it is missing
some needed resource. We must roll back the prdceseme safe state, and
restart it from that state.

Since, in general, it is difficult to determine whea safe state is, the simplest
solution is a total rollback. Abort the process dhen restart it. However, it is
more effective to roll back the process only as darnecessary to break the
deadlock. On the other hand, this method requines dystem to keep more
information about the state of all the running @eses.

3. Starvation: how do we ensure that starvation will not ocdurat is, how can we
guarantee that resources will not always be prptedifrom the same process?

In a system where victim selection is based prilpawn cost factors, it may
happen that the same process is always pickediasra. As a result, this process
never completes its designated task, a starvattaation that needs to be dealt
with in any practical system. Clearly, we must eaghat a process can be picked
as a victim only a (small) finite number of tim@he most common solution is to
include the number of rollbacks in the cost factor.

3.6 Livelock

A livelock is similar to a deadlock, except tha¢ ttates of the processes involved in the
livelock constantly change with regard to one aagtimone progressing. Livelock is a

170



special case ofesource starvationthe general definition only states that a specifi
process is not progressing.

As a real-world example, livelock occurs when tvemple meet in a narrow corridor, and
each tries to be polite by moving aside to letdtieer pass, but they end up swaying from
side to side without making any progress becausgdlways both move the same way at
the same time.

Livelock is a risk with some algorithms that detaod recover from deadlock. If more
than one process takes action, the deadlock dmteatgorithm can repeatedly trigger.
This can be avoided by ensuring that only one m®¢ehosen randomly or by priority)
takes action.

4.0 Conclusion

In this unit, you have learnt more about deadloekpecially the three methods for
dealing with deadlocks:

* Use some protocol to prevent or avoid deadlocksummg that the system will
never enter a deadlock state.

» Allow the system to enter deadlock state, deteenitl then recover.

» Ignore the problem altogether, and pretend thadldeks never occur in the
system. This solution is the one used by most dipgraystems including UNIX.

5.0 Summary

A deadlock situation may occur if and only if fourecessary conditions hold
simultaneously in the system: mutual exclusion,dhahd wait, no pre-emption, and
circular wait. To prevent deadlocks, we ensure thiatleast one of the necessary
conditions never holds.

Another method for avoiding deadlocks that is lessngent than the prevention
algorithms is to have a priori information on hoack process will be utilizing the
resources. The banker’s algorithm, for exampledsde know the maximum number of
each resource class that may be requested by eacksp. Using this information, we
can define a deadlock-avoidance algorithm.

If a system does not employ a protocol to enshae deadlocks will never occur, then
detection algorithm must be invoked to determinetiver a deadlock has occurred. If a
deadlock is detected, the system must recover reitlyeterminating some of the

deadlocked processes, or by pre-empting resounces some of the deadlocked
processes.

In a system that selects victims for rollback pmityaon the basis of cost factors,
starvation may occur. As a result, the selectedgs® never completes its designated
task.
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6.0 Tutor Marked Assignment

1. In a real computer system, neither the resousaslable nor the demands of
processes for resources are consistent over lomgdggmonths). Resources break or
are replaced, new processes come and go, new cesoane bought and added to the
system. If deadlocks is controlled by the bankattgorithm, which of the following
changes can be made safely (without introducing pibgsibility of deadlock), and
under what circumstances?

a. IncreaseéAvailable (new resources added)

b. Decreas@vailable(resources permanently removed from system)

c. IncreaseMax for one process (the process needs more resotlnaesallowed, it
may want more)

d. DecreaseMax for one process (the process decides it doesne®d that many
resources)

e. Increase the number of processes

f. Decrease the number of processes

2. Consider a system consisting of four resourdethe same type that are shared by
three processes, each of which needs at most sounees. Show that the system is
deadlock-free.

3. Consider a system that runs 5,000 jobs per muwiith no deadlock-prevention or
deadlock-avoidance scheme. Deadlocks occur abace fver month, and the operator
must terminate and rerun about 10 jobs per deadBa&h job is worth about N2.00
(in CPU time), and the jobs terminated tend to beu& half-done when they are
aborted.

A systems programmer has estimated that a deadhmikiance algorithm (like the
banker’s algorithm) could be installed in the sgsteith an increase in the average
execution time per job of about 10 percent. Siheemhachine currently has 30-percent
idle time, all 5,000 jobs per month could still e, although turnaround time would
increase by about 20 percent on average.

a. What are the arguments for installing the deadimatidance algorithm?
b. What are the arguments against installing the dea&edvoidance algorithm?

4. Consider the following snapshot of a system:

Allocation Max Available
ABCD ABCD ABCD
Po O 012 0O 012 1520
P, 1 00O 1750
P, 1 35 4 2 356
P 0 6 3 2 0 652
P, 0 01 4 0O 6 56
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Answer the following questions using the bankelgoathm:

a) What is the content of the matiieed®

b) Is the system in a safe state?

c) If arequest from proce$? arrives for (0,4,2,0), can the request be granted
immediately?

5. Consider the following resource-allocation pgliRequests and releases for resources
are allowed at any time. If a request for resouca@snot be satisfied because the
resources are not available, then we check amepses that are blocked, waiting for
resources. If they have the desired resources,tkiese resources are taken away from
them and are given to the requesting process. €atownof resources for which the
waiting process is waiting is increased to incltlteresources that were taken away.

For example, consider a system with three resotyjpes and the vectdkvailable

initialized to (4,2,2). If proceds, asks for (2,2,1), it gets them.Rf asks for (1,0,1), it
gets them. Then, Ry asks for (0,0,1), it is blocked (resource not ilakée). If P, now

asks for (2,0,0), it gets the available one (1,88 one that was allocatedRg(since

Py is blocked).Py's Allocation vector goes down to (1,2,1), and Needvector goes
up to (1,0,1).

a) Can deadlock occur? If so, give an example. If nabjch necessary
condition cannot occur?
b) Can indefinite blocking occur?
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Module 6: Memory Management
Unit 1: Memory Management Fundamentals
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1.0 Introduction
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4.0 Conclusion

5.0 Summary

6.0 Tutor-Marked Assignment

7.0 References/Further Reading

1.0 Introduction

In module 3 you were shown how the CPU can be dghlayea set of processes. As a
result of CPU scheduling, we can improve both ttiezation of the CPU and the speed
of the computer’s response to its users. To re#iseincrease in performance, however,
we must keep several processes in memory; thaeispnust share memory.

In this module, we will discuss various ways to @g®m memory. The memory-

management algorithms vary from a primitive baresihmae approach to paging and
segmentation strategies. Each approach has its amvantages and disadvantages.
Selection of a memory-management method for a Bpexystem depends on many
factors, especially on the hardware design of th&tesn. As you shall see, many
algorithms require hardware support, although redesigns have closely integrated the
hardware and operating system.

As you learnt in the first module of this courseemory is central to the operation of a
modern computer system. Memory consist of a largay of words or bytes, each with
its own address. The CPU fetches instructions fmemory according to the value of the
program counter. These instructions may cause iadditloading from and storing to

specific memory addresses.

A typical instruction-execution cycle, for examplist fetches an instruction from
memory. The instruction is then decoded and mage&aperands to be fetched from
memory. After the instruction has been executedhenoperands, results may be stored
back in memory. The memory unit sees only a strekmemory addresses; it does not
know how they are generated (by the instructionnten) indexing, indirection, literal
addresses, etc.) or what they are for (instructmmdata). Accordingly, we can ignore
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how a memory address is generated by a progranaré/mterested in only the sequence
of memory addresses generated by a running program.

2.0 Objectives
At the end of this unit you should be able to:

» Describe address binding

» Define logical and physical address space

» Briefly explain dynamic loading

» Distinguish between dynamic loading and dynamikitig
» Define what is meant by shared libraries

» Describe the principle of overlays and its uses

3.0 Main Body
3.1 Address Binding

Usually a program resides on a disk as a binargwdable file. The program must be
brought into memory and placed within a processtftor be executed. Depending on the
memory management in use, the process may be nt@regen disk memory during its
execution. The collection of processes on the thsk is waiting to be brought into
memory for execution forms the input queue.

The normal procedure is to select one of the psa= the input queue and to load that
process into memory. As the process is execute,cesses instructions and data from
memory. Eventually, the process terminates, anah@ory space is declared available.

Most systems allow user process to reside in anygbahe physical memory. Therefore,
although the address space of the computer sta@8080, the first address of the user
process does not need to be 00000. This arrangeafifents the addresses that the user
program can use. In most cases, a user prograngwithrough several steps, some of
which may be optional, before being executed (FBg@#1). Addresses may be
represented in different ways during these stemklrésses in the source program are
generally symbolic (such asoun). A compiler will typical bind these symbolic
addresses to relocatable addresses (such as “B% Iigm the beginning of this
module”). The linkage editor or loader will in tubind these relocatable addresses to
absolute addresses (such as 74014). Each bindangagpping from one address space to
another.

Classically the binding of instructions and datartemory addresses can be done at any
step along the following ways:

Compile time: if you know at compile time where the process wekide in memory,

then absolute code can be generated. For instdyoe, know a priori that a user process
resides starting at locatid® then the generated compiler code will start at thcation
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and extend up from there. If at some later time,starting location changes, then it will
be necessary to recompile this code. The MS-DOSMI@@mat programs are absolute
code bound at compile time.

Load time: If it is not known at compile time where the pees will reside in memory,
then the compiler must generate relocatable cadé¢his case, final binding is delayed
until load. If the starting address changes, yoadnenly to reload the user code to
incorporate this changed value.

source
program

compiler or assembler compile
time
object
module
other
object
module:
linkage editor )
system
library Iogdl load
module time
dynamically loader
loaded j
system
library Y
In-memory binary execution
memory image time (run
time)

Figure 3.1: Multistep processing of a user program.

Execution time: If the process can be moved during its executi@mflone memory
segment to another, then binding must be delayé&trun time. Special hardware must
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be available for this scheme to work, as you veiirh in the next section. Most general
purpose operating system use this method.

A major part of this module is devoted to showirmyhthese various bindings can be
implemented effectively in a computer system andliszussing appropriate hardware
support.

3.2 Logical-Address Space Versus Physical-Addresp&e

An address generated by the CPU is commonly reféaoas logical address, whereas an
address seen by the memory unit — that is, thela@sded into thememory-address
register of the memory — is commonly referred to gshgsical address

The compile-time and load-time address-binding w@shgenerate identical logical and
physical addresses. However, the execution-timeregdebinding scheme results in
differing logical and physical addresses. In thése; we usually refer to the logical
address as a virtual address. We use logical asldras virtual address interchangeably
in this text. The set of all logical addresses gateel by a program is a logical-address
space; the set of all physical addresses corresmprid these logical addresses is a
physical-addresses space. Thus, in the executimm-tddress-binding scheme, the
logical- and physical-address spaces differ.

The run-time mapping from virtual to physical adsres is done by a hardware device
called the memory-management unit (MMU). We can oskeo from among many
different methods to accomplish such a mappingoaswill learn in subsequent sections
of this unit.

relocation

register
_ 14000 _
logical physical
address address

CPU =® > memory

455 14455

MMU

Figure 3.2: Dynamic relocation using a relocatioregister.

Meanwhile, we illustrate this mapping with a simplddMU scheme which is a
generalization of the base-register scheme.
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This method requires the hardware support illustran figure 3.2. The base register is
here called relocation register. The value in telaation register is added to every
address generated by a user process at the timmeant to memory. For example, if the
base is at 14000, then an attempt by the user doessl location 0 is dynamically
relocated to location 14000; an access to locatkiis mapped to location 14455. The
MS-DOS operating system running on the Intel 80k&®ily of processors uses four
relocation registers when loading and running sses.

The user program never sees the real physical sskbe The program can create a
pointer to location 455, store it in memory, maiébe it, compare it to other addresses —
all as the number 455. Only when it is used as mong address (in an indirect load or

store, perhaps) is it relocated relative to theelhagister. The user program deals with
logical addresses. The memory-mapping hardware ezt viogical addresses into

physical addresses. You learnt about this formxetetion-time binding in the previous

section. The final location of a referenced memadgress is not determined until the
reference is made.

We now have two different types of addresses: kgaddresses (in the range of 0 to
maX and physical addresses (in the raRge 0 toR + maxfor base valu®). The user
generates only logical addresses and thinks tlegbritbcess runs in location Orttax The
user program supplies logical addresses, thesedogiddresses must be mapped to
physical addresses before they are used.

Note that the concept dbgical-address spacé¢hat is bound to a separgphysical-
address spacks central to proper memory management.

3.3 Dynamic Loading

So far you have learnt that the entire programaatd must be in physical memory for the process
to execute. The size of a process is limited to dize of physical memory. To obtain better
memory-space utilization, we can udgnamic loading With dynamic loading, a routine is not
loaded until it is called. All routines are kept disk in a relocatable format. The main program is
loaded into memory and is executed. When a routigeds to call another routine, the calling
routine first checks to see whether the other neutias been loaded. If not, the relocatable linking
loader is called to load the desired routine inemry and to update the program’s address tables
to reflect this change. Then control is passethiéaiewly loaded routine.

The advantage of dynamic loading is that an unusedine is never loaded. This method is
particularly useful when large amounts of codersgeded to handle infrequently occurring cases,
such as error routines. In this case, althougtidta program size may be large, the portion that i
used (and hence loaded) may be much smaller.

Dynamic loading does not require special supporhfthe operating system. It is the responsibility
of the users to design their programs to take adganof such method. Operating system may help
the programmer, however, by providing library raes to implement dynamic loading.

3.4  Dynamic Linking and Shared Libraries
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Figure 3.1 also shows the dynamically linked lilrar Some operating systems support only static
linking, in which the system language libraries &emated like any other object module and are
combined by the loader into the binary program iendthe concept of dynamic linking is similar to
that of dynamic loading. Rather than loading bepagtponed until execution time, linking is
postponed. This feature is usually used with sydieraries, such as language subroutine libraries.
Without this facility, all programs on a system dde have a copy of their language library (or at
least the routine referenced by the program) iredusch the executable image. This requirement
wastes both disk space and main memory. With dyménking, a stub is included in the image for
each library-routine reference. This stub is a &mialce of code that indicates how to locate the
appropriate memory-resident library routine or howoad the library if the routine is not already
present.

When this stub is executed, it checks to see whétleeneeded routine is already in memory. If not,
the program loads the routine into memory. Eithayvthe stub replaces itself with the address of
the routine, and executes the routine. Hence, é&x¢ tme that the code segment is reached, the
library routine is executed directly incurring nost for dynamic linking. Under this scheme, all
processes that use a language library executeooelgopy of the library code.

This feature can be extended to library updatesh(sis bug fixes). A library may be replaced by a
new version, and all programs that reference theady will automatically use the new version.
Without dynamic linking, all such programs wouldedebe relinked to gain access to the new
library. So that programs will not accidentallyeexyte new, incompatible versions of libraries,
version information is included in both the programd the library. More than one version of a
library may be loaded into memory, and each proguass its version information to decide which
copy of the library to use. Minor changes retai@ $ame version number, whereas major changes
increment the version number. Therefore only pnogréhat are compiled with new library version
are affected by the incompatible changes incorpdrat it. Other programs linked before the new
library was installed will continue using the oldérary. This system is also known akared
libraries.

Unlike dynamic loading, dynamic linking generalBquires help from the operating system. If the
processes in memory are protected from one andttem, the operating system is the only entity
that can check to see whether the needed routimeasother process’ memory space, or that can
allow multiple processes to access the same meatuesses.

3.5 Overlays

You can useverlaysto enable a process to be larger than the amdunemory allocated to it.
The idea is to keep in memory only the instructiand data that are need at any given time. When
other instructions are needed, they are loadedsjpsice previously occupied by instructions that are
no longer needed.

For example, consider a two- pass assembler. Dpasg 1, it constructs a symbol table and during

pass 2, it generates machine-language code. Youbmaple to partition such an assembler into

pass 1 code, pass 2 code, the symbol table and eorsapport routines used by both passes 1 and
2. Assume that the sizes of these components dodi@ss:

Pass 1 90 KB
Pass 2 60 KB
Symbol table 40 KB
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Common routines 50 KB

To load everything at once, you would require 28)d¢ memory. If only 200 KB is available, you
cannot run your process. However, not ice thas daand pass 2 do not need to be in memory at
the same time. You can therefore define two overésyfollows:

Overlay A is the symbol table, common routines pasis 1.
Overlay B is the symbol table, common routines pask 2.

You then add an overlay driver of say 10 KB andtstéh overlay A in memory. When you finish

pass 1, you jump to the overlay driver which readsrlay B into memory overwriting overlay A,

and then transfer control to pass 2. Overlay A see®8D KB while overlay B needs only 150 KB
(see figure 3.3). You can then run your assemblé¢ineé 200 KB memory. It will load faster due to
the fact that fewer data need to be transferredreefxecution starts. However, it will run slower,
due to the extra I/O to read the code for overlaywBr the code for overlay A.

The codes for overlay A and B are kept on disklzolute memory images, and are read by the
overlay drivers as needed.

As in dynamic loading, overlays do not require apgcial support from the operating system.

symbol table |40K

common 50K

routines
overlay drivers |10K
90K pass 1 > < pass 2 60K
Figure 3.3: Overlay for a two-pass assembler
3.5 Swapping

As you have learnt so far in the course, a pronessls to be in memory to be executed. A
process, however, can be swapped temporarily ooteshory to a backing store, and then
brought back into memory for continued executionor Fexample, assume a
multiprogramming environment with a round-robin GBtheduling algorithm. When a
guantum expires, the memory manager will starwtapsout the process that just finished,
and to swap in another process to the memory spatdas been freed (Figure 3.4). In the
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meantime, the CPU scheduler will allocate a timeeslo some other process in memory.
When each process finishes its quantum, it wikwapped with another process.

operating /\
system v

@ swap out
process

a P1
>

process

swap in P,

-
|

user space \/

main memory backing store

Figure 3.4: Swapping of two processes using a daska backing store

Normally a process that is swapped out will be gyeapback into the same memory space
that it occupied previously especially if bindirggdone at assembly or load time. However,
if execution time binding is being used, then thecpss can be swapped into a different
memory space because the physical addresses apeiteshat execution time.

As earlier mentioned, swapping requires a backinges The backing store is commonly a
fast disk which must be large enough to accommodapees of all memory images for all
users. It must also provide a direct access tethemmory images. The system maintains a
ready queue consisting of all processes whose meimaiges are on the backing store or in
memory and are ready to run. Whenever the CPU sitdredecides to execute a process, it
calls the dispatcher. The dispatcher checks tavbether the next process in the queue is in
memory. If not, and there is no free memory regitwe, dispatcher swaps out a process
currently in memory and swaps in the desired pckshen reloads registers as normal
and transfer control to the selected process.

The context-switch time in such a swapping systefairly high.

4.0 Conclusion

In this unit, you have been taken through some dumehtal concepts of memory
management. In the subsequent units of this moghuewill learn more about the various
techniques of memory management. Meanwhile youadwsed to consult the references
for in-depth knowledge of the various conceptstaean this module.

5.0 Summary
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In this unit, you have learnt the following:
Address binding can be done at any of the follovatages:

* Compile time
 Load time
e Execution time

An address generated by the CPU is called logiddress while the one seen by the
memory unit is called physical address.

Dynamic loading and dynamic linking are used tcaobbetter memory space utilization.
However, dynamic linking requires help from the gimg system while dynamic loading
does not .

Overlays are used to allow a process to be lahgar the amount of memory allocated to it.
Overlays, like dynamic loading do not require sgleaperating system support.

A process can be swapped in and out of memorybicking store.

6.0 Tutor Marked Assignment

1. Name two differences between logical and physiddlesses.
2. Distinguish between dynamic linking and dynamidaliog.
3. How is dynamic linking related to shared libraries?

7.0 References/Further Reading

1. Lubomir, F. Bic (2003)Operating System PrincipleBrentice Hall.
2. "Operating System Concepts" by Silberschatz, Gabrd Gagne (7th edition)
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1.0 Introduction

As you have learnt from the previous unit, memorgnagement is essential to process
execution which is the primary job of the CPU. Thain memory must accommodate both
the operating system and the various user procegésasherefore need to allocate different
parts of the main memory in the most efficient vpagsible. In this unit, therefore, you will
about the some memory management algorithms sucbnéigguous memory allocation and
its different flavours. Also, the problems that naise from contiguous memory allocation
(fragmentation) will be discussed in this unit.

2.0 Obijectives
At the end of this unit, you should be able to:

» Describe contiguous memory allocation

» Describe the various variants of contiguous memaltgcation such as best-fit,
worst-fit, and first-fit

» Distinguish between internal and external fragmmma

» Describe methods of solving external fragmentation
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3.0 Main Body
3.1  Contiguous Memory Allocation

As you may not iced on your system, the memonsigally divided into two partitions: one
for resident operating system and one for the pearesses. You may place the operating
system in either low memory or high memory. Thean&ctor affecting this decision is the
location of the interrupt vector. Since the int@trwector is often in low memory,
programmers usually place the operating systerovinrhemory as well. Therefore, in this
course, we shall only discuss the situation whéee dperating system resides in low
memory.

We usually want several user processes to residmemory at the same time. We,
therefore, need to consider how to allocate avialatemory to the processes that are in the
input queue waiting to be brought into memory.His tontiguous memory allocation, each
process is contained in a single contiguous sedtianemory.

3.2 Memory Allocation

Memory allocation can be done in two ways:

» fixed partition
» variable partition

These two methods are discussed in the followicgmes.
3.2.1 Fixed Partition Methods

One of the simplest methods for memory allocat®toidivide memory into several fixed-
sized partitions. Each partition may contain exaothe process. in this multiple-partition
method, when a partition is free, a process isctsdefrom the input queue and is loaded
into the free partition. When the process termisiathe partition becomes available for
another process. This method was originally usedhieylBM OS/360 operating system
(called MFT). It is no longer in use. The method @ going to describe next is a
generalization of the fixed-partition scheme (ahIMVT). It is used primarily in a batch
environment. The ideas presented are also appficaldime-sharing environment in which
pure segmentation is used for memory management.

3.2.2 Variable Partition Methods

The operating system keeps a table indicating whigtis of memory are available and
which are occupied. Initially all memory are avhl&for user processes, and is considered
as one large block of available memorhake. When a process arrives and needs memory,
we search for a hole large enough for this progésg find one, we allocate only as much
as is needed, keeping the rest available to sdtisifye requests.
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As processes enter the system, they are put inbopam queue. The operating system takes
into account the memory requirements of each peoaed the amount of available memory
space in determining which processes are allocaieahory. When a process is allocated
space, it is loaded into memory and it can then pmie for the CPU. When a process
terminates, it releases its memory, which the dpeyasystem may then fill with another
process from the input queue.

At any given time, we have a list of available Id@zes and the input queue. The operating
system can order the input queue according to edsgimg algorithm. Memory is allocated
to processes until, finally, the memory requirersesftthe next process cannot be satisfied
l.e. no available block of memory (or hole) isgarenough to hold that process. The
operating system can then wait until a large endalgbk is available, or it can skip down
the input queue to see whether the smaller menamyirements of some other process can
be met.

In general, a set of hole of different sizes idtecad throughout memory at any given time.
When a process arrives and needs memory, the sysarohes this set for a hole that is
large enough for this process. if the hole is tmge, is too large, it is split into two. One
part is allocated to the arriving process, the othaeturned to the set of holes. When a
process terminates, it releases its block of memafyich is then placed back in the set of
holes. If the new hole is adjacent to other hdlesse adjacent holes are merged to form one
larger hole. At this point, the system may needhneck whether there processes waiting for
memory and whether this newly freed and recombimedhory could satisfy the demands
of any of these waiting processes.

The procedure is a particular instance of the g@roiynamic storage allocation problem,
which is how to satisfy a request of siz&om a list of free holes. There are many solwgion
to this problem. The set of holes is searched terdene which hole is best to allocate.

3.3 Memory Allocation Strategies

The first-fit, best-fit and worst-fit strategieseathe most common ones used to select a free
hole from the set of available holes.

3.3.1 First-Fit

In first-fit algorithm, you allocate the first hothat is big enough. Searching can start either
at the beginning of the set of holes or where tle®ipus first-fit search ended. You can stop
searching as soon as you find a free hole thargelenough.

3.3.2 Best-Fit

In best-fit algorithm, you allocate the smallestehthat is big enough. You must search the
entire list from top to bottom except in a case rehée list is ordered by size. This strategy
produces the smallest leftover hole.

3.3.3  Worst-Fit
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In worst-fit algorithm, you allocate the largestdable hole. As in best-fit, you must search
the entire list, unless the list is kept orderedsige. This strategy produces the largest
leftover hole, which may be more useful than thealtan leftover hole from a best-fit
approach.

It can be shown, using techniques such as simaktithat both first-fit and best-fit are
better than worst-fit in terms of decreasing batietand storage utilization. Neither first-fit
nor best-fit is clearly better in terms of storag#ization, but first-fit is generally faster.

However, these algorithms suffer froemternal fragmentation. As processes are loaded
and removed from memory, the free memory spacedkel into little pieces. External

fragmentation exists when enough total memory spacss to satisfy a request but it is not
contiguous. Storage is fragmented into large nundiesmall holes. This fragmentation

problem can be severe. In the worst case, we d¢@ud a block of free (or wasted) memory
between every two processes. If all this memoryewerone big free block, we might be
able to run several more processes.

The selection of the first-fit versus best-fit stgies can affect the amount of fragmentation.
First-fit is better for some systems whereas hiessfbetter for others. Another factor is

which end of a free block do you allocate? Howeyey should note that no matter which

algorithm you use, external fragmentation will berablem.

3.4 Fragmentation

In the previous section you learnt about exterregrhentation. You should, however, note
that memory fragmentation can be internal or extern

3.4.1 Internal Fragmentation

To illustrate this, consider a multiple partitioloaation scheme with a hole of 18,464
bytes. Suppose that the next process requests218ytés. If you allocate the requested
blocks, you are left with a hole of 2 bytes. Theread to keep track of this hole will be
substantially larger than the hole itself. The gehapproach is to break the physical
memory into fixed-sized blocks, and allocate memioryunit of block sizes. With this
approach, the memory allocated to a process magligbktly larger than the requested
memory. The different between these two numbeistesnal fragmentation i.e. memory
that is internal to a partition but is not beirsgd.

3.4.2 Solutions to External Fragmentation

1. Compaction: this is a solution to the problem of external fregptation. The goal is to
shuffle the memory contents to place all free mgmntogether in one large block. But
compaction is not always possible. If relocatisrsiatic and is done at assembly or load
time, compaction cannot be done. Compaction ig possible if relocation is dynamic, and
is done at run time.
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2. Noncontiguous Logical-Address SpaceAnother solution to external fragmentation

problem is to permit the logical-address space pifogess to be noncontiguous. Therefore,
allowing a process to be allocated physical menvangrever the latter is available. Two

ways of achieving this are through paging and segatien or you can combine the two

techniques of paging and segmentation. You wilekgosed to these two techniques in the
next unit.

4.0 Conclusion

In this unit, you have learnt about some of theoalgms for memory management
especially contiguous memory allocation. You haVso dearnt about the problem of
fragmentation especially external fragmentationtia next unit, we will go further and
discuss paging and segmentation which are waymplementing noncontiguous logical-
address space solution to external fragmentation.

5.0 Summary

Memory management algorithms for multiprogrammedrapng systems range from
simple single-user system approach to paged segtrant In this unit. We have only
discussed contiguous memory allocation. In unw@&,will continue with our discussion on
memory allocation algorithms and also outline théega to use in comparing the various
memory management algorithms.

6.0 Tutor Marked Assignment
1. Explain the difference between internal and meefragmentation.
2. Describe the following allocation algorithms:

e First-fit
o Best-fit
o Worst-fit

Hence or otherwise, given the memory partitiond@d KB, 500 KB, 200 KB, 300 KB
and 600 KB (in that order), how would each of thst-fit, best-fit, and worst-fit
algorithms place processes of 212 KB, 417 KB, 1B &d 426 KB (in that order)? For
this particular case, which algorithm makes thetraffcient use of memory?

7.0 References/Further Reading
1. Lubomir, F. Bic (2003)Operating System PrincipleBrentice Hall.
2. "Operating System Concepts"” by Silberschatz, Gabma Gagne (7th edition)

3. Modern Operating Systems (2nd Edititay) Andrew S. Tanenbaum (ISBN 0-13-031358-
0)
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1.0 Introduction

In the last university, you learnt about contiguauemory allocation in which it was
highlighted that external fragmentation is a maooblem with this method of memory
allocation. It was also mentioned that compactiod aon-contiguous logical address space
are solutions to external fragmentation. In thig we will go further to discuss some of the
techniques for making the physical address spaca pfocess non-contiguous such as
paging, segmentation, etc.

2.0 Objectives
At the end of this unit, you should be able to:
» Describe paging
» Describe segmentation
» Explain the differences between paging and segrienta

» State the advantages and disadvantages of bothgpagd segmentation
» Describe a method for solving the problems of lp@thing and segmentation

3.0 Main Body

3.1 Paging
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This is a memory-management scheme that permitghtsical-address space of a process
to be contiguous. Paging avoids the considerabbtbl@m of fitting the varying-sized
memory chunks onto the backing store from which tmafs the previous memory-
management schemes suffered.

Paging permits the logical address space to be edapgp a number of equal size blocks
calledpage framesby dividing the logical address space iptmgesof the same size. When
a process is to be executed, its pages are loattedny available memory frames from the
backing store. The backing store is divided inteedi-sized blocks that are of the same as
the memory frames.

The hardware support for paging is as illustratedFigure 3.1 below. Every address
generated by the CPU is divided into two partpage number (p)and apage offset (d)
The page number is used as an index inp@a@e table The page table contains the based
address of each page in physical memory. This bdseess is combined with the page
offset to define the physical memory address thaent to the memory unit.

logical physical
addres: address
I v
CPU > p d f d >
1 physical
memory
p
> f
page table

Figure 3.1: Paging Hardware
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The paging model of memory is shown in Figure 312we

The page size, like the frame size, is defined leyhtirdware. The size of a page is of
power 2 and it varies between 512 bytes and 16 MB gage, depending on the
computer architecture.

frame
number
0
1| pageO
page O
0| 1 2
page 1 1 2
2l 3 3| page?2
2
page 3l 7
page table 4| pagel
page 3
5
logical
memory
6
7| page3
physical
memor

Figure 3.2: Paging model of logical and physical mery
3.1.1 Translating the memory addresses

To minimize the performance penalty of addressstedion, most modern CPUs include an
on-chip memory management unit (MMU), and maintatable of recently used virtual-to-
physical translations, called a Translation Loo#tadBuffer (TLB). Addresses with entries
in the TLB require no additional memory referen¢aad therefore time) to translate.
However, the TLB can only maintain a fixed numbérnmappings between virtual and
physical addresses; when the needed translatioot isesident in the TLB, action will have
to be taken to load it in.
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On some processors, this is performed entirelyanmg\ware. The MMU has to do additional

memory references to load the required translatiom the translation tables, but no other
action is needed. In other processors, assistanoe the operating system is needed. An
exception is raised, and the operating system bkarttlis exception by replacing one of the
entries in the TLB with an entry from the primamartislation table, and the instruction

which made the original memory reference is resthart

3.1.2 Protected memory

Hardware that supports virtual memory almost alwaygports memory protection
mechanisms as well. The MMU may have the abilitydoy its operation according to the
type of memory reference (for read, write or exee)t as well as the privilege mode of the
CPU at the time the memory reference was made. dllosvs the operating system to
protect its own code and data (such as the tramsl&ables used for virtual memory) from
corruption by an erroneous application program @ngrotect application programs from
each other and (to some extent) from themselves [g. preventing writes to areas of
memory that contain code).

3.1.3 Issues with Paging

As you may have not iced, paging is a form of dywwamlocation. Every logical address is
bounded by the paging hardware to some physicakaddUsing paging is similar to using
a table of base/relocation registers, one for é&ache.

When you use a paging scheme, you have no extgaghentation. However, internal
fragmentation may occur since frames are allocasaghits.

3.2 Segmentation
Users do not think of memory as a linear arrapyés with some containing instructions

and other containing data. Instead users prefereis memory as a collection of variable-
sized segments with no necessary ordering amongesdg. See Figure 3.3 below.

logical address space
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Figure 3.3: User’s view of a program

Segmentation is a memory-management scheme thpoisiphis user view of memory. A
logical-address space is a collection of segmdfdash segment has a name and a length.
The addresses specify both segment name and tket offthin the segment. The user,
therefore, specifies each address by two quantdisegment name and an offset.

For implementation simplicity, segments are numtbeard are referred to by a segment
number rather than by a segment name. Therefdogjaal address consists of a two tuple:

<segment-number, offset>.

Normally the user program is compiled and the céen@iutomatically constructs segments
that reflects the input program.

3.2.1 Hardware Implementation

Although the user can now refer to objects in ttegpam by a two-dimensional address, the
actual physical memory is still a one-dimensiomajuence of bytes. Hence, we must define
an implementation to map two-dimensional user-@efimddresses into one-dimensional
physical addresses. This mapping is affecteddgment table Each entry of the segment
table has a segmelmit. The segment base contains the starting physicakasl where the
segment resides in memory, whereas the segmensijiecifies the length of the segment.

The use of a segment table is as illustrated inr€i@.4 below. A logical address consists of
two parts: a segment numberand an offset into that segmedt, The segment number is
used as an index into the segment table. The affsétthe logical address must be between

:5{

— limit  bast

segment

table

CPU » S d
\ 4
v

yes physical
< + memory
ne

trap; addressing error
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Figure 3.4: Segmentation hardware

0 and the segment limit. If it is not, we trap te toperating system (logical addressing
attempt beyond end of segment). If this offsetegal, it is added to the segment base to
produce the address in physical memory of the ei@diyte. The segment table is therefore
essentially an array of base-limit register pairs.

3.2.2. Advantages and Problems of Segmentation
Advantages

* Operating system may allow segments to grow andinkhrdynamically with
unchanging addressing

* Protection on segment level of related data

» Sharing on segment level is easy.

Problems

» Contiguous allocation of memory with all its attend problems as you learnt from
unit 2 of this module

* May cause external fragmentation

* Dynamic shrinking/growing is expensive. The op&@tsystem may have to move
things around.

3.3 Segmentation with Paging

As you have learnt so far in this unit, both pagarmgl segmentation have advantages and
disadvantages. But the problems/disadvantagesséttwo can be solved by paging of the

segments. In this combined technique, each seghasnits own page table. Segment table
entries now refer to base of the per segment page and the offset within the segment is

subdivided into page number and offset within paige used as earlier discussed.

This combination is the one used in the Intel 3&bigecture.

4.0 Conclusion

In this concluding unit of this module and the @mugeneral, you have been further exposed
to some memory-management algorithms. You shoadsal note that the topics treated are
not exhaustive. You therefore advised to refdheoreferences/further Reading sited at the
end of each unit for more in-depth knowledge ofgtibject matter.

5.0 Summary
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The various memory-management algorithms discuss#te last two units differ in many
aspects. In comparing different memory-managemérategies, you should use the
following considerations:

6.0

arwndPE

7.0

Hardware support
Performance
Fragmentation
Relocation
Swapping
Sharing
Protection

Tutor Marked Assignments

Why are page sizes always powers of 2?

Why are segmentation and paging sometimes comhmedne scheme?
State the various advantages and disadvantages)vigp

State the various advantages and disadvantagegmiesitation

What are the differences between paging and segiian?
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