
NATIONAL OPEN UNIVERSITY OF NIGERIA

SCHOOL OF SCIENCE AND TECHNOLOGY

COURSE CODE:CIT 333

COURSE TITLE:SOFTWARE ENGINEERING

1

Course Code CIT 333

Course Title Software Engineering

Course Developer/Writer Olayanju Taiwo Abolaji
Computer Department,

Federal College of Education (Tech.)
Akoka, Lagos

Course Editor

Programme Leader

Course Coordinator

NATIONAL OPEN UNIVERSITY NIGERIA

2

CONTENTS PAGE

Introduction 1

Course Aims 2

Course Objectives 2

Working through this Course 2

The Course Materials 3

Study Unit 3

Presentation Schedule 4

Assessment 4

Tutor Marked Assignment 4

Final Examination and Grading 5

Course Marking Scheme 5

Facilitator/Tutor/Tutorials 5

Summary 6

3

COURSE GUIDE

Introduction

Software Engineering is a second semester course. It is a two credit degree course
available to all students offering ……………………………………………
The course consists of 15 units which will enable you to develop the skills necessary for
you to develop, operate and maintain software. They are no compulsory pre-requisites to
it, although it is good to have a basic knowledge of operating computer.

What You will Learn in this Course

This Course consists of units and a course guide. This course guide tells you briefly what
the course about, what course materials you will be using and how you can work with
these materials. In addition, it advocates some general guidelines for the amount of time
you are likely to spend on each unit of the course in order to complete it successfully.

It gives you guidance in respect of your Tutor-Marked Assignment which will be made
available in the assessment available. There will be regular tutorial classes that are related
to the course. It is advisable for you to attend these tutorial sessions. The course will
prepare you for challenges you will meet in the field of software engineering.

4

Course Aims

The aim of the course is simple. The couse aims to provide you with an understanding of
Software Engineering; it also aims to provide you with solutions to problem in software
as a whole.

Course Objectives

To achieve the aims set out, the course has a set of objectives which are included at the
beginning of the unit. You should read these objectives before you study the unit. You
may wish to refer to them during your study to check to check on your progress. You
should always look at the nit objectives after completion of each unit. By doing so, you
would have followed the instruction in the unit.

Below are the comprehensive objectives of the course as a whole. By meeting these
objectives, you should have achieved the aims of the course as a whole. In addition to the
aims above, this course sets to achieve some objectives. Thus, after going through the
course, you be able to:

• Explain the basic concept of software
• Explain what software engineering is
• Trace the history of software engineering.
• Explain who a software engineer is
• Explain the software crisis.
• Give an overview of software development.
• Explain software development life cycle model.
• Explain the concept of Modularity.
• Explain Pseudo code.
• Explain programming environment.
• Explain Case Tools.
• Explain Hipo .
• Explain Implementation and Testing
• Explain Software Quality Assuarance.
• Explain Compatibility.
• Explain Software verification and Validation

Working through this Course

To complete this course, you are required to tom read each study unit, read the textbook
and read other materials that may be provided by the National Open University of
Nigeria.

Each unit contains self-assessment exercises and at certain point in the course, you will
be required to assignments for assessment purposes. At the end of the course there is a

5

final examination. The course should take you about a total of 17 weeks to complete.
Below you will find listed all the components of the course, what you have to do and how
you should allocate your time to each unit in order to complete the course on time and
successfully.

This course entails that you spend a lot of time to read. I would advice that you avail
yourself the opportunity of attending the tutorial sessions where you have the opportunity
of comparing your knowledge with that of other people.

The Course Materials

The main components of the course are:

• The course Guide
• Study Units
• References/Further Readings
• Assignments
• Presentation Schedule

Study Unit

The study units in this course are as follows:

Module 1 Basic concept of Software

Unit 1 Computer Software
Unit 2 What is Software Engineering
Unit 3 History of Software Engineering.
Unit 4 Software Engineer
Unit 5 software Crisis

Module 2 Software Development

Unit 1 Overview of software development
Unit 2 Software development life cycle model
Unit 3 Modularity.
Unit 4 Pseudocode
Unit 5 Programming Enviroment, Case Tools and Hipo Diagram

Module 3 Implementation and Testing

6

Unit 1 Implementation
Unit 2 Testing Phase
Unit 3 Software Quality Assuarance
Unit 4 Compatibility
Unit 5 Verification and Validation

Each unit consists of one or two weeks’s work and include an introduction,
objectives, reading materials, conclusion, summary, Tutor Marked Assignment
(TMAs), references and other resources. The unit directs you to work on execises
related to the required reading. In general, these exrcises test you on the materials you
have just covered or required you to apply it in some way and thereby assist you to
evaluate your progress and to reinforce your comprehension of the material. In
addition to TMAs, these exercises will help you in achieving the stated learning
objectives of rhe individual units and of the course as a whole.

Presentation Schedule

Your course materials have important dates for the early and timely completion and
submission of your TMAs and attending tutorials. You should remember that you are
required to submit all your assignments by the stipulated time and date. You should
guard against falling behind in your work.

Assessment

There are three aspects to the assessment of the course. First is made up of self-
assessment exercises, second consists of the Tutor_Marked Assigment and third is the
written examination/end of course examination.

You are advised to do the exercises. In tackling the assignments, you are expected to
apply information, knowledge and techniques you gathered during the course. The
assignments must be submitted to your facilitator for formal assessments in
accordance with the deadlines stated in the presentation schedule and the assignment
file. The work you submit to your tutor for assessment will count for 30% of your
total course work. At the end of the course you will need to sit for a final or end of
course examination of about a three hour duration. This examination will count for
70% of your total course mark.

Tutor-Marked Assignment

The TMA is a continuous assessment component of your course. It accounts for 30 %
of the total score. You will be given four (4) TMAs to answer. Three of these must be
answered before you are allowed to sit for the end of course examination. The TMAs
would be given to you by your facilitator and returned after you have done the
assignment. Assignment questions for the units in this course are contained in the
assignment file. You will be able to complete your assignment from the information

7

and the material contained in your reading, references and the study units. However,
it is desirable in all degree level of education to demostrrate that you have read and
researched more into your references, which will give you a wider view point and
may provide you with a deeper understanding of the subject.

Make sure that each assignment reaches your facilitator on or before the deadline
given in the presentation schedule and assignment file. If for any reason you can not
complete your work on time, contact your facilitator before the assignment is due to
discuss the possibility of an extension. Extension will not be granted after the due
date unless there are exceptional circumstances.

Final Examination and Grading

The end of your examination for Software Engineering will be for about 3 houurs and
it has a value of 70% of the total course work. The examination will consist of
questions, which will reflect the type of self-testing, practice exercise and tutor-
marked assignment problems you are previously encountered. All areas of the course
will be assessed.

 You ate to use the time between finishing the last unit and sitting for the examination
to revise the whole course. You might find it useful to review your self-test, TMAs
and comments on them before the examination. The end of course examination
covers information from all parts of the course.

Course Marking Scheme

Assignment Marks
Assignment 1-4 Four assignments, best three marks of the four count

at 10% each- 30% of course marks

End of course examination 70% of overall course marks

Total 100% of course materials.

Facilitator/Tutor and Tutorials

There are 16 hours of tutorials provided in support of the course. You will be notified of
the dates, times and location of these tutorials as well as the name and phone number of
your facilitator, as soon as you as you are allocated a tutorial group.

Your facilitator will mark and comment on your assignments, keep a close watch on
your progress and any difficulties you might face and provide assistance to you

8

during the course. You are expected to mail you Tutor Marked Assignment to your
facilitator before the schedule date. |(at least two working days are required). They
will be marked by your tutor and returned to you as soon as possible.

Do not delay to contact your facilitator by telephone or e-mail if you need assistance

The following might be the circumstances in which you would find assistance
necessary, you would have to contact your facilitator if :

• Understand any part of the study or assigned reading
• You have difficulty with the self- tests
• You have a question or problem with an assignment or with the grading of an

assignment

You should endeavour to attend the tutorials. This is the only chance to have face to face
contact with your course facilitator and to ask question which are answered instantly.
You can raise any problem encountered in the course of your study.

To gain much benefits from the course tutorials, prepare a question list before attending
them. You will learn a lot from participating actively in the discussions.

Summary

Software Engineering is a course that intends to provide concept of the discipline and is
concerned with application of engineering to software. Upon the completion of the
course, you will be equipped with the knowledge of engineering as it relates to software.
you will be exposed goods details relating to software requirements, design, testing and
implementation. Furthermore, you will be able to answer the following types of
questions:

• What is Software engineering?
• Who is a software engineer
• What is software development life cycle models
• What is software crisis?

Of course a lot more question you will be able to answer.

I wish success in the course and I hope you will find it both interesting and useful.

9

MODULE 1: Basic Concept of Software Engineering

Unit 1: Computer software

1.0 Introduction
The Computer system has two major components namely hardware and software.
The hardware component is physical (can be touched or held). The non physical
part of the computer system is the software. As the voice of man is non physical
yet it so important for the complete performance of man, so is the software. In this
unit, the categories of software are examined.

2.0 Objectives
By the end of this unit, you should be able to:

• Define what software is
• Differentiate between System, Application and programming Software.
• Explain the role of System Software.

3.0 Definition of software
Computer software is a general name for all forms of programs. A program itself
is a sequence of instruction which the computer follows to perform a given task.

3.1 Types of software
Software can be categorised into three major types namely system software,
programming software and application software..

3.1.2 System software
System software helps to run the computer hardware and the entire computer
system. It includes the following:

• device drivers
• operating systems
• servers
• utilities
• windowing systems

The function of systems software is to assist the applications programmer from the details
of the particular computer complex being used, including such peripheral devices as
communications, printers, readers, displays and keyboards, and also to partition the
computer's resources such as memory and processor time in a safe and stable manner.

10

http://en.wikipedia.org/wiki/Windowing_system
http://en.wikipedia.org/wiki/Software_utility
http://en.wikipedia.org/wiki/Server_(computing)
http://en.wikipedia.org/wiki/Operating_system
http://en.wikipedia.org/wiki/Device_driver
http://en.wikipedia.org/wiki/System_software
http://en.wikipedia.org/wiki/Programming_software
http://en.wikipedia.org/wiki/System_software

3.1.3 Programming software
Programming software offers tools to assist a programmer in writing programs,
and software using different programming languages in a more convenient way.
The tools include:

• compilers
• debuggers
• interpreters
• linkers
• text editors

3.1.4 Application software
Application software is a class of software which the user of computer needs to
accomplish one or more definite tasks. The common applications include the
following:

• industrial automation
• business software
• computer games
• quantum chemistry and solid state physics software
• telecommunications (i.e., the internet and everything that flows on it)
• databases
• educational software
• medical software
• military software
• molecular modeling software
• photo-editing
• spreadsheet
• Word processing
• Decision making software

Activity A Differentiate between hardware and software

4.0 Conclusion
A major component of computer system is the software and it plays a major role
in the functioning of the system.

5.0 Summary

In this unit we have learnt that:

• Computer software is a general name for all forms of programs.
• System software helps run the computer hardware and computer system.
• Programming software offers tools to assist a programmer in writing programs.

11

http://en.wikipedia.org/wiki/Computer_program
http://en.wikipedia.org/wiki/System_software
http://en.wikipedia.org/wiki/Word_processing
http://en.wikipedia.org/w/index.php?title=Photo-editing&action=edit&redlink=1
http://en.wikipedia.org/wiki/List_of_software_for_molecular_mechanics_modeling
http://en.wikipedia.org/w/index.php?title=Military_software&action=edit&redlink=1
http://en.wikipedia.org/wiki/Medical_software
http://en.wikipedia.org/wiki/Database
http://en.wikipedia.org/wiki/Telecommunication
http://en.wikipedia.org/wiki/Computer_games
http://en.wikipedia.org/wiki/Task
http://en.wikipedia.org/wiki/Text_editor
http://en.wikipedia.org/wiki/Interpreter_(computing)
http://en.wikipedia.org/wiki/Computer_program

• Application software is a class of software which the user of computer needs to
accomplish one or more definite tasks.

• Briefly explain the role of system software

6.0 Tutor Marked Assignment

1 What is Software?

2 With four (4) examples each, differentiate between System and Application
software

3 What is Programming software? Give five (5) examples

7.0 Further Reading and Other Resources

Hally, Mike (2005:79). Electronic brains/Stories from the dawn of the computer age.
British Broadcasting Corporation and Granta Books, London. ISBN 1-86207-663-4.

GNU project: "Selling Free Software": "we encourage people who redistribute free
software to charge as much as they wish or can."

Engelhardt, Sebastian (2008): "The Economic Properties of Software", Jena
Economic Research Papers, Volume 2 (2008), Number 2008-045. (in Adobe pdf
format)

12

http://en.wikipedia.org/wiki/Portable_Document_Format
http://ideas.repec.org/p/jrp/jrpwrp/2008-045.html
http://ideas.repec.org/p/jrp/jrpwrp/2008-045.html
http://www.gnu.org/philosophy/selling.html
http://en.wikipedia.org/wiki/Special:BookSources/1862076634

UNIT 2`: What is Software Engineering?

1.0 Introduction

Software Engineering is the application of engineering to software. This unit looks at its
goals and principles

2.0 Objectives

By the end of this unit, you should be able to:
• Define what software engineering is
• Explain the goals of software engineering
• Explain the principles of software engineering.

3.0 Definition of Software Engineering.

Software engineering is the application of a systematic, disciplined, quantifiable
approach to the development, operation, and maintenance of software, and the study of
these approaches. In other words, it is the application of engineering to software.

3.1 Sub-disciplines of Software engineering

Software engineering can be divided into ten sub-disciplines. They are as follows:

• Software requirements: The elicitation, analysis, specification, and validation of
requirements for software.

• Software design: Software Design consists of the steps a programmer should do
before they start coding the program in a specific language.It is usually done with
Computer-Aided Software Engineering (CASE) tools and use standards for the
format, such as the Unified Modeling Language (UML).

• Software development : It is construction of software through the use of
programming languages.

• Software testing Software Testing is an empirical investigation conducted to
provide stakeholders with information about the quality of the product or service
under test.

• Software maintenance: This deals with enhancements of Software systems to
solve the problems the may have after being used for a long time after they are
first completed..

• Software configuration management: is the task of tracking and controlling
changes in the software. Configuration management practices include revision
control and the establishment of baselines.

• Software engineering management: The management of software systems
borrows heavily from project management.

13

http://en.wikipedia.org/wiki/Project_management
http://en.wikipedia.org/wiki/Software_testing
http://en.wikipedia.org/wiki/Software_development
http://en.wikipedia.org/wiki/Unified_Modeling_Language
http://en.wikipedia.org/wiki/Requirements

• Software development process : A software development process is a structure
imposed on the development of a software product. There are several models for
such processes, each describing approaches to a variety of tasks or activities that
take place during the process.

• Software engineering tools, (CASE which stands for Computer Aided Software
Engineering) CASE tools are a class of software that automates many of the
activities involved in various life cycle phases.

• Software quality The totality of functionality and features of a software product
that bear on its ability to satisfy stated or implied needs.

3.2 Software Engineering Goals and Principles

3.2.1 Goals
Stated requirements when they are initially specified for systems are usually incomplete.
Apart from accomplishing these stated requirements, a good software system must be
able to easily support changes to these requirements over the system's life. Therefore, a
major goal of software engineering is to be able to deal with the effects of these changes.
The software engineering goals include:

• Maintainability: Changes to software without increasing the complexity of the
original system design should be possible.

• Reliability: The software should be able to prevent failure in design and
construction as well as recover from failure in operation. In other words, the
software should perform its intended function with the required precision at all
times.

• Efficiency: The software system should use the resources that are available in an
optimal manner.

• Understand ability: The software should accurately model the view the reader
has of the real world. Since code in a large, long-lived software system is usually
read more times than it is written, it should be easy to read at the expense of being
easy to write, and not the other way around.

3.2.2 Principles
Sounds engineering principles must be applied throughout development, from the design
phase to final fielding of the system in order to attain a software system that satisfies the
above goals. These include:

• Abstraction: The purpose of abstraction is to bring out essential properties while
omitting inessential detail. The software should be organized as a ladder of
abstraction in which each level of abstraction is built from lower levels. The code
is sufficiently conceptual so the user need not have a great deal of technical
background in the subject. The reader should be able to easily follow the logical

14

http://en.wikipedia.org/wiki/Software_development_process

path of each of the various modules. The decomposition of the code should be
clear.

• Information Hiding: The code should include no needless detail. Elements that
do not affect other segment of the system are inaccessible to the user, so that only
the intended operations can be performed. There are no "undocumented features".

• Modularity: The code is purposefully structured. Components of a given module
are logically or functionally dependent.

• Localization: The breakdown and decomposition of the code is rational.
Logically related computational units are collected together in modules.

• Uniformity: The notation and use of comments, specific keywords and
formatting is consistent and free from unnecessary differences in other parts of the
code.

• Completeness: Nothing is deliberately missing from any module. All important
or relevant components are present both in the modules and in the overall system
as appropriate.

• Confirm ability: The modules of the program can be tested individually with
adequate rigor. This gives rise to a more readily alterable system, and enables the
reusability of tested components.

Activity B 1 What is software engineering

2 Explain briefly the Sub-disciplines of Software engineering

4.0 Conclusion

Software Engineering as the application of engineering to software has overall goal to
easily support changes to software requirements over the system's life. It is also
characterised with sounds engineering principles which must be applied throughout
development, from the design phase to final fielding of the system in order to attain a
software system that satisfies the overall goal

5.0 Summary

In this unit, we have learnt that:

• Software engineering is the application of a systematic, disciplined,
quantifiable approach to the development, operation, and maintenance of

15

software, and the study of these approaches. In other words, it is the
application of engineering to software.

• The goals of Software engineering include: Maintainability, Reliability,
Efficiency, Understand ability.

• The principles of software engineering include: Abstraction, Information
Hiding, Modularity, Localization, Uniformity, Completeness, Confirm ability

6.0 Tutor Marked Assignment

1 Discuss the goals of software engineering

2 Discuss the principles of software engineering

7.0 Further Reading and Other Resources

 “The mythical man-month”, Frederick P. Brooks, Jr., Anniversary Edition,
Addison-Wesley, 1995

“Fundamentals of software engineering”, Carlo Ghezzi et al, Prentice-Hall,
1991

“Software engineering: A practitioner’s approach”, Roger S. Pressman, Third
Edition, McGraw-Hill, 1992

“Classical and object-oriented software engineering”, Stephen R. Schach,
Third Edition, Irwin, 1996

“Software Engineering”, Ian Sommerville, Fifth Edition, Addison-Wesley
1996

Unit 3: History of Software Engineering

16

1.0 Introduction

This unit traces the historical development of software engineering from 1968 till date.

2.0 Objectives

By the end of this unit, you should be able to:
• Explain the historical development of software engineering.

3.0 Overview of Software Engineering.

In the 1968, software engineering originated from the NATO Software Engineering
Conference. It came at the time of software crisis. The field of software engineering has
since then been growing gradually as a study dedicated to creating qualified software. In
spite of being around for a long time, it is a relatively young field compared to other
fields of engineering. Though some people are still confused whether software
engineering is actually engineering because software is more of invisible course.
Although it is disputed what impact it has had on actual software development over the
last more than 40 years, the field's future looks bright according to Money Magazine and
Salary.com who rated "software engineering" as the best job in America in 2006.

The early computers had their software wired with the hardware thereby making them to
be inflexible because the software could not easily be upgraded from one machine to
another. This problem necessitated the development. Programming languages started to
appear in the 1950s and this was also another major step in abstraction. Major languages
such as FORTRAN, ALGOL, and COBOL were released in the late 1950s to deal with
scientific, algorithmic, and business problems respectively. E.W. Dijkstra wrote his
seminal paper, "Go To Statement Considered Harmful", in 1968 and David Parnas
introduced the key concept of modularity and information hiding in 1972 to help
programmers deal with the ever increasing complexity of software systems. A software
system for managing the hardware called an operating system was also introduced, most
notably by Unix in 1969. In 1967, the Simula language introduced the object-oriented
programming paradigm.

The technological advancement in software has always been driven by the ever changing
manufacturing of various types of computer hardware. The more the new technologies
upgrade, from vacuum tube to transistor, and to microprocessor were emerging, the more
the necessity to upgrade and even write new software. In the mid 1980s software experts
had a consensus for centralised construction of software with the use of software
development Life Cycle from system analysis. This period gave birth to object-oriented
programming languages. Open-source software started to appear in the early 90s in the
form of Linux and other software introducing the "bazaar" or decentralized style of
constructing software.[10] Then the Internet and World Wide Web hit in the mid 90s
changing the engineering of software once again. Distributed Systems gained sway as a
way to design systems and the Java programming language was introduced as another
step in abstraction having its own virtual machine. Programmers collaborated and wrote

17

http://en.wikipedia.org/wiki/Programmers
http://en.wikipedia.org/wiki/Virtual_machine
http://en.wikipedia.org/wiki/Abstraction
http://en.wikipedia.org/wiki/Java_(programming_language)
http://en.wikipedia.org/wiki/Distributed_Systems
http://en.wikipedia.org/wiki/World_Wide_Web
http://en.wikipedia.org/wiki/Internet
http://en.wikipedia.org/wiki/Software_engineering#cite_note-9%23cite_note-9
http://en.wikipedia.org/wiki/Linux
http://en.wikipedia.org/wiki/Open-source
http://en.wikipedia.org/wiki/Simula
http://en.wikipedia.org/wiki/Unix
http://en.wikipedia.org/wiki/Operating_system
http://en.wikipedia.org/wiki/Software_systems
http://en.wikipedia.org/wiki/Information_hiding
http://en.wikipedia.org/wiki/Modularity
http://en.wikipedia.org/wiki/David_Parnas
http://en.wikipedia.org/wiki/Edsger_Dijkstra
http://en.wikipedia.org/wiki/Cobol
http://en.wikipedia.org/wiki/ALGOL
http://en.wikipedia.org/wiki/Fortran
http://en.wikipedia.org/wiki/Abstraction

the Agile Manifesto that favored more light weight processes to create cheaper and more
timely software.

3.1 Evolution of Software Engineering

There are a number of areas where the evolution of software engineering is notable:

• Professionanism: The early 1980s witnessed software engineering becoming a
full-fledged profession like computer science and other engineering fields.

• Impact of women: In the early days of computer development (1940s, 1950s, and
1960s,), the men were found in the hardware sector because of the mental
demand of hardwaring heavy duty equipment which was too strenuous for
women. The witing of software was delegated to the women. Some of the women
who were into many programming jobs at this time include Grace Hopper and
Jamie Fenton. Today, many fewer women work in software engineering than in
other professions, this reason for this is yet to be ascertained.

• Processes: Processes have become a great part of software engineering and re
praised for their ability to improve software and sharply condemned for their
potential to narrow programmers.

• Cost of hardware: The relative cost of software versus hardware has changed
substantially over the last 50 years. When mainframes were costly and needed
large support staffs, the few organizations purchasing them also had enough to
fund big, high-priced custom software engineering projects. Computers can now
be said to be much more available and much more powerful, which has a lot of
effects on software. The larger market can sustain large projects to create
commercial packages, as the practice of companies such as Microsoft. The
inexpensive machines permit each programmer to have a terminal capable of
fairly rapid compilation. The programs under consideration can use techniques
such as garbage collection, which make them easier and faster for the programmer
to write. Conversely, many fewer organizations are concerned in employing
programmers for large custom software projects, instead using commercial
packages as much as possible.

3.2 The Pioneering Era

The most key development was that new computers were emerging almost every year or
two, making existing ones outdated. Programmers had to rewrite all their programs to run
on these new computers. They did not have computers on their desks and had to go to the
"computer room" or “computer laboratory”. Jobs were run by booking for machine time
or by operational staff. Jobs were run by inserting punched cards for input into the
computer’s card reader and waiting for results to come back on the printer.

The field was so new that the idea of management using schedule was absent. Guessing
the completion time of project predictions was almost unfeasible Computer hardware was
application-based. Scientific and business tasks needed different machines. High level

18

http://en.wikipedia.org/wiki/Garbage_collection
http://en.wikipedia.org/wiki/Compiler
http://en.wikipedia.org/wiki/Microsoft
http://en.wikipedia.org/wiki/Commercial_off_the_shelf
http://en.wikipedia.org/wiki/Mainframe_computer
http://en.wikipedia.org/wiki/Cost
http://en.wikipedia.org/wiki/Software_development_process
http://en.wikipedia.org/wiki/Jamie_Fenton
http://en.wikipedia.org/wiki/Grace_Hopper
http://en.wikipedia.org/wiki/Agile_Manifesto

languages like FORTRAN, COBOL, and ALGOL were developed to take care of the
need to frequently translate old software to meet the needs of new machines. Systems
software was given out for free by the vendors since it must to be installed in the
computer before it is sold. Custom software was sold by a few companies but no sale of
packaged software.

Organisation such as like IBM's scientific user group SHARE gave out software free and
as a result reuse was order of the day. Academia did not yet teach the principles of
computer science. Modular programming and data abstraction were already being used in
programming.

3.3 1945 to 1965: The origins

The term software engineering came into existence in the late 1950s and early 1960s.
Programmers have always known about civil, electrical, and computer engineering but
fount it difficult to marry engineering with software.

In 1968 and 1969, two conferences on software engineering were sponsored by the
NATO Science Committee. This gave the field its initial boost. It was widely believed
that these conferences marked the official start of the profession of software engineering.

3.4 1965 to 1985: The software crisis

Software engineering was prompted by the software crisis of the 1960s, 1970s, and
1980s. It was the crisis that identified many of the problems of software development.
This era was also characterised by: run over budget and schedule, property damage and
loss of life caused by poor project management. Initially the software crisis was defined
in terms of productivity, but advanced to emphasize quality.

• Cost and Budget Overruns: The OS/360 operating system was a classic example.
It was a decade-long project from the 1960s and eventually produced one of the
most complex software systems at the time.

• Property Damage: Software defects can result in property damage. Poor software
security allows hackers to steal identities, costing time, money, and reputations.

• Life and Death: Software defects can kill. Some embedded systems used in
radiotherapy machines failed so disastrously that they administered poisonous
doses of radiation to patients. The most famous of these failures is the Therac 25
incident.

3.5 1985 to 1989: No silver bullet

For years, solving the software crisis was the primary concern for researchers and
companies producing software tools. Apparently, they proclaim every new technology
and practice from the 1970s to the 1990s as a silver bullet to solve the software crisis.
Tools, discipline, formal methods, process, and professionalism were published as silver
bullets:

19

http://en.wikipedia.org/wiki/Formal_methods
http://en.wikipedia.org/wiki/Silver_bullet
http://en.wikipedia.org/wiki/Therac_25
http://en.wikipedia.org/wiki/Radiation
http://en.wikipedia.org/wiki/Radiotherapy
http://en.wikipedia.org/wiki/Software_security
http://en.wikipedia.org/wiki/Software_security
http://en.wikipedia.org/wiki/OS/360
http://en.wikipedia.org/wiki/Budget_overrun
http://en.wikipedia.org/wiki/Software_quality_assurance
http://en.wikipedia.org/wiki/Productivity
http://en.wikipedia.org/wiki/Software_crisis
http://en.wikipedia.org/w/index.php?title=NATO_Science_Committee&action=edit&redlink=1

• Tools: Particularly underline tools include: Structured programming, object-
oriented programming, CASE tools, Ada, Java, documentation, standards, and
Unified Modeling Language were touted as silver bullets.

• Discipline: Some pundits argued that the software crisis was due to the lack of
discipline of programmers.

• Formal methods: Some believed that if formal engineering methodologies would
be applied to software development, then production of software would become
as predictable an industry as other branches of engineering. They advocated
proving all programs correct.

• Process: Many advocated the use of defined processes and methodologies like the
Capability Maturity Model.

• Professionalism: This led to work on a code of ethics, licenses, and
professionalism.

 Fred Brooks (1986), No Silver Bullet article, argued that no individual technology or
practice would ever make a 10-fold improvement in productivity within 10 years.

Debate about silver bullets continued over the following decade. Supporter for Ada,
components, and processes continued arguing for years that their favorite technology
would be a silver bullet. Skeptics disagreed. Eventually, almost everyone accepted that
no silver bullet would ever be found. Yet, claims about silver bullets arise now and again,
even today.

” No silver bullet” means different things to different people; some take” no silver
bullet” to mean that software engineering failed. The pursuit for a single key to success
never worked. All known technologies and practices have only made incremental
improvements to productivity and quality. Yet, there are no silver bullets for any other
profession, either. Others interpret no silver bullet as evidence that software engineering
has finally matured and recognized that projects succeed due to hard work.

However, it could also be pointed out that there are, in fact, a series of silver bullets
today, including lightweight methodologies, spreadsheet calculators, customized
browsers, in-site search engines, database report generators, integrated design-test
coding-editors with memory/differences/undo, and specialty shops that generate niche
software, such as information websites, at a fraction of the cost of totally customized
website development. Nevertheless, the field of software engineering looks as if it is too
difficult and different for a single "silver bullet" to improve most issues, and each issue
accounts for only a small portion of all software problems.

3.6 1990 to 1999: Importance of the Internet

20

http://en.wikipedia.org/wiki/Web_browser
http://en.wikipedia.org/wiki/Process_(computing)
http://en.wikipedia.org/wiki/Software_componentry
http://en.wikipedia.org/wiki/Ada_programming_language
http://en.wikipedia.org/wiki/Technology
http://en.wikipedia.org/wiki/1986
http://en.wikipedia.org/wiki/Professionalism
http://en.wikipedia.org/wiki/License
http://en.wikipedia.org/wiki/Ethic
http://en.wikipedia.org/wiki/Capability_Maturity_Model
http://en.wikipedia.org/wiki/Methodology_(software_engineering)
http://en.wikipedia.org/wiki/Engineering
http://en.wikipedia.org/wiki/Industry
http://en.wikipedia.org/wiki/Software_development
http://en.wikipedia.org/wiki/Discipline
http://en.wikipedia.org/wiki/Unified_Modeling_Language
http://en.wikipedia.org/wiki/Standardization
http://en.wikipedia.org/wiki/Documentation
http://en.wikipedia.org/wiki/Java_(programming_language)
http://en.wikipedia.org/wiki/Ada_programming_language
http://en.wikipedia.org/wiki/Object-oriented_programming
http://en.wikipedia.org/wiki/Object-oriented_programming
http://en.wikipedia.org/wiki/Structured_programming

The birth of internet played a major role in software engineering. With its arrival,
information could be gotten from the World Wide Web speedily. Programmers could
handle illustrations, maps, photographs, and other images, plus simple animation, at a
very fast rate.

It became easier to display and retrieve information as a result of the usage of browser on
the HTML language. The widespread of network connections brought in computer
viruses and worms on MS Windows computers. These new technologies brought in a lot
good innovations such as e-mailing, web-based searching, e-education to to mention a
few. As a result, many software systems had to be re-designed for international searching.
It was also required to translate the information flow in multiple foreign languages Many
software systems were designed for multi-language usage, based on design concepts from
human translators.

3.7 2000 to Present: Lightweight Methodologies

This era witnessed increasing demand for software in many smaller organizations. There
was also the need for inexpensive software solutions and this led to the growth of
simpler, faster methodologies that developed running software, from requirements to
deployment. There was a change from rapid-prototyping to entire lightweight
methodologies. For example, Extreme Programming (XP), tried to simplify many areas of
software engineering, including requirements gathering and reliability testing for the
growing, vast number of small software systems.

3.8 What is it today

Software Engineering as a profession is now being defined as a field of human experts in
boundary and content. Software Engineering is rated as one of the best job in developed
economies in terms of growth, pay, and flexibility and so on.

3.8.1Important figures in the history of software engineering

Listed below are some renowned software engineers:

• Charles Bachman (born 1924) is particularly known for his work in the area of
databases.

• Fred Brooks (born 1931)) best-known for managing the development of OS/360.
• Peter Chen, known for the development of entity-relationship modeling.
• Edsger Dijkstra (1930-2002) developed the framework for proper programming.
• David Parnas (born 1941) developed the concept of information hiding in

modular programming.

Activity C What is the situation of software Engineering today?

21

http://en.wikipedia.org/wiki/Modular_programming
http://en.wikipedia.org/wiki/Information_hiding
http://en.wikipedia.org/wiki/David_Parnas
http://en.wikipedia.org/wiki/Edsger_Dijkstra
http://en.wikipedia.org/wiki/Entity-relationship_model
http://en.wikipedia.org/wiki/Peter_Chen
http://en.wikipedia.org/wiki/OS/360
http://en.wikipedia.org/wiki/Fred_Brooks
http://en.wikipedia.org/wiki/Databases
http://en.wikipedia.org/wiki/Charles_Bachman

4.0 Conclusion

This unit has looked at the historical development of software engineering. It has
considered among other things, the pioneering era, 1945-1965: the origins, 1965-1985:
thee software crisis, 1985 to 1989: No silver bullet, 1990 to 1999: Prominence of the
Internet, 2000 to Present, Lightweight Methodologies,, Software engineering today
and the prominent figures in the history of software engineering

5.0 Summary

In this unit, we have learnt that:

Software engineering has historical development which can be traced from 1968 till date.

6.0 Tutor Marked Assignment

Discuss the historical development of software engineering

7.0 Further Reading and Other Resources

Pressman, Roger S (2005). Software Engineering: A Practitioner's Approach (6th
ed.). Boston, Mass: McGraw-Hill. ISBN 0072853182.

Sommerville, Ian (2007) [1982]. Software Engineering (8th ed.). Harlow, England:
Pearson Education. ISBN 0-321-31379-8.
http://www.pearsoned.co.uk/HigherEducation/Booksby/Sommerville/.

Ghezzi, Carlo (2003) [1991]. Fundamentals of Software Engineering (2nd
(International) ed.). Pearson Education @ Prentice-Hall.

22

Unit 4 Software Engineer

1.0 Introduction

In unit 3 the historical development of software engineering was discussed. If you will
recall, it traced among other things, the pioneering era, 1945-1965: the origins,
1965-1985: thee software crisis, 1985 to 1989: No silver bullet, 1990 to 1999:
Prominence of the Internet, 2000 to Present, Lightweight Methodologies, Software
engineering today and the prominent figures in the history of software engineering.
The material in this unit will explain who a software engineer is, his tasks, technical
and functional knowledge as well as occupational characteristics. It is expected of you
that at the end of the unit, you will have achieved the objectives listed below.

2.0 Objectives

By the end of this unit, you should be able to:
• Define who a software engineer is
• Explain the various tasks of a software engineer.
• Explain Technical and Functional Knowledge of a Software Engineer
• Explain the occupational characteristic of a software engineer.

3.0 Who is a Software Engineer?

A software engineer is an individual who applies the principles of software engineering
to the design, development, testing, and evaluation of the software and systems in order
to meet with client’s requirements. He/she fully designs software, tests, debugs and
maintains it. Software engineer needs knowledge of varieties of computer programming
languages and applications; to enable him cope with the varieties of works before him. In
view of this, he can sometimes be referred to as a computer programmer.

3.1 Functions of a Software Engineer

• Analyses information to determine, recommend, and plan computer specifications
and layouts, and peripheral equipment modifications.

• Analyses user needs and software requirements to determine feasibility of design
within time and cost constraints.

• Coordinates software system installation and monitor equipment functioning to
ensure specifications are met.

• Designs, develops and modifies software systems, using scientific analysis and
mathematical models to predict and measure outcome and consequences of
design.

23

• Determines system performance standards.

• Develops and direct software system testing and validation procedures,
programming, and documentation.

• Modifies existing software to correct errors; allow it to acclimatise to new
hardware, or to improve its performance.

• Obtains and evaluates information on factors such as reporting formats required,
costs, and security needs to determine hardware configuration.

• Stores, retrieves, and manipulates data for analysis of system capabilities and
requirements.

3.8.2 Technical and Functional Knowledge and requirements of a Software
Engineer

Most employers commonly recognise the technical and functional knowledge statements
listed below as general occupational qualifications for Computer Software Engineers
Although it is not required for the software engineer to have all of the knowledge on the
list in order to be a successful performer, adequate knowledge, skills, and abilities are
necessary for effective delivery of service.

The Software Engineer should have Knowledge of:

• Circuit boards, processors, chips, electronic equipment, and computer
hardware and software, as well as applications and programming.

• Practical application of engineering science and technology. This includes
applying principles, techniques, procedures, and equipment to the design and
production of various goods and services.

• Arithmetic, algebra, geometry, calculus, statistics, and their applications.

• Structure and content of the English language including the meaning and
spelling of words, rules of composition, and grammar.

• Business and management principles involved in strategic planning, resource
allocation, human resources modelling, leadership technique, production
methods, and coordination of human and material resources.

• Principles and methods for curriculum and training design, teaching and
instruction for individuals and groups, and the measurement of training
effects.

• Design techniques, tools, and principles involved in production of precision
technical plans, blueprints, drawings, and models.

24

• Administrative and clerical procedures and systems such as word processing,
managing files and records, stenography and transcription, designing forms,
and other office procedures and terminology.

• Principles and processes for providing customer and personal services. This
includes customer needs assessment, meeting quality standards for services,
and evaluation of customer satisfaction.

• Transmission, broadcasting, switching, control, and operation of
telecommunications systems.

3.3 Occupational features of a software Engineer

Occupations have traits or characteristics which give important clues about the nature of
the work and work environment and offer you an opportunity to match your own personal
interests to a specific occupation.

Software engineer occupational characteristics or features can be categorised as:
Realistic, Investigative and Conventional as described below:

Realistic — Realistic occupations frequently involve work activities that include
practical, hands-on problems and solutions. They often deal with plants, animals, and
real-world materials like wood, tools, and machinery. Many of the occupations require
working outside, and do not involve a lot of paperwork or working closely with others.

Investigative — Investigative occupations frequently involve working with ideas, and
require an extensive amount of thinking. These occupations can involve searching for
facts and figuring out problems mentally.

Activity D Discus the various tasks of software engineer.

4.0 Conclusion

This unit has explained to you who software engineer is. You have also been informed of
about his various task and occupational characteristics.

5.0 Summary

In this unit, we have learnt that:

• A software engineer is an individual who applies the principles of software
engineering to the design, development, testing, and evaluation of the
software and systems in order to meet with client’s requirements.

25

• The tasks of a software engineer include: analysis of information, analysis of
user needs and software requirements, coordination of software system
installation, designs, development and modification of software systems etc.

• The software engineer should have functional and technical knowledge that
will assist in service delivery.

• Occupational characteristics of a software engineer are categorise as :
Realistic, Investigative and Conventional

6.0 Tutor Marked Assignment

1 Who is a software engineer?
2 Explain the Technical and Functional Knowledge of a Software Engineer.
3 Discuss the occupational characteristic of a software engineer.

7.0 Further Reading and Other Resources

Bureau of Labor Statistics, U.S. Department of Labor, USDL 05-2145: Occupational
Employment and Wages, November 2004

McConnell, Steve (July 10, 2003. Professional Software Development: Shorter
Schedules, Higher Quality Products, More Successful Projects, Enhanced Careers. ISBN
978-0321193674.

UNIT 5: Software Crisis.

1.0 Introduction

26

http://en.wikipedia.org/wiki/Special:BookSources/9780321193674
http://en.wikipedia.org/wiki/Special:BookSources/9780321193674
http://en.wikipedia.org/wiki/2003
http://en.wikipedia.org/wiki/July_10

In the last unit, you have learnt about the software engineer- his task, technical and
functional knowledge as well as occupational characteristic. In this unit, we are going to
learn about software crisis. You will learn among other things, the manifestation of
software crisis, the causes of software engineering crisis and the solution to the crisis.
Thus after studying this unit certain things will be required of you. They are listed in the
objectives below.

2.0 Objectives

By the end of this unit, you should be able to:
• Define software crisis.
• Explain the manifestation of software crisis
• Explain the causes of software engineering crisis.
• Explain the solution of software crisis.

3.0 What is Software Crisis?

The term software crisis was used in the early days of software engineering. It was used
to describe the impact of prompt increases in computer power and the difficulty of the
problems which could be tackled. In essence, it refers to the difficulty of writing correct,
understandable, and verifiable computer programs. The sources of the software crisis are
complexity, expectations, and change.

Conflicting requirements has always hindered software development process. For
instance, while users demand a large number of features, customers generally want to
minimise the amount they must pay for the software and the time required for its
development.

F. L. Bauer coined the term "software crisis" at the first NATO Software Engineering
Conference in 1968 at Garmisch, Germany. The term was used early in Edsger Dijkstra's
1972 ACM Turing Award Lecture:

The major cause of the software crisis is that the machines have become more powerful!
This implied that: as long as there were no machines, programming was no problem at
all; when there were few weak computers, programming became a mild problem, and
now with huge computers, programming has equally become a huge problem.

3.1 Manifestation of Software Crisis

The crisis manifested itself in several ways:

• Projects running over-budget.
• Projects running over-time.
• Software was very inefficient.
• Software was of low quality.
• Software often did not meet requirements.

27

http://en.wikipedia.org/wiki/Edsger_Dijkstra
http://en.wikipedia.org/wiki/Garmisch
http://en.wikipedia.org/wiki/Software_engineering

• Projects were unmanageable and code difficult to maintain.
• Software was never delivered.

3.2 Causes of Software Engineering Crisis

The challenging practical areas include: fiscal, human resource, infrastructure, and
marketing.. The very causes of failure in software development industries can be from
two areas twofold: 1) Poor marketing efforts, and 2) Lack of quality products.

3.2.1 Poor marketing efforts
The problem of poor marketing efforts is more noticeable in the developing economies,
where consumers of software products prefers imported software to the detriment of
locally developed ones. This problem is compounded by poor marketing approaches and
the fact that most of the hardware was not manufactured locally. Though the use of
software in our industries, service providing organizations, and other commercial
institutions is increasing appreciably, the demand of locally developed software products
is not going faster at the same rate.

One of the major reasons of this is lack of any established national policy that can speed
up the creation of internal market for locally developed software products. Relatively low
price of foreign (especially from the neighbouring country) software attracts the
consumers in acquiring foreign products rather than buying local one.

One may wants to ask why the clients will go for local software. In this situation, the
question may also be why is that the foreign software products are cheaper than the
locally developed software products? The answers to these questions are not far fetched.
The cost of initial take off of producing software product is significantly much higher
than its subsequent versions because the latter can be produced by merely copying the
initial one.

Most of the foreign software products available in the market are their succeeding
versions. For this reason, the consumers in our country do not have to bear the initial cost
of the development. Furthermore, this software is more reliable as they already have
reputable high report. Many international commercial companies use these products
efficiently.

On the contrary, most of the software firms in Bangladesh for example, need to charge
the initial cost for development for their clients even though the reliability of their
products is quite uncertain. Consequently, the local clients are not interested in buying
local software products. To change this situation, the government must take steps by
imposing high tax on foreign software products and by implementing strict copyright act
for the use of software products.

International market

28

 Apart from developing internal software market, we also need to aim at the international
market. At present, as our software firms have no high report in developing software
products, competing with other country will just be a fruitless effort. India for example
has a high profile as far as software development is concern. India has been in global
market for at least twenty years. India can take advantage of buying software from global
market because of the long-time experience as well as availability of many high level IT
experts at relatively low cost compared with the developed countries. Apart from these,
India has professional immigrant communities in the US and in other developed countries
who have succeeded in influencing the global market to procure software projects for
India.

We cannot, therefore compete with India at this time to buy software projects from the
global market. However, there is the need to have a policy to boost our marketing
strategy to procure global software projects. One of the ways to do this is to allow
country like Bangladesh through its embassies/high commissions to open up a special
software marketing unit in different developed countries. Apart from this our professional
expatriates living in the USA and other developed countries can also assist by setting up
software firms to procure software projects to be developed in Bangladesh at low cost.

In the area of software development, timing is a essential factor. Inability to deliver the
product to time can lead to loss of clients. . Our observation has shown that client cancel
out work order when the software firms failed to meet up the deadline. Failure to meet up
deadline for any software project may result in negative attitude to our software
marketing efforts

Pricing. One of the major challenges to software developer is how to put price on the
product. Most of the time, the question is "How much should our product go for. On one
hand, asking too little price will be jeopardized because in that case developers will no be
able to brake even. On the other hand, charging too much for the product will be a barrier
to our marketing efforts. In order to solve this problem, scientific economic theories
needs to be applied.

These theories must be applied when the software companies fix the prices of their
product. One major lesson here is that we that are just starting in the global software
market should minimise our profit margin.

3.2.2 Lack of quality products
Since most of the systems are to be used in real time environment, quality assurance is of
primary concern. Presently our software companies are yet to be on ground as far as
developing quality software is concerned. It will be of interest to note that presently we
have over 200 software developing firms and only 20 of them have earned ISO 9001
certification and not even a single one has gotten CMM/CMM1 level 3. Even though
certification is not important yardstick for quality of software product, yet ISO
certification is important because it focuses on the general aspects of development to
certify the quality. It must also be stated that if a software product could pass at least

29

level three of CMM/CMM1 then we can classify this as quality product. The hindrances
to achieving quality software on part of our software industries are discussed below:

3.2.1 Lack of expertise in producing sound user requirements: Allowing the
developing firms to go through some defined software development steps as suggested in
software engineering discipline is a pathway to ensure the quality of software products..
The very first step is to analyze the users' requirement and designing of the system vastly
depends on defining users' requirement precisely.

Ideally system analysts should do all sorts of analysis to produce user requirement
analysis documents. Regrettably, in Bangladesh, a few firms do not pay much attention to
producing sound user requirement documents. This reveals lack of theoretical knowledge
in system analysis and design. To produce high quality requirement analysis documents
there is needs for an in-depth theoretical knowledge in system analysis and design. But
many of local software development firms lack the expertise in this field. In order to
rectify this problem, academics in the field have to be consulted to give necessary
assistance that will gear towards producing sound user requirement analysis documents.

Lack of expertise in designing the system: Aside user requirement analysis, another
important aspect is the development process is the designing part of the software product.
The design of any system affects the effectiveness of any implemented software. Again,
one of the major problems confronting our software industries is non availability of
expert software designers. It is a fact to point out that out what we have on ground are
programmers or coders but the number of experienced and expert software engineers is
till not many.

In fact, we rarely have resourceful persons who can guide large and complex software
projects properly our software industries. The result is that there are no quality end
products It may be mentioned here that sound academic knowledge in software
engineering is a must for developing a quality software system. A link between industries
and academic institutions can improve this situation. The utilisation of theoretical sound
knowledge of academics in industrial software project cannot be overlooked. Besides
depending on the complexity of the project, software firms may need to involve foreign
experts for specific period to complete the project properly.

Lack of knowledge in developing model

 There is need to follow some specific model in software development process. The
practice in many software development firms is not to follow any particular model, and
this has so much affected the quality of software product. It is mandatory for a software
developer, therefore, to select a model prior to starting a software project so as to have
quality product.

Absence of proper software testing procedure: For us to have quality software
production the issue of software testing should be taken with utmost seriousness.
demands exhaustive test to check its performance. Many theoretical testing

30

methodologies abound to check the performance and integrity of the software. It is rather
unfortunate to note that many developing firms go ahead to , hastily deliver the end
products to their clients without performing extensive test. The result of this is that many
software products are not free from bugs. It should be pointed here that fixing the bugs
after is costlier than during the developing time. It is therefore important for developers
to perform the test phase of the development before delivering the end product to the
clients.

Inconsistent documentation: Documentation is a very important aspect of software
development. Most of the time, the document produced by some software firms is either
incomplete or inconsistent. Since software is ever-growing product, documentation in
coding must be produced and preserved for the future possible enhancement of the
software.

Solution to Software Crisis

Various processes and methodologies have been developed over the last few decades to
"tame" the software crisis, with varying degrees of success. However, it is widely agreed
that there is no "silver bullet" ― that is, no single approach which will prevent project
overruns and failures in all cases. In general, software projects which are large,
complicated, poorly-specified, and involve unfamiliar aspects, are still particularly
vulnerable to large, unanticipated problems

Activity E What is the major cause software crisis

4.0 Conclusion

In this unit you have learnt about the crisis in software engineering- its manifestation,
causes and solution.

5.0 Summary

In this unit, we have learnt that:

Software crisis refers to the difficulty of writing correct, understandable, and verifiable
computer programs

.The crisis manifested itself in several ways such as: Projects running over-budget,
Projects running over-time, Software was very inefficient, software was of low quality,
Software often did not meet requirements, Projects were unmanageable and code difficult
to maintain, Software was never delivered.

The very causes of failure in software development industries can be seen as twofold: 1)
Poor marketing efforts, and 2) Lack of quality products.

6.0 Tutor Marked Assignment

31

http://en.wikipedia.org/wiki/No_Silver_Bullet

1 What is a software crisis?

2 Discus how software crisis manifested itself in the early day of software
engineering.

3 Explain the causes of software crisis.

7.0 Further Reading And Other Resources

Frederick P. (1987). No Silver Bullet: Essence and Accidents of Software Engineering.
(Reprinted in the 1995 edition of The Mythical Man-Month)

Disjkstra, Edsger (originally published March 1968; re-published, January 2008). "(A
Look Back at) Go To Statement Considered Harmful". Association for Computing
Machinery, Inc. (ACM). http://mags.acm.org/communications/200801/?pg=9. Retrieved
2008-06-12.

MODULE 2: Software Development

Unit 1: Overview of Software Development

1.0 Introduction

32

http://en.wikipedia.org/wiki/No_Silver_Bullet

In the last unit, you have learnt about the software crisis- its manifestation, causes, as
well as solution to the crisis. In this unit, we are going to look at the overview of software
development. You will learn specifically about the overview of various stages involved in
software development. After studying this unit you are expected to have achieved the
following objectives listed below.

2.0 Objectives

By the end of this unit, you should be able to:
• Define clearly software development.
• List clearly the stages of software development

3.0 Definition of Software Development

Software development is the set of activities that results in software products. Software
development may include research, new development, modification, reuse, re-
engineering, maintenance, or any other activities that result in software products.
Particularly the first phase in the software development process may involve many
departments, including marketing, engineering, research and development and general
management.

The term software development may also refer to computer programming, the process of
writing and maintaining the source code.

3.1 Stages of Software Development

There are several different approaches to software development. While some take a more
structured, engineering-based approach, others may take a more incremental approach,
where software evolves as it is developed piece-by-piece. In general, methodologies
share some combination of the following stages of software development:

• Market research
• Gathering requirements for the proposed business solution
• Analyzing the problem
• Devising a plan or design for the software-based solution
• Implementation (coding) of the software
• Testing the software
• Deployment
• Maintenance and bug fixing

These stages are collectively referred to as the software development lifecycle (SDLC).,
These stages may be carried out in different orders, depending on approach to software
development. Time devoted on different stages may also vary. The detail of the
documentation produced at each stage may not be the same.. In “waterfall” based
approach, stages may be carried out in turn whereas in a more "extreme" approach, the
stages may be repeated over various cycles or iterations. It is important to note that more

33

http://en.wikipedia.org/wiki/Computer_programming
http://en.wikipedia.org/wiki/Management
http://en.wikipedia.org/wiki/Research_and_development
http://en.wikipedia.org/wiki/Engineering
http://en.wikipedia.org/wiki/Marketing
http://en.wikipedia.org/wiki/Software

“extreme” approach usually involves less time spent on planning and documentation, and
more time spent on coding and development of automated tests. More “extreme”
approaches also encourage continuous testing throughout the development lifecycle. It
ensures bug-free product at all times. The “waterfall” based approach attempts to assess
the majority of risks and develops a detailed plan for the software before implementation
(coding) begins. It avoids significant design changes and re-coding in later stages of the
software development lifecycle.

Each methodology has its merits and demerits. The choice of an approach to solving a
problem using software depends on the type of problem. If the problem is well
understood and a solution can be effectively planned out ahead of time, the more
"waterfall" based approach may work the best choice. On the other hand, if the problem
is unique (at least to the development team) and the structure of the software solution
cannot be easily pictured, then a more "extreme" incremental approach may work best..

Activity F What do you think determine the choice of approach in software
development?

4.0 Conclusion

This unit has introduce you to software development. You have been informed of the
various stages of software development.

5.0 Summary

In this unit, we have learnt that:

• Software development is the set of activities that results in software products.
• . Most methodologies share some combination of the following stages of

software development: market research, gathering requirements for the
proposed business solution, analyzing the problem, devising a plan or design
for the software-based solution , implementation (coding) of the software,
testing the software, deployment, maintenance and bug fixing

6.0 Tutor Marked Assignment

1 What is software development?

2 Briefly explain the various stages of software development.

7.0 Further Reading And Other Resources

A.M. Davis (2005). Just enough requirements management: where software development
meets marketing.

34

http://en.wikipedia.org/wiki/Software

Edward Hasted. (2005). Software That Sells : A Practical Guide to Developing and
Marketing Your Software Project.

John W. Horch (2005). "Two Orientations On How To Work With Objects." In: IEEE
Software. vol. 12, no. 2, pp. 117-118, Mar., 1995.

Karl E. Wiegers (2005). More About Software Requirements: Thorny Issues and
Practical Advice.

Robert K. Wysocki (2006). Effective Software Project Management.

Unit 2:Software Development Life Cycle Model

1.0 Introduction

35

The last unit exposed you to the overview of software development. In this unit you
will learn about the various lifecycle models (the phases of the software life cycle) in
general. You will also specifically learn about the requirement and the design phases

2.0 Objectives

By the end of this unit, you should be able to:
• Define software life cycle model
• Explain the general model
• Explain Waterfall Model
• Explain V-Shaped Life Cycle Model
• Explain Incremental Model
• Explain Spiral Model
• Discus the requirement and design phases

3.0 Definition of Life Cycle Model

Software life cycle models describe phases of the software cycle and the order in which
those phases are executed. There are a lot of models, and many companies adopt their
own, but all have very similar patterns. According to Raymond Lewallen (2005), the general,
basic model is shown below:

3.1 The General Model

General Life Cycle Model

Fig 1 the General Model

Source: http://codebetter.com/blogs/raymond.lewallen/archive/2005/07/13/129114.aspx.

Each phase produces deliverables needed by the next phase in the life cycle.
Requirements are converted into design. Code is generated during implementation that is
driven by the design. Testing verifies the deliverable of the implementation phase against
requirements.

3.2 Waterfall Model

This is the most common life cycle models, also referred to as a linear-sequential life
cycle model. It is very simple to understand and use. In a waterfall model, each phase
must be completed before the next phase can begin. At the end of each phase, there is

36

always a review to ascertain if the project is in the right direction and whether or not to
carry on or abandon the project. Unlike the general model, phases do not overlap in a
waterfall model.

Waterfall Life Cycle

Fig 2 Waterfall Life Cycle

Source: http://codebetter.com/blogs/raymond.lewallen/archive/2005/07/13/129114.aspx.

3.2.1 Advantages

• Simple and easy to use.
• Easy to manage due to the rigidity of the model – each phase has specific

deliverables and a review process.
• Phases are processed and completed one at a time.
• Works well for smaller projects where requirements are very well understood.

3.2.2 Disadvantages

• Adjusting scope during the life cycle can kill a project
• No working software is produced until late during the life cycle.
• High amounts of risk and uncertainty.
• Poor model for complex and object-oriented projects.
• Poor model for long and ongoing projects.
• Poor model where requirements are at a moderate to high risk of changing.

3.3 V-Shaped Model

Just like the waterfall model, the V-Shaped life cycle is a sequential path of execution of
processes. Each phase must be completed before the next phase begins. Testing is
emphasized in this model more so than the waterfall model The testing procedures are

37

developed early in the life cycle before any coding is done, during each of the phases
preceding implementation.

Requirements begin the life cycle model just like the waterfall model. Before
development is started, a system test plan is created. The test plan focuses on meeting the
functionality specified in the requirements gathering.

The high-level design phase focuses on system architecture and design. An integration
test plan is created in this phase as well in order to test the pieces of the software systems
ability to work together.

The low-level design phase is where the actual software components are designed, and
unit tests are created in this phase as well.

The implementation phase is, again, where all coding takes place. Once coding is
complete, the path of execution continues up the right side of the V where the test plans
developed earlier are now put to use.

Fig 3 V-Shaped Life Cycle Model

Source: http://codebetter.com/blogs/raymond.lewallen/archive/2005/07/13/129114.aspx.

3.3.1 Advantages

38

• Simple and easy to use.
• Each phase has specific deliverables.
• Higher chance of success over the waterfall model due to the development of test

plans early on during the life cycle.
• Works well for small projects where requirements are easily understood.

3.3.2 Disadvantages

• Very rigid, like the waterfall model.
• Little flexibility and adjusting scope is difficult and expensive.
• Software is developed during the implementation phase, so no early prototypes of

the software are produced.
• Model doesn’t provide a clear path for problems discovered during testing phases.

 3.4 Incremental Model

The incremental model is an intuitive approach to the waterfall model. It is a kind of a
“multi-waterfall” cycle. In that multiple development cycles take at this point. Cycles are
broken into smaller, more easily managed iterations. Each of the iterations goes through
the requirements, design, implementation and testing phases.

The first iteration produces a working version of software and this makes possible to have
working software early on during the software life cycle. Subsequent iterations build on
the initial software produced during the first iteration.

Incremental Life Cycle Model

Fig 4 Incremental Life Cycle Model

Source: http://codebetter.com/blogs/raymond.lewallen/archive/2005/07/13/129114.aspx.

3.4.1 Advantages

• Generates working software quickly and early during the software life cycle.

39

• More flexible – inexpensive to change scope and requirements.
• Easier to test and debug during a smaller iteration.
• Easier to manage risk because risky pieces are identified and handled during its

iteration.
• Each of the iterations is an easily managed landmark

3.4.2 Disadvantages

• Each phase of an iteration is rigid and do not overlap each other.
• Problems as regard to system architecture may arise as a result of inability to

gathered requirements up front for the entire software life cycle.

3.5 Spiral Model

The spiral model is similar to the incremental model, with more emphases placed on risk
analysis. The spiral model has four phases namely Planning, Risk Analysis, Engineering
and Evaluation. A software project continually goes through these phases in iterations
which are called spirals. In the baseline spiral requirements are gathered and risk is
assessed. Each subsequent spiral builds on the baseline spiral.

Requirements are gathered during the planning phase. In the risk analysis phase, a
process is carried out to discover risk and alternate solutions. A prototype is produced at
the end of the risk analysis phase.

Software is produced in the engineering phase, alongside with testing at the end of the
phase. The evaluation phase provides the customer with opportunity to evaluate the
output of the project to date before the project continues to the next spiral.

In the spiral model, the angular component denotes progress, and the radius of the spiral
denotes cost.

Spiral Life Cycle Model

40

Fig 5 Spiral Life Cycle Model

Source: http://codebetter.com/blogs/raymond.lewallen/archive/2005/07/13/129114.aspx.

3.5.1 Merits

• High amount of risk analysis
• Good for large and mission-critical projects.
• Software is produced early in the software life cycle.

3.5.2 Demerits

• Can be a costly model to use.
• Risk analysis requires highly specific expertise.
• Project’s success is highly dependent on the risk analysis phase.
• Doesn’t work well for smaller projects.

 3.6 Requirements Phase

41

Business requirements are gathered in this phase. This phase is the main center of
attention of the project managers and stake holders. Meetings with managers, stake
holders and users are held in order to determine the requirements. Th general questions
that require answers during a requirements gathering phase are: Who is going to use the
system? How will they use the system? What data should be input into the system?
What data should be output by the system? A list of functionality that the system should
provide, which describes functions the system should perform, business logic that
processes data, what data is stored and used by the system, and how the user interface
should work is produced at this point. The requirements development phase may have
been preceded by a feasibility study, or a conceptual analysis phase of the project. The
requirements phase may be divided into requirements elicitation (gathering the
requirements from stakeholders), analysis (checking for consistency and completeness),
specification (documenting the requirements) and validation (making sure the specified
requirements are correct)

In systems engineering, a requirement can be a description of what a system must do,
referred to as a Functional Requirement. This type of requirement specifies something
that the delivered system must be able to do. Another type of requirement specifies
something about the system itself, and how well it performs its functions. Such
requirements are often called Non-functional requirements, or 'performance requirements'
or 'quality of service requirements.' Examples of such requirements include usability,
availability, reliability, supportability, testability, maintainability, and (if defined in a way
that's verifiably measurable and unambiguous) ease-of-use.

3.6.1 Types of Requirements

Requirements are categorised as:

• Functional requirements which describe the functionality that the system is to
execute; for example, formatting some text or modulating a signal.

• Non-functional requirements which are the ones that act to constrain the solution.
Nonfunctional requirements are sometimes known as quality requirements or
Constraint requirements No matter how the problem is solved the constraint
requirements must be adhered to.

It is important to note that functional requirements can be directly implemented in
software. The non-functional requirements are controlled by other aspects of the system.
For example, in a computer system reliability is related to hardware failure rates,
performance controlled by CPU and memory. Non-functional requirements can in some
cases be broken into functional requirements for software. For example, a system level
non-functional safety requirement can be decomposed into one or more functional
requirements. In addition, a non-functional requirement may be converted into a process
requirement when the requirement is not easily measurable. For example, a system level

42

maintainability requirement may be decomposed into restrictions on software constructs
or limits on lines or code.

3.6.2 Requirements analysis

Requirements analysis in systems engineering and software engineering, consist of
those activities that go into determining the needs or conditions to meet for a new or
altered product, taking account of the possibly conflicting requirements of the various
stakeholders, such as beneficiaries or users.

Requirements analysis is critical to the success of a development project. Requirements
must be actionable, measurable, testable, related to identified business needs or
opportunities, and defined to a level of detail sufficient for system design.

3.6.3 The Need for Requirements Analysis
Studies reveal that insufficient attention to Software Requirements Analysis at the
beginning of a project is the major reason for critically weak projects that often do not
fulfil basic tasks for which they were designed. Software companies are now spending
time and resources on effective and streamlined Software Requirements Analysis
Processes as a condition to successful projects that support the customer’s business goals
and meet the project’s requirement specifications.
3.6.4 Requirements Analysis Process: Requirements Elicitation, Analysis And

Specification
Requirements Analysis is the process of understanding the client needs and expectations
from a proposed system or application. It is a well-defined stage in the Software
Development Life Cycle model.
Requirements are a description of how a system should behave, in other words, a
description of system properties or attributes. Considering the numerous levels of
dealings between users, business processes and devices in worldwide corporations today,
there are immediate and composite requirements from a single application, from different
levels within an organization and outside it
The Software Requirements Analysis Process involves the complex task of eliciting and
documenting the requirements of all customers, modelling and analyzing these
requirements and documenting them as a foundation for system design.
This job (requirements analysis process) is dedicated to a specialized Requirements
Analyst. The Requirements Analysis function may also come under the scope of Project
Manager, Program Manager or Business Analyst, depending on the organizational
hierarchy.

3.6.5 Steps in the Requirements Analysis Process

43

3.6.5.1 Fix system boundaries
This is initial step and helps in identifying how the new application fit in into the business
processes, how it fits into the larger picture as well as its capacity and limitations.
3.6.5.2 Identify the customer
This focuses on identifying who the ‘users’ or ‘customers’ of an application are that is to
say knowing the group or groups of people who will be directly or indirectly impacted by
the new application. This allows the Requirements Analyst to know in advance where he
has to look for answers.

3.6.5.3 Requirements elicitation
Here information is gathered from the multiple stakeholders identified. The Requirements
Analyst brings out from each of these groups what their requirements from the
application are and what they expect the application to achieve. Taking into account the
multiple stakeholders involved, the list of requirements gathered in this manner could go
into pages. The level of detail of the requirements list depends on the number and size of
user groups, the degree of complexity of business processes and the size of the
application.

3.6.5.3.1 Problems faced in Requirements Elicitation
• Ambiguous understanding of processes
• Inconsistency within a single process by multiple users
• Insufficient input from stakeholders
• Conflicting stakeholder interests
• Changes in requirements after project has begun

3.6.5.3.2 Tools used in Requirements Elicitation
Tools used in Requirements Elicitation include stakeholder interviews and focus group
studies. Other methods like flowcharting of business processes and the use of existing
documentation like user manuals, organizational charts, process models and systems or
process specifications, on-site analysis, interviews with end-users, market research and
competitor analysis are also used widely in Requirements Elicitation.
There are of course, modern tools that are better equipped to handle the complex and
multilayered process of Requirements Elicitation. Some of the current Requirements
Elicitation tools in use are:
• Prototypes
• Use cases
• Data flow diagrams
• Transition process diagrams

44

• User interfaces

3.6.5.4 Requirements Analysis
The moment all stakeholder requirements have been gathered, a structured analysis of
these can be done after modeling the requirements. Some of the Software Requirements
Analysis techniques used are requirements animation, automated reasoning, knowledge-
based critiquing, consistency checking, analogical and case-based reasoning.
3.6.5.5. Requirements Specification
 After requirements have been elicited, modeled and analyzed, they should be
documented in clear, definite terms. A written requirements document is crucial and as
such its circulation should be among all stakeholders including the client, user-groups,
the development and testing teams. It has been observed that a well-designed, clearly
documented Requirements Specification is vital and serves as a:
• Base for validating the stated requirements and resolving stakeholder conflicts, if any
• Contract between the client and development team
• Basis for systems design for the development team
• Bench-mark for project managers for planning project development lifecycle and

goals
• Source for formulating test plans for QA and testing teams
• Resource for requirements management and requirements tracing
• Basis for evolving requirements over the project life span
Software requirements specification involves scoping the requirements so that it meets
the customer’s vision. It is the result of teamwork between the end-user who is usually
not a technical expert, and a Technical/Systems Analyst, who is expected to approach the
situation in technical terms.
The software requirements specification is a document that lists out stakeholders’ needs
and communicates these to the technical community that will design and build the
system. It is really a challenge to communicate a well-written requirements specification,
to both these groups and all the sub-groups within. To overcome this, Requirements
Specifications may be documented separately as:
• User Requirements - written in clear, precise language with plain text and use cases,

for the benefit of the customer and end-user
• System Requirements - expressed as a programming or mathematical model, meant

to address the Application Development Team and QA and Testing Team.
Requirements Specification serves as a starting point for software, hardware and database
design. It describes the function (Functional and Non-Functional specifications) of the
system, performance of the system and the operational and user-interface constraints that
will govern system development.

45

3.7 Requirements Management
Requirements Management is the all-inclusive process that includes all aspects of
software requirements analysis and as well ensures verification, validation and
traceability of requirements. Effective requirements management practices assure that all
system requirements are stated unmistakably, that omissions and errors are corrected and
that evolving specifications can be included later in the project lifecycle.

3.7 Design Phase

The software system design is formed from the results of the requirements phase. This is
where the details on how the system will work are produced. Deliverables in this phase
include hardware and software, communication, software design.

3.8 Definition of software design

A software design is a meaningful engineering representation of some software product
that is to be built. A design can be traced to the customer's requirements and can be
assessed for quality against predefined criteria. In the software engineering context,
design focuses on four major areas of concern: data, architecture, interfaces and
components.

The design process is very important. As a labourer, for example one would not attempt
to build a house without an approved blueprint so as not to risk the structural integrity
and customer satisfaction. In the same way, the approach to building software products is
no unlike. The emphasis in design is on quality. It is pertinent to note that, this is the only
phase in which the customer’s requirements can be precisely translated into a finished
software product or system. As such, software design serves as the foundation for all
software engineering steps that follow regardless of which process model is being
employed.

During the design process the software specifications are changed into design models that
express the details of the data structures, system architecture, interface, and components.
Each design product is re-examined for quality before moving to the next phase of
software development. At the end of the design process a design specification document
is produced. This document is composed of the design models that describe the data,
architecture, interfaces and components.

 3.9 Design Specification Models

• Data design – created by changing the analysis information model (data
dictionary and ERD) into data structures needed to implement the software. Part
of the data design may occur in combination with the design of software
architecture. More detailed data design occurs as each software component is
designed.

46

• Architectural design - defines the relationships among the major structural
elements of the software, the “design patterns” that can be used to attain the
requirements that have been defined for the system, and the constraint that affect
the way in which the architectural patterns can be applied. It is derived from the
system specification, the analysis model, and the subsystem interactions defined
in the analysis model (DFD).

• Interface design - explains how the software elements communicate with each
other, with other systems, and with human users. Much of the necessary
information required is provided by the e data flow and control flow diagrams.

• Component-level design – It converts the structural elements defined by the
software architecture into procedural descriptions of software components using
information acquired from the process specification (PSPEC), control
specification (CSPEC), and state transition diagram (STD).

 3.10 Design Guidelines

In order to assess the quality of a design (representation) the yardstick for a good design
should be established. Such a design should:

• exhibit good architectural structure
• be modular
• contain distinct representations of data, architecture, interfaces, and components

(modules)
• lead to data structures that are appropriate for the objects to be implemented and

be drawn from recognizable design patterns
• lead to components that exhibit independent functional characteristics
• lead to interfaces that reduce the complexity of connections between modules and

with the external environment
• be derived using a reputable method that is driven by information obtained during

software requirements analysis

These criteria are not acquired by chance. The software design process promotes good
design through the application of fundamental design principles, systematic methodology
and through review.

 3.11 Design Principles

Software design can be seen as both a process and a model.

“The design process is a series of steps that allow the designer to describe all aspects of
the software to be built. However, it is not merely a recipe book; for a competent and
successful design, the designer must use creative skill, past experience, a sense of what
makes “good” software, and have a commitment to quality.

47

The set of principles which has been established to help the software engineer in directing
the design process are:

• The design process should not suffer from tunnel vision – Alternative
approaches should be considered by a good designer. Designer should judge
each approach based on the requirements of the problem, the resources
available to do the job and any other constraints.

• The design should be traceable to the analysis model – because a single
element of the design model often traces to multiple requirements, it is
necessary to have a means of tracking how the requirements have been
satisfied by the model

• The design should not reinvent the wheel – Systems are constructed using a
suite of design patterns, many of which may have likely been encountered
before. These patterns should always be chosen as an alternative to
reinvention. Design time should be spent in expressing truly fresh ideas and
incorporating those patterns that already exist.

• The design should reduce intellectual distance between the software and the
problem as it exists in the real world – This means that, the structure of the
software design should imitate the structure of the problem domain.

• The design should show uniformity and integration – a design is uniform if it
appears that one person developed the whole thing. Rules of style and format
should be defined for a design team before design work begins. A design is
integrated if care is taken in defining interfaces between design components.

• The design should be structured to degrade gently, even with bad data, events,
or operating conditions are encountered – Well-designed software should
never “bomb”. It should be designed to accommodate unusual circumstances,
and if it must terminate processing, do so in a graceful manner.

• The design should be reviewed to minimize conceptual (semantic) errors –
there is sometimes the tendency to focus on minute details when the design is
reviewed, missing the forest for the trees. The designer team should ensure
that major conceptual elements of the design have been addressed before
worrying about the syntax if the design model.

• Design is not coding, coding is not design – Even when detailed designs are
created for program components, the level of abstraction of the design model
is higher than source code. The only design decisions made of the coding level
address the small implementation details that enable the procedural design to
be coded.

• The design should be structured to accommodate change
• The design should be assessed for quality as it is being created

With proper application of design principles, the design displays both external and
internal quality factors. External quality factors are those factors that can readily be
observed by the user, (e.g. speed, reliability, correctness, usability). Internal quality
factors have to do with technical quality more so the quality of the design itself. To
achieve internal quality factors the designer must understand basic design concepts.

48

 3.12 Fundamental Software Design Concepts

Over the past four decades, a set of fundamental software design concepts has evolved,
each providing the software designer with a foundation from which more sophisticated
design methods can be applied. Each concept assists the soft ware engineer to answer the
following questions:

• What criteria can be used to partition software into individual components?

• How is function or data structure detail separated from a conceptual
representation of software?

• Are there uniform criteria that define the technical quality of a software
design?

The fundamental design concepts are:

• Abstraction - allows designers to focus on solving a problem without being
concerned about irrelevant lower level details (procedural abstraction - named
sequence of events, data abstraction - named collection of data objects)

• Refinement - process of elaboration where the designer provides successively
more detail for each design component

• Modularity - the degree to which software can be understood by examining its
components independently of one another

• Software architecture - overall structure of the software components and the
ways in which that structure provides conceptual integrity for a system

• Control hierarchy or program structure - represents the module organization
and implies a control hierarchy, but does not represent the procedural aspects of
the software (e.g. event sequences)

• Structural partitioning - horizontal partitioning defines three partitions (input,
data transformations, and output); vertical partitioning (factoring) distributes
control in a top-down manner (control decisions in top level modules and
processing work in the lower level modules).

• Data structure - representation of the logical relationship among individual data
elements (requires at least as much attention as algorithm design)

• Software procedure - precise specification of processing (event sequences,
decision points, repetitive operations, data organization/structure)

• Information hiding - information (data and procedure) contained within a
module is inaccessible to modules that have no need for such information

Activity G 1 What are the steps in requirement Analysis process?
2 What are the fundamental design concepts ?

49

4.0 Conclusion
Software life cycle models describe phases of the software cycle and the order in which
those phases are executed.

5.0 Summary

In this unit, we have learnt that:

• Software life cycle models describe phases of the software cycle and the order
in which those phases are executed. .

• In general model, each phase produces deliverables required by the next phase
in the life cycle. Requirements are translated into design. Code is produced
during implementation that is driven by the design. Testing verifies the
deliverable of the implementation phase against requirements.

• In a waterfall model, each phase must be completed in its entirety before the
next phase can begin. At the end of each phase, a review takes place to
determine if the project is on the right path and whether or not to continue or
discard the project. Unlike what I mentioned in the general model, phases do
not overlap in a waterfall model.

• Just like the waterfall model, the V-Shaped life cycle is a sequential path of
execution of processes. Each phase must be completed before the next phase
begins. Testing is emphasized in this model more so than the waterfall model
though. The testing procedures are developed early in the life cycle before
any coding is done, during each of the phases preceding implementation.

• The incremental model is an intuitive approach to the waterfall model.
Multiple development cycles take place here, making the life cycle a “multi-
waterfall” cycle. Cycles are divided up into smaller, more easily managed
iterations. Each iteration passes through the requirements, design,
implementation and testing phases.

• The spiral model is similar to the incremental model, with more emphases
placed on risk analysis. The spiral model has four phases: Planning, Risk
Analysis, Engineering and Evaluation. A software project repeatedly passes
through these phases in iterations (called Spirals in this model). The baseline
spirals, starting in the planning phase, requirements are gathered and risk is
assessed. Each subsequent spirals builds on the baseline spiral.

• In requirement phase business requirements are gathered and that the phase is
the main focus of the project managers and stake holders.

• The software system design is produced from the results of the requirements
phase and it is the phase is where the details on how the system will work is
produced

6.0 Tutor Marked Assignment

50

1 What is software life cycle model?
2 Explain the general model
3 Compare and contrast General and Waterfall Models
4 Explain V-Shaped Life Cycle Model
5 Explain Incremental Model
6 Compare and contrast Incremental and Spiral Models
7 Discus the requirement and design phases

7.0 Further Reading And Other Resources

Blanchard, B. S., & Fabrycky, W. J.(2006) Systems engineering and analysis (4th ed.)
New Jersey: Prentice Hall.

Ummings, Haag (2006). Management Information Systems for the Information Age.
Toronto, McGraw-Hill Ryerson

Unit 3 Modularity

1.0 Introduction

In unit 2 we discussed about software lifecycle models in general and also in detailed
the requirement and the design phases of software development. In this unit we will
look at Modudularity in programming.

51

2.0 Objectives

By the end of this unit, you should be able to:
• Define Modularity
• Differentiate between logical and physical modularity
• Explain benefits of modular design
• Explain approaches of writing modular program
• Explain Criteria for using modular design
• Outlines the attributes of a good module
• Outline the steps to creating effective module
• Differentiate between Top-down and Bottom-up programming approach

What is Modularity?

Modularity is a general systems concept which is the degree to which a system’s
components may be separated and recombined. It refers to both the tightness of coupling
between components, and the degree to which the “rules” of the system architecture
enable (or prohibit) the mixing and matching of components

The concept of modularity in computer software has been promoted for about five
decades. In essence, the software is divided into separately names and addressable
components called modules that are integrated to satisfy problem requirements. It is
important to note that a reader cannot easily understand large programs with a single
module. The number of variables, control paths and sheer complexity make
understanding almost impossible. As a result a modular approach will allow for the
software to be intellectually manageable. However, it is important to note that software
cannot be subdivided indefinitely so as to make the effort required to understand or
develop it negligible. This is because the more the number of modules, the less the effort
to develop them.

3.14 Logical Modularity

Generally in software, modularity can be categorized as logical or physical. Logical
Modularity is concerned with the internal organization of code into logically-related
units. In modern high level languages, logical modularity usually starts with the class, the
smallest code group that can be defined. In languages such as Java and C#, classes can be
further combined into packages which allow developers to organize code into group of
related classes. Depending on the environment, a module can be implemented as a single
class, several classes in a package, or an entire API (a collection of packages). You
should be able to describe the functionality of tour module in a single sentence (i.e.
this module calculates tax per zip code) regardless of the implementation scale of your
module,). Your module should expose its functionality as simple interfaces that shield
callers from all implementation details. The functionality of a module should be
accessible through a published interface that allows the module to expose its

52

functionalities to the outside world while hiding its implementation details.

3.15 Physical Modularity

Physical Modularity is probably the earliest form of modularity introduced in software
creation. Physical modularity consists of two main components namely: (1) a file that
contains compiled code and other resources and (2) an executing environment that
understand how to execute the file. Developers build and assemble their modules into
compiled assets that can be distributed as single or multiple files. In Java for example,
the jar file is the unit of physical modularity for code distribution (.Net has the assembly).
The file and its associated meta-data are designed to be loaded and executed by the run
time environment that understands how to run the compiled code.
Physical modularity can also be affected by the context and scale of abstraction. Within
Java, for instance, the developer community has created and accept several physical
modularity strategies to address different aspects of enterprise development 1) WAR
for web components 2) EJB for distributed enterprise components 3) EAR for enterprise
application components 4) vendor specific modules such as JBoss Service Archive
(SAR). These are usually a variation of the JAR file format with special meta data to
target the intended runtime environment. The current trend of adoption seems to be
pointing to OSGi as a generic physical module format. OSGi provides the Java
environment with additional functionalties that should allow developers to model their
modules to scale from small emddeable to complex enterprise components (a lofty
goal in deed).

3.16 Benefits of Modular Design

• Scalable Development: a modular design allows a project to be naturally
subdivided along the lines of its modules. A developer (or groups of developers)
can be assigned a module to implement independently which can produce an
asynchronous project flow.

• Testable Code Unit: when your code is partition into functionally-related chunks,
it facilitates the testing of each module independently. With the proper testing
framework, developers can exercise each module (and its constituencies) without
having to bring up the entire project.

• Build Robust System: in the monolithic software design, as your system grows
in complexity so does its propensity to be brittle (changes in one section causes
failure in another). Modularity lets you build complex system composed of
smaller parts that can be independently managed and maintained. Fixes in
one portion of the code does not necessarily affect the entire system.

• Easier Modification & Maintenance: post-production system maintenance is
another crucial benefit of modular design. Developers have the ability to fix and
make non-infrastructural changes to module without affecting other modules.
The updated module can independently go through the build and release cycle
without the need to re-build and redeploy the entire system.

53

• Functionally Scalable: depending on the level of sophistication of your modular
design, it's possible to introduce new functionalities with little or no change to
existing modules. This allows your software system to scale in functionality
without becoming brittle and a burden on developers.

3.17 Approaches of writing Modular program

The three basic approaches of designing Modular program are:

• Process-oriented design

This approach places the emphasis on the process with the objective being to design
modules that have high cohesion and low coupling. (Data flow analysis and data flow
diagrams are often used.)

• Data-oriented design

In this approach the data comes first. That is the structure of the data is determined first
and then procedures are designed in a way to fit to the structure of the data.

• Object-oriented design

In this approach, the objective is to first identify the objects and then build the product
around them. In concentrate, this technique is both data- and process-oriented.

3.18 Criteria for using Modular Design

• Modular decomposability – If the design method provides a systematic
means for breaking problem into sub problems, it will reduce the complexity
of the overall problem, thereby achieving a modular solution.

• Modular compos ability - If the design method enables existing (reusable)
design components to be assembled into a new system, it will yield a modular
solution that does not reinvent the wheel.

• Modular understand ability – If a module can be understood as a stand-
alone unit (without reference to other modules) it will be easier to build and
easier to change.

• Modular continuity – If small changes to the system requirements result in
changes to individual modules, rather than system-wide changes, the impact
of change-induced side-effects will be minimised

• Modular protection – If an abnormal condition occurs within a module and
its effects are constrained within that module, then impact of error-induced
side-effects are minimised

54

 3.19 Attributes of a good Module

• Functional independence - modules have high cohesion and low coupling
• Cohesion - qualitative indication of the degree to which a module focuses on just

one thing
• Coupling - qualitative indication of the degree to which a module is connected to

other modules and to the outside world

 3.20 Steps to Creating Effective Module

• Evaluate the first iteration of the program structure to reduce coupling and
improve cohesion. Once program structure has been developed modules may be
exploded or imploded with aim of improving module independence.

o An exploded module becomes two or more modules in the final program
structure.

o An imploded module is the result of combining the processing implied by
two or more modules.

An exploded module normally results when common processing exists in two or more
modules and can be redefined as a separate cohesive module. When high coupling is
expected, modules can sometimes be imploded to reduce passage of control, reference to
global data and interface complexity.

• Attempt to minimise structures with high fan-out; strive for fan-in as structure
depth increases. The structure shown inside the cloud in Fig. 3 does not make
effective use of factoring.

55

Fig 6 Example of a program structure

• Keep the scope of effect of a module within the scope of control for that module.
o The scope of effect of a module is defined as all other modules that are

affected by a decision made by that module. For example, the scope of
control of module e is all modules that are subordinate i.e. modules f, g, h,
n, p and q.

• Evaluate module interfaces to reduce complexity, reduce redundancy, and

improve consistency.
o Module interface complexity is a prime cause of software errors.

Interfaces should be designed to pass information simply and should be
consistent with the function of a module. Interface inconsistency (i.e.
seemingly unrelated data passed via an argument list or other technique) is
an indication of low cohesion. The module in question should be re-
evaluated.

• Define modules whose function is predictable and not overly restrictive (e.g. a

module that only implements a single task).
o A module is predictable when it can be treated as a black box; that is, the

same external data will be produced regardless of internal processing
details. Modules that have internal “memory” can be unpredictable unless
care is taken in their use.

o A module that restricts processing to a single task exhibits high cohesion
and is viewed favourably by a designer.

56

• Strive for controlled entry modules, avoid pathological connection (e.g. branches

into the middle of another module)
o This warns against content coupling. Software is easier to understand and

maintain if the module interfaces are constrained and controlled.

 3.21 Programming Languages that formally support module concept

Languages that formally support the module concept include IBM/360 Assembler,
COBOL, RPG and PL/1, Ada, D, F, Fortran, Haskell, OCaml, Pascal, ML, Modula-2,
Erlang, Perl, Python and Ruby. The IBM System i also uses Modules in RPG, COBOL
and CL, when programming in the ILE environment. Modular programming can be
performed even where the programming language lacks explicit syntactic features to
support named modules.

Software tools can create modular code units from groups of components. Libraries of
components built from separately compiled modules can be combined into a whole by
using a linker.

3.22 Module Interconnection Languages

Module interconnection languages (MILs) provide formal grammar constructs for
deciding the various module interconnection specifications required to assemble a
complete software system. MILs enable the separation between programming-in-the-
small and programming-in-the-large. Coding a module represents programming in the
small, while assembling a system with the help of a MIL represents programming in the
large. An example of MIL is MIL-75.

3.23 Top-Down Design

Top-down is a programming style, the core of traditional procedural languages, in which
design begins by specifying complex pieces and then dividing them into successively
smaller pieces. Finally, the components are precise enough to be coded and the program
is written. It is the exact opposite of the bottom-up programming approach which is
common in object-oriented languages such as C++ or Java.

The method of writing a program using top-down approach is to write a main procedure
that names all the major functions it will need. After that the programming team
examines the requirements of each of those functions and repeats the process. These
compartmentalized sub-routines finally will perform actions so straightforward they can
be easily and concisely coded. The program is done when all the various sub-routines
have been coded.

57

Merits of top-down programming:

• Separating the low level work from the higher level abstractions leads to a
modular design.

• Modular design means development can be self contained.
• Having "skeleton" code illustrates clearly how low level modules integrate.
• Fewer operations errors
• Much less time consuming (each programmer is only concerned in a part of the

big project).
• Very optimized way of processing (each programmer has to apply their own

knowledge and experience to their parts (modules), so the project will become an
optimized one).

• Easy to maintain (if an error occurs in the output, it is easy to identify the errors
generated from which module of the entire program).

3.24 Bottom-up approach

In a bottom-up approach the individual base elements of the system are first specified in
great detail. These elements are then connected together to form bigger subsystems,
which are linked, sometimes in many levels, until a complete top-level system is formed.
This strategy often resembles a "seed" model, whereby the beginnings are small, but
eventually grow in complexity and completeness.

Object-oriented programming (OOP) is a programming paradigm that uses "objects" to
design applications and computer programs.

. This bottom-up approach has one drawback. We need to use a lot of perception to
decide the functionality that is to be provided by the module. This approach is more
suitable if a system is to be developed from existing system, because it starts from some
existing modules. Modern software design approaches usually mix both top-down and
bottom-up approaches.

Activity H What are the steps to create effective modules?

4.0 Conclusion

The benefits of modular programming cannot be overemphasised. It among other things,
allows for scalar development, it facilitates code testing, helps in building robust system,
allows for easier modification and maintenance.

5.0 Summary

In this unit, we have learnt that:

58

• Modularity is a general systems concept, the degree to which a system’s
components may be separated and recombined. It refers to both the tightness of
coupling between components, and the degree to which the “rules” of the system
architecture enable (or prohibit) the mixing and matching of components

• Physical Modularity is probably the earliest form of modularity introduced in
software creation. Physical modularity consists of two main components namely:
(1) a file that contains compiled code and other resources and (2) an executing
environment that understand how to execute the file. Developers build and
assemble their modules into compiled assets that can be distributed as single or
multiple files.

• Logical Modularity is concerned with the internal organization of code into
logically-related units.

• Modular programming is beneficial in that:It allows for scalar development, it
facilitates code testing, helps in building robust system, allows for easier
modification and maintenance.

• The three basic approaches of designing Modular program are: Process-oriented
design, Data-oriented design and Object-oriented design.

• Criteria for using Modular Design include: Modular decomposability, Modular
compos ability, Modular understand ability, Modular continuity, and Modular
protection.

• Attributes of a good Module include: Functional independence, Cohesion, and
Coupling

• Steps to Creating Effective Module include: Evaluate the first iteration of the
program structure to reduce coupling and improve cohesion, Attempt to minimise
structures with high fan-out; strive for fan-in as structure depth increases, Define
modules whose function is predictable and not overly restrictive (e.g. a module
that only implements a single task), Strive for controlled entry modules, avoid
pathological connection (e.g. branches into the middle of another module)

• Top-down is a programming style, the core of traditional procedural languages, in
which design begins by specifying complex pieces and then dividing them into
successively smaller pieces. Finally, the components are precise enough to be
coded and the program is written.

• In a bottom-up approach the individual base elements of the system are first
specified in great detail. These elements are then connected together to form
bigger subsystems, which are linked, sometimes in many levels, until a complete
top-level system is formed

6.0 Tutor Marked Assignment

• What is Modularity?
• Differentiate between logical and physical modularity
• What are the benefits of modular design
• Explain the approaches of writing modular program

59

• What are the Criteria for using modular design
• Outlines the attributes of a good module
• Outline the steps to creating effective module
• Differentiate between Top-down and Bottom-up programming approach

7.0 Futher Reading And Other Resouces

Laplante, Phil (2009). Requirements Engineering for Software and Systems (1st ed.).
Redmond, WA: CRC Press. ISBN 1-42006-467-3.
http://beta.crcpress.com/product/isbn/9781420064674.

McConnell, Steve (1996). Rapid Development: Taming Wild Software Schedules (1st
ed.). Redmond, WA: Microsoft Press. ISBN 1-55615-900-5.
http://www.stevemcconnell.com/.

Wiegers, Karl E. (2003). Software Requirements 2: Practical techniques for
gathering and managing requirements throughout the product development cycle
(2nd ed.). Redmond: Microsoft Press. ISBN 0-7356-1879-8.

Andrew Stellman and Jennifer Greene (2005). Applied Software Project
Management. Cambridge, MA: O'Reilly Media. ISBN 0-596-00948-8.
http://www.stellman-greene.com.

Unit 4 Pseudo code

1.0 Introduction

In the last unit, you have learnt about Modudularity in programming. Its benefits,
design approaches and criteria, attributes of a good Module and the steps to creating
effective module. You equally learnt about Top-Down and Bottom-up approaches in
programming. This unit ushers you into Pseudo code a way to create a logical structure

60

http://en.wikipedia.org/wiki/Special:BookSources/1556159005
http://en.wikipedia.org/wiki/Special:BookSources/1420064673

that will describing the actions, which will be executed by the application. After studying
this unit you are expected to have achieved the following objectives listed below.

2.0 Objectives

By the end of this unit, you should be able to:
• Define Pseudo code
• Explain General guidelines for writing Pseudo code.
• Give examples of Pseudo codes

3.26 Definition of Pseudo code
Pseudo-code is a non-formal language, a way to create a logical structure, describing the
actions, which will be executed by the application. Using pseudo-code, the developer
shows the application logic using his local language, without applying the structural rules
of a specific programming language. The big advantage of the pseudo-code is that the
application logic can be easily comprehended by any developer in the development team.
In addition, when the application algorithm is expressed in pseudo-code, it is very easy to
convert the pseudo-code into real code (using any programming language).

3.26 General guidelines for writing Pseudo code

Here are a few general guidelines for writing your pseudo code:
Mimic good code and good English. Using aspects of both systems means

adhering to the style rules of both to
some degree. It is still important that variable names be mnemonic, comments
be included where useful, and English
phrases be comprehensible (full sentences are usually not necessary).

Ignore unnecessary details. If you are worrying about the placement of commas,
you are using too much detail. It is a
good idea to use some convention to group statements (begin/end, brackets, or
whatever else is clear), but you shouldn't
obsess about syntax.

Don't belabor the obvious. In many cases, the type of a variable is clear from
context; unless it is critical that it is specified to be an integer or real, it is
often unnecessary to make it explicit.

Take advantage of programming shorthands. Using if-then-else or looping
structures is more concise than writing
out the equivalent in English; general constructs that are not peculiar to a
small number of languages are good candidates
for use in pseudocode. Using parameters in specifying procedures is concise,
clear, and accurate, and hence should not
be omitted from pseudocode.

Consider the context. If you are writing an algorithm for quicksort, the statement
use quicksort to sort the values is
hiding too much detail; if you have already studied quicksort in a class and
later use it as a subroutine in another

61

algorithm, the statement would be appropriate to use.
Don't lose sight of the underlying model. It should be possible to see through"

your pseudocode to the model below;
if not (that is, you are not able to analyze the algorithm easily), it is written at
too high a level.

Check for balance. If the pseudocode is hard for a person to read or difficult to
translate into working code (or worse
yet, both!), then something is wrong with the level of detail you have chosen
to use.

3.27 Examples of Pseudocode

Example 1 - Computing Sales Value Added (VAT) Tax : Pseudo-code the task of
computing the final price of an item after figuring in sales tax. Note the three types of
instructions: input (get), process/calculate (=) and output (display)

1. get price of item
2. get VAT rate
3. VAT = price of time times VAT rate
4 final price = price of item plus VAT
5. display final price
6. stop

Variables: price of item, sales tax rate, sales tax, final price

Note that the operations are numbered and each operation is unambiguous and effectively
computable. We also extract and list all variables used in our pseudo-code. This will be
useful when translating pseudo-code into a programming language

Example 2 - Computing Weekly Wages: Gross pay depends on the pay rate and the
number of hours worked per week. However, if you work more than 50 hours, you get
paid time-and-a-half for all hours worked over 50. Pseudo-code the task of computing
gross pay given pay rate and hours worked.

1. get hours worked
2. get pay rate
3. if hours worked ≤ 50 then
3.1 gross pay = pay rate times hours worked
4. else
4.1 gross pay = pay rate times 50 plus 1.5 times pay rate times (hours

worked minus 50)
5. display gross pay

62

6. halt

variables: hours worked, ray rate, gross pay

This example presents the conditional control structure. On the basis of the true/false
question asked in line 3, line 3.1 is executed if the answer is True; otherwise if the answer
is False the lines subordinate to line 4 (i.e. line 4.1) is executed. In both cases pseudo-
code is resumed at line 5.

Example 3 - Computing a Question Average: Pseudo-code a routine to calculate your
question average.

1. get number of questions
2. sum = 0
3. count = 0
4. while count < number of questions

4.1 get question grade
4.2 sum = sum + question grade
4.3 count = count + 1

5. average = sum / number of question
6. display average
7. stop

variables: number of question, sum ,count, question grade, average

This example presents an iterative control statement. As long as the condition in line 4 is
True, we execute the subordinate operations 4.1 - 4.3. When the condition is False, we
return to the pseudo-code at line 5.

This is an example of a top-test or while do iterative control structure. There is also a
bottom-test or repeat until iterative control structure which executes a block of statements
until the condition tested at the end of the block is False.

Some Keywords That Should be Used

For looping and selection, The keywords that are to be used include Do While...EndDo;
Do Until...Enddo; Case...EndCase; If...Endif; Call ... with (parameters); Call; Return;
Return; When; Always use scope terminators for loops and iteration.

As verbs, use the words Generate, Compute, Process, etc. Words such as set, reset,
increment, compute, calculate, add, sum, multiply, ... print, display, input, output, edit,
test , etc. with careful indentation tend to foster desirable pseudocode.

63

Do not include data declarations in your pseudo code.

Activity I Write a pseudo code to find the average of even number between 1 and 20

4.0 Conclusion

The role of pseudo-code in program design cannot be underestimated. When it used, it is
not only that logic of application can easily be understood but it can easily be converted
into real code.

5.0 Summary

In this unit, you have learnt about the essence of pseudo code in program design

6.0 Tutor Marked Assignment

• What is Pseudo code
• Explain the General guidelines for writing Pseudo code.
• Write a Pseudo code to find the average of even number between 1 and 20.

7.0 Futher Reading And Other Resouces

Robertson, L. A. (2003) Simple Program Design: A Step-by-Step Approach. 4th ed.
Melbourne: Thomson.

Unit 5 Programming Environment, CASE Tools & HIPO Diagrams

1.0 Introduction

In the last unit, you have learnt about pseudo code. In this unit you will be exposed to
Programming Environment, CASE Tools & HIPO Diagrams. After studying this unit you
are expected to have achieved the following objectives listed below.

2.0 Objectives
By the end of this unit, you should be able to:

• Explain Programming Environment

64

• Discuss Case Tools.
• Explain Hipo Diagrams.

3.0 Definition of Programming Environment

Programming environments gives the basic tools and Application Programming
Interfaces, or APIs, necessary to construct programs. Programming environments help
the creation, modification, execution and debugging of programs. The goal of integrating
a programming environment is more than simply building tools that share a common data
base and provide a consistent user interface. Altogether, the programming environment
appears to the programmer as a single tool; there are no firewalls separating the various
functions provided by the environment.

3.1 History of Programming Environment

The history of software tools began with the first computers in the early 1950s that used
linkers, loaders, and control programs. In the early 1970s the tools became famous with
Unix with tools like grep, awk and make that were meant to be combined flexibly with
pipes. The term "software tools" came from the book of the same name by Brian
Kernighan and P. J. Plauger. Originally, Tools were simple and light weight. As some
tools have been maintained, they have been integrated into more powerful integrated
development environments (IDEs). These environments combine functionality into one
place, sometimes increasing simplicity and productivity, other times part with flexibility
and extensibility. The workflow of IDEs is routinely contrasted with alternative
approaches, such as the use of Unix shell tools with text editors like Vim and Emacs.

The difference between tools and applications is unclear. For example, developers use
simple databases (such as a file containing a list of important values) all the time as tools.
However a full-blown database is usually thought of as an application in its own right.

For many years, computer-assisted software engineering (CASE) tools were preferred.
CASE tools emphasized design and architecture support, such as for UML. But the most
successful of these tools are IDEs.

The ability to use a variety of tools productively is one quality of a skilled software
engineer.

3.2 Types of Programming Environment

Software development tools can be roughly divided into the following categories:

• performance analysis tools
• debugging tools
• static analysis and formal verification tools

65

• correctness checking tools
• memory usage tools
• application build tools
• integrated development environment

3.3 Forms of Software tools

Software tools come in many forms namely :

• Bug Databases: Bugzilla, Trac, Atlassian Jira, LibreSource, SharpForge
• Build Tools: Make, automake, Apache Ant, SCons, Rake, Flowtracer, cmake,

qmake
• Code coverage: C++test,GCT, Insure++, Jtest, CCover
• Code Sharing Sites: Freshmeat, Krugle, Sourceforge. See also Code search

engines.
• Compilation and linking tools: GNU toolchain, gcc, Microsoft Visual Studio,

CodeWarrior, Xcode, ICC

• Debuggers: gdb, GNU Binutils, valgrind. Debugging tools also are used in the
process of debugging code, and can also be used to create code that is more
compliant to standards and portable than if they were not used.

• Disassemblers: Generally reverse-engineering tools.
• Documentation generators: Doxygen, help2man, POD, Javadoc, Pydoc/Epydoc,

asciidoc
• Formal methods: Mathematically-based techniques for specification, development

and verification
• GUI interface generators
• Library interface generators: Swig
• Integration Tools

• Memory Use/Leaks/Corruptions Detection: dmalloc, Electric Fence, duma, Insure
++. Memory leak detection: In the C programming language for instance, memory
leaks are not as easily detected - software tools called memory debuggers are
often used to find memory leaks enabling the programmer to find these problems
much more efficiently than inspection alone.

• Parser generators: Lex, Yacc
• Performance analysis or profiling
• Refactoring Browser
• Revision control: Bazaar, Bitkeeper, Bonsai, ClearCase, CVS, Git, GNU arch,

Mercurial, Monotone, Perforce, PVCS, RCS, SCM, SCCS, SourceSafe, SVN,
LibreSource Synchronizer

• Scripting languages: Awk, Perl, Python, REXX, Ruby, Shell, Tcl
• Search: grep, find
• Source-Code Clones/Duplications Finding

66

http://en.wikipedia.org/wiki/Find
http://en.wikipedia.org/wiki/Grep
http://en.wikipedia.org/wiki/Tcl
http://en.wikipedia.org/wiki/Python_(programming_language)
http://en.wikipedia.org/wiki/AWK_(programming_language)
http://en.wikipedia.org/wiki/SCM
http://en.wikipedia.org/wiki/Mercurial_(software)
http://en.wikipedia.org/wiki/POD
http://en.wikipedia.org/wiki/Intel_C_Compiler
http://en.wikipedia.org/wiki/Xcode
http://en.wikipedia.org/wiki/GNU_Compiler_Collection
http://en.wikipedia.org/wiki/Compiler
http://en.wikipedia.org/wiki/Qmake
http://en.wikipedia.org/wiki/Cmake
http://en.wikipedia.org/wiki/Rake_(software)
http://en.wikipedia.org/wiki/Trac

• Source code formatting
• Source code generation tools
• Static code analysis: C++test, Jtest, lint, Splint, PMD, Findbugs, .TEST
• Text editors: emacs, vi, vim

3.4 Integrated development environments

Integrated development environments (IDEs) merge the features of many tools into one
complete package. They are usually simpler and make it easier to do simple tasks, such as
searching for content only in files in a particular project. IDEs are often used for
development of enterprise-level applications.Some examples of IDEs are:

• Delphi
• C++ Builder (CodeGear)
• Microsoft Visual Studio
• EiffelStudio
• GNAT Programming Studio
• Xcode
• IBM Rational Application Developer
• Eclipse
• NetBeans
• IntelliJ IDEA
• WinDev
• Code::Blocks
• Lazarus

3.5 What is CASE Tools?

CASE tools are a class of software that automates many of the activities involved in
various life cycle phases. For example, when establishing the functional requirements of
a proposed application, prototyping tools can be used to develop graphic models of
application screens to assist end users to visualize how an application will look after
development. Subsequently, system designers can use automated design tools to
transform the prototyped functional requirements into detailed design documents.
Programmers can then use automated code generators to convert the design documents
into code. Automated tools can be used collectively, as mentioned, or individually. For
example, prototyping tools could be used to define application requirements that get
passed to design technicians who convert the requirements into detailed designs in a
traditional manner using flowcharts and narrative documents, without the assistance of
automated design software.

It is the scientific application of a set of tools and methods to a software system which is
meant to result in high-quality, defect-free, and maintainable software products. It also
refers to methods for the development of information systems together with automated
tools that can be used in the software development process.

67

http://en.wikipedia.org/wiki/Vim
http://en.wikipedia.org/wiki/Vi
http://en.wikipedia.org/wiki/Emacs
http://en.wikipedia.org/wiki/Jtest

3.6 Types of CASE Tools

Some typical CASE tools are:

• Configuration management tools
• Data modeling tools
• Model transformation tools
• Program transformation tools
• Refactoring tools
• Source code generation tools, and
• Unified Modeling Language

Many CASE tools not only yield code but also generate other output typical of various
systems analysis and design methodologies such as:

• data flow diagram
• entity relationship diagram
• logical schema
• Program specification
• SSADM.
• User documentation

3.7 History of CASE

The term CASE was originally formulated by software company, Nastec Corporation of
Southfield, Michigan in 1982 with their original integrated graphics and text editor
GraphiText, which also was the first microcomputer-based system to use hyperlinks to
cross-reference text strings in documents Under the direction of Albert F. Case, Jr. vice
president for product management and consulting, and Vaughn Frick, director of product
management, the DesignAid product suite was expanded to support analysis of a wide
range of structured analysis and design methodologies, notable Ed Yourdon and Tom
DeMarco, Chris Gane & Trish Sarson, Ward-Mellor (real-time) SA/SD and Warnier-Orr
(data driven).

The next competitor into the market was Excelerator from Index Technology in
Cambridge, Mass. While DesignAid ran on Convergent Technologies and later
Burroughs Ngen networked microcomputers, Index launched Excelerator on the IBM PC/
AT platform. While, at the time of launch, and for several years, the IBM platform did
not support networking or a centralized database as did the Convergent Technologies or
Burroughs machines, the allure of IBM was strong, and Excelerator came to prominence.
Hot on the heels of Excelerator were a rash of offerings from companies such as
Knowledgeware (James Martin, Fran Tarkenton and Don Addington), Texas Instrument's
IEF and Accenture's FOUNDATION toolset (METHOD/1, DESIGN/1, INSTALL/1,
FCP).

68

CASE tools were at their peak in the early 1990s. At the time IBM had proposed
AD/Cycle which was an alliance of software vendors centered around IBM's Software
repository using IBM DB2 in mainframe and OS/2:

The application development tools can be from several sources: from IBM, from vendors,
and from the customers themselves. IBM has entered into relationships with Bachman
Information Systems, Index Technology Corporation, and Knowledgeware, Inc. wherein
selected products from these vendors will be marketed through an IBM complementary
marketing program to provide offerings that will help to achieve complete life-cycle
coverage.

With the decline of the mainframe, AD/Cycle and the Big CASE tools died off, opening
the market for the mainstream CASE tools of today. Interestingly, nearly all of the
leaders of the CASE market of the early 1990s ended up being purchased by Computer
Associates, including IEW, IEF, ADW, Cayenne, and Learmonth & Burchett
Management Systems (LBMS).

3.8 Categories of Case Tools

CASE Tools can be classified into 3 categories:

• Tools support only specific tasks in the software process.
• Workbenches support only one or a few activities.
• Environments support (a large part of) the software process.

Workbenches and environments are generally built as collections of tools. Tools can
therefore be either stand alone products or components of workbenches and
environments.

3.9 CASE Environment

An environment is a collection of CASE tools and workbenches that supports the
software process. CASE environments are classified based on the focus/basis of
integration

• Toolkits
• Language-centered
• Integrated
• Fourth generation
• Process-centered

69

3.9.1 Toolkits
Toolkits are loosely integrated collections of products easily extended by aggregating
different tools and workbenches. Typically, the support provided by a toolkit is limited to
programming, configuration management and project management. And the toolkit itself
is environments extended from basic sets of operating system tools, for example, the
Unix Programmer's Work Bench and the VMS VAX Set. In addition, toolkits' loose
integration requires user to activate tools by explicit invocation or simple control
mechanisms. The resulting files are unstructured and could be in different format,
therefore the access of file from different tools may require explicit file format
conversion. However, since the only constraint for adding a new component is the
formats of the files, toolkits can be easily and incrementally extended.

3.9.2 Language-centered
The environment itself is written in the programming language for which it was
developed, thus enable users to reuse, customize and extend the environment. Integration
of code in different languages is a major issue for language-centered environments. Lack
of process and data integration is also a problem. The strengths of these environments
include good level of presentation and control integration. Interlisp, Smalltalk, Rational,
and KEE are examples of language-centered environments.

3.9.3 Integrated
These environments achieve presentation integration by providing uniform, consistent,
and coherent tool and workbench interfaces. Data integration is achieved through the
repository concept: they have a specialized database managing all information produced
and accessed in the environment. Examples of integrated environment are IBM AD/Cycle
and DEC Cohesion.

3.9.4 Fourth generation
Forth generation environments were the first integrated environments. They are sets of
tools and workbenches supporting the development of a specific class of program:
electronic data processing and business-oriented applications. In general, they include
programming tools, simple configuration management tools, document handling facilities
and, sometimes, a code generator to produce code in lower level languages. Informix
4GL, and Focus fall into this category.

3.9.5 Process-centered
Environments in this category focus on process integration with other integration
dimensions as starting points. A process-centered environment operates by interpreting a
process model created by specialized tools. They usually consist of tools handling two
functions:

• Process-model execution, and
• Process-model production

70

Examples are East, Enterprise II, Process Wise, Process Weaver, and Arcadia.[6]

3.10 Application areas of CASE Tools

All aspects of the software development life cycle can be supported by software tools,
and so the use of tools from across the spectrum can, arguably, be described as CASE;
from project management software through tools for business and functional analysis,
system design, code storage, compilers, translation tools, test software, and so on.

However, it is the tools that are concerned with analysis and design, and with using
design information to create parts (or all) of the software product, that are most
frequently thought of as CASE tools. CASE applied, for instance, to a database software
product, might normally involve:

• Modeling business/real world processes and data flow
• Development of data models in the form of entity-relationship diagrams
• Development of process and function descriptions
• Production of database creation SQL and stored procedures

3.11 CASE Risk

Common CASE risks and associated controls include:

• Inadequate Standardization: Linking CASE tools from different vendors (design
tool from Company X, programming tool from Company Y) may be difficult if
the products do not use standardized code structures and data classifications. File
formats can be converted, but usually not economically. Controls include using
tools from the same vendor, or using tools based on standard protocols and
insisting on demonstrated compatibility. Additionally, if organizations obtain
tools for only a portion of the development process, they should consider
acquiring them from a vendor that has a full line of products to ensure future
compatibility if they add more tools.

• Unrealistic Expectations: Organizations often implement CASE technologies to
reduce development costs. Implementing CASE strategies usually involves high
start-up costs. Generally, management must be willing to accept a long-term
payback period. Controls include requiring senior managers to define their
purpose and strategies for implementing CASE technologies.

• Quick Implementation: Implementing CASE technologies can involve a
significant change from traditional development environments. Typically,
organizations should not use CASE tools the first time on critical projects or
projects with short deadlines because of the lengthy training process.
Additionally, organizations should consider using the tools on smaller, less
complex projects and gradually implementing the tools to allow more training
time.

71

http://en.wikipedia.org/wiki/CASE_Tool#cite_note-AF_93-5%23cite_note-AF_93-5

• Weak Repository Controls : Failure to adequately control access to CASE
repositories may result in security breaches or damage to the work documents,
system designs, or code modules stored in the repository. Controls include
protecting the repositories with appropriate access, version, and backup controls.

3.12 HIPO Diagrams

The HIPO (Hierarchy plus Input-Process-Output) technique is a tool for planning and/or
documenting a computer program. A HIPO model consists of a hierarchy chart that
graphically represents the program’s control structure and a set of IPO (Input-Process-
Output) charts that describe the inputs to, the outputs from, and the functions (or
processes) performed by each module on the hierarchy chart.

3.13 Strengths, weaknesses, and limitations

Using the HIPO technique, designers can evaluate and refine a program’s design, and
correct flaws prior to implementation. Given the graphic nature of HIPO, users and
managers can easily follow a program’s structure. The hierarchy chart serves as a useful
planning and visualization document for managing the program development process.
The IPO charts define for the programmer each module’s inputs, outputs, and algorithms.

In theory, HIPO provides valuable long-term documentation. However, the “text plus
flowchart” nature of the IPO charts makes them difficult to maintain, so the
documentation often does not represent the current state of the program.

By its very nature, the HIPO technique is best used to plan and/or document a
hierarchically structured program.

The HIPO technique is often used to plan or document a structured program A variety of
tools, including pseudocode (and structured English can be used to describe processes on
an IPO chart. System flowcharting symbols are sometimes used to identify physical
input, output, and storage devices on an IPO chart.

3.14 Components of HIPO

A completed HIPO package has two parts. A hierarchy chart is used to represent the top-
down structure of the program. For each module depicted on the hierarchy chart, an IPO
(Input-Process-Output) chart is used to describe the inputs to, the outputs from, and the
process performed by the module.

72

3.14.1 The hierarchy chart

It summarises the primary tasks to be performed by an interactive inventory program.
Figure 7 shows one possible hierarchy chart (or visual table of contents) for that program.
Each box represents one module that can call its subordinates and return control to its
higher-level parent.

A Set of Tasks to Be Performed by an Interactive Inventory Program is:

• Manage inventory
• Update stock
• Process sale
• Process return
• Process shipment
• Generate report
• Respond to query
• Display status report
• Maintain inventory data
• Modify record
• Add record
• Delete record

73

Figure 7 A hierarchy chart for an interactive inventory control program.

Source: www.hit.ac.il/staff/leonidM/information-systems/ch64.html

At the top of Figure 7 is the main control module, Manage inventory (module 1.0). It
accepts a transaction, determines the transaction type, and calls one of its three
subordinates (modules 2.0, 3.0, and 4.0).

Lower-level modules are identified relative to their parent modules; for example,
modules 2.1, 2.2, and 2.3 are subordinates of module 2.0, modules 2.1.1, 2.1.2, and 2.1.3
are subordinates of 2.1, and so on. The module names consist of an active verb followed
by a subject that suggests the module’s function.

The objective of the module identifiers is to uniquely identify each module and to
indicate its place in the hierarchy. Some designers use Roman numerals (level I, level II)
or letters (level A, level B) to designate levels. Others prefer a hierarchical numbering
scheme; e.g., 1.0 for the first level; 1.1, 1.2, 1.3 for the second level; and so on. The key
is consistency.

The box at the lower-left of Figure 7 is a legend that explains how the arrows on the
hierarchy chart and the IPO charts are to be interpreted. By default, a wide clear arrow
represents a data flow, a wide black arrow represents a control flow, and a narrow arrow
indicates a pointer.

3.14.2 The IPO charts

An IPO chart is prepared to document each of the modules on the hierarchy chart.

74

3.14.2.1 Overview diagrams

An overview diagram is a high-level IPO chart that summarizes the inputs to, processes
or tasks performed by, and outputs from a module. For example, shows an overview
diagram for process 2.0, Update stock. Where appropriate, system flowcharting symbols
are used to identify the physical devices that generate the inputs and accept the outputs.
The processes are typically described in brief paragraph or sentence form. Arrows show
the primary input and output data flows.

Figure 7.1 An overview diagram for process 2.0.

Source: www.hit.ac.il/staff/leonidM/information-systems/ch64.html

Overview diagrams are primarily planning tools. They often do not appear in the
completed documentation package.

3.14.2.2 Detail diagrams

A detail diagram is a low-level IPO chart that shows how specific input and output data
elements or data structures are linked to specific processes. In effect, the designer

75

integrates a system flowchart into the overview diagram to show the flow of data and
control through the module.

Figure 7.2 shows a detail diagram for module 2.0, Update stock. The process steps are
written in pseudocode. Note that the first step writes a menu to the user screen and input
data (the transaction type) flows from that screen to step 2. Step 3 is a case structure. Step
4 writes a transaction complete message to the user screen.

The solid black arrows at the top and bottom of the process box show that control flows
from module 1.0 and, upon completion, returns to module 1.0. Within the case structure
(step 3) are other solid black arrows.

Following case 0 is a return (to module 1.0). The two-headed black arrows following
cases 1, 2, and 3 represent subroutine calls; the off-page connector symbols (the little
home plates) identify each subroutine’s module number. Note that each subroutine is
documented in a separate IPO chart. Following the default case, the arrow points to an
on-page connector symbol numbered 1. Note the matching on-page connector symbol
pointing to the select structure. On-page connectors are also used to avoid crossing
arrows on data flows.

Figure 7.2 A detail diagram for process 2.1.

.

76

Source: www.hit.ac.il/staff/leonidM/information-systems/ch64.html

Often, detailed notes and explanations are written on an extended description that is
attached to each detail diagram. The notes might specify access methods, data types, and
so on.

Figure 64.4 shows a detail diagram for process 2.1. The module writes a template to the
user screen, reads a stock number and a quantity from the screen, uses the stock number
as a key to access an inventory file, and updates the stock on hand. Note that the logic
repeats the data entry process if the stock number does not match an inventory record. A
real IPO chart is likely to show the error response process in greater detail.

3.14.2.3 Simplified IPO charts

Some designers simplify the IPO charts by eliminating the arrows and system flowchart
symbols and showing only the text. Often, the input and out put blocks are moved above
the process block (Figure 64.5), yielding a form that fits better on a standard 8.5 × 11
(portrait orientation) sheet of paper. Some programmers insert modified IPO charts
similar to Figure 64.5 directly into their source code as comments. Because the
documentation is closely linked to the code, it is often more reliable than stand-alone
HIPO documentation, and more likely to be maintained.

77

Fig 7.3 Simplified HIPO diaram

Source: www.hit.ac.il/staff/leonidM/information-systems/ch64.html

Detail diagram —
A low-level IPO chart that shows how specific input and output data elements or
data structures are linked to specific processes.

Hierarchy chart —
A diagram that graphically represents a program’s control structure.

HIPO (Hierarchy plus Input-Process-Output) —
A tool for planning and/or documenting a computer program that utilizes a
hierarchy chart to graphically represent the program’s control structure and a set

78

of IPO (Input-Process-Output) charts to describe the inputs to, the outputs from,
and the functions performed by each module on the hierarchy chart.

IPO (Input-Process-Output) chart —
A chart that describes or documents the inputs to, the outputs from, and the
functions (or processes) performed by a program module.

Overview diagram —
A high-level IPO chart that summarizes the inputs to, processes or tasks
performed by, and outputs from a module.

Visual Table of Contents (VTOC) —
A more formal name for a hierarchy chart.

3.15 Software

In the 1970s and early 1980s, HIPO documentation was typically prepared by hand using
a template. Some CASE products and charting programs include HIPO support. Some
forms generation programs can be used to generate HIPO forms. The examples in this #
were prepared using Visio.

Activity J Discuss the historical development of Case Tools

4.0 Conclusion

Programming tools are so important for effective program design.

5.0 Summary.

In this unit, you have learnt that:

• Programming environments gives the basic tools and Application Programming
Interfaces, or APIs, necessary to construct programs.

• Using the HIPO technique, designers can evaluate and refine a program’s design,
and correct flaws prior to implementation.

• CASE tools are a class of software that automates many of the activities involved
in various life cycle phases

6.0 Tutor Marked Assignment

• Explain Programming Environment
• What is Case Tools?, enumerate different categories of case tools
• What is HIPO technique?
• With the aid of well labeled diagrams, discuss the components of Hipo.

7.0 Further Reading And Other Resources

Gane, C. and Sarson, T., Structured Systems Analysis: Tools and Techniques, Prentice-
Hall, Englewood Cliffs, NJ, 1979.

79

IBM Corporation, HIPO—A Design Aid and Documentation Technique, Publication
Number GC20-1851, IBM Corporation, White Plains, NY, 1974.
Katzan, H., Jr., Systems Design and Documentation: An Introduction to the HIPO
Method, Van Nostrand Reinhold, New York, 1976.

Peters, L. J., Software Design: Methods and Techniques, Yourdon Press, New York,
1981.

Yourdon, E. and Constantine, Structured Design, Prentice-Hall, Englewood Cliffs, NJ,
1979.

Module 3 Implementation and Testing

Unit 1 Implementation

1.0 Introduction

This unit examines the implementation phase of software development. After studying
the unit you are expected to have achieved the following objectives listed below.

80

2.0 Objectives

By the end of this unit, you should be able to:
• Define clearly software Implementation
• Differentiate between the three types of errors
• Explain the application of Six Sigma to Software Implementation Projects
• Discuss the Major Tasks in Implementation
• Explain the Major Requirement in Implementation
• Explain the Implementation Support

3.0 What is Implementation?

Code is formed from the deliverables of the design phase during implementation. It is the
longest phase of the software development life cycle. Since code is produce here, the
developer regards this phase as the main focus of the life cycle. Implementation my
overlap with both the design and testing phases. As we learnt in previous unit many tools
exists (CASE tools) to actually automate the production of code using information
gathered and produced during the design phase. The implementation phase concerns with
issues of quality, performance, baselines, libraries, and debugging. The end deliverable is
the product itself.

3.1 The Implementation Phase

Source: Ronald LeRoi Burback
1998-12-14

. 3.2 Critical Error Removal

There are three kinds of errors in a system, namely critical errors, non-critical errors, and
unknown errors.

3.2.1 A critical error prevents the system from fully satisfying its usage. The errors
have to be corrected before the system can be given to a customer or even before future
development can progress.

Phase Deliverable

Implementation Code

 Critical Error Removal
Table 1 The Implementation Phase

81

3.2.2 A non-critical error is known but the occurrence of the error does not notably
affect the system's expected quality. There may indeed be many known errors in the
system. They are usually listed in the release notes and have well established work
arounds.

Actually, the system is likely to have many, yet-to-be-discovered errors. The outcome of
these errors is unknown. Some may become critical while some may be simply fixed by
patches or fixed in the next release of the system.

3.3 Application of Six Sigma to Software Implementation Projects
Software implementation can be a demanding project. When a company is attempting
new software integration, it can be hectic Six Sigma is a management approach meant to
discover and control defects. A summary of Six Sigma can be found in Natasha Baker’s
“Key Concepts of Six Sigma.” The technique consists of five steps:

• · Define
• · Measure
• · Analyze
• · Improve
• · Control

Defining the Implementation

By defining the goals, projects, and deliverables your company will have greater
direction during the changeover. The goals and projects must be measurable. The
following questions, for examples, may be necessary: Is it your goal to have 25% of your
staff comfortable enough to train the remaining staff? Do you want full implementation
of the software by March? By utilizing Six Sigma metrics careful monitoring of team
productivity and implementation success is possible.

2. Measurement of the Implementation

Goals and projects must be usable with metrics. By using Six Sigma measurement
methods, it is possible to follow user understanding, familiarity, and progress accurately.
It should be noted that, continuous data is more useful than discrete data. This is because
it gives a better implementation success rate overview.

3. Implementation Analysis

Analysis is important to tackle defects occurrence. The Six Sigma method examines
essential relationships and ensures all factors are considered. For example, in a software
implementation trial, employees are frustrated and confused by new processes. Careful
analysis will look at the reasons behind the confusion.

4. Implementation Improvement

82

After analysis, it is important to look at how the implementation could improve. In the
example utilizing the team members, perhaps utilizing proficient resources to mentor
struggling resources will help. Six Sigma improvements depends upon experimental
design and carefully constructed analysis of data in order to keep further defects in the
implementation process at bay.

5. Control of the Implementation

If implementation is going to be successful, control is important. It involves consistent
monitoring for proficiency. This ensures that the implementation does not fail. Any
deviations from the goals set demand correcting before they become defects. For
example, if you notice your team does not adapt quickly enough, you need to identify the
causes before the deadline. By carefully monitoring the implementation process this way,
will minimise the defect. The two most important features of software implementation
using Six Sigma are setting measurable goals and employing metrics in order to
maximize improvement and minimize the chance of defects in the new process.

3.4 Major Tasks in Implementation
This part provides a brief description of each major task needed for the
implementation of the system. The tasks described here are not particular to site
but overall project tasks that are needed to install hardware and software, prepare
data, and verify the system. Include the following information for the description of
each major task, if appropriate:
Add as many subsections as necessary to this section to describe all the major tasks
adequately. The tasks described in this section are not site-specific, but generic or
overall project tasks that are required to install hardware and software, prepare data,
and verify the system.

Examples of major tasks are the following:
• Providing overall planning and coordination for the implementation
• Providing appropriate training for personnel
• Ensuring that all manuals applicable to the implementation effort are

available when needed
• Providing all needed technical assistance
• Scheduling any special computer processing required for the

implementation
• Performing site surveys before implementation
• Ensuring that all prerequisites have been fulfilled before the

implementation date
• Providing personnel for the implementation team
• Acquiring special hardware or software
• Performing data conversion before loading data into the system
• Preparing site facilities for implementation

83

3.5 Major Requirement in Implementation

3.5.1 Security
If suitable for the system to be implemented, there is need to include an overview
of the system security features and requirements during the implementation.

3.5.1.1 System Security Features
It is pertinent to discuss the security features that will be associated with the
system when it is implemented. It should include the primary security features
associated with the system hardware and software. Security and protection of
sensitive bureau data and information should be discussed.

3.5.1.2 Security during Implementation
This part addresses security issues particularly related to the implementation
effort. It will be necessary to consider for example, if LAN servers or
workstations will he installed at a site with sensitive data preloaded on non-
removable hard disk drives. It will also be important to see to how security would
be provided for the data on these devices during shipping, transport, and
installation so as not to allow theft of the devices to compromise the sensitive
data.

3.6 Implementation Support
This part describes the support such as: software, materials, equipment, and facilities
necessary for the implementation, as well as the personnel requirements and training
essential for the implementation.

3.6.1 Hardware, Software, Facilities, and Materials
This section, provides a list of support software, materials, equipment, and facilities
required for the implementation..

3.6.1.1 Hardware
This section offers a list of support equipment and includes all hardware used for
testing time implementation. For example, if a client/server database is
implemented on a LAN, a network monitor or “sniffer” might be used, along with
test programs. to determine the performance of the database and LAN at high-
utilization rates

3.6.1.2 Software
This section provides a list of software and databases required to support the
implementation. Identify the software by name, code, or acronym. Identify which
software is commercial off-the-shelf and which is State-specific. Identify any
software used to facilitate the implementation process.

84

3.6.1.3 Facilities
This section identifies the physical facilities and accommodations required during
implementation. Examples include physical workspace for assembling and
testing hardware components, desk space for software installers, and classroom
space for training the implementation stall. Specify the hours per day needed,
number of days, and anticipated dates.

3.6.1.4 Material
This section provides a list of required support materials, such as magnetic tapes
and disk packs.

3.7 Personnel
This section describes personnel requirements and any known or proposed staffing
requirements. It also describes the training, to be provided for the implementation
staff.

3.7.1 Personnel Requirements and Staffing
This section, describes the number of personnel, length of time needed, types of
skills, and skill levels for the staff required during the implementation period. If
particular staff members have been selected or proposed for the implementation,
identify them and their roles in the implementation.

3.7.2 Training of Implementation Staff
This section addresses the training, necessary to prepare staff for implementing
and maintaining the system; it does not address user training, which is the subject
of the Training Plan. It also describes the type and amount of training required
for each of the following areas, if appropriate, for the system:

• System hardware/software installation
• System support
• System maintenance and modification

Present a training curriculum listing the courses that will be provided, a course
sequence and a proposed schedule. If appropriate, identify which courses
particular types of staff should attend by job position description.

If training will be provided by one or more commercial vendors, identify them,
the course name(s), and a brief description of the course content.

If the training will be provided by State staff, provide the course name(s) and an
outline of the content of each course. Identify the resources, support materials,
and proposed instructors required to teach the course(s).

85

3.8 Performance Monitoring
This section describes the performance monitoring tool and techniques and how it
will be used to help decide if the implementation is successful.

3.9 Configuration Management Interface
This section describes the interactions required with the Configuration
Management (CM) representative on CM-related issues, such as when software
listings will be distributed, and how to confirm that libraries have been moved from
the development to the production environment.

3.10 Implementation Requirements by Site
This section describes specific implementation requirements and procedures. If
these requirements and procedures differ by site, repeat these subsections for each
site; if they are the same for each site, or if there is only one implementation site, use
these subsections only once. The “X” in the subsection number should be replaced
with a sequenced number beginning with I. Each subsection with the same value of
“X” is associated with the same implementation site. If a complete set of subsections
will be associated with each implementation site, then “X” is assigned a new value
for each site.

3.10.1 Site Name or identification for Site X
This section provides the name of the specific site or sites to be discussed in the
subsequent sections.

3.10.2 Site Requirements
This section defines the requirements that must he met for the orderly
implementation of the system and describes the hardware, software, and site-
specific facilities requirements for this area.

Any site requirements that do not fall into the following three categories and were
not described in Section 3, Implementation Support, may be described in this
section, or other subsections may be added following Facilities Requirements
below:

• Hardware Requirements - Describe the site-specific hardware requirements
necessary to support the implementation (such as. LAN hardware for a
client/server database designed to run on a LAN).

• Software Requirements - Describe any software required to implement the
system (such as, software specifically designed for automating the installation
process).

• Data Requirements - Describe specific data preparation requirements and data
that must be available for the system implementation. An example would be
the assignment of individual IDs associated with data preparation.

86

• Facilities Requirements - Describe the site-specific physical facilities and
accommodations required during the system implementation period. Some
examples of this type of information are provided in Section 3.

3.10.3 Site implementation Details
This section addresses the specifics of the implementation for this site. Include a
description of the implementation team, schedule, procedures, and database and
data updates. This section should also provide information on the following:

• Team--If an implementation team is required, describe its composition and the
tasks to be performed at this site by each team member.

• Schedule--Provide a schedule of activities, including planning and
preparation, to be accomplished during implementation at this site. Describe
the required tasks in chronological order with the beginning and end dates of
each task. If appropriate, charts and graphics may be used to present the
schedule.

• Procedures--Provide a sequence of detailed procedures required to accomplish
the specific hardware and software implementation at this site. If necessary,
other documents may be referenced. If appropriate, include a step-by-step
sequence of the detailed procedures. A checklist of the installation events
may he provided to record the results of the process.

If the site operations startup is an important factor in the implementation, then
address startup procedures in some detail. If the system will replace an already
operating system, then address the startup and cutover processes in detail. If there
is a period of parallel operations with an existing system, address the startup
procedures that include technical and operations support during the parallel cycle
and the consistency of data within the databases of the two systems.

• Database--Describe the database environment where the software system and
the database(s), if any, will be installed. Include a description of the different
types of database and library environments (such as, production, test, and
training databases).

• Include the host computer database operating procedures, database file and
library naming conventions, database system generation parameters, and any
other information needed to effectively establish the system database
environment.

• Include database administration procedures for testing changes, if any, to the
database management system before the system implementation.

87

• Data Update--If data update procedures are described in another document,
such as the operations manual or conversion plan, that document may be
referenced here. The following are examples of information to be included:

- Control inputs
- Operating instructions
- Database data sources and inputs
- Output reports
- Restart and recovery procedures

3.11 Back-Off Plan
This section specifies when to make the go/no go decision and the factors to be
included in making the decision. The plan then goes on to provide a detailed list
of steps and actions required to restore the site to the original, pre-conversion
condition,

3.12 Post-Implementation Verification
This section describes the process for reviewing the implementation and deciding
if it was successful. It describes how an action item list will be created to rectify
any noted discrepancies. It also references the Back-Off Plan for instructions on
how to back-out the installation, if, as a result of the post-implementation
verification, a no-go decision is made.

Activity K Explain the Major Requirement in Implementation

4.0 Conclusion

Implementation phase is vital aspect of software development. It is the longest phase of
the software development life cycle. It is a phase where code is produced and as such tge
developer regards it as the main focus of the software development life cycle.

5.0 Summary
In this unit, you have learnt that:

• Code is formed from the deliverables of the design phase during implementation.
• A critical error prevents the system from fully satisfying its usage. The errors

have to be corrected before the system can be given to a customer or even before
future development can progress.

• A non-critical error is known but the occurrence of the error does not notably
affect the system's expected quality.

• The system is likely to have many, yet-to-be-discovered errors known as
unknown errors which may become critical while some may be simply fixed by
patches or fixed in the next release of the system.

• The technique Six Sigma to Software Implementation Projects consists of five
steps: Define, Measure, Analyze,· Improve, Control.

88

• The Major Tasks in Implementation include: Providing overall planning and
coordination for the implementation, Providing appropriate training for personnel
Ensuring that all manuals applicable to the implementation effort are available
when needed, Providing all needed technical assistance, Scheduling any special
computer processing required for the implementation, Performing site surveys
before implementation, Ensuring that all prerequisites have been fulfilled before
the implementation date, Providing personnel for the implementation team,
Acquiring special hardware or software, Performing data conversion before
loading data into the system, Preparing site facilities for implementation.

• Major Requirement in Implementation include: Security, Implementation
Support, Personnel and Performance Monitoring

6.0 Tutor Marked Assignment

• What is software Implementation
• Differentiate between critical, non-critical and unknown errors
• Explain the application of Six Sigma Software Implementation techniques.
• Discuss the Major Tasks in Implementation
• Explain the various Implementation Support

7.0 Further Reading And Other Resources

Moshe Bar and Karl Franz Fogel. Open Source Development with CVS. The Coriolis
Group, Scottsdale, AZ, 2001.

Kent Beck and Erich Gamma. Test infected: Programmers love writing tests. Java
Report, 3(7):37–50, July 1998.

Stephen P. Berczuk and Brad Appleton. Software Configuration Management
Patterns: Effective Teamwork, Practical Integration. Addison-Wesley, Boston, MA,
2002.

Don Bolinger, Tan Bronson, and Mike Loukides. Applying RCS and SCCS: From
Source Control to Project Control. O'Reilly and Associates, Sebastopol, CA, 1995.

Unit 2 Testing Phase

1.0 Introduction

In the last unit, we looked at implementation phase of software development. In this unit,
we shall consider the testing phase. It is important for stakeholders to have information

89

about the quality of product (software), hence the importance of testing cannot be
overemphasised.

2.0 Objectives
By the end of this unit, you should be able to:

• Define clearly software testing
• Explain testing methods.
• Explain software testing process
• Explain testing tools

3.0 Definition of software testing

Software testing is an empirical examination carried out to provide stakeholders with
information about the quality of the product or service under test. Software Testing in
addition provides an objective, independent view of the software to allow the business to
value and comprehend the risks associated with implementation of the software..
Software Testing can also be viewed as the process of validating and verifying that a
software program/application/product (1) meets the business and technical requirements
that guided its design and development; (2) works as expected; and (3) can be
implemented with the same characteristics. It is important to note that depending on the
testing method used, software testing, can be applied at any time in the development
process, though most of the test effort occurs after the requirements have been defined
and the coding process has been completed.

Testing can never totally detect all the defects within software. Instead, it provides a
comparison that put side by side the state and behavior of the product against the
instrument someone applies to recognize a problem. These instruments may include
specifications, contracts, comparable products, past versions of the same product,
inferences about intended or expected purpose, user or customer expectations, relevant
standards, applicable laws, or other criteria.

Every software product has a target audience. For instance, the audience for video game
software is completely different from banking software. Software testing therefore, is the
process of attempting to make this assessment whether the software product will be
satisfactory to its end users, its target audience, its purchasers, and other stakeholders.

3.1 Brief History of software testing

In 1979, Glenford J. Myers introduced the separation of debugging from testing,
illustrated the desire of the software engineering community to separate fundamental
development activities, such as debugging, from that of verification. 1988, Dave Gelperin
and William C. Hetzel classified the phases and goals in software testing in the following
stages:

• Until 1956 - Debugging oriented.
• 1957–1978 - Demonstration oriented.

90

• 1983–1987 - Evaluation oriented.
• 1988–2000 - Prevention oriented.

3.2 Testing methods

Traditionally, software testing methods are divided into black box testing ,white box
testing and Grey Box Testing. A test engineer used these approaches to describe his
opinion when designing test cases.

3.2.1.1 Black box testing

Black box testing considers the software as a "black box" in the sense that there is no
knowledge of internal implementation. Black box testing methods include: equivalence
partitioning, boundary value analysis, all-pairs testing, fuzz testing, model-based testing,
traceability matrix, exploratory testing and specification-based testing.

3.2.1.1 Specification-based testing: Specification-based testing intends to test the
functionality of software based on the applicable requirements. Consequently, the
tester inputs data into, and only sees the output from, the test object. This level of
testing usually needs thorough test cases to be supplied to the tester, who can then
verify that for a given input, the output value ,either "is" or "is not" the same as
the expected value specified in the test case.
Specification-based testing though necessary, but it is insufficient to guard
against certain risks.
Merits and Demerits: The black box testing has the advantage of "an unaffiliated
opinion in the sense that there is no "bonds" with the code and the perception of
the tester is very simple. He believes a code must have bugs and he goes for it.
But, on the other hand, black box testing has the disadvantage of blind exploring
because the tester doesn't know how the software being tested was actually
constructed. As a result, there are situations when (1) a tester writes many test
cases to check something that could have been tested by only one test case, and/or
(2) some parts of the back-end are not tested at all.

3.2.1.2 White box testing

In a White box testing the tester has the privilege to the internal data structures and
algorithms including the code that implement these.

Types of white box testing
White box testing is of different types namely:

• API testing (application programming interface) - Testing of the application
using Public and Private APIs

91

http://en.wikipedia.org/wiki/Application_programming_interface
http://en.wikipedia.org/wiki/Fuzz_testing

• Code coverage - creating tests to satisfy some criteria of code coverage (e.g.,
the test designer can create tests to cause all statements in the program to be
executed at least once)

• Fault injection methods
• Mutation testing methods
• Static testing - White box testing includes all static testing

3.2.1.3 Grey Box Testing

Grey box testing requires gaining access to internal data structures and algorithms for
purposes of designing the test cases, but testing at the user, or black-box level.
Manipulating input data and formatting output cannot be regarded as grey box, because
the input and output are clearly outside of the "black-box" that we are calling the system
under test. This difference is important especially when conducting integration testing
between two modules of code written by two different developers, where only the
interfaces are exposed for test. However, changing a data repository can be seen as grey
box, because the use would not ordinarily be able to change the data outside of the
system under test. Grey box testing may also include reverse engineering to ascertain
boundary values or error messages.

3.2.2 Integration Testing

Integration testing is any type of software testing that seeks to reveal clash of individual
software modules to each other. Such integration flaws can result, when the new modules
are developed in separate branches, and then integrated into the main project.

3.2.3 Regression Testing

Regression testing is any type of software testing that attempts to reveal software
regressions. Regression of the nature can occurs at any time software functionality, that
was previously working correctly, stops working as anticipated. Usually, regressions
occur as an unplanned result of program changes, when the newly developed part of the
software collides with the previously existing. Methods of regression testing include re-
running previously run tests and finding out whether previously repaired faults have re-
appeared. The extent of testing depends on the phase in the release process and the risk of
the added features.

3.2.4 Acceptance testing

One of two things below can be regarded as Acceptance testing:

1. A smoke test which is used as an acceptance test prior to introducing a new build
to the main testing process, i.e. before integration or regression.

2. Acceptance testing performed by the customer, usually in their lab environment
on their own HW, is known as user acceptance testing (UAT).

92

http://en.wikipedia.org/wiki/Static_testing
http://en.wikipedia.org/wiki/Mutation_testing
http://en.wikipedia.org/wiki/Fault_injection
http://en.wikipedia.org/wiki/Code_coverage

3.2.5 Non Functional Software Testing

The following methods are used to test non-functional aspects of software:

• Performance testing confirms to see if the software can deal with large quantities
of data or users. This is generally referred to as software scalability. This activity
of Non Functional Software Testing is often referred to as Endurance Testing.

• Stability testing checks to see if the software can continuously function well in or
above an acceptable period. This activity of Non Functional Software Testing is
oftentimes referred to as load (or endurance) testing.

• Usability testing is used to check if the user interface is easy to use and
understand.

• Security testing is essential for software that processes confidential data to
prevent system intrusion by hackers.

• Internationalization and localization is needed to test these aspects of software, for
which a pseudo localization method can be used.

Compare to functional testing, which establishes the correct operation of the software in
that it matches the expected behavior defined in the design requirements, non-functional
testing confirms that the software functions properly even when it receives invalid or
unexpected inputs. Non-functional testing, especially for software, is meant to establish
whether the device under test can tolerate invalid or unexpected inputs, thereby
establishing the robustness of input validation routines as well as error-handling routines.
An example of non-functional testing is software fault injection, in the form of fuzzing.

3.2.6 Destructive testing

Destructive testing attempts to cause the software or a sub-system to fail, in order to test
its robustness.

3.3 Testing process

Testing process can take two forms: Usually the testing can be performed by an
independent group of testers after the functionality is developed before it is sent to the
customer. Another practice is to start software testing at the same time the project starts
and it continues until the project finishes. The first practice always results in the testing
phase being used as project buffer to compensate for project delays, thereby
compromising the time devoted to testing.

Testing can be done on the following levels:

• Unit testing tests the minimal software component, or module. Each unit (basic
component) of the software is tested to verify that the detailed design for the unit
has been correctly implemented. In an object-oriented environment, this is usually
at the class level, and the minimal unit tests include the constructors and
destructors.

93

http://en.wikipedia.org/wiki/Fuzz_testing

• Integration testing exposes defects in the interfaces and interaction between
integrated components (modules). Progressively larger groups of tested software
components corresponding to elements of the architectural design are integrated
and tested until the software works as a system.

• System testing tests a completely integrated system to verify that it meets its
requirements.

• System integration testing verifies that a system is integrated to any external or
third party systems defined in the system requirements.

Before shipping the final version of software, alpha and beta testing are often done
additionally:

• Alpha testing is simulated or actual operational testing by potential
users/customers or an independent test team at the developers' site. Alpha testing
is often employed for off-the-shelf software as a form of internal acceptance
testing, before the software goes to beta testing.

• Beta testing comes after alpha testing. Versions of the software, known as beta
versions, are released to a limited audience outside of the programming team. The
software is released to groups of people so that further testing can ensure the
product has few faults or bugs. Sometimes, beta versions are made available to
the open public to increase the feedback field to a maximal number of future
users.

Finally, acceptance testing can be conducted by the end-user, customer, or client to
validate whether or not to accept the product. Acceptance testing may be performed as
part of the hand-off process between any two phases of development.

Benchmarks may be employed during regression testing to ensure that the performance
of the newly modified software will be at least as acceptable as the earlier version or, in
the case of code optimization, that some real improvement has been achieved.

3.4.2 Testing Tools

Program testing and fault detection can be aided significantly by testing tools and
debuggers. Testing/debug tools include features such as:

• Program monitors, permitting full or partial monitoring of program code
including:

o Instruction Set Simulator, permitting complete instruction level
monitoring and trace facilities

o Program animation, permitting step-by-step execution and conditional
breakpoint at source level or in machine code

o Code coverage reports

94

http://en.wikipedia.org/wiki/Optimization_(computer_science)
http://en.wikipedia.org/wiki/Benchmark_(computing)

• Formatted dump or Symbolic debugging, tools allowing inspection of program
variables on error or at chosen points

• Automated functional GUI testing tools are used to repeat system-level tests
through the GUI

• Benchmarks, allowing run-time performance comparisons to be made
• Performance analysis (or profiling tools) that can help to highlight hot spots and

resource usage

Activity l Discuss the various testing methods.

4.0 Conclusion
It has been made abundantly clear that software testing is so important in assessing
whether the software product will be satisfactory to its end users, its target audience, its
purchasers, and other stakeholders.

5.0 Summary
In this unit, you have learnt that:

• Software testing is an empirical examination carried out to provide stakeholders
with information about the quality of the product or service under test.

• Traditionally, software testing methods are divided into black box testing, white
box testing and Grey Box Testing. A test engineer used these approaches to
describe his opinion when designing test cases.

• Black box testing considers the software as a "black box" in the sense that there is
no knowledge of internal implementation.

• In White box testing the tester has the privilege to the internal data structures and
algorithms including the code that implement these.

• Grey box testing requires gaining access to internal data structures and
algorithms for purposes of designing the test cases, but testing at the user, or
black-box level.

• Manipulating input data and formatting output cannot be regarded as grey box,
because the input and output are clearly outside of the "black-box" that we are
calling the system under test.

• Testing process can take two forms: (1) usually the testing can be performed by
an independent group of testers after the functionality is developed before it is
sent to the customer. (2) Another practice is to start software testing at the same
time the project starts and it continues until the project finishes. The first practice
always results in the testing phase being used as project buffer to compensate for
project delays, thereby compromising the time devoted to testing.

• Testing/debug tools include features such as:

o Program monitors, permitting full or partial monitoring of program code
o Formatted dump or Symbolic debugging, tools allowing inspection of

program variables on error or at chosen points
o Automated functional GUI testing tools are used to repeat system-level

tests through the GUI

95

o Benchmarks, allowing run-time performance comparisons to be made
o Performance analysis (or profiling tools) that can help to highlight hot

spots and resource usage

6.0 Tutor-Marked Assignment

• What is software testing?
• Explain software testing process
• Explain testing tools

7.0 Further Reading And Other Resources

 Exploratory Testing, Cem Kaner, Florida Institute of Technology, Quality Assurance
Institute Worldwide Annual Software Testing Conference, Orlando, FL, November 2006

Software errors cost U.S. economy $59.5 billion annually, NIST report

Myers, Glenford J. (1979). The Art of Software Testing. John Wiley and Sons. ISBN
0-471-04328-1.

 Dr. Dobb's journal of software tools for the professional programmer (M&T Pub) 12
(1-6): 116. 1987.

Gelperin, D.; B. Hetzel (1988). "The Growth of Software Testing". CACM 31 (6). ISSN
0001-0782. Laycock, G. T. (1993) (PostScript). The Theory and Practice of
Specification Based Software Testing. Dept of Computer Science, Sheffield University,
UK. http://www.mcs.le.ac.uk/people/gtl1/thesis.ps.gz. Retrieved 2008-02-13.

Unit 3 Software Quality Assurance (SQA)

1.0 Introduction

96

In the last unit, we looked at testing phase of software development. In this unit, we
shall consider the Software Quality Assurance (SQA). There is need to ensure that the
software development and control processes described in the project's Management
Plan are correctly carried out and that the project's procedures and standards are
followed hence the need for Software Quality Assurance cannot be underestimated.

2.0 Objectives
By the end of this unit, you should be able to:

• Define clearly Software Quality Assurance
• Explain the concept of standards and procedures.
• Discuss Software Quality Assurance Activities
• Discuss SQA Relationships to Other Assurance Activities
• Discuss Software Quality Assurance During the Software Acquisition Life Cycle.

3.0 Concepts and Definitions

Software Quality Assurance (SQA) is defined as a planned and systematic approach to
the evaluation of the quality of and adherence to software product standards,
processes, and procedures. SQA includes the process of assuring that standards and
procedures are established and are followed throughout the software acquisition life
cycle. Compliance with agreed-upon standards and procedures is evaluated through
process monitoring, product evaluation, and audits. Software development and control
processes should include quality assurance approval points, where an SQA evaluation
of the product may be done in relation to the applicable standards.

3.1 Standards and Procedures

Establishing standards and procedures for software development is critical, since these
provide the structure from which the software evolves. Standards are the established
yardsticks to which the software products are compared. Procedures are the
established criteria to which the development and control processes are compared.

Standards and procedures establish the prescribed methods for developing software;
the SQA role is to ensure their existence and adequacy. Proper documentation of
standards and procedures is necessary since the SQA activities of process monitoring,
product evaluation and auditing rely upon clear definitions to measure project
compliance.

3.1.1 Types of standards include:

• Documentation Standards specify form and content for planning, control, and
product documentation and provide consistency throughout a project.

97

• Design Standards specify the form and content of the design product. They
provide rules and methods for translating the software requirements into the
software design and for representing it in the design documentation.

• Code Standards specify the language in which the code is to be written and
define any restrictions on use of language features. They define legal
language structures, style conventions, rules for data structures and
interfaces, and internal code documentation.

Procedures are explicit steps to be followed in carrying out a process. All processes
should have documented procedures. Examples of processes for which procedures are
needed are configuration management, non-conformance reporting and corrective
action, testing, and formal inspections.

If developed according to the NASA DID, the Management Plan describes the
software development control processes, such as configuration management, for
which there have to be procedures, and contains a list of the product standards.

Standards are to be documented according to the Standards and Guidelines DID in the
Product Specification. The planning activities required to assure that both products
and processes comply with designated standards and procedures are described in the
QA portion of the Management Plan.

3.2 Software Quality Assurance Activities

Product evaluation and process monitoring are the SQA activities that assure the
software development and control processes described in the project's Management
Plan are correctly carried out and that the project's procedures and

standards are followed. Products are monitored for conformance to standards and
processes are monitored for conformance to procedures. Audits are a key technique
used to perform product evaluation and process monitoring. Review of the
Management Plan should ensure that appropriate SQA approval points are built into
these processes.

3.2.1 Product evaluation is an SQA activity that assures standards are being
followed. Ideally, the first products monitored by SQA should be the project's
standards and procedures. SQA assures that clear and achievable standards exist and
then evaluates compliance of the software product to the established standards.
Product evaluation assures that the software product reflects the requirements of the
applicable standard(s) as identified in the Management Plan.

3.2.2 Process monitoring is an SQA activity that ensures that appropriate steps to
carry out the process are being followed. SQA monitors processes by comparing the
actual steps carried out with those in the documented procedures. The Assurance

98

section of the Management Plan specifies the methods to be used by the SQA process
monitoring activity.

A fundamental SQA technique is the audit, which looks at a process and/or a product
in depth, comparing them to established procedures and standards. Audits are used to

review management, technical, and assurance processes to provide an indication of the
quality and status of the software product.

The purpose of an SQA audit is to assure that proper control procedures are being
followed, that required documentation is maintained, and that the developer's status
reports accurately reflect the status of the activity. The SQA product is an audit report
to management consisting of findings and recommendations to bring the development
into conformance with standards and/or procedures.

3.3. SQA Relationships to Other Assurance Activities

Some of the more important relationships of SQA to other management and assurance
activities are described below.

3.3.1 Configuration Management Monitoring

SQA assures that software Configuration Management (CM) activities are performed
in accordance with the CM plans, standards, and procedures. SQA reviews the CM
plans for compliance with software CM policies and requirements and

provides follow-up for nonconformances. SQA audits the CM functions for
adherence to standards and procedures and prepares reports of its findings.

The CM activities monitored and audited by SQA include baseline control,
configuration identification, configuration control, configuration status accounting,
and configuration authentication. SQA also monitors and audits the software library.
SQA assures that:

• Baselines are established and consistently maintained for use in subsequent
baseline development and control.

• Software configuration identification is consistent and accurate with
respect to the numbering or naming of computer programs, software
modules, software units, and associated software documents.

99

• Configuration control is maintained such that the software configuration
used in critical phases of testing, acceptance, and delivery is compatible
with the associated documentation.

• Configuration status accounting is performed accurately including the
recording and reporting of data reflecting the software's configuration
identification, proposed changes to the configuration identification, and the
implementation status of approved changes.

• Software configuration authentication is established by a series of
configuration reviews and audits that exhibit the performance required by
the software requirements specification and the configuration of the
software is accurately reflected in the software design documents.

• Software development libraries provide for proper handling of software
code, documentation, media, and related data in their various forms and
versions from the time of their initial approval or acceptance until they
have been incorporated into the final media.

• Approved changes to baselined software are made properly and consistently
in all products, and no unauthorized changes are made.

3.3.2 Verification and Validation Monitoring

SQA assures Verification and Validation (V&V) activities by monitoring technical
reviews, inspections, and walkthroughs.The SQA role in formal testing is described in
the next section. The SQA role in reviews,inspections, and walkthroughs is to observe,
participate as needed, and verify that they were properly conducted and documented.
SQA also ensures that any actions required are assigned, documented, scheduled, and
updated.Formal software reviews should be conducted at the end of each phase of the
life cycle to identify problems and determine whether the interim product meets all
applicable requirements. Examples of formal reviews are the Preliminary Design
Review (PDR), Critical Design Review (CDR), and Test Readiness Review (TRR). A
review looks at the overall picture of the product being developed to see if it satisfies
its requirements. Reviews are part of the development process, designed to provide a
ready/not-ready decision to begin the next phase. In formal reviews, actual work done
is compared with established standards. SQA's main objective in reviews is to assure
that the Management and Development Plans have been followed, and that the product
is ready to proceed with the next phase of development. Although the decision to
proceed is a management decision, SQA is responsible for advising management and
participating in the decision. An inspection or walkthrough is a detailed examination
of a product on a step-by-step or line-of-code by line-of-code basis to find errors. For
inspections and walkthroughs, SQA assures, at a minimum that the process is properly
completed and that needed follow-up is done. The inspection process may be used to
measure compliance to standards.

100

3.3.3 Formal Test Monitoring

SQA assures that formal software testing, such as Acceptance testing, is done in
accordance with plans and procedures. SQA reviews testing documentation for
completeness and adherence to standards. The documentation review includes test
plans,test specifications, test procedures, and test reports. SQA monitors testing and
provides follow-up on nonconformances. By test monitoring, SQA assures software
completeness and readiness for delivery. The objectives of SQA in monitoring formal
software testing are to assure that:

• The test procedures are testing the software requirements in accordance
with test plans.

• The test procedures are verifiable.

• The correct or "advertised" version of the software is being tested (by SQA
monitoring of the CM activity).

• The test procedures are followed.

• Nonconformances occurring during testing (that is, any incident not
expected in the test procedures) are noted and recorded.

• Test reports are accurate and complete.

• Regression testing is conducted to assure nonconformances have been
corrected.

• Resolution of all nonconformances takes place prior to delivery.

Software testing verifies that the software meets its requirements. The quality of
testing is assured by verifying that project requirements are satisfied and that the
testing process is in accordance with the test plans and procedures.

3.4 Software Quality Assurance during the Software Acquisition Life Cycle

In addition to the general activities described in subsections C and D, there are phase-
specific SQA activities that should be conducted during the Software Acquisition

Life Cycle. At the conclusion of each phase, SQA concurrence is a key element in the
management decision to initiate the following life cycle phase. Suggested activities
for each phase are described below.

3.4.1 Software Concept and Initiation Phase

101

SQA should be involved in both writing and reviewing the Management Plan in order
to assure that the processes, procedures, and standards identified in the plan are
appropriate, clear, specific, and auditable. During this phase, SQA also provides the
QA section of the Management Plan.

3.4.2 Software Requirements Phase

During the software requirements phase, SQA assures that software requirements are
complete, testable, and properly expressed as functional, performance, and interface
requirements.

3.4.3 Software Architectural (Preliminary) Design Phase

SQA activities during the architectural (preliminary) design phase include:

• Assuring adherence to approved design standards as designated in the
Management Plan.

• Assuring all software requirements are allocated to software components.

• Assuring that a testing verification matrix exists and is kept up to date.

• Assuring the Interface Control Documents are in agreement with the
standard in form and content.

• Reviewing PDR documentation and assuring that all action items are
resolved.

• Assuring the approved design is placed under configuration management.

3.4.4 Software Detailed Design Phase

SQA activities during the detailed design phase include:

• Assuring that approved design standards are followed.

• Assuring that allocated modules are included in the detailed design.

• Assuring that results of design inspections are included in the design.

• Reviewing CDR documentation and assuring that all action items are
resolved.

3.4.5 Software Implementation Phase

102

SQA activities during the implementation phase include the audit of:

• Results of coding and design activities including the

 schedule contained in the Software Development Plan.

• Status of all deliverable items.

• Configuration management activities and the software development library.

• Nonconformance reporting and corrective action system.

3.4.6 Software Integration and Test Phase

SQA activities during the integration and test phase include:

• Assuring readiness for testing of all deliverable items.

• Assuring that all tests are run according to test plans and procedures and
that any non-conformances are reported and resolved.

• Assuring that test reports are complete and correct.

• Certifying that testing is complete and software and documentation are
ready for delivery.

• Participating in the Test Readiness Review and assuring all action items
are completed.

3.4.7 Software Acceptance and Delivery Phase

As a minimum, SQA activities during the software acceptance and delivery phase
include assuring the performance of a final configuration audit to demonstrate that all

deliverable items are ready for delivery.

3.4.8 Software Sustaining Engineering and Operations Phase

During this phase, there will be mini-development cycles to enhance or correct the
software. During these development cycles, SQA conducts the appropriate phase-
specific activities described above.

3.4.9 Techniques and Tools

SQA should evaluate its needs for assurance tools versus those available off-the-shelf
for applicability to the specific project, and must develop the others it requires. Useful
tools might include audit and inspection checklists and automatic code standards
analyzers.

103

Activity J Discuss Software Quality Assurance during the Software Acquisition
Life Cycle

4.0 Conclusion

There is the need to ensure Software quality and adherence to software product
standards, processes, and procedures and this is what Software Quality Assurance is
out to achieve.

5.0 Summary

 In this unit, you have learnt that:

• Software Quality Assurance (SQA) is a planned and systematic approach to the
evaluation of the quality of and adherence to software product standards,
processes, and procedures.

• Standards are the established yardsticks to which the software products are
compared. Procedures are the established criteria to which the development and
control processes are compared.

• Product evaluation and process monitoring are the SQA activities that assure the
software development and control processes described in the project's
Management Plan are correctly carried out and that the project's procedures and

6.0 Tutor-Marked Assignment

What is Software Quality Assurance?
Explain the concept of standards and procedures.
Discuss Software Quality Assurance Activities

7.0 Further Reading And Other Resources

Pyzdek, T, "Quality Engineering Handbook", 2003, ISBN 0-8247-4614-7

Godfrey, A. B., "Juran's Quality Handbook", 1999, ISBN 0-07-034003-X

http://www.nrc.gov/reading-rm/doc-collections/cfr/part050/part050-appb.html

104

Unit 4 Compatibility

1.0 Introduction

In the last unit, we considered Software Quality Assurance (SQA). We saw the essence
of Software Quality Assurance to ensure that the software development and control
processes described in the project's Management Plan are correctly carried out and that
the project's procedures and standards are followed at testing phase of software
development. In this unit, we shall look at Compatibility testing. After studying the unit
you are expected to have achieved the following objectives listed below.

2.0 Objectives
By the end of this unit, you should be able to:

• Define Compatibility Testing
• Explain Usefulness of Compatibility Testing.

3.0 What is Compatibility Testing?
Software testing comes in different types. Compatibility testing is one of the several types
of software testing which can be carried out on a system that is develop based on certain
yardsticks and which has to perform definite functionality in an already existing
setup/environment. Many things are decided n compatibility of a system/application
being developed with, for example, other systems/applications, OS, Network. They
include the use of the system/application in that environment, demand of the
system/application etc. On many occasions, the reason while users prefer not to go for an
application/system cannot be unconnected with it non-compatibility of such
application/system with any other system/application, network, hardware or OS they are
already using. This explains the reason why the efforts of developers may appear to be in
vain. Compatibility testing can also be used to certify compatibility of the
system/application/website built with various other objects such as other web browsers,
hardware platforms, users, operating systems etc. It helps to find out how well a system
performs in a particular environment such as hardware, network; operating system etc.
Compatibility testing can be performed manually or with automation tools.

3.1 Compatibility testing computing environment.

. Computing environment that will require compatibly testing may include some or all of
the below mentioned elements:

• Computing capacity of Hardware Platform (IBM 360, HP 9000, etc.)..
• Bandwidth handling capacity of networking hardware
• Compatibility of peripherals (Printer, DVD drive, etc.)
• Operating systems (MVS, UNIX, Windows, etc.)
• Database (Oracle, Sybase, DB2, etc.)
• Other System Software (Web server, networking/ messaging tool, etc.)
• Browser compatibility (Firefox, Netscape, Internet Explorer, Safari, etc.)

105

http://www.buzzle.com/articles/software-testing/

Browser compatibility testing which can also be referred to as user experience testing
requires that the web applications are tested on different web browsers, to ensure the
following:

• Users have the same visual experience irrespective of the browsers through which
they view the web application.

• In terms of functionality, the application must behave and respond the same way
across different browsers.

Compatibility between versions: This has to do with testing of the performance of
system/application in connection with its own predecessor/successor versions. This is
sometimes referred to as backward and forward compatibility. For example, Windows 98
was developed with backward compatibility for Windows 95.

Software Compatibility testing: This is the evaluation of the performance of
system/application in connection with other software. For example: Software
compatibility with operating tools for network, web servers, messaging tools etc.

Operating System compatibility testing: This is the evaluation of the performance of
system/application in connection with the underlying operating system on which it will
be used.

Databases compatibility testing: Many applications/systems operate on databases.
Database compatibility testing is used to evaluate an application/system’s performance in
connection to the database it will interact with.

3.3 Usefulness of Compatibility Testing

Compatibility testing can help developers understand the yardsticks that their
system/application needs to reach and fulfil, so as to get acceptance by intended users
who are already using some OS, network, software and hardware etc. It also helps the
users to find out which system will better fit in the existing setup they are using.

3.4 Certification testing falls within the range of Compatibility testing. Product
Vendors do run the complete suite of testing on the newer computing environment to get
their application certified for a specific Operating Systems or Databases.

Activity K What is Browser compatibility testing

4.0 Conclusion

Compatibility testing is highly beneficial to software development. It can help developers
understand the criteria that their system/application needs to attain and fulfil, in order to
get accepted by intended users who are already using some OS, network, software and
hardware etc. It also helps the users to find out which system will better fit in the existing

106

setup they are using.

5.0 Summary

In this unit, we have learnt that:

• Compatibility testing is one of the several types of software testing performed on
a system that is built based on certain criteria and which has to perform specific
functionality in an already existing setup/environment.

• Compatibility testing can be automated using automation tools or can be
performed manually and is a part of non-functional software testing.

• Computing environment may contain some or all of the below mentioned
elements:

o Computing capacity of Hardware Platform (IBM 360, HP 9000, etc.)..
o Bandwidth handling capacity of networking hardware
o Compatibility of peripherals (Printer, DVD drive, etc.)
o Operating systems (MVS, UNIX, Windows, etc.)
o Database (Oracle, Sybase, DB2, etc.)
o Other System Software (Web server, networking/ messaging tool, etc.)
o Browser compatibility (Firefox, Netscape, Internet Explorer, Safari, etc.)

• The most important use of the compatibility testing is to ensure its performance
in a computing environment in which it is supposed to operate. This helps in
figuring out necessary changes/modifications/additions required to make the
system/application compatible with the computing environment.

6.0 Tutor-Marked Assignment
• Define Compatibility Testing
• Explain Usefulness of Compatibility Testing.
• What are the elements in computing enviroment?

7.0 Further Reading And Other Resources

 E. Anderson , Z. Bai , J. Dongarra , A. Greenbaum , A. McKenney , J. Du Croz ,
S. Hammerling , J. Demmel , C. Bischof , D. Sorensen, LAPACK: a portable
linear algebra library for high-performance computers, Proceedings of the 1990
conference on Supercomputing, p.2-11, October 1990, New York, New York,
United States

 S. Balay, K. Buschelman, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley,
L. C. McInnes, B. F. Smith, and H. Zhang. PETSc users manual. Technical
Report ANL-95/11 -- Revision 2.3.2, Argonne National Laboratory, Sep. 2006.

107

http://www.buzzle.com/articles/software-testing/

Myra B. Cohen , Matthew B. Dwyer , Jiangfan Shi, Coverage and adequacy in
software product line testing, Proceedings of the ISSTA 2006 workshop on Role
of software architecture for testing and analysis, p.53-63, July 17-20, 2006,
Portland, Maine [doi>10.1145/1147249.1147257]

Uni 5 Software verification and validation

108

1.0 Introduction

In the last unit, we considered Compatibility testing .You will recall that, Compatibility
testing is highly beneficial to software development. It can help developers understand
the criteria that their system/application needs to attain and fulfil, in order to get accepted
by intended users who are already using some OS, network, software and hardware etc. It
also helps the users to find out which system will better fit in the existing setup they are
using. In this unit we are going to look at software verification and validation.
After studying the unit you are expected to have achieved the following objectives listed
below.

2.0 Objectives
By the end of this unit, you should be able to:

• Define software verification and validation
• Outline the method of verification and validation
• Discuss Software Verification & Validation Model
• Discuss terms used in validation process

3.0 What is Verification and Validation (V&V)

Verification and Validation (V&V) is the process of checking that a software system
meets specifications and that it fulfils its expected purpose. It is normally part of the
software testing process of a project.

According to the Capability Maturity Model (CMMI-SW v1.1),

• Verification is the process of evaluating software to determine whether the
products of a given development phase satisfy the conditions imposed at the start
of that phase. [IEEE-STD-610].

• Validation is the process of evaluating software during or at the end of the
development process to determine whether it satisfies specified requirements.
[IEEE-STD-610]

In other words, validation ensures that the product actually meets the user's needs, and
that the specifications were correct in the first place, while verification is ensuring that
the product has been built according to the requirements and design specifications.
Validation ensures that ‘you built the right thing’. Verification ensures that ‘you built it
right’. Validation confirms that the product, as provided, will fulfill its intended use.

Looking at it from arena of modeling and simulation, the definitions of validation,
verification and accreditation are similar:

• Validation is the process of determining the degree to which a model, simulation,
or federation of models and simulations, and their associated data are accurate
representations of the real world from the perspective of the intended use(s).

109

Accreditation is the formal certification that a model or simulation is acceptable to
be used for a specific purpose.

• Verification is the process of determining that a computer model, simulation, or
federation of models and simulations implementations and their associated data
accurately represents the developer's conceptual description and specifications.

3.1 Classification of methods

In mission-critical systems where flawless performance is absolutely necessary, formal
methods can be used to ensure the correct operation of a system. However, often for non-
mission-critical systems, formal methods prove to be very costly and an alternative
method of V&V must be sought out. In this case, syntactic methods are often used.

3.2 Test cases

A test case is a tool used in the Verification and Validation process.

The Quality Assurance (QA) team prepares test cases for verification and these help to
determine if the process that was followed to develop the final product is right.

The Quality Certificate (QC) team uses a test case for validation and this will ascertain if
the product is built according to the requirements of the user. Other methods, such as
reviews, provide for validation in Software Development Life Cycle provided it is used
early for validation.

3.3 Independent Verification and Validation

Verification and validation often is carried out by a separate group from the development
team; in this case, the process is called "Independent Verification and Validation", or
IV&V.

3.4 Regulatory environment

The task is must to meet the compliance requirements of law regulated industries, which
is often guided by government agencies or industrial administrative authorities. FDA
even demands to validate software versions and patches.

3.5 Software Verification & Validation Model

 ‘Verification & Validation Model’ is used in improvement of software project
development life cycle.

110

http://en.wikipedia.org/wiki/IV%26V

Fig 8 Verification and Validation Model

Source: http://www.buzzle.com/editorials/4-5-2005-68117.asp

A perfect software product is developed when every step is taken in right direction. That
is to say that “A right product is developed in a right manner”. Software Verification
Model helps to achieve this and also help to improve the quality of the software product.

The model will not only will not only makes sure that certain rules are followed at the
time of development of a software but will also ensure that the product that is developed
fulfils the required specifications. The result is that risk associated with any software
project up to certain level is reduced by helping in detection and correction of errors and
mistakes, which are unknowingly done during the development process.

3.6 Few terms involved in Verification:

3.61. Inspection:
Inspection involves a team of few people usually about 3-6 people. It usually led by a
leader, which properly reviews the documents and work product during various phases of
the product development life cycle. The product, as well as related documents is
presented to the team, the members of which carry different interpretations of the
presentation. The bugs that are discovered during the inspection are conveyed to the next
level in order to take care of them.

3.6.2 Walkthroughs:

111

In walkthrough inspection is carried out without formal preparation (of any presentation
or documentations). During the walkthrough, the presenter/author introduces the material
to all the participants in order to make them familiar with it. Though walkthroughs can
help in finding bugs, they are used for knowledge sharing or communication purpose.

3.6.3 Buddy Checks:
Buddy Checks does not involve a team rather, one person goes through the documents
prepared by another person in order. to find out bugs which the author couldn’t find
previously.

The activities involved in Verification process are: Requirement Specification
verification, Functional design verification, internal/system design verification and code
verification Each activity ascertains that the product is developed correctly and every
requirement, every specification, design code etc. is verified.

3.7 Terms used in Validation process:

3.7.1 Code Validation/Testing:
Unit Code Validation or Unit Testing is a type of testing, which the developers conduct in
order to find out any bug in the code unit/module developed by them. Code testing other
than Unit Testing can be done by testers or developers.

3.7.2 Integration Validation/Testing:
Integration testing is conducted in order to find out if different (two or more)
units/modules match properly. This test helps in finding out if there is any defect in the
interface between different modules.

3.7.3 Functional Validation/Testing:
This type of testing is meant to find out if the system meets the functional requirements.
In this type of testing, the system is validated for its functional behavior. Functional
testing does not deal with internal coding of the project, in stead, it checks if the system
behaves as per the expectations.

3.7.4 User Acceptance Testing or System Validation:
In this type of testing, the developed product is handed over to the user/paid testers in
order to test it in real time state. The product is validated to find out if it works according
to the system specifications and satisfies all the user requirements. As the user/paid
testers use the software, it may happen that bugs that are yet undiscovered, come up,
which are communicated to the developers to be fixed. This helps in improvement of the
final product.

Activity L Discuss Software Verification & Validation Model

112

4.0 Conclusion

The importance of Verification and Validation cannot be overemphasisd. Verification
and Validation (V&V) checks that a software system meets specifications and that it
fulfils its intended purpose.

 5.0 Summary

In this unit, we have learnt that:

• Verification and Validation (V&V) is the process of checking that a software
system meets specifications and that it fulfils its intended purpose.

• In mission-critical systems where flawless performance is absolutely necessary,
formal methods can be used to ensure the correct operation of a system. However,
often for non-mission-critical systems, formal methods prove to be very costly
and an alternative method of V&V must be sought out. In this case, syntactic
methods are often used.

• Verification and validation often is carried out by a separate group from the
development team; in this case, the process is called "Independent Verification
and Validation

 6.0 Tutor-Marked Assignment

• Define software verification and validation
• Outline the method of verification and validation
• Discuss terms used in validation process

7.0 Further Reading And Other Resources

 Department of Defense Documentation of Verification, Validation & Accreditation
(VV&A) for Models and Simulations, Missile Defense Agency, 2008

General Principles of Software validation; Final Guidance for Industry and FDA
Staff" (PDF). Food and Drug Administration. 11 January 2002.
http://www.fda.gov/downloads/MedicalDevices/DeviceRegulationandGuidance/Guidanc
eDocuments/ucm085371.pdf. Retrieved 12 July 2009.

Guidance for Industry: Part 11, Electronic Records; Electronic Signatures — Scope and
Application" (PDF). Food and Drug Administration. August 2003.
http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guid
ances/UCM072322.pdf. Retrieved 12 July 2009.

113

	MODULE 1:		Basic Concept of Software Engineering
	Unit 1:			Computer software
	3.1	Types of software 					 	 Software can be categorised into three major types namely system software, programming software and application software..
	3.1.2	System software 							 System software helps to run the computer hardware and the entire computer system. It includes the following:
	3.1.4Application software 						 Application software is a class of software which the user of computer needs to accomplish one or more definite tasks. The common applications include the following:
	Activity A	Differentiate between hardware and software
	3.2	Software Engineering Goals and Principles
	3.2.1	Goals
	Maintainability: Changes to software without increasing the complexity of the original system design should be possible.
	Reliability: The software should be able to prevent failure in design and construction as well as recover from failure in operation. In other words, the software should perform its intended function with the required precision at all times.
	Efficiency: The software system should use the resources that are available in an optimal manner.
	Understand ability: The software should accurately model the view the reader has of the real world. Since code in a large, long-lived software system is usually read more times than it is written, it should be easy to read at the expense of being easy to write, and not the other way around.

	3.2.2	 Principles
	Abstraction: The purpose of abstraction is to bring out essential properties while omitting inessential detail. The software should be organized as a ladder of abstraction in which each level of abstraction is built from lower levels. The code is sufficiently conceptual so the user need not have a great deal of technical background in the subject. The reader should be able to easily follow the logical path of each of the various modules. The decomposition of the code should be clear.
	Information Hiding: The code should include no needless detail. Elements that do not affect other segment of the system are inaccessible to the user, so that only the intended operations can be performed. There are no "undocumented features".
	Modularity: The code is purposefully structured. Components of a given module are logically or functionally dependent.
	 Localization: The breakdown and decomposition of the code is rational. Logically related computational units are collected together in modules.
	Uniformity: The notation and use of comments, specific keywords and formatting is consistent and free from unnecessary differences in other parts of the code.
	Completeness: Nothing is deliberately missing from any module. All important or relevant components are present both in the modules and in the overall system as appropriate.
	Confirm ability: The modules of the program can be tested individually with adequate rigor. This gives rise to a more readily alterable system, and enables the reusability of tested components.

	Activity B	1	What is software engineering
	2	Explain briefly the Sub-disciplines of Software engineering

	3.2	The Pioneering Era
	3.3	1945 to 1965: The origins
	3.4	1965 to 1985: The software crisis
	3.5	1985 to 1989: No silver bullet
	3.6	1990 to 1999: Importance of the Internet
	3.7	2000 to Present: Lightweight Methodologies
	3.8	What is it today

	3.8.1Important figures in the history of software engineering
	Listed below are some renowned software engineers:
	This unit has looked at the historical development of software engineering. It has considered among other things, the pioneering era, 1945-1965: the origins, 1965-1985: thee software crisis, 1985 to 1989: No silver bullet, 1990 to 1999: Prominence of the Internet, 2000 to Present, Lightweight Methodologies,, Software engineering today and the prominent figures in the history of software engineering
	In unit 3 the historical development of software engineering was discussed. If you will recall, it traced among other things, the pioneering era, 1945-1965: the origins, 1965-1985: thee software crisis, 1985 to 1989: No silver bullet, 1990 to 1999: Prominence of the Internet, 2000 to Present, Lightweight Methodologies, Software engineering today and the prominent figures in the history of software engineering. The material in this unit will explain who a software engineer is, his tasks, technical and functional knowledge as well as occupational characteristics. It is expected of you that at the end of the unit, you will have achieved the objectives listed below.
	Unit 2:	Software Development Life Cycle Model
	1.0	Introduction
	The last unit exposed you to the overview of software development. In this unit you will learn about the various lifecycle models (the phases of the software life cycle) in general. You will also specifically learn about the requirement and the design phases
	2.0	Objectives
	3.1	The General Model
	3.8	Definition of software design
	Unit 3		Modularity	
	1.0	Introduction
	In unit 2 we discussed about software lifecycle models in general and also in detailed the requirement and the design phases of software development. In this unit we will look at Modudularity in programming.
	2.0	Objectives
	What is Modularity?
	3.22 Module Interconnection Languages
	3.24 Bottom-up approach

	In the last unit, you have learnt about Modudularity in programming. Its benefits, design approaches and criteria, attributes of a good Module and the steps to creating effective module. You equally learnt about Top-Down and Bottom-up approaches in programming. This unit ushers you into Pseudo code a way to create a logical structure that will describing the actions, which will be executed by the application. After studying this unit you are expected to have achieved the following objectives listed below.
	Some Keywords That Should be Used

	In the last unit, you have learnt about pseudo code. In this unit you will be exposed to Programming Environment, CASE Tools & HIPO Diagrams. After studying this unit you are expected to have achieved the following objectives listed below.
	3.4 Integrated development environments
	3.7 History of CASE
	3.10 	Application areas of CASE Tools
	All aspects of the software development life cycle can be supported by software tools, and so the use of tools from across the spectrum can, arguably, be described as CASE; from project management software through tools for business and functional analysis, system design, code storage, compilers, translation tools, test software, and so on.
	The HIPO (Hierarchy plus Input-Process-Output) technique is a tool for planning and/or documenting a computer program. A HIPO model consists of a hierarchy chart that graphically represents the program’s control structure and a set of IPO (Input-Process-Output) charts that describe the inputs to, the outputs from, and the functions (or processes) performed by each module on the hierarchy chart.
	3.13 Strengths, weaknesses, and limitations
	3.14	 Components of HIPO
	3.14.1 The hierarchy chart
	It summarises the primary tasks to be performed by an interactive inventory program. Figure 7 shows one possible hierarchy chart (or visual table of contents) for that program. Each box represents one module that can call its subordinates and return control to its higher-level parent.
	3.14.2 The IPO charts
	3.14.2.1 Overview diagrams
	3.14.2.2 Detail diagrams
	3.14.2.3 Simplified IPO charts

	Fig 7.3 Simplified HIPO diaram
	3.15	Software

	1.0	Introduction
	This unit examines the implementation phase of software development. After studying the unit you are expected to have achieved the following objectives listed below.

	3.1 The Implementation Phase
	3.3	Application of Six Sigma to Software Implementation Projects
	Defining the Implementation
	2. Measurement of the Implementation
	3. Implementation Analysis
	4. Implementation Improvement
	5. Control of the Implementation
	3.4	Major Tasks in Implementation
	3.5	Major Requirement in Implementation
	3.5.1	Security
	3.5.1.1	System Security Features
	3.5.1.2	Security during Implementation

	3.6	Implementation Support
	3.6.1	Hardware, Software, Facilities, and Materials
	3.6.1.1	Hardware
	3.6.1.2	Software
	3.6.1.3	Facilities
	3.6.1.4	Material

	3.7	Personnel
	3.7.1	Personnel Requirements and Staffing
	3.7.2	Training of Implementation Staff

	3.8	Performance Monitoring
	3.9	Configuration Management Interface

	3.10		Implementation Requirements by Site
	3.10.1	Site Name or identification for Site X
	3.10.2	Site Requirements
	3.10.3	Site implementation Details
	3.11	Back-Off Plan
	3.12	Post-Implementation Verification

	1.0	Introduction
	In the last unit, we looked at implementation phase of software development. In this unit, we shall consider the testing phase. It is important for stakeholders to have information about the quality of product (software), hence the importance of testing cannot be overemphasised.
	3.1 Brief History of software testing
	3.2Testing methods
	3.2.1.1	Black box testing
	3.2.1.2	 White box testing
	3.2.1.3	 Grey Box Testing
	3.2.2	Integration Testing
	3.2.3	 Regression Testing
	3.2.4	 Acceptance testing
	3.2.5	 Non Functional Software Testing
	3.2.6	 Destructive testing

	3.3	 Testing process
	3.4.2	Testing Tools

	 Exploratory Testing, Cem Kaner, Florida Institute of Technology, Quality Assurance Institute Worldwide Annual Software Testing Conference, Orlando, FL, November 2006
	Unit 3		Software Quality Assurance (SQA)

	1.0	Introduction
	6.0	Tutor-Marked Assignment
	Unit 4		Compatibility

	1.0	Introduction
	In the last unit, we considered Software Quality Assurance (SQA). We saw the essence of Software Quality Assurance to ensure that the software development and control processes described in the project's Management Plan are correctly carried out and that the project's procedures and standards are followed at testing phase of software development. In this unit, we shall look at Compatibility testing. After studying the unit you are expected to have achieved the following objectives listed below.
	Activity K	What is Browser compatibility testing
	4.0	Conclusion
	Compatibility testing is highly beneficial to software development. It can help developers understand the criteria that their system/application needs to attain and fulfil, in order to get accepted by intended users who are already using some OS, network, software and hardware etc. It also helps the users to find out which system will better fit in the existing setup they are using.

	5.0	Summary
	In this unit, we have learnt that:
	Compatibility testing is one of the several types of software testing performed on a system that is built based on certain criteria and which has to perform specific functionality in an already existing setup/environment.
	Compatibility testing can be automated using automation tools or can be performed manually and is a part of non-functional software testing.

	1.0	Introduction
	In the last unit, we considered Compatibility testing .You will recall that, Compatibility testing is highly beneficial to software development. It can help developers understand the criteria that their system/application needs to attain and fulfil, in order to get accepted by intended users who are already using some OS, network, software and hardware etc. It also helps the users to find out which system will better fit in the existing setup they are using. In this unit we are going to look at software verification and validation.
After studying the unit you are expected to have achieved the following objectives listed below.

	3.1	 Classification of methods
	3.2	 Test cases
	A test case is a tool used in the Verification and Validation process.

	3.3	 Independent Verification and Validation
	3.4	 Regulatory environment

	3.5Software Verification & Validation Model

