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Particle Interactions and Central Forces

8	� PARTICLE INTERACTIONS AND 
CENTRAL FORCES

8.1	 MULTI-PARTICLE CONSERVATION LAWS

Multiparticle conservation theorems now. A generalization of results for momentum and energy 
reached in Ch.2 for a single particle.

Latin indices (a,b,c, etc.): vector indices
Greek indices (a,b,g, …): particle number

Reminder of conserved quantities:

Invariance of L    conserved quantity � r α →
� r α + δ

� r     
    

� 
P = mα

� ̇ r α
α
∑  

    
� r α →

� r α + δ
� 
θ ×

� r α( )    
    

� 
L =

� r α ×
� p α

α
∑  

  t → t + δt    H ( =  T + U) 

Consider an arbitrary system of particles:

   

   

        

Center of mass located by 

� (8.1)

We have
               

mα

� r α
'

α
∑ = mα

� r α −
� 
R ( ) = M

� 
R − M

� 
R = 0

α
∑ .� (8.2)
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Particle a:

  :

  :

Total force on a:

� (8.3)

Call 
  
f � � f ��

�
� . From Newton’s third law
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Particle a:

  :

  :

Total force on a:

 (8.3)

Call 
  
f � � f ��

�
�  . From Newton’s third law

    
 

f ab = -
 

f ba. (weak form) (8.4)

Also assume

f �� = 0.  (8.5)

(Newton’s mechanics not equipped to handle self-interactions which, however, really do exist!) 
Newton’s second law:

��pα =
�
Fα
(e) + fα , (8.6)

or

    

d2

dt2
ma

 

r a( ) =
 

F a
(e) +

 

f ab
b
∑ . (8.7) 

Sum on a:

    

d2

dt2
m a

 

r a
a
∑ 

 
  

 
=

 

F a
(e) +

a
∑

 

f ab
a,b
∑

,

� 
f αβ

α,β
∑ =

� 
f 12 +

� 
f 21

0
� � � � � + … = 0, 

⇒
d2

dt2
M
� 
R ( ) =

� 
F α
(e)

α
∑ ≡

� 
F (e).  (8.8)

. (weak form)� (8.4)

Also assume

f �� = 0. � (8.5)

(Newton’s mechanics not equipped to handle self-interactions which, however, really do exist!) 
Newton’s second law:

��pα =
�
Fα
(e) + fα ,� (8.6)

or

MODERN INTRODUCTORY MECHANICS PART II

9

Particle Interactions and Central Forces

Particle a:

  :

  :

Total force on a:

 (8.3)

Call 
  
f � � f ��

�
�  . From Newton’s third law

    
 

f ab = -
 

f ba. (weak form) (8.4)

Also assume

f �� = 0.  (8.5)

(Newton’s mechanics not equipped to handle self-interactions which, however, really do exist!) 
Newton’s second law:

��pα =
�
Fα
(e) + fα , (8.6)

or

    

d2

dt2
ma

 

r a( ) =
 

F a
(e) +

 

f ab
b
∑ . (8.7) 

Sum on a:

    

d2

dt2
m a

 

r a
a
∑ 

 
  

 
=

 

F a
(e) +

a
∑

 

f ab
a,b
∑

,

� 
f αβ

α,β
∑ =

� 
f 12 +

� 
f 21

0
� � � � � + … = 0, 

⇒
d2

dt2
M
� 
R ( ) =

� 
F α
(e)

α
∑ ≡

� 
F (e).  (8.8)

.� (8.7) 

Sum on a:
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Particle a:

  :

  :

Total force on a:

 (8.3)

Call 
  
f � � f ��

�
�  . From Newton’s third law

    
 

f ab = -
 

f ba. (weak form) (8.4)

Also assume

f �� = 0.  (8.5)

(Newton’s mechanics not equipped to handle self-interactions which, however, really do exist!) 
Newton’s second law:

��pα =
�
Fα
(e) + fα , (8.6)

or

    

d2

dt2
ma

 

r a( ) =
 

F a
(e) +

 

f ab
b
∑ . (8.7) 

Sum on a:

    

d2

dt2
m a

 

r a
a
∑ 

 
  

 
=

 

F a
(e) +

a
∑

 

f ab
a,b
∑

,

� 
f αβ

α,β
∑ =

� 
f 12 +

� 
f 21

0
� � � � � + … = 0, 

⇒
d2

dt2
M
� 
R ( ) =

� 
F α
(e)

α
∑ ≡

� 
F (e).  (8.8)

,

� 
f αβ

α,β
∑ =

� 
f 12 +

� 
f 21

0
� � � � � + … = 0, 

⇒
d2

dt2
M
� 
R ( ) =

� 
F α
(e)

α
∑ ≡

� 
F (e). � (8.8)
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Center of mass moves as if the total external force were acting on the entire mass of system concentrated 
at the center of mass. (Internal forces have no effect on CM motion.) Of course, if  = 0, then

d2

dt2
M
�
R( ) ≡

��P = 0,� (8.9)

and total linear momentum is conserved.

Likewise, the angular momentum of the  particle about the origin is

� 
L α =

� r α ×
� p α .� (8.10)

Summing this:

� 
L =

� 
L α

α
∑ =

� r α ×
� p α

α
∑ =

� r α × mα

� ̇ r α( )
α
∑

	 =
�rα
' +

�
R( ) × mα

��rα
' +

��R( )
α

∑ . � (8.11)

� 
L =

� 
R ×

� 
P +

� r α
' ×

� p α
'

α
∑ . � p α

' ≡ m α

� ̇ r α
'( ) � (8.12)

Total angular momentum about a coordinate axis is the angular momentum of the system as if it were 
concentrated at the center of mass, plus the angular momentum of motion about the center of mass.
Now the rate of change of 

� 
L α  is

� ̇ L α =
� r α ×

� ̇ p α =
� r α ×

� 
F α
(e) +

� 
f αβ

β
∑

 

 
  

 
 

⇒
� ̇ L =

� ̇ L α
α
∑ =

� r α
α
∑ ×

� 
F α
(e) +

� r α ×
� 
f αβ

α,β
∑ .� (8.13)

	
1   2  (assume     

� 
f α α = 0)

1   =  

    

� r α ×
� 
F α
(e)

� N α(e)
� � � � � 

α
∑ ≡

� 
N (e),� (8.14)

2   =  − � r α ×
� 
f βα =

α,β
∑ −

� r β
α,β
∑ ×

� 
f αβ .� (8.15)

Therefore, we may write

2   =  1
2

�rα −
�rβ( ) ×

�
fαβ

α,β
∑ = 0. (see figure below)� (8.16)
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α�

�rα

�
fαβ

�rα −
�rβ

β��
fβα

�rβ

Origin

I am showing an attractive force case. I am also assuming the “strong form” of Newton’s second law, 
which says that  and  lie along the line connecting the two particles. (Violated, for example, 
in electromagnetism.) Under these circumstances then

    
� ̇ L =

� 
N (e).� (8.17)

So     
� 
L  = const. in time if     

� 
N (e) = 0. 

For the kinetic energy, we have

    
T =

1
2
mα

� ̇ r α2
α
∑ =

1
2

mα

� ˙ R +
� ̇ r α
'( )2

α
∑

	 =
1
2
M
� ̇ R 2 +

1
2

mα

� ̇ r α
'2

α
∑ .� (8.18)

Kinetic energy, like angular momentum, consists of two parts: the kinetic energy of the center of 
mass, plus the kinetic energy of motion about the center of mass.

Now, what about work being done on the system? Define

  
W12 ≡

� 
F α ⋅ d� r α

1

2

∫
α
∑ = mα

� ˙ ̇ r α ⋅
� ̇ r α dt

1

2

∫
α
∑

=
1
2

mα
d
dt
� ˙ r α
2

1

2
∫

α

∑ dt =
1
2
mα
� v 2α2 −

� v 1α2( )
α

∑ , 

� (8.19)
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Assume conservative external and internal forces:

    
� 
F α
(e) = −

� 
∇ α Uα (

� x α),� (8.20)

� 
f αβ = −

� 
∇ α U αβ

� r α −
� r β( ) � (8.21)

Then, alternatively

      1    2  

W12 =
�
Fα ⋅ d

�rα
1

2

∫
α

∑ =
�
Fα
(e) ⋅ d�rα

1

2

∫
α

∑ +
�
fαβ ⋅ d

�rα
1

2

∫
α,β
∑ .�  (8.22)

1        =  −
�
∇αUα( ) ⋅ d�rα

1

2

∫
α

∑ = −
∂Uα

∂xα,i

drα,i
1

2

∫
α,i
∑

	

1        =  −
�
∇αUα( ) ⋅ d�rα

1

2

∫
α

∑ = −
∂Uα

∂xα,i

drα,i
1

2

∫
α,i
∑

	 � (8.23)

2 	 is more complicated. On one hand

 � (8.24)

On the other hand the chain rule gives

	

 

 � (8.25)

 

 � (8.26)
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Therefore

� (8.27)

Define the total potential energy,

� (8.28)

then

� (8.29)

Combining this with W12 = T2 – T1,

 � (8.30)
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Total energy, kinetic + potential, is conserved. The n-particle Lagrange function in CM coordinates 
can then be written:

� (8.31)

8.2	 TWO-BODY RELATIVE COORDINATES

Let us now specialize to the 2-body problem with no external forces:

 

� (8.32)
drop the bar, subscripts

Of course  are not independent, but satisfy

� (8.33)

(There are always 3 + 3 independent coordinates for a 2-body system) Let us introduce

� (8.34)

Picture:

Then

�r =
�r1
' 1 +

m1

m2









 ⇒

��r1
' =

m2

m1 + m2

��r , � (8.35)
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or

� (8.36)

Therefore

1
2
m1
��r1
'2 +

1
2
m2
��r2
'2 =

1
2

m1
m2

m1 + m2











2

+ m2
m1

m1 + m2











2











��r2. � (8.37)

so

1
2
m1
��r1
'2 +

1
2
m2
��r2
'2 =

1
2

µ
��r2,� (8.38)

where

µ ≡
m1m2

m1 + m2
,� (“reduced mass”)

� (8.39)

Now find the Hamiltonian for the above L. Adopt Ri, ri as generalized coordinates.

� (8.40)

� (8.41)

� (8.42)

� (8.43)

H is a constant of the motion since it has no t dependence.
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The total angular momentum is

� (8.44)

Can rewrite :

    

! p 1
' = m1

! ̇ r 1
' = m1

m2

m1 + m2

⎛ 

⎝ 
⎜ ⎞ 

⎠ 
⎟ ! ̇ r = µ

! ̇ r � (8.45)

� (8.46)
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Can rewrite :

    

! p 1
' = m1

! ̇ r 1
' = m1

m2

m1 + m2

⎛ 

⎝ 
⎜ ⎞ 

⎠ 
⎟ ! ̇ r = µ

! ̇ r  (8.45)

 (8.46)

 (8.47)

 (8.48)

 (8.49)

Already know  This has 2 important 
consequences: 

1. Since  is time independent and because  (^ to both  and ), 
it is clear that the motion is in a plane ^ to .

� (8.47)
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� (8.48)

� (8.49)

Already know  This has 2 important 
consequences: 

1.	 Since  is time independent and because  (^ to both  and ), 
it is clear that the motion is in a plane ^ to .

2.	

	

Radius vector sweeps out equal areas in equal times. Called Kepler’s Second Law. This is also true 
in the CM frame, but the rate is different.

8.3	 RUNGE-LENZ TREATMENT OF COULOMB FORCE

Let’s examine the vectors which may be formed from ,  and . The scalar products

� (8.50)

� (8.51)

vanish as pointed out before. The vector products are

� (8.52)

� (8.53)

They are simply related:

� (8.54)
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Next, consider

� (8.55)

Hamilton’s equations for ri, pi are:

 (identity)� (8.56)

� (8.57)

But

� (8.58)

so

or

� (8.59)

Now

� (8.60)
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In addition,

� (8.61)

(  is unit vector along ). This means

� (8.62)

and also that

� (8.63)

All this has been done without reference to the form of U(r). Now assume
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Then

� (8.64)

A constant of the motion! This is the Runge-Lenz vector, 


A.

Notice that  only for . Can now show that

 .� (8.65)

The vector 


A is in the plane of motion along with  and . Can get the equation of motion 
as follows.

� (8.66)

Let f = angle between -

A   and 

r . Then ( )

� (8.67)

Define

 “eccentricity”� (8.69)

↑
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Gives equation of conic sections. (Assume )

Most important case: ellipse

Notice when (angle between 

 
  
rmax =

α
1 − ε

,  

 
  
rmin =

α
1 + ε

.   

� (8.70)
 
  
rmax =

α
1 − ε

,  

 
  
rmin =

α
1 + ε

.   � (8.71)

Thus |A
→

|  determines eccentricity, A
∧

  (direction) determines direction of  rmax .

“Major axis”, a:

a =
1
2
(rmax + rmin) =

α
2
( 1
1 − ε

+
1

1 + ε
), 
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⇒ a =
α
2
(1 − ε + 1 + ε

1 − ε2
) =

α
1 − ε2

. � (8.72)

Let’s write the equation of motion in more recognizeable terms.

y

x

φ
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Equation of an ellipse (if ; just define  Can read off b, “minor axis”:

� (8.73)

Have confirmed that equation of motion is an ellipse when     
r 
r  is plotted (Kepler’s 1st law). What 

it represents:

=⇒

���

���

�r
�r ���

���

It is an ellipse when viewed from a coordinate system centered on m1 or m2 because

�
′r1 =

µ
m1

�r,  � (8.74)

′
�r2 = −

µ
m2

�r, � (8.75)

when viewed from the CM, motions still form ellipses.

�r2'

�r1'

CM
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 are measured from the CM, so the CM point is the common focus point for both ellipses. 
The eccentricity, e, may be determined from the energy and the angular momentum as follows:

�
A2 =

�
L + µkêr( )

2
=
�
L 2 + µ2k2 + 2µk

�
L ⋅ êr ,

�
L 2=

�r ×
�p( ) × �p 

2
=
�
l ×

�p( ) ⋅
�
l ×

�p( ) =
�
l ⋅

�p ×
�
l ×

�p( )( )
�
l p2− �p

�
l ⋅ �p( )

� ��� ���
, 

∴
�
L 2= l 2 p2 . 

From before 
�
L ⋅
�r = −l 2( ) : 

�
L ⋅ êr = −

1
r
l 2 ,� (8.76)

�
A2 = l 2p2 + µ2k2 −

2µk
r

l 2 = 2µl 2 p2

2µ
−
k
r











≡E� �� ��

+ µ2k2,  
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(E is the total internal energy of the system)

⇒
�
A2 = 2µl 2E + µ2k2, � (8.77)

⇒ ε =
A

µk
= 1 +

2l 2E
µk2











1
2

. � (8.78)

Notice that E can be negative, zero, or positive. Again, for  ≠ 0:

e > 1		  hyperbola		  E > 0

e = 1		  parabola		  E = 0

0 < e < 1	 ellipse			   E < 0

e = 0		  circle			 

(v = total velocity viewed from m1 or m2.)

8.4	 LAGRANGIAN EQUATIONS OF MOTION

Let’s do it again from a Lagrangian point of view to see the more standard treatment.

� (8.79)

Dependent variables: :

� (8.80)

� (8.81)

� (8.82)
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	 Motion is in a plane, as before. Pick  along z:

� (8.83)

We have (Ch.2):

� (8.84)

� (8.85)

� (8.86)

Substitute into (8.81) above:

� (8.87)

� (8.88)

These are the  of motion. Then,

� (8.89)

This is Kepler’s second law, derived again. Also

� (8.90)
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Solving this nonlinear differential  gives r(t). Can derive a different for r(f) as follows.

� (8.91)

Likewise

� (8.92)
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Substitute into (8.90) above:

or

� (8.93)

Given U(r), can find r(f). Conversely, can find U(r) given some r(f).

Example 1:

.� (8.94)

A simple linear nonhomogeneous diff. . Same as for Hooke’s law oscillator with a constant force.

Homogeneous solution:	 C cos(f – f1)

Particular solution: 		  	 (like const. displacemenr of spring for const. force)

General solution:

2 � (8.95)

E  of conic sections again. Supply the initial conditions. Let’s agree to measure:
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Value of C?

� (8.96)

Taking derivative of , we get

Because  at r = rmin, and assuming , we get

� (8.97)

From previous solution we know that 

� (8.98)

[Note: Can also get rmax or rmin directly from ,  

and then solving for r from the resulting quadratic . See prob. 8.15.]

Example 2:	

Exponential spiral:
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Force law?

 (attractive)� (8.99)

Inverse cube law. This is not the only type of motion in such a force field. This is a special type of 
solution of the inverse cube law corresponding to E = 0.
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8.5	 CELESTIAL MECHANICS

Let’s derive some other useful results for the inverse square law, 

� (8.100)

� (8.101)

This is just the statement of energy conservation since

� (8.102)

E is related to “a” by

� (8.103)

for elliptical motion.
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There is a connection between t, the period of elliptical motion, and a, the semi-major axis, that 
is well known for . The connection is stated roughly as

“proportional to”

and is known as Kepler’s third law. We actually derived this rough form last semester from an 
invariance argument. Recall that

� (8.104)

with U(r) = c rn under the transformation 

� (8.105)

behaves as

 of motion from  unchanged. For the inverse square force law 

as we had before. To get the full form of Kepler’s 3rd law consider

� (8.106)
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so

� (8.107)

Useful integral:
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Plugging in the limits, f = 0, p, we get

� (8.108)

Kepler’s feelings about discovering his  law:

“Now, since the dawn eight months ago, since the broad daylight three months ago, and since a 
few days ago, when the full sun illuminated my wonderful speculations, nothing holds me back. 
I yield freely to the sacred frenzy; I dare frankly to confess that I have stolen the golden vessels of 
the Egyptians to build a tabernacle for my God far from the bounds of Egypt. If you pardon me, 
I shall rejoice; if you reproach me, I shall endure. The die is cast, and I am writing the book – to 
be read either now or by posterity, it matters not. It can wait a century for a reader, as God himself 
has waited six thousand years for a witness.”

From “The Discoverers” by D. Boorstin
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Let’s do the above integration from f = 0 to an arbitrary angle f:

� (8.109)

“mean anomaly”

Using the previous integral gives:

� (8.110)

Careful use of this equation gives t(f). But what we usually want is f(t)! The need to invert 
this relationship gives rise to Kepler’s equation. We can derive it as follows. Adopt the following 
coordinate system:

ellipse:

“eccentric anomaly”.

First, get relationship between f and y.

� (8.111)
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or

� (8.112)

so

� (8.113)

Remember:

� (8.114)

Taking the differential of both sides of this gives

� (8.115)

Moreover, by definition

� (8.116)

We now have

use (8.114) and (8.116)

� (8.117)
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so now

� (8.118)

 (8.118) is Kepler’s equation. One can also show (integrate (8.116)) that

� (8.119)

So, the method of finding f(t) using Kepler’s  is:

1.	 Solve Kepler’s eqn approximately for y(t).
2.	 Use (8.99) to find f(t) from
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8.6	 GENERAL RELATIVITY MODIFICATION

I now want to talk a little about a small modification to these orbits caused by Einstein’s general 
theory of relativity. Start with the effective (approx.) potential for perihelion (Mercury) precession. I 
am leaving out terms in effective potential which do not cause precession. This potential is observer 
dependent. The effective potential with respect to an observer at r = ∞:

� (8.120)

This is not the same as the effective potential as, for example in Marion, which is with respect to 
the observer in orbit.

Let’s put this into our orbit equation:

Let 

� (8.121)

Solve:

� (8.122)

� (8.123)

Solution: � (8.124)

Most important change:

	 again.
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Notice orbit precesses positively .

� (8.125)

� (8.126)

From a :

� (8.127)

Amounts to ~43 sec. of arc/century for Mercury.

Newtonian effective potential:

� (8.128)

Define,

� (8.129)

Looks like:
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The full general relativity effective potential including centrifugal term:

New G.R. effect: capture (realized in “black holes”)
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8.7	 ORBITAL STABILITY

Equation which describes orbital motion (from (8.90)):

� (8.130)

Let r0 be the radius of a nearly circular orbit, and let , where . For a circular 
orbit 

� (8.131)

Then

��x −
l
µ










2

r0 + x( )−3 = f r0 + x( ) . � (8.132)

Assume

f r0 + x( ) = f(r0) + r − r0( )
x

��� ��
′f r0( ) + … . � (8.133)

Also

  
r0 + x( )−3 = r0−3 1 +

x
r0

 

 
  

 
 
−3

= r0−3 1 −
3x
r0

 

 
  

 
 . � (8.134)

Then

��x −
l
µ










2

r0
−3 1 −

3x
r0









 = f r0( ) + x ′f r0( ). � (8.135)

� 
substitute the above

⇒ ��x +

l
µ










2

f(r0)

l
µ










2 1 −
3x
r0









 = f(r0) + x ′f(r0), 

     
  
⇒ ˙ ̇ x − 3f(r0)

r0
+ ′ f (r0)

 

  
 

  
x = 0.   

� (8.136)

Let

α2 ≡ −
3f r0( )
r0

− ′ f r0( ). � (8.137)
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Then

  α
2 > 0 : x = c1 sin αt + c2 cos αt − stable  � (8.138)

  

α2 = 0 : x = c1t + c2

α2 < 0 : x = c1e
α t + c2e

− α t

 
 
 
unstable � (8.139)

Condition for stability:

3f r0( )
r0

+ ′ f r0( ) < 0,

or (notice f<0)

  
⇒ r0

′ F r0( )
F r0( ) > −3. � (8.140)

Try this out for F(r) = −
k
ra

U = −
k

a − 1( ) ra−1








, 

′F(r) =
ak
ra+1 ,

′F r0( )
F(r0)

= −
a
r0
. 

�  stable if -a > -3 or a < 3. (Must also have a > 1 for as U � 0 as   r � �..) Easily 
interpretable (k > 0 for all cases):

a < 3 case:

Ueff

 
 
 
 

2

2µr2
total

  
 
stable orbits 

   0

turning points

 

−k
a − 1( )ra −1

l

Newton

l 2
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a = 3 case:

    Ueff

 
 
  

k
<

2

2µ

E

 
 
  

k
=

l 2

2µ
 r

(spirals in
 
  

or out)  
  
 
E  

  

k 2

2µ

l

l

>

Newton

2

2

2

1

2

l

l

l

2

2

2

a > 3 case:

Ueff

    
 
 
 

2

2µr2
total

r

   
 

−k
a − 1( )ra −1

Newton

l
2l

8.8	 VIRIAL THEOREM

Now consider (t = period of motion)

  

d
dt

f(r)˙ r ( )
t
≡
1
τ

d
dt

f(r)˙ r ( ) dt
0

τ

∫ ,� (8.141)

=
1
τ
f r( )˙ r [ ]

0

τ
= 0. 
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for a periodic system. (Even if it is not strictly periodic, can let τ → ∞ and make or assume

  
lim
τ→∞

1
τ
f(r)˙ r [ ]

0

τ

= 0.� (8.142)

if the system is bounded.) Now we have

� (8.143)

 (averaged over time)� (8.144)

Can now use

 ��r −
l 2

µ2r3
= −

1
µ
dU
dr

,  

f'(r) �r2 +
l 2

µ2
f(r)
r3

=
1
µ

f(r) dU
dr

. � (8.145)

so
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First example:	 f(r) = const.

=> l 2

µ
1
r3

=
dU
dr

= − F(r) , � (8.146)

or, in words:

Average centrifugal “force” = Average radial force

Must be true for any periodic system. Another example: 
 
f(r) =

1
2

µr

1
2

µ �r2 +
l 2

2µr2 =
1
2

r dU
dr

, 

  

        T =
1
2

r dU
dr

.   � (8.147)

This is just the “virial theorem” applied to central-force motion. Let’s take U(r) = −
k
r
. Then . Then

  
  
T =

1
2

k
r

. 

⇒ T = −
1
2

U . � (8.148) 

But, 

⇒
U = 2E < 0

T = −E > 0

 
 
 

	 for bounded motion� (8.149)

(For circular orbits, can take off .)

Application: galaxy clusters �  must be “dark matter” in the universe. Outweighs visible matter 
by a factor of 5!
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8.9	 PROBLEMS

1.	 A system of point particles interact via forces which follow the “strong form” of Newton’s 
second law. That is, the force of b on a, 

�
fαβ , points along the instantaneous line connecting 

them, as shown.

�r
α

O

α β

�r
β

�
f
αβ

Given the usual connection between fixed (
�rα) and center of mass (

�rα) coordinates,

	
�rα =

�rα
' +

�
R , 

( �R =
1
M

�rα
α

∑ , M is total mass) and the total force on a,

	

��pα =
�
Fα
(e) +

�
fαβ

β

∑ ,

	

Show that the total torque, 
��L =

��Lα

α

∑  (
�
Lα =

�rα ×
�pα), for an external force of 

the form, 

	 �
Fα
(e) = mα

�g , 

is simply given by

	
��L =

�
R ×

�
F(e),

where 
�
F(e) =

�
Fα
(e)

α

∑  is the total external force.
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2.	 Show that

	
d2
�
L

dt2 = −
k
µ

�
L , (

�
L =

�
l ×

�p)

when the potential U(r) = 12  kr2. Comment on the expected solution.

3.	� Investigate pure radial bound motion  in an inverse square force field,

F(r) = - 
k
r2 

, for two point masses. Let “h” be the maximum amplitude for pure 
radial motion. Imagine the particles move through one another as they pass. How is the 
period of pure radial motion (trad) related to the period of a circular orbit of readius r (torbit) 
when h = r?

4.	� As a follow-on to prob. 3, show that the equation of bound radial motion is a cycloid in 
time; that is,

	 r = h2(1 - cos �) , t = 
h
2 

�h
2k (� - sin �) ,

where h is the maximum radial distance between the masses. What is the relationship 
between r and t when E = 0? (E = total energy.) [Hint: Try making a change of variable, 
r = h2(1-cos �), directly in the r integral.]
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5.	 You are given that the distance of separation of two planets is given by 

	 r = d(1 + sin f),

where d > 0 is a constant and f is the angle. (Ignore the fact that the planets strike one 
another at q = 270˚.)

a)	 What central force law is responsible for this motion?
[Ans.: F(r) = −3 l 2d

µr4
.]

b)	Find the total kinetic plus potential energy of this system in the center of mass frame, 
given that U(∞) = 0.
[Ans.: E = 0.]

6.	� Show that the maximum radial velocity of two planets in an elliptical orbit about one 
another is

	 rmax = 
2π�a

�(1-�2)1/2 

where e is the eccentricity, t is the period and “a” is the semimajor axis.

7.	� Show that the product of the magnitudes of the maximum and minimum relative velocities 
of two bodies in elliptic motion is (2pa/t)2.

8.	� Starting from (8.110) of the notes, derive to first order in e only (by a Taylor series expansion) 
the approximate result,

	
φ(t) ≈

2πt
τ

+ 2ε sin(2πt
τ
).

9.	� (a) Do a simple-minded solution to Kepler’s equation, Eq.(8.118) of the notes. Assume e 
is small and do an expansion of the form

y = y0 + ey1 + e2y3 + …

Find y0, y1 and y2 in terms of the “mean anomoly”, M = 2�t�  .

(b)	 Show that to order e you get the same result for f(t) as in prob. 8.8 above. 
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10.	 Show, for the inverse square law of gravitation (“a” is the major axis, “e” eccentricity),

	

(a) < >1r2  t = 
1

a2 1-�2
 , 

(b) < >1r2  � = 
1+�

2
2

a2(1-�2)2 , 

(c) < >1rn  t = 
1

a2 1-�2< >1
rn-2  �,

where

	

11.	 (a) Given

	
In ≡ ⌡⌠

0

2π
 

dφ
(1+εcos φ)n

 , 

 
can you find a relation between In and In+1? [Hint: Differentiate in e.]

(b)	 Use this to relate < >rn  t to < >rn-1  t. [See prob. 8.10 for notation.

Ans.: < >rn  t = �(1-�2)3/2��
�

�
�
�1 + �

n+1 
d
d� ��

�
��
�< >rn-1 t

(1-�2)3/2  

12.	 Verify directly that

	 < >U(r)  t  = 2E, 

where U(r)= - 
k
r  and E is the total (internal) energy (= 

�p2

2µ
- 

k
r ). You may use any 

result from prob. 8.10 above to do this.

13.	 Show that

	 <rn>t = 
1
a  <r

n+1>� ,

where the <...> notation indicates an average over an orbital period with respect to the 
subscripted quantity. y is the angular quantity, used in the Kepler equation derivation, 
given by Eq.(8.113) of the notes:

	

where “a” is the semimajor axis and “e” is eccentricity.
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14.	 Show that

	

�r ⋅
�p( )2

t
=

µ
3

r3 dU
dr t

−
l 2

3
, 

( l =| �r ×
�p |) for any periodic central force motion. You may need a result from 

the text.

15.�(a)	� Using the idea of effective gravitational potential, show that the turning points in an 
elliptical orbit under Newton’s force law are given by

	
r =

−k ± k2 +
2El 2

µ

2E
,

where E < 0 is the total center of mass energy of the system.

(b)	 Show that the rmin, rmax you find agree with Eqs.(8.70), (8.71).
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16.	� A paricle in a nearly circular orbit about a planet suddenly has it’s tangential velocity 
changed by a small amount, dv. Show that

	 2 δl
l

=
δa
a

=
δb
b

= 2 δv
v

= −
δE
E
,

where a is the semimajor axis, b is the semiminor axis, v is the magnitude of velocity, E 
is the (total internal) energy and  is the angular momentum.

Extra credit: The particle’s velocity is now changed by an amount dv when it is at r = 
rmax and e is no longer small. Show that the changes in the orbital parameters are now:

	
δl
l

=
δv
v
, δa

a
= −

δE
E
, δb

b
= −

2
1 + ε

δv
v
, δE

E
= −2 1 − ε

1 + ε
δv
v
. 

17.	� According to the stability analysis, stable circular orbits should exist for a force law 
of the form,

	 F(r) = - 
k
ra , (a<3,k>0).

a)	 Find how the period, t, is related to the radius of the circular orbit, a (i.e., the analog 
of Kepler’s third law. The text presents two ways of doing this; extra credit if you get 
the proportionality constant.)

b)	Apply the virial theorem to this force law and find how the time averaged kinetic and 
potentials energies, ‹T› and ‹U›, are related to the total energy, E, for circular orbits.

18.	� A physicist is standing on the Earth’s equator when a very strange thing happens (the sort 
of thing which occurs only on physics homework sets). Suddenly, the Earth’s radius shrinks 
to zero, although it’s mass remains unchanged. This leaves the physicist in orbit about the 
point Earth. Calculate e (eccentricity) and rmin of the physicist’s orbit. (RE = 6.37×103 km, 
ME = 5.98×1027 gm.)

Extra credit: Get formulas for e and rmin when the physicist is located at a latitude l. 
What happens when he or she is located at one of the poles?

Other Problems

19.	 Let us investigate the attractive inverse cube force law, F(r) = - 
k
r3 (k>0), a bit more.

a)	 Find the general solutions, r(t) and r(f), when k = l
2

µ
. (ℓ is the magnitude of the 

relative angular momentum and m is the reduced mass.)
b)	Describe the qualitative motion of a planet for l

2

µ
> k > 0. In particular, is there any 

bound motion?
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20.	� Two point planets (reduced mass m) are in a circular orbit about one another at a 
distance r0 with a force law F(r) = - 

k
ra (1<a<3) . The orbit is slightly perturbed 

by a passing comet. Find the period, T, of small oscillations induced by the comet about 
the circular orbit. Show that in general, this period is not equal to the orbital period,

21.	� Consider two planets which experience a repulsive Coulomb potential, U(r) = 
k
r (k>0). 

The total internal energy is E (>0) and the magnitude of the relative angular momentum 
is ℓ.

a)	 Show that the distance of closest approach, rmin, is given by

	 rmin =
k
2E

1 + 1 +
2El 2

µk2









.

b)	Show that the radius as a function of angle, f, measured from the point of closest 
approach, is

	

1
r

=
kµ
l 2

−1 + 1 +
2E l 2

µk2 cos(φ)








. 
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22.	 Prob. 8.11(b) resulted in the connection,

	 < >rn  t = �(1-�2)3/2��
�

�
�
�1 + �

n+1 
d
d� ��

�
��
�< >rn-1 t

(1-�2)3/2
 ,

where e was orbital eccentricity. Using this result twice, show that

	
< >r2  t = �2 

(1+32�2)
(1-�2)2

 .

23.	� The central force responsible for the given trajectory in prob. 8.5 above was 
F(r) = −3 l 2d

µr4
. I also showed that the total energy of the system, E, was given by E = 0 

(given that U(∞) = 0).

a)	 Draw a graph of the effective potential, Ueff(r), vs. r,  for this force law. 
Given E=0 for this trajectory, discuss the types of motion possible.

b)	Based upon the Ueff(r), vs. r,  graph, and keeping ℓ fixed, find the minimum amount of 
additional energy, Emin, to break free from the force center and move to r = ∞.

24.	� Investigate pure radial motion (ℓ =0) for the F(r) = −
k
r2  central force law (k > 0) again, 

but this time for E > 0 (U(∞) = 0). Show that a simple parametric representation, 
similar to prob. 8.4 above (which was for E < 0) is possible. Set the initial conditions to be 
r=0 at t=0. Solve as completely as possible. Show that your solution approaches the correct 
velocity, p∞

µ
, as t → ∞ .

25.	� Given an attractive inverse cubic force law, F(r) = 
  
−

k
r3

 (k > 0), the plot of the effective 
potential looks like the graph in the text:

Find the orbit solutions, r(f), for cases 1  (total internal energy, E > 0) and 2  (E < 0).

26.	 Given an attractive force law (k, a > 0)

	 F(r) = - 
k
r
e−ar
2 ,
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show that circular orbits for r sufficiently small are stable, but for r large they are not. 
Find the equation which determines the value of r where the transition from stable to 
unstable orbits occurs.

27.	 In the text I derived

	
dA
dt

=
l
2µ

,

where l = |
�
l| (
�
l =
�r ×
�p) and m is the reduced mass. “A” is the area swept out by 

the radius vector  r≥ from the point of view of an observer on m1 or m2. Now show that

	

dA’
dt   = �2 ��

�
��
�1

m12
 + 1m22

 dAdt  ,

where A’ is the area swept out by 
r  in the center of mass frame of reference. Note this 

means that

	
A’
A   < 1. 
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9	� SCATTERING AND COLLISIONS 
OF PARTICLES

9.1	 COULOMB SCATTERING

I will discuss scattering next since it builds on the results of the last chapter.

Consider E > 0 (e > 1) motion in an attractive Coulomb field. Picture:

    Ueff(r)

E

   r
turning point,
     rmin

Follow the course of 
r  during scattering from m2’s point of view:

Equation of orbit (an hyperbola, e > 1):

  
1
r

=
1
α

1 + ε cos φ( ),� (9.1)

  

1
rmin

=
1
α
(1 + ε), � (9.2)

Download free eBooks at bookboon.com



MODERN INTRODUCTORY MECHANICS PART II

55

Scattering and Collisions of Particles

ε = 1 +
2E l 2

µk2











1/2

,� (9.3)

α =
l 2

µk
. � (9.4)

Notice: 

 

� (9.5)

One gets Θ =
π − θ
2

  for the repulsive force case. (where the scattering center is now the exterior  
focus of the hyperbola.)

Scattering event looks completely different from CM frame:

Paths are also hyperbolas here (
r '1, 
r '2 are just rescaling of 

r .) No matter which picture you prefer, 
it is clear that q, Θ  are quantities relating to the direction of 

r  and therefore can be thought of 
as being measured in any frame. However, we will actually define scattering angles with respect to 
velocity vectors, which will therefore take on different values in alternate inertial frames.

� �  positive angle between initial and final velocity vectors for either m1 or m2 in CM frame.
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Things are simpler in the CM; however, this is not the usual experimental situation. Eventually, 
we will learn how to translate our results in the CM to other frames of reference. Notice that only 
a certain range of angles for f are now permitted for e > 1:

  
1
r

=
1
α

1 + ε cos φ( ),

  
⇒

1
∞

=
1
α

1 + ε cos Θ( ),

  
⇒ cos Θ = −

1
ε
 (allows 2 symmetric values

    of Θ; take the + value) 

� (9.6)

�  only angles  cos φ > −
1
ε
  are allowed. (Values greater than this would say that r is negative.) 

Go back to the Runge-Lenz vector to see it from another viewpoint:

�
A =

�
L ×
�p + µkêr , 

⇒
�
A ⋅
�p = µkêr⋅

�p.
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Remember, 
�
A =

�
L ×
�p + µkêr ,  is directed along the symmetry Saxis, in the direction opposite to 

r min. In particular, 
if we consider the initial situation with r → ∞ ,

�
A ⋅
�p∞ = µkêr∞⋅

�p∞ . 

�
A ⋅ �p∞ = Ap∞ cos Θ , êr∞⋅

�p∞ = −p∞,

⇒ Ap∞ cos Θ = −µkp∞, 

⇒ cos Θ = −
µk
A

= −
1
ε
, as before.

9.2	 DIFFERENTIAL CROSS SECTIONS

Need some more concepts for scattering. Let

I = flux in the incident beam (# particles per unit area per unit time)

dN = number of particles through a ring of radius b and width db in the incident beam per unit time.

dN = 2πb db( )I.� (9.7)

The particles passing through the ring are scattered through the angles between q and q + dq. dN 
becomes a scattering concept when we assume that b = b(q):

dN θ( ) = 2πb θ( ) db θ( )( )I. � (9.8)

dN θ( )
I

 = number of particles scattered into (q, q + dq) per unit time per incident flux.
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This is now a quantity which is independent of I. We now define the differential cross section as 
(take dq positive)

dσ θ( )
dθ

≡
dN
dθ

1
I

= 2π b θ( )
db θ( )
dθ

.� (9.9)

Intrinsically positive. We usually use solid angle,

dΩ ≡ sin θ dθdφ.� (9.10)

We will assume azimuthal symmetry here, so

  dΩ = 2π sin θdθ ,  

� (9.11)

9.3	 RUTHERFORD SCATTERING IN THE CENTER OF MASS FRAME

For the Coulomb problem, remember

A = µ2k2 + 2µ�2E ,  (A = �k�),		 (A = mke)

⇒ 1 =
µk
A










2

+
2µ�2E
A2 . 

But cosΘ  = −
1
ε

= −
µk
A
,

⇒ 1 = cos2 Θ +
2µ�2E
A2 . 

    eventually become
 Θ          parallel
  

     
� 
A      CM

  δ         b
   ˆ e r∞

    α
              

� p ∞
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At great distances,

   
0
 

  E = kinetic + potential, 

  
⇒ E =

p∞2

2µ
 	 (two body problem form),

� =
�r ×

�p = b p∞. 

⇒ sin Θ =
� 2µE
A

=
�p∞

A
=

bp∞
2

A
, 

⇒ tan Θ = −

bp∞
2

A
µk
A

= −
bp∞

2

µk
. 

But

Θ =
θ + π
2

⇒ tan Θ = − cot θ
2
, 

     ⇒ cot θ
2

=
bp∞

2

µk
.     � (9.12)
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Provides the necessary connection between b and q for the Coulomb problem. Now get

db
dθ

=
µk
p∞
2

d
dθ

cot θ
2
, 

    = −
µk
2p∞

2
1

sin2 θ
2

. 

Therefore

dσ
dΩ

θ( ) =
1
2

µk
p∞
2











2
1

sin θ
⋅

1

sin2 θ
2

cot θ
2
,

sin θ = 2sin θ
2

cos θ
2
, 

dσ
dΩ

θ( ) =
1
4

µk
p∞
2











2
1

sin4 θ
2

.“Rutherford formula”� (9.13)

			   (CM frame)

  
dσ
dΩ

  

1
4

µk
p∞
2

 

 
  

 
 
2

θ

       π

True also for repulsive Coulomb force. Indeed, unchanged by quantum mechanics (non-relativistic), 
except that 

g y
  k → ± Zze2( )  for electrically charged particles. (Interpretation of it in quantum 

mechanics is completely different, however.)

First measured experimentally by H. Geiger and E. Marsden. By careful observation in a darkened 
room, they found (by counting!) that approximately one in every eight thousand a-particles (Helium 
nuclei) was backscattered from a thin gold target. Let’s see if we can understand the 1

8000
  factor 

backscattering fraction from the above formula.

Download free eBooks at bookboon.com



MODERN INTRODUCTORY MECHANICS PART II

61

Scattering and Collisions of Particles

Model: (each atomic layer)

     atom

  unit cell

a (can also
  assume other shapes)

Assume layers are randomly oriented with respect to each other (i.e., one atom in front does not 
“shadow” an atom behind.)

Each a-particle can be imagined to pass through the unit cell shown as may times as there are 
layers of atoms. We will take “backscattering” to mean π

2
< θ < π. 

dσ
dΩ

=
dN
dΩ

1
I

=
1
4

µk
p∞
2











2
1

sin4 θ
2

, 

dN = I dσ =
I
4

µk
p∞
2











2
dΩ

sin4 θ
2

,

Nback = Iσback =
1
4
I µk

p∞
2











2
dΩ

sin4 θ
2

π
2

π

∫ . 

For this rough estimate, we will set sin4 θ
2
→ 1 over this range of q, and since the solid angle 

corresponding to 
  
π

2
< θ < π is 2p is 2p, we then have approximately,

Nback �−
π
2
I µk

p∞
2











2

For scattering a’s off gold foil:

k → Zze2 ,µ �− mα,

Z = 79 , z = 2, 

⇒ Nback �−
π
2
I Zze2mα

mα
2vα

2











2

. 
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Let us assume that (nonrelativistic formula)

1
2
mαvα

2 �− 5MeV		  (I looked it up)

(  1 MeV ˜ − 1.6 × 10−6erg ). We also need

⇒ p∞ = mαvα = 1.034 × 10−14gm cm
sec

.

Still need I. In our case (imagine a single particle passing through the sample; also imagine 
multiplying both sides of the above equation for Nback by the total time of the experiment so that 
Nback is a pure number):

I = number scattering processes per alpha particle / unit cell

⇒ I =
1
a2 n , 

Download free eBooks at bookboon.com Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

http://s.bookboon.com/Subscrybe


MODERN INTRODUCTORY MECHANICS PART II

63

Scattering and Collisions of Particles

where n is the number of atomic layers in the sample thickness. Sample thickness was ~ 1m = 10-4cm 
(also looked this up). So

  
n =

10−4cm
a

,

⇒ I =
10−4cm
a3

Some other calculations giving a:

ρgold = 19.28 gm
cm3

 Avagadro 
 ↓ 

NA = 6.023 × 1023 amu
gm

, mgold �− 197 amu

atoms
cm3










gold

= ρgold ×
# atoms

gm








 = 19.28 6.023 × 1023

197








 

= 5.9 × 1022 atoms
cm3 . 

This means

a �~ 5.9 × 1022( )
−13 = 2.57 × 10−8cm  

⇒ I �~ 5.90 × 1018cm−2 . 

Putting all the pieces together now gives us

⇒ Nback �~ 4.76 × 10−5 �~ 1
21,000

.

too small ~ 2. One reason: did not integrate the cross section. This means we have underestimated 
the number of interactions. (But see the homework problem!)
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9.4	 SIMPLE TREATMENT OF LIGHT DEFLECTION

Since we talked a little about one general relativity effect last chapter (perihelion procession), will indicate 
another result here. For very small angular defections, the above relationship between b and q becomes

b �~ µk
p∞
2

1
θ
2
 

⇒ θ �~ 2µk
p∞
2

1
b

µ =
m1m2

m1 + m2

,k = Gm1m2









 

Use this to model a light ray grazing the radius of the Sun:

θ
light ray

                Sun

 

Therefore, take b = RS, m2 = MS (Sun’s radius, mass.) What to do about m ˜ ~ m1 , p∞ ? For light,

p =
hν
c
. 

Use the relativistic connection between mass and energy to replace (E = pc)

m1 →
E
c2

=
hν
c2

,

 => θ ≈
2 hν( )

c2
GMS

hν( )
c2

hν
c










2

RS

=
2GMS

c2RS

 .

Almost correct, but too small by a factor of 2! (This was, in fact, Einstein’s original result, which 
he modified later.) Einstein’s general relativity gives the correct result:

θ ≈
4GMS

c2RS

= 1.75" (sec)of arc.
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Another new thing about light scattering in general relativity: glories.

  light ray

A tiny amount of
Black of light is actually
 hole backscattered.

Appears as a sort of
“halo”

9.5	 CROSS SECTION COOKBOOK

We have been discussing a special case of scattering, the inverse square force law. We need some 
cookbook formulas for doing other force laws. Will give differential cross section in the CM frame. 
Need general connection between b and q. Start:

 E =
1
2

µ �r2 +
�2

2µr2 + U(r).
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Can “reduce the problem to quadratures.” Solve for   ˙ r :

�r = ±
2
µ

E − U(r)( ) −
l 2

m2r2 ,� (9.14)

 � 
  have to pick correct root  
(Ueff(r) picture good for this) 

dφ =
dφ
dt

dt
dr

dr =
�φ
�r
dr , but �φ =

�
µr2 ,

dφ = ±

�
r2 dr

2µ E − U(r)( ) − �
2

r2

� (9.15)

Assuming E > 0, E =
p∞
2

2µ

 

 
  

 
   and integrating on dr from rmin to r = ∞, we get (�  = b  p∞):  we get 

r = ∞, we get (�  = b  p∞): 

Θ 	 defined positive

↓ 

Θ = +b
dr

r

r2 − b2( ) − 2µ
p∞
2 r2U(r)rmin

∞

∫ . � (9.16)

Warning: rmin itself is a function of b, in general.

Cookbook steps:

1.	 Evaluate rmin(b).

2.	 Do integral.

3.	 Use Θ =
π + θ
2

 or Θ =
π − θ
2

 in the attractive or repulsive cases, respectively, to 
find b(q).

4.	 Plug in dσ
dΩ

=
b

sin θ
db
dθ

 .

Another warning: does not work for all potentials, U(r). Most require lim
r→∞

U(r) = 0. .
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Just to get a feeling for using the cookbook method, do the repulsive Coulomb case (different from 
attractive case). Picture:

               b     m1 ˜ ~ m2

θ

     
v r 

*
↓

   2Θ + θ = π
CM     Θ

m1

2m

Jump to result: (you will verify this in a problem)

cos Θ =

kµ
p∞
2b

1 +
kµ
p∞
2b











2
� (9.17)

Can write as

cos2 Θ =

kµ
p∞
2b











2

1 +
kµ
p∞
2b











2 ,

⇒ tan2 Θ =
p∞
2b
kµ











2

or b2 =
kµ
p∞
2











2

tan2 Θ

Choose b = +
kµ
p∞
2









 tan Θ , Θ =

π − θ
2

,

  � 
different from attractive case different from attractive case

same as before.

Download free eBooks at bookboon.com



MODERN INTRODUCTORY MECHANICS PART II Scattering and Collisions of Particles

68

9.6	 CONNECTION BETWEEN LAB AND CM FRAMES

Only problem: cross sections usually not measured in the CM frame.
 
     Lab Frame       CM Frame 
     (usual expt. situation)      (

�
P = 0) 

 
  

initial:    
 

v u 1       
      

v 
u 2 = 0

   
 

v u 1
'

           
 

v u 2
'

m2

�u1
�u2

�u2'
�u1'

 

  y       
 

v v 1   y     
 

v v 1
'

final:
   
     x       x

           
 

v v 2         ξ    
  φ = π − θ

      
 

v v 2
'

ψ
θ

�v1

�v2

�v1'

�v2'
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Only showing initial and final velocities; not discussing dynamics but kniematics. We will assume 
elastic collisions – no heat generated or mass/energy lost. We will conserve both momentum and 
energy. We will also assume that all motion takes place in one plane (azimuthal symmetry, as we 
assumed before in the cross section discussion). We will take the angles y, x, etc. as positive; if 
not, we can always re-orient our axis so that they are.

Only difference between the two viewpoints: observed by two people who have a relative velocity, 
�
V =

m1
�u1

m1 + m2

= −
�u2
' ,. All primed and umprimed quantities are related by 

�
V =

m1
�u1

m1 + m2

= −
�u2
' ,:

initial     final 

�u1 =
�u1
' +

�
V       (9.18a)   �v1 =

�v1
' +

�
V    (9.19a) 

�u2 =
�u2
' +

�
V = 0  (9.18b)   �v2 =

�v2
' +

�
V  (9.19b) 

⇒
�u2
' = −

�
V  

     notation 
    �u  - initial velocity 
    �v - final velocity 
    1,2 - which particle 
prime, unprimed - CM, Lab frame, respectively 

By definition,

  lab coordinates 
  ↓ 
�
R =

1
M

mi
�ri

i
∑ , 

    
�
R =

1
m1 + m2

m1
�r1 + m2

�r2( ), 

⇒
�
V =

1
m1 + m2

m1
�u1 + m2

�u2( ), �u2 = 0( )  

 
�
V =

m1
�u1

m1 + m2

. = −
�u2
'( )   � (9.20)
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In the CM coordinate system  Therefore

m1
�u1
' + m2

�u2
' = 0 ⇒ m1u1

' = m2u2
' ,  � (9.21)

m1
�v1
' + m2

�v2
' = 0 ⇒ m1v1

' = m2v2
' � (9.22)

(u1
' , v1

'  etc. are magnitudes only.) Assume any potential that exists between the particles � 0 0 as 
distances � ∞; ∞; then, far enough apart, the energy is purely kinetic. Let

T0
' = total energy in CM frame

� (9.23)

Also

m1
m1

m2











2

u2
'2 + m2u2

'2 =
m1

m2











2

m1v2
'2 + m2v2

'2,

   ⇒ u2
' = v2

' .   � (9.24)

Thus, to summarize:

u1
' = v1

' = m2

m1

u2
' = m2

m1

v2
'

.

�  only 1 unknown velocity magnitude in the CM frame. Other unknown: q (f = p – q). Let’s 
say we measure these 2 things in a given collision. How are they related to quantities in the Lab 
frame? From before,

�
V =

m1
�u1

m1 + m2

= −
�u2
' ,
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but

 u2
' =

m1

m2

u1
' , 

⇒ u1 =
m1 + m2

m1

⋅
m1

m2

u1
' = 1 +

m1

m2









 u1

'

� (9.25)
�

known or measured, say

Not specified yet: 
�
V =

m1
�u1

m1 + m2

= −
�u2
' ,1, 

�
V =

m1
�u1

m1 + m2

= −
�u2
' ,2. We have,

v1 =
v1
' +


V ,

v2 =
v2
' +


V .

Have to start invoking angles now:

v1
2 = v1

'2 + V2 + 2
�
V ⋅ �v1

',
v2
2 = v2

'2 + V2 + 2
�
V ⋅ �v2

'.
 

�
V = −

�u2
'

⇒ V = u2
' =

m1

m2

u1
'
















 

refer to

the figures
→

2
�
V ⋅ �v1

' = 2Vv1
' cos θ = 2 m1

m2

u1
'u1

' cos θ

2
�
V ⋅ �v2

' = 2Vv2
' cos π − θ( ) = −2Vv2

' cos θ










 

              = −2 m1

m2

u1
' m1

m2

u1
' cos θ  

v1
2 = u1

'2 +
m1

m2











2

u1
'2 + 2 m1

m2

u1
'2 cos θ, 

� 	 v1
2 = u1

'2 1 +
m1

m2











2

+ 2 m1

m2









 cos θ












� (9.26)
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v2
2 =

m1

m2

u1
'









2

+
m1

m2

u1
'









2

− 2 m1

m2

u1
'









2

cos θ, 

v2
2 = 2 m1

m2

u1
'









2

1 − cos θ( ), 

v2
2 = 4u1

'2 m1

m2











2

sin2 θ
2
.    � (9.27)

Therefore v1, v2 are known if   u1
',θ  are known. Only things left: ψ, ξ  

1  �v1 =
�v1
' +

�
V , 

2  �v2 =
�v2
' +

�
V. 

1    x  :  v1 cos ψ = v1
' cos θ + V , � (9.28)

y  :  v1 sin ψ = v1
' sin θ . � (9.29)
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-cos� 
↓ 

2   x  :  v2 cos ξ = v2
' cos π − θ( ) + V, � (9.30)

y  :  −v2 sin ξ = −v2
' sin π − θ( ). � (9.31)(

  � 
sin� 

Divide 
y
x

 from 1 :

tan ψ =
v1
' sin θ

v1
' cos θ + V

=
sin θ

cos θ +
V
v1
'

.� (9.32)

But 
V
v1
' =

m1

m
u1
'

u1
' =

m1

m2

⇒ tan ψ =
sin θ

cos θ +
m1

m2

. � (9.33)

Says that the connection between q and y is not unique under some circumstances. Look at 
m1

m2

>> 1:

� (9.34)

Given y, 2 values for q. Other extreme, m1

m2

<< 1:

tan ψ �~ tan θ , 

� �	  ψ �~ θ. � (9.35)

One value of y � � one value of q. Geometry helps:

V
v1
' = m1

m2

< 1           V
v1
' = m1

m2

> 1
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v v 1
   
 

v v 1'

       ψ          θ

           
 
v 
V 

 
v v 2

       
v v 2'

�v1

�v2

�v1'

�v2'

�
V

�v1'
�v1 ��vv'

�v1'

short

stretch

1

or �v1

θθ
ψ 1111ψ

�
V

one value of � �        one value of � � 
one value of �     two values of ��

However, y and v1 determine q uniquely. Also, one value of q � � always one value of y. Can now 
see what the two extreme cases above correspond to geometrically.

More geometry: 
  

m1
m2

> 1 case:

      
 

v v 1
'

         
        

 

v 
V 

ψ

�

�
V

�v1'

There is a max value of y in this case:

sin ψmax =
v1
'

V
=

m2

m1

. � (9.36)

In this case one value of y � � one value of q. Rutherford case: m1

m2

<< 1, , essentially scattering 

individual a-particles off the entire sample since the atomic centers are fixed => unique determination.

Special case: m1 = m2

 tan ψ =
sin θ

cos θ + 1
=

2sin θ
2
cos θ

2
1 + cos2 θ

2
− sin2 θ

2

, 
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" =
2sin θ

2
cos θ

2
2 cos2 θ

2

= tan θ
2
, 

 ⇒ ψ =
θ
2
. � (9.37)

Now consider equation 2  above. Divide y
x

:

v2 sin ξ
v2 cos ξ

=
v2
' sin θ

−v2
' cos θ + V

, 

� � tan ξ =
sin θ

− cos θ +
V
v2
'

. 

However, V =   v2
',

tan ξ =
sin θ

− cos θ + 1
=
2sin θ

2
cos θ

2
2sin2 θ

2

, 
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⇒ tan ξ = cot θ
2

= tan π
2
−
θ
2









, 

⇒ ξ =
π − θ
2

⇒
φ=π−θ

ξ =
φ
2
.� (9.38)

For the m1 = m2 case we had ψ =
θ
2

, so 

ξ + ψ =
π
2

, m1 = m2( ) � (9.39)

        
� v 1

   ψ

 ξ
 
� v 2

In the m1

m2

<< 1 case:

� (9.40)

Let’s find relationships between the various kinetic energies. Definitions first:

T0
T0
'














 = total K.E. in lab

CM








  frame.

T1
T1
'














 = final K.E. of m1 in lab

CM








  frame.

Similarly for T2,   T2
'. Of course

T0
' = T1

' + T2
' , T0 = T1 + T2.
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Now

T0 =
1
2
m1u1

2, � (9.41)

T0
' =

1
2

m1u1
'2 + m2u2

'2( ) � (9.42)

T1
' =

1
2
m1v1

'2

T1 =
1
2
m1v1

2
















      

T2
' =

1
2
m2v2

'2

T2 =
1
2
m2v2

2



















 

Let’s try to express them all in terms of T0. Remember

u1 = u1
' 1 +

m1

m2









 , u1

' =
m2

m1

u2
' ,

�	 T0
' =

1
2

m1

1 +
m1

m2











2 +

m2
m1

m2











2

1 +
m1

m2











2





















u1
2 , 

�	 T0
' =

1
2

m1m2
2 + m2m1

2

m1 + m2( )2











u1
2 =

1
2

µu1
2. 

  � 
reduced mass 

⇒ T0
' =

µ
m1

T0.� (9.43)

so T0' < T0 always. Also

T1
' =

1
2
m1v1

'2 =
1
2
m1u1

'2 =

1
2
m1u1

2

1 +
m1

m2











2 , 

⇒ T1
' =

m2

m1 + m2











2

T0. � (9.44)
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T2
' =

1
2
m2v2

'2 =
1
2
m2

m1

m2

u1
'









2

=

1
2
m2

m1

m2











2

u1
2

1 +
m1

m2











2 , 

⇒ T2
' =

m1m2

m1 + m2( )2
T0. � (9.45)

We have T1
T0

= v1
2

u1
2

. Go back to earlier v1 expression:

v1 = u1
' 1 +

m1

m2











2

+ 2 m1

m2









 cos θ , 

�	 v1 =
u1

1 +
m1

m2





















1 +
m1

m2











2

+ 2 m1

m2









 cos θ , 
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�	
v1
u1











2

=
m2
2 + m1

2 + 2m1m2 cos θ
m1 + m2( )2











 =

T1
T0
. � (9.46)

What about in terms of y? Must express cosq as a function of y.

tan ψ =
sin θ

cos θ + x
. x ≡

m1

m2









 � (9.47)

[“Aside 1”:

�	 tan2 ψ =
1 − cos2 θ

cos2 θ + x2 + 2x cos θ
, 

tan2 ψ cos2 θ + x2 + 2x cos θ( ) = 1 − cos2 θ , 

cos2 θ tan2 ψ + 1( )
↑

1
cos2 ψ

� ��� ���
+ cos θ 2x tan2 ψ( ) + x2 tan2 ψ − 1( ) = 0. 

A quadratic equation in cos q. Solution to Ax2 + Bx + C = 0 is

x =
−B ± B2 − 4ac

2A
, 
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so 

cos θ =
−2x tan2 ψ ± 4x2 tan4 ψ +

4 1 − x2 tan2 ψ( )
cos2 ψ

2
cos2 ψ

, 

� cos θ = −x sin2 ψ ± cos2 ψ x2 tan4 ψ +
1 − x2 tan2 ψ( )

cos2 ψ
. 

(
� (9.48)

Inside the square root:

x2 tan2 ψ tan2 ψ −
1

cos2 ψ










−1
� ���� ����

= −x2 tan2 ψ, 

⇒ cos θ = −x sin2 ψ ± cos2 ψ 1
cos2 ψ

− x2 tan2 ψ , � (9.49)

� 
would have written |cos y |, but
because of the ± signs, this does
not matter.

From above

T1
T0

=
1 +

1
x2 +

2
x
cos θ






1 +
1
x










2 , � (9.50)

so

T1
T0

=

1 +
1
x2 − 2sin2 ψ ± 2 cos ψ 1

x2 − sin2 ψ










1 +
1
x










2 . � (9.51)
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Notice the numerator is a perfect square:

cos ψ ±
1
x2 − sin2 ψ











2

= cos2 ψ +
1
x2 − sin2 ψ  

        ±2 cos ψ 1
x2 − sin2 ψ , 

  = 1 +
1
x2 − 2sin2 ψ ± 2 cos ψ 1

x2 − sin2 ψ . 

 ⇒ T1
T0

=
1

1 +
1
x










2 cos ψ ±

1
x2 − sin2 ψ











2

  � (9.52)

Since T1
T0

=
v1
u1











2

, 

� (9.53)
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The ± corresponds to the 2 possibilites in the following figure. Remember, for m1

m2

= x > 1, 
ψmax <

π
2

⇒ cos ψ > 0  So we have

�v1'
�v1 ��vv'

�v1'

short

stretch

1

or �v1

θθ
ψ 1111ψ

�
V

“stretch” 
  ↓ 

v1 =
u1

1 + x( )
x cos ψ ± 1 − x2 sin2 ψ



 

 � 
‘‘short’’  (x > 1)

Confirmation: “short” case v1 should → 0 as x → 1+  (through larger values of x):

v1short →
u1
2

cos ψ − 1 − sin2 ψ





cosψ−cos ψ
� ����� �����

= 0. 

� Only the “stretch” case survives for x < 1. (Can see that for x < 1 the negative root would make 
v1 negative.) The same interpretation applies to the expression for T1

T0
.

 v1 sin ψ = v1
' sin θ  

[“Aside 2”: From 1 , y equation:

 v1 sin ψ = v1
' sin θ  

 

⇒
sin θ
sin ψ

=
v1
v1
' =

u1
1 + x( )

x cos ψ ± 1 − x2 sin2 ψ





u1
1 + x( )

, 
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  “stretch” 
  ↓ 

cos θ − ψ( ) = ± 1 − x2 sin2 ψ .]
  � 

‘‘short’’ 

[‘‘Aside 3’’: From ‘‘Aside 1’’ we have

sin θ − ψ( ) = x sin ψ. 

Thus, from

sin2 θ − ψ( ) + cos2 θ − ψ( ) = 1, 

we have immediately

  “stretch” 
  ↓ 

cos θ − ψ( ) = ± 1 − x2 sin2 ψ .]
  � 

‘‘short’’ 
We get very simple results when m1 = m2. Then, for y ≠ 0, we have only one �  value:

          
� v 1

ψ         
� v 1
'

         
� 
V              θ

There are actually two solutions where 

V  and     

 v 1
'  are co-linear in this case:

 θb = 1800 θf = 0 (two
(head-on     

� v 1
'

     
� v 1
'
 particles miss

 collision) each other)
        

� 
V 
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The solution where the particles miss each other has 
 

ψ = 0  whereas the head-on collision is 
characterized by � �  900. (Remember, ψ =

θ
2
 for x = 1. We have for x = 1,

T1
T0

=
1

1 + 1( )2
2 cos ψ[ ]2 = cos2 ψ. � (9.54)

This goes to zero as y →  900, which means in this limit m1 comes to a complete halt after the 
collision. This fact is useful in nuclear reactor modulators, which slow down (or moderate) neutrons. 
It says that the best way of slowing down free neutrons is a material which contains light nuclei 
(like the deuterium in so-called heavy water.) Obviously,

 T2
T0

= sin2 ψ , � (9.55)

in this limit. 
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9.7	 A KINEMATICAL EXAMPLE IN THE LAB FRAME

Let’s do an example. Let’s say a particle of mass m1 scatters elastically from one of mass m2 at rest 
in the Lab frame. The ratio v1

u1
= f  is given. Find the angle y through which m1 is scattered. 

We have

 
v1 =

u1
1 + x( )

x cos ψ ± 1 − x2 sin2 ψ



. 

Thus,

⇒ f 1 + x( ) = x cos ψ ± 1 − x2 sin2 ψ  

 ⇒ f2 1 + x( )2 + x2 cos2 ψ − 2f x 1 + x( ) cos ψ 

 

   = 1 − x2 sin2 ψ 

⇒ f2 1 + x( )2 + x2 − 2f 1 + x( ) x cos ψ = 1.

Solve for cos y in terms of x and f:

cos ψ =
x2 − 1 + f2(1 + x)2

2f x 1 + x( )
. 

To find the meaningful range for x, write

−1 ≤ cos ψ ≤ 1

Plug   cos ψ = 1  into the above (note 0<f<1 and that x is positive):

⇒ x(cos ψ = 1) =
f + 1
1 − f

. (largest x)

The other limit is for   cos ψ = − 1, , which we get by simply letting   f → −f . Thus 

 (smallest x).
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9.8	 RUTHERFORD SCATTERING IN THE LAB FRAME

Let’s find the differential cross sections in the Lab frame. Remember the meaning of ds:

dσ =
dN
I

= 2π b db . � (9.56)

This is unchanged going from one frame to another. (At this stage there is no reference to angles.) 
Then 

b = b θ( ),CM frame or b = b ψ( ),Lab frame. 

The connection between Lab and CM cross sections is,

    Lab       CM 
     ↓    ↓ 

⇒
dσ
dΩ

ψ( ) =
dσ
dΩ

θ( )









dΩ θ( )
dΩ ψ( )

 � (9.57)

⇒
dσ
dΩ

ψ( ) =
dσ
dΩ

θ( ) sin θdθ
sin ψdψ

 � (9.58)

Result of “Aside 1”:

sin θ − ψ( )
sin ψ

= x. Do d
dψ

on both   on both sides:

−
sin θ − ψ( )
sin2 ψ

cos ψ +
cos θ − ψ( )

sin ψ
dθ
dψ

− 1








 = 0, 

⇒
dθ
dψ

− 1 =
sin θ − ψ( ) cos ψ
cos θ − ψ( ) sin ψ

. � (9.59)

Use

 sin θ − ψ( ) = x sin ψ,   “Aside 1” again 

 cos θ − ψ( ) = + 1 − x2 sin2 ψ ,   “Aside 3”. 
 � 

specializing to x < 1.
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We find

 dθ
dψ

= 1 +
x sin ψ cos ψ

1 − x2 sin2 ψ sin ψ
, � (9.60)

⇒
dθ
dψ

=
x cos ψ + 1 − x2 sin2 ψ

1 − x2 sin2 ψ
. � (9.61)

so (x < 1 case; using “Aside 2” now in (9.58):

dσ
dΩ

ψ( ) =
dσ
dΩ

θ( )  sinθ
sinψ

dθ
dψ

, 

⇒
dσ
dΩ

ψ( ) =
dσ
dΩ

θ ψ( )( )
xcosψ + 1 − x2sin2ψ





2

1 − x2sin2ψ
. 

� (9.62)

Download free eBooks at bookboon.com Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

http://s.bookboon.com/elearningforkids


MODERN INTRODUCTORY MECHANICS PART II

88

Scattering and Collisions of Particles

Also from sin θ − ψ( )
sinψ

= x, 

⇒ θ = ψ + sin−1 x sin ψ( ) � (9.63)

Notice for “b” large enough in the x =
m1

m2

=
V
v1
' > 1  case, we are in the “stretch” case. 

When b is smaller than the value that causes scattering into angle ψMAX = sin−1 m2

m1









 , then 

we are in the “short” case. (Formally, the critical value of the impact parameter is given by p p

b0 = b ψ = sin−1 m2

m1



















.)  Both, however, cause scattering into the lab angle y, and thus the 

analog for x > 1 is the rather complicated expression 

  

⇒
dσ
dΩ

ψ( ) =
dσ
dΩ

θ ψ( )( ) |stretch
xcosψ+ 1−x2sin2ψ 
  

 
  
2

1−x2sin2ψ

+
dσ
dΩ

θ ψ( )( ) |short
xcosψ− 1−x2sin2ψ 
  

 
  
2

1−x2sin2ψ
.

  � (9.64)

If x < 1, can do an expansion in powers of x. To 0th  order,

 θ ≈ ψ , 

dσ
dΩ

ψ( ) �− dσ
dΩ

θ( )
θ=ψ
| , 

 ⇒ dσ
dΩ

ψ( ) �− 1
4

µk
p∞
2











2
1

sin4 ψ
2

. � (9.65)

Remember, p∞ is measured in the CM frame. Connection with other quantities:

p∞ = µ
��rinitial = µ u1

' + u2
'( ),

m1u1
' = m2u2

' ⇒ u2
' =

m1

m2

u1
' , 

  µ =
m1m2

m1 + m2

, 
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⇒ p∞ =

m1m2

m1 + m2

1 +
m1

m2









 u1

' = m1u1
' = µu1 . 

 � 

u1
' =

u1

1 +
m1

m2











 

 

Now

p∞
2

2µ
=

µ2u1
2

2µ
=

µu1
2

2
= T0

', 

But

T0
' =

m2

m1 + m2

T0 =
1

1 + x
T0 

Therefore for x << 1 we have 

dσ
dΩ

ψ( ) �~ 1
16

k
T0











2
1

sin4 ψ
2

. � (9.66)

written entirely in terms of Lab quantities. Now let’s see what the first order correction to this 
expression (in x) is.

     θ = θ0 + xθ1 + …, 

(9.63)   ⇒ θ0 + xθ1 = sin−1 x sin ψ( ) + ψ, 

    sin−1 y = y +
y3

6
+

3
40

y5 + …, y < 1, 

⇒ θ0 + xθ1 �~ x sin ψ + ψ, 

         ⇒
θ0 = ψ

θ1 = sin ψ.






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x cos ψ + 1 − x2 sin2 ψ





2

1 − x2 sin2 ψ
�~

1 + x cos ψ[ ]2

1
�~ 1 + 2x cos ψ , 

sin θ
2 �
− sin ψ

2
+
x
2
sin ψ









, 

�~ sin 4
2

+
x
2
sin ψ cos ψ

2
, 

= sin 4
2

+ x sin ψ
2
cos2 ψ

2
, 

 = sin 4
2

1 + x cos2 ψ
2









, 

⇒ sin4 θ
2 �
− sin4 ψ

2
1 + 4x cos2 ψ

2








. 

 

 ⇒ dσ
dΩ

ψ( ) �~ 1
4

µk
p∞
2











2
1

sin4 ψ
2

1 + 2x cos ψ( )

1 + 4x cos2 ψ
2











↓
� ���� ����

, 

         �~ 1 + x 2 cos ψ − 4 cos2 ψ
2









 , 

= 1 + x −2 cos2 ψ
2
− 2sin2 ψ

2








 = 1 − 2x . 

Also

µk
p∞
2 =

k

2 p∞
2

2µ











=
k
2T0

' =
k 1 + x( )

2T0
, 

  ⇒ µk
p∞
2











2

�−
k
2T0











2

1 + 2x( ). 
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Finally, then to first order in x:

 dσ
dΩ

ψ( ) �~ 1
16

k
T0











2
1

sin4 ψ
2

1 + 2x( ) 1 − 2x( )
�−1

� ���� ����
. 

First order correction vanishes! This means the Rutherford cross section, which is strictly an x=0 
result, holds very accurately for 0 < x < 1. Will not torture you with the next order, ~x2, correction.

9.9	 TOTAL CROSS SECTION

Total cross section:

σ ≡ dσ
all
angles

∫ =
dσ
dΩ

θ( ) dΩ∫ .

dΩ = sin θdθdφ( )

� (9.67)
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For Rutherford:

 

   2sin θ
2
cos θ

2
 

       ↓ 

σ =
1
4

µk
p∞
2











2

dφ
0

2π

∫ sin θ dθ

sin4 θ
2

0+

π

∫ . 

 

  
(strictly speaking,  
 the point � = 0 is  
 excluded in the integration) 

 σ = 2π µk
p∞
2











2 cos θ
2

sin3 θ
2

0+

π

∫ dθ
2
, 

σ = 3π µk
p∞
2











2

−
1

2sin2 θ
2
















|
0+

π

→ +∞. 

Understandable: particles are always deflected regardless of b value. Can see it in:

 dσ = 2π bdb , 

⇒ σ = 2π b db
0

b max

∫ = πbmax
2 .� (9.68)

where bmax is the maximum impact parameter which suffers an angular deflection ≠  0.. Thus, in 
classical mechanics, the only type of force laws for which s is finite are those of the form

F(r) = 0 , r > a

where a is some finite value of separation. Example of this possibility (q = y here since the sphere 
is infinitely heavy):

    +z
    b Θ

    θ

heavy sphere,
radius = a  
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Clearly, this problem has azimuthal symmetry if we take the +z axis as shown. We have 

    b = a sin Θ, 

 2Θ + θ = π. 

  notice: -sign  
(repulsive scattering) 
   ↓  

 Θ =
π − θ
2

, 

         b = a sin π − θ
2









 = a cos θ

2
. 

dσ
dΩ

=
b

sin θ
db
dθ

; db
dθ

= −
a
2
sin θ

2
; 

 ⇒ dσ
dΩ

=
a cos θ

2
2sin θ

2
cos θ

2

⋅
a
2
sin θ

2
=
1
4
a2 . 

       ⇒ σ =
1
4
a2 dΩ = πa2∫ . 

Just what we expect.
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9.10	 PROBLEMS

1.	 The Rutherford differential cross section is

	

dσ
dΩ

=
1
4

µk
p∞
2











2
1

sin4 θ
2

.

Therefore, the backscattering cross section is

	

σback =
1
4

µk
p∞
2











2

dφ dθ sin θ

sin4 θ
2

π/2

π

∫0

2π
∫ . 

In the text I estimated the integral by setting 1

sin4 θ
2

|θ=π= 1, which resulted in an 

underestimate of �back. Now do this integral exactly. By what factor was the original 

estimate off? Will this improve the agreement with Rutherford’s experiment?
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2.	� We estimated in the notes the fraction of 5 MeV alpha particles backscattered (
π
2

< θ < π) 
from a target made of gold foil and found that about one in every 21,000 particles should 
backscatter. (This was changed to about one in every 10,500 after we corrected the integral.) 
Suppose Rutherford wanted to make a lead shield to protect the other experiments 
in his lab. Note that for lead, Z = 82 and mPb = 207 amu, and that the density is  
rPb = 11.4 gm

cm3 . Estimate the minimum thickness of the lead that would shield against 
these alpha particles (in centimeters). [Hint: Require all particles to be backscattered from 
the lead. Neglect the possibility of multiple scattering.]

3.	 Given that (  T0
' is total CM energy)

	
b =

k
T0
'( )

2
1
θ
,

exactly for some unknown central force law, find

a)	 the CM differential cross section, dσ
dΩ

(θ). .
b)	 the number of particles backscattered (that is, with angles q such that π2

< θ < π ) in 
the CM frame. (Call this Nback). Assume a known incoming particle flux, I.

4.	 Do the integration in (9.16) leading to (9.17) of the notes.

5.	� Consider scattering off of a weak potential U(r) such that U(b)<< E, where b is the impact 
parameter and E is the total energy. Show that

	
rmin ≈ b 1 +

U(b)
2E









, 

which shows that rmin < b for an attractive potential (U(b)<0)and vice versa, as one would 
expect.

6.	 Look up and plug values in (MS , RS  are the Sun’s mass, radius)

	
∆θ =

4GMS

c2
1
RS

,

to get the angular deflection for starlight in seconds of arc.
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7.	� Consider a head-on collision as seen from an unknown reference frame. Assume the ratio 
x = m1

m2

 is known. It is observed that m1 comes to a complete stop after the interaction. 

Assuming energy and momentum conservation, find the after/before ratio of m2’s kinetic 
energies in terms of x.

8.	 Derive:

(a)	 tan ψ =
sin 2ξ

x − cos 2ξ
,

(b)	 sin ψ =
sin φ

1 + x2 − 2x cos φ
,

where x = m1

m2

 and the angles y and f are defined in the text.

9.	 From prob. 9.8(b), or any other means, show that 

	
tan ψ =

sin φ
x − cos φ

. 

10.	� In reference to Eq.(9.65) of the text, evaluate the critical impact parameter variable, b0, for 
the Coulomb scattering potential, U(r) = ± k

r
, in terms of k, m, p∞ and x.

11.	� Consider scattering of a point mass m1 off of a hard sphere of radius a and mass m2.  
(The ratio x = m1

m2

 is arbitrary.)

u

m

1

2
ξ

b

radius = a  

The angle of the sphere’s (m2’s) deflection in the laboratory frame (m2 initially stationary) 
is given by , ξ = sin−1 b

a








,where b is the impact parameter.

a)	 Show that the cross section evaluated in the CM frame of reference is a constant.
b)	Find the deflection angles q and y for m1 if the impact parameter is b = a

2
.

In addition to the above, find the the cross section in the Lab frame of reference for c) 
x<1 and d) x>1.
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12.	 Show that (9.62) of the notes can be written more simply as

	

dσ
dΩ

(ψ) =
dσ
dΩ

(θ) v1
v1
'











2
v1v1

'

�v1 ⋅
�v1
' . 

13.	 Given a center of mass differential cross section,

	
dσ
dΩ

= A cos2 θ,

(q is the deflection angle of m1 in the CM frame) and a particle flux, I, find the number 
of backscattered particles ( π

2
< ψ < π ) per unit time in the Lab frame. Assume m2 

>> m1 where m1 is the mass of the incident particle.

14.	� With the same cross section as in problem 9.13 above, find the full Lab cross section for 
x < 1. How does one specify the “short” case in the relation between q and y?
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15.	 Hard sphere scattering:

Assuming a symmetrical scattering event, find 
dσ
dΩ

 and the total cross section.

Other Problems

16.	� Escape velocity is the minimum speed a particle needs to escape a planet or star, starting from it’s 
surface. Previously, we estimated the angular deflection of a light beam traveling near the Sun, 
treating the light as if it were an ordinary massive particle. In the same spirit, find a formula 
for the maximum radius of a star of mass M from which light, traveling at the speed of light, 
c, may no longer escape. (This is called the “Schwartzchild radius” of the star.)

17.	� The maximum scattering angle, ymax, in the Lab frame for m1 in the x > 1 case  
(x = m1

m2

) was given by sin(ψmax) =
1
x
.. Show that this happens when the CM  

scattering angle, q, satisfies,

	
cos θ = −

1
x
.

18.	 Consider a finite range inverse square force law. That is, we have an attractive force

	
F(r) =

−
k
r2

,r < r0
0 ,r > r0

 
 
 
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m1

radius = r0

m2

Θ

Show that the deflection angle Q is given by (E=total energy,b=impact parameter)

	

cos Θ =
2b2 −

kr0
E

r0
k
E









2

+ 4b2 1 −
k
r0E











.

19.	 Concerning the same problem as 9.18, show that the CM scatterimg angle q can be written as

	
θ = 2sin−1 b

r0









 − sin−1 cos Θ( ).

20.	� Given the results in probs. 9.18 and 9.19, go as far as possible in finding the scattering 
cross section, dσ

dΩ
, in the CM frame for this force law.

21.	� Eq.(9.62) gives the scattering cross section in the Lab frame, dσ
dΩ

(ψ)|Lab  in terms of the 

cross section in the CM frame, dσ
dΩ

(θ(ψ))|CM, for the x = m1/m2 < 1 case. Turn this around 

by expressing dσ
dΩ

(θ)|CM  in terms of the laboratory quantity, also for x<1. [Ans.: 

	   
dσ
dΩ

(θ)
CM

=
dσ
dΩ

(ψ(θ))
Lab

⋅
(1 + x cos θ)

[1 + x2 + 2x cos θ]3/ 2
, 

Download free eBooks at bookboon.com



MODERN INTRODUCTORY MECHANICS PART II Scattering and Collisions of Particles

100

where

	   
tan ψ =

sin θ

cos θ + x
.] 

22.	 (a) Show directly that the equations (x = m1/m2)

	  θ = ψ + sin−1 x sin ψ( ), 

and

	
cos θ = −x sin2 ψ ± x cos ψ 1

x2 − sin2 ψ , 

are compatible.

(b)	 For x = 2, what two roots, q1, q2, are associated with y = p/8?
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23.	 Given the result for the Rutherford differential cross section in the CM frame for m1,

	

dσ
dΩ

θ( ) =
1
4

µk
p∞
2











2
1

sin4 θ
2

, 

find the differential cross section for m2 (NOT m1) as a function of the appropriate angle:

a)	 in the center of mass (CM) frame
b)	 in the Laboratory frame (m2 initially at rest)

24.	 Given the result for the Rutherford differential cross section in the CM frame (all for m1),

	

dσ
dΩ

θ( ) =
1
4

µk
p∞
2











2
1

sin4 θ
2

,

find the differential cross section, 
  
dσ
dΩ

(ψ), in the Laboratory frame, when m1 = m2 (x = 1).
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10	� NON INERTIAL 
REFERENCE FRAMES

10.1	 FINITE DISPLACEMENTS AND ROTATIONS

Need transformation connecting fixed and moving (body) noninertial frames. Picture:

         3 '
3

         
               

� r 

      
� r 1

            2

    
� 
R                 1

     1,2,3 system
is in the act of
   rotating   .

 2 '

     
 1'12.	
  p.102:	
  Tabbing	
  got	
  mixed	
  up	
  (please	
  bold	
  and	
  set	
  within	
  lines):	
  
_______________________________________________________________________________________	
  
Going	
  to	
  let	
  the	
  1,2,3,	
  	
   	
   	
   We	
  are	
  going	
  to	
  consider	
  
system	
  “evolve”	
  an	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   ⇒	
   	
   an	
  infinitesimal	
  relation	
  
infinitesimal	
  amount	
  in	
  	
   	
   	
   for	
  the	
      

 r 	
  axes,	
  but	
  
time,	
  dt	
  	
  	
   	
   	
   	
   	
   finite	
  displacements,	
      

 
R 	
  

_______________________________________________________________________________________	
  
	
  
13.	
  p.144:	
  make	
  I' = λTIλ 	
  equation	
  darker.	
  
	
  
14.	
  p.160:	
  make	
  ω3 = constant ,	
  ω1,2 = constant 	
  equations	
  darker.	
  
	
  
15.	
  p.174,	
  problem	
  10(a):	
  make	
  (I1 = I2 ≡ I12 ≠ I3 case)	
  darker.	
  
	
  
16.	
  p.175,	
  problem	
  11:	
  make	
  equations	
  (1)	
  and	
  (2)	
  uniformly	
  dark.	
  
	
  
17.	
  p.187:	
  Replace	
  “for	
  the	
  qi”	
  with	
  “for	
  the	
  qi”	
  
	
  
18.	
  p.223,	
  after	
  Note:	
  gµν,g

µν 	
  darker	
  
	
  
19.	
  p.224,	
  after	
  Examples:	
  AµBµ = AµB

µ ,	
  etc.	
  darker.	
  
	
  

20.	
  p.245,	
  point	
  3:	
  make	
  equation	
  	
  mass =
E
mc2

=
MeV
c2

	
  darker.	
  

	
  
21.	
  p.255,	
  endnote	
  2:	
  Replace	
  	
  
	
  
m =1,2,3,4 and x4 = ict, whereas here m = 0,1,2,3 and x0 = ct (x0 = -ct). 
 
with 
 
µ =1,2,3,4 and x4 = ict, whereas here µ = 0,1,2,3 and x0 = ct (x0 = -ct). 
	
  
	
  
In	
  all	
  cases,	
  could	
  you	
  begin	
  the	
  Problems	
  for	
  each	
  chapter	
  on	
  a	
  new	
  page?	
  
	
  
Thank	
  you,	
  
Walter	
  Wilcox	
  	
  
4/11/2016	
  

(1,1’), (2,2’), (3,3’) axes coincide in direction at some instant of time, t. Clearly, the reason for this 
is to describe, for example, motions relative to the Earth, which is noninertial. This is all done for 
convenience, not any real physics reason. In fact, strictly speaking, this chapter has zero physics 
content! This does not mean, however, that these considerations are not useful or convenient.

There are two types of transformations that will be involved:

1.	 Displacement: 
� r =

� r '−
� 
R .	(see above figure)

2.	 Rotation: (a “generic” passive rotation)

	 ri = λij rj
'

j
∑ . (passive)	 (passive)
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Picture: (specialized to rotation about 3,3’)

    2'
 2

  1

   θ
 1'

 3, 3'

Download free eBooks at bookboon.com Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

“The perfect start 
of a successful, 
international career.”

CLICK HERE 
to discover why both socially 

and academically the University 

of Groningen is one of the best 

places for a student to be 
www.rug.nl/feb/education

Excellent Economics and Business programmes at:

http://www.rug.nl/feb/bookboon?utm_source=AdBookboon&utm_medium=Bookboon&utm_campaign=130215Bookboon


MODERN INTRODUCTORY MECHANICS PART II

104

Non inertial Reference Frames

Put them together. Step 1: displacement. At the end of step 1:

            3"

      3'

   2"

            
� 
R       1"

       2'           
� r " =

� r '−
� 
R 

1'

Now wish to rotate. Rotate the     
 r "  axes:

         3"
    2

3
    ←   A rotation
     about an
     arbitrary axis

   2"

1"
  1

ri = λ ijrj"∑ .� (10.1)

But	 r"j = r'j − Rj  , so

ri = λ ij rj
' − Rj( )

j
∑ .� (10.2)
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Represents:

         3'

         
           � r        3

      2
      
� r 1

    
� 
R                   1

 2'

     
 1'

In matrix notation, this is

  r = λ r'− R( ). � (10.3)

It’s inverse is 

r'− R = λ−1r = λTr . � (10.4)

We really need only the relationships between     
 r   and     

 r '  for an infinitesimal rotation. What is l 
for such a situation? Remember

  λ
−1λ = 1 , λ−1 = λT , 

  
λ ij λik = δjk

i
∑ .  � (10.5)

Assume

λij = δij + δλij . � (10.6)
� 

change in l necessary
to represent an infinitesimal
passive rotation
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Substitute above:

δij + δλij( ) δik + δik( ) = δjk∑ . � (10.7)

0th order: δijδik = δik
i
∑ .  √ 

1st order: δij δλik + δλijδik( )
i
∑ = 0, 

  ⇒ δλij + δλkj = 0. 

or   δλjk = −δλkj, antisymmetric � (10.8)

Also implies there are only 3 independent elements:

δλij =

0 (1) (2)
−(1) 0 (3)
−(2) −(3) 0

















(1),(2),(3)arbitrary elements 
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10.2	 INSTANTANEOUS RELATIONS FOR VELOCITY, ACCELERATION

Now go back to Ch.1. Representation of an infinitesimal active rotation on a vector:

      δ
� 
θ 

              δ
� r 

     
� r      

� r + δ
� r 

 δ
�r = δ

�
θ ×

�r , 

or δri = εijk δθj rk
j,k
∑ . � (10.9)

Now, any active rotation is given by a passive rotation in the opposite direction. Start:

              
� 
A 

Passive, – q:
(�ij)

              
� 
A 

                θ

Active,q:
                 

� 
A '

 θ
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Passive , – q 
� 

have the same
components

↓ 

      -θ
              

� 
A 

This gives us two ways of specifying the effects of an active rotation:

Way 1:		
  
δri = εijk δθjrk

j,k
∑ . 	 (active rotation)

Way 2:		 δri = λij
T

j
∑ rj − ri,	 (passive inverse rotation)

(final) (initial)

or	
  
δri = λij

T

j
∑ rj − ri, � (10.10)

Must be the same:

  
δλik

T rk = εijk δθj
j,k
∑

k
∑ rk, 

  
  
⇒ δλik

T = εijk δθj
j
∑ , 

or 
  
⇒ δλ ki = εkijδθj

j
∑ . � (10.11)

Notice, as expected,   δλki  is antisymmetric in k,i.

Our relationship between the primed and unprimed coordinates are again,

  
ri
' − Ri = λij

T rj
j
∑ . � (10.12)
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Consider an infinitesimal change on both sides:

  1    2  

  
δri

' − δRi = δλij
T rj + λij

T

j
∑

j
∑ δrj. � (10.13)

Why 2 terms on right side? 1  arises from the rotation of the noninertial axes while 2  is due 
to the independent motion of the particle relative to the     

 r   axes. Found earlier,

δλij
T = εikj δθk

k
∑ .

Of course also

  λij
T = δij + δλij

T , � (10.14)
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so

  
δri

' − δRi = εikjδθkrj +
k,j
∑ δij + δλij

T( ) δrj
j
∑ . � (10.15)

 � 
can drop (2nd order in small quantities)

Thus

δri
' − δRi = εikj δθkrj + δri

k,j
∑ . � (10.16)

Divide by dt	 δQ
δt

≡
dQ
dt









: 

� dri
'

dt
−
dRi

dt
=
dri
dt

+ εikj
dθk
dt

rj
k,j
∑ . � (10.17)

But

ωk ≡
dθk
dt

, � (10.18)

so

d�r'
dt

=
d�r
dt

+
d
�
R
dt

+
�
ω ×

�r,� (10.19)

or

�vf =
�vr +

�
V +

�
ω ×

�r. � (10.20)

�vf =
d�r'
dt









 is the velocity of the particle relative to the fixed frame. (It is the velocity as measured 

by an observer at rest in     
 r ' ) Must be a constant in magnitude and direction if the particle has no 

real forces acting on it.     
 v r  is the velocity relative to the moving frame, whose axes coincide with 

the fixed aces at the given instant in time.
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Picture:

   
         3’

3 in the act of
         rotating about

               
� r some axis.

      
� r '

            2

    
� 
R                 1

 2’

     
 1’

Now do the second variation:

δri
' − δRi = δ λij

T rj +
j
∑ λij

T δrj
j
∑ , 

⇒ δ2ri
' − δ2Ri = δ2 λij

T rj + 2 δλij
T δrj

j
∑∑

   + λij
T δ2 rj

j
∑ .  

� (10.21)
    � 
can replace by �ij  

Before, we compared

  δri = εijk, 
� (10.22)

to

  
δri = δλik

T rk
k
∑ ,� (10.23)

and got

  
δλik

T = εijkδθj
j
∑ . � (10.24)
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Now

δ2ri = εijk δ δθjrk( )
j,k
∑  

  = εijk δ2θjrk + δθj rk( )
j,k
∑ . � (10.25)

But

δrk = εk�m δθ�rm
�,m
∑ , � (10.26)

so

δ2ri = εijk δ2θjrk + εk�mδθjδθ�rm
�,m
∑











j,k
∑ , 

      (let m→k) 

= εijk δ
2θjrk + εijm εm�kδθj δθ�rk

j,k,
�,m

∑
j,k
∑ .   � (10.27)
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On the other hand, compare this to

δ2ri = δ2λik
T rk

k
∑ . � (10.28)

Identify:

    
δ2λik

T = εijk δ
2θj + εijmεm�k δθjδθ�

j,�,m
∑

j
∑ . � (10.29)

(Switch indices: k → j , j → k   everywhere.) Put it all back together:

δ2ri
' − δ2Ri = εikjδ

2θkrj
j,k
∑ + εikm εm�jδθk δθ�rj

j,k,
�,m

∑  

   
  
+ 2 εikjδθkδrj + δ2ri

j,k
∑ .  � (10.30)

Divide by dt2 δ2Q
δt2 =

d2Q
dt2









: 

⇒
d2ri

'

dt2 −
d2Ri

dt2 = εikj
k,j
∑ d2Qk

dt2 +
d2ri
dt2  

   + εikm
dθk
dt

εm�j
dθ�
dt

rj
�,j
∑










k,m
∑ + 2 εikj

dθk
dt

drj
dtj,k

∑ . � (10.31)

Identify ωi =
dθi
dt

, �ωi =
d2θi
dt2  and write in vector notation:

���r' =
���R +

���r +
��ω ×

�r +
�
ω ×

�
ω ×

�r( ) + 2�ω ×
��r. � (10.32)

R   represents the acceleration of the origin of the     
 r   coordinate system relative to the     

 r '  origin. 
Will be zero if we consider uniform motion. Picture:

            3

      3 '

   2

            
� 
R       1

       2'

 1'

Also have ��ω = 0  in the case of constant angular velocity (magnitude and direction).
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10.3	 USEFUL EARTH COORDINATE CHOICES

Write in the inertial system

    
 
F = m  ˙ ˙ r , � (10.33)

Write in the noninertial system

    
 
F eff = m ˙ ̇ r  .� (10.34)

which gives

�
Feff = m ���r'−

���R −
��ω ×

�r −
�
ω ×

�
ω ×

�r( ) − 2�ω ×
��r( ) , 

or

�
Feff =

�
F − m

���R +
��ω ×

�r −
�
ω ×

�
ω ×

�r( ) + 2�ω ×
��r( ).� (10.35)

    �         � 
‘‘centifugal’’    ‘‘Coriolis’’

Remember:

Deflection is to the right in 
northern hemisphere and 
to the left in the southern 
(relative to the initial direction)

Leads to deflection of air 
masses in a counter-clockwise 
direction in the northern 
hemisphere
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For the Earth, we often choose:

Download free eBooks at bookboon.com Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

www.mastersopenday.nl

Visit us and find out why we are the best!
Master’s Open Day: 22 February 2014

Join the best at
the Maastricht University
School of Business and
Economics!

Top master’s programmes
•	 �33rd place Financial Times worldwide ranking: MSc 
International Business

•	 1st place: MSc International Business
•	 1st place: MSc Financial Economics
•	 2nd place: MSc Management of Learning
•	 2nd place: MSc Economics
•	 �2nd place: MSc Econometrics and Operations Research
•	 �2nd place: MSc Global Supply Chain Management and 
Change

Sources: Keuzegids Master ranking 2013; Elsevier ‘Beste Studies’ ranking 2012; 
Financial Times Global Masters in Management ranking 2012

Maastricht
University is

the best specialist
university in the

Netherlands
(Elsevier)

http://www.mastersopenday.nl


MODERN INTRODUCTORY MECHANICS PART II

116

Non inertial Reference Frames

For this choice     
� ̇ ω =

� ˙ ̇ R = 0, so

�
Feff =

�
F − m �

ω ×
�
ω ×

�r( ) + 2�ω ×
��r( ) .� (10.36)

Sum up. Because instantaneously our axes coincide in direction, we have

          
� r '=

� r +
� 
R , 

      
� ̇ r '=

� ̇ r +
� ̇ R +

� 
ω ×

� r , 

���r' =
���r +

���R +
��ω ×

�r + 2�ω ×
��r +

�
ω ×

�
ω ×

�r( ). 

How come we do not get     
 ̇ r '  as simply the time derivative of the expression     

 r '  for example? Because 
    
 r '  and     

 r   are referred to different axes which are rotating as well as moving with velocity     
 ˙ R   with 

respect to one another. There is another way of viewing this process more in line with the book’s 
derivation. When a change in     

 r   is considered, calculated with respect to the moving axes, we have

    δ
� r ( )f = δ

� r ( )r − δ
� r ( )passive, 

� (10.37)
�      � 

fixed  rotating

From before:

    understood in fixed frame 
      ← 

    δ
� r ( )passive = − δ

� r ( )active = −δ
� 
θ ×

� r , 

      ⇒ δ
� r ( )f = δ

� r ( )r + δ
� 
θ ×

� r .      � (10.38)

Thus 

  

d� r 
dt
 
 

 
 
f

=
d � r 
dt
 
 

 
 
r

+
� 
ω ×

� r . � 
ω =

d
� 
θ 

dt
 

 
  

 
 � (10.39)
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This is true for any vector, not just     
 r  , as long as the fixed and rotating axes instantaneously coincide 

in direction. Including the effect of translation of the coordinate origin, this now gives

d� r '
dt

 
 

 
 
f

=
d � r 
dt
 
 

 
 
f

+
d
� 
R 
dt

     �  � 
    make understood in fixed 

replacement   frame 

    ⇒
� ̇ r '=

� ̇ r +
� ˙ R +

� 
ω ×

� r  as before.

Apply the same reasoning to get     
 ˙ ̇ r ' :

        see above 
             ↓ 

d��r'
dt









f

=
d��r
dt









f

+
d
��R

dt
+
��ω ×

�r +
�
ω ×

d�r
dt









f
.     � (10.40)

However

    

d� ̇ r 
dt
 

 
  

 
f

=
d� ̇ r 
dt
 

 
  

 
r

+
� 
ω ×

� ̇ r , � (10.41)

⇒
���r' =

���r +
�
ω ×

��r +
���R +

��ω ×
�r +

�
ω ×

��r +
�
ω ×

�r( ), 

 ⇒ ���r' =
���r +

���R +
��ω ×

�r + 2�ω ×
��r +

�
ω ×

�
ω ×

�r( ). 

This is also as before.

Get back to 

Feff  on Earth (static case,     

 ̇ r = 0 )
�
Feff =

�
F − m �ω ×

�
ω ×

�r( ). � (10.42)

This means that the effective acceleration due to gravity and the Earth is given by

�geff =
�g −

�
ω ×

�
ω ×

�
R( ). � (10.43)

    �  � 
gravity  R points from center 
only        of Earth to surface 
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Picture:

As we can see,      −
� 
ω ×

� 
ω ×

� 
R ( )  has components along 3 and 1 axes. Another view (corresponds 

to the 13 plane above):

   ↑
� 
ω  

    
     
            
         local N 

 − � ω ×
� 
ω ×

� 
R ( )  

   local S     � g  
    
      � g eff  
       Center of 
        Earth 

   has a small southerly 
   component in Northern 
   Hemisphere 
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At equator, it’s particularly simple:

   ↑  
� 
ω  

     
        

� g  
        Center of 

    −
� 
ω ×

� 
ω ×

� 
R ( )       Earth 

You will find the angular deviation of a plumb line from the true vertical caused by this effect 
in a problem.

Example: central force problem.
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         2
  
� 
ω  into page (    

� ̇ ω ≠ 0
in general)

planet

       
� r 

    1 1,2 axes rotate
  so that planet is
 always located along
 the “1” axis.

fixed force
  center

    
� 
F = −

dU
dr

ˆ e 1 ,
� 
R = 0

m���r =
�
F − m

���/R
0

+
��ω ×

�r +
�
ω ×

�
ω ×

�r( ) + 2ω ×
��r









, 

�
ω = −ωê3 ,

��ω = − �ωê3,
�r = rê1 ,

��r = �rê1 , �̂e1 = 0 in rotating frame( )
���r = ��rê1,
��ω ×

�r = − �ωrê2,
2�ω ×

��r = −2ω �rê2,
�
ω ×

�
ω ×

�r( ) = −ω2rê1.


















� 

“2” components:

 0 = −m − �ωr − 2ω �r( ). 

integrate � r2ω =
�
m
, ω =

�
mr2

,  as before (conservation of angular momentum). “1” 
components:

  
ṁ  ̇ r = −

dU
dr

− m −ω2r( ), 

⇒ ��r − ω2r = −
1
m
dU
dr

. 

or 
    
˙ ̇ r −

�2

m2r3 = −
dU
dr

, also as before. , also as before.
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There are other choices of noninertial coordinate systems which can simply motion problems near 
the Earth’s surface. Consider the choice:

                        point on            
� 
ω  

   surface 
 local   3      
vertical    

               local East 
        2    
     
             

� 
R      

      λ       
          

        
      1 

 local 
 South 

For this choice we have

�
Feff =

�
F − m

���R +
��/ω
0

×
�r +

�
ω ×

�
ω ×

�r( ) + 2�ω ×
��r









. � (10.44)

We need to compute     
 ˙ ̇ R  . Using the general formula

d
�
A
dt









f

=
d
�
A
dt









r

+
�
ω ×

�
A , 

for any     
 
A  , we get

� ̇ R ( )
f

=
� 
ω ×

� 
R , 

since 
d
�
R
dt









r

= 0.  Again applying the above general equation, we get

d2�R
dt2










f

=
�
ω ×

d
�
R
dt









f

=
�
ω ×

�
ω ×

�
R( ).

Notice that we now get

    usually small 

        ↓ 

    
� 
F eff =

� 
F − m � ω ×

� 
ω ×

� 
R ( ) − m � ω ×

� 
ω ×

� r ( ) − 2m � ω ×
� ̇ r . � (10.45)
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10.4	 DEFLECTION OF PROJECTILES NEAR EARTH’S SURFACE

Using this     
 
F eff , we can now investigate the motion of projectiles near the Earth’s surface. 

Qualitatively: 

      3 (local vertical)

North
       
� 
ω 

Falls to
South

             λ
      ? α

 West   2     East

           surface
           of Earth

         1
    South

  
ω = 7.29 × 10−5 radians

second

    
� 
ω = −ω cos λ ˆ e 1 + ω sin λ ˆ e 3.
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When projected initially to the East, the particle trajectory will gain a Southerly component due 
to 1. centrigulal force and 2. Coriolis force. However, if initially projected West, the force will 
now deflect the particle to the North. The interesting question is: which deflection will be bigger 
when projected to the West?

Take

� 
F eff ˜ − 

� 
F − m � 

ω ×
� 
ω ×

� 
R ( ) + 2 � ω ×

� ̇ r ( ).

To 0th order, we have

    R = REê3, 

    � 
radius of the Earth 

��	

r1(t) = 0,
r2(t) = − v0 cos α( ) t (to the West if v0 > 0),

r3(t) = −
1
2
gt2 + v0 sin α( ) t does not include effect of rotation( ).














Work out −
� 
ω ×

� 
ω ×

� 
R ( )  term:

    
� 
ω ×

� 
R = −ω cos λˆ e 1 + ω sin λˆ e 3( ) × RE

ˆ e 3( ), 
   =   ωRE cos λˆ e 2, 

    −
� 
ω ×

� 
ω ×

� 
R ( ) = − −ω cos λˆ e 1 + ω sin λˆ e 3( ) × ωRE cos λˆ e 2( ) ,

     = ω2RE cos
2 λˆ e 3 + ω2RE sin λ cos λˆ e 1. 

     � 
term we are interested in 

Work out Coriolis term:

2�ω ×
��r �− −2 −ω cos λ ê1 + ω sin λ ê3( ) 

       × −v0 cos αˆ e 2 −gt + v0 sin α( )ˆ e 3( ) 

Download free eBooks at bookboon.com



MODERN INTRODUCTORY MECHANICS PART II

124

Non inertial Reference Frames

�− − 2ω cos λ v0 cos α ê3  −2ω cos λ −gt + v0 sin α( )ê2 

        −2ω sin λ v0 cos α ê1 

      � 
This is the term 
we are interested in 

Plugging these results back into our     
 
F eff  equation, we find

    
� 
F eff( )1 = m˙ ̇ r 1 ˜ − ω2RE sin λ cos λ − 2ω sin λ v0 cos α . 

If our initial condition is that   r1 t( ) = 0 at t = 0, then

Now eliminate the time, t, by using the 0th order equation,

  
r3(t) = 0 = −

1
2
gt2 + v0 sin α( )t,

  
⇒ t ˜ − 

2v0 sin α
g

. 

This is the approximate time it takes for the projectile to hit the ground. Therefore

  
r1(t) ˜ − 

1
2

ω2RE sin λ cos λ − 2ω sin λ v0 cos α( )
  

4v0
2 sin2 α

g2
.
 

Question: which effect is larger? Depends on initial velocity, vo. “Break even” velocity is

  
v0( )BE =

ωRE cos λ
2 cos α

. ωRE

2
˜ − 232 meters

sec
 
 

 
  

Depends on latitude, cos a. (In this problem I have not been very careful about taking care of the 
Earth’s curvature. The above considerations only hold for short range projectiles.)
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10.5	 DEFLECTIONS FOR DROPPED OBJECTS

Let me now introduce another coordinate system which is useful for calculating the deflection of 
projectiles relative to the gravitational vertical. Remember:

    N 
            
    

    −
� 
ω ×

� 
ω ×

� 
R ( )  

          
� g  

    S 
           

� g eff  
      direction toward 
      Earth’s center 

      
� g eff =

� g − � ω ×
� 
ω ×

� 
R ( ). 
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Take new, skewed axes along     
 g eff :

        3

(2 axis out
  of page)

      
� g eff

  1

no longer a
tangent to surface

Then since

� 
F eff =

� 
F − m � ω ×

� 
ω ×

� 
R ( )

m� g eff
� � � � � � � � � − m � ω ×

� 
ω ×

� r ( ) + 2� ω ×
� ̇ r ( ), 

 
          

� 
F eff = m� a eff , 

 
    ⇒ �aeff =

�geff −
�
ω ×

�
ω ×

�r( ) − 2�ω ×
��r.   � (10.46)

where now     
 g eff = geff ˆ e 3  only. This is useful in discussing the deflection of particles relative 

to the local gravitational vertical, which can be established with a plum-bob, say. For example, if 
we had done the projectile problem above in the “skewed” frame, the term proportional to RE in 
the form for r1(t) would have been absent. Then, to first order in w:

�aeff �− −geff ê3 − 2�ω ×
��r. � (10.47)

In this new frame, we need to find   
� 
ω . We had

     3

                         
� 
ω 

        2

       λ

     1

  

ω1 = −ω cos λ
ω2 = 0
ω3 = ω sin λ

 

 
 

 
 
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After we “skew” it by an angle, it looks like (rotation is around 2 axis):

  new 3 axis
       ε       3

                         
� 
ω 

        2

       λ                  ε 
   new 1 axis

    1

Clearly, we have

ω1 = −ω cos λ + ε( ),
ω2 = 0,
ω3 = ω sin λ + ε( ).









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However, ε is a small angle (smaller than .002 radians) and will be neglected below. Now imagine 
dropping an object from a height, h.

In 0th order:
    ˙ ̇ r 3 = −geff, ˙ ̇ r 1,2 = 0,    

 

⇒
� ̇ r = −gefftˆ e 3 , � r = −

1
2
gefft

2ˆ e 3 if � r = 0 at t = 0( ) 

1st order (in ω) correction:

ω1 �− −ω cos λ,
ω2 = 0,
ω3 �− ω sin λ.










as explained above  

Then,

−2�ω ×
��r �− 2 −ω cos λê1 + ω sin λê3( ) × −geff tê3( ), 

= 2ω cos λgeff + ˆ e 2. 

We now get

��r3 = −geff ,   ��r1 = 0, ��r2 �− 2 ωgeff t cos λ . 

Integrating twice on   ˙ ̇ r 2, we get

r2(t) �−
1
3
ωgeff t

3 cos λ. 

Of course, we have

   
  
t2 ˜ − 

2h
geff

, 

⇒ r2(t) �−
1
3
ω

8h3

geff











1/2

cos λ. 

Since r2 > 0, the deflection is to the East. You will study this problem further (to second order in 
w2) in a further HW problem.

Download free eBooks at bookboon.com



MODERN INTRODUCTORY MECHANICS PART II

129

Non inertial Reference Frames

10.6	 FOCAULT PENDULUM

Last problem: the Foucault pendulum. Again, use our “skewed” coordinate system. Only changes:

g →
�
Feff =

�
F + m�geff − m �

ω ×
�
ω ×

�r( ) + 2�ω ×
��r  geff  

       �      � 
new external force   small (ignore) 

Say

 
�
F = F1 ê1 + F2 ê2 + F3 ê3, 

     �geff = −geff ê3, 

�
ω = −ω cos λ ê1 + ω sin λ ê3 . 

Put it all together:

  m��r1 = F1 + 2mω �r2 sin λ , 

m��r2 = F2 − 2mω �r2 sin λ + �r3 cos λ( ), 

  m��r3 = F3 − mgeff + 2mω �r2 cos λ. 

Consider:

     3
(0,0, l)

    l

      
� 
T 

      2
        m

small
   oscillations

only

1

 F1 = −
r1
�
T, F2 = −

r2
�
T, F3 =

� − r3( )
�

T. 
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Neglect r3  and r3

~ 0 . 3rd eqn above becomes

⇒ T �− mgeff − 2mω �r2 cos λ
small but ≠ 0
� ��� ��� . 

   (not a constant)

Substitute this value of T above:

    
ṁ  ̇ r 1 =

−r1
�

2mω˙ r 2 cos λ[ ] + 2mω˙ r 2 sin λ, 

�         � 
  small        small 

    
ṁ  ̇ r 2 =

−r2
�

2mω˙ r 2 cos λ[ ] − 2mω ˙ r 1 sin λ + ˙ r 3 cos λ[ ] 
   �         � 
         small        small 

�         � 
  small        small 
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Set α2 ≡
geff

�
. Then

��r1 + α2r1 = 2ω �r2 sin λ , 

��r2 + α2r2 = −2ω �r1 sin λ . 

There is a dynamic coupling between the motions. Can solve both at once using complex numbers:

��r1 + i��r2( ) + α2 r1 + ir2( ) = 2ω �r2 − i �r1( ) sin λ , 

    = −2ωi �r1 + i �r2( ) sin λ , 

or

 �q + α2q = −2ωi �q sin λ . 

where q ≡ r1 + ir2. . This is solved by assuming

q = A eλt ,

where A, λ   are to be determined. Substitute above:

⇒ λ2 + 2iωλ sin λ + α2 = 0,

⇒ λ =
1
2

−2iω sin λ ± −4ω2 sin2 λ − 4α2



, 

λ = −iω sin λ ± i ω2 sin2 λ + α2 . 

But ω2 sin2 λ << α2 =
g
�









f for the Earth, so

λ �− −iω sin λ ± iα. 

General solution: (A,B real)

g(t) = Aeiαt + Be−iαt{ } e−iωt sin λ . 
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A,B are fixed by initial conditions. Write it out:
 
A cos αt + i sin αt( ) + B cos αt − i sin αt( ) = C1 cos αt + iC2 sin αt, 

Let   C1 = A + B , C2 = A − B, 

 ⇒ q(t) = C1 cos αt + iC2 sin αt( ) e−iωt sin λ . 

There are 2 parts to the motion with different frequencies since ω << α. Let’s say e−iωt sin λ = 1.  
Then, since

r1 = Re q(t),    r2 = Im q(t) 

  = C1 cos αt     = C2 cos αt 

  ⇒ r1
2

C1
2 +

r2
2

C2
2 = 1. 

Eqn of an ellipse. However, we made r1 and r2 coordinates in the complex plane. The factor e−iωt sin λ   
is just a rotation in the complex plane:

2

1R
φ

R eiφ = R(cos φ + i sin φ)

a counter − clockwise
rotation

The real and imaginary parts of the complex number g(t) are just the r1,r2 components of the 
real motion. Therefore, a rotation in the complex plane is also describing a rotation of the vector 

r = r1 ê1 + r2 ê2 in real space. Because of the minus sign in e−iωt sin λ, this is a clockwise 
rotation in coordinate space. (It would be counter-clockwise in the Southern hemisphere.) Time 
it takes to complete a rotation:
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Goes around once a day at l = 900 (N or S poles) and does not precess at all at the equator (l = 00). 
Actual motion looks like:

Looks like the precession of the orbit of a planet under general relativity, but the forces here certainly 
are not central. The “force” that makes it precess, in fact, is purely fictional.
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10.7	 PROBLEMS

1.	 (a) I showed in the notes that instantaneously

	

Find the relation between r' =
a'  and r =

a . (
R =

A ); assume all derivatives of 
 to be zero.) Ans:

	

(b)	 Continue this process and find the relation between a'  and a .

2.	� Show that the angular deviation e of a plumb line from the true vertical at a point on the 
Earth’s surface at a latitude l is

	

where r0 is the Earth’s radius and g is acceleration due to gravity.

3.	� By balancing centrifical “force” and gravitational force, find the orbital velocity of an object 
in a circular orbit just above the Moon’s surface.

(Rmoon = 1.74 × 108 cm, Mmoon = 7.35 × 1025 gm, 

G = 6.67 × 10-8 cm dyne ×cm2

gm2
)

 Newton’s gravitational constant

4.	� At latitude, l = 31.5˚, how many hours does it take for the plane of a Focault pendulum 
to complete a revolution?
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11	 RIGID BODY MOTION

11.1	 CONCEPT OF A RIGID BODY

Attention up to now has been focused on individual point particles or collections of point particles 
for the most part. Not very realistic.

Consider the example:

x 
   
      θ 
    y 
          R     

� v   ˆ e z into page 
  
   mg 

     α 

Now have to deal with the disk, not as a collection of individual particles, but as a whole, i.e., a 
rigid body. For the disk,

  
İ  ̇ θ = Nz , I =

1
2
mR2 

    �    � 
like: maz = Fz   like: mass

“I” is a way of representing a rigid body in a simple manner. Kinetic energy is,

  
T =

1
2
m˙ y 2 +

1
2
İ  θ 2 , 

separated into rotational and translational parts. First, let’s understand this result for kinetic energy 
and then derive the form for “I”.
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11.2	 INSTANTANEOUS KINETIC ENERGY IN BODY FRAME

Picture:

The     
 r   axes are considered fixed to the body.
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Connection from last Chapter:

     
� ̇ r '=

� ̇ r +
� ˙ R +

� 
ω ×

� r . � (11.1)
��	 ����������� 

 measured   components measured 
in ‘‘fixed’’    in body frame 
    frame 

We are going to be describing the motion from the body frame. (Why not just describe it from 
the “fixed” axes? Wait a sec.) Clearly, we have 

��r = 0, ���r = 0, ����r = 0,…( ) � (11.2)

since we are keeping every point in the body fixed relative to body axis. In order to be able to deal 
with the motion of rigid bodies it is crucial that both the kinetic and potential energies separate 
into center of mass and relative motion pieces. We have already seen this is true for a collection 
of point particles or planets interacting via forces derived from potentials. Relative to the fixed 
frame we have

    

� 
R =

1
M

mα

� r α
'

α
∑ ,  (usually use     

� r α  for fixed frame)� (11.3)

T =
1
2

mα

� ̇ r α
'

α
∑ 2, � (11.4)

Using Eq.(11.1), we have

    
T =

1
2
M
� ˙ R 2 +

� ̇ R ⋅ mα

� 
ω ×

� r α( ) +
1
2α

∑ mα

� 
ω ×

� r α( )
α
∑ 2. 

But if we choose the origin of the body system to be at the center of mass, we have

mα

� r α = 0
α
∑ , 

�	
    
T =

1
2
M
� ˙ R 2 +

1
2

mα

� 
ω ×

� r α( )
α
∑ 2.  (separated)� (11.5)
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Actually, there is another possibility for describing rigid body motion: if 
R = 0  for some point 

other than the center of mass. This means the origins of the fixed and body systems are not in 
relative motion. We can then, with no loss in generality, assume the two origins coincide. It is 
important to realize what 

R = 0  means. Since the 
r  axes are fixed in the body, this is a requirement 

that at least one point associated with the body is not moving in some inertial frame. And, if we 
want this description to be valid over finite time intervals, that point must not move (equivalent 
to 
���R = 0,

����R = 0,… ). For example, one can describe in this case a top with one point fixed:

Can not describe a situation where the tip of the top is moved around arbitrarily, however.

11.3	 ANGULAR MOMENTUM AND THE INERTIA TENSOR

Axes situation for an arbitrary spinning object:

Download free eBooks at bookboon.com



MODERN INTRODUCTORY MECHANICS PART II Rigid Body Motion

139

Point: instantaneous axis of rotation passes through the center of mass if there is no external torque. 
An instantaneous axis of rotation always exists for a rigid body. Sometimes given, sometimes it 
must be deduced. We will learn later that even if     

 ̇ L = 0 , this does not imply     
 ̇ ω = 0  for a rigid 

body in general.

We know that 

��rα
' =

�
ω ×

�rα. � (11.6)

The angular momentum associated with this mass element is

�
Lα =

�rα ×
�pα
' = mα

�rα ×
��rα
' = mα

�rα ×
�
ω ×

�rα( ) . � (11.7)

Sum on a and use a vector identity,

�
L ≡

�
Lα

α

∑ = mα rα
2�ω −

�rα ⋅
�
ω( ) �rα 

α

∑ . � (11.8)
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Write this out explicily in terms of components. Useful notation (using “x” instead of “r” from 
now on in this chapter):

x�i
 � 

i← component label 

particle label

Then

Li = mα ωi xαk
2 − xαi

k
∑ xαj ωj

j
∑











α

∑ , 

    = mα

j
∑ ωj δij xαk

2 − ωj xαi
k
∑ xαj











α

∑ , 

    = ωj
α

∑ mα δij xαk
2 − xαi

k
∑ xαj











j
∑ .  � (11.9)

 Define (“Inertia tensor”; more on this later)

Iij ≡ mα δij xαk
2 − xαi

k
∑ xαj











α

∑ .� (11.10)

Then, in component notation (notice Iij = Iji),

Li = Iij ωj
j
∑ , � (11.11)

or in matrix notation, 	

L = I w ← column matrix � (11.12)
��	 ��
column  3x3 square matrix 
matrix 

Terminology:

Iii: “moments of inertia”

Iij (i≠j): “products of inertia”
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Because Iij for i ≠ j is nonzero in general, can now understand the above comment that     
 ̇ L = 0  does 

not in general imply. Of course, in the usual case that one considers the object to be a continuous 
distribution of mass rather than a collection of discrete elements, one has

mα →
α

∑ dv ρ(�r) ,
V
∫  so that 

   � 
(volume element) 

 Iij = dv ρ �r( )
v
∫ δij xk

2 − xixj
k
∑









. � (11.13)

Do a cylinder as an example: (density = ρ = constant. I usually use  as the cylindrical 
coordinates, but because ρ is being used as density, I will use the set  instead.)

3

      R
2

t

  1 

   I33 = rdrdφdz
dv in

cylindrical
coord.

� �� ��∫ ρ x2 + y2 + z2( ) − z2

x2+y2=r2
� ���� ����
















,

⇒ I33 =
1
4
R42πtρ. But ρ =

m
πR2t

, 

 ⇒ I33 =
1
2
mR2. 
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What about around other axes?

 I11 = ρ r dr dφ dz∫ x2 + y2 + z2( ) − x2



, 

  (x = r cos φ, y = r sin φ) 

     1      2  
I11 = ρ dr dφ dz∫ r3 sin2 φ + rz2 , 

1  = ρt dr dφ r3 sin2 φ = ρt 1
4
R4 φ

2
−
1
4
sin 2φ







|

0

2π

∫ , 

   =
π
4
ρtR4. 
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2  = 2πρ dr dz rz2 = 2πρ 1
2
R2 dz z2

−t2

t
2

∫∫ , 

             =
π
12

ρt3R2  

       ⇒ I11 =  1  + 2  = ρ
π
4
tR4 +

π
12

R2t3







 

              = m 1
4
R2 +

1
12

t2





. 

Similarly for I22. In addition, one can see that the Iij, i ≠ j, vanish by symmetry. Example:

I12 = − dv ρ �r( ) xy
r2sin φ cos φ
�∫ = 0. 

So, in this case we have

 
�
L = I33ω3ê3 + I11ω1ê1 + I22ω2ê2. 

Since I11≠I33, can see that     
 
L   and   

� 
ω   are pointed in different directions. Axes for which the Iij, i ≠ j, 

vanish are special and are called principal axes. We will find out how to identify them in a little bit.

11.4	 TRANSFORMATION PROPERTIES OF THE INERTIA TENSOR

It is now clear why we are describing motion from the body axes. It is clear that the Iij take on 
different values for different orientations of our axes. This is why in general we do not try to describe 
the motion from the fixed frame. As the body moves, the Iij would become functions of time. 
(Sometimes it is convenient to describe motion in the fixed frame, however, if the Iij are constant 
there. This is the case for a disk rolling down an inclined plane, say.)

Can relate the kinetic energy of rotation to Iij. We had

 
    
Trot =

1
2

mα
α
∑ � 

ω ×
� r α( )2, 

    
⇒ Trot =

1
2

mα
α
∑

� 
ω 2
� r α2 −

� 
ω ⋅
� r α( )2[ ]. 
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or

T =
1
2

mα

α

∑ ωi
2

i
∑ xαk

2

k
∑ − ωixαi

i
∑ ωjxαj

j
∑












, 

  =
1
2

mα

i,j
∑

α

∑ ωiωjδij xαk
2

k
∑ − ωiωjxαixαj









, 

=
1
2

ωiωj mα

α

∑
i,j
∑ δij xαk

2

k
∑ − xαixαj









, 

⇒ Trot =
1
2

Iijωiωj
i,j
∑ =

1
2

Liωi
i
∑ .   � (11.14)

We have

T' =
1
2

I
ij

' ω
i

'ω
j

'

i,j
∑ .

In a rotated coordinate system:

T =
1
2

Iijωiωj
i,j
∑ . 

T is a scalar, wi are vectors under rotations:

T’ = T.

ωk = λk�ω�
'

�

∑ (actually,  is ωk
'   a pseudovector:

ωk = (det λ) λk�ω�
'

�

∑ ) 

so then

T =
1
2

Iij
i,j
k,�

∑ λikλj�ωk
'ω�

' = T'. 
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In order for this equation to reproduce T' =
1
2

Ik�
' ωk

'ω�
'

k,�
∑ , we must have that 

Ik�
' = Iijλik

i,j
∑ λj� , a tensor.

Can write this as a matrix equation also:

Ik�
' = λki

T Iij
i,j
∑ λj�, 

or

Remember that , so this relation may be used to get I in terms of I’:

λ λTIλ( ) λT = λI'λT , 
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or (matrix notation)

I = λI'λT   	 (“similarity transformation”)� (11.15)

or (index notation)

Ik� = λki
i,j
∑ Iij

' λj�
T = Iij

'

ij
∑ λkiλ�j. � (11.16)

11.5	 PRINCIPAL AXES

How do we find the axes for which Iij, i ≠ j, vanish, and do such axes always exist?

Let us assume that   Iij
'  is diagonal:

Iij
' = Ii

'δij .	 (no sum on i)

As a matrix:

I' =

I1
' 0 0
0 I2

' 0
0 0 I3

'



















.

 

We have (switching the meaning of primed, unprimed quantities relative to (11.16))

Iij
' = λikλj�Ik�

k,�
∑ . 

The left hand side, which is diagonal, may be written as ijIi
' , where Ii

'  are the principal values 
of the inertia tensor. Multiply both sides by im and sum on i:

Ii
'δijλim =

i
∑ λimλik

i
∑










k,�
∑ λj�Ik�, 

   ⇒ Ij
' λjm = λj�Im�

�

∑ .   (no j sum) 

Can write �hs  as

 Ij
' λjm = λj�Ij

'δm�
�

∑ . 
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Can now group these terms together as

Im� − Ij
' δm�( )λj� = 0

�

∑ . � (11.17)

Free indices: j,m. This represents a set of 9 equations in 9 unknowns. That is, given a set of      Im� 
around some given axes, we have derived a set of equations that set conditions on the λj�   necessary 
to find principal axes. For these to have a nontrivial solution, we must have the determinant of 
the coefficients of the λj�   vanish, for each j value (which is a free index). In matrix notation (the 
“secular equation”):

det
(I11 − I') I12 I13

I21 (I22 − I') I23
I31 I32 (I33 − I')

















= 0, 

or

det (I - 1I’) = 0. 
��

unit matrix: 
1 0 0
0 1 0
0 0 1















 

This gives a cubic equation in I’. The 3 roots of this equation then give the values of the 3 
principal moments of inertia:

I' =

I1
' 0 0
0 I2

' 0
0 0 I3

'



















. 

This is a completely general procedure and can be done for any given origin. This procedure gives 
the moments, but what axes are being referred to?

There is another way of viewing this procedure. General experession for     
 
L  :

  
Li = Iijωj

j
∑ , 
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or

L = Iw.	 (matrix language)

What we are requiring above is equivalent to solving the equation

Iw = I’w. (w: column matrix)� (11.18)
��	 ��

3×3 matrix number (“eigenvalue”)
(either I1

',I2
',I3

'  from above)

Called eigenvalue problem. w’s which satisfly the above are called eigenvectors. General form:

number (“eigenvalue”)
↓

  A  x = A' x. 
  �  �      �  
square matrix  column matrix (‘‘eigenvector’’)

Download free eBooks at bookboon.com Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

We will turn your CV into 
an opportunity of a lifetime

Do you like cars? Would you like to be a part of a successful brand?
We will appreciate and reward both your enthusiasm and talent.
Send us your CV. You will be surprised where it can take you.

Send us your CV on
www.employerforlife.com

http://www.employerforlife.com


MODERN INTRODUCTORY MECHANICS PART II

149

Rigid Body Motion

Values of moments of inertia about principal axes correspond to eigenvalues. Directions of principal 
axes correspond to eigenvectors. (One sees the same mathematics, called linear algebra, in many 
other places in physics, including quantum mechanics.)

Written in matrix language, the above is 

(I – 1I’)w = 0,

or in explicit component language (also follows from Eq.(11.17) by multiplying both sides by ωj
' , 

summing on j, and using ω� = ωj
' λj�

�

∑ ), 

Iij − ′I δij( ) ωj
j
∑ = 0. � (11.19)

Explicitly, 3 equations:

I11 − ′I( ) ω1 + I12ω2 + I13ω3 = 0,

I21ω1 + I22 − ′I( ) ω2 + I23ω3 = 0,

I31ω1 + I32ω2 + I33 − ′I( ) ω3 = 0.










� (11.20)

Again, the condition that there be a solution says det(I – I’1) = 0, as before. Get something new 
this way: the priciple axis eigenvectors. These are the linear combinations of w1, w2, w3 which are 
associated with each eigenvalue,   I1,2,3

' . How do we find the eigenvectors? After we have determined 
the values of the eigenvalues,   I1,2,3

' , we substitute one of the values back into the 3 above equations 
and solve for the ratio of values of w1: w2: w3. Why do we only get the ratio of values of w1,2,3? If 
wi solves (i = 1,2,3; these are eigenvector labels, not vector components)

Iωi = Ii
'ωi , 

then �ωi = cωi , c arbitrary, also solves it. Thus, the normalization of the wi column vector 
is undetermined. This makes physical sense since we would not expect the magnitude of 

�
ωi 

(corresponding to the rate of rotation) to be determined, but simply it’s direction (given by the 
ratio of components).

Notice that if 
�
ωi is given by (vector notation)

�
ωi = ω1

iê1 + ω2
iê2 + ω3

iê3 , � (11.21)
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we can build a unit vector out of it by dividing by �ωi : 

ê
ωi

=
�
ωi

�
ωi =

ω1
i

ωi ê1 +
ω2
i

ωi ê2 +
ω3
i

ωi ê3 , � (11.22)

ωi ≡ ω1
i2 + ω2

i2 + ω3
i2 . � (11.23)

We then recognize these components as the direction cosines studied in Chapter 1:

 

  
  

   

       

α

β

γ
ωi≥

1

2

3

�
ωi

cos γ =
ω3
i

ωi

cos β =
ω2
i

ωi

cos α =
ω1
i

ωi
















⇒ cos2 α + cos2 β + cos2 γ = 1.

So, if we know the ω1
i : ω2

i : ω3
i  ratio for some eigenvalue   I

', we can always find the direction 
of the corresponding principal axis. This represents a unique axis of rotation since the choice of 
origin fixes a point through which this vector points.
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There is another important property of the eigenvectors, wi. Consider a situation where one has 
distinct (unequal) eigenvalues,   I1

' ≠   I2
'. Then (matrix notation)

Iω1 = I1
'ω1 , Iω2 = I2

'ω2, 

⇒ ω2Iω1 = I1
'ω2ω1 ,ω1Iω2 = I2

'ω1ω2 . 

     � � � 
row matrix    column matrix  

     � � � 
row matrix    column matrix 

But

     Iij = Iji 
      ↓ 

ω2Iω1 = ω
i

2Iijωj
1

i,j
∑ = ωj

1Ijiωi

2∑  = ω1Iω2 , 

  ω1ω2 = ωi
1ωi

2

i
∑ = ω2ω1 , 
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so

I1
'ω1ω2 = I2

'ω2ω1 , 

⇒ I1
' − I2

'( ) ω1ω2 = 0, 

  I1' ≠ I2
' ⇒ ω1ω2 =

�
ω1 ⋅

�
ω2 = 0. 

Thus, eigenvectors of distinct eigenvalues are orthogonal. (point in ^ directions). If a double root of 
the secular equation occurs so that   I1

' = I2
', then nothing can be said about the relative directions 

of 
�
ω1  and 

�
ω2 , other than that both are ^ to 

�
ω3. However, there is no loss in generality if we 

choose �ω1 ⋅
�
ω2 = 0. One can prove that the principal axes can always be chosen to constitute 

an orthogonal set. Thus, for example we may always choose the eigenvalue orthogonalization/
normalization condition, �ωi ⋅

�
ωj = δij .

It is conceivable that the   I1,2,3
'  could be complex since they correspond to the solution of a cubic 

equation. A slight variant of the above argument shows that the   I1,2,3
'  are in fact always real.

11.6	 PARALLEL AXIS THEOREM

Let’s locate the CM of a body and calculate the inertia tensor about it and another set of axes 
parallel to the CM ones.

 
1,2,3 axes :Jij
1 ,2 ,3 axes :Iij

 

      3

      
 
3 

    
 
 
 
v 
r 

          
 
2 

        
 
 
        2

CM
  
 
 
 

v a 
1

α

1

�r
α

�a
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On one hand, we have

L( )i =
�
Lα( )i

α

∑ = mα

�rα ×
�
ω ×

�rα( )( )i
α

∑ ,

for the 1,2,3 axes. We already showed this may be written as 

  
�
L( )i = Jijωj

j
∑ , 

⇒ mα

�rα ×
�
ω ×

�rα( )( )i
α

∑ = Jijωj
j
∑ ,

 

where Jij is the inertia tensor for the 1,2,3 axes. Similarly, for the   1 ,2 ,3  axes we have 

mα

�
rα × ω ×

�
rα( )( )i =

α

∑ Iijωj,
j
∑

which defines the CM inertia tensor Iij. Question: How are Iij and Jij related to one another? The 
connection is given once one recognizes that 

�rα =
�a +

�
rα. 

Then

           1  
 mα

�rα ×
�
ω ×

�rα( )( )
α

∑ = mα

�
rα ×

�
ω ×

�
rα( )

α

∑  + 

   2        3  
mα

�a ×
α

∑ �
ω ×

�a( ) + mα

�a ×
�
ω ×

�
rα( ) +

�
rα ×

�
ω ×

�a( )( )
α

∑ . 

Lots of simplifications happen:

1  = Iijωj
j
∑ , (Iij: CM inertia tensor)

2  = M �a ×
�
ω ×

�a( ) = M �ωa2 −
�a �ω ⋅

�a( ) , 
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or (in index notation)

( 2 )i = M δija
2 − aiaj ωj

j
∑ . 

Also

3  = �a × (�ω × mα

�
rα

α

∑










0
� �� ��

+ mα

�
rα

α

∑
0

��� ��
×
�
ω ×

�a( )  = 0. 

Therefore, we have 

Jijωj
j
∑ = M δija

2 − aiaj ωj
j
∑ + Iijωj

j
∑ . � (11.24)
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The coefficient of wj on both sides of this equation must be the same:
 

⇒ Jij = Iij + M δija
2 − aiaj 

inertia tensor
for a point
mass at CM� ���� ����

  “Parallel Axis Theorem”� (11.25)

As an example, consider again a cylinder of radius R, but rotated from a point on it’s edge rather 
than in the center as before.

R

axis of rotation
(3 axis)

a≥
�a

We know from before that I33 = 
1
2

 MR2. Since the vector 
a , pointing from the 3 axis to the old 

(  3 ) axis has no components along this direction, we have J33 = 3
2

 MR2.

11.7	 EULER ANGLES

We have written K.E. and angular momentum as

  
T =

1
2

ωiIijωj
i,j
∑ , 

  
Li = Iijωj

j
∑ , 

under the conditions that the body is rigid and that the origin of the body system is either at the 
center of mass or at a point for which     

 ˙ R = 0 . The analogous results for linear motion are of course 

  
T =

1
2

M˙ r i
2

i
∑ ,   Pi = M˙ r i.

There is a major difference in handling the two cases: When the   ˙ r i are integrated, we get linear 
coordinates that tell us, at each instant in time, the location of the particle or body. The wi, 
however, when integrated are not quantities which give us the orientation of a rigid body in space. 
In order to describe the orientation, 3 angular quantities will be needed just as 3 linear quantities 
are needed to locate a body’s origin. Many different choices or schemes are possible. A conventional 
and convenient choice are the “Euler angles”.
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First, I will simply describe the situation. (Better pictures are available in other books.) Final situation:

      
 

  

                     
 

        
 

       plane  o f 1, 2 axe s
“l in e of  n ode s”

φ                    

    
 

pla ne  of  1 ’, 2
 “line  o f no de s”

   ax es

2

2'

1

1'

θ
.

θ

ψ

ψ
.

3

φ
.

3'

'

 

 are the Euler angles. (As shown, all are positive.) They represent a choice of generalized 
coordinates useful in defining the Lagrangian for a moving rigid body.

General relation relating rotated coordinates:

x = x’.	 (matrix notation)� (11.26)

Represents a passive rotation. First, rotate positively (counterclockwise as viewed from above the 
1’,2’ plane) through an angle  about   x3

':

  ′ ′ x = λφ ′ x , � (11.27)

where

λφ =

cφ sφ 0
−sφ cφ 0
0 0 1
















. � (11.28)

Special notation:

  cφ ≡ cos φ ,sφ ≡ sin φ. � (11.29)
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Now rotate (counterclockwise) by  about   x1
'':

  ′ ′ ′ x = λθ ′ ′ x , � (11.30)

 λθ =
1 0 0
0 cθ sθ
0 −sθ cθ
















. � (11.31)

Next, rotate (counterclockwise) by ψ about   x3
''': 

  x = λψ ′ ′ ′ x ,  � (11.32)

λψ =

cψ sψ 0
−sψ cψ 0
0 0 1
















. � (11.33)

Put it all together:

x = λψ λθ λφ ′x( )( ) = λψλθλφ( ) ′x . � (11.34)

Download free eBooks at bookboon.com Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

Maersk.com/Mitas

�e Graduate Programme  
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in  
the North Sea  

advising and  
helping foremen  

solve problems

I was a

he
s

Real work  
International opportunities 

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili� 
 I joined MITAS because  

Maersk.com/Mitas

�e Graduate Programme  
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in  
the North Sea  

advising and  
helping foremen  

solve problems

I was a

he
s

Real work  
International opportunities 

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili� 
 I joined MITAS because  

Maersk.com/Mitas

�e Graduate Programme  
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in  
the North Sea  

advising and  
helping foremen  

solve problems

I was a

he
s

Real work  
International opportunities 

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili� 
 I joined MITAS because  

Maersk.com/Mitas

�e Graduate Programme  
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in  
the North Sea  

advising and  
helping foremen  

solve problems

I was a

he
s

Real work  
International opportunities 

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili� 
 I joined MITAS because  

www.discovermitas.com

http://s.bookboon.com/mitas


MODERN INTRODUCTORY MECHANICS PART II

158

Rigid Body Motion

Call λ ≡ λψλθλφ . Explicitly,

= 

  

cψcφ −cθsφsψ( ) cψsφ + cθcφsψ( ) sψsθ( )
−sψcφ −cθsφcψ( ) −sψsφ + cθcφcψ( ) cψsθ( )

sθsφ( ) −sθcφ( ) cθ

 

 

 
 
 

 

 

 
 
 
. λ

We may now think of the angular velocities 
��ψ,
��θ,
��φ  as describing the instantaneous state of rotation 

of the body. [Directions come from infinitsmal rotations of  and the right hand 
rule.] We would like to find the relationship between these quantities and the w1,2,3. (  

 
ω   represents 

of course the instantaneous angular velocity projected on the body axes.)

First of all, it’s obvious that

��ψ = �ψ ê3 . � (11.35)

What about 
��θ and 

��φ? It’s also clear from the picture that (
��θ  is in the 1,2 plane)

��θ = �θ cos ψ ê1 − �θ sin ψ ê2  � (11.36)

Let’s now find the components of 
��θ  using the Euler matrix. All we have to do is:

  x = λ ′ x    where   ′x =
0
0
�φ
















.

It is easy to verify that

x =

�φ sin ψ sin θ
�φ cos ψ sin θ
�φ cos θ



















, 

⇒
��φ = �φ sin ψ sin θ ê1 + �φ cos ψ sin θ ê2 + �φ cos θ ê3 . � (11.37)
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Adding it up gives

    �ω =
��ψ +

��φ +
��θ, 

⇒
�
ω = �φ sin φ sin θ + �θ cos ψ, �φ cos ψ sin θ(  

   −�θ sin ψ, �ψ + �φ cos θ)        
� (11.38)

or

ω1 = �φ sin θ sin ψ + �θ cos ψ,
ω2 = �φ sin θ cos ψ − �θ sin ψ,
ω3 = �ψ + �φ cos θ.










11.9	 EULER’S EQUATIONS OF MOTION

We are going to study the motions of rigid bodies using 2 methods. One, we already know, is the 
Lagrangian method. This is the reason Euler angles have been introduced. The Lagrangian approach 
is clear. The kinetic energy is

T =
1
2

ωiIijωj .
i,j
∑  

We now express w1,2,3 in terms of the Euler angles  and their derivatives and use the 
Euler-Lagrange equations of motion,

∂L
∂qi

−
d
dt

∂L
∂qi









 = 0, 

where .

There is another approach possible which works directly with the w1,2,3. Remember:

d
�
Q
dt









fixed

=
d
�
Q
dt









rotating

+
�
ω ×

�
Q . 
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Take our fixed and rotating axes origins at the CM of the particle and instantaneously coincident 
in direction. Let   

� 
Q →

� 
L ,

d
�
L
dt









f

=
d
�
L
dt









r

+
�
ω ×

�
L. 

But

d
�
L
dt









f

=
�
N    and   

�
L( )i = Iijωj

j
∑ , 

and also

dLi

dt









r

=
d
dt

Iijωj( )
j
∑ . 

But since we recognize that the body axes are attached to the body

d
dt

Iijωj = Iij �ωj, 
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then

Ni = Iij �ωj
j
∑ + εijk ωj Ik�ω�( )

j,k,�
∑ .� (11.39)

If we now pick our body axes along the principal axes, then   Iij i ≠ j( ) = 0, and

εijk ωjω� Ik�
=Ikδk�
�

j,k,�
∑ = εijk ωjωk

j,k
∑ Ik . 

Written out explicitly, we have (“Euler’s equations”)

N1 = I1 �ω1 + ω2ω3 I3 − I2( ),
N2 = I2 �ω2 + ω3ω1 I1 − I3( ),
N3 = I3 �ω3 + ω1ω2 I2 − I1( ).










� (11.40)

They are completely equivalent to the Lagrangian equations but in general have a different form 
when w1,2,3 are expressed in terms of . They are coupled first order differential equations. 
One strategy: solve for w1,2,3(t) and then invert the above relationships between w1,2,3 and 
and their derivatives to solve for (t), (t), (t).

11.9	 SYMMETRICAL TOP – EULER SOLUTION

Let’s try carrying out this procedure for torque-free motion (    
 
N = 0 ) for a body with I1 = I2

I12
� � � � � ≠ I3 

(a “symmetrical top”).

  
   

     

  

          

    

 

  symmetry axis

e3̂

CM
1

23

ω≥�ω

Download free eBooks at bookboon.com



MODERN INTRODUCTORY MECHANICS PART II

162

Rigid Body Motion

With no loss in generality, take w3 > 0. We can realize such a situation in an orbiting space craft 
or a falling elevator, say.

Of course, if   
� 
ω   is initially pointed along a principal axis (along 3 or anywhere in the 1,2 plane), 

then the motion is trivial. Then we simply have,

  0 = I3˙ ω 3  or   0 = I12˙ ω 1,2 

 3= constant or    1,2 = constant. 

In the general case, we have to solve:

I12 �ω1 + ω2ω3 I3 − I12( ) = 0,
I12 �ω2 + ω3ω1 I12 − I3( ) = 0,
I3 �ω3 = 0.









Notice immediately that w3 = const. in the general case also. We may now write the other two 
equations as

˙ ω 1 + Ωω2 = 0, 

  ̇ ω 2 − Ωω1 = 0, 

where (the “precession rate”)

Ω ≡
I3 − I12

I12

 

 
  

 
 ω3 . � (11.41)

   �       � 
(either positive     positive constant 
or negative) 

Then we have

  ˙ ̇ ω 1 + ˙ ω 2Ω = ˙ ̇ ω 1 + ω1Ω
2 = 0. � (11.42)

Solution:

  ω1(t) = A cos Ωt + α( ). 
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Since

     
  
ω2 = −

1
Ω

˙ ω 1 , 

 ⇒ ω2 = A sin Ωt + α( ). 

(A, a = constants; can take a =0 with no loss in generality.) We recognize these as the parametric 
representation of a circle since  A

2 = ω1
2 + ω2

2.. Describes (note that 
�
ω  =constant.):

    Ω < 0
     (I3 < I12)

                  
v 
ω 

      2

  1
prolate

�
ω

    Ω > 0
     (I3 > I12)

               
v 
ω 

 ω3

  ω2

    ω1    2

1,2,3 are Body
axes

   1
oblate

�
ω
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� 
L , � ω ,ˆ e 3 are all in the same plane:

    
� 
L = I12 ω1

ˆ e 1 + ω2
ˆ e 2( ) + I3ˆ e 3ω3 , 

    
v 
ω = ω1ˆ e 1 + ω2ˆ e 2 + ω3ˆ e 3 , 

so

    
� 
L ⋅ � ω × ˆ e 3( ) =

� 
L ⋅ −ω1

ˆ e 2 + ω2
ˆ e 1( ) = 0. 

Somewhat pitiful pictures:

             
� 
L 

          
� 
ω 

  ˆ e 3ω3

      α
                 β

β > α

                     
� a 

 

         
 

v 
L 

           
v 
ω 

                   
 
ˆ e 3ω3   β

  or                                  α

              α > β

                         
v a 

�
ω

�
L

�a

  Case 1: prolate    Case 2: oblate 

    
 
L   is a constant in magnitude and direction in the above diagrams. We have

tan β =

�
L ⋅
�a
a

L3
=
�
L
L3

⋅
�
ω − ω3ê3�
ω − ω3ê3









, 

 =
I12ω1

2 + I12ω2
2

I3ω3

⋅ 1
ω1
2 + ω2

2
, 

� tan � =
I12
I3

ω1
2 + ω2

2

ω3

. � (11.43)

Clearly b is a constant in time. Also

tan α =
�a
ω3

=
ω1
2 + ω2

2

ω3

 � (11.44)
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is also a constant. They are related by 

tan β
tan α

=
I12
I3

. � (11.45)

Therefore:
 
If   I3 < I12 Ω < 0( ) ⇒ β > α , 		 (Case 1: prolate)
 
If   I3 > I12 Ω > 0( ) ⇒ α > β, 		 (Case 2: oblate)

Motion is summed up in the following pictures:

    
� 
L 

      
� 
ω     

� 
L ,    
� 
ω ,  x3 in

same plane
x3

  α        2      β − α
Space or fixed

 1  cone
  Body cone

(rolls w/o slipping)

      Case 1:   Ω < 0, β > α  

       
 

v 
L       fixed cone

   
   x3    

v 
ω 

    
 

v 
L ,  

v 
ω ,  x3 in

 same plane
   α−β
 2
α

     
1 Body cone

�
L

�
L

�
ω

�
ω,x3

 
   Case 2:   Ω > 0, α > β  
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Notice: 
� 
ω rotates clockwise w.r.t. 1,2 (body) axes in Case 1, whereas it rotates counterclockwise 

w.r.t. 1,2 axes in Case 2. Also notice if   I12 = I3 ,     
 
L   and 

� 
ω point in the same direction and 

there is no precession. (The case for origin at CM of a sphere or cube.)

Now complete the discussion by getting q(t), (t), (t) from w1,2,3(t). Remember:

ω1 = �φ sin θ sin ψ + �θ cos ψ,
ω2 = �φ sin θ cos ψ − �θ sin ψ,
ω3 = �ψ + �φ cos θ.










or, inverting,

  
˙ φ =

ω1 sin ψ + ω2 cos ψ
sin θ

, � (11.46)

  
˙ θ = ω1 cos ψ − ω2 sin ψ, � (11.47)

  ̇ ψ = ω3 − cot θ ω1 sin ψ + ω2 cos ψ( ). � (11.48)
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If we take   x3
' along     

 
L  , then we identify

q = b.	(b = const.)� (11.49)

Therefore ˙ θ = 0 and (from (11.47))

  0 = ω1 cos ψ − ω2 sin ψ , 

  ⇒ 0 = A cos Ωt( ) cos ψ − A sin Ωt( ) sin ψ , 

or

  0 = A cos Ωt + ψ( ). 

If A ≠ 0, then we may choose ( (t) gives rotation angle w.r.t. line of nodes)

  
ψ t( ) = −Ωt +

π

2
,  � (11.50)

without loss in generality. And, from (11.46),

  
˙ φ =

A
sin θ

cos Ωt( ) sin ψ + sin Ωt( ) cos ψ( ),

  ⇒ �φ =
A

sin θ
sin Ωt + ψ t( )( )

π2
� ��� ���

=
A

sin θ
, 

      (choice) 

    
  
⇒ φ t( ) =

A
sin β

t + / C 
0

θ = β( )  � (11.51)

Eq.(11.48) is now satisfied also since

  −Ω =
?
ω3 − cot θ A

sin θ
sin θ







, 

  cot θ = cot β =
I3ω3

I12 ω1
2 + ω2

2
, 

(11.41) ⇒ −
I3
I12

− 1








 ω3 =

?
ω3 − A I3ω3

I12 ω1
2 + ω2

2
,

          ⇒ A = ω1
2 + ω2

2 . √  
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Thus, the time dependence of the Euler angles is given by

  
θ = β, ψ t( ) = −Ωt +

π

2
, φ t( ) =

ω1
2 + ω2

2

sin β
t. 

φ(t) may also be written as:

  
φ t( ) =

sin α
sin α − β( )

Ωt, 

where a, b are defined above. Thus, sin α
sin α − β( )

Ω  is the precession rate of the line of nodes.

11.10	SYMMETRICAL TOP – LAGRANGIAN SOLUTION

We have used Euler’s equations to first get w1,2,3(t), then use these to get q(t), (t), (t). Other 
way of proceeding: Lagragian using  from the start. Now do the same problem (force 
free symmetrical top) from the Lagrangian point of view. We have

T =
1
2

ωi Iijωj
i,j
∑ .

Again, pick principal axes with symmetry axis of body along x3:

T =
1
2
I12 ω1

2 + ω2
2( ) +

1
2
I3ω3

2. 

But now use earlier expressions for w1,2,3 in terms of �θ, �φ, �ψ:

T =
1
2
I12 �θ

2 + �φ2 sin2 θ( ) + I3 �ψ + �φ cos θ( )
2




.  � (11.52)

The Lagrangian equations are (L = T here):

∂T
∂θ

−
d
dt

∂T
∂ �θ








 = 0, � (11.53)

∂T
∂φ

−
d
dt

∂T
∂�φ









 = 0,� (11.54)

∂T
∂ψ

−
d
dt

∂T
∂ �ψ









 = 0,� (11.55)
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We have

∂T
∂ �θ

= I12�θ,

∂T
∂�φ

= I12�φ sin
2 θ + I3 �ψ + �φ cos θ( ) cos θ,

∂T
∂ �ψ

= I3 �ψ + �φ cos θ( ),
















 

∂T
∂θ

= I12�φ
2 sin θ cos θ − I3�φ �ψ + �φ cos θ( ) sin θ

∂T
∂φ

=
∂T
∂ψ

= 0.













Putting the pieces together gives us the Lagrangian equations of motion:

(11.53)   ⇒ I12̇  ̇ θ − I12˙ φ 2 sin θ cos θ + I3˙ φ ˙ ψ + ˙ φ cos θ( ) sin θ = 0,� (11.56)
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(11.54) 
  
⇒

d
dt

I12˙ φ sin2 θ + I3 ˙ ψ + ˙ φ cos θ( ) cos θ[ ] = 0, � (11.57)

(11.55) 
  
⇒

d
dt

I3 ˙ ψ + ˙ φ cos θ( )[ ] = 0. � (11.58)

Euler’s equations can be recovered from these. For example, substitute in (11.58):

   ̇ ψ = ω3 − cot θ ω1 sin ψ + ω2 cos ψ( ), 

 
  
˙ φ =

1
sin θ

ω1 sin ψ + ω2 cos ψ( ), 

⇒ �ψ + �φ cos θ = ω3 − cot θ(ω1 sin ψ + ω2 cos ψ 
            −ω1 sin ψ − ω2 cos ψ). 

Thus, Eq.(11.58) just says

I3 �ω3 = 0, 

which is one of the Euler equations above. Likewise, (11.56) and (11.57) above are equivalent to 
the other two Euler equations (after some manipulations).

Can also apply the Lagrangian approach in describing the symmetrical top with one point fixed:

          3’

    2
  3

 �

���CM

      mg
v
   h

    2’

      

         �
  � ���

  1’ line of nodes
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Same T as above, except now L = T – U, where U = mgh cos q. From the previous results, one 
can show that the total energy, E = T + U, can be written as

  
E =

1
2
I3ω32 +

1
2
I12˙ θ 2 + Ueff(θ), � (11.59)

where the effective potential, Ueff(q), is given by,

  
Ueff(θ) =

(pφ − pψ cos θ)2

2I12 sin2 θ
+ mgh cos θ, � (11.60)

where (11.57), (11.58) give rise to the conserved conjugate momentums,

pφ ≡
∂L
∂̇  φ 

= I12˙ φ sin2 θ + I3 ˙ ψ + ˙ φ cos θ( ) cos θ, � (11.61)

  
pψ ≡

∂L
∂˙ ψ 

= I3 ˙ ψ + ˙ φ cos θ( ). � (11.62)

The minimum of this effective potential gives the angle of inclination at which the top precesses 
steadily.
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11.11	PROBLEMS

1.

≥
origin

ω

v
≥

metal bar

1

2

3
�
ω

�v

A thin solid metal bar (r = const.) of mass m and length l is rotated uniformly about one 
end at an angular velocity, w, directed along the 3 axis.

a)	 Compute the kinetic energy.
b)	The origin in (a) is given a velocity, v , along the 2 axis. Now compute the kinetic 

energy. (Be careful!)

2.	� (a) Given that the potential energy of a small mass ma  is given by Va = gmaxa, where 
xa is the height of ma, show that the total potential energy of an arbitrary object in the 
gravitational field is given by V = gMX, where X is x-coordinate center of mass coordinate, 
X ≡ (

�
RCM)x ,, and M is the total mass.

(b) Show that the total torque on the object, 

N , is given by

	
�
N =

�
RCM ×

�
F , 

where 

RCM   locates the center of mass and 


F  is the total force.

3.	� (a) A thin uniform rod of length b and mass m stands vertically upright on a rough floor 
and then tips over. What is the rod’s angular velocity just before it hits the floor?

(b) Repeat for a rod initially standing upright on a smooth floor (no friction). Find the 
final angular velocity about the CM just before striking the floor.

(c) You should have gotten the same angular velocity for both (a) and (b) parts. Why?
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4.	� A solid disk (r = const., radius = R, mass = M) rolls without slipping on the ground at a 
constant rate, w = �θ  = const. Compute it’s kinetic energy two ways.

θ

 

a)	 By using Eq.(11.5) of the text.
b)	 By using the fact that the point of contact between the disk and ground acts as the 

instantaneous axis of rotation. (You will have to use the parallel axis theorem to do this part.)

Do you get the same answers for (a) & (b)?

5.	� A pendulum consists of two point masses, m1 and m2, attached to a completely rigid, 
massless bar of length . m1 is attached halfway down the bar, m2 is at the end.

θ
pivot point

m

m1

2

l

/2

l/2

l l
2

l
2

a)	 Find the bar’s moment of inertia about the pivot point.
b)	Assuming small oscillations, find the bar’s period of motion.
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6.	� A pendulum consists of a thin bar of mass m and length  attached to a pivot point as 
shown. It swings in a plane.

θ

l pivot pointl

a)	 Find the bar’s moment of inertia about the pivot point.
b)	Assuming small oscillations, find the bar’s period of motion. Does it swing faster or 

slower than a pendulum of the same length with mass m concentrated at it’s end?

7.	� (a) A “physical pendulum” consists of an arbitrary object of mass M whose moment of 

inertia about the pivot point is I. (Motion still confined to a plane.) Given that R is the 

distance from the center of mass of the object to the pivot point, show that this pendulum 

has the same small oscillation period as a simple pendulum of length L = I
MR

.

(b) Find the length of simple pendulums with the same period as problems 11.5 and 11.6.

8.	 The moment of inertia tensor, I, for some object has the form,

	

I =
X M 0
M X 0
0 0 Y
















,

where X, Y and M are some given real numbers (X, Y > 0 and |M| < X), find:

a)	 the three moments of inertia, Ii
' , i=1,2,3.

b)	 the angular rotation eigenvectors, 
�
ωi, associated with the principle axes.
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9.	� (“Slamming door problem”) A door is constructed of a thin homogeneous slab of material; 
it has a width w and a height . You are given that the line of hinges bends inward 2° 
with respect to the vertical, in the 3’–2’ plane; see the figure. Assuming frictionless hinges, 
what is the angular velocity of the door just before it closes if it starts from rest after being 
opened 90°? [Hint: Find the Euler angles which transform from the body to the fixed axes 
and conserve energy.]
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θ

1'

3'

2'

w

CM
R
≥

l

3

ψ

line of nodes

(measured in 1'1 plane)

2

1

1 and 1' axes coincide when
door is open

�
R

l

10.	 (a) Given principal axes for which the angular momentum vector may be written

	
�
L = I1ω1ê1 + I2ω2ê2 + I3ω3ê3 , 

where ê1,2,3 are body frame unit vectors, show that the components of 

L  along the 

��θ , 
��φ and 

��ψ directions are 

	

	

	

	 .

(b)	� Alternatively, given components of �ω along the 
��θ , 

��φ  and 
��ψ  directions as ωθ , ωφ, and ωψ 

respectively, show that one may write

	

Lθ  = I12 ωθ , 
Lφ = I12 (ωφ -ωψcosθ)  + I3 ωψcos �,

	 Lψ = I3 ωψ.
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11.	 Eqs.(11.56) and (11.57) are supposedly equivalent to the Euler equations:

	

By using the expression for w1,2,3 in terms of Euler angles, show that Eqs.(11.56) and 
(11.57) may be recovered from the above. [Hint: Consider (1) cos y – (2) sin y and (1) 
sin y + (2) cos y.]

12.	 Show the expression for the effective potential for the symmetrical top, Eq.(11.60),

	   
Ueff(θ) =

(pφ − pψ cos θ)2

2I12 sin2 θ
+ mgh cos θ, 

follows from the expression for the total energy (T in Eq.(11.52) and U = mgh cosq) and 
the definitions of the cyclic momentums, pφ and  pψ,  given in (11.61), (11.62).

13.	� A solid sphere (r = const.) is made into a fixed point top by supporting it on a point as 
shown. Gravity is acting downward.

ωR

Mg

≥�ω

Find the minimum angular frequency, wmin, such that the sphere is stable in a vertical 
position. (Use the result of #12 above.)

14.	� Consider a thin rod for which I3 = 0, making the Euler angle y irrelevant. Show that the 
effective potential for this system has a minimum at an angle q0 given by

	
cos θ0 = −

mgh
I1�φ

2  . 
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Other Problems

15.	� Given that the 1’,2’,3’ axes are principal axes with moments of inertia I11
' , I22

' , I33
'  

respectively, find the moment of inertia along the new 3 direction, I33, in the Euler angle 
diagram, p.11.20 of the text (angles are q, y and f), using the transformation law of the 
Iij under rotations.

16.	� Show that the ratio of the magnitude of the instantaneous angular velocity, �ω , to the 
precession rate, W, for a symmetrical top undergoing torque-free motion, is given by

	

�
ω

Ω
=

sin β
sin(α − β)

, 

where a is the angle of the vector 
�
ω with respect to the 3 (body) axis and b is the angle 

of the instantaneous angular momentum, 

L , with respect to the same axis.

17.	� A “spherical pendulum” is a simple pendulum that is unconstrained in it’s angular motion; 
it can move freely about it’s pivot point. Consider a spherical pendulum of length L acted 
on by gravity with a mass M attached to it’s end. The mass of the attachment of length L 
is negligible.
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a)	 Derive the Euler-Lagrange equations for the pendulum in the spherical coordinates q 
(polar angle) and f (azimuthal angle). Take q=0 to represent the equilibrium position. 
Show that the z-component of the angular momentum, z , is conserved.

b)	For uniform circular motion in f when q =const.  0, show that the period of the 
motion may be written as

	 T = 2π L cos θ
g











1/2

. 

c)	 Consider general motions of the pendulum subject only to the condition that q << p/2. 
Defining the total energy of the system, E, relative to q=0, show that the turning points 
of the q motion are

	
θt ≈

E
MgL








 ±

E
MgL










2

−
�z
2

gM2L3
. 

18.	� A symmetric top (I1 = I2  I12) of mass m and constants of the motion   pψ  and pφ  precesses 
steadily, �φ =  const. Let  = pφ   p. h is the distance from the CM to the fixed tip.

a)	 Find the angle, q0, at which the precession occurs.
b)	Show the precession rate is

	

�φ =
mgh
I12

. 

19.	� (a) A thin uniform rod of length b and mass m stands almost vertically upright on a rough 
floor and then tips over without it’s end slipping on the floor. The initial tipping angle is 
q0<<1 with respect to the vertical. Find the amount of time, T, that the rod takes to fall 
over and hit the floor.

	 (b) The same problem as in (a) but with a smooth, frictionless floor.

20.	� (a) Given a set of principal axes and all axes parallel to them for some object, show that 
the sum of the moments of inertia is minimized when the origin is at the center of mass.

	� (b) An object has principal axes for which I11 > I22 > I33. Characterize all the points which 
are also principal axes for axes parallel to the original set.
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Extra: Using the concept of eigenvalue degeneracy (for moments of inertia) and the parallel 
axis theorem, find a larger set of axes which are also principal axes for the object in (b), 
but which are not parallel to the original set.

21.	� Consider the symmetric top (I11 = I22 ≠ I33)  with one point fixed. We briefly 
discussed how this system can be solved with a Lagrangian approach. However, now attempt 
to write Euler’s equations for this system. Can it be done? Remember the components of 
the equations refer to the body system. If these equations can be formulated, discuss the 
manner in which they may be solved (but do not attempt it!). If not, tell me why not.

22.	� Consider a solid cylinder of mass M, length t, and radius R of uniform density, r. Let the 
1, 2 plane be located at the top of the cylinder. (This is a little different from the situation 
in the text on p.11.5.)

1

2
3-axis out of
the page

45o

1
'

2'

R

'
 

a)	 Find the elements of the inertia tensor with respect to the unprimed axes.
b)	Find the elements of the inertia tensor with respect to the primed axes.
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12	 COUPLED OSCILLATIONS

12.1	 COUPLED DYNAMICAL EQUATIONS

In a number of cases we have derived coupled linear differential equations. We have treated such 
systems as special cases, but it is now time to develop some general techniques for handling them. 
Mathematically, we will encounter here both the use of complex numbers (which were used 
in the Focault pendulum discussion and various differential equation solutions) as well as the 
eigenvalue-eigenvector matrix algebra of the last chapter. Examples of systems these techniques will 
cover: conservative, linear mechanical or electrical oscillations, molecular vibrations, approximate 
planetary motions, and many more. We will also use stability analysis and the concept of generalized 
coordinates. I will first introduce the theory and then will work out a number of examples to 
illustrate the general techniques.

Let us consider a system with generalized coordinates   qj (j = 1,…, n; n = no. of “degrees of 
freedom”), related formally to the x�i by

  
xαi = xαi qj( ) ⇒

∂xαi

∂t
= 0. � (12.1)
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Usually, the qj we will consider will be measured from equilibrium positions or lengths. For example,

θ1,2 = 0 in
      θ1     θ1 equilibrium.

m1 spring       m2

Let us also only consider . This means we are limiting our discussion to conservative 
systems for which H = T + U = const. in time. Another limitation of the following discussion 
will be the assumption that the system is linear. That is, we will only consider potentials that are 
quadratic in the generalized coordinates, or are approximately quadratic. For small oscillations, 
we have

  
U q1,q2,...,qn( ) = U0 +

∂U
∂qkk

∑ 0| qk 

   

    

+
1
2

∂2U
∂qj∂qk

= Ajk =Akj

� � � � � j,k
∑ 0| qjqk + ..., 

             (constants) 
� (12.2)

where higher order terms will be neglected. In addition, we will assume or require that (q10, q20,…
etc. are equilibrium qi’s):

1.	 U0 = U(q1 = q10, q2 = q20,...) = 0. 

2.	
∂U

∂qk
0| = 0 for each k. 

3.	
  
 ∂2U

∂Q2 0| > 0, , where Q is any linear combination of the generalized coordinates, qi.
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Condition 1 is no restriction in the applicability of the analysis since the absolute value of the 
potential U is always arbitrary up to an overall constant. Conditions 2 & 3 above are just conditions 
for stable equilibrium in a system with n degrees of freedom. Notice that condition 3 above (which 
is a sufficient, rather than necessary, condition for stability) is equivalent to the requirement that 
U(qi) > 0 for quadratic potentials, given U0 = 0. We can show this as follows. Assume (i = 1,…, n)

  
Q = xiqi

i
∑ ,� (12.3)

where the xi are arbitrary constants. Then

  

∂2U
∂Q2 =

∂

∂Q
∂U qi( )
∂qii

∑ ∂qi

∂Q
, 

but 
  

∂qi

∂Q
=

1
xi
, so

  

∂2U
∂Q2 =

∂

∂Q
∂U qi( )
∂qii

∑ 1
xi

=
∂2U

∂qi∂qji,j
∑ 1

xixj
. � (12.4)

Condition 3 now gives,

∂2U
∂qi∂qji,j

∑ 0| 1
xixj

> 0. � (12.5)

(The sum in (12.5) is only over the nonzero xi values.) Since the xi are arbitrary (but nonzero) 
constants, this is the same as

U ˜ q i( ) > 0, � (12.6)

where 
 
˜ q i =

1
xi

  (see Eq.(12.2)).

Because of our condition 
  
∂xαi

∂t
= 0,  we know from Chapter 7 for a system of point particles, 

for example, that we may write (the mjk here were called ajk there)

T =
1
2

mjk
j,k
∑ ˙ q j˙ q k , � (12.7)

where

  
mjk = mα

α,i
∑

∂xαi
∂qj

∂xαi
∂qk

= mkj .� (12.8)
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Note that in general mjk = mjk(qi) (functions of the qi), unlike the Ajk above, which are just constants. 
However, consistent with the restriction to quadratic terms in U, we will restrict ourselves to 
quadratic terms in the   

˙ q j. This means that we will expand

mjk qi( ) = mjk 0| +
∂mjk

∂q� 0|
�

∑ q� + ...,

neglect
� ����� �����

 � (12.9)

and neglect everything except the first term, which is assumed non-zero. The reason is that terms 
like     ~ q ˙ q j˙ q k  in the Euler-Lagrange equations produce nonlinear terms in the differential 
equations. (Neglecting such nonzero terms give additional restrictions on what is meant by “small 
oscillations”.) Notice also that, in general

∂T
∂q�

=
1
2

∂mjk

∂q�j,k
∑ �qj�qk, 

so that with (12.9) we have

∂T
∂q�

= 0. 

Download free eBooks at bookboon.com Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

Get Help Now

Go to www.helpmyassignment.co.uk for more info

Need help with your
dissertation?
Get in-depth feedback & advice from experts in your 
topic area. Find out what you can do to improve
the quality of your dissertation!

http://www.helpmyassignment.co.uk


MODERN INTRODUCTORY MECHANICS PART II

185

Coupled Oscillations

After these restrictions, the general form of our Lagrangian in generalized coordinates, qi, is

                real constants 
      ↓            ↓ 

  
L = T − U =

1
2

mjk ˙ q j˙ q k
j,k
∑ −

1
2

Ajk qjqk
j,k
∑ . � (12.10)

Equations of motion are given by 

  

∂L
∂qk

−
d
dt

∂L
∂˙ q k

= 0. � (12.11)

We have

  

∂U
∂qk

= Ajk qj
j
∑ , (Ajk = Akj) � (12.12)

  

∂T
∂˙ q k

= mjk ˙ q j
j
∑ . (mjk = mkj)� (12.13)

⇒ Ajk qj + mjk ˙ ̇ q j( )
j
∑ = 0. � (12.14)

Although we have derived these equations in the context of particle oscillations, the small oscillations 
of many realistic rigid body systems can be so characterized as long as the Lagrangian may be put 
into the form of (12.10) above.

12.2	 EIGENVALUE/EIGENVECTOR SOLUTION

We will use complex number analysis to simplify the solution of this sytem of equations. Under 
conditions 1, 2, 3 above, we know that the solutions are oscillations. Therefore assume

qj t( ) = aj e
iωt � (12.15)

   �  � 
complex (involves    real frequency 
two undetermined  
constants)   

where the real part of the right hand side is understood. Plugging this back above, we find

Ajk − ω2mjk( ) aj
j
∑ = 0. � (12.16)

[This is almost the same form as the equations which determine principal axes:

Iij − ′ I δij( ) ωj = 0.
j
∑ ] 
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Again, the condition that there is a nontrivial solution for the aj is that the determinant of the 
matrix (Aij – w2 mij) be zero:

det

A11 − ω2m11 A12 − ω2m12...
A21 − ω2m21 A22 − ω2m22...

• •
• •
• •

























= 0. � (12.17)

this gives an nth   order equation in w2, the roots of which will be labeled at   ωr
2, r = 1,2,...n. 

These are called the eigenfrequencies or characteristic frequencies. In general, the above is more difficult 
than solving the analogous equation for the principal moments of inertial since the w2 terms (the 
analog of the priciple moments, I’) enter off-diagonal elements of the matrix also. However, one 
is solving the same mathematical problem in either case.

Analogy:

 
      

  
Inertia tensor    

  
Coupled Equations 

 
eigenvalues:    Ii     ⋅    ωr

2    
   (i = 1,2,3)     (r = 1,2,...,n) 
   (principle axes)    (oscillatory modes) 
 
eigenvectors:   �ωi   (ωj

i )   ⋅  �ar   (ajr ) 
    j = {1,2,3}     j = {1,2,...,n} 
        (vector components)   (vector components) 

Just as there are directions in physical space which render the inertia tensor diagonal, there are 
directions in mode space, associated with the eigen frequencies   ωr

2   for which the motions uncouple. 
We get the ar   by the same procedure as in the last chapter: substitute a known  in the algebraic 
equations, and then solve for the ratios

a1
r  : a2

r  : a3
r
 :...: an

r  
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for a given eigenvalue,   ωr
2  . As before, the overall normalization of the ar   (chosen real) are arbitrary. 

This makes physical sense here also since this corresponds to the amplitude of the motion, which is 
not determined by the equations of motion but by the initial condition. Since there are n ar  ’s, we 
can require n condtions to arbitrarily normalize them. In the inertia tensor case, we required that

�
ωi ⋅

�
ωi = 1 , i = 1,2,3.

Here, we require,

mjk aj
rak

r

j,k
∑ = 1 , r = 1,2,...n. � (12.18)

(That this combination is always positive can be shown from the positivity of T, the kinetic energy.) 
Also, we can prove that (just a generalization to an n-dimensional space of the similar proof in 
Ch.11 for the inertia tensor)

  
mjk ajraks

j,k
∑ = 0 , r ≠ s( ) � (12.19)
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for ωr
2 ≠ ωs

2,, and that for degenerate roots (  ωr
2 = ωs

2)  we may always choose this equation 
to hold. The above two conditions can be written together as

  
mjk ajraks

j,k
∑ = δrs . � (12.20)

Also, we can show that the   ωr
2   are all real. In fact one can show, under conditions 1,2,3 above, 

that   ωr
2  > 0.1  Without loss of generality, one may further choose   ωr > 0..

The general solution is now given by (real part still understood)

qj(t) = βr aj
r eiωrt

r=1

n

∑ , � (12.21)

where the aj
r  are now all determined (up to an overall sign) and   βr  are so called “scale factors” 

which, in general, are complex. (We still have not built in the initial conditions, so we still need two 
arbitwrary constants for a second order differential equation.) The   βr  are the amplitudes associated 
with the rth eigenmode as determined by the initial conditions. If only a single   βr  is nonzero1,

βr = 0, r ≠ k, βk ≠ 0, 

then only a single eigenmode of the system has been excited and the solution of the motion is 
particularly simple.

qj(t) = βk ajk e
iωkt (no k sum) 

Or, introducing the “normal coordinates”,

nk ≡ βk e
iω kt , � (12.22)

we have

  qj(t) = nk ajk . � (12.23)

In general,

qj(t) = nkajk
k
∑ . � (12.24)

Download free eBooks at bookboon.com



MODERN INTRODUCTORY MECHANICS PART II

189

Coupled Oscillations

Expressed in normal coordinates, one has (using the orthogonality condition, (12.20), as well as 
(12.16))

  
T =

1
2

˙ n r
2

r
∑ , U =

1
2

ωr
2 nr

2

r
∑ , 

 ∂L
∂nr

−
d
dt

∂L
∂˙ n r

 

 
  

 
 = 0, 

     ⇒ ˙ ̇ n r + ωr
2 nr = 0.  � (12.25)

This in turn shows that the energy associated with each normal mode is constant since for the rth 
mode,

  dt∫ ˙ n r × ˙ ̇ n r + ωr
2 nr = 0( ), 

  
⇒ E = constant =

1
2
˙ n r
2 +

1
2
ωr

2 nr
2  

= Tr + Ur . � (12.26)

Final cookbook recipe for solving a system for small oscillations:

1.	� Write the Lagrangian, L, of the system in terms of generalized coordinates, qi, and find the 
Ajk and mjk either by using the explicit formulas (Ajk = -

  

∂2L
∂qj∂qk 0

, mjk = 
  

∂2L
∂˙ q j∂˙ q k 0

) 

or by comparing to the form of the Lagrangian, Eq.(12.10).
2.	 Form the matrix 

 Ajk − ω2mjk( )  and find the n eigenvalues, ωr
2. .

3.	� Determine the ratios a1
r  : a2

r  : a3
r
 :...: an

r   and normalize the ai
r  according 

to Eq.(12.20).

4.	� Write the general solution for the qi as in Eq.(12.21). Physical interpretation follows from 
an examination of the motion of the normal modes (setting each br=1 and other b’s=0). 

5.	 Apply the initial conditions and find the br.
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If T and U for a system are not given, but the equations of motion are, then obviously we may 
skip step 1 and instead form the characteristic equation using the ansatz Eq.(12.15) for the qi. As a 
faster procedure, note that we may also skip the normalization/orthogonality condition, (12.20), and 
determine qj(t) = bj

r

r
∑ eiωrt   (br absorbed in the new bj

r ) directly from the initial conditions. 

Note that in step 3, since the eigenvector equations determine only the ratio of the aj
r , we need 

consider only n-1 of the equations in determining all such ratios. Also note that, similar to the 
case of degenerate eigenvectors for principal axes (see discussion on p.11.16 and prob.#11.8 in 
the simple case that M=0), there is an indeterminacy in the eigenvectors corresponding to the 
repeated roots of the characteristic equation. For example, in the case a single repeated root the 
indeterminacy may be removed by any arbitrary specification of one of the roots – the other will 
then be determined by Eqs.(12.20).
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12.3	 EXAMPLE

Enough of the theory, let’s do some examples to make this more understandable. Coupled masses 
example (this is mathematically the same for small oscillations as the coupled pendulum problem 
at the start of this chapter with M=m1=m2, x� �, , and k =  ℓ being the pendulum length; 
see also prob.3.9):

 

        k       k12    k

 m1 m2

    m1 = m2 = M

Let x1, x2 (playing the role of the q’s) be measured from equilibrium positions. Step 1  :

  
T =

1
2
M ˙ x 1

2 + ˙ x 2
2( ). 

 
⇒  m11 = m22 = M  ,  m12 = m21 = 0, 
 

  
U =

1
2
kx1

2 +
1
2
kx2

2 +
1
2
k12 x2 − x1( )2, 

 

  
⇒ A11 =

∂2U
∂x1

2 0| = k + k12, 
  
A22 =

∂2U
∂x22 0| = k + k12, 

 

  
A12 =

∂2U
∂x1∂x2

0| = −k12, A21 = -k12. 

 

Step 2 :

  
det

k + k12 − ω2M −k12

−k12 k + k12 − ω2M

 

 
 

 

 
 = 0,

    ⇒ k + k12 − ω2M( )2 − k12
2 = 0, 

  ⇒ ω1 =
k + 2k12

M









1/2

, ω2 =
k
M









1/2

. 
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Step 3 :

Equations for eigenvectors, r = 1 case (for n=2, only one of the following eigenvector equations 
is necessary):

A11 − ω1
2m11( )a11 + A21 − ω1

2m21( )a2
1 = 0,

A12 − ω1
2m12( )a11 + A22 − ω1

2m22( )a2

1 = 0.









 ⇒
−k12a1

1 − k12a2
1 = 0

−k12a1
1 − k12a2

1 = 0






⇒ a1

1 = −a2
1
. 

r = 2 case:

k12a1
2 − k12a2

2 ⇒ a1
2 = a2

2
.

Normalization:

mkj aj
rak

s = δrs
j,k
∑ .

           overall sign 
           undetermined 
           ↓ 

r = s = 1:    M a1
1( )

2
+ M a2

1( )
2

= 1 ⇒ a1
1 = +

1
2M

 

 

r = s = 2:     M a1
2( )

2
+ M a2

2( )
2

= 1 ⇒ a1
2 = +

1
2M

 

                   � 
              same comment 

Step 4 :

x1(t) =
1
2M

Re β1 e
iω1t + β2 e

iω2t( ),

x2(t) =
1
2M

Re −β1 e
iω1t + β2 e

iω2t( ).












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[Note we have	(nr(t) = βr e
iωrt) 

x1 = a1
rnr = a1

1n1 + a1
2n2

r
∑ , 

   ⇒ x1 =
1
2M

n1 + n2( ). 

x2 = a2
rnr = a2

1n1 + a2
2n2

r
∑ , 

   ⇒ x2 =
1
2M

−n1 + n2( ). 

Thus n1 =
M
2

x1 − x2( ), n2 =
M
2

x1 + x2( ). 

Physical interpretation of the modes follows from these results. Set n1 = 0 � x1 = x2  
for mode 2 (“symmetrical mode”). Set n2 = 0 � x1 = -x2  (“antisymmetrical mode”).]
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Step 5 : As an example, consider the initial condition,

x1(0) = -x2(0) = A,  ˙ x 1(0) = ˙ x 2(0) = 0. 

Then
 real part 
  of �1,�2 

     ↓    ↓ 

A =
1
2M

β1r + β2r( )  

  -A =
1
2M

−β1r + β2r( ) 

⇒ β2r = 0 , β1r = 2M A

Also

      imaginary part 
   ↓  ↓ 

�x1(0) = −
1
2M

ω1β1i + ω2β2i( ) = 0, 

�x2(0) =
1
2M

ω1β1i − ω2β2i( ) = 0, 

 � �1i = �2i = 0. 

If we had chosen �x1(0) = − �x2(0) ≠ 0, , then we would have had b2i = 0, b1i = − 2M
ω1

�x(0) ,

and mode 1 would still be the only one excited. Any combination of the initial conditions  
x1(0)= - x1(0)=- x2(0)≠ 0 and/or �x1(0) = − �x2(0)≠ 0  would have also excited the anti-
symmetrical mode alone.

Complete solution for the above boundary conditions:

x1 = A cos (w1t),	 x2 = -A cos (w1t).

The initial conditions x1(0) = x2(0)≠ 0 and/or �x1(0) = �x2(0)≠ 0  would have excited 
the symmetrical mode (2) alone. The general motion is a linear combination of the two modes. 
It is complicated to understand in general, but simplifies in the cases k12 << k (“weak coupling”) 
and k12 >> k (“strong coupling”). Let’s examine these cases in more detail.
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12.4	 WEAK/STRONG COUPLING

Let’s rewrite the above general solution to prepare to discuss weak coupling. Introduce

ω0 ≡
ω1 + ω2

2
, ωb ≡

ω1 − ω2

2
. 

  � 
‘‘beats’’ 

Can show (mucho algebra!) that the above general solutions for x1(t), x2(t) may be written as  
(solve for w1, w2 in terms of w0, wb, substitute above and use trigonometric identities),

x1(t) =
A1

2M
cos(ω0t)cos(ωbt) −

A2

2M
cos(ω0t)sin(ωbt) 

       +
A3

2M
sin(ω0t)cos(ωbt) −

A4

2M
sin(ω0t)sin(ωbt), 

x2(t) = −
A4

2M
cos(ω0t)cos(ωbt) −

A3

2M
cos(ω0t)sin(ωbt) 

       +
A2

2M
sin(ω0t)cos(ωbt) +

A1

2M
sin(ω0t)sin(ωbt). 

where

A1 = �1r + �2r  ,  A2 = �1i - �2i, 

A3 = -�1i - �2i  , A4 = �1r - �2r 

(Please confirm this.) Notice that there are still only 4 undetermined (real) constants, A1, A2, A3, 
A4. Let us now plug in the initial conditions,

x1(0) = D, x2(0) = 0,   ˙ x 1(0) = ˙ x 2(0) = 0. 

These initial conditions excite both modes 1 and 2, as opposed to the previous set. Plugging in 
above, we find

A1 = 2M  D, A2 = A3 = A4 = 0. 

So the general solution is

x1(t) = D cos(ω0t)cos(ωbt),
x2(t) = D sin(ω0t)sin(ωbt).
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This form is convenient for discussing the case of weak coupling, k12 << k. Defining  

  
ε ≡

k12
2k

, we have

 small compared 
  to �0 

      ↓ 

ω0 �−
k
M

1 + ε( ) , ωb �− ε
k
M
. 

Of course 
  

k
M

 is the decoupled frequency. Motion looks like:

x1(t)

t

Tb
Tb
T0

= 10

T0T
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t

Tb

T0TT

Tb
T0

= 10x2(t)

T0 =
2π
ω0

, Tb =
2π
ωb

; Tb >> T0  in weak coupling.
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Phenomenon of beats occurs anytime a linear combination of very close frequencies is present. 
(Listen for them the next time you take a ride on a two-propellar airplane.) This corrresponds to 
an approximate multiplicative modulation of the uncoupled motion.

To discuss strong coupling, let us recast the above solution (still exact for the given BC’s) as

 

also confirm 
x1(t) =

D
2

cos ω1t + cos ω2t[ ],

x2(t) =
D
2

− cos ω1t + cos ω2t[ ].











 

Then, for strong coupling, k12 >> k, we have  �ε ≡
k

2k12











1
2












 

 ω1 �−
2k12
M

1 +
�ε2

2








 , ω2 �− �εω1 . 

We find the motion looks like:

x1(t)

D
2

D

D
2
cosω2t

ω1
ω2

= 10
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D
2

D

D
2
cosω2t

ω1
ω2

= 10x2(t)

Now get an additive modulation. The two frequencies here are understandable from:

k12

M    M
ω =

2k12
M �− ω1 , 

 2M ω =
2k
2M

=
k
M

= ω2 .

�
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12.5	 EXAMPLE USING MECHANICAL/ELECTRICAL ANALOGY

Let’s do one more example. It is a coupled system we encountered before, but we did not solve it 
because the equations were coupled. We had in Ch.3:

k1   k2
    m1      m2    (no wall

    on this
    side)

   x1 : length of spring 1 
   x2 : length of spring 2  

(These lengths are compared to the equilibrium lengths.)

m1��x1 = −k1x1 + k2x2    1

m2 ��x1 + ��x2( ) = −k2x2     2  
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Reminder of the mechanical/electrical analogy:

F  ↔  V  ,    ˙ x   ↔  I  ,  k  ↔  
  
1
C
 

x  ↔  q  ,  m  ↔  L  ,   

1   � 	 L1��q1 +
1
C1

q1 −
1
C2

q2 = 0,

2   � 	 L2 ��q1 + ��q2( ) +
1
C2

q2 = 0.

Circuit looks like:

    L1

C1 I1
C2

   I2

    L2  

Assume (do not need to know T or U here since we already have the equations of motion)

q1,2(t) = a1,2 ei�t,

   

1
C1

− L1ω
2







 a1 −

1
C2

a2 = 0,

−L2ω
2a1 +

1
C2

− L2ω
2







 a2 = 0.













 

  ⇒ det

1
C1

− L1ω
2 −

1
C2

−L2ω
2 1

C2
− L2ω

2





















= 0, 

  ⇒ 1
C1

− L1ω
2








1
C2

− L2ω
2







 −

1
C2

L2ω
2 = 0, 

or    L1L2ω
4 −

1
C2

L1ω
2 −

1
C2

L2ω
2 −

1
C1

L2ω
2 +

1
C1C2

= 0. 
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A quadratic equation in w2. Roots are:

ω2 =
1
2

1
C2L2

+
1

C2L1
+

1
C1L1









 ±

1
2

1
C2L2

+
1

C2L1
+

1
L1C1











2

−
4

C1C2L1L2

. 

Because the above is so complicated, let us just look at a special case: C1 = C2, L1 = L2. Then

ω2 =
1
LC

3
2

±
5
2









. 

Call

ω1
2 =

3 + 5
2LC

, ω2
2 =

3 − 5
2LC

. 

These are the normal mode frequencies of this circuit. We will skip the step of normalizing the 
eigenvectors. The general solution is (real part understood)

where the 
ai   are in general complex. To find the eigenvector relations, substitute ω1

2, ω2
2 back 

into the eigenvector equations:

  
1
C
− Lω1

2 
 

 
 a1

1 −
1
C
a21 = 0,

   ⇒ a2
1 = −

1 + 5
2









a1

1 . 

Likewise

⇒ a2
2 = −

1 − 5
2









a1

2. 
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We now have,

q1(t) = a1
1eiω1t + a1

2eiω2t

q2(t) = −
1 + 5

2








 a1

1eiω1t −
1 − 5

2








 a1

2eiω2t










	 4 real constants.

Using n1,2 = eiω1,2t as the normal mode variables, we find

n1 =
5 − 1
2

q1 − q2











1
5 a1

1 , 

n2 =
1 + 5

2
q1 + q2











1
5 a1

2 .

Mode 2 occurs when n1 = 0, so

⇒ q2 =
5 − 1
2

q1 .
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Mode 1 occurs when

q2 = −
1 + 5

2








 q1 . 

These are like the modes for the coupled masses we saw in our first example, except the oscillation 
amplitudes are unsymmetrical. We can now build in the initial conditions. Let’s say

�q1(0) = �q2(0) = 0 , q1(0) = q10, q2(0) = q20 . 

Plugging in above, we get (remember the a\o(1,
1), a\o(1,

2) are complex)

0 = Re [i�1a1
1 + i�2a1

2],

0 = Re −
1 + 5

2








 iω1a1

1 −
1 − 5

2








 iω2a1

2











,

� a11( )I = a12( )I = 0.
   �     � 
  imaginary part 

Likewise

     real part 
     ↓      ↓ 
 q10 = a1

1( )R  + a1
2( )R , 

q20 = −
1 + 5

2








 a1

1( )R −
1 − 5

2








 a1

2( )R , 

  
a1
1( )R =

1
5

−q20 +
5 − 1
2

q10








,

a1
2( )R =

1
5

q20 +
1 + 5

2
q10









.














 

Full solution:

Whew!

Download free eBooks at bookboon.com



MODERN INTRODUCTORY MECHANICS PART II

205

Coupled Oscillations

12.6	 PROBLEMS

1.	� Prove that the squared characteristic angular frequencies, ωr
2, defined from (see Eq.(12.16); 

no sum on r)

	

ωr
2 =

ai
rAijaj

r

i,j
∑

ai
rmijaj

r

i,j
∑

 , 

are positive, given the equilibrium conditions in the text.
2.	� A double pendulum system is arranged such that at equilibrium the pendulums from 

which the masses, m, are hung are displaced at an angle, q0, from vertical as shown. The 
pendulum lengths are  and the spring constant is k. The unstretched length of the spring 
is L and X is the distance between the attachment points, as shown.

l l

Find the eigenfrequencies of the system for small oscillations about q0. [Hints: First, show that 

the equilibrium angle, q0, is determined by Y � X-L = 2 l sin�0 + mgk
 tan �0. Then, 

argue that the potential, U, is given for angles q1, q2 by U(q1,q2) = mgℓ(1-cos(q0+q1)) + mgℓ 

(1 – cos(q0-q2))+
1
2

 k(Y – ℓsin(q0+q1) – ℓsin(q0-q2))
2. Expand for small angles and solve for the 

eigenfrequencies.]
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3.	� A mass M moves horizontally along a smooth rail. A spring with spring constant, K, 
attaches the mass M to the wall. Let x be the distance that the mass M is located from it’s 
equilibrium position.

m

M

θ

K

x
eq. position
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The Lagrangian is (you do not have to derive this)

	 L ≈
1
2
(M + m)�x2 +

m
2
(b2�θ2 + 2b �x �θ) − mgb

2
θ2 −

K
2
x2, 

in terms of x and q (q << 1).

a)	 Find the squared eigenfrequencies (ωr
2 ) of the system.

b)	Find the conditions on x and q which excite each of these modes.

4.	� In the first semester we considered a double pendulum, consisting of two equal masses 
connected to each other and a horizontal support

by weightless rods of length ℓ. For small oscillations, the equations of motion we found 
were,

	

��θ1 +
1
2
��θ2 +

g
l
θ1 = 0, 

 
��θ2 + ��θ1 +

g
l
θ2 = 0. 

a)	 Find the characteristic frequencies of the system.
b)	Solve for the normal coordinates, n, in terms of q1, and q2. Describe the conditions 

which excite these modes.
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5.	� Three masses, arrayed as shown, are coupled together in a straight line with two springs, 
both with spring constant, k. This is a one-dimensional problem, so motion can only occur 
along the x-direction.

a)	 Find the squared eigenfrequencies (ωr
2 ) of the system.

b)	Find the corresponding eigenvectors (they need not be normalized). Descibe the 
motion associated with each of the normal modes.

Other Problems

6.	 In two dimensions, a particle of mass m near the origin experiences the potential,

	 U(x,y) =
1
2
kxx

2 +
1
2
kyy

2 + kxyxy . 

Given that kxy
2 < kxky , and that kx and ky are positive,

a)	 Find the eigenfrequencies of the system, ω1,2
2 ..

b)	Show that

	
y =

x
2kxy

((kx − ky) + (kx − ky)
2 + 4kxy

2 ), 

excites one mode (which one?), and

	

y =
x

2kxy

((kx − ky) − (kx − ky)
2 + 4kxy

2 ), 

excites the other.
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7.	 Prob. 3.8 of this text considers a coupled system of two masses, as shown.

The friction between masses 1 and 2 provides a coupling of the motion proportional to the 
relative velocity between the masses, �x1 − �x2. Find the equations of motion and discuss 
coupled oscillations of the system. (There are actually no normal modes here since the 
friction dissipates the energy of the system. Look for complex characteristic frequencies.)

8.	 Prove that Eq.(12.19),

	
mjk aj

rak
s

j,k
∑ = 0 , r ≠ s( )  

holds for non-degenerate eigenfrequencies, ωr
2 ≠ ωs

2. [Hint: Look at the similar proof 
in Ch.11.]
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9.	� Consider the hoop-mass system with angles q and ψ  as shown. Both the particle and 
hoop have mass m; the radius of the hoop is R.

θ

ψ

R

m

hoop mass = m

particle mass = m

Center

a)	 Show that for small oscillations, the Lagrangian is

	 L ≈ mR2(3�θ2 +
1
2
�ψ2 + 2�θ �ψ) − mgR(3

2
θ2 +

1
2
ψ2 + θψ), 

and the equations of motion are:

	

g
a
(φ + θ) + (2��φ + ��θ) = 0, 

g
a
(3φ + θ) + (6��φ + 2��θ) = 0. 

b)	Find the normal mode angular frequencies of the system, w1 and w2.
c)	 Find the time-independent ratio, f(t)/q(t), for each of the normal modes of this system.
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13	 SPECIAL RELATIVITY

13.1	 INVARIANCE AND COVARIANCE

Newton’s equations are: (� = 1,..., n)

    
mα

d2 � x α
dt2

=
� 
f α 	 (3n equations)� (13.1)

This is for an n-particle system. Showed under certain circumstances they could be written as

  

∂L
∂xαi

−
d
dt

∂L
∂˙ x αi

 

 
  

 
 = 0, � (13.2)

where L = T – U. We then have

    
T =

1
2

mα

� ˙ x α
2 ,

α
∑  � (13.3)

    
U = Uαβ

α < β
∑ � x α −

� x β( ).   

�
fαβ = −

�
∇αUαβ,

�
fα =

�
fαβ.

β≠α

∑
















 � (13.4)

Let us try making the transformation,

�xα →
�xα + δ

�x. � (13.5)

in L. Describes a change of origin, a translation. Under this change

  

T → T

U → U

 
 
 

Lagrangian is said to be invariant. We also learned in Ch.6 that this means something is conserved, 
in this case linear momentum. On the other hand, consider the transformation

    
� x α →

� x α − tδ � v , � (13.6)
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in L. Describes a change in velocity or inertial coordinate system. Called a Galilean transformation 
or a Galilean boost. Under this transformation,

    
T →

1
2

mα
α
∑ � ̇ x α − δ

� v ( )2,

   U → U. 

Lagrangian is not invariant � nothing conserved. However, the equations of motion derived from 
the new Lagrangian are unchanged. We still get

    
mα

d2 � x α
dt2

=
� 
f α, 

in the boosted frame. The equations themselves are said to be covariant. Defns:

Invariant:	 unchanged in value as the result of some transformations.

Covariant:	 Equation or quantity that is unchanged in form as the result of a transformation.
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13.2	 TWO POSTULATES OF SPECIAL RELATIVITY

Physics at the end of the 19th  century based upon 3 things:

1.	 Newton’s equations (mechanical phenomena, including gravity and waves.)
2.	 Maxwell’s equations (electromagnetism)
3.	 Galilean transformations

Although we still accept Maxwell’s equations today in the same form as in the 19th  century, their 
interpretation is completely different. Through the influence of the mechanical view of the universe 
from 1. above and the knowledge that light had wave characteristics (diffraction, interference, 
etc.), it was assumed that there was a medium for it’s propagation, the ether, and that the form 
of the electromagnetic equations given by Maxwell were valid only for a frame of reference at rest 
with respect to the ether since the equations were not covariant under Galilean transformations. It 
was thought that reference frames in uniform motion with respect to each other were completely 
equivalent as far as mechanical properties were concerned, but not with respect to electromagnetic 
phenomena. There was only one frame of reference for which, for example, it was thought that the 
velocity of light had the value predicted by the “rest form” of Maxwell’s equations.

The Michelson-Morley experiment (~1887) was designed to test for motion of the Earth relative 
to the ether. Of course it failed to detect any. So experimentally:

i.	 The speed of light is an invariant under velocity boosts. (That is, it is observed to 
propagate with the same speed by all inertial observers.)

Einstein accepted this fact even though he was, perhaps, not up to date on the M/M experiment. 
He also realized that the concept of the ether was superfluous. With no ether rest frame, the only 
frame of reference that can have any significance to an observer is the frame fixed to himself or 
herself. Therefore, Einstein’s second postulate:

ii)	The laws of physical phenomena are covariant under velocity boosts. (That is, the form 
of the laws are the same for all inertial observers.)

Einstein thought of “physical phenomena” as either electromagnetism or gravity. This has now been 
enlarged to include other forces; “weak” and “strong” nucleus forces as well as electromagnetism and 
gravity. (ii) above implies modifying Maxwell’s equations or abandoning Galilean transformations. 
It was the boldness of Einstein which led him to modify the transformation laws between 
inertial observers.
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13.3	 LORENTZ TRANFORMATIONS DEDUCED

Consider:

       

    

    

 

 
 

v

x' = x -vt
x' = x
x' = x

1 1
2 2
3 3

Galilean:

O O'

x

x 11

2 2

33x
'

x'

x'

x',

K K'

t = t'

A light pulse is emitted from the common origin of K, K’ when they coincide at a single instant 
of time. According to (i), the wavefront is described by:

K:   r = ct ⇒ r2 − c2t2 = 0, � (13.7)

K’:  ′r = c ′t ⇒ ′r 2 − c2 ′t 2 = 0. � (13.8)

By definition:

r2 = x1
2 + x2

2 + x3
2 , ′r 2 = ′x1

2 + ′x2
2 + ′x3

2 

 = xi
2

i=1

3

∑    = xi
'2

i=1

3

∑  

(The bar means coordinates relating to the position of the light pulse.) Or:

K: xi
2 − c2t2 = 0

i
∑ ,

 
� (13.9)

K’:  ′xi
2

i
∑ − c2 ′t 2 = 0. � (13.10)
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Introduce

x4 ≡ ict , ′x4 ≡ ic ′t .

�	 K:  xµ
2 = 0

µ =1

4

∑ , � (13.11)

	 K’:  ′xµ
2 = 0

µ =1

4

∑ . � (13.12)

Usually use i,j,k = 1,2,3 (Latin) but m, n, l = 1,2,3,4 (Greek). xµ is called a 4-vector. Because 
the form of the equation for the light pulse front has the same form in K or K’, we realize this 
relation is covariant under a change of inertial observers. (Although the values of the individual 
terms change in going from K to K’, the equation itself is unchanged in form.) We want the most 
general (linear) transformation (replacing the Galiliean one) which is consistent with this relation, 
but which reduces to the known Galilean transformation for low velocities (compared to light). (It 
is easy to show that xµ

2 = 0
µ =1

4

∑  is not covariant under the above Galilean transformation.)
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Thus, we assume the transformation law has the general form of:

′x1 = λ11x1 + λ12x2 + λ13x3 + λ14x4 ,
′x2 = λ21x1 + λ22x2 + λ23x3 + λ24x4 ,
′x3 = λ31x1 + λ32x2 + λ33x3 + λ34x4 ,
′x4 = λ41x1 + λ42x2 + λ43x3 + λ44x4 ,













 � (13.13)

where the l’s are not yet known. (Notice we have dropped the bars on the coordinates – we are 
not necessarily talking about light pulse coordinates at this point, so we do not have xµ

2 = 0
µ =1

4

∑ ,  in 
general.) The final form of the above will be called a Lorentz transformation. Can think of xm, xµ

'  
as representing the space and time coordinates of an arbitrary space-time “event” from the point 
of view of two different inertial coordinate systems, the common origin of which is at the place/
time where/when the K, K’ spacial origins coincide.

The general form of this transformation looks similar to the orthogonal transformations of Ch.1. 
Actually, orthogonal transformations are consistent with the covariance of xµ

2 = 0
µ

∑ .. We had

′xi = λij xj ,
i
∑

′t = t.









It preserves the “length” of the space, time terms in the sum individually:

′xi
2

i
∑ = xi

2

i
∑ ,

′t 2 = t2 .








⇒ ′xµ

2 = 0
µ

∑ . 

So, 3-D orthogonal transformations are a specific type of Lorentz transformation. Realizing this, 
we now think of Lorentz transformations as describing velocity boosts and/or rotations. It also 
describes more than this, as we will see. (A Poincaire transformation also describes displacements.)

for a L.T.:

′xµ = λµνxν

ν

∑ . matrix :
′x = λx









� (13.14)

Therefore

′xµ
2

µ

∑ = λµνλµγ

µ,ν,γ
∑ xνxγ. � (13.15)
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We want to transform the statement ′xµ
2 = 0

µ

∑  into xµ
2 = 0

µ

∑ .. The only way this can be done, 

given the linear transformation in (13.13) above, is if the xµ
2

µ

∑  and ′xµ
2

µ

∑  quantities are, in 

general, directly proportional to one another (see also prob. 13.18):

unknown proportionality factor 
        ↓ 

xµ
'2

µ

∑ = F v
c










�

xµ
2

µ

∑ .  � (13.16)

     � 
no directionality in  
the universe (homogeneous 
and isotropic) 

Use (ii) above now. Must also have

�	

 xµ
2

µ

∑ = F v
c









 xµ

'2

µ

∑ , 

xµ
'2

µ

∑ = F2 v
c









 xµ

'2

µ

∑ , 

�	 F = ± 1.

The minus sign (F = -1) is eliminated for two reasons: 

1.	 The transformation must be continuously connected to the identity transformation, 
xµ
' = xµ ..

2.	 Causality of events (seen later).

Therefore ′xµ
2

µ

∑ = xµ
2

µ

∑  and so

λµνλµγ

µ,ν,γ
∑ xνxγ  = xµ

2

µ

∑ .� (13.17)

Coefficients of individual xνxγ terms must be equal:

⇒ λµνλµγ =
µ

∑ δνγ .  � (13.18)
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Reminds us of (Ch.1)

λijλik = δjk.
i
∑  

� 
notice 

We then wrote this as

lT l = 1.

But

l-1 l = 1 �  lT = l-1	(defines an orthogonal transf.)
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Then

λλ−1 = 1 ⇒ λλT = 1, 

 ⇒ λji λki = δjk
i
∑ . 

 �  � 
notice 

Situation is essentially identical here, except l’s are now 4-D quantities:

λµνλµγ

µ

∑ = δνγ ⇒ λTλ = 1. � (13.19)

Same chain of reasoning leads to

��T = �-1  and λνµλγµ
µ
∑ = δνγ. � (13.20)

Go back to 3-D again. An explicit rotation about the 3 axis is given by

′x1 = x1 cos θ + x2 sin θ,
′x2 = −x1 sin θ + x2 cos θ,
′x3 = x3, ( ′t = t also, of course)










 � (13.21)

From which the lij were identified as the direction cosines of the rotation. The same form must 
hold in 4-D, except that when we make the physical identification, x4 = ict, some of the “rotation” 
parameters will turn out to be imaginary. So, “rotate” in the 1,4 plane:

′x1 = x1 cos ψ + x4 sin ψ,
′x2 = x2,
′x3 = x3,
′x4 = −x1 sin ψ + x4 cos ψ.













Tie this in with physics now. For the origin of K’, ′ x 1 = 0,, we must have x1 = vt:

0 = vt cos � + x4 sin �� 
    � 
    ict 

  ⇒ v = −ic tan ψ  or 
  
tan ψ = i v

c
. 
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Since v is real � �  purely imaginary. Let � = i�  (� real)

  tan ψ = tan(iα) = i tanh α,    
⇒ tanh α =

v
c

 
 

 
 

sin ψ = sin(iα) = i sinh α , 
cos ψ = cos(iα) = cosh(α). 

So, in terms of real parameters, this “rotation” is

′x1 = x1 cosh α − ct sinh α,
′x2 = x2,
′x3 = x3,

ic ′t = −ix1 sinh α + ict cosh α













Then

sin2 ψ =
1

1 + cot2 ψ
=

1

1 −
c2

v2

=

v2

c2
v2

c2
− 1

, 

‘‘    = -sinh2 ���

cos2 ψ =
1

1 + tan2 ψ
=

1

1 −
v2

c2
, 

‘‘   = cosh2 ��

From the above, sin y must be imaginary � v
c

< 1.

⇒ sinh α =
±
v
c

1 −
v2

c2

, cosh α =
1

1 −
v2

c2

. 
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We want this to reduce to

′x1 = x1 − vt,
′x2 = x2,
′x3 = x3,
′t = t













when 
v
c

<< 1. . Therefore

sinh α =
+
v
c

1 −
v2

c2

, cosh α =
+1

1 −
v2

c2

. 
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So we have

′x1 = γ x1 − vt( ),
′x2 = x2 ,
′x3 = x3 ,

′t = γ t − x1
v
c2









,















A Lorentz boost

γ ≡
1

1 − β2
,β ≡

v
c
.

� (13.22)

The form of this transformation was known before Einstein by Lorentz, although it was Einstein 
who gave it the correct physical interpretation. There is a lot more to physics than just getting the 
equations correct!

This transformation was based upon requiring the invariance of

xµ
2 = 0.

µ

∑  

This in turn implied

xµ
2

µ

∑ = ′xµ
2

µ

∑ ≠ 0( ). 

This means xµ
2

µ

∑  is an invariant under a Lorentz transformation. Let’s call it “invariant squared 

distance” and give it a special symbol:

s2 ≡  xµ
2

µ

∑   � (13.23)

� 
(can be + or - )

There is no reference to the coordinates of a light pulse here; it is a completely general relation 
relating lengths and times in arbitrary inertial reference systems. It actually relates the length and 
time intervals between two arbitrary space-time events if we write

  
∆s2 ≡ ∆xµ

2

µ
∑ .� (13.24)

Then the first event is no longer required to happen at the common origin of the K, K’ systems. 
So, we have assumed one invariant, the speed of light,

c = c’, � (13.25)
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and derived another, the squared invariant distance,

  ∆s2 = ∆s'2 . � (13.26)

Thus, everything is not relative in relavity; there are still absolute quantities.

13.4	 ALTERNATE NOTATION FOR LORENTZ TRANSFORMATIONS

One often sees an alternate treatment of Lorentz transformations with no reference to imaginary 
numbers. It is often used in particle physics. Define2

x0 ≡  ct.   (no i!)� (13.27)

Then a Lorentz transformation is given as:

notice: upper index. 
 ↓ 
′x µ = Λµ

ν xν

ν

∑ . µ, ν = 0,1,2,3( )  � (13.28)

   � 
different from previous �’s 
(they are real) 

We identify from above,

Λi
j = λij,Λ

0
i = −iλ4i,Λ

i
0 = iλi4,Λ

0
0 = λ44.

Now

all important minus sign missing! 
     ↓ 
     xµ( )

2
=

µ

∑ xi( )
2

+ c2t2
i
∑ . 

Not an invariant! Define (“metric tensor”)

0 1 2 3

g ≡

0
1
2
3

−1
1

1
1





















gµν = gνµ( )
� (13.29)
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:  g11 = g22 = g33 = 1, g00 = -1, , all other components = 0.

Then

     notice 
       ↓ 

xµgµνx
ν

µ,ν
∑ = xi( )

2
− c2t2

i
∑ . � (13.30)

This is an invariant. Sometimes define

xµ = gµνx
ν

ν

∑ . � (13.31)

Notice:		     x
µ = ct, � x ( ),  “contravariant 4-vector” 

    xµ = −ct, � x ( ), “covariant 4-vector”. 

Have to be careful in this notation to recognize whether an index is up or down. Then we may write

  
s2 = ′ x µ

µ,ν
∑ gµν ′ x ν = xµgµνxν

µ,ν
∑ .  � (13.32)
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or, using the transformation law for x’�:

  
⇒ gµν Λ

µ
λΛνκxλxκ

µ,ν,γ,κ
∑ = gλκxλxκ

γ,κ
∑ ,

⇒ gµν Λ
µ
λΛνκ

µ,ν
∑ =gλκ.  � (13.33)

This is the analog, in this new notation, of the equations satisfied by the ���’s (see Eqs.(13.20) 
above) and can be considered an alternate definition of a Lorentz transformation.

Einstein summation convention: sum on any repeated upper, lower indices. (As we saw earlier a 
repeated index like  xνxν  does not produce an invariant quantity; this property generalizes.)

The above may now be written:

  gµνΛ
µ
λΛνκ = gλκ � (13.34)

There is also a matrix interpretation of this form. Write (the “T” means transpose; notice the matrix 
version can violate the Einstein summation convention)

  Λ
T( )λµgµν Λ

ν
κ = gλκ , � (13.35)

⇒ ΛTgΛ = g. (Takes the place � (13.36)
of lT l = 1.)

No matter which notation and or conventions we use, it is important to realize the point of either 
is to build in the minus sign in front of the time components. We will primarily use the Λµ

ν -type 
notation in which all quantities are real. Famous quote: The start of	  any calculation is to check 
the author’s conventions.

In order to be able to use this notation, must know the rules. Just as for 3-D rotations, 4-vectors 
are defined by their transformation laws. We have

′A µ = Λµ
λA

λ or = Λµ
λA

λ,
λ

∑  � (13.37)

where Λ λ
µ  satisfies �T g � = g.. This makes Am a contravariant 4-vector. To make a covariant 

4-vector out of A�, say, just “contract” with g��:

Aµ ≡ gµνA
ν.� (13.38)
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Define:

new quantity
  ↓ 
  gµνgνκ ≡ δκ

µ , � (13.39)

 � 
Kronecker delta 

⇒ Aµ ≡ gµνAν. � (13.40)

Note from (13.39) that the g
��  are just the inverses of the gmn, considered as matrix elements: 

  g
µνgνκ = δκ

µ ⇒ g−1g = 1. . The matrix representation of the g��  in this case is also given by 
(13.29), which is the so-called flat space metric.

Define Λµ
λ ≡ gµνg

λκΛν
κ;; then the transformation law for covariant 4-vectors is just:

′Aµ = gµκ ′A κ = gµκΛ
κ
λA

λ = gµκg
νλΛκ

λ

Λµ
ν

� �� ��
Aν , 

          ⇒ ′Aµ = Λµ
νAν .  � (13.41)

The matrix interpretation of these transformation laws is based upon the index to matrix 
correspondence,

.

(The second statement follows from the definition Λµ
λ ≡ gµνg

λκΛν
κ.) Notice the matrix 

interpretation ignores the “up” or “down” position of the indices; I have placed these arbitrarily 
down. This implies the equivalence of the statements,

  ′ A µ = Λµ
νA ν  ⇔ A' = ΛA, (A' a column matix) 

  ′ A µ = Λµ
νA ν   ⇔ A'T = AT(Λ)−1 . (A'T a row matrix)

Likewise (see prob. 13.2(a))

ΛνλΛµ
λ = δµ

ν ⇔ 
  
Λ Λ−1( )T( )T = 1 or ΛΛ−1 = 1.
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A way to form a Lorentz invariant quantity, or in short, a scalar, is to form (just like we did for 
x�, x�),

′A µ ′Aµ = ′A µgµν ′A ν = gµνΛ
µ
λΛ

ν
κ

gλκ

� �� ��
AλAκ 

        ⇒ ′A µ ′Aµ = AµAµ . � (13.42)

Of course s2 = x�x�  is also a scalar. We have the first of our “index jockey” rules:

1.	 To make a Lorentz scalar out of two vectors, sum on one upper, one lower index.
We know that the components of the gradient operator,

	   
∇i ≡

∂

∂xi ,� (13.43)
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transform as a vector. Can then build vectors  for f a scalar) or scalars 
 for     
 
A   a 3-vector) out of it. For Lorentz transformations, 

define

	 ∇µ ≡
∂
∂xµ

, ∇µ =
1
c

∂
∂t

,
�
∇









. � (13.44)

	
�  � 

lower   upper

Can show it transforms as a covariant 4-vector (thus, the lower index). Also

	 ∇µ ≡
∂
∂xµ

,∇µ = gµν∇ν ⇒ ∇µ = −
1
c

∂
∂t

,
�
∇









.� (13.45)

    �     � 
upper     lower 

transforms as a contravariant 4-vector. So, the second index jockey rule is:

2.	∇µ transforms as a contravariant 4-vector
∇µ transforms as a covariant 4-vector.

Two other rules are:

3.	 Lower an index with g��: g��A
� = A�.

4.	 Raise an index with g��: g��A� = A�.

As before: g�� g��  = δκ
µ. 

δ0
0 = δ1

1 = δ2
2 = δ3

3 = 1,
all others = 0















Matrix statement:	 (g-1)g = 1.

	

gµν =

0
1
2
3

0 1 2 3

−1
1

1
1





















    ⇒ ∇µ = gµν∇ν( ) 
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Note:

*	 Using g , g   raises or lowers an index but never changes index order.
*	� Number of free up, down indices on one side of an equation must equal the number on 

other side.

Examples:

1.	� Show δτ
σ  (In 

general  for arbitrary tensors 

2.	 Given ′A µ = Λµ
νA

ν , ′τ = τ, , prove that d ′A µ

dτ'
 transforms as a contravariant 4-vector:

d ′A µ

dτ'
= Λµ

ν

dAν

dτ'
= Λµ

ν

dAµ

dτ
dτ
d ′τ
1
�

= Λµ
ν

dAµ

dτ
.

3.	 Prove that ′∇µ ′φ , ′φ = φ ,  transforms as a covariant 4-vector:

      need 
      ↓ 

′∇µ ′φ =
∂φ
∂ ′x µ

=
∂xν

∂ ′x µ

∂φ
∂xν

=
∂xν

∂ ′x µ
∇νφ. 

But

	

   ′x λ = Λλ
κx

κ( ) ⋅ gλαΛ
α
β , 

⇒ gλα Λ
α
β ′x λ = gκβx

κ( ) ⋅ gβγ , 

  ⇒ gβγgλαΛ
α
β

Λλ
γ

� �� ��
′x λ = xγ , 

	
⇒

∂xγ

∂ ′x λ
= Λλ

γ . (Also ∂x'
λ

∂xκ
= Λλ

κ)

Therefore

	 ′∇µ ′φ = Λµ
ν∇νφ  �  covariant 4-vector.
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13.5	 THE “LIGHT CONE” AND TACHYONS

Let’s get back to the physics being described. For this, we need a picture of the light-cone (imagine 
rotating about the time axis; the “surfaces” shown are hyperboloids):

  f ut ur e
   

 “t i me li ke ”

 s 2 =  0 c on e

 “s pa ce l ik e” “s pa c el ik e ”
   r e gi on

        x
[C a n th i nk  o f L T’ s
 a s  m ov i ng  u s t o
 d i ff er e nt  p oi n ts  o n

 a  g i ve n s 2

  co ns t .  s ur fa c e. ]
“ t im el ik e ”
     p as t

    s 2 =  co n st .  >  0 s2 = c on s t.  <  0
  s ur fa ce      su rf a ce

=
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“timelike”	 s2 < 0	 means 		 |c∆t| > |∆    
 x  |,

“spacelike”	 s2 > 0	 means		  |c∆t| < |∆    
 x  |,

“lightlike:	 s2 = 0 	 means		  |c∆t| = |∆    
 x  |.

This diagram describes the relationship of the origin to all other space/time points. Events with 
a timelike behavior can always be given a definite causal order since a light beam can reach the 
second event before it occurs. Also, |c∆t| > |∆    

 x  | is preserved by Lorentz transformations. This 
means that spacelike and timelike type events are not mixed. On the other hand, spacelike events 
are fundamentally different: there is no invariant order of these events seen by all observers. Thus:

Timelike events have an invariant causal order
Spacelike events do not have an invariant causal order

Better not mix up such distinct types of events! This is one reason for discarding the Lorentz 
transformation with F = -1, considered earlier, because such a transformation on the light cone 
would take us from a timelike ordering of events to a spacelike one, or vice versa. Mathematically, 
this means we are prevented from jumping across the lightcone.

To see this transformation more explicitly, consider (the “rotation” interpretation of this 1,4 
transformation no longer holds because of the factors of “i”):

  ′ x 1 = ix1 sin ψ −ix4 cos ψ , � (13.46)

  ′ x 4 = ix1 cos ψ + ix4 sin ψ.� (13.47)

If we insist as before that the origin of K',   ′ x 1 = 0, has x1 , has then = vt, then tan ψ = i c
v
, and , and

  

sin2 ψ =
1

1 −
v2

c2
. � (13.48)

sin ψ must be chosen imaginary:

  
⇒

v2

c2
> 1. � (13.49)

Hypothetical particles with 
p

  
v
c

> 1  are called tachyons. These particles can be shown to move 
either backward or forward in time, depending on the direction of motion! So by eliminating  
F = -1, we are eliminating the possibility of transformations to frames of reference with 

p

  
v
c

> 1 .
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13.6	 MATHEMATICAL PROPERTIES OF LORENTZ TRANSFORMATIONS

Let’s do a little investigation of mathematical properties of Lorentz transformations. Simple facts 
about determinants:

det AB = det A  detB  ,  det AT = det A.

Since

ΛTgΛ = g ,� (13.50)

taking determinant of both sides gives,

  det ΛTgΛ[ ] = det Λ( )2 det g = det g, 

�  det � = � 1. �  (13.51)

 +1:  ‘‘Proper’’ Lorentz transformation 

 -1:  ‘‘Improper’’ Lorentz transformation 

Will see the physical interpretation later. Also, we have

x’ = �1x,  

x’’ = �2x’, 

� (13.52)x’ = �1x,  

x’’ = �2x’, � (13.53)

� (13.54)

Is L21 also a Lorentz transformation? Use the definition:

Λ2
T gΛ2 = g , � (13.55)

⇒ Λ1
TΛ2

T gΛ2Λ1 = Λ1
T gΛ1 = g, � (13.56)
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However, Λ21
T = Λ2Λ1( )T = Λ1

TΛ2
T, so

⇒ Λ21
T gΛ21 = g. � (13.57)

�   Λ21  is also a Lorentz transformation
How many independent elements of  Λµ

ν are there? Expect physically:

3 (rotations) + 3 (boosts) =   6. 

Mathematically: Λµ
ν ,  4 x 4 = 16 , real quantities. However, the equation

ΛTgΛ = g , 

is also (like 3-D rotation) unchanged by the transpose. Therefore, there are as many components 
as in a symmetric 4 × 4 matrix:

x x x x
x x x

x x
x





















    10 

This means there are 16 – 10 = 6 independent real quantities, the right number.

Some terminology:

Restricted Lorentz Transformation (RLT): Transformations physically possible for a frame of 
reference associated with a material observer.

What this means is rotation + boosts (I will be more precise mathematically in a bit.) We have 
learned that there are Lorentz transformations with det L = +1 or -1. There is a further discontinuous 
possibility as follows. Take the 00 component of the defining equation:

 

 gµνΛ
µ
λΛ

ν
κ = gλκ , λ = κ = 0. 

⇒ g00Λ
0
0Λ

0
0 + g11Λ

1
0Λ

1
0 + g22Λ

2
0Λ

2
0 + g33Λ

3
0Λ

3
0 = g00,  � (13.58)
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     g00 = −1, gii = 1, 

⇒ − Λ0
0( )

2
+ Λi

0( )
2

i
∑ = −1,� (13.59)

⇒ Λ0
0( )

2
= 1 + Λi

0( )
2

i
∑ ≥ 1. 

Can also show :

Λ0
0( )

2
= 1 + Λ0

i( )
2
.

i
∑
















 � (13.60)

So, there are two possibilities for Λ0
0 : 

    Λ0
0 ≥ 1 , Λ0

0 ≤ −1 

“Orthochronous”     “Nonorthochronous” 

Now our more precise mathematical definition of a restricted Lorentz transformation:
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RLT:

Proper, orthochronous Lorentz transformation:

det � = 1, Λ0
0 ≥ 1, ΛTgΛ = g . 

Prove: If L1 and L2 are both RLT’s then so is L21 = L2 L1.

Show det L21 = 1 (easy):

 det �21 = det �2 det �1 = 1. 

Show that Λ21( )00 ≡ Λ2( )0 γ Λ1( )γ0 ≥ 1  (not so easy):From the above

  Λ21 = Λ2Λ1    or   Λ21( ) ν

µ
= Λ2( ) γ

µ
Λ1( ) ν

γ  

⇒ Λ21( )00 = Λ2( )
0

γ
Λ1( )γ0 = Λ2( )

0

0
Λ1( )00 + Λ2( )

0

i
Λ1( )i0

i
∑ . 

From the above

Λ1( ) 0
0( )

2
≥ Λ1( ) 0

i( )
2
, Λ2( ) 0

0( )
2

i
∑ ≥ Λ2( ) j

0( )
2

j
∑ . 

“Cauchy inequality”:

    ak
2

k=1

n

∑ b�
2

�=1

n

∑ ≥ akbk
k=1

n

∑










2

, 

⇒ Λ2( ) 0
0

Λ1( ) 0
0

≥ Λ2( ) i
0( )

2

i
∑ Λ1( ) 0

j( )
2

j
∑ . 

     Cauchy inequality 
        ↓ 

        ≥ Λ2( ) i
0

Λ1( ) 0
i

i
∑










2

= Λ2( ) i
0

Λ1( ) 0
i

i
∑ . 

�  The sign of Λ21( ) 0
0   is the same as Λ2( ) 0

0
Λ1( ) 0

0( ). 
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Result:

No matter how many RLT’s are performed, the result is still a RLT.

Another point: 

Consider two timelike space-time events:

These events must have an invariant time order since they can have a cause and effect relationship. 
There can not be some observers who measure t > 0 and some who measure t < 0. That is, as a 
result of a RLT (boosts done on a material observer), we must show that the time component of a 
timelike 4-vector has an invariant sign (either + or -). (This will be done in a HW problem.) It is 
clear that spacelike events can have the sign of their time components changed by a RLT since there 
can be no causal relationship between them. As pointed out previously, no LT changes a timelike 
event into a spacelike one or vice versa.

There are 4 possible combinations of the discontinuous parameters det L and Λ 0
0 .   

We classify these as

1.	 Proper orthochronous (RLT’s): det � = 1,  Λ 0
0  � 1. 

2.	 Improper orthochronous: det. � = -1, Λ 0
0  � 1. 

3.	 Proper nonorthochronous: det � = -1, Λ 0
0  ≤ -1. 

4.	 Improper nonorthochronous: det. � = -1, Λ 0
0  ≤ -1. 
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We have already talked about 1. What do the other transformations imply? Possibility 2 describes 
space inversions in addition to the usual RLT’s. Example:

 

Λ2 =

0
1
2
3

0 1 2 3

1
−1

−1
−1





















Gives: �x → −
�x,t → t.  Any other L with det � = -1, Λ 0

0   � 1  can then be written

� (13.61)

Not new. Saw space inversions previously as part of 3-D orthogonal transformations. Takes us from 
one side to the other on the spacelike or timelike s2 = const. surfaces in the lightcone diagram.
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Possibility 4 describes something new: time reversal. Example:

 

Λ4 =

0
1
2
3

0 1 2 3

−1
1

1
1





















Gives �x →
�x, t → −t . Any other L in this category can be written as

� (13.62)

Does to the time axis what possibility 2 did to space. Like space inversion, this is not a physical 
operation we can imagine carrying out on a material observer (not an RLT). Never-the-less, time 
and space inversions are valuable concepts, especially in quantum mechanics. To begin to understand 
why, it is helpful to consider the collision of particles (representing atoms or smaller objects). For 
example, consider the collision of two particles A and B:

If Newton’s equations held at all levels of description, microscopically, as well as, macroscopically, 
it would be just as probable to see the time reserved reaction:
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The reason for this is because Newton’s equations of motion, 

mα

d2�xα

dt2 =
�
fα,   

�
fα = Uαβ

�xα −
�xβ( ).

β<α

∑










are invariant under 
�xα →

�xα,t → −t.Modern microscopic theories of matter are also time-
reversal invariant to a great extent; however, small violations of this symmetry have been seen 
experimentally. The fact that time-reversed reactions occur essentially as often as the original given 
one is an important fact of nature which is reflected in statistical mechanics and thermodynamics. 
However, on a macroscopic scale we know that many processes are not time-reversible; a glass 
shattering on the ground is one example. This is not a contradiction but an aspect of the behavior 
of large numbers of particles whose motions must be treated in a statistical sense. See the page 
from T.T. Lee’s book “Particle Physics and Introduction of Field Theory” for a further illustration.

Possibility 3 represents combined space and time reversals. Example:

 

Λ3 =

0
1
2
3

0 1 2 3

−1
−1

−1
−1





















Notice

Λ3 = Λ2Λ4 . 

This L gives  and any other L with these characteristics can be written as usual, 

� (13.63)

13.7	 CONSEQUENCES OF RELATIVITY 

Next, some consequences of special relativity. Consider again two space-time “events.” Invariant 
associated with them is 

 
∆s2 = ∆xi( )2

i
∑ − c∆t( )2 . 
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Divide by -c2:

∆τ2 ≡ −
∆s2

c2
= −

∆xi

c









2

i
∑ + ∆t2. � (13.64)

Dt (or just t): “proper time”. It is invariant and > 0 for timelike events. What is it’s physical 
meaning? When two events happen at the same spatial position for some observer, Dxi = 0 and

��� = �t.

Since the value Dt is invariant, this means we can interpret proper time as follows:

Proper time: time interval measured by an observer who is at rest with respect to two events.  
(The two events take place at the same position.) 

This means

��� = �t,  ‘‘rest observer’’ 
� �
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same numerical value
 ↓     

∆τ' ≡ −
∆ ′x i

c










2

i
∑ + ∆ ′t 2  , any other inertial 

       observer 

Conclusion: Dt’ > Dt.

The rest observer always measures the shortest time interval between these events. The name for 
this effect on time intervals is time dilation, because from the point of view of the moving observer, 
the time interval has increased or dilated. Can get a quantitative measure of this effect from our 
Lorentz transformation boost along x1:

 

′x1 = γ x1 − vt( ),
′x2,3 = x2,3 ,

′t = γ t − x1
v
c2









.















Reminder:
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Event 1:	 t’ = t = 0 

Event 2:	 ′t1 = γ t1 − /x
0
1
v
c2









 (x1 = 0) 

Event 3:	 ′t2 = γ t2 

.      . 

.      . 

.      . 

Relation between time intervals: Dt’ = gDt. We know that Dt = Dt, so this gives

�t’ =  ����. .	 γ =
1

1 − β2











 � (13.65)

Time dilation is well established experimentally.

Another consequence. Consider an object at rest in the K frame directed along x1:

The observer in K measures the length of the object (which is at rest in his frame) and finds it to 
be ℓ. K’, by moving along it’s length, will measure it to be

’ = v�t', � (13.66)

where Dt’ is the time interval K’ measures for passing the object. Now, the passing of 0’ past the 
two ends of ℓ defines 2 space-time events, both of which take place at the same place, 0’, according 
to K’. Thus, K’ is measuring the proper time interval between these events,

� (13.67)
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Therefore from before, we know the time interval measured by K will be dilated:

� (13.68)

⇒ ′� = v∆τ =
v
γ
∆t.� (13.69)

Of course, K has ∆t =
�
v
, so

′� =
v
γ
�
v

= � 1 − β2 . � (13.70)

⇒ ′� < �  ,  “length contraction”

Proper length: length of an object which is at rest in an intertial observer’s frame.

Interesting point: �how an object moving with respect to an observer looks like is quite a different 
matter. Although the above considerations suggest the objects will appear 
contracted, in reality because of the finite speed of light, objects can appear to 
be rotated or have other distortions in appearance. For example, consider a cube 
moving directly away or toward an observer. It would actually look something 
like (consider light pulses which arrive at the same time):

Toward:

 

earlier
position
later
position

shape
seen

Away:

earlier
position

later
position

shape
seen
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13.8	 VELOCITY ADDITION LAW

Another consequence: velocity addition law is changed. After boost 1 by v1:

′x1 = γ1 x1 − v1t( ),
′x2,3 = x2,3 ,

′t = γ1 t − x1
v1
c2









.















� (13.71)

Boost it again: (v2)

′′x1 = γ2 ′x1 − v2 ′t( ),
′′x2,3 = ′x2,3 = x2,3 ,

′′t = γ2 ′t − ′x1
v2

c2








.













 � (13.72)
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In detail, this gives

′′x1 = γ2γ1 x1 1 +
v1v2

c2








 − v1 + v2( ) t









, � (13.73)

′′x1 = γ2γ1 x1 1 +
v1v2

c2








 − v1 + v2( ) t









, � (13.74)

Make it look like a single boost:

′′x1 = γ1γ2 1 +
v1v2

c2








 x1 −

v1 + v2

1 +
v1v2

c2
















t
















,� (13.75)

′′t = γ2γ1 t 1 +
v1v2

c2








 − x1

v1 + v2( )
c2









. � (13.76)

Exactly the same form as a single boost if 

γ12 = γ1γ2 1 +
v1v2

c2








,� (13.77)

v12 =
v1 + v2

1 +
v1v2

c2
 . ← new velocity addition law.� (13.78)

Are they consistent?

Example: v1 = .95c, v2 = .95c  (both in the same direction):

v12 =
.95c + .95c

1 +
.95c( )2

c2

= .99868c. 

� Can not boost through v = c in a continuous fashion. This gives another perspective on the need 
to eliminate the earlier tachyonic F = -1 transformation, which required v

c
> 1.
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13.9	 MOMENTUM AND ENERGY UNITED

Up to now, we have concentrated on the space-time aspects of relativity. However, relativity also 
has important implications for momentum and energy.

Use one of the above results:

dxµ

dτ  is a contravariant 4-vector
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Describe the motion of a particle in space and time:

By definition (remember dτ2 = −
ds2

c2
), 

dτ =
1
c

− d�x( )2 + dx0( )
2
.  � (13.79)

Must be a timelike vector if it describes the motion of a material observer. It is:

dxµ

dτ
dxµ

dτ
=
ds2

dτ2
= −c2 < 0.� (13.80)

Write the components in a more ordinary notation:

d�x
dτ

=
dt
dτ

d�x
dt

=
dt
dτ
�v, � (13.81)

dτ
dt

=
1
c

−
d�x
dt









2

+ c2 = 1 − β2 , � (13.82)

⇒
d�x
dτ

= γ
�v →

v<<c

�v. � (13.83)

Time component:

dx0

dτ
= c dt

dτ
= γc →

v<<c
c. � (13.84)
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Re-verification of timelike character:

  d�x
dτ









2

=
v2

1 −
v2

c2
 , 

  dx0

dτ










2

=
c2

1 −
v2

c2
 , 

d�x
dτ









2

−
dx0

dτ










2

=
v2

1 −
v2

c2
−

c2

1 −
v2

c2
= −c2. 

Since the space component of dx
µ

dτ
 reduces, in the v << c limit, to just 

v , a natural definition of 
relativistic momentum is

   pµ ≡ m dxµ

dτ
.  

⇒
�p = γm�v , p0 = γmc. 

� (13.85)

Meaning of p0? Notice that p0 > 0 no matter which Lorentz frame we are in. (The sign of the time 
component of a timelike vector is unchanged under Lorentz transformations, which was a HW 
problem.) A particle’s K.E. is also always > 0, so does T

c
 = p0? Expand p0 in a power series in v

c
:

p0 =
1
c

mc2 +
1
2
mv2

old K.E.
���

+ ...
















. � (13.86)

Forces on us the realization that there is an energy associated not with motion, but with  
mass. Identify

E0 = mc2 ,	 “rest energy”

E = p0c .	 “total energy”

Einstein (“The Meaning of Relativity,” p.47): “Mass and energy are therefore essentially alike; they 
are only different expressions of the same thing.” Kinetic energy, T, is just the difference between 
total energy, E, and rest energy E0:

� E = E0 + T  ,  T = E - E0 = mc2 (� - 1). � (13.87)
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Now

p� p� = -m2c2, 

so

  -m2c2 = �p2 −
E2

c2
, 

 ⇒ E2 =
�p2c2 + m2c4, � (13.88)

or, choosing the positive root,

 E = +
�p2c2 + m2c4 ,   

old connection :

E =
�p2

2m
.
















 � (13.89)
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to be consitent with p0 expressions. Now we realize we have done for 
p  and E what has already 

been done for x   and ct: unify them:

xµxµ =
�x2 − x02 =

�x2 − c2t2 , 

 pµpµ =
�p2 − p02 =

�p2 −
E2

c2
. 

The particle of light is called the photon; the connection between it’s energy and momentum is 
given by (13.89) with m=0: E =

p c . It follows a “lightlike” trajectory (dt = 0 in (13.79)) and 
therefore it’s inertial reference frame speed is always c.

13.10	FOUR SHORT POINTS

1.	 Transformation law for  same as for :

	

′p µ = Λµ
ν p

ν , 
′pµ = Λµ

ν pν . 

2.	 Conservation of both momentum and energy is now contained in the single statement:

	
pµ( )

incoming
particles

∑ = pµ( )
outgoing
particles

∑

3.	 Because of equivalence of mass and energy, can express mass in units of energy
c2

:

	

mass = E
c2

= MeV
c2

 

   
  common unit in particle 

  or nuclear physics 

(1 MeV = 1.602 × 10-6 erg.)

[Often, one drops the 1
c2

 and masses are often quoted simply in MeV.]
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4.	� Equivalence between mass and energy is verified countless ways. For example, the “binding 
energy” of multiparticle systems appears as a deficit from the constituent particle masses. 
For the deuteron,

deuteron mass: 1875.7 MeV
c2

	

proton : 938.3 MeV c2

neutron : 939.6 MeV c2





1877.9 MeV

c2

(1875.7 – 1877.9) = -2.2 MeV c2  (the binding energy)
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13.11	PROBLEMS

1.	 Show that the 3-D wave equation (c=speed of light),

	
∇2 −

1
c2

∂2

∂t2








 f = 0,

(f is a scalar) is covariant under the Lorentz transformation ( γ =
1

1 − β2
, β =

v
c
), 

	

x' = �(x - vt), 

y' = y, 
 

z' = z, 
 

t' = �(t - x v
c2
). 

[Hint: Use the chain rule,

	

∂
∂x

=
∂ ′x
∂x

∂
∂ ′x

+
∂ ′t
∂x

∂
∂ ′t

, 

evaluating ∂ ′x
∂x

, ∂ ′t
∂x

,  etc. from the transformation.]

2.	 Consider Lorentz transformations using index notation. Given

	 g�� ��
� ��

� = g�� , A'
� = ��

� A�, Λλ
γ =

∂xγ

∂ ′x λ
, Λλ

κ =
∂ ′x λ

∂xκ
, 

show:

	 (a) ��
� ��

� = δµ
ν , 

	 (b) g�� ��
� ��

� = g��, 

	 (c) g�� ��
� ��

� = g��� 
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3.	� Consider Lorentz transformations using matrix notation. Given that 
�Tg � = g, gT = g, gg = 1 (“1” is the unit matrix), show that

	

4.	 For the tachyonic transformation,

	

 ′x1 = ix1 sin ψ −ix4 cos ψ, 

 ′x4 = ix1 cos ψ + ix4 sin ψ. 

sin2 ψ =
1

1 −
v2

c2
, v

c
> 1, 

	 (a)	 Show that ′x1
2  + ′x4

2  = - x12 - x42. 

	 (b)	 Demonstrate that under ψ → iα, , where a is a real parameter, these become

		

 ′x1 = −x1 sinh α −ix4 cosh α , 

 ′x4 = ix1 cosh α −x4 sinh α . 

	 (c)	 Show Λ 0
1 = Λ 1

0 ≥ 1. (Similar to Λ 0
0 ≥ 1 . for Lorentz boosts.)

	 (d)	 For the above, find det(L) = ?.

5.	 Given the relativistic acceleration

	

�
α ≡

d�u
dτ

 , 

where 

	

�u ≡
d�x
dτ

=
dt
dτ
�v =

�v
1 − β2

, 
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( �v =
d�x
dt

  is the ordinary velocity;  
�
β ≡

�v
c
  show that

�
α =

��v +
1
c2
�v × (�v ×

��v)

(1 − β2)2
 . 

6.	 (a) Show that the relativistic form of Newton’s second law is (
�
F ≡

d�p
dt

) 

	
�
F =

m��v
(1 − β2)3/2

 , 

if �v and ��v  are co-linear, and

b) 
�
F =

m��v
(1 − β2)1/2

 , 

if 
v  and 

v  are perpendicular. [Hint: Prob. 13.5 above.]

7.	 (a) �A particle known as a muon is generated high in the Earth’s atmosphere with a speed of 
0.96c relative to the Earth. The muon’s average lifetime, measured at rest, is 2.2 × 10-6 

sec. How far does such a muon travel through the Earth’s atmosphere before decaying? 
Briefly explain your calculation. (c = 3 × 108 meters/sec.)

	 (b) �A 30 yr. old physicist travels to a star, at rest with respect to the Earth, which is 10 
light years distant. (1 light year = distance light travels in 1 year = 9.47 × 1015 meters.) 
His/Her rocket ship travels at 0.85 c relative to the Earth and star. How old will the 
physicist be on arriving at the star? Briefly explain again.

8.	� An astronaut brings an atomic clock on board the International Space Station (ISS), which 
is in orbit around the Earth at about 18,000 mi/hr. This clock is synchronized with an 
atomic clock on the Earth before the flight. If the clock is aloft in the ISS a month (take 
this as 30 days, measured let’s say from the Earth’s point of view), by how much time, in 
seconds, is the ISS clock advanced or delayed (which?) when compared to the Earth clock? 
(The speed of light is about 186,000 mi/sec.)

9.	� Show, by using conservation of energy and momentum, that a photon (a massless particle 
of light) with momentum 

p  can not decay into two massive particles with momenta 
pa  

and 
pb  . (For simplicity, you may assume the masses of particles a and b are the same, 

although the result holds in general.) Extra: Can a photon decay into one massive and one 
massless particle?
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10.	� Show that the time component of a timelike 4-vector t�, retains it’s sign under a restricted 
Lorentz transformation. [Hint: Combine the timelike condition, (ct0)2 > (xi)2

i
∑ ,  

with a condition for a proper Lorentz transformation using the Cauchy inequality.]

11.	 Define uµ ≡
dxµ

dτ
, αµ ≡

duµ

dτ
. . Show:

a)	(a) �� u� = 0.
(i.e., the relativistic acceleration 4-vector is perpendicular to the relativistic velocity.)

b)	��  is a space like 4-vector (assuming ��  ≠ 0).

[Way 1: Use (a) and construct a proof by contradiction by assuming ��  is timelike or 
lightlike. Way 2: (Brute force) Construct ��  explicitly and show that ���� > 0.] 
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12.	 Given an elastic collision a + b → c + d, 

show that the variables

	

s ≡ (pa + pb)

t ≡ (pc - pa)

u ≡ (pd - pa)

(pa + pb)��

(pc - pa)��

(pd - pa)��

satisfy the relation,

	 s + t + u = -c2 (ma2 + mb2 + mc2 + md2). 

[These relatistic invariants are useful in describing the results of scattering events in 
different inertial frames.]

Other Problems

13.	 Show ��A�  transforms as a scalar.

14.	 A particle of mass m is accelerated from rest with a constant force, F, in a straight line.

a)	 Show that if the final velocity is v (β =
v
c
), then the distance traveled, D, is given by

	
D =

mc2

F
1

1 − β2
− 1











. 

b)	 The acceleration takes place over a time period, T. Show that this time period is given by

	 cT =
mc2

F
(1 +

FD
mc2

)2 − 1. 

[Hint: integrate the result of part (a).]
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15.	� Consider a relativistic particle of mass m and charge q in a circular orbit of radius R. The 
force on the charge is central and is given by

	
�
F = −

q2

R2 r̂, 

	� where the unit vector r̂ points from the force center to the charge. Find the relativistic 

formula giving β =
v
c
  of the particle as a function of m, q, and R.

16.	� A relativistic particle of mass m and charge q is moving with velocity v in a plane 
perpendicular to a uniform magnetic field, 


B  .

Using the Lorentz force law, find the radius of the orbit in terms of v, q, B and m. In 
particular, show that the radius for ultrarelativistic motion (E >> mc2) is R =

E
q

B
 , where 

E is the total energy (rest mass plus kinetic) of the particle.

17.	� A coordinate system K’ moves with velocity v  relative to another system, K. In K’ a particle 
has a velocity !u   and an acceleration !a  , whereas in K these quantities are u   and a . Show 
that in K the observed component of acceleration of the particle along v , a ||, is given by 

(β =
v
c
), 

	

�a || = =
(1 − β2)3/2

(1 +
�v ⋅
�
′u

c2
)3
�
′a ||.

[Hint: First get the relation between �u || and 
�
′u ||.]
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18.	� There are actually three classes of transformations consistent with the invariance of the 
statement (m = 1,2,3,4 notation; ′x4 = ic ′t ), 

	 xµ
2

µ

∑ = 0,  � (1)

for the coordinates, xµ ,  of a lightfront. These are:

	

 
I. ′xµ = λµνxν

µ

∑ , where λµνλµγ = δνγ
µ

∑ , 

 
II. ′xµ = λxµ , ("dilations") 
 

III. ′xµ =
xµ + x2cµ

(1 + 2(c ⋅ x) + x2c2)
, cµ arbitrary. ((c ⋅ x) ≡ cµxµ

µ

∑ ,

x2 ≡ xµxµ

µ

∑ , and where (1 + 2(c ⋅ x) + x2c2) ≠ 0) ("conformal 

transformations") 
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Show that cases II and III are consistent with the invariance of equation (1). (Case I 
already considered in the text.) Why are Cases II and III not considered further in the 
text for relativity?

19.	� In prob. 13.9, we saw that a photon can not decay into 2 massive particles (or into 1 
massless and one massive particle). Now examine two other cases:

(i)	 mA → γ + γ  (particle of mass mA decays into two photons)

(ii)	� mA → mB + γ  (particle of mass mA decays into particle of mass mB < mA  and a  
single photon)

Do energy and momentum conservation allow these processes to occur? If not, show it. 
If allowed, solve for the magnitude of photon momentum, p = E/c, in terms of mA in 
(i) and in terms of mA and mB in case (ii). (Assume particle mA is at rest in both cases.)

20.	� Consider so-called Compton scattering on an initially stationary electron of mass m  
(use p ≡

�p , ′p ≡
�
′p , Pe ≡

�
Pe ): 

(a)	� Given the energy, E, and momentum, p , of the incoming photon along the 
x-direction, write all the equations which follow from momentum and energy 
conservation.

(b)	 From these equations show that 

	
−mc −

1
p

+
1
′p









 = 1 − cos θ. 

This determines the momentum, p’, of the scattered photon in terms of the initial 
momentum, p, and the scattering angle, q. [Hint: Get two expressions for the square of 
the electron momentum, Pe

2, and set them equal.]
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ENDNOTES
1.	� Notice that we could replace condition 3 with the alternate condition that the system of equations, 

(12.17), for small oscillations yield only real nonzero eigenfrequencies, ωr. This was the same 
condition for stability seen in Ch.2.

2.	 �Note: We are using “x” here to denote coordinates, but of course in the previous treatment 
m = 1,2,3,4 and x4 = ict, whereas here m = 0,1,2,3 and x0 = ct (x0 = -ct).
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