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Mathematical Review

1	 MATHEMATICAL REVIEW

TRIGONOMETRY

Mathematics is the language of physics, so we must all have a certain fluency. The first order 
of business is to remind ourselves of some basic relations from trigonometry.

sin θ = 
  

opposite
hypotenuse

, 

cos θ = 
  

adjacent
hypotenuse

, 

tan θ = 
  
sin θ
cos θ

= 
  

opposite
adjacent

. 

For right now just think of a vector as something with both a magnitude and a direction:

A 

A 

A 

1 

2 

1 

2 

 

Vector notation:     
� 
A = A1,A2( ). Vector addition:

 

B 

A 

A 
A 

B 

B 

B 

A + 

1 1 1 

2 

2 

2 
 

  
 

(A + B)1 = A1 + B1 ; (A + B)2 = A2 + B2 .
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Unit Vectors:

e

e
ê

^

^

1
2

3

1

2

3

�

������

�������

These are handy guys which point along the 1,2 or 3 directions with unit magnitude. We 
always choose a right-handed coordinate system in this class. The right-hand rule identifies 
such a system: curl the fingers of your right hand from  to  in the above figure; your 
thumb will point in the  direction.

Matrices

A matrix is a collection of entries which can be arranged in row/column form:

     columns

rows  
A11 A12 A13
A21 A22 A23
A31 A32 A33

 

 
 

 

 
  

A single generalized matrix element is denoted:

    Aij 

row column

Addition of matrices (number of rows and columns the same for both 
  
A11 A12
A21 A22

 
 

 
 +   

B11 B12
B21 B22
 
 

 
 =   

A11 + B11 A12 + B12
A21 + B21 A22 + B22
 
 

 
 . 

 and 
  
A11 A12
A21 A22

 
 

 
 +   

B11 B12
B21 B22
 
 

 
 =   

A11 + B11 A12 + B12
A21 + B21 A22 + B22
 
 

 
 . 

 matrices):

  
A11 A12
A21 A22

 
 

 
 +   

B11 B12
B21 B22
 
 

 
 =   

A11 + B11 A12 + B12
A21 + B21 A22 + B22
 
 

 
 . � (1.1)
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In more abstract language (“index notation”) this is just

(A + B)ij = Aij + Bij, � (1.2)

where  and  are taking on all possible values independently. In the above equation  and 
 are said to be “free” indices. The free indices on one side of an equality must always be 

the same on the other side. 

Multiplication of matrices. (Here we only require that the number of columns of 
  
A11 A12
A21 A22

 
 

 
 +   

B11 B12
B21 B22
 
 

 
 =   

A11 + B11 A12 + B12
A21 + B21 A22 + B22
 
 

 
 . 

 equal 
the number of rows of 

  
A11 A12
A21 A22

 
 

 
 +   

B11 B12
B21 B22
 
 

 
 =   

A11 + B11 A12 + B12
A21 + B21 A22 + B22
 
 

 
 . 

):

A11 A12

A21 A22

 

 

 

 

B1
B2
 

 

 

 
= 

A11B1 + A12B2

A21B1 + A22B2

 

 

 
 

 

.� (1.3)

Another example:

A11 A12

A21 A22

 

 

 

 

B11 B12
B21 B22
 

 

 

 
 = 

A11B11 + A12B21 A11B12 + A12B22

A21B11 + A22B21 A21B12 + A22B22

 

 

 

 
.� (1.4)

Notice that the result has the same number of rows as A and the same number of columns 
as 

  
A11 A12
A21 A22

 
 

 
 +   

B11 B12
B21 B22
 
 

 
 =   

A11 + B11 A12 + B12
A21 + B21 A22 + B22
 
 

 
 . 

. In index language, these two examples can be written much more compactly as:

� (1.5)

� (1.6)

Note that dummy indices are ones which are summed over all of their values. Unlike free 
indices, which must be the same on both sides of an equation, dummy indices can appear 
on either side. Also notice that dummy indices always appear twice on a given side of an 
equation. These rules trip up many beginning students of mechanics. 

For reference, here is a summary of the understood “index jockey” rules for index manipulations:

1.	 “Dummy” indices are those which are summed. Each such index always appears 
exactly twice. One can interpret this sum as matrix multiplication only if the 
indices can be placed directly next to each other. Separate summation symbols 
must be used for independent summations.
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2.	 In general, one can not change the order of indices on an object, such as Aij 
(Occasionally one knows effect of interchanging indices; see later comments on 
symmetric and antisymmetric matrices.)

3.	Free indices are those that are unsummed. In general, each free index appears 
once on both sides of a given equation.

Identity matrix (3 × 3 context):

  

1 0 0
0 1 0
0 0 1

 

 
 

 

 
 

The identity matrix is often simply written as the number “1”, or is absent altogether in 
contexts where its presence is unambiguous. (Physicists must learn to read behind the lines 
for the meaning!)

We will need three additional matrix operations.

1.	 Inverse:	 AA-1 = 1 � (1.7)

The “1” on the right hand side here means the identity matrix. A Theorem from linear 
algebra establishes that AA-1 = 1  implies A-1A = 1 (Can you prove this?) Finding 
A-1A = 1 in general is fairly complicated. For most of the matrices we will encounter, finding 
A-1A = 1 will be easy. (I’m thinking of rotation matrices, which will follow shortly.) Notice: 

(AB)-1(AB) = 1, 
(AB)-1A = B-1, 

=> (AB)-1 = B-1A-1. � (1.8)

2.	Transpose:	   Aij
T = Aji � (1.9)

Examples of the transpose operation:

           B = 
  

B1
B2
 

 
  

 
,    BT = (B1 B2)B = 

B1
B2

 

 

 
 

 

,    BT = (B1 B2) 

"column matrix"     "row matrix" 

A = 
A11 A12

A21 A22

 

 

 

 
, AT = 

A11 A21

A12 A22

 

 

 

 
. 

A = 
  
A11 A12
A21 A22

 
 

 
 , A

T = 
  
A11 A21
A12 A22

 
 

 
 
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Also

(AB)  ij
T  = (AB)ji , 

  = AjkBki
k
∑ , 

  = Bik
T Akj

T

k
∑ , 

  = (BTAT)ij , 

 => (AB)T = BTAT. � (1.10)

3.	Determinant:

� (1.12)

Note that  and that  and 
. We’ll find a more elegant definition of the determinant later. An important 

point to realize is that the inverse of a matrix, A, exists only if  is not zero.

An important point about linear algebra will also be called upon in later chapters. A system 
of linear (only x1,2,3  appear, never (x1,2,3)2  or higher powers) homogeneous (the right 
hand side of the following equations are zero) equations, 

A11x1 + A12x2 + A13x3 = 0,
A21x1 + A22x2 + A23x3 = 0,
A31x1 + A32x2 + A33x3 = 0,








 � (1.13)

has a nontrivial (x1,2,3  are not all zero!) solution if and only if 

det 
  

A11 A12 A13
A21 A22 A23
A31 A32 A33

 

 
 

 

 
 = 0. � (1.14)
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One often encounters matrices which are said to be symmetric or antisymmetric. 
  
A11 A12
A21 A22

 
 

 
 +   

B11 B12
B21 B22
 
 

 
 =   

A11 + B11 A12 + B12
A21 + B21 A22 + B22
 
 

 
 . 

 symmetric 
matrix is one for which 

AT = A or Aji = Aij 

An antisymmetric matrix has

AT = -A or Aji = -Aij

Matrices are not generally symmetric or antisymmetric, but such combinations can always 
be constructed. For example,

C = A + AT,

is a matrix combination which is symmetric (Cij = Cji) even though A is not itself. Likewise

D = A - AT,

is antisymmetric (Dij = -Dji)
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Orthogonal Transformations

Let us study a little about the above mentioned rotation matrices. Special case:

2

1

P

x1

P at (x ,0)1
(old coordinates)

Let’s do a “passive rotation,” where we rotate the axes and not the point P. (Define θ >0  
for counterclockwise rotations.)

θ P

2' 1'

1

2

 x 2

x

x

-
1

1
(θ >0 here)

P at (  x 1,  x 2) = (x1cosθ, -x1sinθ) 

= (x1cosθ, x1cos(θ + 
  
π

2
)) (new coordinates)

Another special case: 

θ

2' 1'

2

1

P'

xx

x

==

2

2 1
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P' at(0,x2) (old coordinates)  (old coordinates)

P' at (  x 1,  x 2) = (x2sinθ, x2cosθ) =(x2cos( 
  
π

2
- θ), x2cosθ) (new) (new)

Let’s now put these two special cases together into the general case of rotation in a plane:

P"
P'

P

2

1

x

x
1

2

P" at (x

1 2

1 2,x )

= (x ,0) + (0,x )
(old coordinates)

P P'

Now characterize the point P" with respect to rotated axes:

= (x1cosθ, x1cos(θ + 
  
π

2
))+(x2cos(  

π

2
- θ), x2cosθ)	 (new coordinates)

Therefore, comparing the old and new descriptions, we have

  

x1' = x1 cos θ + x2 cos(
π

2
− θ),

x2' = x1 cos(
π

2
+ θ) + x2 cos θ.

 

 
 

  
 � (1.15)

To simplify the notation, introduce the concept of direction cosines:
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The angle may be measured in a clockwise or counterclockwise sense but must be consistent. 
We will adopt counterclockwise as in the above examples. For the above rotation,

  

cos(x1',x1) = cos θ,
cos(x1',x2) = cos(2π −

π

2
+ θ) = cos(π

2
− θ),

cos(x2',x1) = cos(π
2

+ θ),
cos(x2',x2) = cos θ.

 

 

  

 

 
 

 

So, our general rotation may be written

x1
' = x1 cos(x1

',x1) + x2 cos(x1
',x2),

x2
' = x1 cos(x2

',x1) + x2 cos(x2
',x2).






� (1.16)
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In three dimensions, we have

  

x1' = x1 cos(x1',x1) + x2 cos(x1',x2) + x3 cos(x1',x3),
x2' = x1 cos(x2',x1) + x2 cos(x2',x2) + x3 cos(x2',x3),
x3' = x1 cos(x3',x1) + x2 cos(x3',x2) + x3 cos(x3',x3).

 

 
 

  
 � (1.17)

I wrote this out explicitly so that you would notice a pattern in the indices which indicates 
the above can be written in matrix language. Let us define

λij ≡ cos(x i
' ,xj). � (1.18)

If we arbitrarily choose to represent the position (x1,x2,x3) as a column matrix, the 
above relationship can be written,

x1
'

x2
'

x3
'



















= 
λ11 λ12 λ13
λ21 λ22 λ23
λ31 λ32 λ33
















 

x1
x2

x3
















. � (1.19)

or more abstractly

x' = λx,� (1.20)

where it is understood x' and x  are column matrices and λ  is a 3×3 matrix. The easiest 
way to see this is just to do the matrix multiplication on the right-hand side to see that it 
reproduces the rotation.

Written out in explicit index notation, the above relation may also be written as 

xi
' = λijxj

j=1

3

∑ � (1.21)

where it is understood that the free index "i"  takes on values 1,2,3.

Question: What if we knew the xi
'  instead of the xj ?  In other words, what is the inverse 

relationship between these quantities? Using matrix notation we have

  x' = λ x 
=> λ-1 x' = λ-1 λ x = x,

so1 

x = λ-1 x'

Download free eBooks at bookboon.com
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or

xi = 
  j =1

3

∑ λ  ij
−1 x j

' .
� (1.22)

As stated above, there is a simple way of getting λ-1  (given  λ-1 ) for rotations. Consider:
 

xi
' 2

i
∑  = x 1'

2 + x 2'
2 + x 3'

2. 

By definition

xi
' 2

i
∑  = 

  i
∑ λijxj

j
∑
 

 
 

 

 
 λikxk

k
∑
 

 
  

 

   = 
i,j,k
∑ λijλikxjxk .  � (1.23)

Require: xi
' 2

i
∑  = xi

2

i
∑  (length preserved)

=> 
i,j,k
∑ λijλikxjxk = 

i
∑ xi2.� (1.24)

The coefficient of each xjxk  term (j,k  independent) must be the same on both sides:

=>  i
∑ λijλik = 0,j ≠ k,

i
∑ λijλik = 1,j = k.











 � (1.25)

More simply

  i
∑ λijλik = δjk ,

� (1.26)

"Kronecker delta" 

where

δij ≡ 
  

0, i ≠ j ,
1, i = j .
 
 
 

 � (1.27)

Notice that the above is not a matrix statement (why?), but that the right-hand side, δjk,, 
is just index notation for the identity matrix. However, it may be cast into matrix language 
with the help of the transpose:
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  λ  ji
T = λij , 

=>  
  i
∑ λ  ji

T λik = δjk or   λTλ  = 1. � (1.28)

This last statement establishes that

  λT = λ-1, � (1.29)

for rotation matrices. In fact, the above equation is sometimes taken to define such 
transformations. Actually, the types of coordinate transformations allowed by this equation 
are a bit more general than simply rotations, as we will see shortly. The name orthogonal 
transformations are usually used for real matrices which satisfy   λT = λ-1,  and therefore 
preserve the lengths of vectors. Using the above, the relationship between the x i'  and the 
xi may now be cast as

x' = λx   ⇔   x =   λT x',
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in matrix language, or

x  i' = 
j
∑ λij xj  ⇔   xi = 

j
∑ λjix j

' ,

in component language. It is important to note that in place of

  i
∑ λijλik = δjk , � (1.30)

we may also write

i
∑ λjiλki = δjk .� (1.31)

Deriving one from the other will be a homework problem.

How many independent λij  elements are there? Notice that the equation 
  i
∑ λijλik = δjk  is 

symmetric under j × k, so that this system of equations actually represents 6, not 9 equations.  

(The number of independent elements of a real symmetric 3×3 matrix are 6.) This means 

the number of independent λij  is 9 – 6 = 3. This makes sense from the physical point of 

view of rotations in three dimensions, which require three independent angles, in general.

Let me make three additional points about the λij:

1.	 x" = (λ2λ1)x = λ3x,� (1.32)

λ3   is an orthogonal transformation if λ1  and λ2  also are. (We can view this as a  
transformation λ1  followed by a second transformation λ2 .) That is, the product of 
orthogonal matrices is also an orthogonal matrix. The proof of this statement is left as a 
problem.

2.	
x' = λ1x,
x " = λ2x' = λ2λ1x.






� (1.33)

Do the rotations in the opposite order:

x = λ2x,⎧
⎨
⎪

⎩⎪  x = 1x = 1 2x
� (1.34)

In general λ1λ2 ≠ λ2λ1,  (“noncommutative”) and the order in which rotations are 
performed is important.
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3.	As stated above, we started out describing rotation, but the λij  can also 
represent operations which are not rotations. For example,

λinv = 
−1 0 0
0 −1 0
0 0 −1
















. 

This satisfies λinv
T

  λinv  = 1, but describes a spatial inversion. This is not an operation 
which can be physically carried out on objects in general. We will consider such orthogonal 
transformations only sparingly.

All orthogonal transformations satisfy

det λ = 
  

+1,rotations
−1,inversions
 
 
 

 � (1.35)

λij  which have det λ = -1  are called proper orthogonal transformations, and those that have det  
λ = 1  are called improper orthogonal transformations. In general, improper orthogonal 
transformations can be thought of as an inversion plus an arbitrary rotation since 

det (λinversion λrotation) = det (λinversion)(det λrotation),

which means the combination is still improper. Proving that det ( λ) = −
+ 1  for orthogonal 

transformations is left as a homework problem at the end of the chapter.

Scalar and Vector Fields

You probably have an intuitive feeling as to the meaning of a “scalar”. It is something which 
is unchanged under a change in coordinates. Under rotations, a scalar field behaves as 

Scalar:		  φ'(x') = φ(x),� (1.36)

where x  i' = λijxj
j
∑ . It is understood that the x  and x' represent the same point 

described in two coordinate systems. See the below:

Download free eBooks at bookboon.com



MODERN INTRODUCTORY MECHANICS

19

Mathematical Review

19

2' 2 1'

1

x

lines of
constant density
(φ constant= )

(x'1 2x',' ) = φφ (x1 2,x )

There are also pseudoscalars, which behave like scalars under rotations, but acquire an extra 
minus sign under inversions. 

Pseudoscalar: φ'(x') = (detλ) φ(x).� (1.37)
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Although we’ve informally defined a vector as a quantity with both magnitude and direction, 
we need a quantitative definition. Here it is:

Vector:	 A  i'(x')= 
j
∑ λij Aj(x).� (1.38)

The λij are elements of an orthogonal transformation. Obviously, the transformation law 
for the coordinates x  i' , xi  is the template for this definition. 

There are also pseudovectors, which transform as

Pseudovector:	A  i'(x')= (detλ)
  j
∑ λij Aj(x). � (1.39)

These quantities do not change direction under inversions, as vectors do. We will see an 
example of a pseudovector shortly.

Vector Algebra and Scalar Differentiation

Given two vectors, 
� 
A  and 

� 
B , we may form either a scalar or a vector. Let’s study these 

two possibilities.

� 
A . 
� 
B = 

  i
∑ AiBi.  

   
denoted  defined 

� (1.40) 

It is also called the “dot product.” Here is the proof it is a scalar:

Notice I changed the order of the sums in some intermediate expressions, which is always 
allowed for a finite number of terms. Another, more geometrical, definition of the scalar 
product follows from the diagrams below:

Download free eBooks at bookboon.com



MODERN INTRODUCTORY MECHANICS

21

Mathematical Review

2 

1 

A 

B  

 

A B A B A B 1 1 2 2 
  . = + 

Same situation with a new coordinate system:

 

θ 

2' 
2 

1 

1' 

B' 

B' 
B 

1 

2 

 

 

A 

Therefore

    
� 
A '.    

� 
B ' = A 1' B 1' , |    

� 
A | = 

  i
∑ Ai2 ,|    

� 
B | = 

  i
∑ Bi2 . 

A 1' = |    
� 
A | here, so     

� 
A '.    

� 
B ' = |    

� 
A ||    

� 
B | B1'� 

B 
 

 
 

 

 
 

= cos θ
� � � 

. Then given     
� 
A .     
� 
B = 

    
� 
A ' .     

� 
B ',

=>      
� 
A .     
� 
B = |    

� 
A |  |    

� 
B |cosθ.� (1.41)

The vector product (or cross product) of 
�
A  and 

�
B  is defined as:

(
�
A x 
�
B )i = 

j,k
∑ εijkAjBk.� (1.42)
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denoted     defined 

Define the “permutation symbols”, εijk:

ε123 = ε231 = ε312 = 1,
ε321 = ε213 = ε132 = −1,

all other εijk 's = 0.













� (1.43)

Important property: εijk = εjki = εkij, εijk = -εikj = -εjik. This is known as the 
cyclic property of the permutation symbols. Using the εijk, a more formal definition of 
the determinant of a 3×3 matrix, A, can be written

det A ≡ 
n,�,m
∑ εnℓm A1n A2ℓ A3m.� (1.44)

We will use this definition shortly. In order to see how     
� 
A  x     

� 
B  transforms, we will need 

the following identity for orthogonal transformations,
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  j,k
∑ εijk λjℓλkm = (detλ) 

  n
∑ εnℓm λin,� (1.45)

This identity will be proven later (end of the chapter.) Let’s begin:

(    
� 
A 'x     

� 
B ')i  =  

  j,k
∑ εijk A j

' B  k' = 
j,k,�,m
∑ εijk λjℓ Aℓ λkm Bm 

				             = 
j,k,�,m
∑ εijk λjℓ λkm AℓBm.� (1.46)

Now use (1.45) on the right-hand side of (1.46):

=> (
� 
A ' x 

� 
B ')i = (detλ) ∑

mn ,,�
εnℓmλin AℓBm = (detλ)

  n,j,k
∑ λin (εnjkAjBk)

(j)(k)  (j)(k) 

					          

 notice I am    
     indicating a change  
     in the dummy indices! 

		           
= (detλ)

  n
∑ λin (

� 
A x 
� 
B )n. 

Therefore we have that

(    
� 
A ' x     

� 
B ')i = (det λ)

  n
∑ λin (    

� 
A x     
� 
B )n. � (1.47)

The extra factor of (det λ) indicates that 
� 
A x 
� 
B  actually transforms as a pseudovector (assuming  

� 
A  and 

� 
B  are themselves vectors.)

As an aside, there are many useful identities we can form with the εijk  by multiplying and 
summing on indices. For example, let’s evaluate: 

  k
∑ εijk εℓmk.  Following the index jockey 

rules, the only objects we can build out of δij  and the εijk  which have 4 free indices are:

δijδℓm, δimδℓj, δiℓδjm.

Therefore, we must have

 
k
∑ εijk εℓmk = C1δijδℓm + C2δimδℓj + C3δiℓδjm, 
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where the C1,2,3  are unknown constants. One immediately can see that C1 = 0. (Why?) 

Now multiply both sides of the above by δij  and sum over i  and j:

=> 0 = C2δℓm + C3δℓm  =>  C2 = -C3.

Now multiply by δjm  and sum over j  and m::

=>  
  j,k
∑ εijk εℓjk = - 2C2δiℓ . 

Then, taking a special case, say i = ℓ = 1, we then see that

j,k
∑ ε1jk ε1jk = 2,

so therefore C2=-1  and

  j,k
∑ εijk εℓjk = 2δiℓ,� (1.48)

=> 
  k
∑ εijk εℓmk = δiℓδjm - δimδℓj.� (1.49)

From this last expression, we easily see that

i,j,k
∑ εijk εijk = (δiiδjj − δijδij)

i,j
∑  = 3 x 3 - 3 = 6.� (1.50)

There is an alternate definition of the vector product as well. It says:

    
� 
A x     
� 
B = |    

� 
A ||    

� 
B | |sinθ|   ˆ n ,� (1.51)

where	

It doesn’t matter in which direction θ  is measured. This angle is measured in the plane 
defined by  and  if they aren’t colinear. This definition is illustrated below.
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θ  

θ 

1 

2 

3 

A 

A B 

B 

C 

C z 

  

 

 

 

measured in the 1,2 plane 

, ; in the 1,2 plane 
is directed along 

the + axis. 

Let’s now reconnect to the useful concept of unit vectors in this context. The scalar products 
are summarized as

  ˆ e i .   ˆ e j = δij.� (1.52)
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Now, using the second definition of the cross product, we find

  ˆ e 1 x   ˆ e 2 = |sin90o|  ˆ e 3 =   ˆ e 3.

Similarly,

  ˆ e 3 x   ˆ e 1 =   ˆ e 2 ,   ˆ e 2 x   ˆ e 3 =   ˆ e 1. 

Notice that order matters here since

  ˆ e 2 x   ˆ e 1 = -  ˆ e 3, 

and similarly for the other non zero products. Also

  ˆ e 1 x   ˆ e 1 =   ˆ e 2 x   ˆ e 2 =   ˆ e 3 x   ˆ e 3 = 0.

We can summarize all properties of unit vectors under the cross product as

  ˆ e i x   ˆ e j = 
  k
∑ εijk   ˆ e k, � (1.53)

and with a cyclic order wheel for permutation symbol indices:

 1 

2 

3 

=> ε 

ε 

123 

213 

= 1, 

=-1, etc. => 

I can now show the first and second definitions of the cross product are equivalent by 
resolving the components of 

� 
A  and 

� 
B  into unit vectors. From the second definition,

  
� 
A x 
�
B = (A1  ˆ e 1 + A2  ˆ e 2 + A3  ˆ e 3)x(B1  ˆ e 1 + B2  ˆ e 2 + B3  ˆ e 3)

= (A2B3 - A3B2)  ˆ e 1+(A3B1 - A1B3)  ˆ e 2+(A1B2 - A2B1)  ˆ e 3.

On the other hand, from the first definition,p.27: 

 
(    
 
A x    
 
B )1 = ε1jk

j,k
∑ AjBk  = e123A2B3 + e132A3B2 = (A2B3 - A3B2), 

 
p.57: 
 
mx =

F x, x,t( ). 
 
p.78: 
 

∇iU|x0 ≡
∂
∂xi

U |x= x0= 0. 

 
p.228: 
 

⇒
∂f
∂A

∂g
∂A
#

$
%

&

'
(
−1

A0,B0
| =

∂f
∂B

∂g
∂B
#

$
%

&

'
(
−1

A0,B0
| = −λ. 

 
 
p.235: 
 

∂f*
∂y

−
d
dx

∂f*
∂y'
#

$
%

&

'
( = 0,

f* ≡ f + λg.

+

,
--

.
-
-

 

 
p.245: 
 
 

 

y!

x

(x2,0)!

(0,y1)!

initial slope!

y1,x2>0!
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(    
� 
A x     
� 
B )2 = ε231A3B1 + ε213A1B3, = (A3B1 - A1B3),

(    
� 
A x     
� 
B )3 = ε312A1B2 + ε321A2B1, = (A1B2 - A2B1).

Comparing, we see the two definitions agree. By forming the determinant and comparing 
with the above definitions for the cross product, one may also show that

    
� 
A x     
� 
B = 

ê1ê2ê3
A1A2A3

B1B2B3

, � (1.54)

where the right hand side is understood as a symbolic determinant.

From either definition of the cross product we have that

    
� 
A ×

� 
B = −

� 
B ×

� 
A ,� (1.55)

as well as

� 
A ×

� 
B ×

� 
C ( ) =

� 
B 
� 
A ⋅
� 
C ( ) −

� 
C 
� 
A ⋅
� 
B ( ).� (1.56)

The last statement follows from Eq.(1.49) above. In addition, there is the cyclic rule,

� 
A ⋅

� 
B ×

� 
C ( ) =

� 
B ⋅

� 
C ×

� 
A ( ) =

� 
C ⋅

� 
A ×

� 
B ( ) ,� (1.57)

which is a direct result of the cylclic nature of the permutation symbols. Given that 
�
A , 

�
B ,  

and     
� 
C  are vectors, the quantity 

�
A .(

�
B x
�
C ) is an example of a pseudoscalar. (This is part 

of a problem.)

So, we know how to add and multiply vectors together. Question: does it make sense to 
define division? Consider

    
� 
A x     
� 
B =     

� 
C .

Given that 
� 
A and     

� 
C  and are known quantities, this equation clearly does not uniquely 

define 
� 
B  since any component of 

� 
B  along 

� 
A  will not contribute to the cross product. So 

the answer is in general, no. However, if we know both     
� 
A .    
� 
B  and     

� 
A x     
� 
B , we can solve 

for     
� 
B , say. (We will have a homework problem along these lines.)

Differentiation of vectors with respect to scalars leads to new vectors.
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Given:

A  i' = 
j
∑ λij Aj,  s  (a scalar). 

Then

  
dAi'
ds'

 = 
j
∑ λij 

  
dAj

ds'
 = 

j
∑ λij 

  
dAj

ds
,

	 => 
  
dAi'
ds'

=  
  j
∑ λij 

  

dAj
ds

 

 
  

 
.� (1.58)

A fundamental postulate of mechanics is that the time parameter transforms as a scalar quantity. 
Given this, these derivative transformations imply that velocity and acceleration are vectors.

Alternate Coordinate Systems

	 The radius vector,     
� r , is easy to characterize in the three most common coordinate 

systems. We have ( ��r ≡ d�r
dt

;t is considered a scalar ):
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Rectangular:	     
� r  = x1  ˆ e 1 + x2  ˆ e 2 + x3  ˆ e 3  (all �̂ei = 0)

Cylindrical:	 � r  = ρˆ e ρ + zˆ e z (only �̂ez = 0)
Additional unit vector:   ˆ e φ 

Spherical:	     
� r  = r  ˆ e r 

		
Additional unit vectors:   ˆ e φ,   ˆ e θ 

    
� v  = ��r,     

� a = ��v= ���r. 

As an exercize, let’s work out     
� v  and  in cylindrical coordinates. Follow a particle’s trajectory 

at two closely spaced moments in time:

  2 
     
         

ˆ e φ1 

     
ˆ e φ2      

ˆ e ρ2 
      

                                                   
ˆ e ρ1 

  dφ 
  
   φ      1 
      

  3 (up)                          

Displace the unit vectors to the origin:

Can now see that (d  ˆ e ρ =   
ˆ e ρ2 -   

ˆ e ρ1 ) 
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|d  ˆ e ρ| = |dφ|,

d  ˆ e ρ = direction x length,
   =   ˆ e φ dφ. 

Likewise (d  ˆ e φ = ˆ e φ2 - ˆ e φ1 )

 |d  ˆ e φ| = |dφ|,
d  ˆ e φ = -  ˆ e ρ dφ. 

Therefore

 
dˆ e ρ
dt

 = 
  
dφ
dt

ˆ e φ or �̂eρ = �φêφ
,� (1.59)

and

  

dˆ e φ
dφ

 = - 
  
dφ
dt

ˆ e ρ or �̂eφ = − �φêρ .� (1.60)

Thus in cylindrical coordinates,

    
� v  = �ρê ρ + ρ �̂eρ + �zêz, 

=>     
� v  = �ρê ρ + ρ �φê φ + �zêz.� (1.61)

and

    
 a  = ρê ρ + ρê ρ + ρφê φ +  + ρφê φ + zêz, 

=>      
 a  = (ρ  - ρφ 2)  ˆ e ρ + (2ρφ + ρφ)  ˆ e φ + zêz.

ê
� (1.62)

Since the unit vectors in rectangular coordinates do not change, it is very useful to know 
the decomposition of the unit vectors in other coordinate systems in terms of rectangular 
coordinates.

Cylindrical:	

ˆ e ρ = (cos φ,sin φ,0),
ˆ e φ = (− sin φ,cos φ,0),
ˆ e z = (0,0,1).

 

 
 

  
� (1.63)

Spherical:	

  

ˆ e r = (sin θ cos φ,sin θ sin φ,cos θ),
ˆ e θ = (cos θ cos φ,cos θ sin φ,− sin θ),
ˆ e φ = (− sin φ,cos φ,0).

 

 
 

  
 � (1.64)

Also
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       ρ 

                                    => 
  
ˆ e ρ x 

  
ˆ e φ  =   ˆ e z , 

 z      φ 

cyclically in cylindrical coordinates and

      θ

                                   =>   ˆ e θ  x 
  
ˆ e φ  =   ˆ e r ,

                                

 r     φ

cyclically in spherical coordinates.
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Angular Velocity

Another important concept for particle motion is angular velocity. Here we will rely mainly 
on intuition to understand the concept. First, identify an instantaneous circular path:

  circle tangent    Instantaneous 
  to trajectory    axis of  
  at 

�r      rotation 
        (unique) 

       
          ρ 

particle 
trajectory          

�v  
        
       

�r  

Flip this picture on it’s side. Choose a cylindrical coordinate system with the origin along 
the axis of rotation. Use this origin to define the radius vector,   



r.

   3   
 
 
   

ω       
 
 
 
         2  
                                    φ         
             v  
          r     
     1            α       
             ρ = r sin α  
   origin                                                     

	
  

Let �ω be directed co-linear to the axis of rotation, which is the third axis above. Angular 
velocity and velocity are related by the equation

�v =
�
ω x     

� r .� (1.65)

Notice, using a cylindrical coordinate system,
�
ω = ωzêz,

�v = ρ�φêφ,
�r = ρêρ + zêz, 

=> � v = � ω  x �r ⇒ ρ�φêφ = ωzêz x ρêρ + zêz( ) = ωzρêφ.
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This means

ωz = �φ, � (1.66)

so that ωz  has the meaning of instantaneous time change in the angular position. Notice 
the direction of �ω is given by a right hand rule. (Curl the fingers of you right hand in the 
direction of and your thumb points in the direction of �ω). A common case is uniform 
circular motion:

1

2�

�
ρ φ

�
ω (up)

�v

�v = ρ �φêφ,
�a = −ρ�φ2êρ,
�
ω = �φêz.

   is a constant�
vector pointed along�
the 3-axis.�

�
ω

Differential Operators and Leibnitz Rule

A frequently occurring mathematical operation is the gradient:

� 
∇ ≡ ˆ e i

i
∑ ∂

∂xi
.� (1.67)

The x,y,z components of this are just the usual partial derivative operators. When 
operating on a scalar, it gives a vector:

    

� 
∇ 'φ'= ˆ e i'

∂φ'
∂xi

'
i
∑   or 

� 
∇ 'φ'( )

i
=

∂φ'
∂xi

' . � (1.68)

Proof: The chain rule says,

 

∂φ'
∂xi'

=
j
∑ ∂φ'

∂xj

∂xj
∂xi'

=
j
∑ ∂φ

∂xj

∂xj
∂xi'

. 

Now remember

xj = λkj xk'
k
∑ , 

=>

    

∂xj
∂xi

' = λ kj
k
∑ ∂xk

'

∂xi
'

δki
�

= λij .� (1.69)
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Therefore

  

∂φ'
∂xi'

= λij
j
∑ ∂φ

∂xj
  or 

    

� 
∇ 'φ'( )i = λij

j
∑

� 
∇ φ( )j ,� (1.70)

which states that 
� 
∇ φ  transforms as a vector. A physical interpretation of the gradient operator 

acting on a scalar is given by the following sketch. Think of lines of constant density in 2 
dimensions again. Construct the 1’ axis tangent to the constant φ  line, at � x ’:

    2 2

       
� x '

1’

lines of local
constant φ coordinate

system
1

Clearly,
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∂φ

∂x1'
 = 0 

    
⇒

� 
∇ φ =

∂φ

∂x2'
ˆ e 2'  only. 

We conclude that the gradient at each point is a vector pointing perpendicular to lines of 
constant f at that point and points in the direction that φ  is increasing.

In three dimensions we can orient a new coordinate system so that the 1’2’ plane is now 
locally tangent to the φ =  constant surface at � x ':

  3     φ = constant surface

    3’
2’

        
� x '

2
1’

 1

Again

    

� 
∇ 'φ =

∂φ

∂x3'
ˆ e 3'  only. 

So the gradient is perpendicular to lines (2 dimensions) or surfaces (3 dimensions) of 
constant φ, and points in the direction φ  is increasing. When dotted into a vector field, 
the divergence gives a scalar. (You should be able to prove this statement.) Thus, 

� 
∇ ⋅
� 
A  

transforms as a scalar if is a vector.

A further mathematical operation, the curl of a vector,

Curl:	
    

� 
∇ ×

� 
A ( ) ≡ εijk

j,k
∑ ∇jAk , � (1.71)

	
    

 denoted    defined 

can also be defined using the gradient ∇ i, but will not be used extensively in this course. 
If 
�
∇ ×

�
A   is a vector, 

�
∇ ×

�
A   can be shown to transform as a pseudovector.

Another important operator is the Laplacian:

    

� 
∇ ⋅
� 
∇ =

∂2

∂xi2i
∑ ≡ ∇2.� (1.72)
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One can show it produces a scalar or vector when acting on a scalar or vector, respectively. 
Here is the proof it transforms as a scalar when acting on a scalar:

  
∇'2φ' =

∂2φ'

∂xi'2
=

∂

∂xi'i
∑

i
∑ ∂

∂xi'
φ'.

Since φ’ = φ, we have

  
∇'2φ' =

∂xj
∂xi'
 

 
  

 
 

i,j,k
∑ ∂

∂xj
∂xk
∂xi'
 

 
  

 
 ∂

∂xk
φ. 

As shown above

  
  

∂xj
∂xi'

= λij,  

  
⇒ ∇'2φ' = λij λik

i
∑
 
 
 

 
 
 

∂

∂xjj,k
∑ ∂

∂xk
φ ,

 

     = 
  

∂2φ

∂xi2i
∑ = ∇2φ. 

   
⇒ ∇'2φ' = λij λik

i
∑
 
 
 

 
 
 

∂

∂xjj,k
∑ ∂

∂xk
φ ,

 
The proof that 

    

� 
∇ ⋅
� 
∇ =

∂2

∂xi2i
∑ ≡ ∇2. operating on a vector yields another vector is similar.

Finally, there is a useful rule for taking the derivative with respect to a variable which is 
contained in the upper and lower limits of an integral. This result, called the Leibnitz rule 
for differentiation, states that

d
dt

dx f(x,t)
a(t)

b(t)

∫ = f(b(t),t)�b(t) − f(a(t),t) �a(t) + dx ∂f(x,t)
∂ta(t)

b(t)

∫ .� (1.73)

When the differentiating variable appears in the upper and lower limits of an integral as 
well as in the integrand, one obtains three terms. The first term is the value of the integrand 
evaluated at the upper limit, f(b(t),t), times the derivative of the upper limit,    b (t). 
The second term is similar but represents minus the integrand at the lower limit,    a (t). 
times the derivative of the lower limit. The third term represents the contribution from 
the t-dependence in the integral itself. Eq.(1.73) is the simplest case of the dependence 
on a single variable, t; we will use a more general version of the Leibnitz rule in a three 
dimensional context in the next Chapter. 

Complex Variables

We will have occasion to use complex numbers and variables in our study of mechanics. 
The imaginary number i is given by

i=  −1 ,
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and when raised to various powers gives,

  i
2 = −1, i3 = −i, i4 = 1.

These numbers can be arranged on a unit circle in a plane:

x

y

1

i

-1

-i

z=x+iy

φ
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This is called the complex number plane. As the figure suggests, any complex number can 
be written as a combination of a real and an imaginary number,

z = x + iy,� (1.74)

where x  and y are both real numbers. The complex conjugate of z  is given by x - z = x + iy, 
and is denoted as z*. These two numbers specify a location in the above plane on the 
real (x ) and imaginary (y) axes. The real and imaginary parts of z are separated off with

Re(z) ≡  x, Im(z) ≡  y,

and the distance from the origin to the point z is given as

|z| =   z z
∗ = x2 + y2 .� (1.75)

From plane trigonometry, any complex number on the above unit circle may be written as

z = cosφ + i sinφ,� (1.76)

where the angle φ  is measured from the real axis, x . It was Euler who showed this may 
be written as

z =   eiφ ,� (1.77)

for . Given this result we can now represent any number in the complex plane as

z = |z|  eiφ .� (1.78)

We often encounter ratios of complex numbers,

z = z1
z2

. 

We may always factorize such a ratio into real and imaginary parts by multiplying top and 
bottom by the complex conjugate of z2:

z = 
  

z1 z2∗

| z2 |2
,

which may also be written as

z = 
  

z1
z2

ei φ1 − φ2( ).
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Complex numbers are extremely useful in solving linear differential equations, which is 
where we will see them next in this course.

CHAPTER 1 PROBLEMS

1.	Let

	

A = 

0 1 3

−1 2 0

2 4 0

























, B = 

6 2 −2

1 0 4

4 1 −1

























. 

a)	 Find the matrix product AB . (A symbolic manipulator will be handy)
b)	Find det (AB), and show that det (AB) = (det A)(det B)
c)	 Form the matrix product BTAT  and show that BT AT = (AB)T, as it 

should.

2.	Try proving that

	 A-1A=1,

implies that

	 AA-1=1.

3.	Prove that the inverse of the transpose is the transpose of the inverse of a square 
matrix (assuming it’s inverse exists!).

4.	Given λijλik = δjk
i
∑ , show that

	 λjiλki = δjk
i
∑ ,

follows immmediately. [Hint: Use matrix notation and remember that λ−1 = λT  for 
these matrices.]

5.	Starting with (λ  is a matrix; T  denotes transpose)

	 λ-1 = λT, 

prove that 
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	 det λ = ±1.

[Hint: λ = det λT.]

6.	Given that the 3 × 3 matrices λ1 and λ2  represent orthogonal transformations 
on vectors  x  and x'

	
  λ1
T = λ 1

-1  ,   λ2
T = λ 2

-1  , 
(x'= λ1x, x" = λ2x')

show that the matrix product, λ2λ1,, is also an orthogonal transformation.

7.	Using the definition given in the text, 

	 det A = εijk
i,j,k
∑ A1iA2jA3k ,

show that the determinant of a 3 × 3 matrix may also be written in the forms:

a)	
  
det A = εijk

i,j,k
∑ Ai1Aj2Ak3 ,
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b)	det A = 
1
3!

εijkε�mnA�iAmjAnk
i,j,k,�,m,n
∑ . 

8.	Argue that the determinant of an antisymmetric 3×3 matrix,

	 AT = − A ,

is zero. Is the determinant of an antisymmetric 4x4 matrix necessarily zero?

9.	We need to complete the proof of the relation we found necessary when proving 
that 

� 
A x
� 
B actually transformed as a (pseudo) vector. This proof was based upon 

the supposed identity,

	 εijk λj�λkm = C εn�m
n
∑

j,k
∑ λin .

By multiplying both sides by λip  (and summing on i) and choosing a special case, show 
that this identity may be reduced to Eq.(1.44) of the text (almost; see prob. 7), implying

	   det λ = C.

10.	(a) Show Eq.(1.56) follows from Eq.(1.49).
(b) Show the cyclic property Eq.(1.57).

11.	Show that

	
  
� 
A ⋅

� 
B ×

� 
A ×

� 
B ( )[ ] =

� 
A ×

� 
B ( )2 .

12.	Given that   
� 
A ,     

� 
B  and     

� 
C  are vectors, argue that     

� 
A ⋅

� 
B ×

� 
C ( )  transforms as a 

pseudoscalar.

13.	Does the angular velocity of a particle, 
� 
ω , transform as a vector or 

pseudovector? Explain.

14.	Evaluate the sum:

	
εijkε�mkεnjm

k,j,m
∑ .

[Hint: Use results already proven.]
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15.	(Adapted from Marion and Thorton.) Let’s investigate a point raised in the text. 
Consider
	

�
A ×

�
B =

�
C,

where 
� 
A  and 

� 
C  are considered known quantities. Clearly, this equation does not uniquely 

define 
r 

B   since any component of 
� 
B  along 

� 
A  will not contribute to the cross product. 

However, consider

	
�
A ⋅
�
B = S,

where S is a known scalar. Show that we can solve for 
� 
B  and that (

� 
A  considered nonzero)

	
�
B =

1
�
A2 S

�
A +

�
C ×

�
A( ).

16.	Express the spherical unit vector, êθ, in terms of the cylindrical unit vectors 
êρ, ê φ  and êz. The x, y, z  components of these vectors are

	 êθ = (cosθ cosφ, cosθ sinφ, -sinθ) ,

and

	 êρ = (cosφ,sinφ,0),

	 êφ = (-sinφ,cosφ,0),

	 ê z = (0,0,1).

17.	Show that the velocity vector in spherical coordinates is given by: 

    
� v  =   ̇ r ̂ e r  + r  

˙ θ ̂  e θ  + r sinθ �φ   ˆ e φ. 
[Hint: Use the decomposition of ê  r  found in the text.]

18.	In spherical coordinates, show that

a)	   ̂ ˙ e θ = -  
˙ θ ̂  e θ  +   ̇ φ cosθ   ̂ e r,

b)	 �̂eφ = - ��φcosθ   ̂ e θ -   ̇ φ sinθ   ̂ e r. 

[Hint: See decomposition of ê θ, êφ  in the text.]
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19.	A particle follows the trajectory y = Kx2  (K  is a constant) with constant speed, 
S, in the xy  plane as shown.

a)	 Show that 
���x. ��x = 0  anywhere on the trajectory.

b)	Find the acceleration, ���x , when the particle is at the origin, 0.
c)	 Find the instantaneous angular velocity, �ω , at 0., at 0.

20.	Given the vector function v� = 20xy  ̂ i + 25yz  
ˆ j + 15xy  ̂ k , find:

(a)     
� 
∇ ⋅

� v  ,  (b)     
� 
∇ ×

� v  	 (b)     
� 
∇ ⋅
� v  ,  (b)     

� 
∇ ×

� v  
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21.	Given that

	 ∇i
'  = λij∇j

j
∑ ,

and

	 Aj
' = λjkAk

k
∑ ,

prove that:

a)	
�
∇'⋅
�
A' transforms as a scalar,

b)	
�
∇'×

�
A' transforms as a pseudovector.

22.	Show that (∇2 ≡ ∇j
2

j
∑ ) 

	 ∇2(f g) = g∇2f + f∇2g + 2∇
�
f.∇
�
g.

23.	Show that 

	 z = cosφ + i sinφ,

may be written as

	 z =   eiφ .

[Hint: Consider the power series expansion of the exponential.]

24.	Show that the angle φ  in z =   eiφ .is given by   0 ≤ φ < 2π

	 φ = tan−1 Im(z)
Re(z)








.
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2	 NEWTONIAN MECHANICS

REVIEW OF NEWTON’S LAWS

Newton’s 3 laws:

1)	A body remains at rest or in uniform motion unless acted upon by a force.
2)	A body acted upon by a force moves in such a manner that the time rate of 

change of momentum equals force.
3)	If two bodies exert forces on each other, their forces are equal in magnitude and 

opposite in direction.

We will see that these dynamical laws lead to certain conservation theorems. In fact, it is 
now known that the conservation laws have a greater range of validity that Newton’s laws, 
so we can regard these as a stairstep toward a more fundamental outlook. More sophisticated 
formulations of mechanics do not even use the concept of “force”. So Newton’s laws move 
us toward a more fundamental outlook in both physical content as well as formalism.

Essentially, Newton’s laws are a framework applicable to macroscopic motions due to 
any kind of physical interaction as long as the characteristic velocities involved are small 
compared to the speed of light and characteristic length scales are large compare to atomic 
dimensions. By a “physical interaction” I mean the underlying force of nature responsible 
for producing the motion of objects. For example, electrodynamics often manifests itself 
in our macroscopic world in a sort of disguised form in the form of elastic and inelastic 
(frictional) forces. By elastic, in this context, I mean that no energy is lost in the form of 
heat during the interaction.

Let me paraphrase Newton’s laws, as applied to point objects, to help you remember them 
better and to be a bit more quantitative.

I. 	� Let     
� x (t) be the position of a particle at time t and let 

� 
F (t) be the force on it. 

Then Newton’s first law says

� x (t)=
� v t +

� x 0 if
� 
F (t)= 0, � (2.1)

Of course � x (t)=
� v t +

� x 0 is only going to be true if particle position is measured in a 
non-accelerating or so-called inertial reference frame. So, we need an initial inertial reference 
frame to define another one. The inertial frame concept is clearly an idealization, only true 
to a certain extent in applications here on Earth. (We already are idealizing to point particles 
as well!) However, this will not prevent us from an intuitive and fruitful application of 
Newton’s laws in real-world situations.

Download free eBooks at bookboon.com



MODERN INTRODUCTORY MECHANICS

46

Newtonian Mechanics

46

II. 	� Let the momentum of a point particle be defined as

    
� p ≡ m� v , � (2.2)

where m is the particle’s mass and � v  is it’s velocity. Imagine summing all the individual 
forces to get the total force on the particle,

    

� 
F =

� 
f i.

i
∑  

Then Newton’s second law says 

  
� 
F = d� p 

dt
=

d
dt

m� v ( ).� (2.3)

This defines force (undefined in Newton’s first law) as long as mass is also defined.
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III.	 I’ll use the following picture to help explain Newton’s third law:

  
� 
F 12

  
� 
F 21 m1

m2

� 
F 21 = −

� 
F 12

 

� 
F 21 and     

� 
F 12 act on different objects! Note that the forces between particles do not necessarily 

point along the line connecting them, although it usually does.

I invoked the concept of mass above. How is this defined? It can be regarded simply as the 
proportionality constant between force and acceleration in some system of units: 

    
� 
F = m � a . � (2.4)

However, this viewpoint is a bit illogical, because we are now using this one equation to 
define both force and mass. If we are going to simply regard mass as a proportionality factor, 
then we should have a means of defining both force and acceleration. We can always use 
a gravitational field to independently measure such quantities in the form of the equation,

    
� 
W = mg

� g ,

where 
� 
W  is the weight (measured on a spring scale for example) and   

� g  is the acceleration 
due to gravity. “mg”  is then the mass as measured using gravity. It is now possible to imagine 
accelerating the particle using the same spring. If we displace the spring the same amount, 
we are guaranteed to exert the same force. If we allow the particle to be accelerated, we 
will now have that

    
� 
W = ma

� a ,

where 
� 
W  is the exact same force as before. Although the same force is being used in both 

situations, it is possible that the accelerations     
� a   (inertial) and  (gravitational) will not be 

the same and therefore the proportionality constants, mg and ma will not be equal. Let’s 
call ma the inertial mass and mg the gravitational mass. The question
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  mg =
?

ma

is an experimental one and has been tested extremely accurately; one such test will be 
described in Ch.5. As far as is known, however, the equality ma = mg  is exact. We will 
use “m” to denote the mass in all future situations.

Let us investigate the solution of Newton’s force law for a point particle in two fairly 
common circumstances. The general form of the force law in one space dimension is just

m��x = F x, �x,t( ). � (2.5)

�x ≡
dx
dt

, ��x ≡
d2x
dt2











What I am suggesting in the notation F x, �x,t( )  is that the force on the particle can be a 
function of it’s position, x(t), it’s instantaneous velocity, �x(t), as well as having explicit 
time dependence. Without knowing the specific form of F x, �x,t( )  it is not possible to 
solve Eq.(2.5) in general. However, let’s say F x, �x,t( )   → F(t)  only. Then the first 
integral of Eq.(2.5) gives

�x(t)= �x0 +
1
m

dt'F(t'),
t0

t

∫  � (2.6)

from which the velocity at time t can be found. In the above, x0  is just the constant of 
integration, which in this case just represents the initial velocity. (Just set t=t0  above to 
see this.) If our goal is to find x(t), we need only integrate again:

x(t) = x0 + �x0 t − t0( ) +
1
m

dt'
t0

t

∫ dt"F(t")
t0

t'

∫ .� (2.7)

Again, a constant of integration, x0, has emerged. Clearly, since Eq.(2.5) represents a 
second-order differential equation, we will always have two such constants to supply. In 
this case, we are simply requiring

�x t0( ) = �x0,� (2.8)

x t0( ) = x0.� (2.9)

Eqs. (2.8) and (2.9) are often called initial conditions. Usually, one chooses 
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A common application of Eq.(2.5) is when F(t) = ma, where ”a”  is a constant in time. 
(This is the case of gravitational attraction of a point mass near the Earth’s surface, for 
example.) Then, we obtain

 
dt' dt"

t0

t'

∫
t0

t

∫ = dt'
t0

t

∫ (t'− t0) =
1
2
(t − t0)

2 	
  

which gives

x(t) = x0 + �x0 t − t0( ) +
a
2

t − t0( )2 ,� (2.10)

which should be familiar to you as the equation for instantaneous position under constant 
acceleration.

Another common case is where F x, �x,t( )   → F(x) only. Then, we can solve for the 
motion again, as follows. Integrate both sides of Eq. (2.5) over x. Since

dx ��x
x0

x(t)

∫ = dt' �x t'( ) ��x t'( )
t0

t

∫ � (2.11)
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=
1
2
�x2(t) − �x0

2( ),� (2.12)

we have

1
2
m �x2(t) − �x0

2( ) = dx'F(x').
x0

x(t)

∫ � (2.13)

One may confirm that Eq. (2.13) is the first integral of (2.5) by taking the derivative of 
(2.13) with respect to t.∗ 2 In this case �x0 is just a constant. Also, Eq. (2.13) is actually just 
a statement about energy conservation. One recognizes the difference in kinetic energies 
on the left hand side and the right hand side is just the work done. This will be discussed 
in more depth later. 

It is possible to integrate (2.13) again, as follows. First, solve for �x t( ) ,

�x t( ) = ±
2
m

dx'F(x') + �x0
2

x0

x(t)

∫ . � (2.15)

Then using the general identity (which also applies in more than one dimension if the 
integration is along the particle’s path),

dx
�x

= dt
t0

t

∫
x0

x(t)

∫ ,

yields

±
dx'

2
m

d ′′x F( ′′x) + �x0
2

x0

x'

∫
=

x0

x(t)

∫  (t - t0).� (2.16)

The appropriate sign in Eqs.(2.15) and (2.16) must be chosen for a given problem. Another 
constant of integration has been supplied on the right hand side of Eq.(2.16), which in 
this case is just the initial time,  Notice that while Eq.(2.16) is a formal solution to 
the problem, it gives t(x) rather than the more usual x(t). However, if the relation of 
x(t) and t is one-to-one (we can imagine breaking the overall motion of the particle up 
into submotions for which this is true), then one can in principle invert the relation t(x) 
to get x(t).

Let us again take an example to illustrate the use of Eq. (2.16). Consider a stretched spring 
attached to a vertical support, as shown. (Imagine the spring is nearly massless.)
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    m          origin
x0

         at rest             
� 
F (x)

           (a)        m          +x

stetched
    (b)

Let us pull the mass m down a distance x0  and then release it from rest. Let us assume that  
(“k” is a constant called the “spring constant”)

F(x) = -kx , k >0,

for small extensions of the spring, a force law for springs known as Hooke’s law. (We’ll 
examine this force law in the next Chapter.) The goal will be to use Eq.(2.16) to find x(t). 
for an appropriate portion of the motion.

Eq.(2.16) reads in our case (choosing �x0 = 0,t0 = 0 ) 

−
dx'

−
2k
m

x''dx''
x0

x'

∫x0

x(t)

∫ = t, 
� (2.17)

where we have chosen the negative sign in Eq.(2.16) for our coordinate system. We now 
do the integral:

  
−

m
k

dx'
x02 − x'2

= −
m
kx0

x(t)

∫ Sin−1 x(t)
x0

 

 
  

 
 − Sin−1 1( )

 

 
 

 

 
 ,

  
= −

m
k

Sin−1 x(t)
x0

 

 
  

 
 −

π

2

 

 
 

 

 
 . � (2.18)

Note that the inverse sine is not defined until it’s range is specified. I have chosen the 
principal branch above, symbolized by writing “Sin-1”. (Any other branch would do.) 
Putting (2.17) and (2.18) together now allows us to solve for x(t). as

� (2.19)
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This type of motion is termed “simple harmonic”. We have now solved for the motion of 
the point mass along the portion of the motion where the connection between t  and x  is 
one to one. Obviously, since the motion is simple harmonic we can get x(t). at any time 
t by just writing the usual “sin” function above, as we have already done. Thus

� (2.20)

The one to one submotions of the system are connected by “turning points”, where the 
motion of the particle reverses, occuring at x = ±x0  in this example. We will discuss 
turning points more extensively in the material to follow. The period of motion of this 
system is given by the amount of time necessary to complete one spatial cycle of motion 
and is given by the amount of time necessary for the arument of the cosine in (2.20) to 

increase by 2π, namely 
  
Tspring = 2π m

k
.  Note that this period is independent of the 

amplitude of motion!

Simple Examples Using Newton’s Laws

We will look at four simple examples as further applications of the ideas in Newton’s laws. 
These should be considered as purely review.
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Example 1

We illustrate one-dimensional harmonic oscillation in the form of an oscillating spring, 
but now let us imagine a periodic force is applied to the system, initially at rest. We take

m��x = F x,t( ),� (E.1)

F x,t( ) = − kx + F0 sin ωt.� (E.2)

The equation of motion can be put into the form 

��x +
k
m
x =

F0
m
sin ωt.� (E.3)

Let us solve (E.3) subject to the initial conditions,

�x(0) = 0, x(0) = 0.� (E.4)

Solution:

This problem was chosen because it illustrates some techniques of solving linear differential 
equations. Let us call ω0

2 =
k
m
. Then the complimentary equation is

��xc + ω0
2xc = 0,� (E.5)

the general solution of which is

xc = A sin ω0t + B cos ω0t.� (E.6)

“ω0 ”  is now identified as the angular frequency of motion, ω0 = 2πf0, where f0 is 
frequency. The particular solution can be found by the method of undetermined coefficients. 
The trial solution is (assume ω ≠ ω0  initially)

x p= C sin ωt + D cos ωt.� (E.7)

Substituting in (E.3) now gives

sin ωt : C =
F0

m(ω0
2 − ω2)

,� (E.8)

cos ωt : D = 0.� (E.9)

Thus, the general solution is 

x = xc + xp =
F0

m(ω0
2 − ω2)

sin ωt + A sin ω0t + B cos ω0t.� (E.10)
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It only remains to satisfy the initial conditions. We have

x(0) = 0 ⇒ B = 0,� (E.11)

�x(0)= 0 ⇒ A = −
F0ω

mω0 ω0
2 − ω2( )

,� (E.12)

⇒ x =
F0

m(ω0
2 − ω2)

sin ωt −
ω
ω0

sin ω0t








.� (E.13)

Let’s now examine the solution for ω = ω0. We have the same complimentary solution, 
(E.6), as before, but now the trial particular solution must be taken as

xp = Ct sin ω0t + Dt cos ω0t.� (E.14)

Again, substituting in (E.3) gives (the coefficients of the  
terms vanish)

sin ω0t : D = −
F0

2mω0

,� (E.15)

cos ω0t : C = 0.� (E.16)

The general solution is thus

x = A sin ω0t + B cos ω0t −
F0

2mω0

t cos ω0t.� (E.17)

Again, supplying boundary conditions,

x(0) = 0 ⇒ B = 0,� (E.18)

�x(0) = 0 ⇒ A =
F0

2mω0
2 .� (E.19)

This gives finally

x =
F0

2mω0
2 sin ω0t −

F0
2mω0

t cos ω0t. � (E.20)

Notice that as t → ∞ , the motion in (E.20) becomes unbounded. We will later study 
in detail a more realistic case with damping where the unbounded motion for ω = ω0  is 
removed and instead results in a phenomenon known as “resonance”.

The following is a simple one-dimensional dynamics problem.
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Example 2

Two sprinters are running a 200m race. Both runners have the same top speed, 10m/s, at the 
end of their initial acceleration, but Michael reaches top speed after only 15m while Frankie 
takes 20m to reach the same top speed. Let’s idealize the acceleration of both sprinters as 
a constant. By how many seconds does Michael beat Frankie in running the race? How far 
ahead is Michael from Frankie when he crosses the finish line?

Solution:

The acceleration profile of the two runners is as shown.

 a
aMichael

       aFrankie

a=0 for both

   15m 20m       200m

The velocity and position of the runners during the acceleration period are given by Eq. 
(2.10) and it’s first derivative x0 = �x0 = t0 = 0( ),

  v(t) = at, � (E.21)

x(t) =
at2
2

. � (E.22)

Notice that we do not know either the acceleration or the time it takes to reach top speed, but 
Eq.(E.21) and (E.22) give us two equations in two unknowns. Plugging in v(t) = 10m/s  
in (E.21) and either x(t) = 15m  or 20m  in (E.22) then gives

  
amichael =

10
3

m
s2 ,� (E.23)

  
aFrankie =

5
2
m
s2. � (E.24)

Using these results, solve for the acceleration time from (E.21):

  ta( )Michael = 3s,� (E.25)

  ta( )Frankie = 4s.� (E.26)
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We now simply solve for the time necessary to run the remaining distance at the constant 
speed of 10m/s from (different x(t) = �x0t. than (E.22))

x(t) = �x0t.� (E.27)

For Michael x(t) = 185m, while x(t) = 180m , for Frankie; �x0 = 10 ms. . Calling 
this time t0, we find

  t0( )Michael = 18.5s,� (E.28)

t0( )Frank = 18.0s.� (E.29)

Adding ta  and t0,, we then obtain that Michael beats Frankie by only .5s. In addition, 
when Michael crosses the finish line, Frankie will be

  10
ms × .5s = 5m

behind him. (There are much simplier solutions of this problem!)

Of course, in more than one dimension, Newton’s law of motion for point objects becomes 
a vector law,

p.27: 

 
(    
 
A x    
 
B )1 = ε1jk

j,k
∑ AjBk  = e123A2B3 + e132A3B2 = (A2B3 - A3B2), 

 
p.57: 
 
mx =

F x, x,t( ). 
 
p.78: 
 

∇iU|x0 ≡
∂
∂xi

U |x= x0= 0. 

 
p.228: 
 

⇒
∂f
∂A

∂g
∂A
#

$
%

&

'
(
−1

A0,B0
| =

∂f
∂B

∂g
∂B
#

$
%

&

'
(
−1

A0,B0
| = −λ. 

 
 
p.235: 
 

∂f*
∂y

−
d
dx

∂f*
∂y'
#

$
%

&

'
( = 0,

f* ≡ f + λg.

+

,
--

.
-
-

 

 
p.245: 
 
 

 

y!

x

(x2,0)!

(0,y1)!

initial slope!

y1,x2>0!

� (2.21)

If we assume two dimensional motion and use Cartesian coordinates, this becomes

m��x = Fx x,y, �x, �y,t( ),� (2.22)

m��y = Fy x,y, �x, �y,t( ).� (2.23)

An important special case occurs when

Fx x,y, �x, �y,t( ) → Fx x, �x,t( )  and Fy x,y, �x, �y,t( ) → Fy y, �y,t( ) ,

because then the two equations can be solved independently, although the initial conditions 
still tie the two motions together. This is the case for the two dimensional harmonic oscillator 
(next Chapter) as well as for gravitational force near the Earth’s surface. In the latter case 
we have simply (x  is horizontal, y  is vertical)

x : m��x = 0,� (2.24)
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y : m��y = −mg,� (2.25)

where g is the acceleration due to gravity. (We will use the approximate value 9.8m/s2  for 
g .) The solution of these equations are of course quite easy, but orchestrating the solutions 
to reach a desired set of end conditions can still be challenging.

We will consider two examples of two dimensional problems, one static and one dynamic. 

Example 3

θ1    θ2

           F

A rope is attached to the ceiling and a force     
� 
F  is applied to it, as shown. The rope will 

break when the tension in any portion is greater than a certain magnitude, T'. Find the 
downward force, F, which breaks the rope. Which side, in general, will break?
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Solution:

The force diagram is as below.

      y
        T1 F,T1,2 are magnitudes

θ1> θ2
    

T2

         θ1         θ2
 x

F

 

We have

    

� 
f i = 0,

i
∑  

⇒
x : T1 cos θ1 − T2 cos θ2 = 0,
y : −F + T1 sin θ1 + T2 sin θ2 = 0.







� E. (30) 
� E. (31)

Since in the diagram θ1>θ2, Eq.(E.30) means that T1>T2, so it is the left hand side of 
the rope which will break first. Given this, use (E.30) to eliminate T2   from (E.31):

 F = T1 sin θ1 + tan θ2 cos θ1( ).	 (E.32)

Setting T1 = T' and using specific values for θ1,2  in (E.32) gives the force which breaks 
the rope. 

Example 4

The rim of a basketball goal at a carnival is designed so it will only allow basketballs to go 
through the net when the angle of entrance is greater than a0, as shown. (We are clearly 
making idealizations in the geometry and the ball’s motion.)
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         α0

 

The net is at a height, H, above the ground, and the player is located a distance D  from the 
basket. The ball is released a distance h  from the ground at an angle β, again as shown.

  y
    
� v 0

  H  β        origin
 x

   h
    D  

With what angles, β, can the ball be released and still make it directly through the basket?

Solution:

We will locate the origin of the x,y  coordinate system at the point of release of the ball. 
The instantaneous x  and y  positions at time t  are then (v0 > 0) 

x(t) = (v0 cosβ)t,� (E.33)

y(t) = (v0 sinβ)t - 
  
1
2
gt2  .� (E.34)

If we require x = D  and y = H-h, we will have two equations in two unknowns, b and t 
(the time to reach the hoop),

  
t =

D
v0 cos β

,� (E.35)

=>    H - h
D

= tan β −
gD

2vo
2 cos2 β

. � (E.36)

The angle at which the ball intersects the hoop is now

Download free eBooks at bookboon.com



MODERN INTRODUCTORY MECHANICS

60

Newtonian Mechanics

  
tan α ≡ −

vy
vx

= − tan β +
gD

v02 cos2 β
. � (E.37)

The condition for making a hoop is clearly

  tan α > tan α0 ⇒ α > α0. � (E.38)

We can use the trigonometric identity,

cos2 β =
1

1 + tan2 β
, � (E.39)

to put this in the form 

  
tan2 β −

v02

gD
tan β + 1 −

v02

gD
tan α0 > 0� (E.40)

(E.36) may now be used to eliminate v0
2  from (E.40), with the resultw

v0
2 =

gD
2

1 + tan2 β

tan β −
H − h( )
D
















'� (E.41)

  ⇒ tan3 β − 2a tan2 β + tan β − 2a > 0,� (E.42)

 
a ≡

H − h( )
D

+
1
2
tan α0 	
  � (E.43)

We get a cubic condition in tan β as our general result. 

Let’s put some numbers in (E.41) and (E.42) to get a feeling for the condition. Let’s assume

  
H − h( )

D
=
1
2
, α0 = 45o .  � (E.44)

⇒ tan3 β − 2 tan2 β + tan β − 2 > 0 	
   � (E.45)

There is one real root of the cubic equation tan3 β0 − 2 tan2 β0 + tan β0 − 2 > 0 	
    It 
is given by

  tan β0 = 2 ⇒ β0 ≈ 63.4 	
   � (E.46)

Thus,   β > β0  is required to make a basket in this case. (One must also have the correct 
v0  as well, given by (E.41) above.)

Download free eBooks at bookboon.com



MODERN INTRODUCTORY MECHANICS

61

Newtonian Mechanics

Single Particle Conservation Theorems

As I said at the beginning of this Chapter, the conservation laws we will recover from 
Newton’s three laws constitute more general results than Newton’s laws themselves. We will 
now consider conservation laws for a single particle; multi-particle conservation laws will 
be considered later.

I.	 The total linear momentum,   
� p , of a particle is conserved when the total force, 

� 
F , 

on it vanishes.

Paraphrase of I:		      
� 
F = 0 ⇒

� p = constant vector..

Proof: The proof follows immediately from Newton’s second law,

    
� 
F =

d� p 
dt

,� (2.26)
    

    
� 
F = 0 ⇒

� p (t) =
� p 0,� (2.27)

where     
� p 0  is a constant vector.

Angular momentum,     
� 
L , and torque,     

� 
N , for a single body are given by

  
� 
L =

� r ×
� p , � (2.28)

    
� 
N =

� r ×
� 
F .� (2.29)

Clearly, both 
� 
L  and 

� 
N  are origin-dependent quantities, unlike linear momentum,     

� p .. For 
example, consider (    

� p ,     
� 
F  in a plane, say)

   2
     
� p 

    m        
� 
F 

    
� r 

 0  1

 

Here,     
� r ×

� p is “up” (along 3) and     
� r ×

� 
F  is “down.” Relocate the origin, 0 :
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    0 
 
       

� r  
        

� p  
    m     
        

� 
F   

Now 
� r ×

� p   is “down” while   
� r ×

� 
F  is “up.” Thus, it is important to maintain a consistent 

origin when using these concepts.

II.	 The total angular momentum of a particle, 
� 
L , subject to zero total torque, 

� 
N , is 

conserved.

Paraphrase:	
�
N = 0 ⇒

�
L = constant vector.
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Proof: We have
��L =

d
dt
�r ×

�p( ) =
��r ×

�p +
�r ×

��p � (2.30)

Using Newton’s second law gives

� ̇ L =
� r ×

� 
F =

� 
N . � (2.31)

Notice that angular momentum may be a constant of the motion relative to one origin but 
not to another for certain force laws. Consider uniform circular motion:

O2�O1�

�r1 �r2

�v

Here,   
� 
L  is a constant of the motion measured from O2 (since 

� r  and 
� ̇ p  are co-linear) but 

not from O1. This will be the case in general if (“central force”)

    
� 
F = ˆ e rf(r), r =

� r ( )

since then 

  
� 
N =

� r × ˆ e rf(r) = 0. 

The definition of work done on a single particle in moving it from position 1 to 2 is given as 

W12 =
� 
F • d� r ,� r 1

� r 2
∫  � (2.32)

where     
� 
F  is the total force acting on the particle. It is understood the integration takes 

place along some specific path, as below.

2   2
       
� 
F 

            d
� r 

   
� r 

    1

 1
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(The motion is shown to lie in a plane for convenience.) Since     
� 
F  is the total force, by 

Newton’s second law 
 

    
� 
F • d � r = m d � v 

dt
•
d� r 
dt

dt = m d� v 
dt

•
� v dt =

m
2

d
dt

� v 2( ) dt,
 
Eq.(2.32) 

    
⇒ W12 =

1
2
m� v 2 |12 =

1
2
m � v 22 −

� v 12( ) = T2 − T1,  � (2.33)

where (“kinetic energy”)

    
T =

1
2
m� v 2. � (2.34)

Eq.(2.33) generalizes the one-dimensional case, (2.13), above. The left hand side of (2.33) 
is again the work done. 

Let us assume the special case, 

�
F �x, ��x,t( ) →

�
F �x( ).

Let us also remember the connection between Newton’s force law and energy conservation 
we saw previously in one dimension: the energy conservation statement was the first (spatial) 
integral of Newton’s law. We have
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where (“kinetic energy”)

    
T =

1
2
m

 
v 2. (2.34)

Eq.(2.33) generalizes the one-dimensional case, (2.13), above. The left hand side of (2.33) is again the 
work done. 

Let us assume the special case, 

Let us also remember the connection between Newton’s force law and energy conservation we saw 
previously in one dimension: the energy conservation statement was the first (spatial) integral of Newton’s 
law. We have

 (2.35)

Let us define, (“potential energy”) 

 (2.36)

At this point we will make an assumption about     U
 
x ( ). We will assume, 

U

x( ) : A single-valued function of its

argument,

x.

⇒ m ���x •
��x dt'−

t0

t

∫ dt' d�x
dt't0

t

∫ •
�
F �x( ),

⇒
1
2
m ��x2 −

��x0
2( ) = d�x'•

�
F �x'( )

�x0

�x

∫ . 
� (2.35)

Let us define, (“potential energy”) 

� (2.36)

At this point we will make an assumption about U �x( ) :. We will assume, 

  2.23 

 

Eq.(2.33) generalizes the one-dimensional case, (2.13), above. 

The left hand side of (2.33) is again the work done.  

 Let us assume the special case,  

 
    

F x, x,t( ) →
F x( ). 

 

Let us also remember the connection between Newton’s force law 

and energy conservation we saw previously in one dimension: 

the energy conservation statement was the first (spatial) 

integral of Newton’s law. We have 

 
       mx =

F x( ), 
 

   ⇒ m x •
x dt'−

t0

t

∫ dt' dx
dt't0

t

∫ •
F x( ), 

   ⇒
1
2
m x2 −

x0
2( ) = dx'• F x'( )

x0

x

∫ .   (2.35) 

 

Let us define, (“potential energy”)  

 

        U x( ) ≡ − dx
r1

x

∫ '• F x'( ),    (2.36) 

    
r1 : "reference point". 

 
At this point we will make an assumption about     U

 x ( ). We will 

assume,  

 

  
U x( ) : A single−valued function of its

argument, x.
 

 

Why do we do this? Consider: 
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Why do we do this? Consider:

    y

                      
� 
F 

� 
F    .P

   R
     φ

                         x

    
� 
F          

� 
F 

That is, assume a force law of the form,

    
� 
F = Fˆ e φ .

Then �
F • d�x

N turns
∫ = 2πRNF.

N = number of turns around the circle

Clearly, this force law does not result in a single-valued function of the final position. Thus, 
a single-valued force law does not necessarily imply a single-valued potential. With this 
assumption about     U(

� x ), we have

1
2
m ��x2 −

��x0
2( ) = −U(�x) + U(�x0).

Rearranging gives

1
2
m��x0

2 + U(�x0) =
1
2
m��x2 + U(�x)	

  ⇒ T + U( ) |t0 = T + U( ) |t.� (2.37)

This leads to the third conservation law. 

III. The total energy a particle,

    E = T + U(� x ),

subject to a single-valued potential,     U(
� x ), is conserved.

Paraphrase:     U(
� x ) single-valued     U(

� x ) single-valued 
  
⇒

dE
dt

= 0. 
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Proof: By the above direct construction we have

E(t0) = E(t).

Since t  is arbitrary,

dE
dt

= 0. 

Note that the potential     U(
� x ) always needs a reference point for it’s definition. If we change 

it, we get

Unew(� x ) = − d� x ' •
� 
F (� x ')

� 
r 2

� x 

∫  

    

= − d � x '•
� 
F (� x ')

� 
r 1

� x 

∫
U(� x )

� � � � � � � 
− d � x '•

� 
F (� x ').

� 
r 2

� r 1

∫
constant in � x 
� � � � � � � 

� (2.38)

Thus, the old and new potentials just differ by a constant. This means the total energy of 
the particle, E, is arbitrary up to an overall constant. Clearly, given     U(

� x ), this arbitrary 
constant does not affect     

� 
F (� x ) itself since by the Leibnitz rule,
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−
�
∇ U(�x) =

�
∇ d�x'•

�
F(�x') =

�
F(�x).

�r1

�x

∫ � (2.39)

Since E is conserved and using Eq.(2.33), an alternate way of writing the work done in 
going from from 

� x 1, to � x 2 is

W12 = U(� x 1) − U(� x 2).� (2.40)

Notice that the work done depends only on the initial and final positions and is therefore 
path independent. This is equivalent to the above assumption of single-valuedness for 

    U(
� x ). In addition, a force field which can be represented in the form of (2.39) is said to 

be conservative. This is again equivalent to the previous ideas of path independence and 
single-valuedness. This is summarized as 

  conservative

      
� 
F 

 single-valued

    U(
� x )

 path-independent

    W12  

Each implies (or assumes) the other; any of these concepts can be invoked in writing down 
conservation law III above.3 	

Potential Energy and Particle Motion

We are familiar with the form of     U(
� x ) near the Earth’s surface:

   3

       
� 
F = −mg ˆ e 3

We surmise that     U(
� x ) = mgx3 . Is this correct?
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� 
F = −

� 
∇ U = −mg

� 
∇ x3 = −mgˆ e 3..

This is indeed correct. Notice that U = mgx3 + const.. would do just as well. 

With the above connection between     
� 
F  and U = mgx3 + const. in a conservative force field, we can recast 

the solution for the one dimensional case when F(x, �x,t) → F(x) Eq. (2.16), in a different 
form. We have

dx F(x) = −
x0

x'

∫ dx dU
dxx0

x'

∫ = U(x0) − U(x').

Since the total energy, E, is a constant of the motion, we can evaluate it at a single time, 
say t0, and it will continue to take on the same value at all later times. Therefore

E =
1
2
m �x0

2 + U(x0),

⇒
2
m

dx F(x) + �x0
2 =

2
m
(E − U(x')).

x0

x'

∫ � (2.41)

and (2.16) becomes

±
dx'

2
m
(E − U(x'))

= (t − t0).
x0

x(t)

∫  
� (2.42)

Let’s find out how to use this equation by relating it to a picture of a general one-dimensional 
potential,      U(

� x ) = mgx3.

      U(x) 
   E4           “unbounded” 
 
                “turning” 
   E3 
            “turning” 
   E2        
              
   E1        “bound”   
     “bound” 
   
 
 
 
 
      xa     x0    xb             xc     x 
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The potential     U(
� x ) is shown as the curvy line. On the same graph I have drawn horizontal 

lines which represent total energies E1 through E4.. First of all, let’s examine the motion 
of a particle with total energy E1. Clearly, the particle which has energy E = E1  is bound. 
The two points labeled xa  and xb are called “turning points”, mentioned previously in the 
harmonic oscillator discussion. They represent, for bound motion, the extreme values in 
position reached by the particle in it’s motion. x0  is called a “stable equilibrium” point 
and will be discussed below. Note that a particle with total energy E2  has both bound 
motion (in two different locations) and “turning” motion with a single turning point. The 
turning motion begins at position x = xc; it represents where the velocity of the particle 
changes sign. In general, turning points are positions where E = U, which implying the 
kinetic energy, T , is zero. The motion of a particle with energy E3  is separated into two 
regions with turning points as shown. It is also “turning” in the sense that the motion is 
not restricted to any finite region in x . The motion of a particle with energy E4. takes 
on all values −∞ < x > ∞  along the x -axis. I will use the term “unbounded” to describe 
motion without any turning points.

How would one apply (2.42) to the motion of a particle with energy E1, say? First of all 
recall that in deriving (2.42) we assumed that the relation between t and x was one-to-one. 
This is clearly violated for periodic motion, as we saw previously, but remember we can 
always piece together various separate motions where the relation is one-to-one to describe 
the full motion. The rule here is that these periodic motions are separated by turning points. 
Let us say the initial conditions were x(0) = x0,   ˙ x (0) > 0. Thus, clearly one would 
want to choose the positive sign in (2.42) to describe this part of the motion since t > 0  
and x(t) > x0:

E = E1,x(t) > x0 : t =
dx'

2
m
(E − U(x'))

.
x0

x(t)

∫  
� (2.43)

On the other hand, after the particle reached xb , it’s motion would reverse. For the same 
starting time as in (2.43) the time, t, associated with a point x(t) on this part of it’s 
motion would be given by:

� (2.44)

tb  is the time necessary to reach the first turning point, xb :

tb =
dx'

2
m
(E − U(x'))

.
x0

xb

∫  � (2.45)
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Notice the minus sign in (2.44). It is required by the statement that t > tb  for this part 
of the motion given that x(t) < xb. Clearly, by patching such equations together in a 
similar way, one can find the relation between x and t at any time. Similar observations 
can be made about the motions of particles with energies E2 , E3  and E4. corresponding 
to their various bound or free motions. 

If one is interested in the period of bound motion in a one-dimensional potential, one has 
to add together the time intervals for the �x > 0  motion and the �x < 0 motion. These 
are given by (again referring to the figure)

  

∆tab ≡
dx'

2
m
(E − U(x'))xa

xb

∫ . � (2.46)

and

  

∆tba = −
dx'

2
m
(E − U(x'))xb

xa

∫  � (2.47)

respectively. Obviously, ∆tab = ∆tba ,, which is true even if a and b are not turning points, 
and one has for the total period   τ = ∆tab + ∆tba ,

  

τ = 2 dx'
2
m
(E − U(x'))xa

xb

∫ , � (2.48)

where xa  and xb  represent the turning points. The turning points are to be found by 
setting the kinetic energy equal to zero, which results in

E = U(xa,b) ,� (2.49)

where xa,b  are the two possible solutions.

One can always use (2.48) to write the period as (take x0  = 0)

  

τ = 2 dx'
2
m
(E − U(x'))xa

0

∫ + 2 dx'
2
m
(E − U(x'))0

xb

∫ .

For a potential even about the origin, U(x) = U(-x),

xa = -xb,  (xb > 0) 

and changing   x'→ −x' in the first term as the integration variable now shows

Download free eBooks at bookboon.com



MODERN INTRODUCTORY MECHANICS

71

Newtonian Mechanics

71

  

τ = 4 dx'
2
m
(E − U(x'))0

xb

∫ .
� (2.50)

As an example, consider Hooke’s law, where one may take U(x) =
1
2
kx2 ,k > 0.. Then 

the period is given by (2.50) as 
 

(
  
x'=

2E
k
y  is the change of variables)

Tspring = 4 dx'
2
m

E −
1
2
k x'2







0

2E
k

∫ = 4 m
k

dy
1 − y2

0

1

∫ .

  
⇒ Tspring = 2π m

k
. � (2.51)

This is just the result we found earlier in this Chapter for a Hooke’s spring.
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Equilibrium and Stabilty in One Dimension

In the above discussion, I invoked the idea of a stable equilibrium position. Let us examine 
the meaning of this concept. We will be asking the question: Is the position of a particle 
stable under an infinitesimal displacement? The following is an illustration of the concept.

U(x)

    E
  U0

   x0  x

Assuming the potential U(x) may be expanded in a Taylor series about the point x0  shown 
above, we have

U(x) = U0 + (x − x0)
dU
dx

|x0 +
(x − x0)2

2
d2U
dx2
 

 
  

 
 |x0 +...� (2.52)

The constant U0  will not affect any aspect of the particle’s motion and can be eliminated 
by redefining  U(x). For the above illustration,

  
dU
dx

|x0 = 0 , d2U
dx2 |x0

> 0.

Motion with energy E  slightly larger than U0  will then result in bound motion, and we 
take this as meaning stable equilibrium. If

 
d2U
dx2 |x0 < 0, 

the potential would have looked like:

U(x)

  U0

   x
x0
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Clearly, there is no stable equilibrium in this case. A position x0  where

dU
dx

|x0 = 0 , 

is called an extremum of U(x).

Under the assumption on the expandability of U(x) in a Taylor series, we find that 

  
dU
dx

|x0 = 0 , � (C.1)

is necessary (but not sufficient) for stable equilibrium. If we have in addition the condition,

  
d2U
dx2 |x1 > 0 , � (C.2)

then (C.1) and (C.2) together constitute sufficient conditions for stable equilibrium. (C.2), 
however, is clearly not necessary itself since we might encounter

 
d2U
dx2

|x0 = 0. 

Under these conditions, one must then look at the first nonzero derivative of U(x) at x0  
to decide the matter.

These considerations allow us to solve for the small oscillations near an equilibrium position 
for a general one dimensional potential. The force at x0  is of course

  
F = −

d
dx

U |x0 , � (2.53)

and from (2.52) near equlibrium this gives

  
F ≈ − (x − x0)

d2U
dx2

|x0 . � (2.54)

Choosing the origin at   x = x0 now tells us that to lowest order

  
m ˙ ̇ x = F ≈ −x d2U

dx2
|x0 .� (2.55)

Thus for small oscillations we are back to the Hooke’s law equation  m ˙ ̇ x = −k  x  where  

    
k ≡

d2U
dx2

|� x = � x 0  as long as condition (C.2) holds. This means the formula (2.51) holds 

and that the angular frequency of small oscillations is determined by

  
ω0
2 =

k
m

=
1
m

d2U
dx2

|x0 , � (2.56)

Download free eBooks at bookboon.com



MODERN INTRODUCTORY MECHANICS

74

Newtonian Mechanics

Although the usual meaning of the x  variable is spatial position, it can also represent other 
things. In an end of Chapter problem it is seen that these ideas are aso useful when x  
represents an angle.

If a Taylor series expansion can not be made for a point because of discontinuities, one 
must inquire more generally about the meaning of a stable equilibrium point. The more 
general meaning is associated with the turning point idea. Let us imagine increasing the 
energy,  E = E1 , of the particle infinitesimally higher than U0 in the three following examples. 
(Increasing E = E1  is the same as giving an initial infinitesimal velocity to the particle.)

U0 U0U0

U(x) U(x) U(x)
E E E

(1) (2) (1)

2 turning points�
       (a)�

1 turning point�
       (b)�

no turning points�
       (c)�

Clearly, for the motion to be stable, there must be two turning points, labeled (1) and (2) 
as in (a) above, located infinitesimally close to x0 . If there is only a single such turning 
point, as in (b), the motion will not be bounded in one direction and we have an unstable 
equilibrium. If there are no turning points, as in (c), this also represents unstable equilibrium. 
Note that if there are 2 turning points, but one or the other is located a finite distance from 
x0 , resulting in bounded but finite motion, we also consider this as unstable equilibrium.

Given that 
 
dU
dx

|x0 = 0 ,  the more general meaning of stable equilibrium is:

A point, x0, which has 
  
dU
dx

|x0 = 0 but which does not satisfy the above criterion is 

considered an unstable equilibrium point. 

There is also the possibility of neutral equilibrium, by which I mean a point x0 where 
all the derivatives of U(x)  vanish. Then of course any particle motion is simply uniform 
in the vicinity of x0.
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Equilibrium and Stability in D Dimensions

What about equilibrium in multidimensional problems? If we again assume that   U(
� x )  can 

be expanded about the position � x 0  in a Taylor series, we have (understood sums up to 
dimension D  on repeated indices)

  
U(x) = U(� x 0) + (x − x0)i∇i U |� x 0 +

1
2
(x − x0)i(x − x0)j∇i∇j U |� x 0 +... � (2.57)

Again, the constant, 
  
U(x) = U(� x 0) + (x − x0)i∇i U |� x 0 +

1
2
(x − x0)i(x − x0)j∇i∇j U |� x 0 +... , can be ignored in the discussion of particle motion. The analog 

of the extremum condition (C.1) is now
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⇒
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#

$
%

&

'
(
−1

A0,B0
| =

∂f
∂B

∂g
∂B
#

$
%

&

'
(
−1

A0,B0
| = −λ. 

 � (C.3)

This is again a necessary, but not sufficient condition for stable equilibrium. Notice that 
(C.3) represents  D  conditions in a D -dimensional problem.
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What is the analog of (C.2) in this case? We will just generalize the argument of the last 
section to more than one dimension. Assuming (C.3) holds and using (2.57), the force on 
the particle at     

� x =
� x 0  is then given as (I’m using index notation)

Fl = −∇ l U |�x0≡ −
∂
∂x l

U |�x=
�x0
,

= −
1
2
∇i∇j U |�x0

∂(x − x0)i
∂x�
=δi�

� �� ��
(x − x0)j + (x − x0)i

∂(x − x0)j
∂x�
=δj�

� �� ��





















,

   
= −

1
2

∇ l∇j U |x0( )(x − x0)j −
1
2

∇i∇ l U |x0( )(x − x0)i 	
  

= −A lj(x − x0)j ,� (2.58)

where

A lj ≡ ∇ l∇j U(x)|�x0 .� (2.59)

These set of constants, A lj = Ajl , are the analog of the single spring constant, k, in the 
one-dimensional case. Choosing our origin at     

� x =
� x 0 , the equations of motion are now

m��x� = Fl = −A�jxj ,

⇒ m��x l + A lj xj = 0.� (2.60)

This represents a set of coupled linear differential equations in the quantities xl. Let us 
suppose a solution of the form

x� = a� e
iωt . � (2.61)

We are now using complex numbers; the a�  are complex (and the A lj are real) but it is 
understood that x� is represented by the real part of the right-hand side of Eq.(2.61). Then, 
the equations (2.60) become simply 

(A �j−mω
2δ �j) aj = 0,� (2.62)
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where the -ω2  factor in the second term comes from taking the second time derivative 
in (2.60). Eqs.(2.62) represent D  linear, homogeneous equations in the D  unknowns, 
. As was quoted in the first Chapter, the condition for such systems of equations to have 
nontrivial solutions is that the determinant of the coefficients of the unknowns must vanish. 
Thus, defining

  Cij ≡ Aij − mω2δij , � (2.63)

we must have

det (C) = 0.� (2.64)

Eq.(2.64) determines (the squares of ) the characteristic angular frequencies, ω2, which 
enter in (2.61) above. In D  dimensions, the determinant equation, (2.64), represents D  
equations, giving D  solutions, ω1

2,ω2
2,...,ωD

2.

In a problem at the end of the Chapter we will see that the ω2 are real quantities. Let 
us examine what would happen if one of these frequencies had a nonzero imaginary part. 
Notice that since (2.64) is actually a condition on ω2, not ω, the supposed complex roots 
occur in pairs,

  ω = ± iωc, 

where ωc is real. Thus, in this case the general solution would read

  xi = ai(A e−ωct + B eωct),

where A  and B  are constants. Requiring 

  

x(0) = 0 ⇒ B = −A,

˙ x (0) = v0 ⇒ aiA = −
v0
2ωc

,

 

 
 

 
 

 

  
⇒ Real(xi) =

v0
ωc

sinh(ωct),

  
⇒ lim

t→∞
Real xi → ± ∞ . 

Therefore, the motion is unbounded for   ωc ≠ 0.
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A sufficient condition for stable equilibrium in higher dimensions is thus,

Given (C.3) holds at �x0 and the squares
of the characteristic angular frequencies,
determined by det(C)=0 are positive, 
the potential possesses stable equilibrium 
at �x0.

 
� (C.4)

The characteristic angular frequencies, ωk (k=1,...,D)  are analogous to the single 
natural frequency, w0, in the Hooke’s law case. As we found,

  
ω0
2 =

k
m

=
1
m

d2U
dx2

|x0 .

Thus the condition in (C.4), “the ωk
2  are positive”, is clearly a generalization of condition 

(C.2), which required

d2U
dx2 |x0 > 0, 

for stability.

Let us look at one example of the use of (C.4).

Example 5

In two dimensions, a particle near the origin experiences the potential, 

  
U(x,y) =

1
2
kxx

2 +
1
2
kyy

2 + kxyxy, 

where kx, ky, kxy >0. Find the characteristic frequencies. Does the particle posess 
stable motions?

Solution:

Clearly the origin is an equlibrium position. We compute the nonzero Aij: 

A11 = kx, A22 = ky, A12 = A21 = kxy.� (E.49)

We have

det 
kx − mω2 kxy

kxy ky − mω2

 

 
 

 

 
 = 0. � (E.50)

⇒ ω2 =
1
2m

(kx + ky) ±
1
2m

(kx + ky)
2 + 4(k

xy

2 − kxky)

= (kx − ky)
2 + 4kxy

2 .
� ������ ������

 
� (E.51)

Download free eBooks at bookboon.com



MODERN INTRODUCTORY MECHANICS

79

Newtonian Mechanics

Notice we will have real solutions for ω if and only if 

  kxy
2 < kxky ,� (E.52)

which is the condition for stability.

There are many other considerations related to stability in higher dimensions we do not 
have the time to cover here. One is often interested in stability under certain assumed 
types of small perturbations, asssociated with the various squared eigenfrequencies, ωk

2 . 
One concept seen later is the idea of an “effective potential” for a moving particle in an 
external field. It is possible to examine such a potential for stability of a given orbit rather 
than particle position.

CHAPTER 2 PROBLEMS

1.	Our sprinter friends Michael and Frankie run another 200m race. In this race 
both runners accelerate uniformly and then continue to run at different top 
speeds. If Michael’s top speed is 10 m/s achieved after 15m and if Frank’s 
acceleration is only 2/3 of Michael’s, how far must Frank accelerate to tie 
Michael in the race? What is Frank’s final top speed?  
[The methods, not the answer, are important, so show me your steps!]

2.	A steady wind is blowing on a pendulum hanging from a patio roof. The 
pendulum bob has mass “m”  and the wire is approximately massless. The 
downward force of gravity is – mg.

¨
wind

The wind exerts a horizontal force,  on the pendulum. Find the equilibrium angle, θ. 
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3.	A baseball of mass m is thrown vertically during a game of catch. It experiences 
a downward force F = - mg - kv, where F = - mg - kv, is the force due to gravity 
and F = - mg - kv, represents air friction (v is the baseball’s instantaneous velocity, k  
> 0). Given that the baseball starts at the origin of coordinates at t=0  with 
initial upward velocity v0, solve for the position of the particle at all subsequent 
times, x(t).

4.	A particle is dropped in a medium for which the resistive force is given by 
D˙ x 2 (D>0) where ˙ x  is the particle’s velocity. The force of gravity is -mg, as 
usual. Investigate the time taken to fall a distance h from rest. Show that to first 
order in D , this is given by

T ≈ 
  

2h
g

1 +
Dh
6m

 
 

 
 .

State the approximation that is being made here.

5.	Define Rh =  horizontal distance between 2 pts. on the trajectory, a distance h 
above the horizontal. The particle is projected at an initial velocity of   v0 at an 
angle a above the horizontal.
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R

y

h
α

x

h

a)	 Find the distance Rh  in terms of h, v0 and α
b)	Find the angle of elevation, α, which maximizes the distance Rh  for a given 

velocity v0, assuming zero air resistance. [Hint: take the derivative of Rh  
with respect to α .]

6.	A particle of mass m  is subject to a force (one dimensional motion, k>0) 

F(x,t) = -kx + F0sin(ωt),

where ω2 ≠ 
k
m   It also has initial conditions,

x(0) = x0,

x.(0)   = v. 

Find x(t) for 

7.	Nolan Ryan (in his prime) throws a ball up an incline that makes an angle  
with respect to the horizontal, as shown. The angle that the ball is thrown is α . 
[Neglect air resistance.]

	
  

β

v

x

y

α

≥
0

  
v0
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a)	 Given the initial magnitude of velocity, v0 , find the time it takes to hit an 
uphill point on the slope.

b)	Nolan wants to throw the ball as far as possible up the slope. Given the 

same initial velocity as in (a), at what angle a should it be thrown? [Ans.: 

  
α =

1
2

β +
π

2
 
 

 
 .]

[Hints: One thing that helps is the idea that maximizing the distance up the hill is the 
same as maximizing the distance along the x-axis above.]

8.	A magnetic monopole is a hypothetical particle with a magnetic rather than 
an electric charge. Assume a very massive magnetic monopole is sitting at the 
origin, as shown. A very light electric charge, q, is located at r�  relative to the 
origin and has a nonzero velocity.

g�

q�

�
B

�r

The magnetic field of the monopole is given by 

	     
� 
B  = g 

êr
r2  , 

where ˆ e r is the unit vector point in the  direction and g is the magnetic charge. The 
force on the charge q is given by (the Lorentz force law)

	
� 
F  = q

c
� ̇ r x 

� 
B .

Show that the equations of motion in cylindrical coordinates are 

(C ≠ 
qg
mc   and r2 ≠ ρ2+z2): 

	 ρ:     ρ
..

   − ρ  φ
.
  2 = 

C
r3

ρ �φz , 

	 φ:     2 ρ
.
 φ

.
   + ρ  φ

..
   = 

C
r3 (z

.
  ρ −ρ

.
  z) , 

	 z:      z
. .

   = − 
C
r3 ρ2 φ

.
   .
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[Hint: Recall the formulas for velocity and acceleration in cylindrical coordinates from 
the last Chapter.]

9.	Show that the motion of the monopole in problem 8 takes place on a cone, 
the end of which starts at the stationary magnetic charge g. Hint: A cone is 
characterized by

	 ρ = z tan(α) , 

where α  is the opening angle:

α

g

q
ρ

z

 

10.	A bead is released (at rest) from the top of a ramp of height "h" as shown. It 
moves without friction until it reaches the edge of the cliff, where it’s velocity is 
purely horizontal. The cliff is also of height h.

cliff

h

h

x

ground

velocity 
horizontal

ramp

Find the distance, x , that the bead moves horizontally before striking the ground in 
terms of h.

11.	A one dimensional potential, given by U(x) = 
  
1
2
kx2,
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U(x)

x

is split in the middle at x=0  into two similar parts by inserting a flat segment of length 
L , as shown:

U(x)

x

new

L
 

Find the period of motion of a particle with mass m and energy E  in this new potential.

12.	A particle in one dimension experiences a potential, U(x) = K|x|n, where 
|x| is the absolute value of x , K  is a positive constant and n > 1.
a)	 Find the oscillation period of the particle in the potential for general n. [It is 

enough to set up the integral which will give this answer.]
b)	If the energy of the particle is increased by 2, by what factor does the period 

change? [Hint: Get the integral in dimensionless form.]

13.	A one-dimensional potential is given by 

	

U(x) = 

1
2
kx2,x > 0

−
1
2
kx2,x < 0.










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Is a point particle placed at the origin stable or unstable? Explain carefully.

14.	A one dimensional potential is given by,

	 U(x) = - 
  
1
2
kx2 + 

  
1
4
dx4.

a)	 Find the points of stable and unstable equilibrium. Tell me which are stable, 
which are unstable.

b)	Find the turning points for a particle of energy E>0..

15.	A point particle is restricted to motion along the x-axis. The potential energy of 
the particle is given by

	 U(x) = U0(1-cos( x
x0

)).
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This looks like:

U(x)

0 x
x

π 0xπ 0-

a)	 Find the points of stable, unstable equilibrium.
b)	If the particle is started at x=0, what minimum velocity is necessary to reach 

the region x > πx0? 
c)	 Find the frequency of small oscillations about the point x=0.

16.	The force as a function of position on a particle of mass 1 kg is given by

	

F = 
−2,x > 1

−2x,−1 < x < 1
2,x < −1









. 
.

a)	 Find the potential, U(x).
b)	Find the period of motion the particle in this potential if the particle starts at 

x0 = 2 with zero initial velocity.
c)	 Find the period of small oscillations of this particle.

17.	A particle of mass m follows the trajectory y = Kx2  (K  is a constant) in the xy  
plane under the influence of gravity as shown. The amplitude of oscillation of 
the particle is small. Find the period of oscillation of the particle.

y

x

gravity
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18.	A weak unstretched watch spring is attached to a pendulum of length ℓ  with 
a mass m at the end. Gravity is present and the equilibrium position is at 
φ=0.. The potential energy of the mass is given by U(φ) = mgℓ(1-cosφ)
+ 1

2
ksφ2,, where ks  is the (rotational) spring constant. Assume ks << mgℓ. 

a)	 Show that the squared angular frequency of small oscillations about the 
equilibrium angle, φ=0, is

	 ω2 =
g
�

+
ks

m�2
. 

φ

l

�

l
φ

m

New equilibrium
position

b)	The spring is twisted approximately 2π  radians and let go. Show that the new 
stable equlibrium angle, φ0, is given by

	 φ0 ≈ 2π(1 −
ks

mg�
).

c)	 Show that the frequency of small oscillations about the new equilibrium 
position is approximately

	 ωnew
2 =

g
�

+
ks

m�2
−
2π2 ks

gm2�3
.

19.	The (squared) characteristic frequencies of a system, ω2, are determined by the 
system of equations,

	 A�j aj = mω2a � ,

(understood sum on j) where the a � are complex quantities but the A�j are real and 
symmetric in ℓ  and j One may prove that the square of the characteristic frequencies, 
ω2, are real quantities by completing the following steps:
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1)	Multiply by a
�
*  on both sides of the above and sum on ℓ .

2)	Take the complex conjugate of the result of (1).
3)	Now complete the argument that ω2( )* = ω2..

20.	A particle is subject to the two dimensional potential,

	 U(x,y) = 
  
1
2
k(x2 + y2) + H  yx

2,

where k  and H  are constants (k>0).

a)	 Find the equilibrium positions of the system (there is more than one).
b)	Examine the equilibrium positions in (a) for stability by calculating the 

characteristic angular frequencies of the system. Which positions are stable? 

21.	A particle is subject to the three dimensional potential,

	 U(x,y,z) = 
  
1
2
k(x2 + y2 + z2) + Hxy + Gyz ,

where k , H  and  are constants (k>0). Find the characteristic angular frequencies of 
the system. Show that k > G2 + H2  is necessary for stability.
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3	 LINEAR OSCILLATIONS

GENERAL RESTORING FORCES IN ONE AND TWO DIMENSIONS

We already looked at a spring example in the last Chapter. Let us imagine setting up 
such a system in a gravitational field, as below. (Assume the motion is approximately one-
dimensional.)

 +x

Forces:
Fsp

Equilibrium
position m
(origin)

  -mg

Displace the mass from equilibrium or give it an initial velocity. Newton’s law is 

    m
� a =

� 
F tot , 

or

m��x = Fsp(x) − mg,� (3.1)

in this case. Do a Taylor series expansion on Fsp(x):

Fsp(x) = Fsp(0) + x ∂Fsp
∂x










0

+
x2

2
∂2Fsp
∂x2










0

+ ....� (3.2)

The above coordinate system has been defined so that the total force vanishes at the 
equilibrium position,

  Fsp(0) − mg = 0.� (3.3)

Thus

m��x = x ∂Fsp
∂x










0

+
x2

2
∂2Fsp
∂x2










0

+ .... � (3.4)
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Defining (“spring constant” again)

k ≡ −
∂Fsp
∂x

 

 
  

 
0

, � (3.5)

and neglecting higher-order terms in x in Eq.(3.4), we have the approximate, small oscillation, 
equation of motion (assuming k > 0)

��x +
k
m
x = 0,� (3.6)

which we have seen and solved previously. The most general solution involves two undetermined 

constants and can be assumed in the form (ω0 ≡
k
m
)

x(t) = A cosω0t + B sinω0t,� (3.7)

or

x(t) = C sin(ω0t - δ).� (3.8)

It’s easy to find the relationship between the coefficients in (3.7) and (3.8). We have

C sin(ω0t - δ) = C cosδ sin (ω0t) - C sin δ cos( ω0t),

  
⇒

A = −C sinδ
B = C cosδ
 
 
 

⇒ A2 + B2 = C2 . � (3.9)

(Note that we may always choose C>0.) Of course,  is also a possible 
general solution.

As usual, the first integral of the force equation with respect to x gives work done and yields 
the energy conservation equation:

dt �x ��x + ω0
2x = 0 ∫ ,

⇒
1
2
�x2 +

1
2
ω0
2 x2 = const.� (3.10)

Multiply by m and identify the terms:

1
2
m �x2 +

1
2
kx2 = const.,

or T + U = E.� (3.11)
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Usual connections ((τ is the period, ν0 is frequency): is the period, (τ is the period, ν0 is frequency): is frequency):

ω0τ = 2π , τ =
2π
ω0

= 2π m
k
,

ν0 =
ω0

2π
, ν0 =

1
τ
.













� (3.12)

Let’s consider forces in two dimensions.

y
  m    Fx

  equilibrium 
  Fy         position

 x

Let’s assume

Fx(x,y) = Fx(x),
Fy(x,y) = Fy(y),

 
 
 

� (3.13)

so the motions in the x and y directions are independent. Again, for small amplitudes 
around equilibrium

    
Fx(x) ˜ − Fx(0)

0
� + x ∂Fx

∂x
 
 

 
 
|x =0 ,

Fy(y) ˜ − Fy(0)
0
� + y

∂Fy
∂y

 

 
  

 
|y =0 .

Define the independent spring constants

kx = −
∂Fx
∂x









 |x=0 , ky = −

∂Fy
∂y









 |y=0 ,

and assume they are positive. Then we have the equations of motion

��x + ωx
2 x = 0,

��y + ωy
2 y = 0.






� (3.14)
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where 
  
ωx

2 =
kx
m
, ωy

2 =
ky

m
.  The general solutions are

  

x(t) = A cos(ωxt − α),
y(t) = B cos(ωyt − β).




� (3.15)

Special case: ωx = ωy = ω, A, B > 0. Then we get the following behaviors as a function of  
δ = α - β, the phase difference.

 y y

    B
   B

       x       A   x
                   A

  δ=0
  
δ =

π

2

 (a) (b)

 y y
         B

    B

     A   x       A   x

  δ=π
  
δ =

3π
2

 (c) (d)

Notice the (b) and (d) trajectories are the same except the sense of rotation is opposite. In 
the equal frequency case, one may show that

  
x2 + y2 A2

B2
− 2xy A

B
cos δ = A2 sin2 δ .� (3.16)

Now by introducing new rotated coordinates  and 

  

x = x'cos γ − y'sin γ,
y = x'sin γ + y'cos γ,

 
 
 

� (3.17)
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and substituting in (3.16), one may now show with the choice 

 
tan 2γ =

2AB cos δ
A2 − B2

,� (3.18)

that (3.16) can now be written as 

Cx’2 + Dy’2 = 1 ,� (3.19)

where

C =
B2 cos2 γ − A2 sin2 γ
A2B2 sin2 δ cos 2γ

, � (3.20)

D =
A2 cos2 γ − B2 sin2 γ

A2B2 sin2 δ cos 2γ
. � (3.21)

(3.19) is the equation of an ellipse, if sin δ ≠ 0.. In the case δ = ±
π

2
, we get for example

  
γ = 0 ⇒

x'2

A2 +
y'2

B2
= 1..

Let’s say now that ωy = ωx + ∆ω .. Then
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x(t) = A cos(ωxt − α),
y(t) = B cos(ωxt + (∆ωt − β)).






� (3.22)

Effectively, δ(t) = α − β + ∆ωt, a time-dependent phase factor now. If ∆ω << ωx 
one can think of an evolution in time from diagrams (a) to (d) above as δ  changes from 
0 to 2π. This evolution occurs more quickly for larger ∆ω .

Of course, many more types of motions exist when ωx ≠ ωy. Consider two cases:

1.	 ωx

ωy
 =  rational number. We are guaranteed in this case to generate a closed 

trajectory. Take the case,

	
ωx

ωy
=
199
200

⇒
τy
τx

=
199
200

, 

which means it will take 200 repetitions of the τy  period to equal 199 exact repetitions of τx,  
after which the motion repeats. These are called “Lissajous curves.” Some of these are 
quite beautiful.

2.	 ωx

ωy
 =  irrational number. In this case, the motion will never repeat and every 

point in the range -|A| < x <|A|, -|B| < y  < |B| will be reached by the 
motion in principle. 

Damped oscillations

Next, imagine making the one-dimensional situation more realistic by adding a damping 
force.
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There are now two horizontal forces acting on the mass, the spring, Fsp, and the frictional 
damping force, Fd. We notice that the damping force must reverse sign when the velocity 
reverses. We will set

Ftot x, �x( ) = Fsp x( ) + Fd �x( ),� (3.23)

Fsp = −kx , k > 0,
Fd = −b �x , b > 0.






� (3.24)

Notice that a force proportional to x2  would not reverse sign as we desire. Our equation 
of motion is now of the form

m��x = −kx − b �x,

⇒ ��x + 2β �x + ω0
2x = 0,� (3.25)

 
2β ≡

b
m
. � (3.26)

Because of the damping of the motion, we no longer expect the energy (mass kinetic plus 
spring potential) to be conserved. However, we can still calculate, as usual, the work done 
on the system in the usual two ways (W12  denotes the work done in changing the system 
from state 1 to state 2):

W12 = Ftot x, �x( ) dx = m dx ��x = m dt �x��x
t1

t2

∫
x1

x2

∫
1

2

∫  

⇒ W12 =
1
2
m �x2

2 − �x1
2( ) � (3.27)

or

W12 = − kx + b �x( )dx
1

2

∫ = −
1
2
k x2

2 − x1
2( ) − b dt �x2

t1

t2

∫ .� (3.28)

If we use t=0  as the starting time of the motion, (3.27) must equal (3.28), and we find

E t2( ) + b dt �x2 = E t1( ) + b dt �x2

0

t1

∫ ,
0

t2

∫ � (3.29)

where E t( ) ≡
1
2
m �x2 +

1
2
kx2  gives the instantaneous system energy. (This procedure is 

equivalent to integrating the equation of motion, (3.25), as we did before to get (3.10).) 
Eq.(3.29) informs us that
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Ed t'( ) ≡ b dt �x2 ,
0

t'

∫ � (3.30)

is the energy lost during the motion because of frictional damping, and the total energy, 
including heat, is conserved. Thus, 

E(t) + Ed(t) = const.,� (3.31)

and the instantaneous change in the system energy (kinetic plus potential) is 

dE(t)
dt

= −
dEd
dt

= −b �x2 . � (3.32)

The right hand side is negative forb>0, as it should be.

How does one solve the differential equation (3.25)? We will substitute

x = ert ,

⇒ �x = rert , ��x = r2ert , 

giving the “characteristic equation”,

 r
2 + 2βr + ω0

2 = 0.� (3.33)

The above is a quadratic equation, the roots of which are given by

 r = −β ± β2 − ω0
2 .� (3.34)

The factor in the square root can be positive, zero, or negative, leading to the following 
three cases.

(1) ω0 > β  (“underdamped”) The roots of (3.34) are complex. Define

  ω1 ≡ ω0
2 − β2 > 0,� (3.35)

  ⇒ r = −β ± iω1 . � (3.36)

The two solutions are:

  e
− βteiω1t , e−βte−iω1t 

or
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  e
− βt cos ω1t( ) , e− βt sin ω1t( ) ,

When x(0) > 0  and �x (0) = 0, The motion looks like:

x(t)    e− βt

   t

 

The system has no precise frequency since the motion is not strictly periodic. However, there 
is a type of period involved since aspects of the motion reoccur, although the amplitude 
decreases continuously. In particular the points where �x  = 0  seem to reoccur periodically. 
Where does this happen? Let’s build in some B.C.’s to examine the motion in detail. Use:

x(0) = x0, �x(0) = v0.

Assume

  x(t) = e−βt A1e
iω1t + A2e

−iω1t[ ]. 

  x(0) = x0 ⇒ x0 = A1 + A2,� (3.37)

x(0) = v0 ⇒ v0 = e−βt{−β A1e
iωt + A2e

−iωt  

       +iω1[A1eiωt − A2e−iωt]}|t =0 

  v0 = −β A1 + A2[ ] + iω1 A1 − A2[ ]. 
� (3.38)

Solving (3.37) and (3.38) for A1 and A2 gives

A1 =
v0 + βx0 + iω1x0

2iω1
,� (3.39)

 
A2 =

−v0 − βx0 + iω1x0
2iω1

.� (3.40)
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Introducing   e
±iω1t = cos ω1t ± i sin ω1t, the solution with the above B.C.’s reads

  
x(t) = e−βt[ v0 + βx0( )

ω1
sin(ω1t) + x0 cos(ω1t)].� (3.41)

Now investigate when �x  = 0:

0 = e−βt[
−β v0 + βx0( )

ω1

sin ω1t − βx0 cos ω1t  

    + v0 + βx0( ) cos ω1t − x0ω1 sin ω1t] , 

  
⇒

βv0 + β2x0 + x0ω1
2

ω1
sin ω1t = v0 cos ω1t.� (3.42)
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When v0 = 0, then   ω1t  = nπ, n = 0,1,2,..., just like the undamped (β = 0) case. 
The picture is:

x(t)

 ω1t = 0
  ω1t = 2π

  ω1t = π

 
    ω1t = 3π

 

Motion is “quasi-periodic.” When v0 ≠ 0  the motion is still quasi-periodic (∆(ω1t) = π), 
but we now get ω1t = nπ +const., n =0,1,2,... 

(2) β = ω0  (“critically damped”) Now one has the repeated root,

r = -β, � (3.43)

and so the solutions are

e-βt  ,  te-βt .

Solutions are non-oscillatory, although x(t) is permitted one change of sign under certain 
circumstances. It’s fairly easy to see what the condition is. Assume x0 > 0  (β,t  already are 
also). The only way to make x(t) ≤ 0  is if we choose v0  negative in the general solution,

 x(t) = x0 + v0 + βx0( )t[ ] e−βt .� (3.44)

If we choose v0 ≥ -βx0, we see from the above that x(t) ≤ 0  is always positive or zero. 
However, for v0 < -βx0  we must have x(t) < 0 for some values of t since

lim
t→∞

x(t) → (v0 + βx0)te
−βt .� (3.45)

Thus, by continuity the minimum magnitude of downward |v0|min = βx0,  which results in a change 
in sign of x(t) is |v0|min = βx0, toward the origin.
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(3) ω0 < β.  	 (“overdamped”). Define

ω2 ≡ β2 − ω0
2 > 0,

 ⇒ r = −β ± ω2 , � (3.46)

so there are two real roots. Solutions are:

  e
− βteω2t , e−βte−ω2t .

Also non-oscillatory; ω2  is not the frequency of any motion (as ω1 was in case (1)). x(t) ≤ 0  
is again permitted one change of sign under certain conditions. I will refrain from writing 
down the general solution in terms of x0  and v0  because this will be a problem. The 
general form is

  x(t) = e−βt A1e
ω2t + A2e

−ω2t[ ].� (3.47)

Circuit/Oscillator Analogy

We will now point out a useful analogy between mechanical oscillator and electrical circuit 
combinations. This will be deduced from the differential equations that describe these 
different situations.

The analog of

  

                      
                   x      (no damping)

   
   k    m           m��x + kx = 0 

is the LC circuit (define positive direction of current to be counterclockwise)
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    L 
 
     VL : 

  
L dI
dt

, 

 
              I Vc :

  
q(t)
C

=
1
C

I dt.∫  
       
 
 
     C 

Kirchoff’s law is:

VL + Vc = 0 ,

⇒ L I +
1
C

I dt∫ = 0 (I = q)	
  

⇒ L ˙ ̇ q +
1
C
q = 0.� (3.48)

Another example:

  

     m��x + b �x + kx = 0.
                      
                   x      (damping) 

   
   k    m       

Compare with:

⇒ L �I + RI +
1
C

I dt = 0,∫
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⇒ L��q + R �q +
1
C
q = 0. � (3.49)

Here are the analogous quantities:

By “displacements” or “charges” above I mean values measured from equilibrium. The above 
Table now gives:

 

ω0 =
k
m

↔
1
LC

,

β =
b
2m

↔
R
2L

.

 

 
 

 
 

� (3.50)

Let’s find the circuit analog of some mechanical situations. Consider:

                  x    

  k1    k2

     m

 

 

x1 : extension of spring 1 , F = −k1x1 .
x2 : extension of spring 2 , F = −k2x2.
 
 
 

 

The same force, F, is exerted on both springs, which implies

k1x1 = k2x2  .� (3.51)
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Since

x = x1 + x2 ,� (3.52)

we have

x = −F 1
k1

+
1
k2

 

 
  

 
 ,

⇒ m��x +
k1k2

k1 + k2

≡ ks
��� ��

x = 0. 

� (3.53)

“ks”  is the equivalent spring constant of k1 and k2, attached in series. Using the above 
analogy, this equation becomes

L��q +
1

C1 + C2( )
q = 0,� (3.54)
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which represents a circuit with capacitors in parallel:

 

   L

Vc : 
1
Cs

q

      C1        Cp = C1 + C2 .

      C2

What about springs connected parallel to one another?

 

                x1,2    
 k1

 k2  m

Here we have

F1 = -k1x1 , F2 = -k2x2 , x1 = x2 = x,
 

  ⇒ F = F1 + F2 = − k1 + k2( )x ,

⇒ m��x + k1 + k2( )
≡ kp

� �� ��
x = 0.

� (3.56)

Again, substituting from the mechanical/electrical analogy, the above is equivalent to 

L��q +
1
C1

+
1
C2









 q = 0,� (3.57)

which represents a circuit with capacitors in series:
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   L

Vc : 
 

1
Cp

q ,

                
  

1
Cs

=
1
C1

+
1
C2

.

C1  C2

Let’s see if we can find the electrical analog of one more case, this time with two masses:

        x1
',x2

'
 : spring

displacements

  x1
'
          x1

' + x2
'

  
     k1 k2

m1 m2

equilibrium
position for
mass 1

equilibrium
position for
mass 2

I will derive the equations of motion by deriving the potential energy of the system and 
using Newton’s second law. Since there are two springs in the system, the potential energy 
has the form 

  
U =

1
2
k1x1

'2 +
1
2
k2x2

'2 .� (3.59)

However, notice that while x1
' and x2

'   are the spring displacements, the corresponding mass  
displacements from equilibrium are x1

' and   x1
' + x2

' .. Let us define

  

x1 = x1
' ,

x2 = x1
' + x2

' ,
 
 
 

� (3.60)

leading to

  
U =

1
2
k1x12 +

1
2
k2(x2 − x1)2.� (3.61)

The reason for the redefinition is that Newton’s laws refer to particle, not spring, displacements. 
Therefore, we have
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m1��x1 = −
∂U
∂x1

= −k1x1 + k2(x2 − x1),

m2��x2 = −
∂U
∂x2

= −k2(x2 − x1).













� (3.62)

These are our coupled differential equations. We will not attempt to solve them but will 
simply use our mechanical/electrical analogy to turn Eqs.(3.62) into

L1��q1 +
1
C1

q1 −
1
C2
(q2 − q1) = 0 ,

L2��q2 +
1
C2
(q2 − q1) = 0 .













� (3.63)

Using Kirchoff’s law, this is easily seen to be equivalent to two circuits across a capacitor:

   L1     C1

            

   C2  I1

 I2

   L2

If we rewrite Eqs.(3.62) in terms of the spring diplacement variables instead of mass 
diplacement variables, we would have found the same circuit but with individual currents 
running across the capacitors rather than the inductors.

Driven Harmonic Oscillations

I now wish to discuss driven oscillations. In the electrical case, we will consider a driven 
LRC circuit,
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     C

        
 ~ V(t)  (generator)

     L R

⇒ L��q + R �q +
1
C
q = V(t).� (3.64)

We already know the mechanical analog is a driven, damped oscillator:

m��x + b �x + kx = F(t),

or

��x + 2β �x + ω0
2x = A(t),� (3.65)

where A(t) =
F(t)
m

.. Notice that “F(t)”  is the external force on the particle, not the 
total force.

We will talk about two methods to solve Eq.(3.65):

A. Fourier Series
B. Green functions

Method “A” will work for periodic functions, “F(t)” , while method “B” works in the 
periodic or non-periodic case (but is more difficult to carry out).

Let’s begin by talking about a special case for F(t), which, however, will lead us smoothly 

into a discussion of Fourier series solutions. The equation we will consider is (A0=
F0
m  where 

� (3.66)

Assume a solution of the form,

  xp(t) = D(ω0,ω,β)cos(ωt − δ(ω0,ω,β)),� (3.67)
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and substitute into Eq.(3.66). After expanding the sine and cosine in the quantities   ωt  
and δ , and equating the coefficients of sin   ωt  and cos   ωt , we have the equations,

cosine: 		    D(ω0
2 − ω2)cos δ + 2Dβω sin δ = A0 ,� (3.68)

sine:		    D(ω0
2 − ω2)sin δ − 2Dβω cos δ = 0. � (3.69)

From (3.69),

tan δ =
2βω

ω0
2 − ω2 ' � (3.70)

from which we find

sin δ =
2βω

(2βω)2 + (ω0
2 − ω2)2

'� (3.71)

cos δ =
ω0
2 − ω2

(2βω)2 + (ω0
2 − ω2)2

,� (3.72)

where I have chosen the signs in (3.71) and (3.72) such that δ  >0. From (3.68), (3.71) 
and (3.72),
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D(ω) =
A0

(ω0
2 − ω2)2 + (2βω)2

,	
   � (3.73)

Therefore the particular solution can be written very simply as 

xp(t) = D(ω)cos(ωt − δ),
� (3.74)

δ = tan−1 2βω
ω0
2 − ω2









.� (3.75)

Our choice δ >0 means that we do not use the principle branch of the inverse tangent, 
but instead use:

          π
  tan-1x

      
π
2

  x 

Notice that the particular solution, (3.74) is completely periodic; it represents the steady-
state solution after all initial transients have damped out. We can now add to (3.74) the 
complementary solution to meet a given set of initial conditions. (The complementary 
solution corresponds to one of the three types of solutions for the damped oscillator studied 
previously.)

Notice that when   ω < ω0 ⇒ sin δ,cos δ > 0, 

values of δ are in I. 
(We required δ > 0

   I       δ(ω) and we have   δ → 0 as 
  ω → 0.)

     δ(ω) increases as
ω increases
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When   ω0 < ω ⇒ sin δ > 0 but cos δ < 0,

δ(ω)
values of δ are in II. 

 II  since δ(ω) must be a 
continuous function of ω.

 

δ(ω) continues to increase
as ω  increases

In any case we see that

  0 ≤ δ ≤ π.

Comparing the cosines of the driving and resulting motion:

driving:   cos(ωt), 
motion:   cos (ωt - δ). 

We see that δ  is the phase difference between the applied force and the steady-state motion.

A quick and easy way of solving harmonic electrical/mechanical problems is to use complex 
numbers. Let’s redo the solution in this faster manner. Consider,

m��x + b �x + kx = F(t). � (3.76)

Let’s assume (real parts understood)

  

F(t) = F0e
iωt ,

x(t) = x0e
iωt

 
 
 

� (3.77)

where F0  is real but x0  is complex. Substituting these above gives

  −mω
2 + ibω + k[ ]x0 = F0 ,
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⇒ x0 =
A0

k
m
− ω2







 + i b

m
ω











,

or (ω02 =
k
m
, 2β =

b
m
)

x0 =
A0

ω2 − ω0
2( )

2
+ 2βω( )2

e−iδ ,

� (3.78)

δ = tan−1 2βω
ω0

2 − ω2

 

 
  

 
 . � (3.79)

The full solution is thus (again, take the real part)

  x(t) = D(ω)ei(ωt −δ), � (3.80)

the same as (3.74) above.

An important aspect of this solution is contained in the amplitude, D(ω). We will see a 
graph of it shortly. This graph has a maximum where

 

dD(ω)
dω ω= ωR

= 0.� (3.81)

This is called “amplitude resonance”. It happens when (algebra is a problem)

ωR = ω0
2 − 2β2 .� (3.82)

Thus, unlike the undamped oscillator in Chapter 2 which was seen to have an infinite 
amplitude (as   t → ∞) at ω = ω0, the damped oscillator displays a more physical behavior.

What is the value of D(ω) at ω = ωR ? 

D(ωR) =
A0

ω0
2 − ωR

2( )
2

+ 4ωR
2β2

,

=
A0

4β2 ω0
2 − β2( )

�−
β<<ω0

A0

2βω0

. � (3.83)

Thus, for fixed driving force, F(t), when β<<ω0, the amplitude at resonance is inversely 
proportional to the damping constant, β.
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Now let’s look at D(ω) at the shifted frequencies,   ω = ωR ± β. To the same approximation 
(leaving out terms β2  or higher),

  ωR ˜ − ω0,� (3.84)

⇒ D ωR ± β( ) �− A0

ω0
2 − ω0 ± β( )2( )

2
+ 4ω0

2β2
,

�−
A0

8β2ω0
2

=
A0

2 2βω0( )
.

� (3.85)

Comparing (3.85) and (3.83) shows that

D ωR ± β( ) �− 1
2
D(ωR) , β<<ω0 .� (3.86)

The graph we obtain for D ωR ± β( ) �− 1
2
D(ωR) , β<<ω0 . is then:

Thus when D ωR ± β( ) �− 1
2
D(ωR) , β<<ω0 .,  the width of the amplitude response graph is given approximately by 

2β.  This is called the “full width” of the resonance response curve.

An important figure of merit for such oscillating systems is the so-called Q  (quality) factor, 
defined as 

 
QA ≡

ωR

∆ω( )Full
,� (3.87)
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where (∆ω)Full  is the full width. When Q >> 1 the resonance curve displays a very high, 
narrow peak. In a problem we will see that QA  is proportional to the average total energy 
divided by the energy lost during a cycle of driven oscillation, when ω = ωR  and QA>>1.

An additional type of resonance is called “velocity resonance”. The velocity response in the 
steady state is 

�xp(t) = −ωD(ω)sin(ωt − δ),� (3.88)

from which we define

Dv(ω) ≡ ωD(ω),� (3.89)

and 

dDv(ω)
dω ω=ωv

= 0. � (3.90)
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One can show that

ωv = ω0 .� (3.91)

so that velocity resonance occurs at the undamped angular frequency. In addition, the equality

Qv ≡
ωv

∆ω( )Full
=
ω0

2β
,� (3.92)

is exact in this situation. (One only has QA ˜ − 
ω0

2β
, QA >> 1, for amplitude resonance.)

When discussing driven motion, it is often convenient to introduce time-averaged quantities. 
We define

< � > ≡
1
τ

dt �( )
0

τ

∫ ,

	       =
ω

2π
dt �( )

0

2π
ω

∫ . � (3.93)

Therefore, 

sin2 ωt − δ( ) =
ω
2π

dt sin2 ωt − δ( )
0

2π
ω

∫ ,

=
1
2π

dx sin2 x
−δ

2π−δ

∫ =
1
2π

x
2
−
1
4
sin 2x








−δ

2π−δ

,

=
1
2π

2π − δ
2

−
1
4
sin 4π − 2δ( ) − −δ

2
−
1
4
sin −2δ( )



















,

  
=

1
2
. (independent of δ)

Similarly for cos2(ωt - δ). Therefore, we have for the kinetic and potential energies,

T =
1
4
mω2 D2 ω( ),

U =
1
4
mω0

2 D2 ω( ).













 � (3.94)
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Notice from the above that T >> U  for ω >> ω0, so that most of the energy is kinetic. 
Anyone who has pumped their feet too quickly on a swing will understand this statement! 
Also notice that since T ∝ Dv

2 ω( ), the kinetic energy resonates at ω = ωv  (velocity 
resonance) while potential energy resonates at ω = ωR  (amplitude resonance). 

Fourier Series Methods

Our solution, Eqs.(3.74) and (3.75), to the differential equation, (3.66), now affords a 
general method of solving (3.65) when the driving force, F(t), is periodic. Our differential 
equation can be written in operator form as

  ϑ x(t) = A(t),� (3.95)

where

  
ϑ ≡

d2

dt2
+ 2β d

dt
+ ω0

2 . � (3.96)

A linear differential operator is such that

  ϑ x1 + x2( ) = ϑx1 + ϑx2 .� (3.97)

Eq.(3.97) holds for any derivative operator of any order, which can be proven by induction. 
Thus, (3.96) is a linear operator. This would not be the case, for example, for a damping 
term proportional to �x2 , since

d x1 + x2( )
dt

 

 
 

 

 
 
2

≠
dx1
dt

 
 

 
 

2

+
dx2

dt
 
 

 
 

2

. 

The linearity of (3.96) now implies that the steady state solution to (φ  is an arbitrary phase)

 F t( ) = α n cos ωnt − φ( )
n
∑ ,� (3.98)

is just

xp t( ) =
1
m

αn

ω0
2 − ωn

2( )
2

+ 4ωn
2β2n

∑ cos ωnt − φ − δn( ),� (3.99)

δn = tan−1 2ωnβ

ω0
2 − ωn

2

 

 
  

 
 .� (3.100)

The reason this is important is because of the Fourier series theorem. Any periodic function 
F(t) = F(t + τ) (subject to some nonrestrictive continuity conditions) can be represented 
by the infinite series,
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F(t) =
a0
2

+ an cos nωt( ) + bn sin nωt( )( )
n =1

∞

∑ ,� (3.101)

where

an =
2
τ
|
−
τ
2

τ
2
dt'F(t')cos 2πnt'

τ









,

bn =
2
τ
|
−
τ
2

τ
2
dt'F(t')sin 2πnt'

τ









.















� (3.102)

One can actually integrate over any time interval of length τ  in doing the integrals (3.102). 
The particular solution to (3.65) is then 

xp(t) =
a0

2ω0
2m

+
1
m

D nω( ) an cos nωt − δ nω( )( ) + bn sin nωt − δ nω( )( )( ),
n=1

∞

∑ �(3.103)

where

D nω( ) ≡
1

ω0
2 − n2ω2( )

2
+ 4n2ω2β2

,
� (3.104)

δ nω( ) = tan−1 2nωβ
ω0
2 − n2ω2

 

 
  

 
 . � (3.105)

Let us do a Fourier series decomposition as an example.

Example 1

F(t) =
F0 , 0 < t <

τ
2

−F0 , −
τ
2

< t < 0.











        F(t)

F0
      − τ

2
   τ

2
       t

                  O

   -F0
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Solution:

Since this is an odd function of t, we have

an = 0,

for all n. For bn  we have

bn = −
2F0
τ

−
τ
2

0
dt'sin 2πnt'

τ









 +

2F0
τ

dt'sin 2πnt'
τ











0

τ
2

∫  

  
⇒ bn =

2F0
πn

1 − cos(πn)( ) =

0 ,n even
4F0
πn

,n odd.
 
 
 

The explicit solution to the damped oscillator equation with this force is

xp(t) =
4F0
πm

D nω( )

n
sin(nωt − δ nω( )),

n =1,3,5...

∞

∑

where δ nω( )  is given by (3.105) as usual.

Green Function Methods

As mentioned above, there is another, more general method of solving the driven mechanical 
circuit equation (3.65). We will start the explanation of the method by asking what happens 
when we “kick” an underdamped oscillator. Qualitatively, we get:

  x(t)

     0                                 t
  

 
−
T
2

We have “kicked” it at a time beginning at 
  
t = −

T
2
.. The above is in response to an 

idealized force,

Download free eBooks at bookboon.com



MODERN INTRODUCTORY MECHANICS

118

Linear Oscillations

     FT(t)

   F0

      −
T
2   0     

T
2 t

This is given by

FT(t) =

0 , t < −
T
2

F0 , −
T
2

< t <
T
2

0 , t >
T
2
.













 � (3.106)

Let’s idealize this situation further to a very short, sharp kick so that the resulting motion 
is independent of the details of FT(t). Define

    
� 
I = dt

� 
F (t)∫ ,� (3.107)

which we will call the impulse. It is momentum transfer. Clearly, from our form (3.106) 
we have

I = F0 T.� (3.108)

What happens to the oscillator during this time, T?  Under the conditions 
T <<

1
β
 and T <<

2π
ω0

, the oscillator is approximately “free”. So, we simply have

m��x �− F0 ,

�x �−
1
m
|
−
T
2

T
2
F0dt =

F0T
m

=
I
m
,� (3.109)

=>  
  
x(T) ˜ − 

1
2
F0
m
T2 =

1
2
I
m
T.

Therefore, in the limit   T → 0+ ("0+"  means to approach zero from positive numbers), 
I = const., our impulse function serves only to give the oscillator an initial velocity, 
given by (3.109). This limit produces an increasingly narrow force profile:
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     FT(t)

   F0

     
−
T
2        

T
2 t

     

  same area   F0
     ⇒

T smaller

   

    
−
T
2     

T
2            t

Let’s define the “kicking function”,

ℑ(t) = lim
T→0+
I=const.

FT(t). � (3.110)

We have (a < 0 < b)

ℑ
a

b

∫ (t)dt = lim
T→0+
I=const.

F0 dt =
a

b

∫ lim
T→0+
I=const.

F0 dt
−
T
2

T
2

∫ = I,� (3.111)
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where I have assumed the limit and the integral can be interchanged. Also notice for an 
arbitrary but continuous function A(t),

ℑ
a

b

∫ (t) A(t)dt = lim
T→0+
I=const.

F0 A(t)dt
−
T
2

T
2

∫

�− A(0)T
� �� ��

= I A(0),� (3.112)

where I have made the same assumption. In addition,

ℑ(t) = ℑ(−t), � (3.113)

by construction.

Now let us say we kick the damped oscillator at time t =  t’ instead of at t = 0. Here 
is the original situation:

       
 
       ℑ(t”) 
 
 
 
 
 
 
 
 
 
                  0 (origin)  t” 

Here is the same situation described with a shifted time axis:

 

       
 
           ℑ(t-t’) , t” = t - t’
 
 
 
 
 
 
 
 
 
    0 (new origin)      t’   t 

Therefore, t - t’ is the appropriate shifted argument of the kicking function, ℑ.
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Let us solve

��x + 2β �x + ω0
2x =

1
m
ℑ(t − t'),� (3.114)

subject to the initial conditions, 

a.   x(t') = 0, 

b.   lim
t→t'+

�x(t) =
I
m
. 

(“ lim
t→t'+

” means t approaches t’ from the positive side.) The second condition is just 
supplying the initial velocity condition, Eq.(3.109). Whenever  the right hand side 
of (3.114) is zero and so is easy to solve. (Let us assume β <  ω0):

x(t) =
A'e−βt sin ω1t + α'( ),t > t'

0 , t < t'






� (3.115)

Notice the two undetermined constants, A’ and α’. For convenience, let’s take

α' = −ω1t'+ α,

 A'= Aeβt' , 

since t’ is a constant as far as our differential equation is concerned. Using these redefined 
parameters in (3.115) becomes

  
x(t) =

Ae−β(t − t') sin ω1(t − t') + α( ),t > t'

0 , t < t'.

 
 
 

 � (3.116)

Now apply initial condition “a” above when t=t':

⇒ A sin(α) = 0,

which means we can choose α = 0. The remaining parameter, A, is determined by condition 
“b”.  To see how this condition comes about, let’s integrate both sides of the differential 

equation, (3.114), over a short time interval, 2ε (ε > 
T
2 ), centered about t=t':

lim
ε→0+

��x + 2β �x + ω0
2x =

1
m
ℑ(t − t')





dt

t'−ε

t'+ε

∫

⇒ lim
ε→0+

(�x(t'+ ε)
v0

� �� �� − �x(t'− ε))
0

� �� �� =
I
m
.

Using the explicit t > t’ solution then shows

lim
ε→0+

x(t'+ ε) = Aω1 ⇒ A =
I
mω1

.	
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Everything is now determined. Using a new notation for our solution,  x(t) → x(t,t'), 
we have

  

x(t,t') =

I
mω1

e−β t −t'( ) sin ω1 t − t'( )[ ] ,t ≥ t'

0 , t ≤ t'.

 

 
 

  
� (3.117)

This solution looks like we thought it would (assuming I > 0  so that v0 > 0):

 x(t,t’)

         0    t’     t

Notice that x(t,t’) is continuous across t = t’ (condition “b”) but that it’s first 
derivative is not. The velocity profile is

 

    v(t)

 
I
m

    t’    t

In solving (3.114) we have done much more than solve a rather isolated, special example. 
Just like the solution we formed for the harmonic force, we can now build on this solution 
to solve a wide variety of other problems. The comparison with the Fourier series solution is 
quite enlightening, and I present analogous quantities in the two situations in the following 
Table:

Download free eBooks at bookboon.com



MODERN INTRODUCTORY MECHANICS

123

Linear Oscillations

In either case we are decomposing the given F(t) into either a discrete series of harmonic 
functions (Fourier) or a continuous density of “kicks” (Green function) and using linearity 
and the known “primitive” solutions to get the response, x(t). I have deliberately left a 
blank in the table where the Green function general solution is supposed to be. We can guess 
the form of the solution based upon the analogy. The table informs us that the following 
quantities or operations are analogous:

  
⇔

−∞

∞

∫ ,
n
∑

αn ⇔
F(t')
I

dt',

D nω( ) cos nωt − φ − δ nω( )( ) ⇔ x(t,t').

Based upon this, we will hypothesize the form of the general solution using x(t,t’): 

x(t) = dt' F(t')
I









 x(t,t')

−∞

∞

∫ .� (3.118)

That is, the full solution is just given by integrating the force per impulse, F(t')
I

, over 

the solutions, x(t,t’) For convenience, let us introduce (finally, the “Green function”!)

G(t,t') ≡
x(t,t')

I
. � (3.119)

Since G(t,t’) = 0 for t < t’. we can write the general solution as 
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x(t) = dt'G(t,t')F(t').
−∞

t

∫ � (3.120)

Let us verify the correctness of (3.120) by substituting it back into (3.65). First, to make 
stonger contact with standard terminology, let us introduce

δ(t − t') ≡
1
I
ℑ(t − t'),� (3.121)

called the Dirac delta function. We now have solved 

d2

dt2 + 2β d
dt

+ ω0
2







 G(t,t') =

1
m
δ t − t'( ),

where the delta function has the property (A(t) is some arbitrary smooth function and 
a < 0 < b)

δ(t) A(t)dt =
A(0), a < 0 < b
0 , otherwise.





a

b

∫

To verify we have a solution, putting x(t) = dt'G(t,t')F(t')
−∞

∞

∫   into (3.65) gives
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��x + 2β �x + ω0
2x =

1
m
F(t),

⇒ dt' d2

dt2
+ 2β d

dt
+ ω0

2 

  
 

  
G(t,t')

=
1
m
δ(t− t')

� � � � � � � � � � � � � � � −∞

∞

∫ F(t') =
1
m
F(t),

  
⇒

1
m
F(t) =

1
m
F(t).

We can now automate the solution to (3.65):

(1). Solve the linear differential equation,

ϑ G(t,t') =
1
m
δ(t − t'),� (3.122)

for some second-order linear differential operator, ϑ =  
  
d2

dt2
+ ..., subject to the conditions,

a.   G(t,t') = 0, t ≤ t', 

b.   lim
t→t'+

�G(t,t') =
1
m
. 

(2). Do the integral

x(t) = dt'G(t,t')F(t')
−∞

t

∫ .� (3.123)

(3). One can add the complementary solution to reach some desired initial conditions.

Although our “kicked” solution, x(t,t’) represents an initially quiescent oscillator, this is not 
necessarily true for x(t) in (3.123) because we can let F(t’) be defined all the way to  t' → −∞..  
If we do this with a periodic F(t’), the resulting x(t) from (3.123) will correspond to 
the particular solution. In addition, in step (3) one can add to (3.123) a complementary 
solution which will then match any desired initial conditions, quiescent or not. Thus, the 
Green function method works in essentially all cases; the price to be paid for this generality 
is a sometimes difficult integral to perform.

Let us do some examples to illustrate this method.

Example 2

A driven undamped oscillator’s equation of motion is given by (ω ≠ ω0)

m��x + kx = F0 sin ωt.
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Find x(t) for an initially quiescent oscillator at t = 0:

  x(0) = 0, �x(0) = 0.

Solution:

This is actually Example 1 from Ch.2. The appropriate Green funtion is just the   β → 0 
limit of the G(t,t’) in (3.117). We will use 

G(t,t') =

1
mω0

sin ω0 t − t'( )[ ],t ≥ t'

0 , t ≤ t'.

 

 
 

  

Since we are not interested in the solution before t = 0, we may take the force profile to be:

        F(t)

     F(t)=0     t

F(t) = F0sin ωt

Thus

x(t) = dt'G(t,t')F(t')
0

t

∫

	
=

F0
mω0

dt'sin ω0(t − t')sin ωt'.
0

t

∫

We can write this as

  
x(t) =

F0
mω0

sin ω0t dt'cos
0

t

∫ ω0t'sin ωt'
 
 
 

  
− cos ω0t dt'sin ω0t'sin ωt'

0

t

∫
 
 
 
 

Some useful integrals are, a ≠ b:
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sin ax sin bx dx =
sin(a − b)x
2(a − b)

−
sin(a + b)x
2(a + b)

,∫

  
sin ax cos bx dx = −

cos(a + b)x
2(a + b)

−
cos(a − b)x
2(a − b)

,∫

  
cos ax cos bx dx =

sin(a + b)x
2(a + b)

+
sin(a − b)x
2(a − b)

.∫

a = b  case:

  
sin2 ax dx =

1
2∫ x − 1

2a sin 2ax( ),

  sin ax cos ax dx = 1
2a sin2 ax,∫

cos2 ax dx =
1
2∫ x + 1

2a sin 2ax( ) . 

Using these above and doing the algebra gives

  
x(t) =

F0
m

1
ω0

2 − ω2 sin ωt −
ω

ω0
sin ω0t

 
 
 

 
 
 
.

This is the same as we had previously. We are “cracking a walnut with a sledgehammer.”

Example 3

Redo the harmonically driven, damped oscillator using the Green function technique. That 
is, solve the differential equation

m��x + b �x + kx = F0 cos ωt( ),

where the right hand side defines the force for all t,  −∞ < t < ∞.

Solution:

Since the force has been defined for   t → −∞ , we should recover the particular solution, 
Eqs.(3.74) and (3.75) above. We have

x(t) = dt'G(t,t')F0 cos(ωt')
−∞

t

∫

=
F0
mω1

dt'e−β(t −t') sin ω1(t − t')[ ] cos ωt'.
−∞

t

∫
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This integral looks nasty. However, notice 

  
cos ωt'sin ω1(t − t')[ ] =

1
2

sin ωt'+ ω1(t − t')[ ]{  

      − sin ωt'− ω1(t − t')[ ]},
so that

  
x(t) =

F0
2mω1

dt'e− β(t −t') sin (ω − ω1)t'+ω1t[ ]
−∞

t

∫
& 
' 
( 

	
  

	
   	
   	
   	
   − dt'e−β(t−t') sin (ω + ω1)t'− ω1t[ ]
−∞

t

∫
&
'
(
.	
  

	
  
One can now do the two integrals above with the use of 

  
eax sin xdx =

eax

a2 + 1
a sin x − cos x( ).∫  

After changing variables, the result is

x(t) =
F0

2mω1

1
ω − ω1( )

1
β

ω − ω1











2

+ 1

β
ω − ω1

sin ωt − cos ωt




















 

−
1

ω + ω1( )
1

β
ω + ω1











2

+ 1

β
ω + ω1

sin ωt − cos ωt




















,

x(t) =
F0
2m

4ωβ
ω2 − ω0

2( )
2

+ 4β2ω2
sin ωt






 

−
2 ω2 − ω0

2( )
ω2 − ω0

2( )
2

+ 4β2ω2
cos ωt






.
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This can be written

x(t) =
A0

ω2 − ω0
2( )

2
+ 4β2ω2

2ωβ

ω2 − ω0
2( )

2
+ 4β2ω2

= sin δ
� ����� �����























sin ωt















+
ω0
2 − ω2( )

ω2 − ω0
2( )

2
+ 4β2ω2

= cos δ
� ����� �����























cos ωt















⇒ x(t) =
A0

ω2 − ω0
2( )

2
+ 4β2ω2

cos ωt − δ( ).

This is precisely our previous solution to the problem; the phase angle δ  having the same 
meaning as before.
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CHAPTER 3 PROBLEMS

1.	Substituting Eqs.(3.17) into (3.16), show that Eq.(3.19) (an ellipse) results, 
where C and D are given by Eqs.(3.20) and (3.21), and tan 2γ  is given 
by Eq.(3.18). [Hints: After substituting (3.17) into (3.16), require that the 
coefficient of the x'y' cross term vanish. After this, use (3.18) to eliminate the 
cos δ  term and do the algebra leading to Eqs.(3.20) and (3.21).]

2.	Show that the coefficients     
� 
C  and D  in Eqs.(3.20) and (3.21) are both positive. 

Do this as follows:

a)	 Show that requiring C>0  is the same as

	 B2 + A2 >
A2 − B2

cos 2γ
..

b)	Similarly, show that  D  > 0 implies

	 B2 + A2 >
B2 − A2

cos 2γ
..

c)	 Show that (a) and (b) together imply the true statement,

	 cos2 δ < 1,

when the explicit form for cos 2γ  is used. [The other three cases, C>0 D<0, C<0 D>0, 
and C<0 D<0  may be eliminated one by one.]

3.	For the out-of-phase two dimensional oscillator, study the special case where 
A=B  and show that in this case we can choose

	 C = 
  
1 − cos δ

A2 sin2 δ
, D = 

  
1 + cos δ

A2 sin2 δ
, 

and that 
  
γ = ±

π

4
.. [Note: It is not correct to simply put A=B  in Eqs.(3.20) and (3.21)]

4.	 (a) The general solution of the damped oscillator,

	 x..   + 2βx .   + ω02x = 0,

when β > ω0  (overdamped case) is given by 

	 x(t) = e-βt
  
A1e

ω2t + A2e−
ω2t 

 
 
 
,

where ω2 = β2 − ω0
2  and A1,2  are constants. For initial conditions

	 x(0) = x0,  �x(0) = v0,
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find A1  and A2 .

b)	Find conditions on x0, v0 which permit a change in sign of x(t).

5.	 In the analogy developed between mechanical oscillators and electrical circuits we 
used Kirchoff’s circuit law, which says the sum of voltages around a closed loop 
is zero. Which of Newton’s laws of motion is analogous to this circuit law? Can 
you formulate circuit statements analagous to the other two of Newton’s laws?

6.	A mass is attached to a wall with the three springs shown. The system is without 
friction.

Using the circuit/mechanical analogy, find the equivalent circuit to this mechanical 
oscillator.

7.	Consider the system with two masses:

1

2

0x

m

m

no friction

friction

x1,2  locate the positions of masses m1,2 relative to m1’s equilibrium position, x0. 
Assume there is a frictional force proportional to velocity between m1  and m2, but that 
there is no frictional force between m1 and the ground and that the oscillations are small.

a)	 Write down Newton’s equations of motion for this system.
b)	Find the electrical circuit analogous to the mechanical situation in (a).
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8.	Consider the system of two masses shown. One mass rides on top of the other 
and the two springs have different spring constants, k1 and k2. There is a 
friction term linear in velocity between m1 and m2, but not between m1 and the 
ground; the oscillations are small.

a)	 Write out Newton’s equations of motion for this system.
b)	Find and draw the equivalent electrical circuit to this mechanical problem.

9.	Consider the system of two masses and three springs shown.

a)	 Write out Newton’s equations of motion for this system.
b)	Find and draw the equivalent electrical circuit to this mechanical problem.

10.	Consider the driven, damped harmonic oscillator:

	 ��x  + 2β �x  + ω02x = A0 cos ωt.

a)	 Show that the instantaneous energy of the oscillator  
(E(t)  ≡ 1

2
m �x2  + 1

2
mω02x2) satisfies

	
dE(t)
dt

	
  =	
  -­‐2βm x2 	
  +	
  mA0	
   x 	
  cos	
  ωt.	
  

	
  
[Hint: Take the derivative of E(t) and use the above differential equation.]

b)	Give an interpretation of the two terms on the right.
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11.	a) Show that “amplitude resonance” occurs at angular driving frequency

	   ωR = ω0
2 − 2β2 .  

b)	Show that velocity resonance takes place at the system’s natural angular 
frequency,

	 ωv = ω0.

c)	 Find the angular frequency of accleration resonance. That is, find the driving 
frequency, ωA, such that the acceleration amplitude of the oscillator is a 
maximum.

12.	Show that the velocity quality factor, defined by 

	 Qv ≡   
ωv
2β  

(ωv = ω0 from problem 11(b)) can also be written exactly as 

	 Qv = 
ω0

∆ω ,

where ∆ω =  full width of the velocity resonance curve at 1
2
 x  maximum velocity.

13.	Can a driven, overdamped oscillator undergo amplitude resonance? What about 
velocity resonance? Explain why or why not.

14.	Show that the QA  factor for light damping for the driven oscillator may be 
written as

	 QA ≈ πNe,

where Ne is the number of oscillations of the free oscillator which occur in the time it 
takes for the amplitude of the undamped oscillator to decrease to   

1e  of it’s initial value.

15.	(a)  Show that 

	
  

< E >

∆E
=
ω2 + ω0

2

8πβω
, 

where <E> is the time averaged energy of a driven oscillator and ∆E  is the energy lost 
during a cycle of driven oscillation.

b)	Using (a), prove that for light damping the amplitude quality factor,   QA , is thus 
given by
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	 QA ≈ 2π < E >

∆E
,

16.	Referring back to Prob.10 above, explicitly compute the time average of both 
terms in the energy change of the damped oscillator over 1 cycle, <dE(t)

dt
>. 

Does the answer you get surprise you?

17.	Obtain the Fourier series representing the periodic function,

	 F(t) = 
0, − A < t < 0,

cos(2π
A

t), 0 < t < A.









It looks like:
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"A"  is an arbitrary constant.

18.	A damped, driven harmonic oscillator with natural frequency ω0  and damping 
constant β  is subject to the force (for all times times, t),

	 F(t) =   α1 cos(ωt) + α2 cos(2ωt),

where α1  and α2 are constants. Find the average kinetic, <T>, and potential, <U>, 
energies of this system. [Some of the integrals given in Example 2 above may be useful.]

19.	A underdamped harmonic oscillator (damping constant b and natural angular 
frequency ω0 ) is subject to a force as a function of time given by

	
F(t) = 

F0 cos ωt,t < 0
0, t > 0







This looks like:

Find the motion of the oscillator, x(t), for t>0. [Hint: There is a simple way of doing 
this problem considering that you should know x(t), for t<0.]
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20.	An initially quiescent underdamped harmonic oscillator, with damping constant 
β  amd natural frequency ω0 , is subject to an infinite, periodic square wave of 
amplitude 

� 
A  and period T, starting at time t=0. It’s differential equation is:

	 (
d2
dt2  + 2β

d
dt  + ω02 )x(t) = 

1
m  F(t).

Find the response of the system, x(t), for all times t. [Hint: Use Example 1 above, 
making sure the initial conditions x(0) = 0, �x(0) = 0 are met at t=0+.] 

21.	a)  Solve (Green’s function for a free particle)

	
d2
dt2   G(t,t') = 

1
m   δ(t-t'),

subject to: 	 1. G(t,t') = 0, t ≤ t',

		  2. dG(t,t')dt    = 
1
m   for t = t'+.

b)	Using

	 x(t) = dt'G(t,t')F(t')
−∞

∞

∫ ,

find x(t) for

F(t')=
 

mx..   + kx  = 
0,t < 0

F0 sin(ωt),t > 0






,

F0, t' > 0

0, t' < 0

where F0  is a constant. The result should be very familiar!
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22.	Solve the harmonic oscillator equation,

	
mx..   + kx  = 

0,t < 0
F0 sin(ωt),t > 0






,

for an initially quiescent oscillator using the Green’s function technique for the case  
ω=ω0 (ω0

2 =
k
m
). Use the known Green’s function for this problem from the text. 

[Hint: The answer for x(t) is given somewhere in the text.]

23.	An initially quiescent, undamped oscillator with mass m and natural angular 
frequency ω0  is subjected to a force,

	

F(t) = 

0, t < −T,
−F0, − T < t < 0,
F0, 0 < t < T,

0, t > T.













This looks like:

a)	 Using the Green’s function method, find x(t) for all times, t. [Hint: 
Consider the regions -T<t<0, 0<t<T  and t>T  separately.]

b)	Show that x(t) = 0 results for t > T  when ω0 = 
2πn
T  , n = 

1,2,3....

24.	Consider the following force profile on an undamped (damping constant 
β = 0) oscillator of natural angular frequeny, ω0 . The driving angular 
frequency is ω ≠ ω0.
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The force is zero for t > 
π
ω   and for t < - 

π
ω 

. Find the response of the system,  

x(t) for t > 
π
ω . [Ans: For t > 

π
ω , I  get x(t) = - 

F0
mω0

 
2ω

ω2-ω20
  sin(

πω0
ω  ) cos(ω0t) 

x(t) = - 
F0
mω0

 
2ω

ω2-ω20
  sin(

πω0
ω  ) cos(ω0t).] Extra Credit: Also find x(t) for - 

π
ω  < t < 

π
ω .

25.	The Green function for a damped oscillator satisfies

	 (
d2
dt2   + 2β

d
dt   + ω02  )G(t,t') = 

  
1
m
δ(t-t'),

where δ(t-t')  is the Dirac delta-function. Solve this equation and construct the 
appropriate Green function, G(t,t'), for a critically damped oscillator, ω0 = β  
(The solution in the notes and in the book is for the underdamped case, ω0 > β .)

26.	One can use the Green function to also build in arbitrary initial conditions for 
an oscillator. Newton’s equation for an undamped oscillator is,

	 (
d2 
dt2   + ω0

2  )x(t) = 
  
1
m
f(t),

where f(t) is the external force. It’s Green function is

	

G(t,t') =

1
mω0

sin ω0 t − t'( )  , t ≥ t'

0 , t ≤ t'.









For an oscillator in an arbitrary initial state at t=0, show that x(t) is given by  
(x0  and v0  are the initial position and velocity, respectively, at t=0,),

x(t) = ∫
∞

0

dt'G(t,t')f(t') + m 



G(t,0)v0 - x0

dG(t,t')
dt' |t'=0

[Hint: There are special techniques to show these sorts of results. For our purposes, 
it’s enough to show that x(t) is a solution of the above differential equation with 
the correct initial position and velocity, x0 and v0.  One must aso show that 
G(t,t') = G(-t',-t).]
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4	 NONLINEAR OSCILLATIONS

THE ANHARMONIC OSCILLATOR

Let us go back to how we started Chapter 3.

 +x

Equilibrium  0
position
(origin) m Fsp(x)

  -mg
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We have

  ṁ  ̇ x = Ftot = Fsp(x) − mg,

Fsp(x) = Fsp(0)
mg
�

+ x ∂Fsp
∂x










0

≡ −k
��� ��

+
x2

2
∂2F
∂x2










0

≡ 2ε
���

+ � .
� (4.1)

So, a more accurate description of the motion for a general spring is 

  ṁ  ̇ x = −kx + εx2 ; “anharmonic oscillator” “anharmonic oscillator”� (4.2)

this is a non-linear differential equation. It is still second order (requiring two initial 
conditions) and still conservative.

Even though (4.2) is non-linear, we can calculate t(x) for portions of the motion not separated 
by turning points as before. The potential energy function can be taken as

U(x) =
1
2
kx2 −

1
3
εx3 ,� (4.3)

and looks like (assuming ε > 0)

 
                 

  
1
2
kx2   

   U(x) 
        

  
1
2
kx2 −

ε

3
x3 

 
 
 
                   E 
 
 
 
 
     x1      x2   x 

Thus, the potential is no longer symmetric about the equilibrium position. In fact, the magnitude 
of the force is slightly greater when it compressed (x < 0) than when it is stretched.

The formal solution to t(x) is given by Eq.(2.42):

(t − t0) = ±
dx'

2
m

E − U(x')( )x0

x(t)

∫ , � (4.4)

Download free eBooks at bookboon.com



MODERN INTRODUCTORY MECHANICS

141

Nonlinear Oscillations

with U(x’)  given by Eq.(4.3). Although we have a formal solution, turning t(x) into 
x(t), which much more useful, is quite difficult, except in special cases. Even finding 
closed form expressions for the turning points, x1, x2, is awkward since one is examining 
the cubic equation,

U(x) - E = 0, � (4.5)

=> 
  
x3 −

3
2

k
ε

 
 

 
 x

2 + 3 E
ε
 
 
 
 = 0,� (4.6)

for the real roots x1, x2  and x3

We can relate the anharmonic oscillator equation of motion to a special function called 
an elliptic integral. If we agree to choose t0 = 0  when the spring is released at rest after 
compression, we will have.

  

t =
dx'

2
m

E −
1
2
kx'2 +

ε

3
x'3 

 
 
 

,
x1

x(t)

∫  � (4.7)

where x1  is the negative root, which is a turning point of (4.6), assuming ε > 0. The 
three roots of (4.6) can be pictured as the positions where the E=const. line cuts the 
potential energy:

         U(x)

ε, k, E > 0

E   E

  x
 x1    x2   x3

x3 > x2 > x1.

The integral in (4.7) can be related to an elliptic integral of the first kind:

F(z,k) ≡
dx

1 − x2( ) 1 − k2x2( )
.

0

z

∫  � (4.8)

Using the integral, 
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dx'
a − x'( ) b − x'( ) x'−c( )

=
2

a − c
F(γ,q),

c

u
∫ � (4.9)

where a > b ≥ u > c  and 

γ =
u − c
b − c

,� (4.10)

as well as

  
q =

b − c
a − c

. � (4.11)

In our case, we have

a = x3, b = x2, c = x1, u = x(t),

which gives

t = 2 3m
2ε










1/2 F γ,q( )

x3 − x1
.� (4.12)

If one is interested in the period of motion, it is necessary only to let  x → x2 in (4.12) 
and multiply by two:

τ = 4 3m
2ε










1/2 F 1,q( )

x3 − x1
.� (4.13)

Sometimes the expression  is called a “complete elliptic integral of the first kind.” 

Exact expressions for the roots of (4.6) are available; however, to first nontrivial order in ε
, one can show that

x1 �− −
2E
k










1/2

1 −
1
3

2E
k3











1
2
ε











,

x2 �−
2E
k










1/2

1 +
1
3

2E
k3











1
2
ε











,

x3 �−
3
2

k
ε









 1 −

8
9

E
k3









 ε2









.



















� (4.14)
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Using (4.13) and (4.14) and an approximate form for F(1,q) (see Eq.(4.27) below and 
the HW  problem), we can find an approximate expression for τ  for small amplitude motion, 
which will be a power series in ε. I find that4

τ �− 2π m
k









1/2

= τ0
� �� ��

1 +
5
6

E
k3









 ε2









,

� (4.15)

so that the period is slightly in excess of τ0, for fixed E  and K .

The Plane Pendulum

Let us examine another intrinsically nonlinear system, the plane pendulum.
     
 
             O     
       
      
 
          φ       l 
       
     
            mg cosφ 
             
 
 
     −mg  	
  

Assume planar motion of the mass m and take the origin of coordinates (cylindrical) to be 
at 0, the point of attachment. (z-axis is out of the page.) Note the attachment is such that 
the pendulum can swing a full 360�  and go “over the top”.

For angular variables, the appropriate concept is torque: 

��L =
�
N,

�
N =

�r ×
�
F = mgl sin φ −êz( ),

    
� 
L =

� r ×
� p = m � r ×

� v .
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In cylindrical coordinates, remember

    

� v = ˙ ρ 
0
�ˆ e ρ + ρ˙ φ ̂  e φ + ˙ z 

0
�ˆ e z, 

    ⇒
� 
L = m ρˆ e ρ( ) × ρ˙ φ ̂  e φ( ) = mρ2̇  φ ̂  e z ,

⇒
��L = m l2��φ êz ρ = l here( ). 

The equation of motion is thus 

ml2��φ = −mgl sin φ.� (4.16)

For small oscillations sin φ ˜ ~ φ  and we have harmonic motion

��φ +
g
l
φ �− 0,� (4.17)

with angular frequency ω0
2 =

g
l
. 
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Going beyond this approximation, we get from (4.16) the energy conservation equation 
by integration 

⇒
1
2
ml 2 �φ2 − mgl cos φ = const. � (4.18)

We can always add or subtract a constant in defining the total energy, E. We will choose

const. → E − mgl , 

which corresponds to choosing the zero of potential energy at the point φ = 0. We have

E =
1
2
ml 2 �φ2

= T
��� ��

+ mgl 1 − cos φ( )
= U(φ)

� ���� ����
.
� (4.19)

The periodic potential looks like:

 
                                                      U(φ)  

      E1 
      
            E0 = 2mgl  
 
  E2      E2   E2 
 
 
 
 
     0 φ0    φ 

	
  

The diagram tells us that for energy values such that E <  2mgl (or φ0 < π)  the 
pendulum motion is bounded in φ. this would correspond to an energy   E2  in the above 
plot. We can get the relation between t and φ by again relating the motion integral to an 
elliptic integral. From (4.18) we have

�φ = ±
2
ml2









1/2

E − U(φ)( )1/2 .� (4.20)

Choosing t0 = 0 at φ = 0  now gives

t =
ml2

2










1/2
dφ'

E − U φ'( )( )1/2
,

0

φ(t)

∫ � (4.21)

where we can integrate only up to the first turning point, φ = φ0. At maximum extension, 
φ = φ0,  the energy, E, is given by

E = mgl 1 − cos φ0( ) = 2mgl sin2 φ0
2









.� (4.22)
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Also, we can write

U(φ) = 2mgl sin2 φ
2
, � (4.23)

which now gives

t =
1
2

l
g










1/2 dφ

sin2 φ0
2

− sin2 φ
2










1/2

0

φ(t)

∫ .
� (4.24)

Defining

x ≡
sin φ

2
sin φ0

2

, k ≡ sin φ0
2
,
,

we have

  

dx =
cos φ

2
dφ

2 sin φ0
2

=
1 − k2x2

2k
dφ,

⇒ t =
1
2

l
g










1/2 2kdx
1 − k2x2( )

1/2
1

k2 − k2x2( )
1/2

0

k−1 sin φ
2

∫  

=
l
g










1/2

F k−1 sin φ
2
,k







,� (4.25)

where we again see the elliptic integral of the first kind. The period, τ , is now given by 
setting φ = φ0in (4.25) and multiplying by four,

τ = 4 l
g










1/2

F(1,k),� (4.26)

We may get an approximate expression for t for small oscillations, k << 1, by expanding 
τ = 4 l

g










1/2

F(1,k),:

  
F(1,k) ˜ − 

dx
1 − x2

1
1 − k2x2

0

1

∫ , 

 
  
=

dx
1 − x2

1 +
1
2
k2x2 +

3
8

k2x2( )2 + ... 
 

 
 

0

1

∫ . � (4.27)
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Doing the integrals in (4.27), we find

τ = 4 l
g










1/2
π
2

+
π
8
k2 +

9π
128

k4 + ...







, 

     = 2π l
g










1/2

= τ0
� �� ��

1 +
1
4
k2 +

9
64

k4 + ...







.

Also

  
k = sin φ0

2
˜ − 

φ0
2

−
φ0
3

48
+ ...,

  
k2 ˜ − 

φ0
2

4
−

φ0
4

48
+ ..., 

  
k4 ˜ − 

φ0
4

16
+ .... 

Collecting terms, and to order φ0
4 , we thus find 

  
τ = τ0 1 +

φ0
2

16
+

11
3072

φ0
4 + ...

 

 
  

 
. � (4.28)

Again, the period is slightly increased.

One can understand why the plane pendulum’s period is nearly independent of amplitude 
from the smallness of the  φ0

2 ,φ0
4  coefficients. For example, choosing 

  
φ0 =

π

2
 we get (from 

a numerical evaluation of F 1, 1
2









)

  τ ˜ ~ τ0 (1.1803), 

or about an 18% change.

Phase Diagrams and Nonlinear Oscillations

An important qualitative technique for the understanding of both linear and nonlinear 
systems is the construction of phase diagrams. Let us return to the harmonic oscillator. 
It’s energy is 

 
E =

1
2
m˙ x 2 +

1
2
kx2.� (4.29)

Plotting  ˙ x (t) and x(t) simultaneously gives a series of ellipses for various energies:
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  ˙ x (t)

E’> E

   E’
 E 0:stable equilibrium

  0
x(t)

 
2E'
k

  
2E'
m

This is called “phase space.” The arrows show the evolution of the system in time.

Of course, the trajectories will never intersect for E’≠ E This is true for any linear, second 
order, system. This can be seen by the following argument. Assume such a system had a 
phase diagram where the trajectories crossed, as in

      ˙ x (t)

         x(t)

  intersection   (4 paths)

Imagine starting a particle at the above intersection point. If the above could happen, 
this would mean the particle at the intersection has two possible solutions. However, the 
solutions of linear, second order, differential equations are unique, given initial conditions 
on x  and  ˙ x (t). We will see shortly that a special type of intersection is actually allowed for 
nonlinear systems.

Another type of behavior not allowed for linear, second order systems in phase space is a 
bifurcation, as in the following.
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       ˙ x (t)

       x(t)

  bifurcation   (3 paths)

Actually, it is clear that no deterministic system can display such behavior. Although 
bifurcations in phase space do not occur, bifurcations in parameter space descriptions can 
and do occur, as we will also see shortly.

Since the underdamped oscillator looses energy as time progresses, it’s phase diagram will 
look like: 
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p g
      ˙ x (t)

0: stable equillibrium

  0
x(t)

It spirals in toward the point of stable equilibrium taking an infinite amount of time to 
come to rest. 

Now turn around the sign of k. Take 

  
U(x) = −

1
2
kx2 , k > 0.� (4.30)

The potential is a downward opening parabola:

  U(x)

E1

E = 0
               x

E2

The lines represent trajectories of different energies. The energy equation is given by (4.29) 
with the sign of k reversed:

  
E =

1
2
m˙ x 2 −

1
2
kx2.� (4.31)

This is the equation of a hyperbola. The phase diagram is
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                                          ˙ x (t)
     E1 E=0

 E2
  E2

   0     x0
   x(t)

  -E=0

             0: unstable equilibrium

Let’s try to follow the trajectory of the particle shown with x0 > 0,   ˙ x (0)<0  and E = 0. 
We have 

�x = ±
k
m
x, � (4.32)

which is the equation of a straight line. By integrating, we have

dx
x

= −
k
mx0

0+

∫ dt,
0

τ

∫

⇒ ln
x0

0+| = −
k
m

τ.� (4.33)

This means it takes an infinite amount of time to reach the origin. Notice, however, that 
x(t) = 0  is still a (trivial) solution the equation of motion, 

˙ ̇ x −
k
m
x = 0.� (4.34)

This leads to the picture for E = 0 trajectories:
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      ˙ x (t)
     E=0

    x(t)

    E=0

I am suggesting that there is an isolated E = 0  solution at the origin, which can be reached 
only after an infinite amount of time in any continuous manner. I will symbolize this by 
drawing a circle around the limiting point of the motion. Thus, the equation of motion, 
(4.34), which is a linear second order equation, avoids the possibility of an intersection 
by making the time necessary to reach the intersection point infinite! Such points always 
correspond to unstable equilibrium positions.

Nonlinear second order systems can have intersections in ˙ x , x  phase space. Consider 
the potential (  k  > 0)

U(x) = −
1
2
k | x |3/2 .� (4.35)

It corresponds to the (highly nonlinear) second order differential equation,

m��x −
3
4
k x
x1/2 = 0.� (4.36)

For  E = 0 trajectories,

�x = ±
k
m

x 3/4 . � (4.37)

The situation looks like:
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x0   0
  
 
x 0      

         

x

x.

path (3)

path (4)

path (2)

path (1)

The time necessary to reach the origin on path (1) or (2) is now finite. Integrating (4.37) 
in the two cases gives

path (1):	 x = x01 / 4 −
k 
m

t
4

 

 
 

 

 
 

4

,� (4.38)

path (2):	 x = − x 0
1 / 4

−
k 
m

t
4

 

 
 

 

 
 

4

.� (4.39)

Setting x = 0  gives the time necessary to reach the origin,

path (1):	 τ0 = 4 x0
1/4 m

k









1/2

,� (4.40)

path (2):	 τ0 = 4 x0
1/4 m

k









1/2

.� (4.41)

Notice that at the origin on either path, we have

path (1):	 �x |t= τ0
= 0,� (4.42)

path (2): 	 �x |t= τ0
= 0. � (4.43)

Thus the two paths do touch at the origin, 0, which is now reached in a finite amount of 
time. Note that this does not say such equations are not deterministic. It simply means, 
mathematically speaking, that the solutions, given initial x ,   ˙ x  data are not unique. In fact, 
one can show that path (3) is the continuation of path (1) and path (4) is the continuation 
of path (2).

Let’s now examine the phase diagram for the plane pendulum. Looking back at the potential, 
U(φ), we find the qualitative picture: 
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   ˙ φ (t)
0: stable equilibrium

   E1
          separatrix

   E0
E2

  -π        0            π

φ(t)

   E1

Notice the periodicity of the phase diagram. Notice also that when the full range of φ  is allowed, this 
phase diagram has both the bound motion seen in the harmonic oscillator phase diagram (E = E2)  
as well as the unbound motion of the potential with the downward opening parabola (
E = E1). The trajectory which separates these two types of motion has E =  E0 and is 
called the separatrix.

Let’s again examine the trajectories for this special energy to see whether there is an intersection 
of trajectories at     φ = ±nπ, n = 0,1,2,3 …. Setting E0 = 2mg  in (4.19), we have

1
2
ml2�φ2 + 2mgl sin2 φ

2







 = 2mgl ,� (4.44)

⇒ �φ = ± 2 g
l
cos φ

2







.� (4.45)

Setting φ = π + δ  (δ << 1), we have

cos π + δ

2
 
 

 
 
˜ ~ − δ

2
,

and the equation of motion in the close vicinity to φ = π  is given by 

�δ �− ∓
g
l
δ.� (4.46)

This is the same type of equation of motion for the unstable system with 
  
U(x) = −

1
2
kx2 , 

Eq.(4.32). Thus, although the plane pendulum is nonlinear, in the vicinity of the point 
φ = nπ, the system behaves increasingly linearly. Thus, the picture near φ = π  is essentially 
the same as before, and the system with energy E0  takes an infinite amount of time to 
reach this point.
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The Logistic Difference Equation

The purpose of this Chapter is to introduce you to aspects of nonlinear systems. This is a 
vast subject and so we will only get a flavor of some of the new phenomenon and concepts 
which emerge. The best way to introduce this material is through a study of some properties 
of simple one-dimensional difference equations. These mappings are analogous to dynamical 
systems in ways we will discuss.

A one-dimensional difference equation mapping is given by 

xn + 1 = f(xn)� (4.47)

Let us consider the example (the “logistic map”)

xn + 1 = 1 - µxn
2

� (4.48)

for m in the open interval (0,2) and xn in the closed interval [-1,1]. A fixed point, x*, of 
such a mapping is a value of xn  such that xn + 1 = xn:

  x
∗ = 1 − µ x∗2 , 
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⇒ x∗ = −
1
2µ

+
1
2µ

1 + 4µ . � (4.49)

This looks like:

x*

1

 
2
3

0 µ1=.75    µ

However, a very interesting thing happens when μ is equal to or slightly larger than .75. We 
have a bifurcation in the fixed point diagram. The map after the first bifurcation looks like: 

 x*

 1

 
2
3   “period 2”

“period 1”

 0 .75  1.25   µ
   1.0

We encounter other bifurcations for larger values of µ  as indicated:

This process of bifurcation continues until at     µ∞
˜ ~ 1.401155… an infinite number of 

bifurcations occurs. This result is very surprising because we are seeing an infinite amount 
of structure from a simple quadratic mapping.
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The bifurcation seen at µ =.75  (where x* =
2
3

) is easily understood from the function 
we are evaluating, a graph of which is below.

 

Notice that there is a perpendicular crossing of the function and the 45�  line for this value of µ. It 
is in this situation that a bifurcation occurs. Some iterative lines, which use xn as an input and show 
xn +1 as an output, are shown in the above figure. Notice how they tend to spiral inward toward  
  x*, the fixed point. We will see in the context of a problem below that such a crossing 
becomes unstable if the magnitude of the slope of the line becomes greater than 1 at the 
fixed point. This is in fact what occurs for µ slightly in excess of .75. Then the crossing 
point between the function and the 45�  line becomes unstable and a stable square of iterative 
lines develops around this unstable point; see the below which is for µ =.80, for which 
  x* ≅  0.345  and 0.905.
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There are certain universal features of quadratic mappings, one of which is the fact that 
(discovered by M. Feigenbaum)

  
µn ˜ − µ∞ −

A
δn

,� (4.50)

for n>>1 where     δ ˜ − 4.669201609…  (called the Feigenbaum constant). One can show 
that this implies that

  
lim
n→ ∞

µn − µn −1

µn+ 1 − µn
= δ. � (4.51)

which says that the ratio of bifurcation intervals tends to a fixed limit, although the ratios 
themselves are shrinking to zero. The reason these things were not discovered previously is 
because computers were not available to “explore” this relation, and because nobody thought 
such interesting structure would emerge from such a simple mapping.

I do not mean to give you the impression that all is chaos for µ > µ∞  Within the range 
[µ∞ ,2] are also regions of order. For example, for m slightly in excess of 1.75 is a 
region of period 3. The structure of the fixed point diagram is both infinitely complex and 
astoundingly simple. The fixed point map is illustrated below.
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Fractals

An elementary example of a fractal is given by the “Cantor set of the middle third”, in 
which the middle third of a series of line segments is removed, as follows:

This is an example of a fractal set of zero length.

As another example of a fractal, consider the complex generalization of the quadratic mapping 
considered above, the so-called “Mandelbrot set”. It is generated by simply iterating

 zn +1 = zn2 + c , c ≤ 2,� (4.52)

in the complex plane. For each value c, one chooses z0 = 0  and iterates the result. We 
then implement the algorithm:

iteration  test result 

  
k

zk2 + c > 2 stop

zk2 + c < 2 continue
 

If, after N iterations we still have zk2 + c < 2, one colors the point black; if not, some 
other color denoting how many iterations have been done. The surface of this infinitely 
structured object is the Mandelbrot set; it is a connected set. It is an example of a fractal 
which has infinite length! In the below picture the real axis is horizontal and the imaginary 
axis is vertical.
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Since the Mandelbrot set is generated from a difference equation which is just a generalization 
to complex numbers of the logistic equation, we might expect that they would be closely 
related. They are related in the following way. As one cuts through the Mandelbrot diagram 
along the real axis (going from right to left in the above diagram), one is looking at stable 
numbers on the real axis. The big bulb above corresponds to the stable single period line of 
fixed points in the bifurcation diagram. The first bifurcation corresponds to the appearance 
of the smaller blub to the left, the next bifurcation the the next smaller bulb and so forth. 
The point of infinite number of bifurcations corresponds to the point in the above axis 
where an infinite number of bulbs are stacked. Thus going along the real axis from right to 
left in the Mandelbrot set there is a one to one correspondence with the bifurcation cascade 
seen in the logistic equation fixed point map going from left to right. The Mandelbrot set 
has been called the most beautiful and complicated object in mathematics – one gets a 
glimpse of the infinite on a sheet of paper!

Chaos in Physical Systems

Why talk about fractals and maps in a course on particle dynamics? Because the phase 
space of driven, dissipative systems can be thought of as an iterative mapping, like our 
difference equation, and the trajectories are often fractal objects. Let us consider a system 
of first order equations,

    
dx1
dt

= v1(
� x ), dx2

dt
= v2(

� x ),
dx3
dt

= v3(
� x ),

or

d� x 
dt

=
� v (� x ).� (4.53)
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Because these equations are the equations for particle motion, usually the x1, x2, etc. 
turn out to be generalized velocities or coordinates. The first such system which displayed 
chaotic motion was studied by Edward Lorenz, a meterologist, with an early computer 
called a “Royal McBee.” His system of equations were

  
dx
dt

= δ y − x( ) ,  

  
dy
dt

= rx − y − xz , 

  
dz
dt

= xy − bz. 

Here δ, r  and b  are constants and obviously x1=x x2=y and x3=z. The trajectories 
in the three dimensional phase space of this system result in chaotic motion and possess a 
fractal structure.
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The damped driven oscillator may be characterized as in (4.53). One may write

dx
dt'

= y,

dy
dt'

= −cy − sin x + F cos z,(c > 0)

dz
dt'

= ω.(a constant)













� (4.54)

The physical interpretation of each term is

z:	 driving phase

x:	 angular position of pendulum

y:	 dimensionless angular velocity

and the above represents:

 

 
        external torque Nd 
      applied with phase z. 
 
 
   x 
       l 
     
 
 
 
 
       m 

	
  The above first order equations are in convenient, dimensionless form, with c, F, t’ 
and  ωd related to m, �, b  (damping constant), Nd  (external torque constant) and ωd  
(driving frequency) by 

F =
Nd

mg
, 

     
ω =

ωd

ω0
.

c =
b
mg 0

2 =
g

t' = 0t,

The three equations, (4.54), are equivalent to the single second order differential equation,

m�2��x = −b �x − mg� sin x + Nd cos ωdt + ϕ( ),� (4.55)

which is just Newton’s law for the damped, driven pendulum.
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One necessary condition for chaotic behavior is that the equations in the above first order 
form contain a nonlinear term coupling one variable to another. This is seen in the -sin 
x  term in the second equation. Surprisingly, a system of three such dynamical equations 
is already sufficient to display chaotic behavior.

The true phase space of the damped, driven pendulum is three-dimensional because of the 
three first order equations above. Physically, this is because it is no longer enough to give 
x(t) and  to specify the initial state of the system. It is necessary also to specify 
the phase of the driving term, which is given by (ωdt+ φ)  in (4.55). However, all the 
trajectories in this three-dimensional space may be projected back on the old ,&x(t), x(t) 
plane. This projected version of phase space can display many types of motion for a given 
set of parameters  and a given set of initial conditions. Analytic methods are 
of limited usefulness here and computer simulations must be used in order to gain insight 
into the types of motions that occur. 

There are motions where the pendulum moves in a completely periodic manner, although 
the period of motion may not be the same as the period of the driving force. These are 
called closed trajectories, an example of which is the harmonic oscillator phase space above. 
There are also motions which display no periodicity at all, although there may be submotions 
which continue to reoccur. This is chaotic motion. After initial transients die out the damped 
pendulum evolves to a steady state trajectory called an attractor. The simplest example of 
an attractor is the point of stable equilibrium in the two-dimensional phase space of the 
damped, free pendulum. An attactor can also be a closed trajectory.

For chaotic motion in the driven, damped pendulum, the projected &x(t), x(t),  phase 
space diagram is usually shown as a filled-in portion of phase space. Not all velocities, 
, are available to such a system because the system is dissipative (has a positive damping 
constant.) Of course, it can never reach every point of projected phase space in a finite 
amount of time. Actually, what one sees after a simulation is done is a tight, packed set 
of intersecting and non-intersecting trajectories. (These lines do not intersect in the full 
three-dimensional phase space.) The infinitely structured geometrical object that the system 
tends toward in the steady state when chaos is involved is called a strange attractor, and 
is another example of a fractal.

Because of the intricacy of the projected phase space plots and because the full three-
dimensional phase space is hard to show, one needs tools to help uncover structures present 
in the phase space. One such tool is called a Poincairé section. Such a plot shows an overlap 
of a large number of “snapshots” of the , x(t) state of the system. If we agree to take 

these snapshots at a period τd =
2π
ω

, where w is the driving angular frequency, we can 

see at once whether the system is periodic or chaotic. 
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The simplest thing one can observe is a finite number of points. This immediately implies 
that the motion is a closed, periodic trajectory. Of course, the location of the points in the 
Poincairé section is a function of the phase, φ, of the projection, so this does not have any 
particular meaning. If τ  points appear, the resulting motion could have been completed 

in a period, t, given by nτd,
n
2
τd,

n
3
τd, ..., where 

  
n
2
, n

3
,... itself is not an 

integer. If in fact the closed trajectory has τ = 2 τd , this is called “period 2 motion”. The 

transition from period one to period two motion as the parameters of the pendulum are 
changed is called period doubling and is the analog of the bifurcations seen in the fixed-point 
difference equation mapping. A Poincairé section can also be regarded as a mapping, using 
particle dynamics instead of a quadratic formula, from a state nτd,

n
2
τd,

n
3
τd, ..., to n + 1 The trajectories 

that the system settles down to in the steady state for the pendulum are the analog of the 
fixed points, x*, in the difference equation. Such mappings, we have learned, can involve 
chaotic results and fractals in either context.

Since chaotic dynamical systems are still deterministic, true bifurcations in phase space do 
not exist. However, this bit of wisdom is essentially useless for true chaotic motion since 
neighboring trajectories, no matter how close to begin with, eventually diverge exponentially. 
(More on how to characterize this divergence in a moment.) However as I said above, 
bifurcations do exist in their parameter space descriptions. For example, if one measures 

 (angular velocity) as a function of the driving torque, F , on a Poincairé map, one sees 
bifucations appear as F  is increased. These bifucations will be present either because a change 
in the initial conditions produces a new steady state or because a true period doubling 
trajectory has evolved. Eventually the period doublings merge into chaos, just as in the 
one-dimensional mappings. This period doubling route to chaos is again characterized by 
δ, the Feigenbaum number and has been seen in physical systems.

Dissipative Phase Space

How can chaos in dynamical systems be identified? Let us first try to understand the 
evolution of dissipative systems in phase space. Consider a simple case of two-dimensional 
particle trajectories in phase space as shown below:

x2

     
� 
V x1,x2( )

   ˆ n 

“volume,”  V(0)

 x1
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Each particle has been assigned a “velocity”, 
� v (x1,x2) =

d� x 
dt

, which is a function of 

position. The general formula for the instantaneous flux out of the (static) volume V(0) is

f = ds ρ(x1,x2)
�v • n̂

S
�∫ ,� (4.56)

where the closed “surface”, S, is simply a rectangular perimeter. We have introduced in 
(4.56) a position dependent density of points, ρ(x1,x2). Setting the density of points to 
one per unit volume, ρ(x1,x2)=1 and using Gauss’ law in two dimensions we obtain, 

  
f = dV

� 
∇ •

� v .
v
∫  � (4.57)

The result (4.57) applies to an arbitrary number of dimensions if we generalize the meanings 
of the surface "S" and the volume “V”  in (4.56) and (4.57). We will allow a dynamic volume, 
V(t), to expand or contact to contain the same number of particles. The instantaneous 
change in this volume is just given by

  δV(t) = δt f(t), � (4.58)

⇒
dV
dt

= dV
� 
∇ •

� v .
V
∫  � (4.59)

For example, for the system (4.54), and using dimensionless time, t’

 
    
� v = x2,−cx2 − sin x1 + F cos x3,ω( ) , 

     ⇒
� 
∇ •

� v = −c , 

 
  
⇒

dV
dt'

= −cV(t'), 

      ⇒ V(t') = V(0)e−ct'.        � (4.60)

From this we learn that the phase space is exponentially contracting (c > 0) This is a 
general characteristic of dissipative systems.     

� 
∇ •

� v = 0 characterizes a nondissipative 
system whose phase space volume can stretch and change, but whose volume is fixed. One 
can show that systems which possess a Hamiltonian (Ch.7) behave in this manner; this is 
called Liouville’s theorem.
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Lyapunov Exponents

Even though the phase space volume is contracting for these systems, chaos emerges as a 
stretching of the phase space volume so that nearby phase space points eventually exponentially 
diverge. We can characterize the divergence of trajectories in a phase space plots by the 
Lyapunov exponents. They are related to the previous phase space considerations via the 
expression (εi  is initial separation in the ith direction between   xi

' and xi at )

lim
t→∞

xi
' t( ) − xi t( ) = εi eλit 	
   � (4.61)

Since the overall volume is given by (imagine a rectangle)

lim
t→∞

V(t) ~ xi
' t( ) − xi t( )

i
∏ 	
   � (4.62)

(
i
∏ is the product symbol over i=1,2,3) we find

lim
t→∞

V(t) ~ εie
λit

i
∏ = ( εi

i
∏ )

V(0)
����

e
λit

i
∑

,� (4.63)

and the total volume grows with an exponent which is a sum of the individual Lyapunov 
exponents times the time. Thus, for the damped oscillator,

λi = −c
i =1

3

∑ , � (4.64)

and the sum of the exponents is just the negative of the damping constant. Although the 
sum of exponents is assured negative, only one exponent has to be positive to indicate an 
exponential stretching of the phase space volume, V(t). Thus, all of the exponents must be 
examined before a possible chaotic motion can be identified. (The calculation of the individual 
Lyapunov exponents for this system is much more difficult than getting the sum as above.)

The Lyapunov exponent for one-dimensional mappings can be numerically calculated. For 
small enough ε  one assumes

 
f x0 + ε( ) − f x0( ) ˜ − ε

df
dx

|x0 , � (4.65)

where xn+1 = f(xn) Next, one has

f(2) x0 + ε( ) − f(2) x0( ) �− ε
df(2)

dx
|x0 .� (4.66)

where f(2)(x0)  is called the second iterate of f(2) x0( ) ≡ f f(x0)( )  .,
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f(2) x0( ) ≡ f f(x0)( )  .� (4.67)

Let us call   x1 = f(x0), x2 = f(x1) = f(f(x0), etc. Taking the derivative of f(2)(x0)  
now gives by the chain rule,

⇒
df(2)

dx
|x0=

df(2)

dx
|f(x0)

df
dx

|x0=
df
dx

|x1
df
dx

|x0 . � (4.68)

After n iterations,

f(n) x + ε( ) − f(n) x( ) = ε
df
dx

|xn−1
df
dx

|xn−2 … df
dx

|x0 .� (4.69)

The definition of the Lyapunov exponent is essentially the same as before, with the iterate 
number, n, playing the role of time (x0' ≡ x0 + ε),

lim
n→∞

xn
' − xn

ε
= lim

n→∞

f(n) x0 + ε( ) − f(n) x0( )
ε

= enλ ,� (4.70)

⇒ λ = lim
n→ ∞

1
n

ln df
dx

|xn −1
…

df
dx

|x0

 
  

 
  
,
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= lim
n→∞

1
n

ln
i=0

n−1

∑ df
dx

|xi








.� (4.71)

This can be numerically calculated as a function of the parameters of the mapping and 
chaotic regions can be identified.

If one of the Lyapunov exponents is positive, this is a necessary but not sufficient condition 
for dynamical chaos to emerge. For example, if we (somewhat unrealistically) changed the 
damping constant to be negative for the harmonic oscillator, we would have a system which 
is exponentially sensitive to initial conditions, but which is linear and so is not chaotic. On 
the other hand, even though the sum of the Lyapunov exponents for the damped pendulum 
is negative, only one has to be positive for this nonlinear system to exhibit chaotic motion. 
It is a combination of the nonlinear behavior and the exponential growth in at least one 
direction which are characteristic of dynamical chaos.

The Intermittent Transition to Chaos

We have learned about one path or way of transitioning from simple, predictable periodic 
motion to chaotic motion. It was called period doubling and is illustrated in the logistic 
fixed point map above. However, there are other ways systems can transition from simple 
periodic motions to chaotic ones. A system may appear to be periodic or well behaved for 
a long time and then diplay “bursts” of nonperiodic behavior. As one changes the system 
parameters closer to the chaotic regime, these bursts take place more frequently until fully 
chaotic behavior results.

This intermittent transition to chaos can also be understood from our one dimensional 
logistic map. In the above fixed point map near the region of the large period 3 window 
for m slightly above 1.75, the system is in a three period, that is, after a few iterations it 
settles down is a stable system with three fixed points. 

Download free eBooks at bookboon.com



MODERN INTRODUCTORY MECHANICS

169

Nonlinear Oscillations

However, notice the wall of chaos to the left of this periodic region. When we consider 
values just slightly inside this chaotic region, we almost have a three period. That is, the 
system behaves for a long time as if it is in a three period, but with occasional bursts of 
chaos. The further we imbed ourselves in this chaotic region, the less we see of the three 
period and the more chaos we see. How can this sort of behavior be understood?

Amazingly, this behavior may be understood very simply. The function f(xn) = 1 − µxn2   
with µ=1.75  looks like the following.

However, the third iterate of this function,   f
(3)(xn) = f(f(f(xn))), looks like the following:
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Notice the four values in x where f(3)(xn) touches the 45� line. One of these is unstable 
(which one?); the other three are fixed points of the mapping, x*, and correspond to the 
three lines of bifurcation in the nonchaotic window. Let us zoom in on the middle these 
fixed point regions near x=0  when µ  has a value of 1.7495, slightly into the the chaotic 
region. Notice that a “tangency channel” has developed where the function is close to, but 
not actually touching the 45� line.

Also shown in this figure are some iterates of f(3)(xn) going into the tangency channel. 
Notice the the movement of the iterates through the channel becomes quite slow in the 
bottleneck part of the channel. This corresponds to the situation of having a nearly periodic 
three cycle system. However, eventually the iterates tunnel through the channel, reaching 
the chaotic region outside, corresponding to the “bursts” of chaotic motion. Put another 
way, the closer we are to true tangency (at µ=1.75), the narrower the channel and the 
more time the system displays regular, predictable motion. The bursts occur more often the 
further we go into in the chaotic region because the tangency channel is wider.

The number of iterations that the system stays in the channel, displaying quasi-periodic 
motion, can be understood from the above difference equation. In the vicinity of the 
tangency, the third iterate,  , may be expanded in a Taylor series to read

 f
(3)(xn) = xn + ac(xn − x*)2 + bc(µc − µ),� (4.72)

where µc = 1.75 and x*  is one of the three fixed point values. After the transformation 

  yn = (xn − x*)/ bc, the recusion relation   xn +3 = f(3)(xn)  in the vicinity of the 
channel may be written
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  yn +3 − yn = ayn2 + ε ,� (4.73)

where   a = acbc  and   ε = µc − µ > 0 . When the number of steps in the channel is 
large, (4.73) may be approximated by a differential equation,

  
dy
dn

= ay2 + ε. � (4.74)

This differential equation may be solved by separation of variables for n:

n(yout,yin) =
1
aε

tan−1 yout
a
ε









 − tan−1 yin

a
ε






















,� (4.75)

where   yin  and   yout, yin are the entrance and exit values of    yin in the channel. Notice that for 

  yout, yin  fixed,   n(yout,yin) goes to infinity like 1
ε
 as   ε → 0.

This describes the transition to chaos that one is seeing in the logistic map near µ=1.75  
and many other regions. The transition to chaos in a period doubling manner and in an 
intermittent manner are very closely related. We have seen that period doubling occurs when 
there is a perpendicular crossing of the 

    45
  line. Intermittent chaos emerges when instead 

the crossing is a tangent to the line. In another sense they are also related. Notice in the 
above graph of the 3 period we have been discussing, that the other side of the periodic 
window displays a period doubling cascade to chaos. Such windows always displays these 
two, complimentary, transition routes.

CHAPTER 4 PROBLEMS

1.	Verify that the change of variables

	 x =
x'− c
b − c

,

converts Eq.(4.8) into (4.9).

2.	By making the substitution x = sinθ  in (4.27), show that the elliptic integral 
F(1,k) = 

  
π

2
1 +

1
4
k2 +

9
64

k4 + ... 
 

 
 , may be approximated by,

	 F(1,k) = 
  
π

2
1 +

1
4
k2 +

9
64

k4 + ... 
 

 
 ,

for k<<1.

3.	A free (not driven) underdamped oscillator is released or set in motion under the 
following initial conditions:

a)	 x(0) = x 0 , �x(0) = 0    (x0 > 0)
b)	x(0) = 0 , �x(0) = �x0    ( �x0 >0).
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Sketch phase diagrams of the resulting motion in the two cases. Make sure your phase 
trajectories have arrows.

4.	 a) The potential function (A,λ >0) 

	 U(x) = A(x4-λ2x2),

looks like

U(x)

E

E

E

E

1

2

30

4

= 0x

x

Sketch a phase space diagram showing qualitative trajectories for energies E1,2,3,4.  
(E3=0.)(These trajectories must have a direction.) Identify points of stable and unstable 
equilbrium in your sketch.

5.	A one-dimensional potential has the form, U(x) = U0e-ax2 

U(x)

U

x

0

E

E

E

1

2

3

x0O

a)	 Sketch a qualitative phase space diagram corresponding to system total 
energies E1, E2  and E3  (E2 = U0.)

b)	Starting from x=x0 with total energy E = U0, find the time necessary to 
reach the origin, x=0. Is it finite or infinite?
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6.	A one-dimensional potential energy, U(x) is given by U(x) = -K|x|n, where 
|x| is the absolute value of x, K  is a positive constant and n > 1 For what 
values of "n" does a particle, starting at x0=/ 0 take a finite time to reach the 

top of the potential hill when the total energy, E = 
1
2  mx

.
 2  is zero?

7.	The steady-state response of a damped oscillator to a periodic force,

	 mx..  + bx .  + kx = F0 cos(ωt),

is

	 x(t) = D(ω)cos(ωt - δ),

where (2β = 
  
b
m
,   ω0

2  = 
  
k
m
, A0 = 

F0
m   )

	 D(ω) = A0

(ω0
2 − ω2)2 + (2ωβ)2

, tan δ = 
2βω

ω0
2 - ω2  .

a)	 Show that the trajectories in (projected)   ̇ x , x  phase space are ellipses.
b)	Show that the driven oscillation total energy is constant in time if ω=ω0.
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c)	 We know that the (unprojected) phase space of the same oscillator when it 
is free (i.e., undamped, nondriven) is also an ellipse. Show that these two 
ellipses coincide only if   ω2=  ω0

2  and their total energies are equal. 

8.	Given the one-dimensional mapping (all xn >_  0),

	 xn+1 = xn ,

a)	 Find all of the fixed points (there are two) and show that one is stable, the 
other is not.

b)	Calculate the unique Lyapunov exponent for this mapping.

9.	We investigated the mapping (µ  ∈(0,2),x ∈  [-1,1])

	 xn+1 = 1 - µxn2 

for fixed points. We found period doubling at µ =.75,1.25,.... Show that this 
equation is equivalent to the mapping

	 yn+1 = αyn(1 - yn).

for α ∈  (0,4) and y ∈  [0,1]. At what value of α  does the first period doubling 
occur?

10.	When n becomes large, the period doubling values, µn, for the mapping in 
prob.9 obey

	 µn ≈ µ∞ - 
A
δn
  ,

where µ∞, δ  and A  are constants. From this show that 

	 lim
n→∞

µn − µn−1

µn+1 − µn

= δ.

This says that the ratio of intervals tends to a fixed limit (although the intervals themselves 
are shrinking to zero).

11.	a)  A real linear mapping is given by

	 xn+1 = βxn + c,
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where |β|< 1 and c is a real constant. Show that the single fixed point of the mapping 

is given by x* = c
1 − β

. What happens for |β| > 1?

b)	Explain the relevance of the result in (a) for a linear mapping to the idea of 
bifurcations seen in nonlinear mappings.

12.	As shown in problem 11, the real linear finite difference equation,

	 xn+1 = βxn + c,

with |β|< 1 and c  a constant has a single (stable) fixed point at x* = c
1 − β

. Let’s 

say we decide to find x*  by brute force iteration. Picking an initial value x0, we iterate 
the difference equation until we obtain |xN-x*|< ε , where e is a small positive number. 
Show that the number of iterations needed to achive this accuracy is given by

	 N = |ln e
| x0 − x* |
ln | b |

|,

showing convergence is worst for |β|– 1.

13.	Consider the non-linear difference equation given by

	 xn+1 = F(xn) = α xn(1-xn)2,

for 0<  xn <1 and α >1. It looks like:

                 x           
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a)	 Find the location of the fixed points of the mapping for   0 ≤ xn ≤ 1.
b)	At what value of a does the first “period doubling” bifurcation occur?

14.	Consider the “tent map” given by (0<α <1)

	
xn+1 = 2αxn, 0<xn<1/2, 

xn+1 = 2α(1−xn), 1/2<xn<1.

a)	 Find the values of the fixed points of this map. (There are two.)
b)	Examine each point in (a) for stabilty. For what values of a are the fixed 

points stable? [Hint: Think about slope.]

15.	a)  Show that the transformation,

	 yn = 
2
π  sin

-1( xn ),

in xn+1 = a xn(1-xn) for a=4 converts it into a tent map,

	
yn+1 = 2yn, 0<yn<1/2, 

yn+1 = 2(1−yn), 0<yn<1/2.

b)	Therefore calculate the Lyupanov exponent of the above transformation for 
a=4. (Ans: ℓn(2).)

16.	Consider the three coupled first-order differential equations that Edward Lorenz 
considered (same as in this text),

	

dx1
dt    = δ(x2- x1), 

 
dx2
dt    = rx1 - x2 - x1x3,

 
dx3
dt    = x1x2 - bx3, 

where  are constants. The rate at which a volume of the configuration 
space changes is given by 

	 V(t) = V(0)eλt.
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Find λ. Under what conditions is this system dissipative (does the configuration 
space shrink in time)? Given the values δ=10, r=-2, b=-10, is the system 
dissipative? Can you tell if the system is chaotic? Answer the same two questions for 
δ=10, r=-2, b=-12.

17.	Show that when the three equations in (4.54) are combined, they give the single 
equation, (4.55).

18.	Evaluate the Lyapunov exponent of the linear mapping,

	

Show that it is negative only for |β|< 1.

19.	By numerical calculation, find the values of the three stable fixed points of the 
mapping f(3)(xn) = f(f(f(xn))), f(xn) = 1 − µxn2 , for µ=1.76.

20.	Show that when Eq.(4.72) and the transformation yn = (xn − x*)/ bc  are 
used in the recusion relation   xn +3 = f(3)(xn), the recursion relation in the 
vicinity of a tangency channel may be written

	   yn +3 − yn = ayn2 + ε ..

21.	(a)  �Use the relation Eq.(4.71) and the result (4.73) to show that the Lyapunov 
exponent for a single pass through the tangency channel is approximately 
given by

	
λ(yout,yin) ≅

1
n(yout,yin)

dy ln(1 + 2ay)
ay2 + εyin

yout

∫ .

[Hint: Make the same sort of approximation in going from a sum to an integral that 
we did in the text in solving (4.74).]

b)	Make the approximation that 2ay is small inside the integral above and do 
the integral. From this predict the behavior of λ(yout,yin) on ε  as   ε → 0 
(  yin ,   yout , held constant).
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5	 GRAVITATION

NEWTON’S LAW OF GRAVITATION

Newton’s law of gravitation for point masses is (force on m due to M):

    
� 
F = −G mM

r2
ˆ e r  .� (5.1)

Picture: (M  usually more massive than m)

M m

êr
�
F

r
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Obviously an idealization. (Masses are not points. Also, forces are not transmitted 
instantaneously.) More general form for a mass distribution:

d
�
F = −Gm

ρ
�r'( )

r"2
ê ′′r dv' ,� (5.2)

⇒
�
F(�r) = −Gm

ρ
�r'( )

r"2∫ ê ′′r dv'.� (5.3)

where

�
′′r =

�r −
�
′r   (can not be taken outside the integral in general)

Even this is an idealization for, say, two planets:

dM → ρ1(
�
′r)d ′v , dm → ρ2(

�r)dv , 

�
F = −G dv'dv

ρ1
�r'( ) ρ2

�r( )
r"2

ê ′′r∫∫ .� (5.4)
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Gravitational Potential

Things are beginning to get complicated. We need some simplifications. First simplification: 
the idea of a gravitational potential. Go back to point masses case. Notice

    

� 
∇ −G Mm

r
 
 

 
 = −GMm

� 
∇ 

1
r
 
 
 
 ,

∂
∂x1

1
x1
2 + x2

2 + x3
2











 = −

1
2

2x1
x1
2 + x2

2 + x3
2( )

3/2 = −
x1
r3
.

Likewise for x2, x3.

    
⇒

� 
∇ −

GMm
r

 
 

 
 =

GMm
r2

ˆ e r = −
� 
F . � (5.5)

Therefore, with 
  
U(r) ≡ −G Mm

r
  (makes U=0  at r=∞), we have 

    
� 
F = −

� 
∇ U .� (5.6)

Define 
  
Φ ≡

U
m
  and call it the “gravitational potential”. It represents the work/mass to 

move a test mass from one point to another. In the case of M being an extended mass, it 
is easy to see that 

U(�r) = −Gm
ρ
�r'( )
r"

dv',∫ � (5.7)

⇒  Φ(�r) = −G
ρ
�r'( )
r"

dv'.∫ �  (5.8)

Verification: 

−
�
∇U = Gm ρ

�r'( )
�
∇

1
�r'− �r

dv'∫ .

We have

∂
∂x1

1

x1
' − x1( )

2
+ x2

' − x2( )
2

+ x3
' − x3( )

2

















=
x1
' − x1( )
r"3

,

⇒ −
�
∇U = Gm dv'ρ �r'( )∫

�r'− �r( )
r"3

− ê ′′r
r"2

��� ��
.
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The point here is that Φ  is much simpler to calculate than 
� 
F . One usually defines 

    
� g =

� 
F 
m

⇒
� g = −

� 
∇ Φ .� (5.9)

Near the Earth’s surface:

  
� g ˜ −  980 cm/sec2 	 direction: “downward”

Modifications for Extended Objects

We can recover the usual form of gravitational potential energy near the Earth’s surface, with 
the help of a result we will prove momentarily. The result we need is that for a spherical 
mass distribution

Φ = −G
ρ r'( )
r"

dv' = −
GM
R
, U = −

GMm
R









∫  � (5.10)

where R is the distance to the center of the sphere. Pictorially,

        ρ(r’) Φ(R)  M     Φ(R)
 =

   R       R
a

M

Then we have (R = a + h , h << a)

1
R

=
1

a + h
=

1

a 1 +
h
a

 
 

 
 

˜ − 
1
a

1 −
h
a

 
 

 
 

⇒ U �− −
GMm
a

1 −
h
a









 = −

GMm
a

const.
���

+ mgh

g ≡
GM
a2

= 980 cm / sec2( )� 5.11)

     ↑(assuming a perfectly spherical Earth)

Let’s now prove the result that the potential outside a spherically symmetric distribution 
of matter is independent of the size of the distribution and acts as if all the mass were 
concentrated at the sphere’s center. (This is the problem which spurred Newton to the 
creation of calculus. Note that �r-> 

�
R  here.)
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194 

Newton’s Law of �ravitation

Let’s now prove the result that the potential outside a spherically symmetric distribution of matter is 
independent of the size of the distribution and acts as if all the mass were concentrated at the sphere’s 
center. (This is the problem which spurred Newton to the creation of calculus. Note that 


r-> 


R  here.)

 (5.12)

 (5.13)

Now 


R = 

r'+ 
r", (5.14)

 (5.15)

 (5.16)

In the later form, the θ integral is a perfect differential. We have

 
  
Φ R( ) = −2πG

r'dr'
2R

0

a

∫ 2 r'2 + R2 − 2Rr'cos θ 0
π  (5.17)

Notice that the above now involves absolute values

  
Φ R( ) = −

2πG
R

dr'r'ρ r'( ) r'+R − R − r'( ).
0

a

∫  (5.18)

If the point P is outside the mass distribution, we have   R − r' = R − r', and the above becomes

  
Φ R( ) = −

4πG
R

dr'r'2 ρ r'( )
0

a

∫ . (5.19)

Φ R( ) = −G dv'
ρ r'( )
r"

,(dv' = r'2 sin θ dθ dϕ dr')∫ � (5.12)

⇒ Φ R( ) = −2πG dr'ρ r'( ) r'2
0

a

∫ sin θ
r"

dθ.
0

π

∫ � (5.13)

Now 

�
R =

�r'+ �r",� (5.14)

⇒ r"2 = r'2+ R2 − 2Rr'cos θ,� (5.15)

⇒ Φ R( ) = −2πG dr'
ρ r'( ) r'2

2r'R0

a

∫ 2r'R sin θdθ
r'2+ R2 − 2Rr'cos θ0

π

∫ .� (5.16)

In the later form, the θ  integral is a perfect differential. We have

  
Φ R( ) = −2πG r'dr'

2R0

a

∫ 2 r'2 + R2 − 2Rr'cos θ 0
π  � (5.17)

Notice that the above now involves absolute values

Φ R( ) = −
2πG
R

dr'r'ρ r'( ) r'+R − R − r'( ).
0

a

∫ � (5.18)

If the point P  is outside the mass distribution, we have R − r' = R − r', and the 
above becomes

  
Φ R( ) = −

4πG
R

dr'r'2 ρ r'( )
0

a

∫ . � (5.19)

However, the total mass of the distribution is

  
M = 4π dr'r'2 ρ r'( ),

0

a

∫ � (5.20)
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so therefore

Φ R( ) = −
GM
R

,� (5.21)

and thus

    
� 
F = −

GMm
R2

ˆ e R , � (5.22)

which says that the distributed mass just behaves as if it were concentrated at a point at the 
sphere’s center. Interestingly, the same essential form holds even if the point P is located 
within the mass distribution, r’< R. Then, one may show (HW problem) that the same 
form holds,

    
� 
F = −

GM R( )m
R2

ˆ e R ,� (5.23)

where

M R( ) ≡ 4π dr'r'2 ρ r'( ) ,
0

R

∫ � (5.24)

is the total mass within a sphere of radius R. See the following picture of the situation.

  mass within sphere of
 radius R = M(R)

density: ρ(r’)

  0     
� 
R    P

a  total gravitational force
 due to mass outside R
 completely cancels

 

Eötvös Experiment on Composition Dependence of Gravitational Forces

I would now like to pick up the thread of the argument concerning the supposed equality 
between gravitational and inertial mass (Chapter 2). This equality can be tested. Let me 
describe the Eötvös experiment. (Follows J. Weber, “General Relativity and Gravity Waves”). 
This experiment was done in 1905  and established the equivalence of these two quantities 
for specific materials, to about one part in 100 million.

Here is the basic idea of a torsion balance:
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� 
F 

      
−

� 
b 
2          

� 
b 
2 (Also fictional

 “forces”,     
� 
I 1 ,
� 
I 2 )

    
� 
G 2            

� 
G 1

We will define the ratio of gravitational to inertial mass to be

α1,2 ≡
M1,2

m1,2
. 

Origin of “fictional” forces is the spinning Earth:
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Apply to the Earth:

Net torque on torsion balance:

    
� 
T =

� 
b 
2

×
� 
G 1 +

� 
I 1( ) −

� 
b 
2

×
� 
G 2 +

� 
I 2( ),� (5.25)

    
� 
F =

� 
G 1 +

� 
G 2 +

� 
I 1 +

� 
I 2  ,  (along wire)	, (along wire)� (5.26)

T ≡

� 
F •
� 
T 
� 
F 

, (crucial thin+g to calculate)

    
⇒ T =

� G 1 +
� G 2 +

� I 1 +
� I 2( ) •

� 
b 
2

×
� G 1 +

� I 1( ) −
� 
b 
2
×
� G 2 +

� I 2( ) 

  
 

  � 
F 

,

� (5.27)

The second term above just doubles the result from the first. We have the reduction:

    
� 
G 1 +

� 
I 1( ) ×

� 
G 2 +

� 
I 2( )

  = −g M1
ˆ e r + m1ω2R cos φˆ e m( ) × −g M2

ˆ e r + m2ω
2R cos φˆ e m( ) ,
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  = −g ω2R cos φ M1m2 − M2m1( ) ˆ e r × ˆ e m( ).� (5.28)

Putting the pieces together yields the component of torque causing a rotation,

    
⇒ T11 =

−g ω2R cos φ m1m2 α1 − α2( )
� 
b • ˆ e r × ˆ e m( )

� 
F 

.� (5.29)

Since we are working only to first order in   α1 − α2( ),, we may use

    
� 
F ˜ ~ g M1 + M2( ),� (5.30)

  

m1m2

M1 + M2
˜ − µ,�  (5.31)

yielding finally

T11 = -µω2R cos φ (α1-α2) 
�
b.(êr × êm ),� (5.32)

where 
�
b.(êr × êm ) is a max in E-W  direction.

Description of the actual measurement:

The torsion balance is brought to equilibrium by turning it until it points in an E - W  
direction. One can not tell yet if there is a nonzero component of torque, T11, since it is 
in equilibrium. Now turn the apparatus 180o reversing the sense of b. If   α1 ≠ α2  there 
will be a torque which will rotate the rod relative to the frame which supports the balance 
by an angle twice the (unobserved) initial deflection. See the diagram below.

                
 
position w / o T11          E          actual

  T11

(Case if α1 > α2)
looking down
on apparatus:

actual
       

        
W

  T11

reversed position

Best to do the expt. at φ ~ 45o  since (with 
�
b  oriented E - W )
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Later experiments: Dicke, Roll, Krotkov established equivalence between gravitational and 
inertial masses, again for specific materials, to about one part in 100,000 million (1 in 
10–11!!! See the October ’99 Physics Today article from Clifford Will for more updated 
information on gravitational composition dependence experiments. In the literature, the 
postulate that there is no composition dependence to gravitational forces is called the “weak 
equivalence principle.”

CHAPTER 5 PROBLEMS

1.	Consider two point masses which are stationary in some inertial reference frame.

R 

x=0

M M1 2

a)	 Evaluate and sketch as a function of  (measured along the distance between 
the planets) the gravitational potential,  a test mass would experience.

b)	Find the value of x  (other than x =±∞ ) for which the test mass feels zero 
gravitational force. Is this point stable?

2.	Show, for a spherical mass distribution, that the gravitational force on a small 
test particle of mass m  located inside a planet of radius  and a distance  
from it’s center (a>R) that

	
    
� 
F = −

GM R( )m
R2

ˆ e R ,

where

	 M R( ) ≡ 4π dr'r'2 ρ r'( ) ,
0

R

∫

is the total mass within the sphere of radius R. See the following picture of the situation.
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  mass within sphere of
 radius R = M(R)

density: ρ(r’)

      
� 
R    m

a

3.	Find the force of gravity on a small spacecraft of mass m , distance x" from the 
middle of a long, straight space station (Babylon 5) of uniform density per unit 
length, ρ, and length L . Take your origin of coordinates, O, in the middle of 
the space station, as shown.

0 LL
22

m

x"- __

ρ
x+

 

4.	A small rock of mass m  is orbiting the Babylon 5 space station. It orbits in a 
plane perpendicular to the station, in a circle of radius  away from the space 
station’s midpoint. The station has a length  and a constant mass/length, ρ.

0 LL
22

m

- __ ρ

R

Find the period of the orbit, T, in terms of ,  and ρ. [Hint: Get the gravitational 
acceleration and set it equal to centripetal acceleration, v2

R  
. I have a table of integrals.]

5.	Scientific Superman digs a hole completely through planet Krypton (which has 
a spherically symmetric mass distribution) and measures the force of gravity as a 
function of the distance from Krypton’s center, R . He finds

	
�
F= - H(R)ê R, 
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where ê R  is the usual unit vector pointing away from the planet’s center. Show that this 
means Krypton’s mass density, ρ(R), is given by

	 ρ(R) = 
1

4πGm 
1
R2 

d
dR(R2 H(R))  .

[Hint: Remember that

	
�
F= - 

GM(R)m
R2  ê R,

where M(R) is the mass contained within a distance R from the planet’s center.]

6.	Scientific Superman finds that Krypton’s mass density, ρ, is a constant in R . He 
now drops an evil villain down the hole he dug through Krypton. Show that the 
motion of the evil villain through Krypton is simple harmonic. Find the villain’s 
period of motion in terms of the assumed constant ρ.

7.	Two tiny planets of equal mass, M , attract one another and move along the line 
connecting them (no rotational motion). They are initially stationary and located 
symmetrical distances x0  and -x0  from the origin, O , as shown.

O

M M

x-x0 0

+x

 

Show that the time necessary for the planets to crash into one another is given by

T2 = 
  

π2

2G M
(x0)3 . 

[Hint: I had to look up an integral. This result is actually a special case of what is known 
as Kepler’s third law of motion which says that the square of the period of motion is 
proportional to the cube of an orbit parameter.]
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6	 CALCULUS OF VARIATIONS
EULER-LAGRANGE EQUATION

In ordinary calculus, we are used to finding stationary values (max’s, min’s or saddle points) 
of functions f(x). We now consider the problem of finding a function to make an integral 
stationary.

Simplest form:

J = f y(x),y'(x);x[ ] dx
x1

x2

∫ .

dep. variable ↑  ↑    ↑ indep. variable 
      

  
dy
dx

 an indep. dep. variable 

Some examples of f(y,y’;x) are:

a)	   y 1 + y'2

b)	

  
1 + y'2

y
c)	

  
a(x)y’2 + b(x)y2

Just an in differential calculus, the vanishing of a first derivative is a necessary, but not 
sufficient condition for a max or min, so in the calculus of variations one speaks of 1st  or 
2nd  variations of J . Here we will only work with the first variation and rely on geometrical 
or physical reasoning to decide whether we have found a max, min or inflection point. The 
point of learning this is the next chapter, where it will help us formulate a new, more general, 
view of classical dynamics. This chapter, however, is largely mathematics and geometry. 

We will often need the following theorem in justifying statements in this Chapter:

If F(x) is a continuous real function for x1 ≤ x ≤ x2  and if 

  
dx η(x)F(x) = 0

x1

x2

∫  
� (6.2)

for all real, continuous, once-differentiable functions η(x) such that 

η(x1) = η(x2) = 0 , � (6.3)
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then F(x) vanishes identically.

I will not prove it, but here is an “heuristic”5 argument. 

 

  F(x)

              F(x)

choose η(x)

    x1
 x

    a    b   x2

In each region (say a ≤ x ≤ b  above) we have 
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dx η(x)F(x) > 0
a

b

∫ .� (6.4)

But we have that 

� (6.5)

The only way to reconcile (6.2), (6.4) and (6.5) is if F(x) =  0 everywhere in the interval 
x1 ≤ x ≤ x2.

We can now go ahead with the rest of the development of this chapter.

We will need to develop some formalism first. Consider the two paths shown, one of which 
is assumed to be the extremum path.

 

Page 27: The third to last link on the page. 
Page 57: Last link 
Page 78: C.3 
Page 228: 6.54 
Page 235: 6.78 
Page 245: Main image 
 

p.27: 

 
(    
 
A x    
 
B )1 = ε1jk

j,k
∑ AjBk  = e123A2B3 + e132A3B2 = (A2B3 - A3B2), 

 
p.57: 
 
mx =

F x, x,t( ). 
 
p.78: 
 

 
 
 
 
 

 
p.205: 
 
  y 
     y(x)+αη(x)≡ y(α,x) 
 
     y(x)  (extremum path) 
 
 
 
 
 
 
 
          x 

 
 
p.228: 
 

⇒
∂f
∂A

∂g
∂A
#

$
%

&

'
(
−1

A0,B0
| =

∂f
∂B

∂g
∂B
#

$
%

&

'
(
−1

A0,B0
| = −λ. 

 

y(α,x) is a neighboring or companion function.

y(α,x) ≡ y(x) +  αη(x); y’(α,x) = y’(x) + αη’(x).� (6.6)

α  is a continuous real parameter and η(x) is an arbitrary, once differentiable function for 
which η(x1) = η(x2) = 0. That is, we are keeping the end points fixed. We can then 
form the comparison integral (assuming y(x) is twice differentiable)

J(α) ≡ f y(α,x),y'(α,x);x[ ] dx
x1

x2

∫ ,� (6.7)

where J(0) is the extremum sought. The condition is then just

dJ(α)
dα α = 0| = 0.� (6.8)

Using the chain rule (I am using simplified notation), 
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dJ
dα α =0| ∂f

∂y
∂y
∂α

+
∂f
∂y'

∂y'
∂α

 

  
 

  

df
dα� � � � � � � � � � � 

dx ,
x1

x2

∫ � (6.9)

where, using the previous definitions

  

∂y
∂α

≡ η(x),
∂y'
∂α

=
dη
dx

≡ η'(x).

 

 
 

 
 
 � (6.10)

We will call objects like 
  
∂f
∂y

, ∂f
∂y' “functional derivatives” since we are taking derivatives 

with respect to (unknown) functions, not variables.

We have now

  

dJ
dα α =0| =

∂f
∂y

η(x) +
∂f
∂y'

η'(x)
 

  
 

  
dx

x1

x2

∫ .� (6.11)

Let us concentrate on the second term on the right hand side. By integration by parts,

  

∂f
∂y'

η' x( )dx =
x1

x2

∫
∂f
∂y'

η x( ) |
x1

x2
−

d
dx

∂f
∂y'
 

 
  

 
η x( )dx.

x1

x2

∫ � (6.12)

However, since η(x1,2) = 0 and assuming 
  
∂f
∂y'

 is nonsingular at x1,2 we have that the 

boundary term vanishes. Therefore, the stationary condition is 

∂f
∂y

−
d
dx

∂f
∂y'


















 η x( ) dx = 0.

x1

x2

∫ � (6.13)

From our initial theorem, we now conclude that 

∂f
∂y

−
d
dx

∂f
∂y'
 

 
  

 
= 0. � (6.14)

This is the Euler-Lagrange equation. It represents only a necessary condition for an extremum.
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Example 1 

Consider the problem of finding the shortest distance between two points in a plane.

y

   (x2,y2)

ds

  ds = dx2 + dy2

(x1,y1)

    x

Solution

The distance along an infinitesimal distance ds along a presumed path can be written 

  ds = dx2 + dy2 = ± 1 + y'2 dx.

We will choose the + sign to go along with the above picture where x2 > x1. The total 
length of the curve is 

L = ds
x1

x2

∫ = 1 + y'2

=f
� � � � � dx

x1

x2

∫ .

Notice 
∂f
∂y

= 0,, so the E-L eqn  is simply

d
dx

∂f
∂y'








 = 0,

or

  
∂f
∂y'

= C1 , 

where C1  is a constant. Therefore 

  
C1
2 =

y'2

1 + y'2
, 

  
⇒ y'=

± C1
1 − C12

≡ C2 . 
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This is just the equation of a straight line of slope C2

y = C2x + C3 ,

where C3  is another allowed constant. In order to find this specific line, set

y1 = C2x1 + C3 ,

y2 = C2x2 + C3 ,

⇒ y =
y2 − y1
x2 − x1

 

 
  

 
 x +

y1x2 − y2x1
x2 − x1

.

Of course, the extremum corresponds to a minimum since there is no maximum distance. 
The choice of y  as the dependent variable and x  as the independent one above was 
completely arbitrary.

In the above example, you may have noticed a slight indiscretion. I overlooked the possibility 
of certain paths in formulating the integral. Thus, consider the problem of finding the 
shortest path for the situation:

y
    (x1,y2)

ds

   (x1,y1)

  x
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Our formalism assumes that the stationary path is single-valued and can be written as 
y = y(x). We can not characterize any path in this case in such a manner. One’s first 
impulse is to simply reformulate the problem so that x = x(y). However, a more general 
solution to the problem is to consider parametric representations of the paths, x(t), y(t), 
where t is a parameter.5 We will consider such path representations later, which we will see 
involve characterizing x and y as dependent variables and t as the independent variable.

Integrated Form of Euler’s Equation

It often happens that 
  
∂f
∂x

= 0. In this case there is an integrated form of the E-L  equation 

that is easier to use. In applications to mechanics, this integrated form will yield the energy 
equation rather than Newton’s equations. Consider

d
dx

y' ∂f
∂y'









 = y " ∂f

∂y'
+ y' d

dx
∂f
∂y'








.� (6.15)

However, by the definition of the total derivative 

df
dx

=
∂f
∂x
0
�

+
∂f
∂y

y'+
∂f
∂y'

y". � (6.16)

Thus 

d
dx

y' ∂f
∂y'









 =

df
dx

+ y' −
∂f
∂y

+
d
dx

∂f
∂y'


















.� (6.17)

However, if the E-L eqns hold we have

d
dx

y' ∂f
∂y'









 =

df
dx

,

  
⇒ f − y' ∂f

∂y'
= const.� (6.18)

This yields a first order differential equation whereas the E-L equations give a second order 
form. The form of this equation when there is more than one dependent variable will be 
investigated in a HW problem.

Brachistochrone Problem

As an application of this, we consider a problem which originally gave rise to the calculus 
of variations, the brachistochrone. (Johann Bernoulli posed it in 1696; it was solved by 
Newton within 12 hours of his receiving it!)
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 y

(0,y1)
(y1,x2 >0)

     bead on frictionless wire

     ds
(x2,0)

  x

We wish to find the curve that minimizes the time necessary for a bead attached to a wire 
to go from (0,y1) to (x2,0) under the influence of a constant gravitational field. First, 
we have to construct the integral we wish to vary. 

 
dt =

ds
v
,
← mgn of velocity
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⇒ T ≡
ds
v∫ =

dx2 + dy2

v∫ = dx 1 + y'2

v0

x2

∫ .� (6.19)

Conserve energy: 1
2
mv2 + mgy = mgy1 ,

⇒ v = 2g y1 − y( ) ,� (6.20)

⇒ T =
1
2g

1 + y'2

y1 − y










1/2

=f y,y';x[ ]
� ��� ���

dx.
0

x2

∫  � (6.21)

Notice 
  
∂f
∂x

= 0.. Use 2nd  form of the E-L  equations:

 
f − y' ∂f

∂y'
= C1 ,

⇒
1 + y'2

y1 − y










1/2

−
y'2

y1 − y( ) 1 + y'2( )( )
1/2 = C1

  
y'2 =

1
C1
2 − y1 + y

y1 − y
, 

⇒ y' = ±
2a − y1 + y

y1 − y










1/2

. 2a ≡
1
C1
2









 � (6.22)

	     ↑  +: positive slope, -: negative slope 

Separate variables:

dx = ±
y1 − y

2a − y1 + y










1/2

dy,

= ±
y1 − y( ) dy

2a y1 − y( ) − y1 − y( )2
.� (6.23)

Define z ≡ y1 - y,

� (6.24)
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The top sign still implies a positive slope, the bottom means a negative slope on the trajectory, 
Notice the denominator is only real if 

0 ≤ z ≤ 2a ,

  ⇒ y1 − 2a ≤ y ≤ y1.� (6.25)

Also notice that y can turn negative (go below the x-axis) if 2a > y1. Let us introduce

  z ≡ a 1 − cos θ'( ) ,� (6.26)

which respects the above inequality in z. We then have

    
x = ∓a dθ' sin θ'

sin θ'

±1� � � � � 

0

θ

∫ 1 − cos θ'( ). � (6.27)

Notice the absolute value above and the fact that the upper limit satisfies y1 - y = a(1 - cosθ)
If the upper limit, θ, is such that θ < π, then sinθ’> 0  and we choose the root for 
the negative slope, dy

dx  < 0 
 (and positive x):

x = a θ − sin θ( ).	 θ > π 

Note that if θ > π  then sinθ’> 0  for π < θ’< θ. However, it is at θ’= π  that an 
“undershoot” in the trajectory occurs (see later discussion) and the path must have positive 
slope, dy

dx > 0,
which means we have two changes in sign. Thus, requiring x > 0  for all 

θ values results in the representation:

  

z = y1 − y = a 1 − cos θ( ) ,

x = a θ − sin θ( ).

 
 
 

� (6.28)

This is a parametric representation of the path. q is just a convenient parameter in this 
problem; however, we will get a physical interpretation of it in a moment.

To build in the endpoints, we need to solve

  

x2 = a θ − sin θ ( ) ,
y1 = a 1 − cos θ ( ).

 
 
 

� (6.29)

to find θ  (the final value of θ) and “a”. One way to do this is to take the ratio,

x2

y1
=

θ − sin θ 

1 − cos θ 
,� (6.30)
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solving for θ  by numerical means and then substitute in either of Eqs.(6.29) to find “a”
. Eqs.(6.28) are the equations of a cycloid, which is generated by rolling a hoop of radius 
a without slipping along the underside of the line y = y1.

 y

 (0,y1),θ = 0     y = y1

          θ =θ 
           x

          (x2,0)

cycloid

I mentioned above the possibility of an undershoot along the path, where y<0. This is rather 
nonintuitive behavior, given that we are looking at minimum time paths to travel from one 
given position to another. In a sense, we have traded a longer path length for a greater average 
velocity along the path caused by gravity, the extra velocity “kick” occurring on the initial part 
of the motion. The same sort of phenomenon happens to high thrust rockets launched from 
Earth into low circular orbits. Then optimal paths often produce an overshoot in the trajectory 
and actual path rises above the final desired orbital radius, the extra “kick” happening on the 
final part of the motion. In this case also we are trading a longer path length for a gravity 
“boost” (free from atmospheric drag) given by the downward inserion into orbit.

     overshoot

                     Earth

You will examine in a HW problem the precise condition under which an undershoot occurs 
in the brachistocrone problem. It may be helpful at this point to examine the undershoot 
cycloid path in more detail.
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Example 

Compare and contrast the time necessary to reach a point x2 >>  y1  (causing an undershoot) 
two ways: a) a straight line path and b) a cycloid path.

Solution

The two paths look like the following. 

    y
  (0,y1)

   y1

    α     (x2,0)
    x

On the straight line path, we have

x =
1
2
axt

2,

  ax = g sin α cos α ,

so the total time is

Ts =
2x2

g sin α cos α










1/2

,

sin α =
y1

y1
2 + x2

2( )
1/2 , cos α =

x2

y1
2 + x2

2( )
1/2

Ts =
2 x2

2 + y1
2( )

gy1













1/2

→x2>>y1
x2

2
gy1











1/2

. 

The time necessary for the cycloid path is given by

TC =
1
2g

dx 1 + y'2

y1 − y










1/2

.
0

x2

∫  

However
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y'2 =

2a − y1 + y
y1 − y

 

 
  

 
 ,

  
⇒ TC =

a
g

dx
y1 − y0

x2

∫ ..

From (6.28)

 dx = a 1 − cos θ( )dθ , 

  y1 − y( ) = a 1 − cos θ( ), 

⇒ TC =
a
g

dθ
0

θ 

∫ . 

From this we conclude that increments in the parameter θ and time, t, are related by 

dθ =
g
a
dt.. Since x2 >> y1, we notice that the cycloid is almost complete, so θ �− 2π  

and x2 �− 2πa ,

TC �− 2π a
g �

−
2πx2

g
. 

Thus, we have 

Ts
TC

→x2>>y1
x2

πy1











1/2

>> 1.

and the cycloid path is clearly superior. Thus, although the undershoot path goes “out of 
it’s way” in dipping vertically, it acquires a larger average x-component of velocity by the 
extra fall.

The Case of More than One Dependent Variable

Often problems have more than one dependent variable. We can characterize such integral 
problems in the following form.

    

J = f y1(x),y2(x),…
n variables
� � � � � � � � � ,y1

'(x),y2'(x),…;x
 

 

 
 

 

 

 
 
dx

x1

x2

∫ .� (6.31)

One constructs a set of comparison functions (i = 1,...,n)

  

yi α,x( ) ≡ yi x( ) + αηi x( ) ,

ηi x1( ) = ηi x2( ) = 0.

 
 
 
 � (6.32)
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We proceed as before using the chain rule:

dJ
dα α=0| = dx

x1

x2

∫ ∂f
∂yi

∂yi

∂α
ηi(x)
�

+
∂f
∂yi

'
∂yi

'

∂α
ηi
' x( )
�



















.
i=1

n

∑ � (6.33)

Do the integration by parts in the second set of terms:
dJ
dα α =0| = dx

x1

x2

∫
∂f
∂yi

−
d
dx

∂f
∂yi

'

 

 
  

 
 ηi x( ).

i= 1

n

∑ � (6.34)

Given that the ηi(x) represent n independent arbitrary functions, one can use reasoning 
similar to the above to conclude,

    

∂f
∂yi

−
d
dx

∂f
∂yi

'

 

 
  

 
 = 0 , i = 1,…,n. � (6.35)

Example

Find the shortest path between two points on a plane again using both x  and y  as 
dependent variables. 
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Solution:

We reformulate the problem as 

ds = �x2 + �y2 dt,

where �x =
dx
dt

  and “t” is a parametric variable like θ  in the brachistochrone problem. 

It is not related to time. (There are no dynamics here.)
L = �x2 + �y2

=f �x,�y;t[ ]
� �� �� dt.

t1

t2

∫

The E-L eqns  are 

∂f
∂x

−
d
dt

∂f
∂ �x








 = 0 ⇒

d
dt

�x
�x2 + �y2











 = 0,

∂f
∂y

−
d
dt

∂f
∂ �y








 = 0 ⇒

d
dt

�y
�x2 + �y2











 = 0.

From the above

�x
�x2 + �y2

= C1 ,

�y
�x2 + �y2

= C2 ,

where C1,2  are constants. From combining them we find that C12+C22 = 1  and therefore 
that

  

x = cos θ( )t + C3 ,

y = sin θ( )t + C4 ,
 

is the general parametric solution. This way of doing the problem is as easy or easier than 
our first solution. By taking θ =

π

2
  we see that the solution mentioned earlier, x =  x0, 

is indeed an extremum path.

The Case of More than One Independent Variable

One can encounter a problem also with several independent degrees of freedom:
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f = f y x1,x2( ), ∂y
∂x1

, ∂y
∂x2

;x1,x2









.

                 ↑    ↑ 
 

          partial derivatives 

� (6.36)

Here, I am showing two independent degrees of freedom, but the argument will be general. 
Then

J = dx1 dx2 f …[ ]
A
∫∫ .� (6.37)

Now introduce

  y α,x1,x2( ) ≡ y x1,x2( ) + αη x1,x2( ) ,� (6.38)

where η(x1,x2) = 0 everywhere on the boundary C :

   x2   �
�
d          ̂ n  

       C 

         x1 
    

   integration 
     region, A 

As usual

dJ
dα α=0| = dx1 dx2

A
∫∫ ∂f

∂y
∂y
∂α
=η
�

+
∂f

∂
∂y
∂xi











∂
∂y
∂xi











∂α

= ∂η
∂xi

��� ��i=1

2

∑





















.� (6.39)

This can also be written more compactly as
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dJ
dα α=0| = dx1 dx2

A
∫∫ ∂f

∂y
η +

�v ⋅
�
∇ η









,� (6.40)

where 

  

v1 ≡
∂f

∂
∂y
∂x1

 

 
  

 
 
, 

  

v2 ≡
∂f

∂
∂y
∂x2

 

 
  

 
 

 and 
� 
∇   is the gradient operator from Ch.1. The 

two-dimensional form of the Gauss law is

dx1 dx2

�
∇ ⋅
�v

A
∫ = d� �v

C
�∫ ⋅ n̂ ,� (6.41)

where ˆ n  is the outward unit normal and d �  is an infinitesimal element of the perimeter 
(see the above figure; this is actually equivalent to Stokes’ theorem in two dimensions). This 
gives the two-dimensional form of integration by parts if we let     

� v → η
� v ,

dx1 dx2
�v ⋅
�
∇ η

A
∫ = − dx1 dx2 η

�
∇ ⋅
�v +

A
∫ d� η

�v
C
�∫ ⋅ n̂ .� (6.41A)

Apply (6.41A) to the second term in (6.40) to obtain

dJ
dα α=0| = dx1 dx2

A
∫∫ ∂f

∂y
η − η

�
∇ ⋅

�v








,� (6.40A)

since the function η(x1,x2)=0  everywhere on C. More explicitly,

dJ
dα α=0| = dx1 dx2

A
∫∫ ∂f

∂y
−

∂
∂xi

∂f

∂
∂y
∂xi



























i=1

2

∑





















η.� (6.42)

Since η(x1,x2)=0  is arbitrary in A , by setting 
  
dJ
dα α=0| = 0 and with a suitable generalization 

of our initial theorem we may conclude 

∂f
∂y

−
∂
∂xi

∂f

∂
∂y
∂xi



























i=1

2

∑ =  0.� (6.43)

For n independent variables, this argument easily extends to show the upper limit in the 
second term is n.
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Example 

Extremize the integral,

J = dx1 dx2
∂y
∂x1











2

+
∂y
∂x2











2











=f y,∂y∂x1
,∂y∂x2

;x1,x2












� ���� ����

.
A
∫∫

Solution:

The E-L  equation for one independent and two dependent degrees of freedom reads

 

∂f
∂y

−
∂

∂x1
∂f

∂
∂y
∂x1

 

 
  

 
 

−
∂

∂x2

∂f

∂
∂y
∂x2

 

 
  

 
 

= 0.

We have

∂f
∂y

= 0,    

  

∂f

∂
∂y
∂x1

 

 
  

 
 

= 2 ∂y
∂x1

 

 
  

 
 , ∂f

∂
∂y
∂x2

 

 
  

 
 

= 2 ∂y
∂x2

 

 
  

 
 . 

We obtain

  

∂2y
∂x1

2 +
∂2y
∂x2

2 = 0. 

Notice these terms form the two dimensional Laplacian, so 

  ∇
2y = 0,

is the E-L  equation.

Obviously, one can have cases where a combination of more than one independent as well 
as dependent degrees of freedom occur in a problem. Then

f = f y1,y2,…,
n dep. variables
� �� ��

∂y1
∂x1

, ∂y1
∂x2

,…,

p of them
� ��� ���

∂y2

∂x1
, ∂y2

∂x2

,…

p of them
� ��� ���

n of these groupings
� ������ ������

; x1,x2,…
p indep. variables

� �� ��

























. 
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In the case of n dependent and p independent degrees of freedom, the E-L  equations are 
simply 

∂f
∂yi

- 
j=1

p

∑ ∂
∂xj

( ∂f

∂(∂yi

∂xj
)
)= 0,  i=1,2,...,n.  (6.44) 

� (6.44)

In the above, “i”  is a free index and “j”  is a dummy (summed) index. In applications 
to mechanics, there is usually only a single independent variable, the time.

Constraints

It often happens that we wish to minimize the value of some integral in a situation where 
there are more than one dependent degrees of freedom, which, however can not vary 
independently. In other words, there is some constraint connecting variations of two (or 
more) dependent variables that appear in f. There are three ways of dealing with this situation:

1.	Algebraically eliminate one variable using the constraint condition.
2.	Reformulate the problem so that the variations in the dependent variables 

become truly independent.
3.	Use Lagrange multipliers.

Situation 1 occurs when one can actually solve the equation of constraint (when it’s linear, 
for example) and eliminate one or more variables. Thus, the constraint is rather trivially 
removed.

Situation 2 usually means to change to a new coordinate systems. An example would be 
the motion of a bead on a hoop.

 

  y

φ
R

 x
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Regarding x  and y  as dependent variables, it would be foolish to use a rectangular coordinate 
system since

x2 + y2 = R2 ,

and variations in x  and y  are not independent. It would be far superior to change to 
cylindrical coordinates. Then the only dependent variable is the angular coordinate φ, for 
which there is no constraint. (It is understood that the independent variable in this situation 
is t, the time.)

As an example of situation 2, in the case of geometry rather than dynamics, let us find the 
shortest distance between two points on a sphere.

In general it takes 3 coordinates to locate a point in 3 dimensions, but since our point is 
given to be on the surface of a sphere of radius R, we will need only 2 coordinates, which we 
will take to be the spherical coordinate angles θ  and φ. The constraint has been eliminated. 

The length element in these coordinates is

ds = R dθ2 + sin2 θdφ2( )
1/2
.� (6.45)

Without loss of generality we can write

ds = R θ'2+ sin2 θ 
1/2

|dϕ |,� (6.46)
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where θ'=
dθ
dφ

. φ  is now the independent variable, θ  is the dependent. Identify

f θ,θ';φ[ ] = θ'2+ sin2 θ( )
1/2

.� (6.47)

Since 
∂f
∂φ

= 0, we may use the second (integrated) form of the E-L  equations: 

θ'2+ sin2 θ( )
1/2

− θ' θ'
θ'2+ sin2 θ( )

1/2













 = a,

⇒ sin2 θ = a θ'2+ sin2 θ( )
1/2

,

⇒
dφ
dθ
 
 

 
 

2

=
a2

sin2 θ sin2 θ − a2( )
,

⇒ dφ = ±
dθ

sin θ 1
a2 sin

2 θ − 1
.� (6.48)
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We will carry the ±  sign with us to see the effect. We can now write

dφ = ±

1
sin2 θ

dθ

1
a2 −

1
sin2 θ

= ±
csc2 θdθ

1
a2 − 1







 − cot2 θ

,

       ↑       
                   csc2θ = 1 + cot2θ 

⇒ dφ = ±
β−1

d
dθ

cot θ

1 − β−2 cot2 θ
= ±

d
dθ

sin−1 cot θ
β



















dθ. 

  ↑ 

   
  
d cot θ

dθ
= csc2 θ , β ≡

1
a2

− 1. 

� (6.49)

In this form we see that the right hand side is a perfect differential, and thus

φ = ± sin−1 cot θ
β

 

 
  

 
 + b ,� (6.50)

where “b” is another constant. Notice that there are now two constants,  
available to fit two points on the sphere. To make this result look more familiar, take the 
sine of both sides and use 

  sin φ − b( ) = sin φ cos b − sin b cos φ ,

⇒ sin φ cos b − sin b cos φ = ±
cot θ
β

,

 
⇒ R sin θ sin φ cos b − sin b cos φ( ) = ±

R cos θ
β

.

Identify   R cos θ = z, 

  R sin θ cos φ = x , 

  R sin θ sin φ = y , 

⇒ y cos b − x sin b = ±
z
β
,� (6.51)

which is the equation of a plane passing through the origin (x,y,z = 0). The sign on 
the right of (6.51) may be absorbed into a redefinition of β and adds no extra generality in 
defining the plane. The intersection of the plane and sphere forms a “great circle” connecting 
the two points on the sphere. There is still a choice of path (long way or short way) which 
connects the two arbitrary points along this great circle. This is a case where both extreme 
values are uncovered by the variational principle.
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Lagrange Multipliers

Let me begin to explain what is meant by the use of Lagrange multipliers, as in situation 3 
above. I’ll start in a context of functions rather than integrals. Let us say we wish to extremize 
a function of more than one variable, such as f(A,B), but subject to some constraint 
connecting the variables 

� 
A  and 

� 
B  so that their variations are not independent. We assume 

the constraint can be written as (called “holonomic”; we’ll see more of this next chapter) 

g(A,B) = 0.� (6.52)

Examples:

1.	 A2 + B2 = R2 ⇒ g(A,B) = A2 + B2 − R2 

2.	A = CB + D ⇒ (A,B) = A - CB - D

The conventional approach to this problem is to try to eliminate one variable in terms of 
the other, as in 

g(A,B) = 0 ⇒ f(A,B(A)),

and then apply the zero slope necessary condition

  
df
dA A0| = 0.

The Lagrange method avoids the explicit elimination of variables by using the constraint 
equation as a subsidiary condition. In the following, it is understood that all variations are 
being evaluated at the point or points of extremum.

The total variation of f is given by the chain rule,

df =
∂f
∂A








 dA +

∂f
∂B








 dB,

  
=

∂f
∂A

+
∂f
∂B

dB
dA

 
  

 
  
dA.� (6.53)

The extremum condition is 

df = 0,

⇒
∂f
∂A

= −
∂f
∂B

dB
dA

.
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Now from g(A,B)  = 0 we have 

0 = dg =
∂g
∂A








 dA +

∂g
∂B








 dB, 

⇒
dB
dA

= −
∂g
∂A









∂g
∂B









−1

,

⇒
∂f
∂A

= −
∂f
∂B

−
∂g
∂A









∂g
∂B









−1







,

p.27: 

 
(    
 
A x    
 
B )1 = ε1jk

j,k
∑ AjBk  = e123A2B3 + e132A3B2 = (A2B3 - A3B2), 

 
p.57: 
 
mx =

F x, x,t( ). 
 
p.78: 
 

∇iU|x0 ≡
∂
∂xi

U |x= x0= 0. 

 
p.228: 
 

⇒
∂f
∂A

∂g
∂A
#

$
%

&

'
(
−1

A0,B0
| =

∂f
∂B

∂g
∂B
#

$
%

&

'
(
−1

A0,B0
| = −λ. 

 
 
p.235: 
 

∂f*
∂y

−
d
dx

∂f*
∂y'
#

$
%

&

'
( = 0,

f* ≡ f + λg.

+

,
--

.
-
-

 

 
p.245: 
 
 

 

y!

x

(x2,0)!

(0,y1)!

initial slope!

y1,x2>0!

� (6.54)

Again, the variations are being carried out at the extremum, and to emphasize this I am 
indicating this point explicitly as A0, B0  in (6.54). I have also made the conventional 
definition of the Lagrange multiplier, λ , in a variable-symmetric way in the above. It is 
just a constant. Writing out the two equations contained in (6.54) separately and explicitly 
stating the constraint, viewed as a subsidiary condition, we have

  

∂f
∂A

+ λ
∂g
∂A

= 0 ,

∂f
∂B

+ λ
∂g
∂B

= 0,

g(A,B) = 0,

 

 

 
 

 

 
 

� (6.55)

which is a complete characterization of the problem. Notice we can write these equations 
a bit more elegantly if we define 

  f
* ≡ f + λg. � (6.56)

Then the conditions 

  

∂f*

∂A
= 0,

∂f*

∂B
= 0,

g(A,B) = 0.

 

 

 
 

 

 
 

� (6.57)

look like a normal, unconstrained, extremization problem, except for the last explicit constraint.
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Example

Find the rectangle of greatest area which can be inscribed in a circle of radius “a.”

   y

(x,y)

  a

    x

Solution:

The area is 4xy and the constraint is   x
2 + y2 = a2. Therefore

f(x,y) = 4xy,

g(x,y) = x2 + y2 - a2 = 0.

We have

 
∂f
∂x

+ λ
∂g
∂x

= 4y + 2λ x = 0 ,� (E.1)

  
∂f
∂y

+ λ
∂g
∂y

= 4x + 2λ y = 0.� (E.2)

x2 + y2 = a2. � (E.3)

Combining (E.1) and (E.2) , we find x2 = y2. Then using (E.3), we obtain 
x = y =

a
2
. This just gives a square.

This method can be generalized to m variables, xi, and n constraints as 

    

∂f* x1,…,xm( )
∂xi

= 0 , i = 1,…, m  � (6.58)

  
  gj x1,x2,… ,xm( ) = 0 , j = 1,…,n� (6.59)

where f* = f x1,x2,…,xm( ) + λ kgk x1,…,xm( )
k =1

n

∑ .

Download free eBooks at bookboon.com



MODERN INTRODUCTORY MECHANICS

215

Calculus of Variations

How does this general method apply to the situation with integrals and functionals rather 
than functions and variables? Let us consider the simplest case of 2 dependent and one 
independent variable (like the x,y position of a particle at time t). We have

  f = f y1,y2,y1
',y2

';x[ ].

As usual,

y1 α,x( ) = y1 x( ) + αη1 x( ),
y2 α,x( ) = y2 x( ) + αη2 x( ),
η1 x1,2( ) = η2 x1,2( ) = 0.











� (6.60)

Then, skipping some hopefully familiar steps, we have

dJ
dα α=0| = dx ∂f

∂y1
−

d
dx

∂f
∂y1

'



















 η1 x( ) +

∂f
∂y2

−
d
dx

∂f
∂y2

'



















 η2 x( )











x1

x2

∫ .�(6.61)

But now assume that the variations 

  
∂y1

∂α
= η1 , ∂y2

∂α
= η2 , 

are no longer independent because of a constraint of the form

g(y1,y2;x) = 0 .� (6.62)

However, we can write

dJ
dα α=0| = dx ∂f

∂y1
−

d
dx

∂f
∂y1

'



















 +

∂f
∂y2

−
d
dx

∂f
∂y2

'




















η2
η1












η1(x).

x1

x2

∫ � (6.63)

Requiring this to vanish and since η1(x) is arbitrary, we have

∂f
∂y1

−
d
dx

∂f
∂y1

'

 

 
  

 
 = −

∂f
∂y2

−
d
dx

∂f
∂y2

'

 

 
  

 
 

 

 
 

 

 
 
η2(x)
η1(x)

. 

Since g(y1(α,x),y2(α,x);x) = 0, we have 

dg
dα

=
∂g
∂y1

∂y1
∂α
=η1
�

+
∂g
∂y2

∂y2

∂α
=η2
�

= 0,

⇒
η2 x( )

η1 x( )
= −

∂g
∂y1

 

 
  

 
 ∂g
∂y2

 

 
  

 
 
−1

. � (6.64)
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Used above to eliminate this ratio, we find 

  

∂f
∂y1

−
d
dx

∂f
∂y1

'

 

 
  

 
 

 

  
 

  
∂g
∂y1

 

 
  

 
 
−1

=
∂f
∂y2

−
d
dx

∂f
∂y2

'

 

 
  

 
 

 

  
 

  
∂g
∂y2

 

 
  

 
 
−1

.� (6.65)

Set both sides of (6.65) equal to -λ(x), an unknown function of x . Our three equations, 
representing a complete characterization of the extremum problem, are now

∂f
∂y1

−
d
dx

∂f
∂y1

'









 + λ x( ) ∂g

∂y1
= 0,

∂f
∂y2

−
d
dx

∂f
∂y2

'









 + λ x( ) ∂g

∂y2

= 0,

g y1,y2;x( ) = 0.

















 � (6.66)

Download free eBooks at bookboon.com Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

www.mastersopenday.nl

Visit us and find out why we are the best!
Master’s Open Day: 22 February 2014

Join the best at
the Maastricht University
School of Business and
Economics!

Top master’s programmes
•	 �33rd place Financial Times worldwide ranking: MSc 
International Business

•	 1st place: MSc International Business
•	 1st place: MSc Financial Economics
•	 2nd place: MSc Management of Learning
•	 2nd place: MSc Economics
•	 �2nd place: MSc Econometrics and Operations Research
•	 �2nd place: MSc Global Supply Chain Management and 
Change

Sources: Keuzegids Master ranking 2013; Elsevier ‘Beste Studies’ ranking 2012; 
Financial Times Global Masters in Management ranking 2012

Maastricht
University is

the best specialist
university in the

Netherlands
(Elsevier)

http://www.mastersopenday.nl


MODERN INTRODUCTORY MECHANICS

217

Calculus of Variations

This represents 3 equations in 3 unknowns: y1,y2, and λ. Again, we may simplify these to 

  

∂f*

∂y1
−

d
dx

∂f*

∂y1
'

 

 
  

 
 = 0 ,

∂f*

∂y2
−

d
dx

∂f*

∂y2
'

 

 
  

 
 = 0,

g y1,y2;x( ) = 0,

 

 

 
 
 

 

 
 
 

� (6.67)

where f* = f + λg. The general case of m dependent variables, yi(x), and n 
constraints can be written as 

    

∂f*

∂yi
−

d
dx

∂f*

∂yi
'

 

 
  

 
 = 0 , i = 1,…, m � (6.68)

  gj y1,…,ym;x( ) = 0 , j = 1,…,n , � (6.69)

where

  
f* ≡ f + λ k(x)gk .

k =1

n

∑ � (6.70)

The above represent m + n  equations in m + n  unknowns.

We will see in the next Chapter that the generalized E-L  equations, with an appropriate 
choice of f, are equivalent to Newton’s force equations on a particle. Therefore, it is not 
surprising to learn that the Lagrange multipliers, λ k(x), often have the physical interpretation 
as the forces of constraint. We will leave examples of the use of these equations to the next 
chapter.

Isoperimetric Problems

I can not leave the subject of the calculus of variations without mention of the subject of 
so-called isoperimetric problems, even though we will not be using this in the Chapters 
which follow. Isoperimetric problems are also constraint problems, except the constraint is 
in the form of another, fixed, integral rather than a relation between dependent variables. 
In it’s simplest form, the problem is to find an extremum of 

J = dx f y,y';x[ ],
x1

x2

∫ � (6.71)
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subject to the integral

L = dx g y,y';x[ ],
x1

x2

∫ � (6.72)

having a fixed value. Typically, L  represents a perimeter on a given curve. Here, the use of 
Lagrange multipliers is also useful. The formalism is quite similar to the use of Lagrange 
multipliers in the function/variable case studied earlier.

Let us introduce a path varied about the extremum with independent arbitrary functions 
η(x) and ζ(x) using  and  as parameters. Then define

  y α1,α2,x( ) ≡ y(x) + α1 η(x) + α2 ζ(x),� (6.73)

where at the endpoints

  η x1,2( ) = ζ x1,2( ) = 0 ,� (6.74)

as usual. Then J  and L  become functions of α1  and α2 , 

  J → J α1,α2( ) ,

  L → L α1,α2( ) ,

and the sought extremum is at α1 = α2 = 0. At this point, the formalism becomes 
identical to that studied before, with a function of two variables connected by a holonomic 
constraint between the variables. We can follow the same reasoning as before to arrive at

∂J
∂α1

∂L
∂α1

 

 
  

 
 
−1

α1,2=0
| =

∂J
∂α2

∂L
∂α2

 

 
  

 
 
−1

α1,2=0
| ≡ −λ ,� (6.75)

where I have defined the Lagrange multiplier, λ , which is again a (unknown) constant. 
Writing part of (6.75) out in full tells us (the other part gives the same information)

  

∂J
∂α1

+ λ
∂L
∂α1

= 0 , � (6.76)

⇒ dx ∂f
∂y

−
d
dx

∂f
∂y'


















 + λ

∂g
∂y

−
d
dx

∂g
∂y'




























 η(x)= 0.

x1

x2

∫ � (6.77)

Since η(x) is arbitrary, we conclude that 

p.27: 

 
(    
 
A x    
 
B )1 = ε1jk

j,k
∑ AjBk  = e123A2B3 + e132A3B2 = (A2B3 - A3B2), 

 
p.57: 
 
mx =

F x, x,t( ). 
 
p.78: 
 

∇iU|x0 ≡
∂
∂xi

U |x= x0= 0. 

 
p.228: 
 

⇒
∂f
∂A

∂g
∂A
#

$
%

&

'
(
−1

A0,B0
| =

∂f
∂B

∂g
∂B
#

$
%

&

'
(
−1

A0,B0
| = −λ. 

 
 
p.235: 
 

∂f*
∂y

−
d
dx

∂f*
∂y'
#

$
%

&

'
( = 0,

f* ≡ f + λg.

+

,
--

.
-
-

 

 
p.245: 
 
 

 

y!

x

(x2,0)!

(0,y1)!

initial slope!

y1,x2>0!

� (6.78)

Download free eBooks at bookboon.com



MODERN INTRODUCTORY MECHANICS

219

Calculus of Variations

After y(x) is found, the condition  then fixes one of the parameters in the 

solution. There is an interesting duality in such problems in that if we extremize L  and fix 

the value of J,  reversing the roles of  f  and g we would get the exact same equations as 

above and thus the same solution.

Thus the constraint in isoperimetric problems is built in simply by adding to f  the constraint 
condition multiplied by λ , and varying f*  in the E-L  equations rather than f . The general 
rule we are seeing is: to build in a constraint, add the constraint condition, multiplied by 
an unknown multiplier, and vary the result as if there were no constraint! 

Example

Find the largest area enclosed between the x-axis and a string of fixed length attached at 
it’s ends to points x1  and x2  on the x -axis. (“Dido’s problem”)

   y

   Area

   x1       xc    x

Solution:

We have for the area and the constraint, respectively, 

  
J = dx y

x1

x2

∫ , 

  
L = dx 1 + y'2 .

x1

x2

∫

We identify

  f
* = y + λ 1 + y'2 ,

and we write
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∂

∂y
y + λ 1 + y'2( ) −

d
dx

∂

∂y'
y + λ 1 + y'2( ) = 0,

  
⇒

d
dx

y'
1 + y'2

 

 
 

 

 
 =

1
λ
.� (E.4)

(One can also use the integrated form of the E-L  equations here since 
 

∂f*

∂x
= 0, but the 

work necessary either way is almost the same.) Integrating (E.4), we find

y'
1 + y'2

=
x
λ

+ C,

where     
� 
C  is a constant of integration. Now, solving for y’, one finds

y' = ±

x
λ

+ C

1 −
x
λ

+ C








2
, 

where a ±  sign from taking the square root is being kept. Separating variables and introducing

  
z ≡

x
λ

+ C , 

we find

y = ± λ
zdz
1 − z2

,
0

x
λ

+C

∫

which integrates immediately to 

y = ± λ 1 −
x
λ

+ C








2

+ K, 

where K  is another constant of integration. This can be rearranged, after squaring, to read

y − K( )2 + x + Cλ( )2 = λ2 .

Thus, the solution is always a section of a circle. In the case above, it might look like
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       λ

       x1              x2

The three constants in the solution,  are fixed by x1, x2  and the length 
of the string, L. Obviously, in this case our extremum corresponds to a maximum. Also, 
obviously, there is no solution to the problem when L < x2 − x1 !

Variation of the End Points of Integration

The last thing I want to discuss in this Chapter is the subject of varying endpoints in our 
integrals. Suppose the limits of the integral 

  
J = dx f y,y';x[ ]

x1

x2

∫ , � (6.79)

were not fixed, but were allowed to vary as well as the “interior” points, as shown.

   y      y(α,x) = y(x) + α η(x)

y(x)
   given curves

x
    x1          x2

Obviously, η(x) no longer vanishes at the endpoints. Although this seems like an unlikely 
situation, we will see in the next Chapter that endpoint variations yield conservation laws. 
Note that the infinitesimal endpoint variations occur on given curves at the two boundaries 
of the integral.
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Let us evaluate the variation in J . We have6 

  

dJ
dα α =0| =

d
dα

dx f y α,x( ),y' α,x( );x[ ],
x1 α( )

x2 α( )

∫ � (6.80)

where we are making the endpoints change with α , as in the above picture, and where it 
is understood the right hand side terms are evaluated at α = 0. We find (making use of 
the Leibnitz rule since there is a dependence in in x1,2)

  

dJ
dα α =0| = f dx

dα x1

x2

+ dx df
dα

,
x1

x2

∫ � (6.81)

The second term on the right in (6.81) is the usual term we get when the endpoints are 
fixed. We have

df
dα

=
∂f
∂y

∂y
∂α
η


+
∂f
∂y'

∂y'
∂α
η'


	
   � (6.82)

Download free eBooks at bookboon.com Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

http://s.bookboon.com/BI


MODERN INTRODUCTORY MECHANICS

223

Calculus of Variations

and doing an integration by parts on the term involving η’ yields

dJ
dα α=0
| = f dx

dα
+ η

∂f
∂y'









|
x1

x2

 

  + dx ∂f
∂y

−
d
dx

∂f
∂y'


















 η(x).

x1

x2

∫ � (6.83)

We now require

  
dJ
dα a =0| = 0,� (6.84)

and assume that the E-L  equations are satisfied in the interior so that the integral in (6.83) 
vanishes. This results in the endpoint condition:

f dx
dα

+ η
∂f
∂y'









|
x1

x2

= 0.� (6.85)

The endpoint requirement looks arbitrary because h appears there. However, the value of 
η  at the endpoints is actually determined through the given endpoint curves,

dy α,x( )
dα α=0| =

dy(x)
dx

dx
dα

+ η + α
dη
dx

dx
dα











α=0
| ,� (6.86)

so that

  
η =

dy
dα

− y' dx
dα

. � (6.87)

Multiplying by da, the endpoint requirement above assumes the form

f − y' ∂f
∂y'









 dx +

∂f
∂y'

dy








|
x1

x2

= 0.� (6.88)

This is called the “transversality condition.” The slope at the endpoints determines the ratio 
of the variations of dy to dx; see the figure below.

  

    y(α,x)

  
  

dy
dx x1

y(x)       
  

dy
dx x2

    x1          x2
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In the case of more than one dependent variable, the second and third terms in (6.88) 
become summed over all the dependent variables, yi. For example, when there are two 
dependent variables, y1 and y2, we obtain

(f − "yi
∂f
∂ "yii=1

2

∑ )dx +
∂f
∂ "yi

d "yi
i=1

2

∑
%

&
'

(

)
*
x1

x2

= 0 	
   � (6.88a)

There are many special cases and re-writings of (6.88) that can be considered. In cases where 
the first point is fixed and only x2  is varied, we have

f − y' ∂f
∂y'









 dx +

∂f
∂y'

dy









x2

= 0. � (6.89)

If in addition one has dx=0  at x2 , the condition becomes simply

∂f
∂y'x2

= 0, � (6.90)

and if dy=0  at x2 ,

f − y' ∂f
∂y'

 

 
  

 
x2

= 0.� (6.91)

Example

Find the path of least time for a sliding bead from the point (0,y1) to any point along 
the line x=x2 .

  y

y1

 x

  x2
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Solution:

First of all, we know that the fastest path from the given point to any given point on x=x2  
is a cycloid. The question is, which of these cycloids yields the smallest time to arrive at 
x=x2? Since a single endpoint, x2, is being varied for which dx=0, the endpoint condition 
is just (6.90) above. We have from our earlier example that

f =
1 + y'2

y1 − y










1/2

,

and we obtain

∂f
∂y'

=
y'

y1 − y( ) 1 + y'2( ) x2
| = 0,

  ⇒ y' x2( ) = 0.

Therefore, the path which has zero slope at x=x2  is the winner. Paths above this one have 
a shorter distance to go but acquire a smaller a smaller average velocity. Paths below this 
have greater magnitude of velocity by dipping lower in y, but have longer path lengths. 
Here, an “undershoot” solution never occurs, or rather, is always on the verge of occurring.

CHAPTER 6 PROBLEMS

1.	Let’s say we had an integral of the form

	 J = = dx f[ ′′y, ′y,y;x]
x1

x2

∫ .

Find the equation that  must satisfy for J = = dx f[ ′′y, ′y,y;x]
x1

x2

∫ . to be an extremum. Only consider those 
paths y(α,x) = y(x)+α η(x) such that

	 η(x1) = η(x2) = 0,

and 

	 η'(x1) = η'(x2) = 0. 

(assume η(x) is twice differentiable.)
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2.	For 
∂f
∂x   = 0, show that the integrated form of the Euler-Lagrange equation 

becomes (C  is a constant)

	 f - ∑
i=1

n
   yi' 

∂f
∂yi'

   = C,

when f  is now a function of n dependent variables,

	 f = f [y1,y2,...,yn,y1'  ,y2'  ...yn'  ;x].

[Hint: Proceed as in the text, but use the chain rule.]

3.	Given

	 J = dx f[y,y';x]
x1

x2

∫ ,

show that the Euler-Lagrange equation may also be written as

	 y" ∂2f
∂ ′y 2









  + y' ∂2f

∂y∂ ′y








 + ∂2f

∂x∂ ′y








 - ∂f

∂y








 = 0.

4.	 a)  Extremize the integral

	 J = ∫
1

0
dx [ay'2 - by2],

where a  and b  are positive constants, to find y(x) such that y(0)=0, y(1)=1.

b)	Find the value of the integral J = = dx f[ ′′y, ′y,y;x]
x1

x2

∫ . using the stationary path y(x) found in a).

5.	Find the y(x) that gives a minimum value of

	 I = 
dx(y')2

0

1

∫

dxy2

0

1

∫
, 

with y(0)=y(1)=0. [From Ch.2 problems, “Variational Mechanics for Engineers” 
by M. W. Wilcox (my Father). Hint: What would you do if you took the derivative of 

f(x) =  
g(x)
h(x)   ?]
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6.	 a)  What is the initial slope, dy
dx 

, of the brachistochrone solution?

p.27: 

 
(    
 
A x    
 
B )1 = ε1jk

j,k
∑ AjBk  = e123A2B3 + e132A3B2 = (A2B3 - A3B2), 

 
p.57: 
 
mx =

F x, x,t( ). 
 
p.78: 
 

∇iU|x0 ≡
∂
∂xi

U |x= x0= 0. 

 
p.228: 
 

⇒
∂f
∂A

∂g
∂A
#

$
%

&

'
(
−1

A0,B0
| =

∂f
∂B

∂g
∂B
#

$
%

&

'
(
−1

A0,B0
| = −λ. 

 
 
p.235: 
 

∂f*
∂y

−
d
dx

∂f*
∂y'
#

$
%

&

'
( = 0,

f* ≡ f + λg.

+

,
--

.
-
-

 

 
p.245: 
 
 

 

y!

x

(x2,0)!

(0,y1)!

initial slope!

y1,x2>0!

b)	Under what conditions on the ratio x2y1 
 will the cycloid dip below 

(undershoot) the point at (x2,0) before reaching the point (x2,0)?  [Hint: 
The lowest point on the cycloid occurs when θ = π  and an undershoot will 
occur if the y  value is negative there.]

7.	A space station which is rotating at an angular velocity ω  about an axis through 
it’s central hub has a inter-spoke mail delivery system in which packages are sent 
down enclosed frictionless tubes from a central hub to various stations along the 
rim of the station.
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All packages start from rest at the hub along φ = 0,r = a , then curve along a path 
to reach their final destination at φ=φ1,r=R. The connection between speed along the 
path, v,and r  is v=ωr.(This comes from energy conservation since kinetic energy is 
1
2 mv2  and potential energy is 12 mω2r2.)

a)	 Show that the time for delivery can be written (use cylindrical coordinates; 
′r ≡

dr
dφ

)

	 T = 1
ω

dφ r'2+ r2

r0

φ1

∫ . 

b)	Minimize the integral in (a) and show the path is a logarithmic spiral.

8.	Extremize the 3 dimensional integral (φ = φ( x� )),

	 J = ⌡⌠ ⌡⌠ ⌡⌠  dx1dx2dx3[ )(
2
1

φ∇
�

2 - ρ( x� ) φ],
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where ρ( x� ) is a given function and ∇
�

 is the three dimensional gradient operator. Find 
the partial differential equation for φ  that results.

9.	Find the path of shortest distance between two points on a sphere of radius R  
as in the text.

 

         z 

 R    ds 
     y 
 

This time treat θ  as a dependent variable and φ  the independent variable.

10.	a)  �Re-do the sphere as in the text, using θ  as a dependent variable and φ  the 
independent variable. However, use the usual (nonintegrated) Euler-Lagrange 
equations and show that one obtains

	
cos θ
sin θ   - 

d
dφ 




θ'

1
sin2θ    = 0,

where θ' = 
dθ
dφ  .

b)	Show that

	 d
dφ 




cos θ

sin θ    = - θ'
1

sin2θ 

and use this to solve the equation in (a).

11.	One more time with the sphere. Using both θ  and φ  as dependent variables, 
formulate this situation as a parametic problem. It is enough to simply write 
down the appropriate extreemum conditions in this case. Combine the two E-L  
equations and show that one obtains the same equation given in prob.10(a) 
above.
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12.	Use the method of Lagrange multipliers to find the area of the largest rectangle, 
with sides parallel to the major and minor axes, which can lie inscribed in the 
ellipse:

	 (
x
a  )

2 + (
y
b  )

2 = 1.

13.	Find the cubical of greatest volume which can be inscribed in a sphere of radius 
R  given that x=2y  where 2x  and 2y  are lengths of two sides of the cubical. 
Formulate this as a Lagrange multipier problem.

14.	a)  �Find the equation of the shorest curve between two points on a cylinder of 
radius R using cylindrical coordinates. [ds2 = R2dφ2 + dz2.]
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b)	Let us say we are given an unstreachable length of string, L. Find the 
equation of the line on the cylinder’s surface which encloses the greatest area 
on the cylinder’s surface between the string and a vertical line on the cylinder. 
See the below:

Ans.: (z-K)2 + 
R2
λ2 (λφ-C) 

2 = 
R2
λ2 , where  are constants. 

(This is just the equation of a portion of a circle pasted on the surface of the cylinder.)

15.	 An economical mathematician wishes to make a lampshade with as small 
an area as possible by rotating a given curve in the y-x  plane passing through 
(x1,y1) and (x2,y2)around the y -axis. A wire form is used to construct this 
curve, which can be bent but has a fixed length, L .

Find the form of the equation,  which describes this lampshade. [Hint: Set this 
problem up as a constraint problem using a Lagrange multiplier. Make sure you tell me 
how the Lagrange multiplier is determined.]
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16.	Prove the following:

The shortest perimeter of an arbitrary path enclosing a fixed area between the x-axis and 
a curve  as shown, is a portion of a circle.

[Hint: This may not be as difficult as you may think.]

17.	A wire of fixed length L  is used to connect the points shown. A bead slides 
without friction along the wire.

We wish to fashion the wire’s shape to construct a path leading from (0,y1) to (x2,0) 
which uses minimum time, but with fixed length. We of course have L > y12 + x22  . Set 
this problem up as a constraint problem using a Lagrange multiplier. It is not necessary 
to attempt to solve the resulting differential equation for .

18.	Another mathematician now wishes to construct a lampshade of least area 
for the surface generated by revolving about the x-axis a line,  which 
connects the point at x=0,y=a  to anywhere on the fixed wall at x=b, as 
shown.
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Show that the equation is

	 y(x) = C cosh(
x-b
C   ),

where y(x) = C cosh(
x-b
C   ), (the value of y(b) is determined by

	 a = C cosh(
b
C  ). 

[Hint: You must consider endpoint variations at x=b.]

19.	Going back to the space station mail problem, we found that the time for 
delivery was (using cylindrical coordinates; ′r ≡

dr
dφ

)

	 T = 1
ω

dφ r'2+ r2

r0

φ1

∫  

a)	 Minimize the time subject to the condition that the length of the tube, L , is 
fixed. Simplify the implied differential equation as much as possible. (There is 
no need to attempt to solve the resulting differential equation, which is rather 
difficult.)

b)	Given the solution to 7(b), show that the fastest mail path to the outside ring 
is the shortest path by considering endpoint variations of the final location.
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20.	Find the angle, α , of the straight-line path for which a sliding bead will pass 
from the origin to the wall at x =  x2  the fastest. Note we have a constant 
gravitational field downward in the diagram.

origin x=x 2 

α 

y-axis 

x-axis 

Find the equation of the brachistichrone which has zero slope at the wall (
dy
dx  |x=x2

 = 0) 
and show that the bead’s time of flight on this path is less than the result found above.

21.	Find the endpoint condition on the cycloid which provides the fastest descent 
from a fixed point (0,y1) on the y-axis to any point on a line of slope s, as 
shown.

[This generalizes the last example of the text. Answer: the fastest cycloid always approaches 
perpendicularly to the given line.]
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7	� LAGRANGIAN AND 
HAMILTONIAN MECHANICS

THE ACTION AND HAMILTON’S PRINCIPLE

For an n-particle system, Newton’s equations are 

α
α

α = f
dt

xd
m 2

2 ��

.  (3n eqns)� (7.1)

Imagine (no external forces):

   
      α 
        

� 
f αβ : force of β on α.

           β     

Total force on α:
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∑
α≠β
αβα = .ff
��

  

     �  no self-force � (7.2)

Assume that 
� 
f αβ  results from a two-body potential

    
� 
f αβ = −

� 
∇ αU αβ , (no α sum!) � (7.3)

U αβ ≡ U αβ
� x α −

� x β( ).� (7.4)

Notice that (7.4) implies U αβ = U βα ,, which gives Newton’s third law from (7.3). Eq.(7.4) 
also means that the force between the particles is along the line connecting them. This is 
not the most general assumption.

Explicitly, the notation in the following is

    
� x α → xαi, 

particle no.↑ ↑coordinate no. 

⇒ mα ��xαi +
∂

∂xαi

Uαβ

β≠α

∑








 = 0.� (7.5)

Another way of writing this equation will now be explained. The total kinetic and potential 
energies are

T ≡
1
2

mα �xαi
2 ,

α,i
∑ � (7.6)

    
U ≡ U αβ

� x α −
� x β( ).

α < β
∑    

    ↑ summing over both α, β such 
 that α < β. 

� (7.7)

The reason for the α < β  restriction in the sum in (7.7) is to count a given interaction 
between two different particles only once.

Form L ≡ T - U. Notice 

∂L
∂xαi

= −
∂U
∂xαi

= −
∂

∂xαi
U γβ
� x γ −

� x β( )
γ < β
∑
 

 
 

 

 
 .� (7.8)

Beginning to look like the second term in (7.5).
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Take the special case of 3 bodies (α = 1,2,3) to see another way of writing (7.8). We have 

    
U γβ

γ < β
∑ = U 13 + U 23

γ <3
� � � � � + U 12

γ <2
� .� (7.9)

Let’s now consider the derivative of this with respect to x1i:

∂

∂x1i
U γβ

γ < β
∑ =

∂

∂x1i
U 13 + U 23 + U 12( )

  
=

∂

∂x1i
U 13 + U 12( )

=
∂

∂x1i
U 1β

β ≠1
∑ .� (7.10)

Do the same thing for α = 2 (to see a necessary property for the rewriting we will do)

  

∂

∂x2i
U γβ

γ < β
∑ =

∂

∂x2i
U 13 + U 23 + U 12( ) ,

  

=
∂

∂x2i
U 23 + U 12( )

=
∂

∂x2i

U 23 + U 21( )

 

 
 

 
 

U γβ = U βγ necessary

  
=

∂

∂x2i
U 2β

β ≠ 2
∑ .� (7.11)

Generalization for an n-body system:

∂

∂xαi
U γβ

γ < β
∑ =

∂

∂xαi
U αβ .

β ≠α
∑  � (7.12)

Using this above, we get

  

∂L
∂xαi

= −
∂

∂xαi
U αβ

β≠ α
∑
 

 
 

 

 
 . � (7.13)

What’s more,

d
dt

∂L
∂ �xαi









 =

d
dt

∂T
∂ �xαi









,� (7.14)

and 
∂

∂ �xαi

1
2

mβ �xβj
2

β,j
∑









 = mα �xαi ,

⇒
d
dt

∂T
∂ �xαi









 =

d
dt

mα �xαi( ) = mα��xαi .� (7.16)
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Now, comparing with (7.5), we have

⇒
d
dt

∂L
∂ �xαi









 −

∂L
∂xαi

= 0.  (still 3n equations)� (7.17)

Reversing our usual logic, this now implies that the integral

S ≡ dt L xαi, �xαi;t( ),
t1

t2

∫ � (7.18)

(“the action”) is an extremum, or stationary, when the equations (7.17) hold. “L” is called 
the Lagrangian. Eq.(7.18) represents a vast simplification of the situation. All information 
is contained in a single, scalar, quantity. This gives rise to Hamilton’s principle:

 

     Of all possible paths along which a
 dynamical system moves, the actual path is
 that which makes the action,

  
S = dt T − U( ) ,

t1

t2

∫

  stationary.

Notice we have not proven this principle, we have simply constructed the particular form 
of the action for a special type of system.

Generalized Coordinates

Let’s now generalize the systems we are describing by introducing new “generalized” coordinates, 
qi , which uniquely specify the positions of the particles. These coordinates are assumed to 
automatically respect the possible constrained motions of the system. Examples are:

1.	  

 z

   θ  m radius = R

y θ,φ (spherical
    φ       coordinates angles)

 x
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2.	  

 

   
     θ1  �  1  
       
         m1 

        � 2     
  

m1 : θ1
m2 : θ2

 
 
 

 

              θ1 
    m2   

planar double pendulum ( � 1, �  2  fixed)

3.	  

String of length fixed L  with masses m1, m2  at ends slipping through a hole in a plane  
(φ2  not shown).

Notice that some generalized coordinates have units of length while others do not. Notice 
also the choice is not unique. In writing the generalized coordinates as qi, I am dropping 
the double indices on particle number and coordinate axis. In general there are fewer 
qi variables than xaj variables because of the elimination of constraints among the xαj . 
Our new “phase space” for such a system is specified by the generalized positions, qi, and 
the generalized velocities, qi. If there are m constraints, then the number of generalized 
coordinates, s, is 3n - m. (For solids the counting goes like s = 6n - m  since 
three coordinates and three angles are needed to specify a body’s position and orientation.) 
If there are no remaining constraints among the remaining generalized variables, they are 
called a proper set of coordinates.
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Let us assume we know how to write the kinetic and potential energies, which are simply 

scalar quantities under coordinate changes, of the system in terms of the  qi and qi  That 
is, we know the transformation equations from the xαi  to the qj  variables. Symbolically, 
we write

xαi = xαi qj,t( ) ,� (7.19a)

which implies

�xαi = xαi qj, �qj,t( ).� (7.19b)

Notice that the time can explicitly enter the transformation. We assume that T  depends 
only on  xαi  and ˙ x αi and U  depends only on  xαi, so therefore T(x. αi)=T(qi, �qi ,t) 
and U(xαi)=U(qi,t)and we may form 

S = dt L qi, �qi;t( )
t1

t2

∫ .� (7.20)

By extremizing this expression, we will find the form of Newton’s equations in the new, 
generalized coordinates. To perform this variation and to introduce a new notation, let us 
again reverse our logic and extremize the action in the form (7.20). This new notation is 
easier to use and more elegant than the notation in the last Chapter.

Let us imagine varying a particular coordinate qk
'(t) around the stationary path, as shown 

below. (Note the prime on qk
'(t) does NOT represent a derivative!)

  qk
'(t) ≡ qk(t) + δqk(t),

                           qk
'(t)

  δqk(t1,2) = 0.

  qk(t)

 t
   t1            t2
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δqk(t) is imagined to be an infinitesimal, arbitrary variation about the extremum solution, qk(t). 
 This “frees” us from the clumsy use of  in the previous chapter. The connection 
with the previous notation is 

  
δ( ) → dα ∂

∂α
( )

α =0| .� (7.21)

Also

dqk
'(t)
dt

=
dqk(t)
dt

+
d
dt

δqk(t).� (7.22)

Now

δ
dqk

dt








 =

dqk

dt









'

−
dqk

dt
=
dqk

'

dt'
−
dqk

dt
. �  (7.23)

However t’= t  in the variation, so we have 

δ
dqk

dt








 =

d
dt

qk
' − qk( ) =

d
dt

δqk .� (7.24)
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This means we can interchange the “δ” and the “ d
dt

”  operations. This makes sense since 
the variation defined in (7.21) is independent of t.

It’s important to realize that the varied paths in general do not conserve energy or other 
quantities. Think of a particle subject to a potential, U(x). The varied paths change the 
relationship between x  and x  and, therefore, between kinetic and potential energies. Thus, 
the varied paths generally are not physically possible in classical mechanics. However there is 
a formulation of quantum mechanics which uses a quantity called the path integral. In this 
approach, particles are seen to actually experience these “unphysical” paths, the actual motion 
being a sum of the wave amplitudes associated with each of the paths; the path integral 
represents this sum. One can think of the motion as a tube of possible paths surrounding 
the classical path picked out by the E-L  equations. This tube becomes thinner in the limit 
that the motion becomes more classical, i.e. where quantum numbers become large and 
the discrete nature of the quantum world becomes almost continuous. The path integral 
approach to quantum mechanics provides a beautiful physical picture which connects to 
and generalizes the ideas of classical mechanics.

Under these variations, we have the change in the Lagrangian (sums from 1 to S)

δL =
∂L
∂qk









 δqk +

∂L
∂ �qk









 δ �qk

d
dtδqk
�















k

∑ ,  

            ↑ from (7.24) 

� (7.25)

⇒ δS = dt ∂L
∂qk

δqk +
∂L
∂�qk

d
dt

δqk











k
∑

t1

t2

∫ .� (7.26)

Do an integration by parts on the second set of terms on the right:

dt ∂L
∂�qkk

∑
t1

t2

∫ d
dt

δqk =
∂L
∂�qkk

∑ δqk

0
�|

t1

t2 − dt d
dt

∂L
∂�qk











k
∑

t1

t2

∫ δqk .� (7.27)

If the δqk  are independent and arbitrary, when we demand 

δS = 0. we obtain

∂L
∂qk

−
d
dt

∂L
∂�qk









 = 0.� (7.28)

One can also show (7.28) follows directly from the original set, (7.5), and the transformation 
equations, (7.19). 
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Examples of the Formalism

Some examples at this point would be helpful.

Example 1

Set up the simple harmonic oscillator in the Lagrangian formalism.

Solution:

The simple harmonic oscillator has kinetic and potential energies, given by 

T =
1
2
m �x2 , U =

1
2
kx2 , 

    ⇒ L =
1
2
m �x2 −

1
2
kx2 . 

The E-L  equation is 

∂L
∂x

−
d
dt

∂L
∂�x








 = 0, 

⇒ −kx −
d
dt

m �x( ) = 0,

⇒ ��x +
k
m
x = 0, 

which is the usual equation of motion.

Example 2

Do the undamped plane pendulum in the Lagrangian formalism. As the generalized 
coordinate use an angle.

 

          �  
       θ 
   +y      gravity 
    m  
     
      
         equil. position 

Solution:

In rectangular coordinates the kinetic and potential energies are
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T =
1
2
m �x2 + �y2( ), 

        U = mgy. 

The transformation equations are

  x = ℓsin θ , 
y = ℓ(1 - cos θ).

Thus

�x2 + �y2 = �2 cos2 θ + sin2 θ( ) �θ2 = �2�θ2 ,

and

L =
1
2
m�2�θ2 − mg� 1 − cos θ( ).

The generalized E-L  equation is now 

∂L
∂θ

−
d
dt

∂L
∂�θ









 = 0,

⇒ −mg� sin θ −
d
dt

m�2�θ( ) = 0 

  ⇒ ��θ +
g
�
sin θ = 0. 

This nonlinear equation is also quite familiar from Ch.4.

Example 3

Set up the Lagrangian equations of motion for the double pendulum. For simplicity, assume 
m1 = m2 = m  as well as ℓ1 = ℓ2 = ℓ
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      +y 

     0      x 
          �   
       θ1 
       
    y1    m   
          �  
    y2    θ2        m 
  

Solution:

The kinetic and potential energies are 

T =
1
2
m �x1

2 + �y1
2( ) +

1
2
m �x2

2 + �y2
2( ),

     U = mg y1 + y2( ). 

The transformation equations are

x1 = � sin θ1 , y1 = −� cos θ1 ,

x2 = � sin θ1 + sin θ2( ), 

y2 = −� cos θ1 + cos θ2( ).

I’ll leave it to you to show in a HW problem, that the kinetic and potential energies now 
become

T = m�2 �θ1
2 +

1
2
m�2 �θ2

2 + m�2 �θ1�θ2 cos θ1 − θ2( ),

   U = −mg� 2 cos θ1 + cos θ2( ), 

Needed for the E-L  equations:

∂L
∂θ1

= −m�2�θ1�θ2 sin θ1 − θ2( ) − 2mg� sin θ1 ,
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∂L
∂θ2

= m�2�θ1�θ2 sin θ1 − θ2( ) − mg� sin θ2 ,

∂L
∂ �θ1

= 2m�2�θ1 + m�2 �θ2 cos θ1 − θ2( ), 

∂L
∂ �θ2

= m�2�θ2 + m�2 �θ1 cos θ1 − θ2( ). 

The equations of motion are now 

θ1 : ��θ1 +
1
2
��θ2 cos θ1 − θ2( ) +

1
2
�θ2
2 sin θ1 − θ2( ) +

g
�
sin θ1 = 0,

θ2 : ��θ2 + ��θ1 cos θ1 − θ2( ) + �θ1
2 sin θ1 − θ2( ) +

g
�
sin θ2 = 0. 

Do you think you could have derived these equations directly without using a Lagrangian? 

Example 4

Find the equations of motion for a bead of mass m free to move on a hoop of radius a, 
rotating at constant angular velocity ω, as shown below. (Assume the mass can move past 
the point of rotation.)

 

           y 

gravity  

      radius = a 
   ωt      ωt 

                      α  
      θ  
               x 
         m 
   point of  
   rotation            α+θ+ ωt=π 

Solution:

We have 

T =
1
2
m �x2 + �y2( ),

  U = mgy. 
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The transformation equations are

x = a cos ωt - a cos (θ +  ωt) , 
y = a sin ωt - a sin (θ +  ωt) . 

Notice in this case, unlike the other examples, the transformation equations explicitly involve 
the time. Using these, I find 

T =
1
2
ma2ω2 +

1
2
ma2 �θ + ω( )

2
− ma2ω �θ + ω( ) cos θ,

   U = mga sin ωt − mga sin θ + ωt( ). 

The E-L  equation of motion becomes

��θ − ω2 sin θ −
g
a
cos θ + ωt( ) = 0.

Notice, if we define φ = θ + π  and do a rotation in the plane perpendicular to the 
gravitational field, we obtain (g = 0 effectively) 

��φ + ω2 sin φ = 0,
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which says the bead moves like a pendulum about the far end of the hoop.

Two Points about Lagrangian Methods

Let me make several points about Lagrangian methods before we go on. First, the Lagrangian 
of a system is not unique. Consider a new Lagrangian, 

  
L'= L +

d
dt

G qi,t( ) ,  given by

  
L'= L +

d
dt

G qi,t( ) , � (7.29)

in one dimension. The action associated with L’ is 

    

S'= S + dt d
dt

G qi,t( ).

G qi,t
 

 
 

 

 
 |
1

2
� � � � � � � � � t1

t2

∫  
� (7.30)

The quantity G qi,t( )|
1

2
  is fixed in the variation because (qi)1,2  and t1,2  are not being 

changed at the endpoints. Therefore  = δS and the equations of motion (= Newton’s 

equations = E-L equations) for 
  
L'= L +

d
dt

G qi,t( ) ,  are the same as those with 
  
L'= L +

d
dt

G qi,t( ) , .

Another important point is that Hamilton’s principle can be used for systems which have 
potentials very different from Eq. (7.4) above and which are subject to specific types of 
constraints. The crucial assumption in the demonstration that Newton’s equations, (7.1), can 
be written in the E-L- form (7.17) is that potentials exist from which the non-constraint 
forces may be derived and which obey Newton’s third law. Such potentials can be time-
dependent and even velocity-dependent. The form of the relation between such potentials 
and the forces in this case is

Fαi = −
∂U
∂xαi

+
d
dt

∂U
∂�xαi









.� (7.31)

Even more generally, there are also E-L- type equations, but not a Lagrangian, for systems 
which do not possess potentials. These are called D’Alembert’s equations. We will pass over 
a description of these types of systems.

Types of Constraints

The general form of constraint relations in rectangular coordinates is (j=1,...,m  for j=1,...,m  
constraints)
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ωαi

j (x,t)dxαi + ωt
j(x,t)dt = 0

α,i
∑ , 

 
⇒ ωαi

j (x,t) �xαi + ωt
j(x,t)= 0

α,i
∑ . 

Then we may classify constraints as follows:

(1). 	 “Holonomic”: 	Holonomic”:  
  
ωαi
j =

∂fj

∂xαi
,ωt

j =
∂fj

∂t
. Then since 

      
dfj
dt

=
∂fj
∂xαiαi

∑ xαi +
∂fj
∂t

, 

     we may write these simply as 
       g

j(xαi,t) = fj(xαi,t) − const. = 0.	
  

	  Then since

			 

Holonomic”:  
  
ωαi
j =

∂fj

∂xαi
,ωt

j =
∂fj

∂t
. Then since 

      
dfj
dt

=
∂fj
∂xαiαi

∑ xαi +
∂fj
∂t

, 

     we may write these simply as 
       g

j(xαi,t) = fj(xαi,t) − const. = 0.	
  
			�   we may write these simply as 

Holonomic”:  
  
ωαi
j =

∂fj

∂xαi
,ωt

j =
∂fj

∂t
. Then since 

      
dfj
dt

=
∂fj
∂xαiαi

∑ xαi +
∂fj
∂t

, 

     we may write these simply as 
       g

j(xαi,t) = fj(xαi,t) − const. = 0.	
  .

			   Also called “integrable” constraints.

(2). 	 “Non-holonomic”:  All other cases. Also called “Non-integrable”.

As pointed out above, a Lagrangian exists and the E-L  equations, Eqs.(7.17), hold for 
systems which have a potentials of the form (7.31). Systems which have holonomic constraints 
and generalized forces derivable from potentials, U(qi,qi), have  E-L  equations have 
the form (7.28). Examples of constraint relations for the three examples which began the 
Generalized Coordinates section are:

1. 	 Particle on a sphere

1.	 g1 x1,x2,x3( ) = x1
2 + x2

2 + x3
2 − R2 = 0.

	 n = 1,  m = 1 

s  =  3n - m  = 2  generalized coordinates (θ,φ) 

2.	 Plane double pendulum 

1.	 g1 = x13 = 0 

2.	 g2 = x23 = 0 

3.	 g3 = x1
2 + x2

2 − �2 = 0

4.	 g4 = x21 − x11( )2 + x22 − x12( )2 − �2 = 0
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	 n = 2,  m = 4 

s  =  3n - m  = 2  generalized coordinates (θ1, θ2)

3.	 String of length L  through a plane

1.	 g1 = x13 = 0 

2.	 g2 = x21
2 + x22

2 + x23
2 + x11

2 + x12
2 − L = 0

	 n = 2, m = 2

s  =  3n - m = 4  generalized coordinates (φ1, φ2, θ,ℓ)

All of these are holonomic constraints. A further independent classification is whether the 
constraints involve the time (“rheonomic”) or are time independent (“scleronomic”). It would 
take us too far afield to further discuss these classifications in any further detail. I suggest 
“Principles of Mechanics” by Synge and Griffth for a deeper investigation of these ideas.

Although I stated the holonomic constraint condition above in terms of rectangular 
coordinates, it is also possible to state such conditions between generalized coordinates 
and to use the constraint formalism of the last chapter. The E-L  equations with explicit 
generalized, holonomic constraints (from (6.68)–(6.70)) can be written as 

∂L∗

∂qi

−
d
dt

∂L∗

∂�qi









 = 0 , i = 1,…,s( )

gj qi,t( ) = 0, j = 1,…, m( )









� (7.32)

where

  
L∗ ≡ T − U∗ , U∗ ≡ U + λjgj

j=1

m

∑ .� (7.33)

I will call U*  the “effective potential”. Using the connection between potential and force, 
we see that if one can relate  to an instantaneous rectangular coordinate xi  by a scale 
factor s such that then the actual force of constraint is 

F
i

= s

−1

ℑ
i

,

where

ℑi ≡ − λj
∂gj
∂qij=1

m

∑ ,� (7.34)
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The constraint formalism is especially useful in revealing the explicit forces of constraint. 

Example 5

Find the effective force of constraint in the radial direction for the pendulum in Example 
2 above.

Solution:

We will write the kinetic and potential energies here as 

T =
1
2
mr2�θ2 ,� (E.1)

U = mg � − r cos θ( ),� (E.2)

where r  and θ  are the generalized coordinates and the constraint as (ℓ  = constant)

g = r - ℓ = 0 .

(Notice how I write the potential in (E.2). If r is changed, this changes only the pendulum’s 
length, not the zero of potential.) The only new equation here is (note  g = g(r), so the 
constraint does not affect the θ -equation)

∂L
∂r

−
d
dt

∂L
∂�r








 + ℑr = 0,

where I have used L* = T - U*  and identified ℑ r from (7.34). Thus (using r = ℓ  only 
after the partial derivative is taken) 

ℑr = −mg cos θ − m��θ2 .

Notice the overall minus sign: the first term counteracts gravity, the second counteracts the 
centrifugal force. This is a general result, applicable even if the pendulum were driven. In 
our case, we know that E = T + U  is a constant. Thus 

E =
1
2
m�2�θ2 + mg� 1 − cos θ( ).

Substituting for �θ2  in ℑ r, we find 

ℑr = mg 2 − 3 cos θ( ) − 2E
�
.

Now since
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E = mg�(1-cosθ0),

where θ0  is the maximum value of q, we can write

ℑr = mg 2 cos θ0 − 3 cos θ( ).

This is easily seen to be the actual constraining force (due to the pendulum attachment) 
on the mass in the radial direction. Notice ℑ r = -mg  for θ = θ0 = 0, as it should. 

Example 6

A car accelerates (or decelerates) at an instantaneous rate, ��x. Find the generalized force on a 
tire at the point of contact with the road if there is no slippage. What does this generalized 
force represent?

Solution:

For this problem, all we need know is the kinetic energy of the tire,

T =
1
2
I �θ2 +

1
2
m �x2 ,� (E.3)

(I is the moment of inertia of the tire) and the fact that the tire rolls without slipping on 
the pavement:

  x = Rθ � (E.4)

In writing (E.3) I am anticipating the result that a rigid body’s kinetic energy can always 
be written as translational plus rotational energies. The E-L equation in q is just

∂L
∂θ

−
d
dt

∂L
∂�θ









 + ℑθ = 0

⇒ ℑθ =
I��x
R
,� (E.5)
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where I have used the constraint equation, (E.4), after the partials are taken. Clearly, the 
generalized force, ℑ θ , is just the torque exerted on the wheel, the force being given by 

θℑ
−1R , R  being the scale factor, S. This simple result is applicable to other situations once 

the instantaneous acceleration ��x  is solved for (often by solving additional E-L  equations).

Endpoint Invariance: Multiparticle Conservation Laws

I had mentioned in the last Chapter that the endpoint variation considerations there would 
be useful in uncovering conserved quantities. There, we were assuming invariance of the 
action, S, under endpoint variations and finding the consequences. Here we will need to 
directly show this invariance as the first step. This will be done for a model system.

First, let us examine two types of endpoint variations. Then, from (6.83) and (6.87) we can 
write for the case of s generalized coordinates, qi (using our new “δ” notation),

  δS = δiS + δeS,� (7.35)

δiS = dt ∂L
∂qi

−
d
dt

∂L
∂�qi





















i=1

S

∑
t1

t2

∫ δqi(t),� (7.36)
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δeS = L − �qi
∂L
∂�qii=1

S

∑








 δt +

∂L
∂�qi

δqi
i=1

S

∑








|
t1

t2

.� (7.37)

“δiS” denotes the interior contribution and “δeS” represents the endpoint part. We will 
assume that the E-L  equations hold in the interior. Thus, although δqi(t) ≠ 0 one has 
δiS=0  from (7.36).

Let us look at two specific types of varied paths.

Case 1:

qi

qi(t) + δq 
i = 1,...,r 

 (r ≤  s) qi(t)

 t 
t1 t2

In this case we are looking at the special case of variations, at endpoints as well as interior 
points,

    

δqi = δq , (i = 1,… ,r)

δt = 0 ,

 
 
 
 � (7.38)

for a subset (r ≤ s) of the original s coordinates. δq  is just a constant, infinitesimal 
parameter. Then, for this type of variation

δe
(1)S = δq ∂L

∂�qi









|
t1

t2

.
i=1

r

∑ � (7.39)

The second type of variation is illustrated below.
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Case 2:

        qi 
 
        t2 
 
         
                          qi(t)      
            
i = 1,...,s            t1            qi

'(t + δt) 
 
           δt 
                                
    qi(t) = qi

'(t + δt)       t 

In this case at the endpoints,

    

δqi = 0, (i = 1,…,s)

δt ≠ 0.

 
 
 
 � (7.40)

Therefore, 

δe
(2)S = δt L − �qi

∂L
∂�qii=1

S

∑








|
t1

t2

.� (7.41)

Now let now apply these considerations to our model Lagrangian from the beginning of 
this Chapter. It was (α =  1,...,n; i = 1,2,3)

L xαi, �xαi( ) = T − U,� (7.42)

U = U αβ
� x α −

� x β( ) ,
α < β
∑ � (7.43)

T =
1
2

mα �xαi
2 ,

i,α
∑ � (7.44)

We are assuming the E-L  equations for this system hold. We notice that L  and therefore 
the E-L  equations do not change under the translation of coordinates,

  

xαi → xαi + δxi (all α)

t → t,

 
 
 

� (7.45)

where the δxi  are three arbitrary, infinitesimal, time-independent parameters. This is a 
“Case 1” variation with δxαi = δxi , δt = 0. Moreover, the total variation in the action,

δ(1)S = dt L xαi + δxi, �xαi( ) − L xαi, �xαi( ){ }
t1

t2

∫ ,�  (7.46)
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vanishes by the invariance of L . We thus find

  δ
(1)S = δe

(1)S = 0, � (7.47)

where

δe
(1)S = δxi

i
∑ ∂L

∂�xαi











α=1

n

∑ |
t1

t2

.� (7.48)

Since the δxi are arbitrary, this means

∂L
∂�xαi

t1
|

α

∑ =
∂L
∂�xαi

t2
|

α

∑ ,� (7.49)

or

Pi t1
| = Pi t2

| ,� (7.50)

where

Pi ≡ mα �xαi ,
α=1

n

∑ � (7.51)

is the system’s total linear momentum. Linear momentum is conserved as a consequence of 
invariance of L  under translations.

Now let us write this same Lagrangian in cylindrical coordinates (ρ,θ,z) The kinetic 
energy is 

T =
1
2

mα �ρα
2 + ρα

2 �θα
2 + �zα

2( ).
α

∑ � (7.52)

This time we notice that L is unchanged under the rotation,

  

θα → θα + δθ , all α( )

t → t,

 
 
 
 � (7.53)

where δθ is a constant parameter, while keeping ρα and zα  fixed. This is again a “Case 1” 
variation with δθα = δθ , δt = 0. As before, the total variation vanishes as a consequence 
of the invariance of L , showing that δe

(1)S = 0 The consequence this time is that 

∂L
∂�θα t1
|

α

∑ =
∂L
∂�θα t2
|

α

∑ ,� (7.54)

or

mαρα
2 �θα t1
|

α

∑ = mαρα
2 �θα t2
|

α

∑ ,� (7.55)
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expressing conservation of total angular momentum about a particular (arbitrary) axis. 
Angular momentum is conserved as a consequence of invariance of L  under rotations. 
Although I used a specific Lagrangian in this argument, any Lagrangian which is invariant 
under spatial translations will conserve total linear momentum, and any Lagrangian invariant 
under rotations will conserve total angular momentum.

Finally, we notice that the model Lagrangian (7.44) is also unchanged under the substitutions

xαi → xαi,
t → t + δt.






⇒ xαi(t) = xαi

' (t + δt),
all α,i( )

� (7.56)

where dt is again a constant, infinitesimal parameter. this is a “Case 2” variation with 
δxαi = 0. The total variation in S is, 

δS = dt'L xαi
' , �xαi

' ,t'( )
t1+δt

t2+δt

∫ − dt L xαi, �xαi,t( )
t1

t2

∫

= dt L xαi
' t + δt( ), �xαi

' t + δt( ),t + δt( ){
t1

t2

∫  − L xαi(t), �xαi(t),t( )},

  
= δt dt ∂L

∂tt1

t2

∫ ,� (7.57)

which vanishes under (7.56) above as long as the time does not appear explicitly in L . 
This means

  δ
(2)S = δe

(2)S = 0,� (7.58)

and therefore

L − �xαi
∂L
∂�xαii,α

∑








 t1
| = L − �xαi

∂L
∂�xαii,α

∑








 t2
| .� (7.59)

we define the “Hamiltonian” as 

H ≡ �xαi
∂L
∂�xαi

− L.
i,α
∑ � (7.60)

The above implies that H  is conserved:

dH
dt

= 0.� (7.61)

In our case, not surprisingly

∂L
∂�xαi

= mα �xαi ,� (7.62)
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  ⇒ H = 2T − (T − U) = T + U� (7.63)

(It can also happen that dH
dt

= 0 but that H ≠ T + U.) Again, although I have used a 

model Lagrangian, any L  which is invariant under time translations ( ∂L
∂t

= 0) will have 

a conserved H. Notice that (7.59) says

�xαi
∂L
∂�xαii,α

∑ − L = const..� (7.64)

which is just a statement of the integrated form of the E-L   equations, with a change in 
notation from the last Chapter. The condition for this to hold was ∂L

∂t
= 0, consistent 

with my observations above.

We may write the endpoint variation for a given Lagrangian, L qi, �qi,t( ), as (i = 1,...,s)

δeS = −Hδt + piδqi
i
∑









,� (7.65)

where the general definitions are 

H ≡ pi �qi − L,
i
∑ � (7.66)

pi ≡
∂L
∂qi

.� (7.67)

(Note: the pi ≡
∂L
∂qi

. are generalized “canonical” momenta, which may not correspond to actual, 
physical momenta.) We may repeat the argument in generalized coordinates to show:

“Case 1”: variation

If If 
  

∂L
∂qi

= 0 ⇒ pi = const.,� (7.68)

and that 

“Case 2”: variation

If If ∂L
∂t

= 0 ⇒ H = const. � (7.69)

These statements may also be shown directly from the E-L  equations (representing Newton’s 
equations) without invoking the idea of endpoint variations of S. 

Download free eBooks at bookboon.com



MODERN INTRODUCTORY MECHANICS

259

Lagrangian and Hamiltonian Mechanics

Consequences of Scale Invariance

Before I go on, I would like to point out that there may be other types of invariances 
in situations that can give us information about the system without actually solving the 
dynamical equations. Let’s take the example

  U(
� r ) = Crn , (r =

� x ) � (7.70)

representing a particle in an external potential. Let’s let (“scaling”)

    
� r → α

� r . (α a real number) � (7.71)

then

    U(α
� r ) = αnU(� r ). � (7.72)

Let’s try to make T, the kinetic energy, transform similarly.

T =
1
2
m��r2 . � (7.73)

    
� r → α

� r ,t → α
1− n

2 t ⇒ T → α2α−2 +n T. 

Therefore L = T - U

L → αnL. � (7.74)

Since L is changed only by an overall constant, the equations of motion from 

  δ L dt = 0∫ � (7.75)

will be unchanged! Let’s look at three cases to see what specifically this implies. (Works for 
any portion of a trajectory)

(i)	   Kepler problem, n = -1.

τ'
τ

= α3/2 =
a'
a










3/2

 ⇒ τ2 ∝ a3 , Kepler’s 3rd law!
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(ii)	 Free fall, n = 1.

τ'
τ

= α1/2 =
h'
h










1/2

  
⇒ τ ∝ h. h =

1
2
at2 ⇒ t =

2h
a
.

 

 
  

 
  √ 

(iii)	 Simple harmonic oscillator, n = 2.

  
τ'
τ

= α0 = 1

⇒ τ   √ 

When Does H=T+U? 

I mentioned above that H is generally not just T + U . Under which conditions does the 
equality hold? We have 

∂L
∂�qi

=
∂T
∂�qi

−
∂U
∂�qi

.� (7.76)
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Now given 

T =
1
2

mα �xαi
2 ,

α,i
∑ � (7.77)

  xαi = xαi qj,t( ) ,� (7.78)

we have

�xαi =
∂xαi

∂qjj
∑ �qj +

∂xαi

∂t
.� (7.79)

Then the kinetic energy has the general form,

T = ajk qi,t( ) �qj�qk + bj qi,t( )
j
∑

j,k
∑ �qj + c qi,t( ),� (7.80)

ajk ≡
1
2

mα

∂xαi

∂qjα,i
∑ ∂xαi

∂qk
,� (7.81)

  
bj ≡ mα

∂xαi

∂qjα,i
∑ ∂xαi

∂t
, � (7.82)

c ≡
1
2

mα
α,i
∑ ∂xαi

∂t
 
 

 
 

2
. � (7.83)

Note that ajk = akj  Now we have

∂T
∂ �qi

= ajk δji �qk + �qj δki( )
j,k
∑ + bi ,

= 2 aik �qk + bi ,
k
∑ � (7.84)

which means that,

∂T
∂ �qii

∑ �qi = 2 ajk �qk �qj
j,k
∑ + bj �qj

j
∑ ,

and using (7.80),

∂T
∂�qii

∑ �qi = 2T − bj �qj − 2c.
j
∑ � (7.85)

Finally, therefore from (7.66),

H = 2T − (T − U)
T + U

� ��� ��� −
∂U
∂�qi

+ bi











i
∑ �qi − 2c� (7.86)
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Thus, the conditions under which H = T + U  are quite different from that for H = const
. A sufficient set of conditions for H  = T + U  is seen to be 

  
∂xαi

∂t
= 0 and 

∂U
∂�qi

= 0

Investigation into the Meaning of dE
dt

= 0  (Optional)

One can separately inquire as to the conditions giving 
  
dE
dt

= 0, where E ≡ T + U For 

convenience in the following, I will assume that ∂xαi

∂t
= 0. We have 

E = ajk �qj
jk
∑ �qk + U qi, �qi,t( ),

	 “Term (1)” 
         “Term (1)” 

⇒
dE
dt

= 2 ajk �qj��qk
j,k
∑ +

∂ajk
∂qlj,k

∑ �qj�qk �ql +
dU
dt

.� (7.88)

However, the E-L  equation is explicitly given by

“Term (2)”     “Term (3)” 
∂ T − U( )

∂qi

−
d
dt

∂ T − U( )
∂�qi









 = 0� (7.89)

“Term (2)”:	
∂T
∂qi

=
∂ajk
∂qi

�qj�qk
j,k
∑ � (7.90)

“Term (3)”: 	 −
d
dt

∂T
∂�qi









 = −

d
dt

2 aik �qk
k
∑











= −2 �aik �qk + aik��qk( )
k
∑

= −2 ∂aik

∂ql
�ql �qk

k,�
∑ − 2 aik ��qk

k
∑ � (7.91)

Substituting in (7.89) gives,

                                  “Term (4)” 
∂ajk
∂qi

�qj�qk −
∂U
∂qi

− 2 ∂aik

∂q�k,l
∑

j,k
∑ �q� �qk − 2 aik ��qk +

d
dtk

∑ ∂U
∂�qi









 = 0� (7.92)

Isolating Term (4) above, multiplying by iq�  throughout and summing on I gives:

2 aik ��qk �qi = −
∂ajk
∂qi

�qj�qk �qi
i,j,k
∑

i,k
∑ −

∂U
∂qi

−
d
dt

∂U
∂�qi



















 �qi .

i
∑  � (7.93)
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This is just an alternate form for Term (1) above. Substituting, (7.93) into (7.88), we now 
have 

dE
dt

= −
∂U
∂qi

−
d
dt

∂U
∂�qi



















 �qi +

dU
dt

.
i
∑ � (7.94)

The chain rule on dU
dt

 gives

dU
dt

=
∂U
∂t

+
∂U
∂qi

�qi
i
∑ +

∂U
∂�qi

��qi
i
∑ � (7.95)

resulting in our final form, 

dE
dt

=
∂U
∂t

+
d
dt

∂U
∂�qi

�qi
i
∑








 � (7.96)

(If we had not assumed 
 
∂xαi

∂t
= 0, there would be additional non-canceling terms on the 

right hand  side of (7.96).) So, the condition for  is much less general than 

the condition for H  
∂L
∂t

= 0







A sufficient set of conditions for dE

dt
= 0 are 

∂xαi

∂t
= 0, ∂U

∂t
= 0 and 

∂U
∂�qi

= 0. Not surprisingly, this represents a union of the sufficient  

conditions for H = T + U ∂xαi

∂t
= 0, ∂U

∂�qi

= 0








  and those for H = const. 

∂L
∂t

= 0 ⇒
∂U
∂t

= 0 since ∂xαi

∂t
= 0 

 
 
 
. H is undoubtedly a more useful quantity 

in mechanics than E.

Hamilton’s Equations

There is another formulation of mechanics which also comes from Hamilton’s principle. 
Lagrange’s equations are second order in time derivatives. But mathematically, we know 
that a single second order differential equation can always be replaced by two first order 
equations. This is a hint that another formulation of mechanics exists which yields first 
order differential equations.

Let’s say we have found a “proper” (unconstrained) set of generalized coordinates, qi. The 
key to the new formulation is the replacement of the qi(t) as the dependent generalized 
variables, with a set which has twice as many members:
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As pointed out above, the “canonical momenta” are in general not “real” momenta. The 
reasons are:

1.	The  are not generally rectangular coordinates.
2.	The potential, U , may be velocity dependent. Then, even  if we use a 

rectangular coordinate, x, and T =
1
2
m �x2 ,

px =
∂L
∂�x

= m �x −
∂U
∂�x

. � (7.97)

Keeping these facts in mind, the Hamiltonian is 

H = pk �qk − L,
k
∑

where qk  is considered a function of qk  and pk. Solving for L in terms of H, the action is

S = dt pk qk − H pk,qk,t( )
k
∑
#

$
%

&

'
(

t1

t2

∫ .	
   � (7.98)

We will look for the stationary path, this time by varying pk,qk  simultaneously and 
independently.

 qt(t)

    qk(t) + δqk(t)

qk(t)

t
   t1            t2

            δqk(t1,2) = 0

  pk(t)

    pk(t) + δpk(t)

pk(t)

   t1            t2

            δpk(t1,2) = 0
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Variation of the action gives 

δS = dt δpk �qk + pk δ�qk −
∂H
∂pk

δpk −
∂H
∂qk

δqk











k
∑

t1

t2

∫ . � (7.99)

Now 

δ �qk =
d
dt

δqk , � (7.100)

as before (it is qk  and pk which vary independently, not qk  and qk ), so 

dt pk δ �qk =
t1

t2

∫ pk δqk
0
�|

t1

t2

− dt �pk δqk
t1

t2

∫ ,

⇒ δS = dt δpk �qk −
∂H
∂pk









 − δqk �pk +

∂H
∂qk





















k
∑

t1

t2

∫  � (7.101)

We require

 δS = 0 � (7.102)

which results in k = 1,...,s

�qk =
∂H
∂pk

,  (gives pk, �qk  connection: �qk = �q
k
(p

i
, q

i
)) � (7.103)

�pk = −
∂H
∂qk

,  (dynamical part)� (7.104)

These 2s  set of first order differential equations are called Hamilton’s equations. They 
replace the Lagrange equations, which may be written as 

�pk =
∂L
∂qk

� (7.105)

Hamilton’s formulation is not as useful, practically speaking, as the E-L  formulation. 
However, they are just as important, if not more so, theoretically speaking. Hamiltonian 
methods permeate all active research areas in theoretical physics and help provide a formalism 
bridge from classical mechanics to quantum mechanics.
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First of all, let’s make sure that Hamilton’s equations imply the E-L  equation, (7.105), 
above. Notice that the first equation, (7.103), reduces to an identity

�qk =
∂
∂pk

pi �qi − L qi, �qi,t( )
i
∑








 

 = �qk + pi
∂�qi

∂pki
∑ −

∂L
∂�qi
pi
�i

∑ ∂�qi

∂pk

, 

      � cancel � 

= �qk √ � (7.106)

The second equation, (7.104), now gives
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�pk = −
∂
∂qk

pi �qi − L qi, �qi,t( )
i
∑








 

 = − pi`
∂�qi

∂qki
∑ +

∂L
∂qk

+
∂L
∂�qi
pi
�i

∑ ∂�qi

∂qk

, 

       �   cancel    � 

 ⇒ �pk =
∂L
∂qk

. √  � (7.107)

In this form, it is particularly convenient to calculate 
dH
dt

 directly. We find 

dH
dt

=
∂H
∂qi

�qi +
∂H
∂pi

�pi









 +

∂H
∂ti

∑ � (7.108)

Using Hamilton’s equations for �qiand �pi now shows that the two terms in the first sum 
cancel, and we have 

  
dH
dt

=
∂H
∂t

. � (7.109)

Also notice, using the definition of H and the E-L  equations, 

dH
dt

= �pi �qi + pi��qi( )
i
∑  

     �    � 
     cancel   cancel 
     �       � 

  −
∂L
∂qi

�qi +
∂L
∂�qi

��qi









 −

∂L
∂ti

∑ .� (7.110)

 
⇒

dH
dt

= −
∂L
∂t

.� (7.111)

Thus, if H ≠ H(t) (or equivalently ) L ≠ L(t)) then H = const.

Here is a cookbook summary of Hamilton’s method:

Step 1:	 Find T(qi, �qi,t) and U(qi, �qi,t) and form L(qi, �qi,t) =  T - U  in 
the usual way.

Step 2:	 Solve for the generalized momenta from

pj =
∂L
∂�qj

. (terminology: pj is 

       “canonically conjugate” to qj.)
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Step 3:	 Form H from

H = pi �qi − L qi, �qi,t( ),
i
∑  

remembering that �qi = �qi qj,pj,t( ) in general.

Step 4:	 Write down Hamilton’s equations,

qk =
∂H
∂pk

,	
  		 (definition)

�pk = −
∂H
∂qk

.	 (dynamics)

There is a shortcut possible in this procedure. If one can establish that H = T + U  (see 
(7.86) above), then we need only eliminate the �qi variables in terms of the pi  and qi 
when constructing H. Notice that if a particular coordinate, qk , does not appear explicitly 
in H, we have 

�pk = −
∂H
∂qk

= 0,� (7.112)

which implies the momentum conjugate to qk is conserved. (The same conclusion also holds 
in Lagrangian mechanics when L ≠  L(qk) Such coordinates are called “cyclic.”

Let’s look at two examples of this process. 

Example 7

Formulate the undamped pendulum in Hamiltonian mechanics.

Solution:

We will use the angle, , as the generalized coordinate as before. I have written down the 
transformation equations between  in Example 2 above. These equations do 
not explicitly involve the time. In addition, the gravitational potential is velocity independent, 
which means from (7.86) that

H = T + U, 

H =
1
2
m�2�θ2 + mg�(1 − cos θ).
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�θ =
∂H
∂pθ

=
pθ

m�2
, is not an appropriate variable to have in H. We eliminate it by the definition,

⇒ H =
pθ
2

2m 2 + mg (1 − cos θ). 

p L
= m 2 ,

Hamilton’s equations are now

�θ =
∂H
∂pθ

=
pθ

m�2
,	 (definition)

and 

�pθ = −
∂H
∂θ

= − mg� sin θ. 

Of course we can recover the correct second order equation,

��θ =
�pθ

m�2
= −

g
�
sin θ,

by combining the two. You can see the Lagrangian technique is more direct in this case.

Example 8

Given the (nonrelativistic) Lagrangian for a particle (charge q, mass m) in an external 
electromagnetic field (using Gaussian units), 

L = T - U 

T =
1
2
m �xi

2 ,
i
∑  U = qφ(�x,t) − q

c
�xiAi

�x,t( )
i=1

3

∑ ,

(φ � x ,t( ): “scalar potential”, 
� 
A � x ,t( ): “vector potential”). Derive the Hamiltonian and the 

Hamiltonian equations of motion. Is H  =  T + U? Is H a constant in time?

Solution:

Notice that the potential is velocity-dependent, so we can not write H  =  T + U  as in 
the last example. The canonical momenta are given by 

pj =
∂L
∂�xj

= m �xj +
q
c
Aj
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We now construct H as 

  H = pi �xi − L,
i
∑  

= pi
pi

m
−

q
cm

Ai










i
∑ −

1
2
m pi

m
−

q
cm

Ai










i
∑

2

 

 
  
+ qφ −

q
c

Ai
pi
m

−
q
cm

Ai
 
 

 
 

i
∑ . 

After the algebra settles down, we find 

H =
1
2m

pi −
q
c
Ai










2

+ qφ,
i
∑

which confirms that H  ≠  T + U. Hamilton’s equations are 

�xk =
∂H
∂pk

=
1
m

pk −
q
c
Ak









,	 (definition)

and 

�pk = −
∂H
∂xk

=
q
mc

pi −
q
c
Ai










∂Ai

∂xk

− q ∂ϕ
∂xk

.
i
∑

These equations are a disguised form of the familiar Lorentz force equation for charged 
particles. To see this, form

m��xk = �pk −
q
c
�Ak , 

    =
q
mc

pi −
q
c
Ai











m �xi� ��� ���

i
∑ ∂Ai

∂xk

− q ∂ϕ
∂xk

 

  − q
c

∂Ak

∂t
+

∂Ak

∂xi

�xi
i
∑









, 

= q −∇kϕ −
1
c
∂Ak

∂t








 +

q
c

�xi ∇kAi − ∇iAk( ).
i
∑  
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Using the definition of the curl from Ch.1,

��x ×
�
∇ ×

�
A( )



i

= εijk �xj
�
∇ ×

�
A( )k

j,k
∑

  = εijk εk�m��� ��
�xj ∇�

j,k
l�,m

∑ Am , 

→
k sum

δi�δjm − δimδj�( ) 

  = �xj ∇iAj − ∇jAi( ),
j
∑  

 ⇒ m��xk = q Ek +
q
c
��x ×

�
B( )k , (Lorentz force law)

where 
  
Ek ≡ −∇kφ −

1
c
∂Ak

∂t
, (electric field) 

    Bk ≡
� 
∇ ×

� 
A ( )

k
. (magnetic field) 

Notice that 
  
dH
dt

≠  constant if φ  and/or     
� 
A  have explicit time dependence.

Holonomic Constraints in Hamiltonian Formalism

Remember how we handled holonomic constraints in the Lagrangian formalism k=1,...,s

∂L∗

∂qk

−
d
dt

∂L∗

∂�qk









 = 0, � (7.113)

L∗ = T − U∗ ,

U∗ = U − λigi ,
i=1

m

∑










� (7.114)

where the constraints were

gi qj,t( ) = 0. i = 1,… ,m( ) � (7.115)

The incorporation of the constraints as a modification of the original potential gives us a 
hint as to how to proceed in the Hamiltonian method. A natural hypothesis is that the 
constraint Hamiltonian equations are just (k = 1,...,s)

�qk =
∂H∗

∂pk

,� (7.116)
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�pk = −
∂H∗

∂qk

,� (7.117)

where

   gj qi,t( ) = 0. 

H H + igi ,
i=1

m

� (7.118)

(7.116), (7.117) and (7.118) represent 2s + m  equations in 2s + m  unknowns. We 
can easily verify that this formulation is correct by reducing this set to the equivalent 
Euler-Lagrange equations. We need only repeat the steps leading to (7.107) above. There 
are essentially no new aspects of this reduction beyond what was seen above. I’ll leave it to 
you to show that these reduce to the modified E-L equations

�pk =
∂L∗

∂qk

,� (7.119)

where

pk =
∂L∗

∂�qk

=
∂L
∂�qk

.� (7.120)
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CHAPTER 7 PROBLEMS

1.	Consider a system of two masses in one dimension, one (m1) attached to a wall 
with a spring (spring constant k1), the other mass (m2) attached to the first 
mass by another spring (spring constant k2).

a)	 Formulate the Lagrangian of this system.
b)	Write down Lagrange’s equations and show that one obtains the earlier Eqs.

(3.62) of the notes.

2.	 a)  �In a given inertial system (“the laboratory”) the Lagrangian of an 
unconstrained particle is given by

	 L = 
1
2   m x�

� 2 - U( x� )

Write down the Euler-Lagrange equations of motion.

b)	The laboratory in (a) is inside a train, moving at a constant rate with respect 
to a fixed point on the Earth,

	 X(t) = vt, 

What is the Lagrangian of the particle, L'≠ L  in the Earth’s frame of reference? Show that 
although L'≠ L , one obtains the same Euler-Lagrange equations as in (a).
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3.	A small particle of mass m is constrained to move on the surface of a cone with 
opening angle α  as shown uner the influence of gravity in the z-direction.

z

x

y

 

Find the Lagrangian and Lagrange’s equations in some set of unconstrained variables. 
Show that these equations may be solved.

4.	Show, using the transformation from (x1,y1) and (x2,y2) to θ1  and θ2  (see 
figure), that the kinetic and potential energies of the double pendulum can be 
written as

T = mℓ2 �θ12 + 2
m ℓ2 �θ2

2 + mℓ2 �θ1�θ2  cos(θ1−θ2),

U = -mgℓ (2cos θ1 + cos θ2). 
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5.	System 1:

θ tω=

x

y

m

(rotation in x,y
plane)

spring

System 2:

 

(Note: all the masses above are point masses.) For the two systems depicted above:

a)	 Explicitly write down all the constraints in the form
gj(xi,t)=0  for both systems.

b)	Find a set of generalized coordinates to describe each system. Explain your choice.

6.	A point mass m is constrained to move on a thin wire while being rotated 
at a constant angular velocity. It is attached to the center of rotation by a 
massless spring with spring constant k and unstretched length ℓ0. There is no 
gravitational potential energy in this problem.

 

θ tω=

x

y

mk
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a)	 Find the equilibrium distance of the mass from the center of rotation.
b)	Write down the Euler-Lagrange equations for this system. Show that the 

motion is simple harmonic. What is the frequency of oscillations?

7.	 (Harkening back to prob.17, Ch.2) A particle of mass m on a frictionless wire 
follows the trajectory y = Kx2  (K  is a constant) in the x y  plane under the 
influence of gravity.

y

x

gravity

m
 

a)	 Write the Lagrangian of the system, find the E-L  equation and find the 
period of motion for small oscillations. [Hint: Drop terms that are small in 
the E-L  equation and get it in harmonic oscillator form.]

b)	By introducing a Lagrange multiplier, find the force of the mass on the wire 
in the y-direction. (The answer is:

	 −m 2K x2 + g
1 + 2K2x2

"

#
$

%

&
' 	
   .)

8.	A particle of mass m1 ≠ m2  on a frictionless table is attached to another of mass 
m2 by a rope. The mass m2 is hanging off the table as shown (m1 ≠ m2  in 
general). 

m

m

1

2

frictionless
pulley

Formulate this as a Lagrangian constraint problem.

a)	 Find the kinetic, potential energies and the Lagrangian equations of motion.
b)	Find the acceleration of mass 2 and the tension in the rope.
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9.	Consider:

                                       
                                    a 

x 
?- x 

m 
m 

1 
2 

- moment of 
inertia, I 

tension T 
tension T 

2 
1 

The pulley is free to rotate either clockwise or counterclockwise. It’s moment of inertia is I.

a)	 Set up this problem with an undetermined Lagrange multiplier to determine 
x..  the acceleration of mass 1. 

b)	The Lagrange mutiplier will turn out to be related to the tension in the rope; 
it’s exact meaning depends on how you formulate the problem. Actually, since 
the pulley is massive, the tension in the rope on the m1 ≠ m2  and m2 sides are 
different. Find the tension on both sides of the rope, T1 and T2

10.	Consider a mass m constrained to move on a wire that is being rotated at a 
constant angular velocity as shown (no gravity in this problem!):

m

x

y

r
θ = ωt

Find the force of the wire on the mass. [Hint: Introduce a Lagrange multiplier, λ  associated 
with the constraint.]
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11.	A particle of mass m moves under the influence of gravity along the spiral z=kθ
r=const. where k is a constant and z  is the vertical axis.

m
z-axis

x

y

 

a)	 Obtain the Hamiltonian equations of motion (use cylindrical coordinates 
r, θ, z.).

b)	Finish this equation: ��z = ??

12.	Often the KE  is a quadratic function of the generalized coordinate,

T = f(q) �q2 ,
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where f(q) is some function of the generalized coordinate, q . Often, too, the PE does 
not depend on �q :

	 U = U(q,t).

Construct the Hamiltonian, H. Under these circumstances is H equal to the total energy? 
Is it a constant of the motion? Explain.

13.	Given the general form of the kinetic and potential energies of a system of 
particles ("α"  is the particle label, "i" is the axis label),

	 T = 1
2

mαi �xαi
2

α,i
∑ ,  U = U(xαi , �xαi ),

(Notice the potential energy is velocity dependent) construct the form of the Hamiltonian. 
Is this H conserved? Is it equal to T+U in general?

14.	Consider a mass m constrained to move on a wire which is being rotated at a 
constant angular velocity as shown (no gravity in this problem!):

m

x

y

r
θ = ωt

a)	 Find L = L(r, �r,t) and construct H = H(pr,r,t). 
b)	Is H a constant of the motion? Is it equal to T+U ? 
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15.	Consider a point mass, m , constrained to moving on the surface of a hollow 
cylinder of radius R  under the influence of gravity (no friction). The radius 
R = R(t), is a given function of the time.

a)	 Find the Lagranian and Lagrange’s equations of motion in cylindrical 
coordinates. 

b)	Construct the Hamiltonian. Is H a constant in time? Is H =  T+U? 

16.	A particle of mass m subject to gravity is suspended from a simple pendulum of 
fixed length ℓ  as shown. The whole system is placed in a box and accelerated 
with acceleration “a” along the x  direction.

m
θl

x

l

a)	 Choosing θ as the generalized coordinate (be careful!), write down the kinetic, 
potential energies of the system. Show that they are explicit functions of the time.

b)	Construct the system’s Hamiltonian. (You do not have to find the equations of 
motion.) Is H = T+U?  Is H a constant of the motion? Explain your answers.
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17.	A point mass m acted on by gravity is suspended from above by a wire whose 
length is a given function of time: � (t).

 

a)	 Find the Hamiltonian for the system and Hamilton’s equations. Eliminate pθ  
and show that the equation of motion for q is:

	 ��θ + 2 
��
�(t)

�θ+ g
�(t)

sinθ = 0.

b)	Is the Hamiltonian a constant of the motion? Is it equal to the total energy, 
T + U?  Explain your answers.

18.	Remember the bead of mass m attached to a rotating hoop (in the x y  plane) 
of radius 'a'  (Example 4) from Ch.7.

 

           y 

gravity  

      radius = a 
   ωt      ωt 

                      α  
      θ  
               x 
         m 
   point of  

    rotation            α+θ+ ωt=π 

Treat this as a Hamiltonian problem now.

a)	 Find the Hamiltonian in the appropriate variables.
b)	Is  H = T + U ? const.? Is  H = T + U ? Explain your answers.
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19.	Let’s think back to one of the points made in Chapter 4. There I stated that 
systems which possess a Hamiltonian have phase spaces for which the volume 
neither expands nor contracts. This was called Liouville’s theorem. Show that for 
Hamiltonian systems,

    
� 
∇ •

� v = 0,

where 
� v   is the generalized “velocity” (= 

d� x 
dt ) and 

  

 

∇  is a generalized gradient, thus 
proving Liouville’s theorem for these systems. [Hint: Set xi = qi  for i=1,...,n  
and xi = pifor i=n+1,...,2n  and use Hamilton’s equations for x  and xi = pi.]

20.	(A challenging problem.) A particle of mass m slides on the top of a hollowed-out 
half-cylinder of radius R  and mass M. The half-cylinder moves frictionlessly on a 
horizontal table, as shown. (The total momentum of the system is given to be zero.)

mθ

O x

y

R

M

a)	 By introducing appropriate generalized coordinates, find the Lagrangian of the 
system and Lagrange’s equations.

b)	Find the frequency of small oscillations (θ <<1) of m.
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ENDNOTES

1	� We are assuming that λ-1   exists, which we know requires det  we will establish this momentarily.

2	 Here it is necessary to use the Leibnitz rule for differentiation.

3	� There is even another way to state this. Using the curl concept from Ch.1,  is another way of 

specifying a conservative force field.

4	 Agrees with the result in Goldstein, p.525, when variables are changed appropriately.

5	 For more on parametric representations, see “Calculus of Variations” by Weinstock, ps. 34-36.

6	� Even this is not the most general type of variation! One could also alter the meaning of the 
dependent variable, x , such that  along the path. In the application in the 
next Chapter, x  will be the time variable and there will be nothing gained by considering such 
scale change variations.
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