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I want to note with sadness the passing of my former colleague,

Giuseppe Sant’Ambrogio, M.D. He was not only an inspiration to many

but, above all, a friend in the truest sense. His presence in the scientific

community will be sorely missed. I dedicate this book to his memory.





INTRODUCTION

Newborn and infant mortality has been a plague of public health for centuries.

However, during the 1900s, an extraordinary effort began to correct this

disgraceful situation. Especially remarkable have been the accomplishments of

the last 30 years or so. Although many challenges remain, very noticeable

progress has been made relative to some specific causes of death in babies.

In the United States, neonatal respiratory distress syndrome (NRDS) was

one of the main causes of death in premature newborns. However, an intensive

research effort led to a major reduction of the number of deaths due to this

condition—from about 55,000 per year in the 1960s to less than 5000 per year at

the end of the twentieth century—and the number is still going down.

Paralleling the NRDS epidemic was that of sudden infant death syndrome

(SIDS). Although some successes had occurred during the twentieth century, we

really had to wait for a public health campaign, the ‘‘Back to Sleep’’ campaign, to

witness more rapid declines.

In a way, NRDS and SIDS have some commonalities. NRDS relates to lung

development and its respiratory function (i.e., gas exchange), whereas SIDS is

one expression of dysfunction of the respiratory control system.
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The respiratory machinery is one of the most complex of the human body.

It has fascinated philosophers, teleologists, and biologists for a very long time,

maybe beginning with the Chinese as far back as 2000 B.C. Erasistratus (around

304 B.C.) and then Gallen (around 130 A.D.) were the first to connect the lungs to

the brain through ‘‘hollow’’ nerves, in which the blood was charged with ‘‘animal

spirit.’’ Since then, a long line of biologists have studied this machinery and its

control. All this work led to the realization that the ‘‘hollow’’ nerves were not

blood conduits at all, but ‘‘real’’ nerves conducting commands from the brain in

response to stimuli from various parts of the body.

The first chapter of this new volume gives a panoramic view of respiratory

control in the newborn. It is only the beginning of a journey that will show the

reader how this control works and what it does in health and disease—from

gasping to apnea, from feeding to gastroesophageal reflux, and many more

newborn respiratory control disorders. This is a book for investigators, but also

for clinical practitioners.

As the Executive Editor of the Lung Biology in Health and Disease series, I

cannot overstate how enthusiastic my response was to Dr. Oommen Mathew’s

expression of interest in editing this volume. I knew this would be an important

contribution, as well as a source of invaluable information and inspiration, for

researchers and for clinicians. I am grateful to him and to the contributors for the

opportunity to introduce this volume to the readership of the series.

Claude Lenfant, M.D.

Bethesda, Maryland, U.S.A.
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PREFACE

Since the inception of this series, several volumes have been devoted to

respiratory control. These contributions have critically reviewed the experimental

evidence (beginning with the observation by LeGallois) that the respiratory center

is located in the medulla. Until now, respiratory control in the newborn has been a

small part of the general discussion of respiratory control. In recent years, the

increasing interest in developmental neurobiology—more specifically, our quest

for understanding the cellular mechanisms involved in the control of breathing—

has put our knowledge of respiratory control disorders on a firmer footing. These

cellular events are complex and often show marked developmental changes.

Interpretation and integration of these cellular events into the system levels are

necessary for better understanding of the pathophysiology of various respiratory

control disorders, and, in turn, targeted therapeutic interventions can be devel-

oped. An excellent example of this undertaking is the discovery of surfactant

deficiency as the underlying cause of respiratory distress syndrome in premature

infants, and the subsequent development of natural and synthetic surfactants to

treat this ‘‘developmental disorder.’’ We hopefully anticipate the development of

drugs specifically targeted to enhance maturation of respiratory control in

premature infants and the rectification of abnormal cellular properties through

molecular genetics technology.
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This volume is devoted to the disorders of respiratory control in the

newborn. To refresh and enhance our understanding of respiratory control, the

first part deals with respiratory control in the normal newborn. Several chapters in

this section address the relevant topics critically, in the fetus and the newborn, at

both the system and cellular levels. These include chapters on development of

respiratory control, gasping, and neural and chemical control of breathing. This

section also features chapters on development of sleep states and metabolism—

two vitally important factors in determining respiratory output.

The second part, which focuses on respiratory control disorders, begins

with an overview. The diagnosis of these disorders in the neonate often begins

with cardiorespiratory monitoring in the neonatal intensive care unit. An

examination of the pros and cons of the cardiopulmonary monitoring techniques

used in the neonate follows. The main focus of this part is apnea of prematurity;

several chapters are dedicated to this clinically important topic. Congenital central

hypoventilation and neuromuscular syndromes are examined next, followed by

chapters on control of breathing in acute and chronic respiratory failure. A

discussion of the maturational aspect of the respiratory control mechanisms sets

the stage for the final chapter, which addresses modifiable risk factors in sudden

infant death syndrome.

I would like to thank this outstanding group of international contributors

for their comprehensive, critical, and up-to-date chapters.

Oommen P. Mathew
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Respiratory Control in the Newborn

Comparative Physiology and Clinical Disorders

GABRIEL G. HADDAD*

Yale University School of Medicine

New Haven, Connecticut, U.S.A.

I. Introduction

The control of respiration is one of the most fascinating phenomena in

physiology, along with the genesis of heart pacing and rhythm, diurnal rhythm,

and other cyclical phenomena. Indeed, there are amazing short-term and long-

term cyclic phenomena that take place in nature from plants to humans. Consider,

for example, the diurnal cyclicity of gene expression that occurs in plants being

activated in the morning to protect plants from the heat of the sun and others

being activated in the evening to protect them from cold temperatures and

freezing! Cyclic phenomena are clearly intriguing, and it is well recognized

that cyclic phenomena occur in all tissues of the body, whether they are related to

regions of the brain that are responsible for diurnal rhythms (suprachiasmatic

nucleus) or not. Respiration is a short-term cyclical phenomenon that involves the

brain, lungs, heart, circulation, carotid bodies, and other sensors and interconnec-

tions among these various organs. This is clearly a crucial act for air-breathing

mammals; hence its regulation is of paramount importance.
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The control of respiration is not mature at birth in full-term infants, and it is

certainly not mature in premature infants. Keeping in mind that �10% of births in

the United States are premature, the basic understanding of respiration in the

immature infant takes on added significance. Although there are a number of

elements of the control system that are likely to be immature in the newly born,

especially in the premature infant, the aims of this chapter will be [1] to review

some of the salient features of respiratory control in the mature individual, [2]

highlight some of the major differences between the newly born and the mature

subject, and [3] illustrate how certain defects and=or abnormalities in the control

system lead to disease and clinical manifestations.

II. Overall Concepts of Respiratory Control

To describe the respiratory control system and highlight its main features, I

present below six concepts or main ideas that characterize the respiratory control

system. These concepts constitute a distillation of a considerable amount of work

done over more than two centuries, ever since LeGallois’s experiments. In these

experiments, done at the turn of the 19th century, he described the noeud vital in

famous rabbit experiments when he discovered that no breathing efforts occurred

when he severed the spinal cord from the noeud vital, located at the level of

‘‘origin of the nerves of the eighth pair’’ (1).

CONCEPT I: Respiration is controlled via a negative feedback system with a

controller present in the central nervous system (CNS) and a controlled organ

composed of respiratory muscles and lungs.

Animal models and humans have been studied extensively and these

investigations have clearly shown that the CNS integrates the drive and generates

the oscillatory respiratory motor pattern, depending on inputs from a variety of

feedback elements. This controller then adjusts the output of the system such as

to optimize the function desired. Inputs from the carotid bodies, airway receptors,

muscle receptors, and other sensors converge onto the CNS, which integrates and

formulates the output to the respiratory muscles. Therefore, this feedback loop

depends on several elements including sensors, comparators, integrators, and

effectors. With every disturbance sensed, the feedback system tries to change its

output to minimize the effect of the disturbance on the overall function of the

system and to attempt to return it to baseline.

CONCEPT II: The central neuronal processing and integration in the brainstem is

hierarchical in nature.

This idea is important from the point of view of neuronal network as well as

the ‘‘decision-making process’’ in the CNS when faced with competing inputs.

For example, many experiments have shown that the laryngeal afferent input into
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the brainstem is an extraordinarily potent inhibitory reflex to breathing and its

effect on the CNS integrator=pattern generator is instantaneous, taking place in

milliseconds (2,3) (Fig. 1)! This reflex is even more powerful during anesthesia,

when cortical input onto the brainstem is attenuated. We and others have

performed a variety of experiments in animal models and shown that, although

there is a major interplay between anesthesia and this reflex, laryngeal input

overwhelms other inputs coming to the brainstem (2,3).

CONCEPT III: The respiratory rhythm generation in central neurons is most likely

a result of an integration among network, synaptic, cellular, and molecular

characteristics of brainstem and other neurons involved.

Figure 1 Original record in an experiment in which the superior laryngeal nerve (SLN)

was chronically instrumented and the animal (piglet) was awake and unrestrained. Note the

potent respiratory inhibition (compare A, which is at rest, with B, 10min after the

stimulation of the SLN) and the intermittent breakthough or respiration when the SLN was

stimulated.
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This idea has been developed in the past decade, as we have been able to

utilize reduced preparations and study the membrane properties of individual

neurons (4–6). The nature of the rhythm generator is not well delineated, but there

are two potential scenarios. The respiratory controller may be a group of neurons

that either form an emergent network or are endogenous or conditional burster

neurons. In the first case, respiratory neurons would not have any special inherent

membrane properties (e.g., bursting properties) that would make their membrane

potential spontaneously oscillate (6). Rather, the output of the network they form

would oscillate because of the special synaptic interactions among these respira-

tory neurons (6). In the second case, respiratory neurons, similar to those forming

the sinus node of the heart, would have properties that make them individually

‘‘burst’’ or oscillate, even if they are not connected to any other neuron. This is

termed an endogenous burster, or pacemaker neuron. A conditional burster is a

neuron that oscillates only when exposed to certain chemicals (e.g., neurotrans-

mitters). The properties of these neurons are also very critical in shaping the

output of the network itself, irrespective of the properties of the respiratory

network as a whole.

Although the exact nature of how these respiratory neurons operate is not

known, more recent data have suggested that the respiratory rhythm is generated

by an oscillating network in the ventrolateral formation of the medulla oblongata

(7). The region that seems to be essential for the rhythm is the pre-Botzinger

complex, as all cranial nerve activity ceases totally after this region is separated

from lower brainstem levels (7–9). A number of questions clearly remain to be

answered: [1] what are properties of individual neurons in this area? [2] how

interconnected are these with others? and [3] what is the nature of their synapses

with neurons in the brainstem and other more rostral regions? Recently, Feldman

and colleagues have attempted to answer a number of these questions. For

example, we know now that glutamatergic receptors (AMPA) and glutamate as a

ligand play an important role in inducing the respiratory rhythm (10–12).

We and others have discovered a number of impressive membrane currents

that may shape their repetitive firing activity (6). These include not only the

classic sodium and potassium currents responsible for the action potential, but

also an A-current, two types of calcium currents, calcium-activated potassium

currents, inward rectifier currents, ATP-sensitive Kþ currents, and other currents

(6,13). There seems to be little disagreement about the presence of these channels

in respiratory neurons, since after their initial demonstration in brain slices, many

of these channels were studied in identified respiratory neurons in vivo (6).

Although the evidence is still insufficient, it has been suggested that delayed

excitation may be responsible for the firing activity of ‘‘late’’ inspiratory neurons

in the dorsal respiratory group (DRG) (6). If this is true, it is possible that the A-

current in these neurons works in conjunction with processes, such as synaptic

facilitation, to shape a ramp excitatory drive to phrenic motoneurons. Assignment
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of a role for this current in forming the activity of the dorsal group (DRG)

neurons is subject to study and speculation, and will ultimately require further

investigation in vivo. However, we should emphasize that one of the important

observations of the past several years is that these pre-Botzinger neurons do not

seem to have special membrane properties. They seem to have receptors, ion

channels, and transporters similar to those in other neurons in the CNS. Neurons

in the brainstem do not seem to have properties similar to those that oscillate by

themselves, i.e., oscillate by virtue of specific membrane properties, without the

need of input from surrounding neurons. It is therefore very likely that the

oscillations of brainstem respiratory neurons are based not on membrane proper-

ties alone but also on the integration of membrane, synaptic, and network

properties.

CONCEPT IV: Afferent information to the CNS is not essential for neuronal

rhythmicity but is important for modulation of respiration.

A considerable number of afferent messages converge on the brainstem at

any one time. For example, chemoreceptors and mechanoreceptors in the upper

airways constantly sense stretch, air temperature, and chemical changes over the

mucosa and relay this information to the brainstem. Afferent impulses from these

areas travel through the superior laryngeal nerve and the 10th cranial nerve

(vagus). Changes in O2 or CO2 tensions are also sensed at the carotid and aortic

bodies, and afferent impulses travel through the carotid and aortic sinus nerves.

Thermal or metabolic changes are sensed by superficial receptors or by hypo-

thalamic neurons and are carried through spinal tracts to the brainstem. Further-

more, afferent information to the controller in the brainstem need not be only

formulated and sensed by the peripheral nervous system. As an example, sensors

of CO2 lie on the ventral surface of the medulla oblongata and constitute a major

feedback regarding CO2 homeostasis.

It is well known that afferent information is not a prerequisite for the

generation and maintenance of respiration. When the brainstem and spinal cord

are removed from the body of the rat and maintained in vitro, rhythmic phrenic

activity can be detected for hours (7). Other experiments on chronically

instrumented dogs in vivo in which several sensory systems are simultaneously

blocked (cold vagal block, 100% O2 breathing to eliminate carotid discharges,

sleep to eliminate wakeful stimuli, and diuretics to alkalinize the blood) indicate

that afferent information is not necessary to generate the inherent respiratory

rhythm. However, both in vitro and in vivo studies demonstrate that, in the

absence of afferent information, the inherent rhythm of the central generator

(respiratory frequency) is slowed down considerably. Hence chemoreceptor

afferents can play an important role in modulating respiration and rhythmic

behavior. Furthermore, cortical and other central inputs are important afferent

inputs onto the brainstem. They have a major impact on the regulation of
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respiration, although they do not participate in rhythmogenesis. Consider for

example, the effect of emotions, the wake state, sight, hearing, etc., on breathing

(14).

CONCEPT V: The efferent limb of the respiratory control system (i.e., respiratory

musculature) is a possible site of respiratory failure due to neuromuscular failure.

Ventilation requires the coordinated interaction between the respiratory

muscles of the chest and those of the upper airways and neck. For example, the

activation of upper airway muscles occurs prior to and during the initial part of

inspiration; the genioglossus contracts to move the tongue forward and thus

increase the patency of the airways; and the vocal cords abduct to reduce

laryngeal resistance. Indeed, we have learned considerably about the efferent

limb and the respiratory muscles and the neuromuscular junction as potential sites

for failure of the whole system. Extramuscular (e.g., respiratory nerves, neuro-

muscular junction) and intramuscular (e.g., ionic homeostasis, energy stores, fiber

types, blood flow in the muscle) factors can play major roles in either contributing

to or precipitating the failure of ventilation (15).

CONCEPT VI: The output of the respiratory control system is distributed among a

number of respiratory muscles located in the airways, chest wall, and abdomen.

This is an important idea since it is often considered that the diaphragm is

the only muscle of respiration. Whereas the diaphragm is the major muscle, the

best illustration for the importance of the other respiratory muscles, such as those

in the upper airways, is related to the pathogenesis of upper airway obstruc-

tion=hypoventilation during sleep (OSAH) in children as well as in adults. The

coordination, tone, and activation of upper-airway muscles are very important

because it is the ‘‘uncoordinated’’ interactions between the diaphragm and upper

airway muscles that can lead to hypoventilation or obstruction in the upper

airways during sleep. It is therefore very essential to consider the functional state

of all respiratory muscles and their synchronization; it is their coordinated

activation that keeps the airways patent, especially under stress.

III. The Newborn’s Respiratory Control in Perspective

A. Peripheral Sensory Aspects

In this section, I shall review data on the primary O2 sensor in the body, the

carotids. I will show that there are major differences between the newborn and the

adult vis-à-vis the response of the carotids to low O2 and with respect to the

importance of this organ in overall respiratory function and survival in early life.

Recordings from single fiber afferents have demonstrated major differences

between the fetus and the newborn and between the newborn and the adult

(Fig. 2). Chemoreceptor activity is present in the fetus and a large increase in
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activity may be evoked by decreasing the PO2 of the ewe (16). The estimated

response curve was left-shifted such that PaO2 values below 20 torr were required

to initiate an increase in carotid sinus discharge. Furthermore, the large increase

in PaO2 at the time of birth virtually shuts off chemoreceptor activity. However,

this decreased activity does not last long, and a normal, adultlike sensitivity is

achieved after a few weeks (16,17). The mechanisms for the maturation of these

peripheral sensors are not all worked out, but there are a number of factors,

external or endogenous, that probably play a role in this process. For example,

arterial chemoreceptors are subject to hormonal influences, which may affect the

sensor or alter tissue PO2 within the organ. Neurochemicals may also play a

major role as they modulate chemosensitivity. For example, endorphins decrease

in the newborn period, and the effect of exogenous endorphin is inhibition of

chemoreceptor-mediated hypoxia sensitivity (18).

Even in studies in which hormonal or neural effects are minimized such as

in in vitro experiments, the chemosensitivity of the newborn carotid is less than

the adult. Nerve activity of rat carotid bodies, in vitro, following transition from

normoxia to hypoxia is about fourfold greater in carotid bodies harvested from

20-day-old rats as compared to 1 to 2-day-old rats (19). This corresponds well

Figure 2 Peak discharge from single units of a carotid body in vitro. Note the effect of

age on peak activity.
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with the maturational pattern of the respiratory response to hypoxia in the intact

animal (20) and suggests that major maturational changes occur within the carotid

body itself. For example, the maturational increase in chemosensitivity may be

attributed to a maturational change in the biophysical properties of glomus cells.

In one model, it seems that hypoxia directly inhibits a membrane-localized Kþ

channel which is active at rest, and the resulting depolarization leads to calcium

influx, secretion of neurotransmitter, and increased neural activity in adult carotid

cells (21). In comparison, glomus cells harvested from immature rats show a

decrease in whole-cell Kþ current during hypoxia but the decrease in Kþ current

is attributed to a decreased activation of a Caþ2-dependent Kþ current rather than

to a specialized Kþ channel sensitive to PO2 (22). How this leads to reduced

sensitivity and reduced firing is not well understood.

What role do the carotid bodies play in growing animals? And is this role

tied to O2 sensing? In comparison to the adult, peripheral chemoreceptors are

believed to assume a greater role in the newborn period. Peripheral chemo-

receptor denervation in the newborn results in severe respiratory impairments and

high probability of sudden death. This has been demonstrated in a number of

animal models. Lambs following denervation fail to develop a mature respiratory

pattern (23,24) and suffer 30% mortality rate, days, weeks, or months following

surgery. In other species, denervation also leads to lethal respiratory disturbances

(2,25). For instance, denervated rats suffer from severe desaturation during REM

sleep (25), and piglets suffer from profound apnea during quiet sleep (3). Of

particular interest is that these lethal impairments only occur during a fairly

narrow developmental window. Denervation before or after this window period in

early life results in only relatively minor alterations in respiratory function (3).

B. Central Neurophysiologic Aspects

Although recent studies in the neonatal rat in vitro (whole brainstem preparation)

were not targeted at understanding the neonate in particular, these studies have

shed light on basic fundamental issues pertaining to control mechanisms of

respiration in the newborn (7). In fact, we know now from several such studies

that the young rat (in the first week of life) does not need any external or

peripheral drive for the oscillator to discharge. The inherent respiratory rate (as

judged by cranial nerve output) is markedly downregulated. These studies

corroborate the idea that peripheral or central (rostral to the medulla and pons)

inputs are needed to maintain the respiratory output at a much higher frequency.

Another interesting observation is that the discharge pattern of each

neuronal unit in the neonate seems, from extracellular recordings, to be different

from that in the adult in two major ways. First, the inspiratory discharge is not

ramp in shape, but increases and decreases very fast within the same breath. The

second is that it is extremely brief, sometimes limited to even a few action
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potentials (26). In addition to differences in inspiratory discharge, expiratory

units discharge weakly and appear often only after the imposition of an expiratory

load (27,28).

Since the discharge pattern of central neurons in the adult or neonate (as

discussed above) is affected by peripheral input, including input from the vagus

nerve, one question that has been raised is whether the lack of myelination in the

neonatal nerve fibers affects function. This is indeed the case, because of lack of

myelination and potential delays in signaling. It is also because inspiratory and

expiratory discharge periods are so fast or short that they preclude the effect of

peripheral information on the CNS within the same breath. Therefore, one

important issue that can be raised is whether breath-by-breath feedback is as

potent in the young as in the adult.

Differences between neonates and adults are also observed in response to

neurotransmitters or modulators. Young animals respond differently to neuro-

transmitters than adult animals do; this has been mostly documented by work on

the opossum (29). Glutamate injected in various locations in the brainstem, even

in large doses, induces respiratory pauses while it is clearly stimulatory in the

older mature animal (29). Inhibitory neurotransmitters such as GABA have also

been used, and these have age-dependent effects in the opossum. GABA has also

been shown to be an excitatory neurotransmitter (Fig. 3) in the newborn but an

inhibitory one in the mature adult neuron (30). These differences between

newborns and adults are not quite understood at the fundamental level since

there are many variables that have not been controlled for such as the size of the

extracellular space, receptor development, and ability for sensitization, to name a

few.

C. The Efferent System

There is a multitude of neuromuscular and skeletal changes that take place early

in life. These include alterations in muscle cells, the neuromuscular junction, the

nerve terminals and synapses, and the chest wall properties. Therefore, since

muscle and chest wall properties change with age, it is likely that neural

responses can be influenced by pump properties, especially that these muscles

execute neural commands. One of the important maturational aspects of respira-

tory muscles is their pattern of innervation. In the adult, one muscle fiber is

innervated by one motoneuron. In the newborn, however, each fiber is innervated

by two or more motoneurons, and the axons of different motoneurons can

synapse on the same muscle fiber; thus, the term polyneuronal innervation.

Synapse elimination takes place postnatally, and in the case of the diaphragm, the

adult type of innervation is reached by several weeks postnatally, depending on

the animal species. The time course of polyneuronal innervation of the diaphragm

in the human newborn is not known (15).
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The neuromuscular junctional folds, postsynaptic membranes, and acetyl-

choline receptors and metabolism undergo major postnatal maturational changes.

The acetylcholine quantal content per end plate potential is lower in the newborn

than in the adult rat diaphragm (15). The newborn diaphragm is also more

Figure 3 Top panel of four records. Left, above and below: Compare action potential

discharge from one nerve cell in vitro after a hyperpolarization in the presence of 4-AP (IA
current blocker) or picrotoxin (GABAA receptor blocker). Note the lack of excitatory

discharge in the presence of picrotoxin. Right panel shows spontaneous discharge. Bottom

panel. Action potential discharge with depolarization with and without GABA agonist.

10 Haddad



susceptible to neuromuscular transmission failure than that in the adult, especially

at higher frequencies of stimulation (15). The reason for this is not clear.

IV. Disease States

A. Respiratory Pauses and Apneas

Although there are numerous studies on apnea in the newborn and adult human,

there are still major controversies. The length of the respiratory pause, usually

defined as apnea, varies and has been subject to debate. Statistically, apnea can be

defined as a respiratory pause that exceeds 3 standard deviations of the mean

breath time at any particular age. This definition requires data from a population

of subjects, lacks physiologic value, and does not differentiate between relatively

shorter or longer respiratory pauses. This definition may therefore not be the best

from a functional viewpoint. Alternatively, the definition of apnea may be based

on the sequelae of pauses, such as associated cardiovascular or neurophysiologic

changes. Such definition relies on the functional assessment of pauses and is

therefore more relevant clinically. It is important to note here that, because infants

have a higher O2 consumption (per unit weight) than the adult and relatively

smaller lung volumes and O2 stores, it is possible that relatively shorter (e.g.,

seconds) respiratory pauses, which may not be clinically important in the adult,

can be serious in the very young or premature infant. Furthermore, independent

of age, respiratory pauses are more prevalent during sleep than during wakeful-

ness. And the frequency and duration of respiratory pauses depend on sleep state.

Respiratory pauses are more frequent and shorter in REM than in quiet sleep, and

more frequent in the younger than in the older child or adult.

Although there is a controversy regarding the pathogenesis of respiratory

pauses, there is a consensus about certain observations. Normal full-term infants,

children, and adult humans exhibit respiratory pauses during sleep. It is also

believed that the presence of respiratory pauses and breathing irregularity is a

‘‘healthy’’ sign and that the complete absence of such pauses may be indicative of

abnormalities. This parallels well the concept of heart rate variability, and a lack

of short-term or long-term variability in heart rate can be a sign of disease or

immaturity. Prolonged apneas, however, can be life-threatening, and the patho-

genesis of these apneas may relate to the clinical condition of the patient at the

time of the apneas, associated cardiovascular (systemic or pulmonary) changes,

the chronicity of the clinical condition, and whether the etiology is central or

peripheral. Prolonged apneic spells require therapy, but optimally, treatment

should be targeted to the underlying pathophysiology.

The pathogenesis of apneas can vary considerably. The etiology can be in

the CNS, in the periphery, such as in the airways, or in the coordination between

peripheral and central events. Upper-airway obstruction (UAO), for example, is

an entity that is characterized by having lack of normal airflow (or complete lack
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of airflow) not because of lack of phrenic output but because of obstruction in the

airways. This is very different from abnormal (or lack of ) airflow on the basis of

absent phrenic impulses coming to the diaphragm. One reason for distinguishing

the two conditions is to provide the optimal form of therapy.

Upper-airway obstruction during sleep is recognized with increasing

frequency in children and adults. In contrast to adults with UAO in whom the

etiology of obstruction often remains obscure, many children have anatomic

abnormalities. A common cause of UAO in children is tonsillar and adenoidal

hypertrophy, partly due to repeated upper respiratory infections. Other associated

abnormalities include craniofacial malformations, micrognathia, and muscular

hypotonia from a variety of causes. The usual site of obstruction of UAO in both

infants and adults is the oropharynx, between the posterior pharyngeal wall, the

soft palate, and the genioglossus. During sleep (especially REM sleep), upper-

airway muscles, including those of the oropharynx, lose tone, and trigger an

episode of UAO.

B. O2 Deprivation and Cell Injury

A number of pathophysiologic conditions lead to respiratory failure with

hypercapnia and tissue O2 deprivation. Practically, all cardiorespiratory diseases

can potentially produce failure of this system. This outcome may be deleterious to

other organs because of the ensuing acidosis and hypoxia. However, it is the

hypoxia that should be avoided at all cost since human tissues, especially the

CNS, have relatively low tolerance to a microenvironment that is devoid of O2

(31,32).

In the past decade, we have learned a great deal about the effect of lack of

oxygenation on various mammalian and nonmammalian (vertebrate and non-

vertebrate) tissues and at various ages, including fetal, postnatal, and adult. There

is a vast array of cellular and molecular responses to lack of O2. From an

organismal point of view, the carotid bodies would seem to discharge and have an

effect on ventilation when the PaO2 reaches below 50 torr. It is probably the case

that, in general, other tissues in the body do not respond or react to PaO2 above

50 torr. Indeed, most tissues would start ‘‘sensing’’ a decrease in PaO2 only below

35–40 torr. For example, the brain, which is one of the very sensitive tissues to

lack of O2, has a resting (no hypoxia induced) interstitial O2 tension probably in

the range of 20–35 torr depending on age, area (white vs. gray matter), neuronal

metabolism, temperature, proximity to blood vessels, etc.

Although advances have been made in understanding the effect of lack of

oxygenation on tissue metabolism, excitability, and function, major questions

remain unanswered with respect to the mechanisms that lead to injury or those

that protect tissues from it. This area of research is very complex, and we and

others have focused on it for a number of years. In the case of the nervous system,
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for example, a number of mechanisms are activated during O2 deprivation.

Membrane biophysical events such as those pertaining to Naþ and Kþ channels,

and others such as increased anaerobic metabolism, increased intracellular levels

of Hþ and Ca2þ, increased concentrations in extracellular neurotransmitters (e.g.,

glutamate and aspartate), radical production, activation of kinases, protease, and

lipase; injury and destruction of important cytoskeletal proteins; gene regulation

of a number of proteins (e.g., c-fos, NGF, HSP-70, -actin) are just some events

that take place during lack of O2 (32–40).

V. Summary

The newborn seems to have either different mechanisms of control of respiration

or an immature set of mechanisms that, with differentiation, arrive at the adult

respiratory mechanisms. However, it is important to stress that it is not clear from

studies that have been done at either the sensory limb, the central controller, or

the efferent limb that the newborn is at an overall increased risk for injury. In fact,

there is a considerable amount of data to demonstrate that the young are at an

advantage from the viewpoint of stress-related hypoxic injury.

References

1. LeGallois JJC. Experiments on the Principle of Life, 1813:12–16. As cited in:

Comroe JH Jr, ed. Pulmonary and Respiratory Physiology Part II. Stroudsburg, PA:

Dowden, Hutchinson & Ross, 1976.

2. Donnelly DF, Haddad GG. Respiratory changes induced by prolonged laryngeal

stimulation in unanesthetized piglets. J Appl Physiol 1986; 61:1018–1024.

3. Donnelly DF, Haddad GG. Prolonged apnea and impaired survival in piglets after

sinus and aortic nerve section. J Appl Physiol 1990; 68:1048–1052.

4. Haddad GG, Getting PA. Repetitive firing properties of neurons in the ventral region

of the nucleus tractus soliarius. In-vitro studies in the adult and neonatal rat.

J Neurophysiol 1989; 62:1213–1224.

5. Haddad GG, Donnelly DF, Getting PA. Biophysical membrane properties of

hypoglossal neurons in-vitro: intracellular studies in adult and neonatal rats.

J Appl Physiol 1990; 69:1509–1517.

6. Dekin MS, Haddad GG. Membrane and cellular properties in oscillating networks:

implications for respiration. J Appl Physiol 1990; 69:809–821.

7. Smith JC, Ellenberger H, Ballanyi K, Richter DW, Feldman JL. Pre-Botzinger

complex: a brainstem region that may generate respiratory rhythm in mammals.

Science 1991; 254:726–729.

8. Feldman JL, Smith JC, Ellenberger HH, Connelly CA, Greer JJ, Lindsay AD, Otto

MR. Neurogenesis of respiratory rhythm and pattern: emerging concepts. Am J

Physiol 1990; 259:879–886.

Respiratory Control in the Newborn 13



9. Richter DW, Ballanyi K, Schwarzacher S. Mechanisms of respiratory rhythm

generation. Curr Opin Neurobiol 1992; 2:788–793.

10. Rekling JC, Feldman JL. PreBotzinger complex and pacemaker neurons: hypothe-

sized site and kernel for respiratory rhythm generation. Annu Rev Physiol 1990;

60:385–405.

11. Ge Q, Feldman JL. AMPA receptor activation and phosphatase inhibition affect

neonatal rat respiratory rhythm generation. J Physiol 1998; 509(1):255–266.

12. Funk GD, Feldman JL. Generation of respiratory rhythm and pattern in mammals:

insights from developmental studies. Curr Opin Neurobiol 1995; 6:778–785.

13. Jiang C, Haddad GG. The effect of anoxia on intracellular and extracellular Kþ in

hypoglossal neurons in-vitro. J Neurophysiol 1991; 66:103–111.

14. Von Euler C. Brain stem mechanisms for generation and control of breathing pattern.

In: Fishman AP, Cherniack NS, Widdicombe, Geiger SR, eds. Handbook of

Physiology (Section 3: The Respiratory System). Bethesda, MD: APS, 1986:1–67.

15. Sieck GC, Fournier M. Developmental aspects of diaphragm muscle cells. In:

Haddad GG, Farber JP, eds. Developmental Neurobiology of Breathing, Lung

Biology in Health and Disease. New York: Marcel Dekker, 1991:375–428.

16. Blanco CE, Hanson MA, McCooke HB. Studies of chemoreceptor resetting after

hyperoxic ventilation of the fetus in utero. In: Riberio JA, Pallot DJ, eds. Chemo-

receptors in Respiratory Control. London: Croom Helm, 1988:221–227.

17. Hanson MA, Kumar P, McCooke HB. Post-natal resetting of carotid chemoreceptor

sensitivity in the lamb. J. Physiol (Lond) 1987; 382:57P.

18. Pokorski M, Lahiri S. Effects of naloxone on carotid body chemoreception and

ventilation in the cat. J Appl Physiol 1981; 51:1533–1538.

19. Kholwadwala D, Donnelly DF. Maturation of carotid chemoreceptor sensitivity to

hypoxia: in vitro studies in the newborn rat. J Physiol (Lond) 1992; 453:461–473.

20. Eden GJ, Hanson MA. Maturation of the respiratory response to acute hypoxia in the

newborn rat. J Physiol (Lond) 1987; 392:1–9.

21. Gonzalez C, Almaraz L, Obeso A, Rigual R. Oxygen and acid chemoreception in the

carotid body chemoreceptors. TINS 1992; 15:146–153.

22. Ganfornina MD, Lopez-Barneo J. Single Kþ channels in membane patches of arterial

chemoreceptor cells are modulated by O2 tension. Proc Natl Acad Sci USA 1991;

88:2927–2930.

23. Bureau MA, Lamarche J, Foulon P, Dalle D. Postnatal maturation of respiration in

intact and carotid body chemodenervated lambs. J Appl Physiol 1985; 59:869–874.

24. Bureau MA, Lamarche J, Foulon P, Dalle D. The ventilatory response to hypoxia in

the newborn lamb after carotid body denervation. Respir Physiol 1985; 60:109–119.

25. Hofer MA. Lethal respiratory disturbance in neonatal rats after arterial chemo-

receptor denervation. Life Sci 1984; 34:489–496.

26. Farber JP. Medullary inspiratory activity during opossum development. Am J Physiol

1988; R578–R584.

27. Farber JP. Motor responses to positive pressure breathing in the developing opossum.

J Appl Physiol 1985; 58:1489–1495.

28. Farber JP. Medullary expiratory activity during opossum development. J Appl

Physiol 1989; 66:1606–1612.

14 Haddad



29. Farber JP. Effects on breathing of rostral pons glutamate injection during opossum

development. J Appl Physiol 1990; 69:189–195.

30. Michelson HB, Wong RK. Excitatory synaptic responses mediated by GABAA

receptors in the hippocampus. Science 1991; 253(5026):1420–1423.

31. Haddad GG, Jiang C. O2 deprivation in the central nervous system: on mechanisms

of neuronal response, differential sensitivity and injury. Proj Neurobiol 1993;

40:277–318.

32. Banasiak KJ, Haddad GG. Hypoxia-induced apoptosis: effect of hypoxic severity and

role of p53 in neuronal cell death. Brain Res 1998; 797:295–304.

33. Haddad GG, Jiang C. O2-sensing mechanisms in excitable cells: role of plasma

membrane Kþ channels. Annu Rev Physiol 1997; 59:23–43.

34. Fung ML, Haddad GG. Anoxia-induced depolarization in CA1 hippocampal

neurons: role of Naþ-dependent mechanisms. Brain Res 1997; 762:97–102.

35. O’Reilly JP, Cummins TR, Haddad GG. Oxygen deprivation inhibits Naþ current in

rat hippocampal neurons. J Physiol 1997; 503.3:479–488.

36. Ma E, Haddad GG. Anoxia regulates gene expression in the central nervous system

of Drosophila melanogaster. Mol Brain Res 1997; 46:325–328.

37. Mironov SL, Richter DW. L-type Ca2þ channels in inspiratory neurones of mice and

their modulation by hypoxia. J Physiol (Lond) 1998; 512(1):75–87.

38. Friedman JE, Chow EJ, Haddad GG. State of actin filaments is changed by anoxia in

cultured rat neocortical neurons. Neuroscience 1998; 82(2):421–427.

39. Mironov SL, Richter DW. Cytoskelton mediates inhibition of the fast Naþ current in

respiratory brainstem neurons during hypoxia. Eur J Neurosci 1999; 11(5):1831–

1834.

40. Ma E, Xu T, Haddad GG. Gene regulation by O2 deprivation: an anoxia-regulated

novel gene in Drosophila melanogaster. Mol Brain Res 1999; 63:217–224.

Respiratory Control in the Newborn 15





2

Gasping and Autoresuscitation

WALTER M. ST.-JOHN

Dartmouth Medical School and Dartmouth-Hitchcock Medical Center

Lebanon, New Hampshire, U.S.A.

I. Introduction

Gasping is the first and last breaths of life. At birth, initial breaths appear to

represent the brief and maximal inspiratory efforts characteristic of gasps. Such

maximal inspiratory efforts, which may be induced by the asphyxia present at

birth, serve to inflate the lungs. With the establishment of adequate oxygenation,

gasps are superseded by normal eupneic ventilatory activity. The supersedure of

gasping by brainstem mechanisms which generate eupnea is so complete that

gasping may not again emerge for many years, with the agonal gasping prior to

death being the extreme for reemergence. However, gasping may also reemerge at

any time when a failure of eupnea results in severe hypoxia or when severe

hypoxia or ischemia has itself caused an elimination of eupnea (Fig. 1). Once

recruited, gasping provides a powerful mechanism for ‘‘autoresuscitation,’’ with a

return to eupnea and normal cardiac function. Such autoresuscitation is much

more effective in the neonate than in the adult (1,2).

Inherent to the above is the concept that neuronal mechanisms underlying

the generation of the gasp may differ from those generating eupnea (3–5). If this

concept is valid, then the question arises as to the status of these neuronal

mechanisms for gasping during most of life. It appears improbable that these

neuronal mechanisms would be quiescent for years and only emerge when
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activated in severe hypoxia or ischemia. Rather, these neuronal mechanisms for

gasping are incorporated into and function as part of the brainstem neuronal

circuit generating eupnea. Severe hypoxia or ischemia suppresses components of

this brainstem neuronal circuit and=or activates mechanisms for gasping. The

mechanism of this activation and the relatively greater efficiency of ‘‘autoresus-

citation’’ in the neonate than in the adult are also topics for consideration.

II. Elicitation of Gasping

A systematic comparison of gasping with normal eupneic ventilation was first

performed by Thomas Lumsden in a series of papers in 1923 and 1924 (6–9). In

addition to exposure to severe hypoxia or ischemia, Lumsden found that eupnea

was replaced by gasping following a brainstem transection at the pontomedullary

junction. Hence, hypoxia-induced gasping was envisaged to result from the

suppression of mesencephalic and pontile components of the brainstem ventila-

tory control system and a freeing of mechanisms for gasping within the medulla.

Many subsequent investigators have confirmed and extended Lumsden’s

observations (see 3–5 for reviews). Concerning the elicitation of gasping in

severe hypoxia, a stereotypical pattern of changes precedes the replacement of

eupnea by gasping. Upon exposure to severe hypoxia, ventilatory activity

increases, with tidal volume and frequency being progressively elevated. Both

variables then decline to a ‘‘primary apnea’’ which is ultimately succeeded by the

large, but somewhat infrequent inspiratory efforts of gasping. If hypoxia is

Figure 1 Autoresuscitation in the newborn. Tracing represents airflow from a plethys-

mograph in which an unanaesthetized 1-day-old rat had been placed. Animal was

breathing 100% oxygen. At the first arrow, the inspired gas was altered to 8% oxygen

in nitrogen. At the second arrow, 100% nitrogen was introduced. Note transient increase in

ventilatory activity and then apnea. Apnea was succeeded by gasping, as evidenced by

large excursions. Air was then re-introduced and the animal recovered a eupneic

ventilatory pattern. (From Ref. 49.)
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continued, the frequency and peak height of gasps ultimately decline to a

‘‘secondary’’ or ‘‘terminal’’ apnea (1–5). Importantly, however, periodic gasps

may continue for minutes or, in neonates, for hours before terminal apnea (10). If

during this extended period of gasping, hypoxia is removed and normoxia or

hyperoxia is reintroduced, the frequency of gasps progressively increases and they

are gradually replaced by eupneic ventilatory activity. This process is termed

‘‘autoresuscitation’’ (1,2) (Fig. 1).

Inherent to the above considerations is the observation that eupnea and

gasping are distinctive patterns of automatic ventilatory activity from the day of

birth. However, in the transition from eupnea to gasping, the duration of the

period of ‘‘primary apnea’’ is exceedingly variable. In fact, this period may be

entirely absent, with the augmented eupneic ventilatory activity being replaced by

gasping. With such a transition, a distinction between the last eupneic inspirations

and the first gasp is not obvious (11–15). This lack of distinction has led to the

concept that eupnea and gasping might be variants of a single respiratory rhythm

(11,14). While this concept remains possible, there is substantial evidence that

different neuronal mechanisms underlie the neurogenesis of eupnea and gasping.

Most prominent upon this evidence is the finding that destruction of neurons in a

discrete region of medulla irreversibly eliminates gasping but not eupnea (see

Sec. VI below). Mechanisms that may underlie the neurogenesis of gasping, and

the relationship of these mechanisms to those generating eupnea, will be

considered in Section IV.

In addition to exposure to severe hypoxia, eupnea is replaced by gasping

following a brainstem transaction at the pontomedullary junction (see 3–5 for

reviews) (Fig. 2). Hence, gasping represents the pattern of ventilatory activity

which can be generated by the isolated medulla. Analyses of gasping resulting

from brainstem transactions with hypoxia-induced gasping has revealed a virtual

identity of characteristics; these characteristics are detailed in Section III.

III. Characteristics of Gasping

A. Neural Activities

Compared to eupnea, gasping might be considered as a greatly simplified pattern

of ventilatory activity. As described in detail in a number of recent reviews

(5,17,18), the eupneic ventilatory cycle consists of three phases: inspiration, and

phases I and II of expiration. The eupneic inspiratory phase is typically defined as

the ‘‘ramplike’’ rise of activity of the phrenic nerve. Bursts of activity, concomi-

tant with that of the phrenic nerve, are recorded from spinal intercostals nerves

and the facial, vagal, and hypoglossal nerves.
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Phase I of expiration is marked by the burst of activity of the branch of the

recurrent laryngeal nerve innervating the thyroarytenoid muscle of the larynx

(Fig. 3). Activity may also be recorded during phase I of expiration from the

mylohyoid branch of the trigeminal nerve, as well as the facial and hypoglossal

nerves. After phase I activities have terminated, activities of spinal nerves

typically commence or augment greatly. These activities of spinal nerves define

phase II of expiration.

The gasping ventilatory cycle consists of two phases: inspiration and

expiration. In fact, the expiratory phase of gasping might be characterized as

the ‘‘absence of inspiration’’ (Fig. 3).

A hallmark of gasping is the extremely rapid rise of inspiratory activity, as

evidenced by the rate of rise of phrenic activity (see 3–5 for review). As opposed

to the ramplike rise of phrenic activity in eupnea, phrenic activity in gasping

reaches a peak value soon after onset and then declines. Hence, phrenic activity

may be ‘‘decrementing’’ in gasping (Fig. 3).

Figure 2 Patterns of automatic ventilatory activity after transections of the brainstem.

Drawing is of the brainstem of the cat, with the cerebellum removed. IC, inferior

colliculus; BP, brachium pontis; scale is in millimeters. Schematic records are of integrated

activity of the phrenic nerve. Eupnea is recorded after a midcollicular transection (level E).

After a rostral pontile transection (level A), apneusis is obtained. Gasping is recorded after

a transection at the pontomedullary junction (level G). (From Ref. 4.)
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Activities of spinal and cranial nerves are like that of the phrenic in

gasping, with all exhibiting a decrementing discharge pattern. Compared to

eupnea, activities during neural expiration, synonymous with the period between

phrenic bursts, are greatly reduced or totally eliminated. Such a reduction of

expiratory activities requires some clarification as, in recovery from severe

Figure 3 Activities of spinal and cranial nerves in eupnea and gasping in the adult cat.

In upper panel, integrated activities of the phrenic nerve (Phr.), ‘‘expiratory’’ intercostal

nerve (T10-11), and ‘‘inspiratory’’ intercostal nerve (T4) are shown. Note alteration of

pattern of integrated phrenic activity from ‘‘incrementing’’ in eupnea to ‘‘decrementing’’ in

gasping. Expiratory intercostal activity was eliminated. In lower panel, integrated activities

of the phrenic nerve (Phr.), recurrent laryngeal nerve (RLN), and branches of the RLN

innervating the posterior cricoarytenoid muscle (PCA) and thyroarytenoid muscle (TA) are

shown. Note that activities during neural expiration of eupnea were eliminated in gasping.

(From Ref. 28.)

Gasping and Autoresuscitation 21



hypoxia or ischaemia, appreciable activities may be observed in the periods

between gasps (19,20). This observation is perhaps not surprising since, as

discussed below, eupnea and gasping share some common medullary neuronal

circuits. However, this reduction or absence of expiratory activities in hypoxia-

induced gasping strongly implies that a neuronal circuit, including expiratory

activities, does not play an essential role in the neurogenesis of the gasp.

B. Response to Chemoreceptor Stimuli

Again, responses in eupnea and gasping differ fundamentally. In eupnea, it is well

accepted that exposure to hypercapnia causes an increase in peak phrenic activity

and the frequency of phrenic bursts and, hence, in both the tidal volume and

frequency of ventilation. Both variables likewise increase upon exposure to

hypoxia. This response is dependent upon the peripheral chemoreceptors.

Following sectioning of the carotid sinus nerves and vagi, hypoxia causes a

fall in eupneic ventilatory activity in decerebrate or anesthetized preparations

(5,21).

In gasping, following transection of the brainstem at the pontomedullary

junction, neither the peak height of phrenic activity nor the frequency of gasping

is systematically altered in hypercapnia. In these preparations, hypoxia does cause

a transient increase in the frequency, but not the height, of gasps. However, these

transient changes in hypoxia are the same in preparations having intact and those

with sectioned carotid sinus nerve and vagi (22). Hence, the characteristics of the

gasping ventilatory pattern appear to be defined by conditions in the environment

of the medulla. Fitting with this concept is the finding that, in paralyzed

preparations, variables of hypoxia-induced gasping are independent of the

concomitant levels of carbon dioxide (23). Moreover, in these same paralyzed

preparations, various levels of hypoxia result in gasping having the same peak

height and frequency (23).

C. Responses to Mechanoreceptor and Other Afferent
Stimulation

A classic reflex in respiratory physiology is the Hering-Breuer reflex, in which

inflation of the lungs causes a premature termination of the eupneic inspiration.

Following bilateral vagotomy, the duration of the inspiratory and expiratory

phases is greatly prolonged, the respiratory frequency is greatly reduced, and the

tidal volume is augmented (24). Such changes following bilateral vagotomy are

most marked in the neonate. Following vagotomy, the decline of respiratory

frequency is so severe that some newborns are unable to maintain a level of
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ventilatory activity which is sufficient for adequate oxygenation (25–27). Hence,

feedbacks from mechanoreceptors of the lungs can markedly influence eupneic

ventilatory activity.

Whether activation of mechanoreceptors of the lung alters the gasping

ventilatory cycle has not been adequately examined. A number of investigators,

beginning with Lumsden, have reported that the pattern of gasping appears the

same before and after bilateral vagotomy and that lung inflation appeared not to

alter the gasping pattern (6,27–29). Concerning Lumsden’s work, the vagi were

apparently inadvertently damaged during dissections in some of his preparations

(see discussion in Ref. 4). In other studies, values before and after vagotomy or in

the presence or absence of lung inflation were obtained during severe hypoxia or

ischaemia (27–29). Hence, any influence of vagal mechanisms upon the gasping

pattern may have been overshadowed.

Some reports do imply an influence, albeit subtle, of activation of

pulmonary stretch receptors upon gasping. In one study (28), gasping was

produced by ligation of the basilar artery, and the lungs were inflated by a

servorespirator, in parallel with activity of the phrenic nerve. Phrenic activity was

modestly altered when these lung inflations were withheld. However, given the

modest frequency of phrenic bursts in gasping, withholding lung inflation would

certainly cause an alteration in blood oxygenation. Two other studies (30,31) were

performed using an in vitro mammalian preparation, which exhibits a pattern of

rhythmic activity which is identical to gasping (4,5). In this preparation, with

attached lungs, lung inflation did produce modest alterations in the duration of the

phrenic burst and interval between bursts. The peak height of bursts was not

altered (30,31). Using an in situ perfused rat preparation, we have reproduced the

findings from the in vitro mammalian preparation during gasping (unpublished

observation). Hence, in this preparation, in which oxygenation is maintained by

an extracorporeal circuit, lung inflation alters the respiratory cycle in gasping,

primarily by changing the period between phrenic bursts.

As in eupnea, gasping was markedly altered by stimulation of the superior

laryngeal nerves (14). Such stimulation altered the duration of the gasp, its peak

height, and the period between gasps. In this same context, gasping is inhibited

by elicitation of a laryngeal chemoreflex, by placement of water or saline in the

larynx (32).

It is perhaps not surprising that the activation of laryngeal and pulmonary

receptors would alter both eupnea and gasping since afferents from both sets of

receptors terminate in the region of the nucleus of tractus solitarius (33–35). It is

well accepted that neurons in this region, termed the dorsomedullary respiratory

nucleus, constitute a portion of the pontomedullary circuit responsible for

defining activity of the phrenic nerve in eupnea and the medullary circuit

which defines the gasp. However, neuronal activities in this region do not play

a fundamental role in the genesis of either the gasp or eupneic inspiration. As
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discussed in Section V below, eupnea is generated by a pontomedullary neuronal

circuit and gasping is generated by a neuronal activities within a discrete region

of the ventrolateral medulla.

IV. Effectiveness of Gasping in Autoresuscitation

In every mammalian species examined, gasping has been found to be a potent

physiological mechanism for restoring ventilatory and also cardiovascular activity

following a severe depression of these activities (1–6,10,11,13,36–38). Hence,

gasping can be a critical mechanism for ensuring survival of the organism. Such

survival mechanisms are most rigorous in the newborn. It is well established that,

within the first few days after birth, many species can successfully ‘‘autoresusci-

tate’’ after being in an environment of complete anoxia for more than an hour.

This maximal period of anoxia declines markedly with development such that, in

the adult, this period is minutes or even seconds (2,10,36,39).

Without doubt, the major factor promoting the exceeding long survival of

neonates in anoxia is the marked reduction in metabolic rate (see 40 for review).

Concomitant with the onset of hypoxia, metabolic rate and, hence, consumption

of oxygen and production of carbon dioxide fall dramatically in the neonate, but

to a much lesser degree in the adult. Evidence of this marked reduction in

metabolic rate is the reduction in core temperature. Also, during this period,

cardiovascular activity is greatly altered with a profound bradycardia and

hypotension (41–43). In addition, there is a redistribution of blood flow, with

preferential maintenance of perfusion to vital organs, including the heart and

brain, and a reduction in perfusion to skin and viscera. With this reduction of

metabolism, gasps become infrequent, even in the newborn. However, if oxygen

becomes available, gasps become more frequent, heart rate and arterial blood

pressure rise, and eupnea gradually replaces gasping (37,41,44).

In addition to a single incidence of anoxia, gasping is very effective in

promoting multiple autoresuscitations from multiple exposures to anoxia. Again,

such autoresuscitation is more effective in the newborn, with animals surviving

numerous exposures to anoxia over limited intervals (45).

V. Failure of Gasping in Autoresuscitation

The corollary of the above discussion is that gasping is ultimately unsuccessful in

autoresuscitation, and such failure is more prevalent in the adult than the

newborn. Since the metabolic energy during periods of anoxia is derived

primarily from glycolysis, a depletion of energy substrates appears to represent

the initial factor accounting for a failure of autoresuscitation. This depletion of

energy substrates occurs in the cardiovascular system before the central nervous
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system. Hence, even though the brainstem ventilatory control system may

generate gasps, in terms of activities of the diaphragm and other ‘‘respiratory

muscles,’’ animals may not survive because of a failure of the heart to recover its

normal functioning (2,42). In this context, such a failure of the cardiovascular

system, before the brainstem ventilatory control system, is also observed in

decerebrate, paralyzed, and ventilated preparation in which ‘‘fictive gasping’’ is

monitored by activity of the phrenic nerve. Following a period of anoxia or

asphyxia, the failure of heart rate to recover from bradycardia after the

reintroduction of oxygen always precedes the failure to reestablish an eupneic

pattern of phrenic activity (unpublished observation). Ultimately, however, the

brainstem ventilatory control system fails and gasping ceases. Such a cessation is

also observed in fictive gasping, recorded from activities of the phrenic nerve in

paralyzed and ventilated preparations or, indeed, in a preparation in which the

cardiovascular system has been replaced by an extracorporeal circuit (16,46).

Again, such a failure of gasping doubtless reflects a failure to provide sufficient

energy for maintenance of neuronal function.

This consideration of a ‘‘failure of gasping’’ should not obscure rigorous-

ness of gasping, especially in the newborn. Indeed, it is difficult to induce a

failure of gasping. In this context, a failure of gasping has been proposed as the

basis of the ‘‘sudden infant death syndrome’’ (3,4,38,42,47). Based on this

proposal, a number of risk factors for SIDS in humans have been reproduced in

experimental preparations. Included in such risk factors are maternal use of

nicotine and cocaine. However, even after prenatal exposure to relatively massive

doses of nicotine and cocaine, newborn rats were still very successful in

autoresuscitation in response to anoxia. The maximum number of successful

autoresuscitations was reduced after exposure to nicotine, but multiple successes

were still present (48–50).

VI. Critical Region for Neurogenesis of Gasping

Since gasping is expressed following a transection of the brainstem between pons

and medulla (Fig. 2), gasping must be generated within the medulla. In a series of

experiments, we found that gasping was irreversibly eliminated following

physical lesions or injections of neurotoxins into a region of the rostral medulla.

These lesions, which eliminated gasping following unilateral placement, did not

disrupt the eupneic rhythm. This critical region for gasping has been termed the

‘‘gasping center’’ (2–5,51–56) (Fig. 4).

The gasping center lies medial and dorsal to the ventral medullary

respiratory nucleus, in the region of the nucleus ambiguus. At its ventrolateral

margin, the gasping center overlaps with a region of the ventral nucleus termed

the ‘‘pre-Botzinger’’ complex (Fig. 4). Neuronal activities within this pre-
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Botzinger complex have been shown to be responsible for the neurogenesis of

rhythmic ‘‘respiratory’’ activities of in vitro preparations of neonatal rodents.

However, as discussed in detail in a number of reviews, this ‘‘respiratory’’ activity

in vitro differs markedly from eupnea in vivo but is very similar to gasping

(4,5,56a). Indeed, it is very probable that these preparations are exhibiting

Figure 4 Locations of the gasping center and pre-Botzinger (pre-Botc) complex in adult

rat and cat. Circles and squares in left panels designate regions in which injections of

neurotoxins or physical lesions eliminated gasping, but not eupnea. Right panels show

location of neurons—designated by cross, filled circles, and shading—taken to be within

the pre-Botzinger complex. Scale is 1mm. Amb, nucleus ambiguus; CX, nucleus cuneatus

externus; DMV, dorsal motor nucleus of vagus; GI, gigantocellular reticular nucleus; IOD,

nucleus dorsalis olivaris inferioris; IOP, nucleus principalis olivaris inferioris; IVN, inferior

vestibular nucleus; NTS, nucleus of solitary tract; p and py, medullary pyramid; PP,

nucleus prepositus; RFN, retrofacial nucleus; SpV, nucleus spinalis nervi trigemini; STN,

spinal trigeminal nucleus; STT, spinal trigeminal tract; VeI, nucleus vestublaris inferior;

VII, facial nucleus; XII, hypoglossal nucleus; 5SP, spinal trigeminal nucleus. (From

Ref. 4.)
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gasping and, as detailed in Section VII below, mechanisms of respiratory rhythm

generation in vitro provide important insights into the neurogenesis of gasping in

vivo.

Given the above, the question arises as to the relationship between the

gasping center and pre-Botzinger complex. In a recent review, these regions are

presented as two separate entities, both of which are essential for the neurogenesis

of gasping (58). However, based on neuroanatomical and physiological evidence,

it appears that these adjoining regions may contain elements of the same neurons,

with soma in the pre-Botzinger complex and dendrites and=or axons in the

gasping center. Anatomical evidence in support of this concept is the finding that

filling of neurons of the pre-Botzinger complex with various dyes reveals

extensive dendritic arborizations in the region of the gasping center (59,60). In

a complementary study, injections of dyes into the region of the gasping center

results in labeling of soma in the pre-Botzinger complex (61).

Physiological evidence that the gasping center and pre-Botzinger complex

represent the same neurons is derived from studies involving injections of

neurotoxins into the regions. Hence, as noted above, injections of such toxins

into the gasping center irreversibly eliminates gasping (51–54). Similar injections

into the pre-Botzinger complex, if performed bilaterally, transiently interrupt

eupnea but irreversibly eliminate gasping (55,56). However, the volume of

neurotoxin which must be injected into the pre-Botzinger complex to eliminate

gasping is greater than if injected into the gasping center. This greater ‘‘effi-

ciency’’ for the gasping center is perhaps reflective of the extensive dendritic

arborizations of neurons of the pre-Botzinger complex into the gasping center. In

any case, it appears probable that neurons of the gasping center–pre-Botzinger

complex represent one component of the pontomedullary neuronal circuit which

is necessary for the neurogenesis and expression of eupnea. However, these same

neurons represent a unique source for the neurogenesis and expression of

gasping.

VII. Mechanisms for the Neurogenesis of Gasping

A. Neuronal Activities Which May Generate the Gasp

Ablation of neurons in a circumscribed region of the rostral medulla irreversibly

eliminates gasping in vivo and its analogue, the ‘‘rhythmic activity’’ of en bloc

and slice preparations in vitro (see discussion in 4,5). Neuronal activities in this

region must therefore be essential for the neurogenesis of gasping. An initial

enigma arises concerning these neuronal activities which might generate the gasp.

Since gasping is elicited only under conditions of extreme hypoxia or asphyxia,

neuronal activities that generate the gasp might be quiescent for most of life. This

concept of neuronal quiescence for many years seems improbable. More probable
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is the incorporation of these neuronal activities which generate the gasp into the

pontomedullary neuronal circuit responsible for the genesis and expression of

eupnea. This pontomedullary circuit is reduced and reorganized in hypoxia, in

ischemia, or following brainstem transactions at the pontomedullary junction, and

neuronal mechanisms for gasping are released.

If a neuronal activity is responsible for generating inspiratory activity, its

activity must commence before the start of activity of the phrenic nerve. For

in vitro preparations, which exhibit gasping, a group of neuronal activities,

termed preinspiratory, commence activity in late neural expiration and fire

through the initial portion of the phrenic burst. These neuronal activities thus

have a discharge consonant with generating the ‘‘burst’’ in vitro. The preinspira-

tory discharge of these neurons is by an intrinsic pacemaker mechanism (60–64).

During eupnea in vivo, the closest analogs to the preinspiratory activities

in vitro are expiratory-inspiratory phase spanning neuronal activities (59,65).

However, such activities cannot play an essential role in the neurogenesis of

gasping, since, in fact, these activities cease in gasping. However, one group of

neuronal activities, which discharge during all or the last portion of the phrenic

burst in eupnea, acquires preinspiratory discharges in gasping (Fig. 5) (20,66).

Thus, these neuronal activities, which have discharge characteristics that are

compatible with generating the gasp, have markedly different discharges in

eupnea. Such a change in discharge characteristics fits with the concept that

neuronal activities that generate the gasp are superseded and captured by the

pontomedullary neuronal circuit generating eupnea.

B. Release of Medullary Mechanisms for Gasping

The question obviously arises as to how severe hypoxia or ischemia or brainstem

transactions between pons and medulla suppress components of the pontome-

dullary neuronal circuit for eupnea such that proposed medullary pacemaker

mechanisms for gasping are released. Again, evidence as to the release of

medullary mechanisms for gasping is derived from studies using in vitro

preparations.

Evidence is now substantial that the rhythmic activity of in vitro en bloc or

slice preparations is generated by the discharge of pacemaker neurons in the

rostral medullary gasping center–pre-Botzinger complex. Fitting with a pace-

maker mechanism for rhythm generation is the finding that in vitro rhythmic

activities are only modestly altered following a blockade of inhibitory synaptic

transmission within the preparation (61,62,64,67,68). This in vitro finding has

been considered as enigmatic as a similar blockade of inhibitory synaptic

transmission severely distorts the eupneic rhythmic activity of in situ preparations

(69). Moreover, injections of blockers of inhibitory neurotransmitter into the

region of the gasping center–pre-Botzinger complex of in vivo preparations
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causes an alteration of the eupneic rhythm to apneusis (70) or a ‘‘gasplike

pattern’’ (57). This enigma concerning inhibitory synaptic transmission has been

resolved by the finding that a blockade of this transmission causes a profound

distortion of the eupneic rhythm of in situ preparations but only minimal changes

of the gasping rhythm of this same preparation (71). The lack of sensitivity of

medullary mechanisms for gasping to a blockade of inhibitory synaptic transmis-

sion fits with concept that, as in vitro, the discharge of pacemaker neurons in the

gasping center–pre-Botzinger complex underlies the neurogenesis of the gasp.

Following the blockade of inhibitory synaptic transmission in situ, the

eupneic rhythm was severed distorted but gasping was not elicited (71). However,

as noted above, ‘‘gasplike’’ discharges have been recruited in some preparations

following microinjections of bicuculline, a blocker of GABAA into the pre-

Botzinger complex (57). Thus, in general, it would appear that a blockade of

inhibitory synaptic transmission alone is not sufficient to release gasping. In this

context, however, it is recognized that inhibitory synaptic transmission within the

Figure 5 Neuronal activity of pre-Botzinger complex in eupnea and gasping. Left

panels show integrated activity of the phrenic nerve (Phr.) and discharge of neuron (Unit)

in eupnea (E) and gasping (G). Right panels show instantaneous discharge frequency of the

neuron during ventilatory cycles of left panels. Arrows designate onsets of phrenic bursts.

Insert is waveform of activity on extended time scale (1 msec). Note neuronal activity

which commenced ‘‘late’’ in neural inspiration in eupnea began before the phrenic burst in

gasping (From Ref. 20.)
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brainstem fails in mild hypoxia (72). Likewise, pontile elements are recognized as

one primary source of neurons whose discharge inhibits activities of medullary

respiratory neurons (5,35,70,73,74). Thus, hypoxia or brainstem transactions

would remove one element suppressing medullary mechanisms for gasping, the

element being inhibitory synaptic transmission, largely of pontile origin.

In contrast to the reduction in inhibitory synaptic transmission, hypoxia is

reported to cause an additional release of glutamate in some regions of the brain

(57,75,76). Such a release might contribute to activation of persistent sodium

channels of neurons in the gasping center–pre-Botzinger complex. As considered

below, activation of these persistent sodium channels may be necessary to release

pacemaker activities of these neurons. Such an activation by glutamate might

underlie the finding that microinjections of the potent glutamate analog DL-

homocysteic acid into the pre-Botzinger complex elicit an alteration from eupnea

to gasping in some preparation (77).

Concerning ionic mechanisms underlying the release of medullary mechan-

isms for gasping, hypoxia causes an increase in the extracellular concentration of

potassium (78). This augmentation probably results from the increased neuronal

activity and occurs immediately prior to and immediately after the onset of

gasping (14,78). In computational models, such an augmentation shifts the

reversal potential for potassium to more positive values of voltage and, hence,

reduces all potassium currents (79). This reduction of potassium currents is

significant since computational studies have demonstrated that the activity of

certain potassium channels may affect the conductance state of persistent sodium

channels. Conductances through such persistent sodium channels are necessary

for the intrinsic bursting behavior of some medullary neurons to be expressed

(79), and are considered to play a major role in the generation of pacemaker-

driven oscillations in vitro (80,81). Thus, reducing potassium currents may

release intrinsic busting behavior in conditional pacemaker neurons and hence

create necessary conditions, along with the elimination of inhibitory synaptic

transmission, for pacemaker-driven gaspinglike oscillations in respiratory motor

outflows (79).

The augmentation in the extracellular concentration of potassium is not the

only mechanism by which conductances of potassium channels are reduced.

Hence, hypoxia per se suppresses several types of potassium channels and

activates low- and high-voltage calcium channels and also persistent sodium

channels in neurons located in many brain regions (e.g., 82–91). The exact

mechanisms intermediating the hypoxia-induced changes in the functioning of

ionic channels and other intrinsic neuronal properties are not well defined. These

mechanisms may involve signaling pathways, such as a change in nitric oxide

(92), and second-messenger systems at the intracellular level. Moreover, hypoxia

may modify channel conductances and neuronal firing properties through

multiple cellular=intracellular mechanisms (92).
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The hypoxia-induced processes, such as alteration of the ionic=metabolic

extracellular environment, modulation of the intrinsic neuronal properties, and

suppression of synaptic inhibition, cannot of course be limited to the region for

neurogenesis of gasping in the rostral ventrolateral medulla. Rather, hypoxia-

induced processes would be altered in many regions of the brainstem and, in

intact animals, in the rest of the brain as well. However, recent studies have

demonstrated that neurons in the rostral ventrolateral medulla have a high

intrinsic chemosensitivity to hypoxia (87,93). It is unknown what intrinsic

properties of these neurons define their special role in genesis of pacemaker-

driven gaspinglike oscillations.

In summary, based on both theoretical and experimental studies, it is

proposed that hypoxia or ischemia suppresses the pontomedullary neuronal

circuit and releases medullary mechanisms for gasping by four interrelated

changes: [1] a suppression of inhibitory synaptic transmission; [2] an augmenta-

tion in extracellular potassium concentration; [3] a decreased conductance

through potassium channels; [4] an increased conductance through persistent

sodium channels. These hypothesized mechanisms for the release of medullary

mechanisms for gasping have been validated in an experimental study using an

in situ preparation of the juvenile rat. In this preparation, a blockade of

glycinergic transmission with strychnine, an augmentation in extracellular potas-

sium concentration, and a block of potassium channels with 4-aminopyridine

resulted in an elimination of eupnea and elicitation of gasping. Importantly, such

an elicitation of gasping occurred under conditions of hyperoxia (94).

Gasping is also elicited under conditions of hyperoxia following micro-

injections of sodium cyanide into the region of the gasping center–pre-Botzinger

complex (93). However, such injections would induce a region of localized

‘‘hypoxia’’ and thus might cause a release of gasping by mechanisms similar to

those in generalized hypoxia or ischemia.

The basis for the release of gasping following several other perturbations is

undefined. Hence, brainstem transactions at the pontomedullary junction would

obviously remove any inhibitory synaptic transmission of pontile origin. Yet, as

noted above, a blockade of inhibitory synaptic transmission alone is typically not

sufficient to release gasping. For in vivo preparations, brainstem transactions

result in a marked fall in arterial blood pressure and, of course, a varying region of

tissue necrosis (22,95–97). Thus, the local environment in the region of the

gasping center–pre-Botzinger complex might be hypoxic and=or acidotic follow-
ing a brainstem transection. Yet, gasping also follows a transection at the

pontomedullary junction of perfused in situ preparations of the neonatal and

juvenile rat (46,94). In such preparations, perfusion of the brainstem should be

relatively constant. Thus, in addition to inhibitory synaptic transmission, another

‘‘factor’’ of pontile origin appears capable of suppressing medullary mechanisms

for gasping. In this context, removal of all pontile influences cannot reasonably be
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equated simply with a removal of synaptic inhibition upon medullary neurons. As

shown in many studies, apneusis follows removal of the rostral pontile pneumo-

taxic center whereas a complete removal of caudal pons is necessary to release

gasping (see discussions in 3,4). Indeed, the pneumotaxic center alone exerts

multiple functions in the control of ventilatory activity (98). It is obviously

unknown whether removal of all pontile influences causes a switch to gasping by

removal of synaptic inhibition upon neurons of the gasping center–pre-Botzinger

complex, combined with depolarization of these neurons and activation of

persistent sodium channels.

The mechanism by which another procedure releases gasping is undefined.

Hence, under conditions of hyperoxia, eupneic ventilatory is replaced by gasping

following elicitation of the ‘‘aspiration reflex’’ by stimulation of the pharyngeal

mucosa (99). A series of studies have validated that gasping following pharyngeal

stimulation is identical to that following brainstem transactions or exposure to

severe hypoxia (54,100,101).

VIII. Summary

Thomas Lumsden’s papers in 1923 and 1924 (6–9) formed the foundation for

contemporary studies of the neurogenesis of automatic ventilatory activity.

Lumsden considered that gasping was a ‘‘relic of some transitory primitive

respiratory process’’ which ‘‘does not appear to influence true rhythmic breathing

of normal type.’’ Yet, presaging the concept of ‘‘autoresuscitation,’’ Lumsden

notes that he ‘‘feels no surprise that the facility has persisted in the evolutional

struggle’’ since ‘‘gasping has been sufficient to revive animals whose higher

respiratory centres have temporarily failed.’’ Gasping represents the expression of

a fundamental respiratory rhythm, generated by the discharge of pacemaker

neurons in the rostral medullary gasping center–pre-Botzinger complex. For most

of life, these pacemaker mechanisms are suppressed, and these rostral medullary

neuronal activities are incorporated into the pontomedullary neuronal circuit

responsible for the neurogenesis of eupnea. Under conditions of severe hypoxia

or ischemia, many components of this pontomedullary neuronal circuit, including

inhibitory synaptic transmission, are depressed. These depressions release the

latent medullary pacemaker discharge and the gasp is generated.
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I. Introduction

The development of lung innervation occurs during the pseudoglandular, cana-

licular, and saccular stages, each of which is characterized by separate milestones

with respect to lung development. In the human lung, the primary pattern of lung

branching is established during the pseudoglandular stage, followed by elonga-

tion of airways in the canalicular stage and the onset of development within the

acinus during the saccular stage (see Sec. II). Until recently, the status of airway

innervation and smooth muscle development was incompletely described during

these phases, which at least to some extent reflected the limitations associated

with the gross anatomical and cellular microscopic techniques employed. As a

result, studies of the functional neurophysiologic behavior of airway afferents and

efferent innervation preceded detailed confocal microscopy studies of airway

innervation. Indeed, the seminal studies of lower airway afferents, such as those
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described by Widdicombe and Sant’Ambrogio (for references see Sec. III), often

referred to the need for detailed studies of the anatomical and cellular nature of

airway innervation.

In the present chapter our purpose is twofold: first, to provide an overview

of the spectacular advances in the knowledge of the development of airway

innervation due to new imaging technologies, and secondly, to review the

functional behavior of the afferents associated with the upper and lower airways.

Interestingly, the former has not only caught up with the knowledge base of the

latter, but in many respects now supersedes it.

II. Anatomy, Morphology, and Distribution

This section describes recent morphological insights into the ontogeny of the

pulmonary innervation in relation to the developing airways. Neural tissue is a

dominant feature of the fetal lung and undergoes dramatic morphological

development during gestation. The stages of maturation have recently been

graphically captured using confocal microscopy. Immunofluorescently stained

whole lungs, lobes, and airway segments were scanned by optical sectioning

through the entire thickness of the airway wall, using markers of neural tissue in

conjunction with markers for airway smooth muscle and epithelial tubules. From

the three-dimensional information obtained, overviews and detailed images of the

network of nerves and forming ganglia that envelop the lung primordia have been

prepared. As lung development proceeds through gestation to postnatal life,

comprehensive maps of the pathways of the nerves to their target tissues have

provided unique views of the airway innervation. The picture that emerges is that

neural tissue and airway smooth muscle are an integral part of the lung from its

inception, and persist in a dynamic state throughout gestation and into postnatal

life and late adulthood. The evidence for this is relatively recent. It begins in the

embryonic lung of the mouse, then proceeds through gestation in the pig and

human.

A. Origin of the Innervation—The Fetal Mouse Lung

The development of the innervation of the fetal mouse lung from days 10 to 14 of

gestation, the early pseudoglandular stage, is first described. In this period,

branching morphogenesis is at its peak, and every 24 h of gestation sees a

striking change in the lung structure and in the maturation of the innervation that

accompanies branching. In mice, two lung buds begin to evaginate from the

foregut at embryonic day 10 (E10) (1), whereas in humans and most mammals

the lung develops from a single lung bud. Neural crest–derived cells (NCC) are

present in the foregut prior to the formation of lung buds and have been assumed
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to migrate into the lung, where they differentiate into intrinsic pulmonary neurons

(2). This migration has recently been demonstrated in the mouse lung by

immunostaining whole mounts of foregut including the lung buds and imaging

them using confocal laser scanning microscopy, from embryonic day 10 (E10)

and thereafter (pseudoglandular stage) (3). NCC are identified with antibodies to

protein gene product 9.5 (PGP 9.5; a general neural marker) and NCC-specific

markers, including phox2b and p75NTR. Phox2b is a transcription factor located

in NCC nuclei (4,5). p75NTR is a low-affinity trk receptor and is present in the

membranes of NCC and their nerve processes (3,5,6). An antibody to the pan-

neuronal marker, PGP 9.5 (7) stains mature neurons and nerve fibers but not

precursors.

At E10, PGP 9.5- and p75-positive nerve fibers run along the dorsal side of

the foregut. Among these fibers are many migrating NCC with phox2b-positive

nuclei and p75NTR-positive membranes. At this early stage, the emerging lung

buds are largely free of NCC, although a few solitary NCC at the base of the lung

buds with occasional processes are directed into the bud. Some NCC in the

foregut had matured sufficiently to show PGP 9.5 staining, whereas the cells in

the lung buds remained negative for this neuronal marker.

By E11, the neural tissue along the foregut condenses into two large nerve

trunks, the vagus nerves, which stained strongly for PGP 9.5 (3). Neural

processes positive for PGP 9.5 and p75NTR reach from the vagi to the trachea

and primary bronchi (Fig. 1A). The vagi comprise neural processes and many

migrating NCC (Fig. 1B). These processes are likely to comprise both afferent

fibers originating from vagal and spinal sensory ganglia, and preganglionic

efferents that will ultimately synapse on NCC once they have completed

migration. Neural processes from the vagi to the primary bronchi (Fig. 1C) and

the dorsal trachea contain migrating NCC. Many NCC are present on the dorsal

trachea located over the trachealis muscle, and some on the ventral surface of the

proximal primary bronchi, in the process of aggregating into large ganglia.

By E12 the lobular organisation of the lung is complete, with one large left

lobe and four smaller right lobes. A large nerve plexus is present on the ventral

side of the lung on the hilum (Fig. 2A) which originates from the vagus (3), and

comprises nerve fibers and large ganglia-like clusters of NCC, with numerous

cells in each cluster. From these ganglia, nerves positive for PGP 9.5 (Fig. 2B)

and p75NTR (Fig. 2C) extend along the bronchi, following the smooth muscle

covered tubules. NCC also migrated along these nerve tracts but lag behind the

growth of the nerve axons (Fig. 2C), e.g., in the left lobe, NCC are present as far

as the branch point of the second lateral, whereas the nerves reached to the end of

the lobar bronchus and also along the more proximal laterals to the base of the

epithelial buds (Fig. 2B). In the original color figures (3), the superimposed

confocal projections of both the neural tissue and the airway smooth muscle

reveal their close relationship.
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By E13 the neuronal precursors lying over the dorsal trachea have matured

to form a PGP 9.5–positive network of thin nerve trunks interconnected by small

ganglia, giving fine fibers that penetrate the smooth muscle layer. By E14 this

plexus is more extensive, comprising larger ganglia and more numerous thick

nerve trunks with multiple connections to the vagi (3) (Fig. 3A). Small nerves

Figure 1 Mouse lung at embryonic day 11, videomicrograph of ventral side (inset). (A)

A confocal projection showing a ventral view of the right upper half of an E11 mouse

lung stained for nerves (black) with the protein gene product 9.5 (PGP 9.5). This also

stained the undifferentiated epithelium of the tubules and growing end buds (gray). The

airway smooth muscle that covers the tubules is stained with a-actin (dark gray). The

carina lies at the top of the figure. The left vagus (V) sends out nerve processes to the

airway smooth muscle covering the left lobar bronchus. Some extend toward the

mesenchymal cap. (B) A single optical section through the vagus shows that it contains

neural crest cells and many axons running between them (stained with an antibody to

p75NTR which is positive for cell membranes and axons). (C) Nerve fibers going from the

vagus into the lung (see A) comprise processes and NCC cells (stained for p75NTR). (From

Ref. 3.)
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Figure 2 Mouse lung at embryonic day 12. (A) A confocal projection of the mouse lung

at E12 (ventral view) shows the lobular organization (the accessory lobe and the vagi have

been removed) with the epithelial tubules in longitudinal section. The first two laterals of

the left lobe reveal the end buds in the process of dividing. The undifferentiated epithelium

of the tubules, and particularly their end buds, are immunoreactive to PGP 9.5 (gray-

black). PGP 9.5 diffusely stains ganglia connected by nerve trunks and fibers in the ventral

hilum (long arrow). (B) PGP 9.5–positive nerve fibers issue from the large ganglion (long

arrow) at the base of the left pulmonary bronchi and reach along the left lobar bronchus

(short arrows) and along some of the laterals, but no PGP 9.5-positive cells and ganglia are

present along the tubules. (C) The large ganglion at the base of the left lobar bronchus

(long arrow) contains many neural crest cells (NCC) with phox2b-positive nuclei (black)

and p75NTR-positive membranes (gray). The NCC migrate along the p75NTR-fibers (gray,

short arrows) that grow along the lobar bronchus and laterals. The cells lag behind the

growth of fibers; the majority have only reached as far as the first lateral and a few as far as

the second lateral. (From Ref. 3.)
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from the ganglia branch into many fine varicose fibers that run along the smooth

muscle bundles. The ganglia vary greatly in size, and many large ganglia contain

>100 cell bodies positive for PGP9.5 (Fig. 3A) and phox2b (Fig. 3B). The axons

in the nerve bundles connecting the ganglia stain strongly for GFRa1, the receptor

for glial-derived neurotrophic factor (see below). The innervation from the vagus

to the main ganglia lying on the dorsal trachea, ventral hilum, and left lobe is

schematically drawn in Figure 3C. During this early pseudoglandular phase, most

nerves mainly follow the smooth muscle–covered tubules, but some nerves

course through the mesenchyme toward the lung cap, where they form varicose

terminal arborizations by E13 (3).

Among the first neurotransmitters to appear in the foregut is CGRP at E12

(8). By E13, nNOS can be demonstrated in the lung by NADPH-diaphorase

Figure 3 Mouse trachea at embryonic day 14. (A) PGP 9.5–positive (black) network of

ganglia connected by thick bundles to the vagus (V). Nerves from ganglia spread over

smooth muscle on the surface of trachea (upper part of panel). (B) Ganglia with phox2b-

positive nuclei (white) and nerve trunks staining for GFRa1 (gray) lying over the dorsal

trachea. (C) Scheme showing the innervation from the vagus to ganglia lying on the dorsal

trachea and ventral hilum. Main nerve trunks to the lobes arise from the latter. Oblique

ventral view. tr, trachea; fo, foregut; ga, ganglia; l vag., left vagus; br, bronchus. (A and B,

courtesy J. Tollet, University of Western Australia.)
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activity in nerves associated with the airways and blood vessels. At E15,

immunostaining reveals the presence of nNOS in neurons and fibers on the

trachea, and from the hilum to the bronchioles (9).

Glial-derived neurotrophic factor (GDNF) has been identified as the most

important neurotrophic factor in the development of the enteric nervous system

(10), and there is increasing evidence to suggest that GDNF is of similar

importance during lung development. In the gut of mice lacking GDNF or

RET (receptor for GDNF), all neurons below the esophagus and proximal

stomach are absent (11), but it is not known whether neurons of the lung are

affected. In cultured explants of left lung lobes at E12, neurons survive and

display proliferation, differentiation and continued migration along the develop-

ing smooth muscle–covered tubules (12,13). In the presence of serum, a

characteristic of these explants is the formation of a layer of a-actin-positive
cells (possibly smooth muscle precursors) that grows out from the lung periphery

and attracts nerves that grow onto this layer. When cultured in GDNF-supple-

mented medium, the amount of neural tissue on this layer increases 14-fold. The

neural tissue consists of a high density network of nerve trunks and large ganglia

and is composed of many PGP 9.5–positive cells, indicating that both migration,

proliferation, and differentiation of neuronal precursors as well as neurite

extension have taken place as a direct result of stimulation by GDNF. This

suggests that GDNF is a chemoattractant to both nerves and NCC. GDNF-

impregnated beads attract nerves growing out from cultured lung explants and in

some instances NCC surround the treated beads. The membranes and nerve

processes of the NCC are positive for the GDNF receptor, GFRa1 (Fig. 3B),

suggesting that nerves and NCC are guided by GDNF. The presence of GDNF-

mRNA has been demonstrated in the mesenchyme adjacent to the fetal mouse

epithelial tubules (14)—possibly in the smooth muscle, which thus may play an

important role to attract nerve fibers and migrating NCC.

B. Mapping the Innervation of the Fetal Pig and Human Lung

The rapid development seen in mice during the pseudoglandular stage from 10 to

14 days of gestation contrasts with that of large mammals where the equivalent

time period lasts from 3 to 8 weeks in the pig and 5 to 17 weeks in the human

(15,16). In mice at E14 and thereafter, the application of confocal microscopy

becomes more difficult. The signal emission is reduced at increasing depth of

scanning, which is a consequence of the increased tissue thickness and density,

and the associated decrease of antibody penetration. These problems can be

overcome by removal of the lung cap, mesenchyme, and pulmonary vascular

tissue, leaving the bronchial tree fully exposed, albeit not in mice. This dissection

is feasible in fetal and postnatal lungs of larger mammals including humans, pigs,

dogs, and rabbits (17–19). Thus, the entire bronchial tree, or any part of it, can be
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progressively scanned field by field with the confocal microscope at high

resolution. Using this approach montages of near complete bronchial trees in

the pseudoglandular stage �6mm long from fetal pigs (15,17) (Fig. 4), and

smaller lengths of subsegmental airways from fetal humans (18) have been

assembled. Overviews such as these clearly display the organisation of nerves and

ganglia and their relationship to the airway smooth muscle (ASM), the glands,

and the blood vessels. Fine detail is also shown at selected sites (Fig. 4 inset).

Thus, the development of the innervation from the embryonic lung bud through

to postnatal life is revealed.

The structural characteristics and distribution of the nerves are similar in

the three species (mouse, pig, and human) at comparable developmental stages

and, likewise, the airway smooth muscle. The muscle bundles are oriented around

the airways perpendicular to their long axis from the trachea through to the base

of the epithelial buds, and this arrangement persists into postnatal life. The

innervation of the porcine and human bronchial tree from the adventitia to the

epithelium has been reported from early gestation through to postnatal life (17–

20), and it is comprehensively described by a series of confocal images on the

web (21).

Pseudoglandular Stage

The main characteristics of the pseudoglandular stage are chains of forming

ganglia interconnected by thick nerve trunks to each other and to the vagus lying

over the ASM of the dorsal trachea and the ventral surface of the hilum. In

general, two thick main nerve trunks extend from the hilum along each airway to

the growing tips. These lie above the airway smooth muscle supported by the

mesenchyme. In the fetal pig at 5.5 weeks’ gestation, proximal trunks �50 mm in

diam. run �40 60 mm above the ASM, progressively decreasing distally over a

length of 4mm to �20 mm in diam. and 15–20 mm from the ASM. They

terminate as thin bundles in the collar of airway smooth muscle that surrounds

the epithelial buds (17,22). All along the length of the trunks, branches descend

toward the smooth muscle, and break up into small bundles. From these, fine

varicose fibers issue that spread over the muscle layer and exhibit arborized

endings located within 1 mm distance from muscle cells, suggesting a possible

functional innervation. At this stage the varicose fibers are essentially randomly

distributed on and in the smooth muscle (Fig. 5), but later become oriented along

the smooth muscle bundles (17,19).

Immature ganglia are present along the main trunks from which nerve

branches radiate out to connect to many other smaller ganglia that form a network

covering the airway wall. Figure 6 shows this innervation in the distal airways of a

fetal human lung at 7.5 weeks’ gestation. The mean distance between ganglia

measured as the Mean Nearest Neighbor Distance (MNND) (19) is 64� 18 mm
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Figure 4 Montage showing the right half of the bronchial tree of a GW 5.5 (16 g body

weight) fetal pig stained for nerves and ganglia with PGP 9.5 (black) and for smooth

muscle with a-actin (gray). Nerve trunks run down the length of the airways and terminate

at the base of the epithelial buds (scale bar 1mm). The boxed region contains an enlarged

view of a proximal area showing a network of interconnected nerve trunks and a large

ganglion (scale bar: 100 mm). The large ganglion (arrow) contains �300 neurons. The

montage was constructed from 54 single confocal images. (From Ref. 17.)
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ðn ¼ 87Þ, very similar to the pig (70 mm at comparable gestation). Ganglia also

lie at most airway branch points, and give rise to smaller trunks that follow the

airways as they proceed distally. Proximal ganglia are large (i.e., >300 cell

bodies at 5.5 weeks’ gestation), whereas distal ganglia are small and ultimately

comprise a few neurons. Individual neurons within the ganglia show different

intensities of staining with PGP 9.5, indicating variance in their type or maturity.

PGP 9.5 gives a diffuse staining of the nerve trunks with many unstained

cell profiles of Schwann cells (revealed using an antibody to the Schwann cell

marker S-100). Staining for synaptic vesicle protein 2 (SV2), a component of the

membranes of the vesicles in the varicosities reveals individual varicose fibers in

the nerve trunks indicating that vesicle traffic is prolific at this stage of

development (17,22). This abundance of SV2-positive fibers decreases with

ongoing maturation; by postnatal life, varicose fibers are restricted to the distal

nerve bundles and the fine fibers that lie on and in the ASM (17). Staining for

Figure 5 Two major nerve trunks stained with synaptic vesicle protein (SV2) traverse

the length of the airway, giving rise to a fine network of varicose processes overlying the

airway smooth muscle stained for smooth muscle myosin (gray). At this stage the varicose

fibers are randomly distributed on and in the smooth muscle located within 1 mm from the

muscle cells. The accumulation of cell bodies (arrow) is a precursor ganglion present at the

bifurcation point of the airway. The cell profiles in the ganglion can be distinguished by the

SV2 positive nerve fibers lying around them. (From Ref. 17.)
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neurofilament sharply defines a small proportion of individual fibers in a trunk.

These fibers can be traced along the tubules, where several terminate in the collar

of smooth muscle that surrounds the base of the epithelial bud (22). The low

proportion of neurofilament-positive fibers in the nerve trunks may reflect the

level of maturity of these nerves, since the proportion of neurofilament-positive

neural tissue increases as gestation progresses (15).

Canalicular Stage

With airway growth there is increasing spatial separation of the ganglia. The large

ganglia lying on the central airways that form nodes at nerve junctions undergo a

fourfold increase in MNND �254 mm. The ganglia vary greatly in size—large

Figure 6 The innervation and airway smooth muscle in the developing airways of a fetal

human lung at 58 days of gestation. The field shows branching epithelial tubules in the

periphery of a lobe. Nerves and ganglia are stained for PGP 9.5 (black) and form a network

overlying the airway smooth muscle stained for a-actin (gray). The bundles are arranged

circumferentially around the epithelial tubule and lie essentially perpendicular to the long

axis of the tubule. In some places the neural network is as much as 40 mm (arrows) from

the muscle layer. Smaller nerve bundles can be discerned (arrowheads), which at higher

power are seen to descend to the surface of the smooth muscle. (From Ref. 18.)
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ones are 120 mm at their greatest width, and contain as many as 200 neurons of

average diameter 11 mm. Furthermore, many of those lying on the trunks

gradually become displaced laterally to become attached by a stem, with

nerves radiating out from them over the airway (15). The bronchial vasculature

becomes more prominent with arterioles running adjacent to the trunks and

around the ganglia. Nerve fibers penetrate the submucosal glands. By midterm,

ganglia have condensed and become compact and spherical.

Figure 7 shows a large montage of the nerve tracts in the subsegmental

airways of a lobe from an 18 week fetal human lung (18). It measures 11 mm in

overall length with an external diameter of 2.2mm at the proximal end, reducing

to 200 mm at the distal ends, and spans seven branchings. Large nerve trunks run

the entire length of airways, reducing from 45 mm to <20 mm diam. distally, with

many ganglia attached to them from which nerves issue to connect with a

network of smaller ganglia lying closer to the airway surface.

A high-power view (Fig. 8) shows that a fine plexus of nerves containing

many small ganglia lies close to the airway smooth muscle. Mucosal nerves are

now abundant. They arise from branches of the adventitial nerves that penetrate

the airway smooth muscle layer at intervals where they run in parallel bundles in

the lamina propria along the length of the airway (18). The development of the

mucosal vascular circulation is now well advanced (19). At this point the lung is

well endowed with the beginnings of a neural network that can serve the afferent

and efferent functions of the vagus nerve.

Expression of Neurotransmitters

Most neurotransmitters make their appearance in the canalicular stage (humans,

16–26 weeks (16); pigs, 7–13 weeks (15); rats, 18–19 days; and mice, 16.6–17.4

days (23). In rats at 17 days’ gestation, calcitonin gene-related peptide (CGRP) is

present in neuroendocrine bodies in the epithelium. At 18 days, CGRP nerve

fibers are present in the trachea, stem bronchi, and proximal intrapulmonary

airways, mainly lying below the epithelium, and by 19–20 days fine fibers are

seen on the bronchial smooth muscle and around blood vessels in the adventitia

(24). In mouse lung, nitrergic neurons can be detected in the airways as early as

E13 by using the sensitive chemical assay for NADPH diaphorase. By E15,

nNOS expression is immunochemically detected in airway neurons and fibers (9).

Functional cholinergic transmission has been demonstrated (as airway

narrowing) in the pseudoglandular stage indicating that some fibers are already

cholinergic (17). In humans, histological evidence for the presence of cholinergic

neurons by 10–12 weeks was reported using acetylcholinesterase (2), which may

not be a reliable marker for the presence of acetylcholine (25). Choline

acetyltransferase (ChAT) is a specific marker for acetylcholine (ACh) (26), and

in fetal pig lungs both ChAT-positive neurons and fibers are present in the trachea

and on the airway smooth muscle of the peripheral airways at the early canalicular
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Figure 7 A montage showing the innervation of the adventitial surface of the bronchial

tree of a segmental bronchus and its branches from a human fetal lung, 18 weeks’

gestation. The tissue was stained for PGP 9.5 (black) and a-actin (gray) to show both

nerves and smooth muscle. Nerve trunks extend to the most distal airways. Ganglia are

present along the trunks and at the divisions of nerve bundles. The insert shows a higher

power projection of a ganglion at the junction of several nerve trunks (arrow). (From

Ref. 18.)
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Figure 8 A higher-power view of the straight region on the right hand side of the

montage in Figure 7 showing the disposition of the nerves, ganglia, airway smooth muscle,

and bronchial arteries. PGP 9.5 (black) stained a plexus of fine nerves containing many

small ganglia. a-Actin (gray) stained both airway smooth muscle and arterioles of the

bronchial circulation that accompany the larger nerve trunks with some less distinct vessels

branching off to overlie the airway smooth muscle. (From Ref. 18.)
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stage. ChAT does not stain the very fine terminal varicose fibers that SV2 reveals,

which may indicate that it is not sensitive enough to detect very low levels of ACh

(15).

Vasoactive intestinal peptide (VIP)- and substance P (SP)-positive fibers are

seen at 16 weeks in the bronchial smooth muscle, and thin fibers containing

CGRP are commencing to ascend from the basement membrane of the epithelium

(2). The latter are likely to be the sensory C-fibers seen in postnatal life

(20,27,28). SP and CGRP are present in the axons of the nerve trunks running

in the airway adventitia at midterm (19), and, by the beginning of the saccular

stage VIP, TH and NPY are also present.

Saccular Stage

The saccular stage runs through most of the third trimester where further

maturation of the ganglia and nerves occurs. The processes of glial cells

increasingly surround the neurons in the ganglia, and the axons in nerve trunks

and bundles (15). This glial ensheathement may contribute to restricting intra-

ganglionic communication between adjacent neurons (29). Separation of the

ganglia greatly increases as the airways lengthen and widen. Neurotransmitters

are fully expressed now, with strong immunostaining of neurons and their axons

(19). Neurofilament is now expressed in a great many neurons and their axons.

The perikarya are located mainly in the periphery of the ganglion with many

neurite structures in the center. Neurons appear to contain one major axon and

therefore correspond to Dogiel type 1 neurons. Some neurons show strong PGP

9.5 staining of the nucleus only, while others exhibit a faint homogeneous

staining throughout the perikaryon (15).

The bronchial mucosal circulation, which is rudimentary at the end of the

pseudoglandular stage, progresses in complexity during the canalicular stage and

is now a well developed network of microvessels. The mucosa is now richly

innervated with nerve bundles and varicose fibers running the length of the

airways, which stain for NOS, SP, CGRP, VIP, TH, and NPY in fetal pig lung

(19). The presence of the neuropeptides SP and CGRP is indicative of an afferent

population of nerves. Although it appears that many nerve bundles use the

arterioles as conduits, our immunohistochemical evidence suggests the opposite,

since the neural tissue can be stained earlier (i.e., in the pseudoglandular stage)

than the bronchial vessels that are first demonstrable in the canalicular stage,

where they run contiguously with the nerves.

Summary: Ontogeny of the Innervation in the Fetal Period

Neural tissue and airway smooth muscle are integral components of the

primordial lung, where the epithelial tubules that constitute the future bronchial

tree are enveloped in a network of precursor ganglia and loose bundles of nerve
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fibers. These ganglia comprise flat patches of neural crest cells that have migrated

along nerve processes that issue from the vagi. They lie over the wall of the

epithelial tubules supported by the mesenchyme, and are interconnected by nerve

bundles. The ASM is also present, being laid down at the base of the epithelial

buds that is the site of new tubule growth. This occurs through an epithelial-

mesenchymal interaction (30). Thus, as the epithelial tubules elongate, the ASM

forms a continuous layer that extends from the trachea to the growing tips. Small

nerve bundles branch from the nerve network and descend to the smooth muscle

where fine varicose fibers lie on and in the muscle bundles. This ASM is

functionally mature shortly after it is formed since the terminal tubules narrow

and relax spontaneously in situ (31–33).

GDNF is a likely neurotrophic factor that acts as a chemoattractant for

nerves in lung explants (13), and GDNF receptors (GFRa1) are present on the

nerve processes in vivo, but whether GDNF is expressed by the ASM is not

known. By the end of the pseudoglandular stage, when branching is virtually

complete, most precursor neural tissue has completed proliferating, and differ-

entiation into mature neurons is progressing. In the canalicular stage ganglia

develop a more compact, spherical shape, and come to lie offset from the nerve

trunks and large bundles. Airway growth increases their separation. Arterioles of

the bronchial circulation appear adjacent to the nerve trunks and nerve bundles.

The mucosal innervation becomes established followed by the mucosal vascu-

lature. The chemical coding of neurons and their fibers occurs during this stage.

In the saccular stage (most of the third trimester), lung growth is rapid, with

greater spatial separation of the ganglia, and their neurons become progressively

ensheathed by glial cell processes, as do the axons in nerve trunks and bundles.

Early Postnatal Period to Adulthood

Overviews and higher-power views of the adventitial and mucosal innervation

have been obtained using whole mounts of airway from rats (34), young pigs and

humans (15,17,18,20), and mice (3,13). However, the classic drawings of lower

airway nerves, neurons, and afferent mechanoreceptors in the ASM of an

8-month-old child, a rabbit, and a dog (35,36), and the varicose fibers in the

mucosa of the epiglottis of dog (37) are a poignant reminder of the skills of these

early workers.

The variety of techniques they employed is noteworthy. These include

combined fixing and staining of the airways by direct instillation into the trachea

after death, and the use of whole mounts and sections 50–100 mm thick. The

advantages of these approaches for investigating airway innervation seem to have

been overlooked later in the 20th century, when thin sections came into general

use. In the past 20 years the availability of reliable, specific antibodies to most of

the neurotransmitters of the autonomic nerves have seen their widespread
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application to characterizing the chemical coding of nerves in the airway wall.

The lack of a suitable antibody to stain parasympathetic cholinergic nerves has

been a major holdup. Staining for acetylcholinesterase is not specific (25). The

relatively recent introduction of an antibody to acetylcholine (26) lacks the

sensitivity to reveal fine varicose nerve fibers (15). More recently, an antibody to

vesicular acetylcholine transporter protein has been successfully used in the

intestine of rats (38). Notwithstanding this deficiency, a large body of information

has been established on the neurotransmitters found in the neurons in the

parasympathetic ganglia, and their efferent nerves to the component tissues of

the upper and lower airways.

There are many recent specialized reviews on neurotransmitters in the

nerves to airway smooth muscle (39), glands and goblets cells (40), upper

respiratory tract (41), immune tissue (42), and bronchial vasculature (43), as

well as reviews of their role in cotransmission and neuromodulation (44,45). In

most of these studies nerves are stained in thin sections (usually �7 mm thick).

To show that cells are innervated requires electron microscopy, but confocal

microscopy has greater utility where it can be used in conjunction with sections

of up to �100 mm in thickness or with whole mounts. It can show that nerves and

cells lie in the same optical plane of known thickness (<1 mm) and at the same

time provides an overview of distribution of nerves. However, the morphology

and distribution of the afferent nerve supply and their endings are where major

deficiencies lie.

Efferent Nerves: Long Preganglionic Fibers and Short Postganglionic
Fibers?

In the adult lungs of large mammals the distribution and morphology of the

innervation become increasingly difficult to characterize in the lungs of adult,

large mammals because of the sheer size of the lung and airway tree. The

thickness of the layers of tissue, particularly connective tissue and cartilage,

makes the adventitial nerves and ganglia extremely difficult to expose compared

with the ease in the fetal lung. Furthermore, the density of ganglia becomes more

and more diluted with growth so that the chances of finding them become very

low, a point that does not seem to be widely appreciated. Ganglia are generally

considered to be absent beyond the third-generation airways, a view largely based

on evidence from early reports (35,46,47). From this it is assumed that long

postganglionic nerves run from the ganglia in the central airways along the length

of the bronchial tree to the terminal airways (29,35). The former researchers

suggest that the central ganglia therefore play a key role in regulating airway

function.
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This view is not compatible with the studies on the development of the

airway innervation reported above (15,17,18). Ganglia are shown to extend to the

9–10th generation in the canalicular stage in 18-week fetal human lungs (18) (see

Fig. 7). At about this point the fine airways (100 mm diam.) break off in the

parenchyma as it is dissected away, so the presence of ganglia in even smaller or

more distal airways has not been documented. In the lung of midterm fetal pigs,

ganglia extend to distal generations of 50 mm diam., which is the limit of the

dissection employed (15,19). These ganglia are mature (proximal) or maturing

(distal) ganglia, and there is no reason why they would disappear through

apoptosis from the lungs at this late stage of development.

For the purposes of calculation it is reasonable to assume that ganglia lie

chiefly in a thin layer surrounding the airway wall. The extent of their separation

with lung growth is then a function of the increase in the surface area of the

airway wall and the increase in length of the airways of the bronchial tree. It

should be possible to obtain estimates for these parameters to determine ganglia

separation in the adult, and thereby the probability of finding them. In summary,

the view that emerges from studying the ontogeny of neural development is one

of long preganglionic fibers and short postganglionic fibers (Fig. 9), which is

consistent with other tissues innervated by autonomic nerves.

Density of Innervation

With the abundance of nerves reported in the fetal and postnatal airways of

several species comes the need for quantifying so that comparisons can be made

between tissues (e.g., ASM and epithelium), and across species (e.g., rat and pig).

Nerve densities in the trachea of postnatal rats (34) and bronchi=bronchioles of
pigs (17,20) have been obtained by a comparable point-counting method (Table

1). The studies show that density of the total innervation to the ASM is about

twofold greater than in the epithelium, and the densities in pigs are about twice

that of rats. Substance P nerves comprise 90% [rat (34)] and 94% [pig (20)] of the

total epithelial nerves (stained using PGP 9.5). While nerves have not been

quantified in the fetal lung, it is clear from inspection of montages of the fetal

airway innervation (3,17,18) that they are as abundant in fetal life as in postnatal

life. Thus, nerve density is maintained during the enormous growth that occurs

during development, indicating that nerves continue to extend over the expanding

surface of the airway wall as growth proceeds. These varicose fibers have,

however, now become oriented in the direction of the muscle bundles, with

single fibers running along most muscle bundles in the young pig (17), adult

mouse (3), and human infant (18) and adult (Fig. 10, lower panel). This

arrangement of a nerve fiber running along the muscle bundle is probably the

main determinant of the ultimate nerve density attained (Fig. 10).
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Orientation of Airway Smooth Muscle Bundles

The muscle bundles encircle the airways and lie perpendicular to the long axis of

the airways in the fetal lungs of humans, pigs, and mice from the trachea to the

terminal airways. This orientation is maintained into the postnatal and adult life of

these species (3,13,15,17,18,22), as well as in postnatal rat and young dog (19).

An ultrastructural study by Ebina et al. (48) reporting that ASM has a pitch of

�30� in adult humans is at variance with these wide-ranging confocal micro-

Figure 9 Proposed distribution of efferent and afferent nerves in the lung. Efferent

ganglionic fibers (solid black lines) arise from the vagus and synapse on neurons in ganglia

that give rise to postganglionic fibers (gray lines). Nerve endings shown as arborized

branchings. From the canalicular stage onward, ganglia are separated from the nerve trunks

by a short stem. Some preganglionic fibers pass through the ganglion and travel in the

same trunks as the postganglionic fibers to terminate in a more distal ganglion.

Postganglionic bundles branch and terminate at their respective target organs, e.g.,

airway smooth muscle, mucous glands. Sensory nerves (hollow lines) from receptive

fields, e.g., epithelium, travel centrally through ganglia and along the vagus to their

neurons in the spinal and spinal ganglia.
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Figure 10 Confocal projection of the innervation of the airway smooth muscle viewed

from the adventitial surface of the bronchus of an adult mouse (upper panel) and a 54-year-

old human (lower panel). Varicose nerves run around the circumference of the airway,

lying along the airway smooth muscle bundles which are arranged perpendicular to the

long axis of the airway (smooth muscle bundles not shown to avoid obscuring nerves). (To

view, see Refs. 2 and 19.)
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scopic studies, where large areas from the central and distal airways have been

scanned. At branching points the perpendicular orientation of some of the ASM

bundles varies to suit the local airway architecture, and occasionally one or two

bundles may lie almost parallel with the length of the airway in the terminal

airways region (49) (J. Lamb, unpublished).

Innervation of Pulmonary Neuroendocrine Cells

Pulmonary neuroendocrine cells are of endodermal origin and arise from the

undifferentiated epithelial cells of endodermal origin that line the tubules in the

fetal lung early in gestation (50). They occur as solitary cells (NEC) and as

clusters in conjunction with Clara cells called neuroendocrine bodies (NEB)

(51,52). They are distributed throughout the entire respiratory tract, nasal

respiratory epithelium (53), laryngeal mucosa (54), and in the lung from the

trachea to the terminal airways and the alveoli (52). In the fetal lung they are

frequently located at the branching points of the tubules. In humans, differen-

tiated NEC and NEB are present by 10 weeks’ gestation (55,56). The NE cells are

bottle- or flasklike in shape, and reach from the basement membrane to the

lumen. They can be distinguished by their profile of bioactive amines and

peptides—namely, serotonin, calcitonin, calcitonin gene-related peptide, chromo-

granin A, and bombesin (57). The NEBs may play a role as hypoxic-sensitive

airway chemoreceptors (58) since an oxygen-sensitive potassium channel coupled

to an oxygen sensory protein has been demonstrated in their membrane at the

Table 1 Density of Innervation of Single Axons (mm=mm2) in the Mucosa and Airway

Smooth Muscle of Rat and Pig

Rat Pig

PGP 9.5 Substance P PGP 9.5 Substance P

Airway smooth muscle

Tracheal 96 4

Bronchioles 210 —

Epithelium

Apical plexus 87

Basal 21

Total 49 44 115 108

Lamina propria 17 8

Total mucosa 66 52

Combined area of fields counted for each tissue area: rat: 250,000mm2 (34); pig: airway smooth

muscle 230,000mm2, epithelium 190,000mm2 (courtesy J. Lamb, University of Western Australia).

PGP 9.5 is a pan-neuronal marker.
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luminal surface in the rabbit (59). They are also considered to be involved in

regulating epithelial cell growth and regeneration through a paracrine mechanism

whereby their bioactive peptides are released into their environment (60).

Ultrastructural studies have shown that some NEC and NEB become

innervated in fetal life (51,55,56). Nerve terminals with synaptic contacts have

been described at the base of the NEC in infant bronchial epithelium (61). In fetal

human lungs at 20 weeks’ gestation, cholinergic axon terminals have been

described deep within NEB (56). Some terminals exhibit vesicle profiles

indicative of adrenergic fibres and form gap junctions with adjacent cells

within the NEB (56). However, the majority of axons are sensory. This has

been demonstrated by a loss of NEB innervation after unilateral nodose vagotomy

(62). In rats, labeling neurons in the nodose ganglia with DiI enabled tracing of

sensory afferents to NEB (63). These nerves do not contain the sensory

neuropeptide CGRP, in contrast to the afferents that supply the C-fiber endings

in the epithelium.

Recent studies in our laboratory (MPS) using confocal microscopy of

whole mounts of adult human lungs revealed an abundance of NEC that were

homogeneously distributed in the epithelium. The density was �250=mm2,

which is several times higher than previously reported. In humans, NEB decrease

in frequency with age and are rare in adult lung (64). Our data support this

finding, as NEB were found only once in several hundred preparations of eight

adult lungs. The solitary NEC exhibited a predominantly flasklike shape. The

base of the cell bodies was located at the basement membrane and issued long

processes, some neuritelike, that extended along the basement membrane and

thicker processes that extended upward to the luminal surface. Nerves were

present in the form of patches in the epithelium. No correlation was found

between frequency of NEC and numbers of nerves. Some nerves lay in close

apposition to NEC, suggestive of a possible functional innervation. CGRP was

present in 20% of all NEC revealed with PGP 9.5 and bombesin. Three-

dimensional animated renditions of NEC that can be viewed from multiple

angles illustrate the extraordinary complexity of the processes and localized

distribution of the CGRP and other markers (21).

The physiological role of the innervation to the NEC and NEB is not well

understood. It has been proposed that the nerve endings at the base of the NEC

subserve an axon reflex, presumably in the NEB itself and possibly to deeper

tissues such as the airway smooth muscle (55). There may also be local reflex

connections through peripheral ganglia. Hypoxia detected by the O2 sensor in the

NEC is presumed to release mediators that stimulate vagal afferents, but no

central nervous reflexes have been identified. Whether they exert only intragan-

glionic effects remains to be shown. Electrophysiological recordings from single

afferent fibers arising from NEB have not been made, and all studies on the effect

of hypoxia on vagal afferents from C-fibers, rapidly adapting and slowly adapting
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receptors have been negative (66). Recent advances in microscopic techniques

with increased sensitivity may shed more light on the morphological basis for

many of the suggested functions of NEC innervation.

Function of the Airway Innervation During Fetal Life

Whether the innervation plays a functional role during specific events in fetal

lung development is unknown. With the recent insight into the organization of the

nerves in the bronchial tree, it should be feasible to carry out neurotransmission

experiments on the ganglia and nerves in the lung either excised from the fetus or

in situ with the fetus partially removed from the uterus. At birth a range of

sensory reflexes are activated in the neonate, e.g., the Hering-Breuer reflex. It is

possible that some afferent mechanoreceptors such as the slowly adapting stretch

receptors located in or adjacent to the ASM of the airways may already be firing

at a low discharge rate in the fetal lung, since it is inflated with liquid. It seems

reasonable to assume that well before birth, afferent and efferent nerves are

capable of function.

Little is known about the pathways of the afferent nerves and their receptors

in the fetal airways. Afferent fibers must have been present when NCC and nerve

processes migrated from the vagi at the formation of the lung bud. They doubtless

represent a major component of the total fibers in the nerve trunks in the fetal

lung, since > 70% of the nerves in the vagus that innervate the lung are afferent

(67). These are the fibers that pass through the ganglia as they extended distally

(Fig. 9). Markers of C-fiber sensory nerves, viz. SP and CGRP, are seen at

midterm in nerve fibers in lamina propria of rats (24) and in the epithelium in

humans (2), but the apical plexus of C-fiber nerve endings in the epithelium that

constitute the receptive fields in postnatal pigs and humans (20) was not

observed. Surprisingly, mechanoreceptors, which are large, treelike arborizations

100–200 mm long, have not been recognized in the fetal airways, but more

focused searching in the ASM and lamina propria of the trachea, bronchi, and

bronchioles may remedy this.

III. Neurophysiologic Behavior of Airway Afferents

A. Upper Airway Afferents

Previous reviews of the upper and lower airways of the newborn have highlighted

the apparent ‘‘choice’’ by the neonate to rely on what has been termed

‘‘obligatory’’ nasal breathing (see 68 for review). Although the latter is actually

more preferential than obligatory, it highlights what appears to be a functional

attempt by the neonate to separate respiratory from alimentary functions of the

upper airway. The behavior of upper-airway afferents reflects this duality, since

they respond to both respiratory and chemical stimuli.
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The apparent importance of chemical stimuli in the upper airway of the

newborn is reflected by the very powerful reflex responses to liquid stimuli

reaching the upper airways (68–70; and Mathew, this volume). Studies using

animal models demonstrated profound apneas in newborns exposed to various

liquids in the larynx (71–73), and the key stimuli appear to be the lack of anions

(70,73). In the human infant, especially preterm infants, feeding has often been

associated with a dis-coordination of feeding and breathing behaviors where the

former has taken precedence over the latter with deleterious impact (see Mathew,

this volume). These studies highlight the importance of both qualitative and

quantitative feedback from upper-airway afferents to the medulla regarding the

type of media (air vs. liquid) present in the upper airway. Although studies of the

impact of liquid media on respiratory reflexes of the newborn are important, this

review focuses exclusively on the behavior of upper-airway (laryngeal) afferents

exposed to ‘‘respiratory’’ stimuli (i.e., responses associated with air as the media

present in the upper airway).

The reflex responses of the upper airway largely reflect the afferent

feedback from the recurrent laryngeal and the superior laryngeal nerves, which

are both branches of the vagus nerve (68,74). The motor and caudal afferent

innervation of the larynx is provided by the recurrent laryngeal nerve (RLN),

while the cranial afferent feedback from the larynx is supplied by the internal

branch of the superior laryngeal nerve (75). Laryngeal reflexes are largely

abolished by section of the superior laryngeal nerve (SLN), reflecting the

importance of the afferent axons from this region (74,75). The SLN is composed

of myelinated and unmyelinated axons, and in the newborn the former corre-

sponds to �20% of the axons compared to almost 60% in the adult (75).

Respiratory Modulation of Upper-Airway Afferents

Initial studies of laryngeal afferents described the response of receptors to

mechanical=punctate or liquid stimuli delivered to the laryngeal region (for

review see 74). Although it was appreciated that stimuli of a more respiratory

nature could be present, the search for a way to classify the respiratory behavior

of laryngeal afferents was greatly stimulated by the observations of Mathew and

coworkers (76–78). They found that application of subatmospheric pressure to the

isolated upper airway caused enhancement of inspiratory genioglossus muscle

activity, as well as reducing diaphragmatic discharge. This implied that receptors

in the upper airway provide feedback that differentiates obstructed from normal

breaths, which in turn causes strategic recruitment of respiratory muscles to

reverse obstruction. Subsequently, Sant’Ambrogio and coworkers (79), whose

group at this point included Mathew, provided an interpretational framework that

led to a unifying classification of laryngeal respiratory afferents with respect to
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respiratory stimuli. This framework allowed investigators to separate the cyclical

respiratory afferent activity, which originated from the upper airway, from that

related to other stimuli. The classification of superior laryngeal receptors by

Sant’Ambrogio’s lab into transmural pressure, temperature=airflow, and local

respiratory muscle activity or ‘‘drive’’ categories provided a novel classification

paradigm that led to significant insight into how laryngeal afferents transduce the

phase of respiration and=or the presence of upper-airway obstruction.

The typical discharge patterns of receptors sensing temperature, pressure,

and laryngeal muscle contraction (or drive) are illustrated in Figure 11. The

classification of laryngeal receptors into these categories relied on an ingenious

series of manipulations (see Fig. 11) such that larynx afferents could be [1]

subjected to normal respiration through the upper airway (Fig. 11 intact), [2]

bypassed via respiration through a tracheal cannula (Fig. 11, tracheotomy), [3]

exposed to subatmospheric laryngeal pressures during ‘‘occluded’’ respiratory

efforts originating above the larynx (Fig. 1, upper AWocclusion), or [4] bypassed

during ‘‘occluded’’ respiratory efforts originating in the lower airway (Fig. 1,

lower AW occlusion). Each maneuver causes the selective removal or enhance-

ment of one or more of the stimuli that are specific to each class of laryngeal

afferents. The tracheotomy maneuver allowed for the withdrawal of pressure- and

flow-related stimuli from the upper airway, leaving only respiratory drive to

laryngeal muscles intact.

Occluded efforts performed below the larynx eliminated the same stimuli,

except that the drive to laryngeal muscles was enhanced due to a reflex

prolongation of inspiration associated with withdrawal of volume-related feed-

back. Occlusions performed above the larynx removed flow but enhanced

subatmospheric pressure-related stimuli. By comparing the response to each

maneuver receptors were classified into one of the three categories. Thus, cold-

sensitive afferents discharge only when airflow is present in the upper airway,

pressure-sensitive endings discharge only when exposed to subatmospheric

pressure, and ‘‘respiratory drive,’’ or laryngeal muscle contraction, afferents

discharge under all conditions in which laryngeal abductors are recruited.

Further studies refined the definition of the appropriate physical stimuli for

each class of afferent. For example, pressure-sensitive endings typically display a

laryngeal muscle contraction- or drive-sensitive component, and laryngeal muscle

drive-sensitive afferents often possess a sensitivity to subatmospheric pressure

(74). The use of cold or warmed inspired air was used to confirm the temperature-

sensitive nature of the cold afferents (80,81), since they fail to respond if inspired

air is warmed to body temperature. Menthol acts as a chemical selective stimulant

of laryngeal cold sensitive endings (81), similar to that described for other

temperature-sensitive endings. The action of menthol has long been appreciated

by the condiment and tobacco industry, where menthol is routinely used to

produce a sensation of ‘‘coolness’’ or enhanced airflow in the upper airway.
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Figure 11 Cartoon illustrating the expected discharge pattern of afferent receptors

recorded from the superior laryngeal nerve during a single inspiration performed during

manipulations of upper-airway stimuli (left to right) in a hypothetical human subject.

During normal respiration (intact), all three types of upper-airway afferents are active:

temperature-sensitive endings (cold), subatmospheric pressure–sensitive endings (pres-

sure), and endings sensing activation of laryngeal muscles due to abduction of the vocal

cords (i.e., respiratory drive to laryngeal muscles). Each receptor provides phasic,

inspiratory activity to the medulla (compare to other figures). If the upper airway is

bypassed (tracheotomy), only Drive receptors would be expected to discharge since all

other mechanical and temperature-related stimuli would be absent from the upper airway.

During occlusion above the larynx (upper-AW occlusion), the larynx is subjected to

enhanced subatmospheric pressure and Drive, whereas occlusion below the larynx (lower-

AW occlusion) only provides Drive-related feedback. Comparison of the discharge

response of the afferent receptor in each maneuver allows for classification into tempera-

ture (cold), subatmospheric pressure (pressure), and laryngeal muscle=respiratory drive

receptors. Temperature=cold receptors no longer exhibit the normal inspiratory during the

three experimental maneuvers due to the loss of the appropriate stimulus (compare left-

hand cold receptor discharge to that seen to the right for each maneuver). Pressure-

sensitive endings exhibit inspiratory discharge only during intact or occluded efforts

performed above the larynx in which they are exposed to subatmospheric pressures

(compare left-hand discharge and third from left for the same receptor). Laryngeal

muscle=respiratory drive receptors discharge during all conditions since the laryngeal

abductors always receive efferent discharge during inspiration. The ‘‘filled’’shading depicts

the presence of airflow. The ‘‘open’’ shading in the lower airways depicts the absence of

airflow and presence of increased subatmospheric pressure during the occlusions. The

upper-AW and lower-AW occlusion differ only in the presence or absence of subatmo-

spheric pressure in the larynx respectively. (From Ref. 79.)
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Anderson et al. (82) linked respiratory modulated laryngeal receptors to

chemical stimuli. They found that respiratory modulated receptors are also

acutely sensitive to a low osmolality stimulus. Interestingly, laryngeal receptors

sensitive to lack of chloride ion did not possess a respiratory modulation. Thus,

although some respiratory modulated receptors play a dual role, sensing air and

liquid stimuli, others do not. The basis for the osmosensitivity is not clear,

although it should be possible to test hypotheses that have been advanced for

other osmosensitive neurons in the CNS (83). The development of an in vitro

model in which receptor responses could be studied from an isolated larynx,

similar to that employed for the lower airways (84), would allow one to directly

test the molecular basis for laryngeal receptor osmosensitivity.

The collage of signals from laryngeal afferents is thought to be helpful in

detecting upper-airway obstruction. Indeed, the loss of cold receptor discharge,

enhanced pressure receptor discharge, and continued or enhanced respiratory

drive receptor discharge provides the neurophysiological basis for the reflex

responses associated with obstructive apneas. Indeed, these afferents appear to be

capable of providing a signal that is graded with respect to the magnitude of

upper-airway obstruction.

The same three classes of laryngeal receptors have been described in the

newborn (85), although the discharge frequency of the pressure receptors in

response to a range of subatmospheric pressures is reduced compared to that of

the adult (86). The reflex impact of stimulation of laryngeal receptors in newborn

animals appears to be amplified compared to that reported for the adult (68). For

example, stimulation of cold receptors by flow or menthol through the isolated

upper airway causes inhibition of breathing in newborn animals (85–88), as does

subatmospheric pressure applied to the upper airway (85). Selective stimulation

of laryngeal cold-sensitive endings with menthol also causes a depression of

respiration in the newborn (87). Although there is a tendency in the newborn for

stimulation of upper-airway afferents to cause apnea rather than simply modifying

the behavior of upper-airway and respiratory muscle recruitment (68,74), this may

be related to anesthesia. Indeed, inhalation of menthol in sleeping newborn

animals and human infants elicits only transient effects on respiratory pattern

compared to the previous studies in anesthetized animals (Anderson, Froese, and

Fisher, unpublished observations).

Sant’Ambrogio and Sant’Ambrogio recently reviewed the role of laryngeal

C-fiber afferents (75). Laryngeal C-fiber afferents elicit cough, changes in pattern

of breathing, and bronchoconstriction, although there is considerable species

variability (75). In contrast to this evidence of a role for laryngeal C-fiber

afferents, Stockwell and coworkers (89) found that in adult human subjects

blockade of the SLN did not reduce the response to a citric acid stimulus. Citric

acid is thought to be one of many stimuli activating C-fibers, although capsaicin,

the pungent ingredient from hot peppers, is typically used as a powerful and
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selective stimulant (90). Reconciliation of the Stockwell (89) data with other

studies remains outstanding. There do not appear to be any data on the behavior

of laryngeal C-fiber afferents in the fetus or newborn, and the reader is therefore

referred to recent reviews of receptor behavior in the adult (75).

Future Studies of Laryngeal Afferents

Investigation of laryngeal and other upper-airway afferents has the potential to be

fertile. There are no studies of the detailed ontogeny of upper-airway afferents or

of their behavior in fetal life, where the larynx serves as a variable resistor that

controls the egress of pulmonary fetal liquid (68). Furthermore, the morpholo-

gical approach described above for the innervation of the lower airways has yet to

be unleashed on laryngeal innervation. Indeed, the three-dimensional structure of

laryngeal airway afferents and their ontogeny remains to be determined.

With respect to laryngeal C-fiber afferents, few studies have interpreted

their findings in light of the recent advances in C-fiber afferent biology, such as

the cloning of the capsaicin=vanilloid receptor (VR1) (91) or the production of a

transgenic model lacking the VR1 receptor (92). Descriptions of the molecular

determinants of afferent activity in other mechanoreceptor afferent systems

(mutant or knockout mice) provide much promise in enhancing the understanding

of upper-airway receptor behavior, as well as providing therapeutic molecular

targets that could alter receptor discharge and therefore respiratory sensation.

B. Lower-Airway Afferents

The vagus nerve is a mixed nerve that is composed of myelinated and

unmyelinated axons. Although the respiratory component represents a minority

in terms of the total number of axons (93), respiratory discharge dominates

recordings of whole vagus nerve activity in the newborn or adult. The presence of

a dominant respiratory modulation in whole nerve vagal afferent recordings

reflects the larger axon diameter of receptors and the associated increased

amplitude of receptor signal.

Receptors having a respiratory modulation fall into two groups of myeli-

nated afferents: slowly adapting receptors (SARs) having conduction velocities

ranging from �10–70m=sec and rapidly adapting receptors (RARs), which are

Ad fibers, having conduction velocities ranging from 2.5 to 50m=sec depending
on the species involved (94,95). SARs are located in airway smooth muscle (96)

and respond to changes in tension placed on the receptor endings as the lung is

inflated (97). RARs ramify in the epithelium of the airways and may also display

a respiratory modulation during inflation, but they may also respond to deflation

of the lung (97). Although both types of receptors may often be treated as

homogeneous groups, it is almost certain that subclassifications exist in terms of

the chemical and mechanical stimuli activating them (see Table 2).
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Slowly Adapting Receptors

SARs transduce transpulmonary pressure (Ptp) (97), and as a result discharge

with a ‘‘phasic’’ component during inflation of the lung which in some receptors

is also accompanied by a ‘‘tonic’’ discharge at functional residual capacity

(Fig. 12). SARs display a slowly augmenting discharge during lung inflation

and they adapt slowly to a steady state discharge frequency in response to

maintained inflation (Fig. 13). The discharge frequency of neonatal SARs is

reduced compared to the adult, and this appears to be a robust observation across

mammalian species (74,98–101). Based on the adaptation index (AI% ¼ peak

discharge–steady-state discharge=peak discharge), the dynamic sensitivity of

SARs appears to be similar for the newborn and adult (102). However, no

studies have examined the sensitivity of neonatal SARs to the rate of change of

applied pressure (dp=dt) or whether the relative sensitivity of the receptor to static

and dynamic (dp=dt) changes of transpulmonary pressure (Ptp) is affected by

hyperinflation (103).

In both the newborn and adult the activity of SARs is sensitive to

underlying bronchomotor tone, and an increase in smooth muscle tone, due to

reflex changes in vagal efferent activity, augments SAR discharge (104–106).

This provides a feedback loop for the control of smooth muscle contraction since

SAR activity reflexly reduces bronchomotor tone (107). Richardson and Mitchell

Table 2 Cell Body Properties of Respiratory Afferents in the Guinea Pig

Cell body location

Category Nodose ganglion Jugular ganglion

Ad fibers, % of cells 95% 48%

C-fibers, % of cells 5% of fibers 52%

Mechanical sensitivity

Ad fibers 15x > jugular

C-fibers

Rapidly adapting receptors

96% 6% of Ad & 8% of C-fibers

Slowly adapting receptor

4% 96% of Ad & 98% of C-fibers

Cells responding to

hypertonic saline 92% 85% of Ad & 88% of C-fibers

Cells responding to

capsaicin

No response of Ad fibers

73% of Ad & C-fibers

Source: Ref. 117.
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(106) described the remarkably sensitive nature of this link between smooth

muscle tone and SAR activity (Fig. 14). They discovered that parallel respiratory

output from medullary respiratory centers was delivered to both respiratory

skeletal and airway smooth muscles simultaneously, and that the phasic efferent

input to smooth muscle was mechanically transduced and reflected in SAR

discharge. Although SARs are capable of following very high-frequency changes

in tension, airway smooth muscle responds fairly slowly to changes in vagal

efferent activity, and therefore, and at high breathing frequencies, smooth muscle

tone is ‘‘averaged’’ to a higher steady-state level (106). Thus, the accompanying

SAR sensitivity to inflation may be enhanced although breath-by-breath modula-

tion is lost (106). In the newborn, SAR activity is affected by bronchomotor tone

(104,105), but the link between phrenic nerve activity and SAR discharge has not

been studied directly. The input from SARs related to phrenic output in ventilated

infants could help explain why some infants ‘‘fight’’ mechanical ventilation more

than others (108–112). If so, then one would expect that muscarinic antagonists

Figure 12 Respiratory modulation of slowly adapting receptor (SAR): typical record-

ings of a ‘‘phasic’’ (A) and a ‘‘tonic’’ (B) SAR from a newborn dog. Note the phasic slowly

augmenting discharge of the SAR during inflation of the lung in both receptors. Upper

trace ¼ recording of action potentials; lower trace ¼ transpulmonary pressure (Ptp). (From

Schweitzer and Fisher, unpublished.)
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may help to alleviate the response by removing vagal smooth muscle tone.

Furthermore, pharmaceutical targeting of airway afferents may also provide a

useful therapeutic target in ameliorating dyspnea or counterproductive efforts

during mechanical ventilation.

Rapidly Adapting Receptors

RARs are thought to contribute to cough, reflex bronchoconstriction, and rapid

shallow breathing (113–115). As their name implies, this group of receptors adapt

rapidly to maintained inflation of the lung (Fig. 15). RARs are less frequently

Figure 13 Adaptation of slowly adapting receptors to maintained inflation: typical

adaptation of discharge frequency in a SAR from a newborn dog. Note that both phasic (A)

and tonic (B) receptors display slow adaptation to the maintained lung inflation and that the

speed of inflation (i.e., dp=dt) alters the magnitude of the adaptation (A vs. B). Upper

trace ¼ receptor discharge frequency (Hz); middle trace ¼ recording of action potentials;

lower trace ¼ transpulmonary pressure (Ptp). (From Schweitzer and Fisher, unpublished.)
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encountered in receptor recordings in the adult and newborn (99,101), represent-

ing some 15–18% of receptor recordings in the adult, but this may reflect both a

dissection and an audio discrimination bias for smaller diameter fibers with

modest discharge frequencies. RAR recordings are even more rarely encountered

in the newborn, representing some 4–5% of receptors recorded from canine and

opossum airways (99,101). RARs are concentrated at airway branch points in the

Figure 14 SAR discharge in response to efferent contraction of airway smooth muscle

(ASM) in phase with phrenic discharge. Note the continued presence of a phasic discharge

of the SAR in phase with the phrenic nerve discharge despite the withdrawal of ventilation

of the lung and a constant airway pressure. The maintained modulation of SAR activity

reflects a parallel respiratory medullary outflow to airway smooth muscle via vagal

efferents. Upper trace ¼ airway pressure; middle trace ¼ recording of integrated phrenic

nerve discharge; lower trace ¼ discharge frequency of a SAR. Transpulmonary pressure

(Ptp). (From Ref. 106.)
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adult, but little is known of their location within neonatal airways on a

morphological or neurophysiological basis. Nevertheless, RARs are thought to

exert powerful effects through cough and pattern of breathing. The reduced cough

reflex of the newborn is consistent with reduced RAR activity (68).

In the adult, RARs have a chemical sensitivity to compounds such as

phenylbiguanide (PBG), which is a 5-hydroxytryptamine-3 receptor agonist. The

potential physiologic role of G-protein-coupled receptor (GPCR) mechanisms on

RAR discharge is not clear, and the impact of such mechanisms have yet to be

examined in the newborn. At least some RARs respond to capsaicin, the pungent

ingredient of hot peppers (116). Capsaicin is typically assumed to stimulate

unmyelinated C-fiber afferents, although the coincidence of RAR activation

challenges this assumption and raises the question of the apparent physiologic

role of capsaicin responsiveness in RARs (116). Riccio et al. (117) reported that

the phenotypic response of airway afferent cell bodies was differentiated on the

basis of their location in the nodose or jugular ganglion (see Table 1). They

reported that the nodose ganglion contained a predominance of cell bodies from

Ad fibers, whereas the jugular ganglion was composed of almost equal popula-

tions of cell bodies of Ad and C-fiber afferents. There were also differential

responses to capsaicin and hypertonic saline depending on the ganglionic location

of the cell bodies. Pulmonary edema and lymphatic obstruction also activate

RARs (118). Recent studies have also clearly shown that the activity of afferent

nerves can be increased by allergic inflammation of the airways (119,120).

Neurotransmitters such as dopamine reduce the discharge of RARs (121),

potentially through D2 receptors (122). The GPCR-related sensitivity of RARs

suggests that mechanical afferent feedback from the lung has the potential to be a

highly controlled variable. It also reveals the potential to alter RAR activity

Figure 15 Adaptation of a RAR to maintained inflation: typical rapid adaptation of

discharge frequency in a RAR from a newborn dog. Upper trace ¼ recording of action

potentials; lower trace ¼ transpulmonary pressure (Ptp). (From Schweitzer and Fisher,

unpublished.)
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pharmaceutically in order to modify respiratory sensation which may be highly

beneficial in inflammatory lung disease or during mechanical ventilation. None of

the responses related to RAR activity have been studied in the newborn.

C-Fiber Afferents

C-fiber or unmyelinated afferents represent > 90% of the respiratory afferents

from the lung (93), and they are thought to play an important role in inflammatory

lung disease of infancy and adulthood (115,119,123–127). Undem’s group has

provided significant insight into the functional behavior and ganglionic segrega-

tion of specific sensory modalities between the nodose and jugular ganglia of the

vagus nerve (117,119,125). As mentioned above, respiratory afferents in the

jugular and nodose ganglion display differences in their mechanical or capsaicin

sensitivity (117). Studies of the in vivo respiratory discharge and reflex effects of

C-fibers show that these fibers respond not only to capsaicin but also to

inflammatory mediators such as major basic protein or eosinophilic cationic

protein (120,126–130).

Virtually nothing is known of either the behavior or the morphology of C-

fiber (or Ad) afferents in the neonatal lung. At the same time, knowledge of the

molecular mechanisms affecting C-fibers has advanced rapidly due to the

identification and cloning of the vanilloid receptor-1 (VR1) (131) and subsequent

production of a VR1 knockout mouse lacking the VR1 protein (92). VR1 is a

nonselective cation channel that increases its conductance in response to

capsaicin and heat (92). Loss of VR1 causes a severe reduction in the response

to both capsaicin and heat in VR1�=� mice and, as expected, results in a loss of

dorsal root ganglion cell responsiveness to these stimuli (92).

Lung C-fiber afferents were initially implicated as a possible afferent

mechanism in the newborn lung on the basis of the bronchomotor and cardiac

effects (bronchoconstriction and bradycardia) to right heart injections of capsaicin

(132). C-fiber afferents have also been suggested to be responsible for the

laryngeal and pattern of breathing response of newborn lambs to capsaicin or

pulmonary edema (133–135). The recent observation that the VR1 antagonist

capsaizepine blocks the reflex bronchoconstrictor effects of capsaicin provides

more definitive evidence that C-fiber afferents are indeed responsible (136).

Figure 16 illustrates the response of a neonatal canine C-fiber afferent recording

to right heart injection of capsaicin (Schweitzer and Fisher, unpublished observa-

tion). Note the brisk short latency response of the multifiber recording. Since

there are no reported studies of the behavior of C-fiber afferents in the newborn, a

high priority should be associated with studies of their neurophysiological

cellular behavior. C-fibers are polymodal afferents that are thought to be activated

by Hþ, inflammatory mediators, such as lactic acid, and prostaglandins
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(90,120,127,130,137). In the newborn, lactic acid causes a reflex bronchocon-

striction that is at least partially mediated by C-fiber afferents, since perineural

capsaicin reduces the magnitude of the bronchomotor response (138).

The morphological and neurophysiological aspects of lower-airway affer-

ents remain an area in need of further investigation. Recent insight into the

molecular mechanisms involved in the mechanical and chemical signaling of

afferent receptors (92,131,139) provides unparalleled opportunities to test novel

hypotheses with respect to the ontogeny of airway afferents.
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I. Introduction

The mammalian newborn is perfectly adapted to transition at birth from a fetal

state, totally dependent on the mother, to independent air-breathing life. This

chapter will first consider how chemoreceptive neural systems develop in utero in

anticipation of the need for the newborn to match metabolic needs with exchange

of oxygen and carbon dioxide. Then we will consider postnatal adaptation of

chemoreceptor systems to the air breathing state, as well as postnatal insults

which can interrupt this orderly process of maturation.

II. Development of Chemoreception

A. Fetal Life

Rhythmic contractions of the diaphragm, intercostals, and laryngeal adductors are

present in most mammals by the beginning of the second third of gestation (1–3).

These spontaneous breathing movements (FBM) occur during periods of low-

voltage, high-frequency sleep similar to REM sleep in the adult (4). The

frequency of FBM increases with advancing gestation, occurring �30% of the
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time near term in the sheep (5). In the human, there is evidence for sensitivity of

fetal breathing to a number of stimuli, including maternal smoking, use of

alcohol, maternal glucose, and even the time of day (6) (Fig. 1).

The level of carbon dioxide in the blood may be the primary drive for FBM,

upon which sleep state acts as a powerful modulating influence. The relative

suppression of fetal breathing (as compared to the adult) appears to reflect a

balance of inhibitory and stimulatory influences acting on central respiratory

drive. The central chemoreceptors necessary for response to changes in arterial

CO2 develop early in fetal life. For example, the sheep fetus responds to

hypercapnia and hypothermia with an increase in FBM, even during high-voltage,

slow-wave sleep, when breathing movements are normally absent (7). In addition,

the sheep fetus is capable of responding to acute hypoxia with a reduction in

FBM, and to asphyxia with powerful gasps (8–10).

Figure 1 Percentage of time spent breathing by 11 fetuses at 34–35 weeks each hour of

the day. Mothers were given meals at 8 AM, 12 noon, and 5 PM. Fetuses made breathing

movements a greater percentage of the time during the second and third hours following

breakfast, lunch, and dinner. (From Ref. 6.)
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Pontine structures may play a critical role in suppression of hypercapnic

and hypoxic chemosensory response in the fetus. As noted above, FBM are not

ordinarily present during high-voltage, slow-wave sleep. Johnson and Gluckman

(11) found that lesioning of the lateral pons permitted hypercapnic stimulation of

FBM. These authors also noted that bilateral lesioning of the upper pons in lamb

fetuses reversed depression of FBM by hypoxia (12). Thus, pontine descending

inhibition is a critical influence on the pattern of FBM, and may act to conserve

energy in utero, at a time when FBM are not necessary for control of CO2 and O2

exchange.

B. Transition to Postnatal Life

At birth, however, the fetus must convert within a few short minutes from

dependence on the placenta for gas exchange, to a fully respiring organism. The

rapidity and fidelity of this remarkable transition reflect the state of maturation of

the entire cardiorespiratory system at birth: lungs, diaphragm and accessory

muscles, circulation, and neural control of breathing.

To survive, the newborn must convert the irregular fetal pattern of breathing

to the sustained, adaptive pattern of the adult. A number of influences act acutely

at birth to support breathing, including cold stimulus (thermoreceptors), the

arousal mechanism, the CO2 chemoreceptors (2,13,14), oxygenation (15–17),

and the postnatal increase in metabolic rate that has been demonstrated in

experimental studies of mammalian newborns (18,19). In an elegant series of

studies Kuipers et al. (20–22) considered the role of hypercapnic chemoresponse

in initiation of postnatal breathing. When fetal lambs were placed on extra-

corporeal membrane oxygenation and maintained at constant PaO2 and tempera-

ture, onset of breathing at birth was dependent on an increase in CO2 (20–22).

Cord occlusion, long thought to be critical for onset of breathing, did not

stimulate breathing in this model. These studies support the concept that CO2

chemosensation is a critical element in the normal transition to postnatal life.

III. Maturation of Chemoreceptor Responses to
CO2=H

þ

A. Developmental Changes in Ventilatory Responses

The ventilatory response to CO2 has been clearly shown to increase with

advancing postnatal and gestational age (23,24) in preterm human infants.

Therefore, the breathing response to CO2 in preterm infants is relatively impaired

when compared to term neonates or adults, and it appears that this difference is

both quantitative and qualitative. Whereas term neonates and adults increase their

ventilation through an increase in both tidal volume and frequency, preterm

infants do not appear to increase frequency in response to CO2 (25–27). This
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somewhat unique response of respiratory timing during hypercapnic exposure is

associated with prolongation of expiratory duration (see below).

For many years it was unclear whether this reduced ventilatory response to

CO2 in small preterm infants was the result of mechanical limitations in

respiratory mechanics or decreased respiratory neural output, possibly associated

with diminished chemosensitivity. Krauss et al. (28) simultaneously measured

work of breathing and ventilatory response in premature infants and concluded

that both mechanical and neurological factors limited the response to CO2. Frantz

et al. (23) confirmed that ventilatory responses to CO2 are decreased in premature

infants, and by measuring end-expiratory occlusion pressures suggested that

decreased respiratory center sensitivity or output contributed to this phenomenon.

Zhou et al. (29) have reported that phasic phrenic nerve response to hypercapnia

changes from irregular to regular between 7 and 10 days of age in unanesthetized

decerebrate newborn rats.

We have shown, in both unrestrained rat pups as well as in vagotomized,

intubated, and ventilated rat pups, that hypercapnic ventilatory responses are

impaired in newborn rats relative to adult rats, signifying a central origin for such

response (30). The failure of respiratory rate to increase during hypercapnia,

accompanied by a prolongation of expiratory time in this model, is analogous to

the response observed by Noble et al. (25) in preterm infants. A similar response

has been observed by Dreshaj in decerebrate, vagotomized, paralysed, and

mechanically ventilated piglets (31). On the basis of these observations we

hypothesized that an inhibitory neurotransmitter implicated in control of breath-

ing, such as g-aminobutyric acid (GABA), might be implicated in CO2-induced

prolongation of expiratory time. Administration of the GABAA receptor blocker,

bicuculline, significantly reduced or eliminated this phenomenon in both the rat

pup and piglet models (30,31), implicating brainstem GABA-ergic mechanisms

in the CO2-induced prolongation of expiratory time and the resultant diminution

of ventilatory response during early development. These observations are

consistent with the earlier data of Xia and Haddad (32) that the newborn rat

brainstem has a much higher GABAA receptor density than the adult brainstem.

Inhibitory neurotransmitters such as GABA may play an important role in the

predisposition to respiratory inhibition due to diverse stimuli in early postnatal

life in mammalian species (33) (Fig. 2).

As discussed later, a coordinated response of various respiratory muscle

groups during both inspiration and expiration is key to maintenance of ventilatory

stability. Dreshaj et al. have recently observed that hypercapnia-induced prolon-

gation of expiratory time in decerebrate, vagotomized, spontaneously breathing

piglets is associated with an increase in thyroarytenoid (laryngeal adductor)

activation and an accompanying increase in laryngeal resistance (34), as seen in

Figure 3. This phenomenon appears to contrast with the decrease in laryngeal

resistance induced by hypercapnia in mature animals (35). We speculate that
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laryngeal braking in the neonate serves to optimize gas exchange and prevent

large fluctuations in functional residual capacity when infants are exposed to

hypercapnia. This pattern is primarily central in origin, and does not appear to be

due to volume sensitive vagal or laryngeal sensory feedback.

B. Central Chemosensitive Sites and Postnatal Maturation

Over many years, intensive research has focused on the localization of chemo-

sensory sites. These studies showed that the chemosensitive neural elements of

the ventrolateral surface of the medulla play a pivotal role in the regulation of

respiratory activity and ventilatory responses to CO2 (36,37). Although more

recent physiological data demonstrated the presence of chemosensitive sites in

regions outside of the ventrolateral aspect of the medulla oblongata, physiological

studies have established primary importance for the ventral medullary chemo-

sensitive regions.

Few detailed maturational studies have focused on changes in distribution

of medullary chemosensory structures that might explain the observed differences

in hypercapnic ventilatory responses during development. These issues have been

Figure 2 Schematic presentation of neuronal pathways that may be involved in chemical

regulation of inspiratory output and respiratory timing during development. Oxygen

deprivation or increase in CO2 leads to activation of secondary glutamergic neurons that

project to the inspiratory generating network as well as to GABA-containing neurons.

Excitation of inhibitory cells decreases inspiratory activity and prolongs expiratory

duration. Laryngeal stimulation, mechanical or chemical, activates second-order neurons

that mainly project to GABA interneurons, which in turn inhibit activity of the inspiratory

rhythm generating network, causing a decrease in tidal volume and a prolongation of

expiratory time.
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difficult to address owing to the lack of definition of a clearly structured

organization of the chemosensory system at the single-cell level. Methods used

to identify chemosensory neurons, such as the single-cell recording technique, do

not allow the sampling of a large number of functionally active cells under awake,

nonsedated experimental conditions. One way to circumvent these difficulties is

to examine hypercapnia-induced expression of encoding transcription factors

such as the c-fos gene, a member of the immediate early genes, and its product

Fos protein (Fos). This technique has been used as a cellular marker to identify

activated neurons within the CNS, as during CO2=H
þ exposure (38,39).

Belegu et al. employed this technique during hypercapnic loading of rat

pups at various postnatal days (39). Fos-positive cells were observed as expected

in the ventrolateral medulla. No postnatal age-related differences were observed

in the number of neurons exhibiting CO2-induced Fos expression. Fos-positive

cells were additionally observed in the lateral paragigantocellular reticular nuclei,

in the medullary midline complex, and in the raphe pallidus and raphe obscurus.

The number of activated cells in the midline neurons was actually higher at 5 than

at 40 days of age. These findings indicate that neurons activated by increases in

CO2=H
þ concentrations are well developed from the first days of postnatal life in

maturing rat pups. Therefore, deficiency in the neuronal network for sensing

increases in CO2=H
þ does not appear to play a major role in the decreased CO2

responses observed during early maturation.

It is still possible that postnatal maturation may influence the relative

importance of discrete chemosensitive sites beyond the ventrolateral medulla,

such as the medullary caudal raphe nucleus (40,41). We therefore inhibited or

Figure 3 An example of the effects of hypercapnic loading on translaryngeal pressure

(TLP) and on the EMG activity of the thyroarytenoid muscle and the diaphragm (D).

Steady-state hypercapnia caused a decrease in breathing rate, entirely due to prolongation

of expiratory time. Changes in respiratory activity induced by hypercapnic loading

increased translaryngeal pressure and the electrical activity in all three muscles. (From

Ref. 34.)
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destroyed midline chemosensitive neuronal activity employing the piglet model

(42). These experiments demonstrated that the medullary midline neurons are

required for full expression of both phrenic and hypoglossal responses to CO2

(see later). These data therefore raise the possibility that dysfunction of these

midline brainstem neurons may contribute to respiratory instability in early

postnatal life.

There is little available information on the role of second-messenger

systems in modulating ventilatory patterns and CO2 responses during early

development. Protein kinase C (PKC) appears to be involved in CO2-induced

cfos mRNA expression in the central nervous system (43). Recent data suggest

that PKC modulates respiratory timing mechanisms in rats, and that the neural

substrate mediating respiratory output may be more critically dependent on PKC

activity in the immature animal (44). Future studies should clarify the role of this

and other second-messenger systems during normal and abnormal respiratory

patterning and their roles in modulating the neurotransmitter mediated pathways

described earlier.

C. Central Neural Pathways for Chemosensation and Arousal

In recent years, considerable progress has been made in understanding develop-

ment of central chemosensitivity at the cellular and functional levels by combin-

ing molecular biological techniques (e.g., c-fos expression) (39) and

neurotransmitter immunohistochemistry. Since physiologic responses are highly

coordinated and coherently assembled, a number of different neurochemicals may

participate in transmission of chemical information, and in dynamic control of

final motor and behavioral responses. In support of this concept, CO2 exposure

and O2 deprivation have been shown to lead to activation of discrete cell groups

along the neuraxis, including subsets of cells outside the ventrolateral medulla

including monoaminergic neurons (e.g., noradrenalinergic, serotoninergic, and

histaminergic cell groups). Activation of monoaminergic neurons by an increase

in the concentration of CO2 and=or Hþ will facilitate respiratory related motor

activity, particularly of upper-airway dilating muscles. In addition, these neurons

coordinate sympathetic and parasympathetic tone to visceral organs, and parti-

cipate in adjustments of blood flow with the level of motor activity. Any deficit in

CO2 chemosensitivity of a network of monoaminergic nuclei might lead to failure

of homeostatic responses to life-threatening challenges during sleep—for

example, during sleep apnea or nocturnal asthma.

In the mammalian central nervous system monoaminergic neurons are well

developed and provide widespread projections throughout the entire brain

(45,46). Monoaminergic pathways represent key components of the reticular

activating system and are implicated in diverse physiological functions, including

behavioral state control (47,48). It has recently been shown that a subpopulation
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of these neurons that belong to dissociable neurotransmitter-specific monoamine-

containing cell groups could sense changes in concentrations of CO2 or H
þ and

use their transmitter content to relay information that modulates responses to

hypercapnia in a concentration-dependent manner (49). A majority of these

neurons are also activated by oxygen deprivation (38).

Catecholaminergic Neuronal Groups, Arousal, and Chemoreception

Studies from our laboratory have demonstrated that noradrenaline containing

neurons are part of the neural network that senses changes in arterial CO2. In

these experiments (49,50), we examined c-fos expression in catecholaminergic

neurons following exposure of unanesthetized rats to hypercapnic stress. Breath-

ing a gas mixture with elevated CO2 induced activation of the c-fos gene in

widespread regions of the CNS, as shown by the expression of Fos-like

immunoreactive protein. Colocalization studies of tyrosine hydroxylase and

c-fos revealed that in the brainstem 73–85% of noradrenaline containing cells

expressed Fos immunoreactivity. Double-labeled cells were found in the ventro-

lateral medullary reticular formation (A1 noradrenaline cells), in the dorsal aspect

of the medula oblongata (A2 noradrenaline cells), in the pons (A5, A6, groups),

and ventrolaterally to the locus coeruleus (A7 group). Activation of these

neuronal groups by hypercapnia may overcome sleep-related inhibitory inputs

and send parallel signals to the medullary respiratory network for adjustment of

ventilatory drive, and to CNS structures responsible for arousal.

The coerulocortical and cholinergic systems are implicated in different

forms of behavioral arousal. Recently, it was shown that the number of brainstem

adrenaline and noradrenaline neurons is decreased in sudden infant death

syndrome (SIDS); this decrease is closely correlated with brainstem gliosis

(51). Furthermore, in SIDS victims there is a deficit in catecholaminergic

innervation of the diencephalon and basal ganglia, suggesting impairment of

the development of the neuronal connection from the brainstem (52). Hence,

catecholaminergic changes may underlie sleep-related alterations in respiratory

and cardiovascular control, and failure to arouse during prolonged sleep apnea.

This concept is supported by findings in infants of substance-abusing mothers.

Substances such as cocaine affect the development of monoaminergic pathways

(53). These infants have an increased risk of SIDS, manifest abnormal sleeping

ventilatory patterns, and require a significantly longer exposure to hypercapnia

before arousal (54). Furthermore, Hunt et al. (55) suggested that an arousal

response deficit may be critical in the pathophysiology of SIDS. In support of this

concept, Kinney et al. (56) described decreased muscarinic binding in the arcuate

nucleus, which might contribute to a failure of responses to cardiopulmonary

changes during sleep.
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Hypercapnic arousal responses are altered in a variety of respiratory

disorders, including Prader-Willi syndrome (PWS), a disease characterized by a

number of abnormalities of hypothalamic function, such as hyperphagia, short

stature, temperature instability, hypogonadotrophic hypogonadism, and neuro-

secretory growth hormone deficiency. Compared with normal controls, patients

with PWS are reported to have sleep-disordered breathing, a blunted hypercapnic

ventilatory response, and a significantly higher arousal threshold to hypercapnia,

which may contribute to sleep-disordered breathing in this disease (57). Structural

alterations in the hypothalamic paraventricular nucleus are observed in these

patients (58), suggesting that a deficit in noradrenaline containing neuronal

pathways may contribute to an arousal deficit and CO2 retention.

Congenital central hypoventilation syndrome (CCHS; ‘‘Ondine’s curse’’) is

believed to be due to insensitivity of the central chemoreceptors to CO2. Children

with CCHS may present in the newborn period with absent ventilatory responses

to both hypercapnia and hypoxia, suggesting either abnormal central and

peripheral chemoreceptor function or abnormal central integration of chemo-

receptor input. Children or adults with CCHS who have little or no arousal

sensitivity to hypercapnic stress may have an altered catecholaminergic system,

but subjects with CCHS who are aroused by hypercapnia may possess some

central nonrespiratory-related chemoreceptor functions (59). Anatomical or

functional alterations in noradrenaline-containing cells could exist in these

individuals, but have yet to be demonstrated.

A part from the role of catecholaminergic neurons in chemosensation and

arousal, there is increasing evidence that serotonergic midline neurons play a role

in the ventilatory response to hypercapnia (60), and are involved in diverse

physiologic functions. Axonal projections and terminal arborizations from these

cells invade almost the entire neuraxis, from the most caudal segments of the

spinal cord to the frontal cortex (61). In studies from our laboratory, we found that

hypercapnic loading activated a subpopulation of serotonin-containing cells

within the caudal midline nuclei (62).

It has been shown that the activity of serotonin-containing neurons is

decreased during sleep. Entering slow-wave sleep (non-REM), neuronal activity

slows to �50% of the quiet waking level and loses its regularity. Finally, during

REM sleep, most serotonin neurons become nearly quiescent, via activation of

GABA-ergic inputs (61).

During sleep, diminished activity of serotonin neurons may lead to a

decrease in airway patency. Entering sleep and in non-REM or REM sleep,

respiratory drive to upper-airway dilating muscles preferentially is decreased (for

review see 63). In humans, this may lead to obstructive sleep apnea, hypopnea,

and autonomic stress (63,64). Furthermore, alterations in serotonergic pathways

may cause failure of homeostatic responses to life-threatening challenges (e.g.,

asphyxia, hypercapnia) during sleep (65). In children, altered serotonergic path-
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ways could contribute to the severity of obstructive sleep apnea; however, this

hypothesis remains to be confirmed by studies focused on development of this

neuronal pathway.

Histaminergic Neurons and Response to Hypercapnia

The third group of monoaminergic neurons in the CNS, histaminergic neurons,

may play an important role in chemosensation and arousal, in parallel with the

serotonergic and catecholaminergic neuronal groups. These histaminergic

neurons are confined to the posterior hypothalamic area. Scattered groups of

these neurons are referred to as the tuberomammillary nucleus. These cells give

rise to widespread projections extending via the basal forebrain to the cerebral

cortex, as well as to the thalamus and pontomesencephalic tegmentum. The

histaminergic system may act as a regulatory network for whole-brain activity,

including hormonal functions, sleep, food intake, thermoregulation, locomotor

changes, and arousal (66).

Recently we observed that a subset of histamine-containing cells are

activated by hypercapnic loading (49). Activation of histamine-containing cells

by an increase in CO2 or H
þ may affect central respiratory drive, via activation of

NTS neurons which are heavily innervated by histaminergic fibers (67,68).

The link between sleep-related respiratory disorders in infants and maternal

smoking during pregnancy (69,70) could be partly due to interference of nicotine

with the development of the histaminergic CNS system. Nicotine inhibits

histamine-N-methyltransferase (71), leading to altered histaminergic transmission

and arousal deficit.

D. Neonatal Apnea

The incidence of apnea of prematurity is inversely related to gestational age, and

probably approaches 100% in the most immature preterm infants, depending

on the diagnostic criteria employed (72). Such cessation of breathing is

usually accompanied by ventilatory and cardiovascular consequences, namely

hypoxemia, hypercapnia, and bradycardia.

Apnea of prematurity is thought to be secondary to immaturity of brainstem

centers that regulate breathing. This immaturity in regulation of breathing is also

manifested by immaturity in the respiratory responses to hypercapnia, hypoxia,

and an exaggerated inhibitory response to stimulation of airway receptors.

Although a cause-and-effect relationship has not been documented for disturbed

control of breathing and the occurrence of apnea in preterm infants, strong

associations are very well established. Histologically, immaturity of the preterm

brain is manifested by a decreased number of synaptic connections, dendritic

arborizations, and poor myelination. Functionally, Henderson-Smart and co-

workers reported that auditory-evoked responses are longer in infants with
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apnea than in matched preterm controls, indicating delay in brainstem conduction

time (73). Furthermore, multiple inhibitory neurotransmitters and neuromodula-

tors have been implicated in the pathogenesis of disturbances of breathing at both

the peripheral and central chemoreceptors, including dopamine, adenosine,

endorphins, GABA, and prostaglandins, and these may be upregulated in early

life (33).

When compared to nonapneic controls, there is even greater impairment of

the hypercapnic breathing response in preterm infants with apnea (74,75).

Gerhardt and Bancalari (74) and others documented that the CO2 response in

preterm infants with apnea was shifted to the right and had a lower slope than in

infants without apnea. In other words, at the same level of CO2, minute

ventilation in babies with apnea was lower. Pulmonary mechanics, respiratory

frequency, and dead-space volume were similar in the two groups. These data

strongly suggest that a central immaturity of respiratory neural output may

account for the attenuated CO2 response in preterm babies, in particular those

with apnea. However, a cause-and-effect relationship between apnea of prema-

turity and the attenuated response to CO2 has not been clearly established, and

both might simply represent facets of a decreased respiratory drive.

Apnea is traditionally classified into three categories based on the presence

or absence of obstruction of the upper airways. These are central, obstructive, and

mixed apneas. Central apnea is characterized by total cessation of inspiratory

efforts with no evidence of obstruction. In obstructed apnea, the infant tries to

breathe against an obstructed upper airway, resulting in chest wall motion without

nasal airflow throughout the entire apnea. Mixed apnea consists of obstructed

respiratory efforts usually following the central pauses, and is probably the most

common type of apnea. The contribution of obstruction to apnea was first

described by Thach and Stark, who observed that the frequency of apnea

increased when the premature infant’s neck was flexed (76). Subsequently,

upper-airway obstruction was found to accompany apnea even in the absence

of neck flexion (77). The site of obstruction in the upper airways is mostly in the

pharynx; however, it may also occur at the larynx, and possibly both sites. Mixed

apneas are the most common in small premature infants and account for more

than half of all apneas, followed in decreasing frequency by central and

obstructive apnea (78).

The prominence of mixed apnea has led to comparative analysis of upper-

airway versus chest wall muscle responses to chemoreceptor stimulation. Upper

airway muscles, such as the alae nasi, genioglossus, and posterior cricoarytenoid

(laryngeal abductor), typically have their onset and peak of phasic activity prior to

corresponding events in the diaphragm (79). This presumably serves to ensure

upper-airway patency at peak inspiratory flow. In response to hypercapnic

exposure in piglets, there was a relatively linear increase in diaphragm activation

(79). In contrast, genioglossus and alae nasi exhibited a higher threshold, and
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activities only began to increase at a significantly higher level of CO2 (80). It is

possible that during hypercapnia, as during apnea, an initial increase in

diaphragm, but not upper-airway activation, superimposed upon collapsed

pharyngeal or laryngeal structures, might predispose to the obstructed inspiratory

efforts that characterize mixed apnea. Furthermore, decreasing central chemo-

sensitivity by cooling at chemosensitive sites preferentially inhibits neural output

to upper-airway muscles (81). In premature infants, noninvasive measurements

have demonstrated that the diaphragm EMG is low during obstructed inspiratory

efforts (82). However, at resolution of apnea, both diaphragm and upper-airway

activities are increased. Therefore, it appears that decrease in diaphragm activity

is common to both central and mixed apnea, although collapse or closure of the

upper airway, and delayed upper airway muscle activation, may prolong the

episode and its consequences.

Decreased central chemosensitivity may also contribute to apnea by

modulation of inhibitory reflexes arising from laryngeal afferents. Laryngeal

stimulation is a well-documented trigger for reflex apnea, which serves to protect

the lungs from aspiration. This response is most prominent during the neonatal

period (83), and while it is assumed to be an essential protective reflex, an

exaggerated response has been suggested to be a cause for apnea of prematurity

or SIDS. The mechanism responsible for the greater sensitivity of the respiratory

system to the inhibitory effects of laryngeal stimulation early in development is

not clear, although maturational changes in central chemosensitivity might

contribute to postnatal alterations in the strength of this potent inhibitory

reflex. We have documented in the piglet model that withdrawal of central

chemosensitivity by cooling the ventral medullary surface significantly decreases

the threshold current of superior laryngeal nerve stimulation needed to inhibit

diaphragm activity (84). Thus, decreased CO2=H
þ central chemosensitivity may

partially explain the vulnerability of preterm infants to stimulation of laryngeal

afferents, thus further accentuating respiratory instability in this population.

IV. Chemoreceptors for Oxygen and Their Role in
Breathing

A. Structure and Pathways

The carotid bodies are the principal sites at which changes in arterial PO2 are

sensed. These small glomus structures are located at the bifurcation of the

common carotid arteries in the neck. Each carotid body consists of clusters of

type 1 (glomus) cells, which are considered to be the essential chemosensory

elements. Type 1 cells are surrounded by glialike type II cells, and the entire

structure is in close contact with a network of capillaries (Fig. 4). The carotid

bodies sense hypoxia resulting from a decrease in partial pressure of oxygen;
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interestingly, they do not respond to a decrease in oxygen content alone, such as

in carbon monoxide inhalation or anemia. An important modulation of the

sensory activity of the carotid chemoreceptors is provided by the level of

CO2=H
þ. For example, Carroll et al. (85) have shown that the carotid sinus

nerve output in the kitten becomes increasingly sensitive to PaCO2 with

advancing age (Fig. 5).

Figure 4 Diagram of the cellular components of the carotid body. The vesicle contain-

ing type 1 cells (I) are in close apposition to afferent carotid sinus nerve (CSN) endings

and encapsulated by type II cells (II). The carotid body has a rich blood supply (cap,

capillary; art, arteriole). (From Ref. 175.)

Figure 5 CSN%N-N CO2 responses in four age groups; s, hyperoxia; d, normoxia; n,

hypoxia. (From Ref. 85.)
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The carotid bodies transduce a change in partial pressure of oxygen by

activating sensory nerve endings of the carotid sinus nerve, a branch of the

glossopharyngeal nerve. Afferent fibers traveling in the carotid sinus and vagus

nerves terminate almost entirely in the nucleus tractus solitarius (NTS) (for

review see 86; 87–90). There is evidence from studies of both adult and some

newborn animal species that N-methyl-D-aspartate (NMDA) glutamate receptors

in the NTS play a pivotal role in peripheral chemoreceptor-mediated hypoxic

ventilatory responses. Systemic administration of the NMDA glutamate receptor

antagonist MK-801 has been shown to attenuate the hypoxic ventilatory response

and the peripheral chemoreceptor response to sodium cyanide in developing

piglets, anesthetized dogs, and adult rats (91–93). Direct application of NK-801

to the NTS reduces the Ve response to hypoxia (94). Furthermore, NMDA

glutamate receptors in the brainstem have been shown to increase with advancing

postnatal age in the rat pup (95). Thus, an increase in NMDA glutamate receptors

parallels the acquisition of a sustained increase in ventilation, which characterizes

maturation of the hypoxic ventilatory response in the rat. From the NTS,

chemoreceptor reflex pathways project to diverse sites in the lower brainstem

and spinal cord (96).

B. Mechanisms of Oxygen Chemoreception in the Carotid Body

A neural structure which controls respiration for the whole organism must be

acutely sensitive to changes in partial pressure of oxygen in the arterial circulation

(oxygen sensor function), and must be capable of rapid and sustained response to

new challenges (modulation of sensor function and neurotransmission). In the

type I cells of the carotid body, a number of biochemical changes occur during

hypoxia; however, the exact molecular oxygen sensor is unknown. Chemorecep-

tor cells of rabbit and cat release dopamine in proportion to hypoxic stimulus, and

in parallel to carotid sinus nerve output (97–99). This release of dopamine is

dependent on the intracellular calcium. Neurotransmitter release (e.g., dopamine)

can be triggered by depolarization involving activation of voltage dependent Ca2þ

channels (100). Furthermore, Lopez-Barneo et al. (using isolated patches of

plasma membrane) demonstrated that chemoreceptor cells possess an outward

Kþ current sensitive to low PO2 (101). Thus, this O2-sensitive Kþ channel is a

candidate for the O2 sensor coupling arterial PO2 to activation of the type I cell.

The molecular site for oxygen sensing in the membrane could be a hemoprotein

that senses low PO2 (102,103). An alternative site for oxygen chemoreception

may exist within the mitochondria of the type I cells. Biscoe and coworkers have

studied these mitochondria, and found that their redox state and electrochemical

potential are dependent on a PO2 in bathing solutions, which is in the physiologic

range (104). Therefore, the mitochondrion could internally signal that a change in

arterial oxygen content has occurred.
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For carotid sinus nerve output to increase in response to hypoxia, neuro-

transmitter release at the synapse between the carotid sinus nerve and the type I

cell must be coupled to change in PaO2. Many neurotransmitters and receptors

have been identified in the carotid body and in the carotid sinus nerve including

dopamine and D2 receptors, acetyl choline, serotonin, adenosine, substance P,

and nitric oxide (for reviews see 105, 106). Endogenous dopamine is the most

abundant transmitter in the carotid body , and its content appears to be highest

soon after birth, thereafter decreasing over the next 7 days in the rat pup (107).

Endogenous D2 dopamine receptors may act to inhibit the response of the type I

cells to hypoxia, and could contribute to the low sensitivity to hypoxia of the

carotid body in the immediate postnatal period. The neuromodulator adenosine is

also synthesized in the carotid body, and could modulate dopamine synthesis

through binding to A2a receptors (108). The current rapid advances in under-

standing fostered by direct recording from isolated carotid type I cells may soon

clarify further details of the complex chemotransduction pathways in the carotid

body.

C. Physiologic Effects of the Carotid Bodies on Breathing in
Postnatal life

The carotid chemoreceptors are the primary mediators of increase in breathing

during acute hypoxia. In addition, they undergo tonic activity that supports

minute ventilation (109). Their sensory neural output has been studied in a variety

of ways, including direct recording from the carotid sinus nerve, as well as

experimental studies of the alterations in breathing evoked by carotid body

denervation in experimental animals. In the fetal sheep, the carotid chemorecep-

tors are spontaneously active, in utero, beginning at about 90 days’ gestation

(110). The PaO2 of the fetus is normally �25mmHg in late gestation. At this

level of O2, chemoreceptor discharge is low, and increases steeply when PaO2 is

reduced below �15mmHg. As noted above, stimulation of fetal carotid chemo-

receptors does not significantly increase fetal breathing movements. This appears

to be due to pontine descending inhibition which effectively blocks neural input

from the carotid bodies to the CNS.

After birth, the acute rise in PaO2 perfusing the carotid body has been

shown to silence the chemoreceptors. Then, over the first weeks of life, arterial

chemoreceptor sensitivity is reset, moving the stimulus response curve to the

right, so that the carotid bodies can sense changes in PO2 in the physiologic range

(111–114) (see also Fig. 5). This chemoreceptor resetting results in an increase in

the ventilatory response to hypoxia, as shown in experimental animals and in

human infants over the first week of life (115–119).
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The role of the carotid body in postnatal breathing has also been inferred

from studies of the acute and chronic effects of carotid body denervation on

respiration in animal subjects. In carotid body–denervated newborn lambs,

Purves noted a decrease in Ve and rise in PaCO2 with some periods of irregular

breathing (120,121). The pattern of breathing is also abnormal in newborn cats

and rats after carotid body denervation (122,123). Thus, these observations

support the contribution of the carotid bodies to ventilation during normoxic

breathing.

Some caution is warranted, however, in interpretation of these studies.

Carotid body denervation requires extensive surgical dissection which can alter

adjacent structures, such as baroreceptor afferents. Indeed, postsurgical sudden

death of carotid-denervated animals led several groups (124–127) to propose that

carotid body dysfunction could be a cause of SIDS. More recently, Forster et al.

(128) reported that outcome of chemodenervation in the piglet was related to the

surgical technique utilized, including route of dissection. Furthermore, carotid

body denervation in goats at 1 to 4 days did not produce sudden death, or long-

term effects on control of breathing (129). At this time, further evidence appears

to be needed to support the hypothesis that carotid body dysfunction can

contribute to the pathologic state which culminates in SIDS.

D. Carotid Chemoreceptor Involvement in Late Hypoxic
Ventilatory Depression

The ventilatory response of the neonatal mammal to hypoxia exhibits a ‘‘bipha-

sic’’ pattern consisting of an initial increase in minute ventilation, followed by a

decline, in some cases to a level below prehypoxic levels (for review see 130).

The adult mammal, in contrast, exhibits a more sustained increase in ventilation

in response to prolonged hypoxia, with a more delayed hypoxic depression, or

‘‘rolloff.’’ The initial increase in ventilation in the first few minutes of hypoxia has

been attributed to the carotid chemoreceptor response. The later hypoxic

ventilatory depression during the rolloff has been a subject of considerable

experimental study. Theoretically, this later depression of ventilatory output could

be due to a decline in chemosensory input from the carotid bodies to the CNS, or

an alteration (gating) of chemosensory input within the CNS. Blanco et al. (131)

addressed this question in the anesthetized newborn kitten model. In this study,

minute ventilation and carotid sinus nerve (CSN) activity were simultaneously

recorded prior to and during hypoxia. These authors found that CSN activity was

sustained during hypoxia in the kitten, despite the onset of respiratory depression.

These results support the concept that the late phase of hypoxic ventilatory

depression is predominantly due to central neural inhibition. However, several

groups have subsequently recorded CSN activity in response to hypoxia in the
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kitten and noted a biphasic pattern of output (85,132). Thus, further work is

needed to fully resolve the question of the contribution of the carotid bodies to the

characteristic biphasic ventilatory response in the newborn period.

E. Accessory Sites for Oxygen Chemoreception

The carotid bodies are not the only hypoxia-sensitive chemosensory tissue in the

body. There are other islands of glomus tissue along the aorta and subclavian

arteries, and within the abdomen (133). The aortic chemoreceptors, examples of

such accessory structures, are activated by hypoxia and hypercapnia, but exert

significantly less effect on breathing than carotid chemoreceptors (134,135). The

role these accessory glomus tissues play in hypoxic chemosensation and control

of breathing may depend on the age of the mammal and on the degree of function

of the carotid bodies. After carotid body denervation in adult ponies, peripheral

chemosensitivity was eliminated for several months; thereafter, chemosensitivity

returned to 30–40% of normal, and sectioning of the aortic nerves almost

completely eliminated peripheral chemosensitivity (136,137). Thus, accessory

chemoreceptor sites in the carotid-denervated ponies may have assumed the role

of the carotid bodies.

Several groups of investigators have found that activity of combined carotid

body and aortic chemoreceptors may be important in the immediate neonatal

period. Donnelly and Haddad found that carotid body and aortic body denerva-

tion, compared to carotid body denervation alone, resulted in significantly more

apnea per hour in 3- to 9-day-old piglets (138). The time of carotid body

denervation may be critical. Lowry et al. (139) found that piglets carotid body

denervated at 5 days of age did not hypoventilate as compared to controls.

However, animals denervated at 15 or 25 days exhibited greater hypoventilation.

Lowry et al. speculated that greater plasticity of chemoreceptor function occurs in

the first week of life, allowing accessory glomus tissue to assume the roles of the

carotid chemoreceptors. This concept of plasticity of chemoreceptor structures is

important when we consider the consequences of injury or disease which may

impair carotid body chemoreception.

F. Prenatal and Postnatal Influences That Can Alter Hypoxic
Chemosensitivity

Chronic Hypoxia

The carotid chemoreceptors are quite vulnerable to functional and structural

change if exposed to prolonged PaO2 outside the normal range of oxygenation. In

postnatal life, long-term hypoxic exposure has been associated in humans as well

as in animal models with attenuation of ventilatory responsiveness to hypoxia

(140–143). In experimental animals, exposure to severe hypoxia for several
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weeks after birth has been shown to result in attenuation of hypoxic ventilatory

response in cats (141,144), rats (145–147), and lambs (148,149,). In the rat

exposed to 0.13–0.15% FiO2 for 5–10 weeks postbirth, the normal emergence of

the biphasic response to hypoxia (day 5) and the adult sustained response (day

14) was significantly delayed (Fig. 6) (150). At 5–10 weeks of age, pups exposed

to chronic hypoxia still had an immature biphasic response to hypoxia, unlike the

expected adult sustained response. Furthermore, chemoafferent output from the

carotid sinus nerve in response to isocapnic hypoxia did not differ in chronically

hypoxic and normoxic rats at 5–10 weeks. Thus, in this study, the central neural

pathways which contribute to hypoxic ventilatory depression remained immature

when the normal transition to postnatal air breathing was not permitted to occur.

However, there is evidence from other investigators that chronic hypoxia

can also alter peripheral chemoreceptor function. Chronic hypoxia induces

significant morphologic changes in the carotid body of humans and animals

(151) and increases the dopamine content (152,153). Hanson et al. (154) noted in

a later paper that the ventilatory response to peripheral chemoreceptor input,

tested by two-breath alterations of fractional inspired oxygen, was blunted in

kittens born and reared in 0.13–0.15% O2 ( tested at days 4–8 and at days 9–14).

In rats, Wach (149) demonstrated that 2–3 weeks of 10% O2 inhalation attenuated

hypoxic ventilatory response. This alteration was partially reversed by a periph-

eral D2 receptor blocker, domperidone, suggesting that suppression of peripheral

Figure 6 Respiratory responses of chronically hypoxic (s, n ¼ 19) and normoxic (j,

n ¼ 8) rat pups to 8% O2 on postnatal day 14. (From Ref. 150.)
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chemoreceptor response contributed to the blunted hypoxic ventilatory response.

Hertzberg et al. (155) also noted that newborn rats born and raised in hypoxia

(0.12–0.14%) for 2 postnatal days exhibited a blunted response to hypoxia as

compared to normally reared controls. Furthermore, increased carotid body

dopamine turnover was detected in those pups reared in hypoxia. As noted

previously, dopamine is the most abundant neurotransmitter in the carotid body,

and may inhibit carotid sinus response to hypoxia through binding to postsynaptic

D2 receptors (156). Theoretically, increased dopamine turnover may have

reflected an increase in inhibitory neurotransmitter activity in the carotid body

of chronically hypoxic animals, which could contribute to the blunted ventilatory

response to hypoxia. In support of this concept, Tatsumi et al. (157) noted that

adult cats exposed to hypobaric hypoxia for 3 weeks exhibited a decreased CSN

response to hypoxia, which was augmented by domperidone (a peripheral

dopamine D2 antagonist). Taken together, these studies suggest that chronic

hypoxia may also act by increasing dopamininergic inhibition of carotid body

chemosensation. At the cellular level, chronic hypoxia may also alter the O2-

sensitive Kþ channels which augment depolarization of the type I cell in response

to hypoxemia (158). These findings may be pertinent to the human newborn

exposed to prolonged postnatal hypoxia. For example, Sorensen and Severin-

ghaus (140) reported that human subjects with cyanotic heart disease (TOF)

exhibited a considerably decreased ventilatory response to inhalation of 40% O2

1 year after surgical correction of their heart disease. It is not known whether this

depressed hypoxic response was due to failure of postnatal resetting of the

chemoreceptors, or persistence of central inhibitory gating of chemoreceptor

input.

In the search for the cause of SIDS, several investigators (159–161) have

examined the ultrastructure and neurotransmitter content of carotid bodies in

infants who have died of SIDS compared to controls dying of defined causes.

Perrin reported that the ultrastructure of the carotid body was normal in SIDS, but

that dopamine and noradrenaline content were increased. At present, it is not

known whether these changes could be causative or, for example, secondary to

repeated hypoxic events prior to death from SIDS.

Chronic Hyperoxia

Hyperoxia may also result in significant blunting of peripheral chemoreceptor

response. Two weeks of hyperoxia decreased peripheral chemoreceptor response

in neonatal rats and in kittens (162,163). Ling et al. (164,165) showed that rat

pups treated with 60% O2 for the first month of life exhibited attenuated awake

ventilatory responses and phrenic nerve responses to hypoxia several months later

(Fig. 7). Full recovery of the hypoxic response occurred slowly in the chronically

hyperoxic rats over the first 15 months of life (166). Interestingly, exposure of the
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adult rat to chronic hyperoxia did not alter the hypoxic response (164). Thus,

peripheral chemoreceptors may be most vulnerable to hyperoxic injury in the

newborn period.

Ericson et al. (167) have provided evidence for the cellular sites at which

chronic hyperoxia alters peripheral chemoreceptor response. Four weeks of

chronic hyperoxia (60% O2) resulted in a 41% decrease in the number of

unmyelinated axons in the carotid sinus nerve, compared with age-matched

normoxic controls. Furthermore, chemoafferent neurons located in the petrosal

ganglion exhibited degenerative changes, following 1 week of hyperoxia from

birth. Marked hypoplasia of the carotid body accompanied these degenerative

changes. Whether advancing age allows recovery of cellular structure or acces-

sory chemoreceptor function in these animals is not known.

Altered Hypoxic Ventilatory Response in Premature Infants

Human infants born prematurely may have serious lung disease (RDS) requiring

mechanical ventilatory support which may progress to chronic lung disease

(BPD) over the first weeks of life. Such infants may exhibit repeated hypoxemic

events while on mechanical ventilation and repeated apneas thereafter (168,169).

Figure 7 Hypoxic ventilatory responses in rats are depressed by exposure to chronic

hyperoxia in the perinatal period (0.6 O2). Minute ventilation (Ve) increased substantially

during hypoxia in untreated control rats, and significantly less in perinatal-treated rats.

Data are mans �SEM. (s, normoxic rats; j, perinatal exposure to hyperoxia). (From Ref.

164.)
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Hyperoxic exposure may also occur while the infant is in the process of

recovering and still undergoing mechanical ventilation. In light of the serious

perturbations in peripheral chemoreceptor function reported in animal studies

after prolonged hypoxia or hyperoxia, it is not surprising to find that Calder et al.

(170) and Katz-Salamon et al. (171,172) have reported blunted peripheral

chemoreceptor responses in premature infants with BPD. The decrease in

chemoreceptor response in infants with BPD was directly correlated with

length of time on the ventilator and severity of BPD (172). At present,

confirmation of peripheral chemoreceptor structural abnormalities has yet to be

obtained in such infants. Furthermore, it is not known whether this defect in

chemoreception in these children persists into adulthood. Theoretically, this

blunting of peripheral chemoreceptor response could render the child unable to

recover effectively from sleep apnea, or to increase ventilation appropriately

during a serious respiratory illness. In support of this concept, studies by the

Collaborative Home Infant Monitoring Evaluation Group (CHIME) , as well as

independent work from our laboratory, have shown that dysfunctional respiratory

control persists in some premature infants long after the need for supplemental

oxygen or mechanical ventilation has passed (173,174). It is possible that a

combination of repeated hypoxia and=or hyperoxia can lead to long-standing

peripheral chemoreceptor dysfunction. Further advances in our understanding of

the molecular basis for normal postnatal maturation of the carotid bodies may

help the neonatal intensivist avoid extremes of oxygenation and create optimal

conditions for postnatal development of these important structures in high-risk

newborns.
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161. Lick EE, Pérez-Atayde AR, Young JB. Carotid body in the sudden infant death

syndrome: a combined light microscopic, ultrastructural and biochemical study.

Pediatr Pathol 1986; 6:335–350.

162. Eden GJ, Hanson MA. Effects of hypoxia from birth on the carotid chemoreceptor

and ventilatory responses of rats to acute hypoxia. J Physiol 1986; 374:24–35.

163. Hanson MA, Eden GJ, Nijhuis JG, Moore PJ. Peripheral chemoreceptors and other

oxygen sensors in the fetus and newborn. In: Lahiri S, Forster RE, Davies RO, Pack

AI, eds. Chemoreceptors and Reflexes in Breathing: Cellular and Molecular

Aspects. New York: Oxford University Press, 1989:113–120.

164. Ling L, Olson EB, Vidnik EH, Mitchell GS. Attenuation of the hypoxic ventilatory

response in adult rats following one month of perinatal hyperoxia. J Physiol 1996;

495:561–571.

165. Ling L, Olson EB, Vidnik EH, Mitchell GS. Integrated phrenic responses to carotid

afferent stimulation in adult rats following perinatal hyperoxia. J Physiol 1997;

500:787–796.

112 Miller et al.



166. Ling L, Olson EB, Vidnik EH, Mitchell GS. Slow recovery of impaired phrenic

responses to hypoxia following perinatal hyperoxia in rats. J Physiol 1998;

511:599–603.

167. Erickson JT, Mauzer C, Jana A, Ling L, Olson EB, Vidnik EH, Mitchell GS, Katz

DM. Chemoafferent degeneration and carotid body hypoplasia following chronic

hyperoxia in newborn rats. J Physiol 1998; 509:519–526.

168. Dimaguila MAVT, DiFiore JM, Martin RJ, Miller MJ. Characteristics of hypoxemic

episodes in very low birthweight infants on ventilatory support. J Pediatr 1997;

130:577–583.
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Upper-Airway Muscle Control During Development

Application to Clinical Disorders That Occur in Premature
Infants
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I. Introduction

The challenges of the newborn infant are to breast or bottle feed, breathe, protect

the lower airway, and cry. However, to effectively accomplish these goals,

coordination among upper-airway muscles and coordination between upper-

airway muscles and the diaphragm and chest wall muscles must occur. One

critical function of the upper-airway muscles is to dilate or stiffen the upper

airway when the greatest negative pressure is generated by contraction of the

diaphragm and chest wall muscles during inspiration. This coordinated function

between upper-airway muscles and chest wall muscles allows unobstructed

breathing to occur.

The upper airway includes the nose, pharynx, larynx, and extrathoracic

trachea. Approximately 30 pairs of muscles are involved in modulation of the

diameter and function of the upper airway. Some of these muscles are listed in

Table 1. The activity of these muscles is modulated by cortical inputs, state (sleep

or wakefulness), and mechanoreceptor and chemoreceptor influences. Upper-

airway closure during sleep is the hallmark of obstructive sleep apnea that occurs

in infants, children, and adults, which can lead to respiratory and cardiovascular
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morbidities (1,2). However, discoordinate control of upper airway muscles is

frequent during early postnatal development. Premature infants have decreased

respiratory drive resulting in central, mixed, and obstructive apnea (3). They are

also at increased risk for aspiration during feeding (4). However, breathing and

feeding disorders both improve with postnatal maturation. There are multiple

intrinsic and extrinsic factors that modulate upper-airway function, that change

during development. The influences of these factors on upper-airway function

during maturation can account for improved coordination of upper-airway

muscles, resulting in unobstructed breathing, phonation, adequate feeding, and

normal growth and development. This chapter will review the intrinsic and

extrinsic factors that are most responsible for the developmental improvement in

Table 1 Regions of the Upper Airway and Corresponding

Muscles

Upper airway region Muscles

Nose Alae Nasi

Pharynx

Nasopharynx Palatoglossus

Palatopharyngeal

Tensor veli palatini

Levator veli palatini

Oropharynx Genioglossus

Hypopharynx Suprahyoid

Geniohyoid

Mylohyoid

Infrahyoid

Sternohyoid

Thyrohyoid

Omohyoid

Larynx Intrinsic

PCA

TA

Lateral CA

Interarytenoid

Extrinsic

Stylohyoid

Geniohyoid

Digastric (anterior and posterior)

Mylohyoid
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function of the upper airway during postnatal maturation, with an emphasis on

neural control mechanisms.

This review will be weighted heavily toward regulation of pharyngeal and

laryngeal muscles during postnatal development for three reasons: [1] obstruction

of the upper airway most frequently occurs at the pharynx and larynx; [2]

dysfunction of the upper airway usually involves neural mechanisms that

modulate the activity of pharyngeal and laryngeal muscles; and [3] regulation

of the nerves and muscles that control the patency of these upper-airway

structures has been studied in great detail. Because the ability to breathe and

feed improves naturally with postnatal maturation in human infants, the pre-

mature infant is the natural subject in which to study maturation of mechanisms

that regulate upper-airway function. Thus, clinical entities that are known to occur

in premature infants related to dysfunction of the upper airway will be described

followed by evidence from studies in human infants and neonatal animals that

reveal possible mechanisms responsible for the clinical finding. Studies

performed in adult humans and mature animals will be presented when appro-

priate for comparison.

II. Apnea in Premature Infants: Incidence and
Characterization

Irregular respiration is common and is the hallmark of breathing in premature

infants (3,5). This respiratory pattern is characterized by short and long periods of

apnea, defined as cessation of airflow. While short apneas are quite common and

may occur without clinical consequence, more prolonged apnea with duration of

> 20 sec may be associated with bradycardia and oxygen desaturation, requiring

intervention (6). Apneic and bradycardic events can be associated with cyclic

changes in cerebral perfusion as measured by Doppler flow velocities in

premature infants (7), and cerebral desaturation with subsequent reoxygenation

measured by near infrared spectroscopy in term infants (8). Thus, prolonged

apneic events may place the infant at increased risk for hypoxic ischemic

reperfusion injury of the central nervous system. Prolonged apnea occurs in

virtually all premature infants < 28 weeks postconceptional age, in 50% of

infants at 30–32 weeks, and in < 7% of infants at 34–35 weeks (5). The postnatal

age at which the last apneic episode may be detected decreases exponentially with

increasing postconceptional age (9). While apnea of prematurity usually resolves

by 34–37 weeks postconceptional age, apnea frequently persists beyond term in

the most immature infants, those born at 24–28 weeks (10).

Three types of prolonged apnea have been described: central, obstructive,

and mixed. Central apnea is characterized by the absence of diaphragmatic

activity; obstructive apnea is characterized by upper-airway obstruction with
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persistent diaphragmatic activity; mixed apnea has features of both central and

obstructive apneas. Central and mixed are the most common types of apnea that

occur in premature infants (6). While it was commonly believed that central

apnea was not associated with upper-airway obstruction, newer techniques

(amplified cardiac oscillation method) has shown that 13% of central apneas

that occur in premature infants are associated with airway closure, as described by

Idiong et al. (11). Furthermore, 87% of mixed apneas were associated with a

patent airway at the onset of the apnea with subsequent closure (11). Lastly,

during the apneic phase of periodic breathing, pharyngeal obstruction occurs in

premature infants (12). While the negative pressure generated by the chest wall

muscles and diaphragmatic activity during inspiration may place the upper airway

at increased risk for collapse (13,14), inspiratory effort is not necessary for upper

airway obstruction to occur in individuals with disordered breathing during sleep.

There is considerable evidence that upper-airway closure occurs in premature

infants (outlined above) and adults during central apnea (15), suggesting that

sustained central drive to both the upper-airway muscles and chest wall muscles is

key for stable respiration to occur. Central drive to both these groups of muscles

is significantly depressed during sleep accounting for the increased frequency of

apnea during sleep (16,17).

All types of apnea and periodic breathing occur during sleep. Apnea with

upper-airway obstruction occurs more often during active, REM, or indeterminate

sleep (18–21). Premature infants are asleep 80% of the time, and 70% of their

sleep time is in active or indeterminate sleep (22,23). Thus, airway obstruction is

a common event that occurs during apnea in premature infants. With increasing

maturation, the duration of the apneic events becomes shorter and the events are

less likely to be associated with upper-airway obstruction (24).

III. Pharynx: A Site of Upper-Airway Obstruction and
the Role of Pharyngeal Dilator Muscles in Apnea

The pharynx is a collapsible tube in a rigid chamber and has characteristics

similar to a Starling resistor, as described by Smith et al. (25). The balance of

upstream resistance (nasal pressure), downstream pressure (thoracic pressure),

and transmural pressure determines whether the pharynx is patent, narrowed, or

collapsed. Transmural pressure is determined by the difference between intra-

luminal and tissue pressure. Intraluminal pressure is the lateral wall pressure that

acts on the luminal surface of the tube, while tissue pressure acts on the outside of

the collapsible tube. Surface-adhesive factors contribute significantly to intra-

luminal pressure while activity of the upper-airway muscles contributes signifi-

cantly to tissue pressure. The pharyngeal muscles are divided into dilators and

constrictors, as listed in Table 1. The most commonly studied pharyngeal muscle
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is the genioglossus muscle. This muscle is located beneath the tongue and

functions to protrude the tongue. Activation of the genioglossus muscle increases

the pharyngeal diameter in infants, children, and adults. In addition, this muscle

has phasic activity that is coincident with inspiration. Since the genioglossus is

easily accessible and modulates upper-airway patency, this muscle has become

the representative pharyngeal dilator muscle of the upper airway. Because of its

location, the activity of genioglossus muscle has been measured noninvasively

with submental (26) and sublingual (27,28) surface electromyograms (EMG) in

infants. Thus, studies determining how this muscle is controlled have contributed

considerably to our understanding of control of upper-airway dilator muscles

during development.

IV. Brainstem Neuronal Network Responsible for
Respiratory Rhythmogenesis

Respiratory rhythmogenesis has been the focus of several excellent recent reviews

(29,30). A brief discussion and a schematic of the network responsible for

rhythmic respiration are presented, followed by how this network is involved in

controlling major upper-airway muscles during development. In addition, factors

such as sleep state and afferent inputs from activation of peripheral receptors that

are important modulators of respiratory rhythm and thus activity of upper airway

muscles during respiration will be discussed.

As outlined in the schematic (Fig. 1), respiratory rhythm is generated by a

network of neurons in the brainstem. A group of cells in the rostral ventral lateral

medulla form the pre-Bötzinger complex and are essential to the network. These

cells exhibit bursting pacemaker properties and are believed to be the ‘‘kernel’’

responsible for the generation of respiratory rhythm (29–33). Experiments show

that lesioning and blocking the activity of this group of cells abolishes respiratory

rhythm and gives strong support to this model of respiratory rhythm generation

(34–36). In the cat, pre-Bötzinger neurons synapse on two main groups of

respiratory-related neurons that form the ventral respiratory group (VRG) and the

dorsal respiratory group (DRG) located in the ventrolateral medulla and the

nucleus tractus solatari (nTS), respectively (37). Neurons from the VRG and

DRG form synapses with the phrenic motoneuron pool that innervates the

diaphragm (38). In the newborn rat, only the VRG, in contrast to both the

VRG and DRG, appears to be essential for respiratory rhythmogenesis (39). A

small percentage of respiratory-related neurons in the VRG send axonal projec-

tions to hypoglossal motoneurons (40). Although the pre-Bötzinger complex

drives the activity of the respiratory-related neurons that innervate the muscles of

respiration, activity of the neurons in the pre-Bötzinger complex can also be

modulated by synaptic inputs from the nTS (37) (Fig. 1).
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Figure 1 Neuronal elements of respiratory rhythmogenesis. Simplified schematic

outlining the elements of the network in the brainstem that are essential for respiratory

rhythmogenesis and the peripheral afferent inputs (integrated in the nTS) that modulate the

output to the motoneuron pools that control upper airway muscles and diaphragm activity.

See text for discussion. PreBöt, pre-Bötzinger complex; nTS, nucleus tractus solitari;

DRG, dorsal respiratory group; VRG, ventral respiratory group.
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Integration of peripheral inputs is a key feature responsible for modulating

the respiratory network; information from activation or inhibition of sensory

fibers in the upper airway, the lung, and peripheral arterial chemoreceptors (to be

described below) is integrated and processed in the nTS (Fig. 1). Thus, the nTS is

commonly known as a relay station for afferent influences that modulate

respiration (41–43). Axons from key neuronal groups that regulate sleep and

wakefulness also synapse directly onto motoneurons that control the activity of

upper-airway muscles (44) and the diaphragm (45). Central and peripheral

influences may indirectly modulate upper-airway muscles and the diaphragm

via axonal projections from the nTS that synapse on to hypoglossal and phrenic

motoneuron pools (44,45) (Fig. 1). Other, additional neuronal groups regulating

hypoglossal and motoneuron pools are those that control sleep and wakefulness.

Two major neuronal groups that control sleep and wakefulness that will be

discussed are the dorsal caudal raphe in the medulla (46,47) and the locus

coeruleus in the pons (48,49).

In review, the key neuronal circuits that control activity of the muscles of

respiration include [1] the pre-Bötzinger complex (kernel of respiratory rhythm);

[2] the nTS (relay station for peripheral inputs); [3] motoneuron pools for neurons

that innervate the upper-airway muscles (specifically, hypoglossal) and diaphragm

(phrenic motoneuron pool); [4] nonrespiratory, central neuronal groups (caudal

raphe and locus coeruleus) that tonically excite hypoglossal motoneurons during

wakefulness; and [5] peripheral circuits that send sensory information to the

nTS. It should be apparent from this simplified sketch of a complex system that

development can affect many parts of the network. The focus of the sub-

sequent discussion will be on features of neurons that make up the motoneuron

pools that control the upper-airway muscles, and how sleep and afferent input

from the periphery affects the activity of these muscles during early postnatal

development.

V. Hypoglossal Motoneurons During Postnatal
Development

A. Changes in Intrinsic Properties

Motoneuron activity patterns are frequently matched to the muscle fibers they

innervate. Thus, understanding the effect of development on firing properties of

the hypoglossal motoneurons is directly relevant to genioglossal muscle function.

With postnatal development in the newborn rat, the cell bodies of hypoglossal

motoneurons undergo extensive remodeling, and change their electrophysio-

logical properties. Specifically, remodeling of dendritic arborization of the

hypoglossal motoneuron and proliferation and distribution of Kþ channels

across the entire membrane of the motoneuron occurs with postnatal maturation
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(50–52). As a result of these changes, the intrinsic electrical properties of

hypoglossal motoneurons and the effect of synaptic inputs on the firing properties

of these neurons change. Contrary to what might be expected, patch-clamp

studies in isolated hypoglossal motoneurons from neonatal and adult rats show a

decrease in cell excitability to depolarizing stimuli with maturation (53). Another

important feature of these hypoglossal motoneurons is the ability to hyperpolarize

after depolarizing stimuli—known as ‘‘after-hyperpolarization potential’’ (AHP).

Classic studies performed on other motoneurons and other cells have

shown that the AHP following the action potential is an important determinant

of repetitive firing behavior of the neuron (54). The duration of the AHP

decreases and the amplitude of the AHP are smaller in hypoglossal motoneurons

from adults than the AHP amplitude of the neonatal animals (53). A reduction in

AHP amplitude allows faster firing and thereby contributes to enhanced excit-

ability of the hypoglossal motoneurons from adult animals and less excitability in

hypoglossal motoneurons from immature animals. The intrinsic electrical proper-

ties of the hypoglossal motoneurons are further modulated by neurotransmitters

binding to excitatory neurotransmitter receptors on these neurons.

B. Changes in Neurotransmitter Receptor Expression

Similar to most other central neuronal circuits, glutamate is the major excitatory

neurotransmitter that mediates the inspiratory activity of hypoglossal motoneur-

ons by binding to N-methyl-D-aspartate (NMDA) and non-NMDA receptors

(55,56). Thyrotropin-releasing hormone (TRH), serotonin (5HT), and nor-

epinephrine (NE) are three other neuromodulators that significantly augment

hypoglossal activity (for review see 57). The level of these neuromodulators in

specific brainstem regions (caudal raphe and locus coeruleus nucleus) determines

sleep-wake cycles (46–49). Furthermore, the level of these excitatory neuro-

modulators at the upper-airway motoneuron synapse determines the level of tone

of the upper-airway muscles. As outlined above and shown in Figure 2, axons

from the caudal raphe (the source of TRH and 5HT) and the locus coeruleus (the

source of NE) synapse on hypoglossal motoneurons. TRH, 5HT, and NE all

excite hypoglossal motoneurons in rats and mice during wakefulness (for review

see 57, 58). However, this excitatory response is developmentally regulated (59).

TRH and NE Effects on Hypoglossal Motoneurons During
Development

Absence of TRH receptor and TRH receptor binding on hypoglossal motoneur-

ons in neonatal animals during the first week of postnatal life may account for the

difference in hypoglossal motoneuron excitability to TRH during postnatal

development (60,61). TRH protein binding significantly increases, reaching

adult levels by 2 weeks postnatal age (60). Concurrent with these findings,
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depolarization of hypoglossal motoneurons to exogenously applied TRH achieves

an adult response (for review see 62). In contrast, NE depolarizes hypoglossal

motoneurons and potentiates inspiratory related hypoglossal nerve activity in

brain slices from animals at birth (61). This potentiating effect of NE on

inspiratory activity of hypoglossal nerve continues to increase during the first 2

weeks of postnatal life in newborn mice and at birth in rats (59,61). The

responsible a1-adrenergic receptor subtype is most likely a1B as suggested by

Volgin et al. (63).

5HT Effects on Hypoglossal Motoneurons During Development

Although intrinsic properties of the neonatal hypoglossal motoneurons cause an

increase in AHP resulting in less capacity of the motoneurons for repetitive firing,

application of 5HT significantly inhibits AHP (64). By inhibiting AHP, repetitive

firing capacity of neonatal hypoglossal motoneuron increases (62,64). This effect

on AHP is unique to neonatal hypoglossal motoneurons secondary to the

presence of 5HT1A receptor on these motoneurons (62,64). 5HT1A receptors

expression and receptor binding in hypoglossal motoneurons significantly

decreases with postnatal maturation (62). 5HT1B, -2A and -2C are the predominant

serotonin receptors detected in the adult hypoglossal motoneurons (65). Binding

of 5HT to these receptors does not change AHP in adult neurons (64). Since

neonatal hypoglossal motoneurons appear to be dependent on 5HT for repetitive

firing capacity, any reduction of 5HT makes the infant’s upper airway more

susceptible to collapse—events that occur most often during sleep.

VI. Upper-Airway Muscle Atonia During Sleep: Role of
TRH, NE, and 5HT

Apnea associated with upper-airway obstruction occurs during sleep with most

apneic events occurring during active sleep or REM sleep (18–21). As outlined

above, TRH, NE, 5HT, and substance P (SP) are neuromodulators that sustain the

activity of upper-airway dilating muscles during wakefulness (57) (Fig. 2). While

the caudal raphe is the source of TRH, 5HT, and SP, axonal projections from the

locus coeruleus and surrounding pontine tegmentum are the sources of NE which

synapse on respiratory-related DRG and VRG neurons, and hypoglossal moto-

neurons (66). Although these NE axonal projections to hypoglossal motoneurons

are present early in life, there is a substantial increase in NE innervation during

the first 180 days of postnatal life in the rat (66). Thus, even during wakefulness,

the newborn has less excitatory NE innervation to the hypoglossal motoneurons

than adults.

In review, active and REM sleep is associated with a complete suppression

of muscle tone in the postural muscles and a reduction of muscle tone in the
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respiratory related muscles such as the genioglossus and other muscles modulat-

ing upper-airway diameter. This muscle hypotonia is secondary to reduced TRH,

5HT, and NE levels in the region of the upper-airway motoneurons. Since in

immature animals there are [1] reduced excitatory NE innervation to hypoglossal

motoneurons, [2] presence of 5HT1A receptors on neonatal hypoglossal moto-

neurons which improve the repetitive firing capabilities of the motoneuron, and

[3] absence of excitatory TRH receptors, reduction in 5HT, TRH, and NE that

occurs naturally during active sleep makes the newborn infant particularly

vulnerable to upper-airway obstruction during sleep. Thus, it is no surprise that

the premature infant should have increased incidence of apnea associated with

upper-airway obstruction, which improves with maturation.

However, there are a subset of premature and term infants that have a

greater incidence of apnea with and without upper-airway obstruction that persists

longer than it does in other infants at the same postconceptual ages (10). These

infants are at increased risk for morbidity and mortality from sudden death (67).

Advances in neonatal care have allowed infants born at little more than 1=2 of

gestation (23–25 weeks) to survive. Ex utero exposure to therapeutic agents may

modify the development of peripheral sensory inputs that modulate respiratory

rhythm and upper-airway control during sleep.

VII. Infants with BPD Have Increased Frequency of
Apnea: Possible Mechanisms

Several intriguing observations related to upper-airway obstruction and apnea in

premature infants have been reported. Infants born at the lowest gestation (< 26

weeks) gestation have a greater incidence of apnea that persists after term

gestation (10), and infants with chronic lung disease are more likely to have

apnea associated with upper-airway obstruction than control premature infants

(68). Alterations in two important peripheral inputs modulating upper-airway

function might help explain these clinical observations. Peripheral inputs that are

integral to upper-airway muscle control, mechanoreceptor and peripheral arterial

chemoreceptors, are likely to be altered in premature infants and infants with

chronic lung disease.

A. Effects and Alterations in Upper-Airway Mechanoreceptors
on Upper-Airway Muscle Activation

As represented in the schematics in Figures 1 and 2, mechanical and sensory

stimuli in the nose and upper airway modulate upper-airway muscle activity.

These sensory fibers are contained in the pharyngeal branch of the glossopharyn-

geal nerve (69); mechanical stimulation with negative and positive pressure in the

pharynx increases and decreases genioglossus EMG activity, respectively, in adult
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animals (70) and young cats (71). Similarly, sensory fibers of the ethmoidal nerve

that innervates the nose are involved in pressure sensation (72), and negative

pressure applied to the nose also activates the genioglossus muscle (73,74) and

modulates respiratory-related neurons in the nTS (75). As shown in Figure 1, nTS

axonal projections synapse on hypoglossal and phrenic motoneurons (44,45).

Application of negative pressure to the nose is frequently done in humans

to characterize afferent inputs that modify upper-airway muscle activation (76). In

adult humans, negative pressure applied at the nose causes reflex activation of the

genioglossus muscle, and topical anesthesia to the nasopharynx abolishes this

response (76). Furthermore, sleep has an inhibitory influence on the reflex

response of the genioglossus EMG to upper-airway negative pressure in normal

adults (77).

Instead of negative pressure applied to the nose, nasal occlusion at end

expiration is the preferred technique to determine the effect of upper-airway

negative pressure on upper-airway muscle responses in unsedated human infants

(26–28,76–79). The effects of nasal occlusion at end expiration on subsequent

occluded inspiratory efforts are [1] removal of inhibitory influence of increased

lung volume (pulmonary stretch receptors) on activity of upper airway muscles

and nerves (80,81), [2] activation of negative pressure receptors in the upper

airway, and [3] activation of peripheral arterial chemoreceptors as hypercapnia

and hypoxemia develop during the occlusion (71,82). Thus, nasal occlusion does

not separate the influence of lung volume, upper-airway negative pressure, and

increasing chemoreceptor drive on the reflex response of the upper-airway

muscles associated with each occluded effort. Nevertheless, assessing the effect

of nasal airway occlusion at end expiration on the activity of the genioglossus

EMG associated with the first occluded breath is generally believed to be

mediated by upper-airway and pulmonary stretch mechanoreceptors. Zhang et

al. also found peak genioglossus EMG activity to be greater in response to upper-

airway negative pressure after blockade of pulmonary stretch receptors from the

lung (81). Thus, end-expiratory occlusion is performed to remove the influence of

lung volume on the response of upper-airway muscles to upper-airway negative

pressure.

Nasal occlusion has been shown to significantly increase genioglossus

EMG activity with the first occluded effort in micrognathic infants during sleep

(14). We determined that in premature infants, genioglossus EMG activity is

frequently absent during normal breathing; however, it could be induced by

experimentally induced nasal occlusion (27,28). The percent of experimentally

induced occlusions associated with genioglossus EMG, however, was signifi-

cantly less in premature infants with apnea than in infants without apnea (28). We

attributed this finding to a decrease in central respiratory drive in infants with

apnea associated with upper-airway obstruction. A similar finding has also been

described by Wulbrand et al., who described a concurrent decrease in submental
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(representing genioglossus EMG) and diaphragmatic EMG associated with apnea

in premature infants (83).

It is difficult to separate the multiple effects of mechanoreceptor and

chemoreceptor activity on respiratory muscle responses when upper-airway

negative pressure is applied or end-expiratory airway occlusion is performed.

However, separation of these multiple afferent inputs on the output of upper-

airway dilating muscles can be done in experimental animals by isolating the

upper airways from the lungs. We measured the response of the genioglossus and

diaphragmatic EMG to [1] negative pressure applied to the isolated upper airway

during normoxia and hypercapnia, [2] end-expiratory tracheal occlusion, and [3]

the application of upper-airway negative pressure combined with tracheal occlu-

sion in spontaneously breathing tracheotomized, anesthetized cats (71). We found

that feedback from phasic pulmonary stretch receptors was a potent inhibitor of

reflex activation of the genioglossus muscle in response to negative pressure

applied to the upper airway, which can be overridden by an increase in

chemoreceptor drive (hypercapnia) (71). A similar finding has recently been

described in adult rats. Bailey et al. reported that hypercapnia can override lung

volume–mediated inhibition on activation of genioglossus muscles in the adult

rat (84). Thus, activation of the upper airway dilating muscles during obstructive

sleep apnea is predicated on the activation of sensory receptors within the upper

airway and concurrent increase in chemoreceptor drive.

Alterations in the sensitivity of receptors within the upper airway or

decreased hypoxic or hypercapnic sensitivity may prolong apneic events.

Frequent and prolonged apneic events occur in infants who are born at the

youngest gestation and those who develop chronic lung disease. The most

immature premature infants are intubated for extended periods of time during

early postnatal development. Chronic intubation may have local effects on

sensory innervation to the upper airway. Mechanical compression of the sensory

fibers innervating the upper airway as a result of chronic intubation during critical

stages of development may, in part, contribute the clinical observation that

increased upper-airway obstruction during apnea occurs in infants with bronch-

opulmonary dysplasia (BPD).

B. Reduced Sensitivity of Upper-Airway Receptors

The effects of chronic intubation on subsequent activation of upper-airway and

genioglossus responses have not been studied. However, the effect of chronic

tracheostomy on upper-airway reflexes has been described in adult animals (85).

Chronic tracheostomy bypasses important receptors in the upper airway that

modulate laryngeal function (for review see 86). As a result of chronic

tracheostomy, alterations in central threshold and transneuronal conduction

times of the superior laryngeal nerve (SLN) occur (85). These alterations may
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account for the increased episodes of aspiration known to occur in adult humans

with tracheostomies. The SLN is the afferent limb of many of the airway

protective reflexes (described below), and when stimulated causes reflex activa-

tion of upper-airway dilating muscles (described above). Chronic intubation in

newborn infants may affect development of upper-airway reflexes by bypassing

important upper-airway sensory receptors similar to chronic tracheotomy in adult

humans and animals.

Additionally, mechanical compression of the sensory fibers in the mucosa

of the upper airway may change the developmental pattern of myelination of the

SLN. In the newborn kitten, 75% of the fibers of the SLN are unmyelinated

during the first postnatal month and myelinated fibers increase by 50% at 6 weeks

postnatal age (87). This change in myelination as a result of development is

associated with differences in response to electrical stimulation of the SLN.

Electrical stimulation of the SLN evoked apnea in the younger animals and

evoked swallowing in the older animals (87). It would be of considerable interest

to know if chronic intubation in immature animals affects the pattern of

myelination and=or threshold activation of the SLN during postnatal develop-

ment.

C. Effect and Alterations in Peripheral and Central
Chemoreceptor Influences on Upper-Airway Muscle Activity

As previously mentioned, upper-airway motoneurons are modulated by afferent

activity from peripheral and central chemoreceptors. Peripheral arterial chemo-

receptors in the carotid body respond to changes in O2 and CO2 tension and pH,

while central chemoreceptors in the medulla respond to changes in CO2 tension

and Hþ concentration. Hypoxia, hypercapnia, and acidosis increase activity, while

hyperoxia, hypocapnia, and alkalosis decrease activity from peripheral arterial

chemoreceptors (88). An increase in chemoreceptor drive augments the activity of

upper-airway dilating muscles during wakefulness and sleep, and in response to

upper-airway negative pressure. Changes in peripheral chemoreceptor drive also

affects diaphragmatic and chest wall muscle activity (89,90). Of interest, though,

upper-airway dilating muscles and the nerves that innervate upper-airway muscles

are preferentially modulated by peripheral chemoreceptor activity in comparison

to that of the diaphragm and its innervation, the phrenic nerve (89–91). Exposure

to both hyperoxia and dopamine infusion silences peripheral chemoreceptor

activity (88), and abolishes the phasic electrical activity from nerves that innervate

upper-airway muscles (92). The sensitivity of peripheral arterial chemoreceptors

and central chemoreceptors to changes in gas tension and pH increases with

maturation in animals and infants (for review see 93). Thus, a diminution in

chemoreceptor drive as function of immaturity places the premature infant at

increased risk for apnea with and without upper-airway obstruction.
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D. Reduced Hypoxic Chemosensitivity

Reduced hypoxic chemosensitivity of peripheral arterial chemoreceptors may

contribute to the increase in upper airway obstruction during apnea in infants with

BPD, as observed by Fajardo et al. (68). A common technique used to test

chemoreceptor function in unanesthetized animals or human infant is to assess

immediate changes in ventilation in response to a hypoxic or hyperoxic challenge.

Since metabolism, and thus ventilation, decreases in young animals and newborn

infants during exposure to hypoxia (94), exposure to hyperoxia, known as the

Dejours test, is more commonly used in this population (95–98). Acute exposure

to hyperoxia silences the electrical activity of the peripheral arterial chemo-

receptors (88). The reduction in ventilation, in response a single breath of 100%

O2, is proportional to the contribution of peripheral arterial chemoreceptors to

breathing (95). Using the Dejours test, peripheral chemoreceptor function has

been tested in infants with BPD (99). In response to a hyperoxic challenge,

infants with BPD had a smaller reduction in ventilation than control infants at the

same postconceptional age (99), suggesting that the peripheral arterial chemo-

receptors are less responsive in infants with BPD.

Further evidence that peripheral arterial chemoreceptors are important in

modulating upper airway activity in premature infants is that [1] hyperoxic

exposure increases apneic events associated with upper-airway obstruction (100),

[2] low-flow CO2 decreases the frequency of apnea (101), and [3] progressive

hypercapnia increases the activity of upper-airway dilating muscles (102) in

premature infants. In addition to activating peripheral arterial chemoreceptors,

hypercapnia also stimulates central chemoreceptors and neurons in the nTS (103–

106). Thus, both peripheral and central chemoreceptors modulate activity of

upper-airway dilating muscles in premature infants.

In addition to the increased frequency of apnea with upper-airway obstruc-

tion found in infants with BPD, these infants also have reduced hypoxic arousal

responses (107). Reduced hypoxic arousal responses also suggests that peripheral

chemoreceptor function may be altered in infants with BPD. Activation of

peripheral arterial chemoreceptors is key to promoting arousal mechanisms

during upper-airway obstruction (108) and during rapidly developing hypoxemia

in newborn lambs (109).

The mechanisms responsible for the reduction in chemoreceptor activity in

infants with BPD is unknown. However, several clues may be deduced from

studies done in newborn animals. Premature infants who develop BPD are

exposed to high concentrations of oxygen tension at an early developmental

stage (110). Exposure to increased O2 tension during the first month of postnatal

life in newborn rats abolishes peripheral arterial chemoreceptor-mediated hypoxic

chemosensitivity (111,112). This deficit persists through adulthood (111,112). In

addition, hyperoxic exposure in these animals reduces the number of cell bodies
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of chemoafferent neurons within peripheral arterial chemoreceptors that are

essential for transmitting electrical signals from the peripheral arterial chemo-

receptors to the brain (113). The cellular mechanisms for this reduction in

chemoafferents has not been elucidated, but the finding that hypoxic chemosen-

sitivity is abolished after perinatal hyperoxic exposure is striking, and these

results have been replicated. Mitchell and coworkers have further determined that

the critical window of hyperoxic exposure to abolish hypoxic chemosensitivity is

within the first 2 weeks of postnatal life in the newborn rat (113a). Perhaps, then,

hyperoxic exposure during maturation of hypoxic chemosensitivity in newborn

infants could, theoretically, result in the persistently diminuted peripheral arterial

chemoreceptor responses, thereby contributing to prolonged apnea (68) and

reduced arousal responses during asphyxial apnea as reported in infants with

BPD (107).

VIII. The Larynx: A Site of Upper-Airway Obstruction
During Apnea in Premature Infants

In addition to pharyngeal muscles, intrinsic laryngeal muscles have respiratory-

related activity (91,114), and the larynx is a frequent site of upper-airway closure

during apnea that occurs in premature infants (115,116). The position and

aperture of the larynx is controlled by extrinsic and intrinsic laryngeal muscles

listed in Table 1. The mechanisms modulating the respiratory-related activity of

laryngeal muscles has been characterized for the intrinsic muscles of the larynx,

which include the posterior cricoarytenoid (PCA), the only dilator of the vocal

cords; the thyroarytenoid (TA), powerful constrictor of the vocal cords; and the

lateral cricoarytenoid and interarytenoid muscles (vocal cord constrictors). PCA

muscle activity is more frequently concurrent with diaphragmatic or phrenic

nerve inspiratory activity than pharyngeal or alae nasi (nasal dilator) muscle

activity during unstimulated breathing in animals and infants (102,117). TA

constrictor activity causes glottic closure. TA muscle activity is frequently seen

during phase I expiration, and it contributes to maintaining lung volume in infants

(118). TA expiratory activity is an important component of airway protective

reflexes, which will be discussed below.

IX. Role of Laryngeal Receptors in Modulation of
Upper-Airway Muscle Responses

A. Laryngeal Pressure Receptors

Inspiratory and expiratory activity of the intrinsic laryngeal muscles are modu-

lated by inputs from mechanoreceptors and chemoreceptors (central and periph-

eral) via the nTS. The larynx contains several types of sensory receptors that
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respond to mechanical and sensory changes in the upper airway (119). These

mechanical stimuli can be pressure or flow in the upper airway, or contraction of

upper-airway muscles (120,121). Activation of these mechanoreceptors will

reflexly activate laryngeal muscles (74,121). Specifically, negative pressure in

the larynx activates pharyngeal and laryngeal dilating muscles but inhibits

diaphragmatic activity (74). The afferent limb of this reflex is contained within

the sensory fibers of the SLN, a branch of the vagus nerve which projects to the

nTS, caudal to the dorsal cochlear nucleus (122). The efferent limb of the reflex is

the recurrent laryngeal and phrenic nerves with motoneuron pools in the nucleus

ambiguus (NA) and spinal cord, respectively. Mechanoreceptors regulate the

activity of the pharyngeal and laryngeal muscles during breathing and contribute

to upper-airway function, swallowing, and feeding.

A recent study employing pseudorabies viruses to retrogradely label

connected sets of neurons in a hierarchical manner showed that neurons that

project to PCA arise from neurons in the ventral medulla that are extensively

involved in regulation of respiratory and cardiovascular function (123). In

addition, there appeared to be direct connections from the respiratory pacemaker

cells (pre-Bötzinger complex) with PCA motoneurons (123). Therefore, the

anatomical interconnections between laryngeal motoneurons and respiratory

neurons in the brainstem support the physiological findings of significant

respiratory modulation of intrinsic laryngeal muscles.

B. Laryngeal Chemoreceptors

Sensory fibers in the larynx, which innervate ‘‘taste buds’’ on the epiglottis, are

activated by fluids with low chloride content (124,125). In response to water in

the larynx, a potent airway protective reflex, laryngeal chemoreflex (LCR), is

elicited to prevent inadvertent aspiration (126,127). The physiological compo-

nents of the laryngeal chemoreflex include swallowing, central reflex apnea or

hypoventilation, bradycardia, and hypertension. The laryngeal chemoreflex is

strongest during early postnatal development in mammalian species, and has been

associated with life-threatening apnea and bradycardia in the youngest animals

(128–131).

Anatomical Circuitry: Bradycardia Associated with LCR

Similar to the reflex arc of mechanoreceptor stimulation in the upper airway, the

afferent limb of the laryngeal chemoreflex is contained in the sensory fibers of the

SLN, which synapses in the nTS and nucleus ambiguus (NA). Axonal projections

from the nTS synapse onto recurrent laryngeal motoneurons (RLN) in the NA

and phrenic neuron pool in the spinal cord. Sensory fibers from the SLN also

synapse onto preganglionic cardiac vagal nerves in the NA, as shown in Figure 3.

Identification of SLN and cardiac vagal neurons with fluorescent dyes has
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Figure 3 Neural circuitry for the laryngeal chemoreflex. The LCR occurs when

sensory fibers are stimulated in the SLN. These afferent fibers synapse on cell bodies in the

nTS which send axonal projections to the cell bodies of the recurrent laryngeal nerve

(RLN) in the nucleus ambiguus (NA) and phrenic motoneuron pool in the spinal cord.

SLN fibers also synapse on preganglionic cardiac vagal with cell bodies in the NA. Axonal

projections from the preganglionic vagal afferents synapse on preganglionic cardiac

neurons with cell bodies in the right atrium and vena cava. Stimulation of sensory fibers

of the SLN involved in the LCR results in apnea with and without vocal cord closure (TA

activation), apnea, and bradycardia. PRCV, preganglionic cardiac vagal cell bodies; RLN,

recurrent laryngeal nerve motoneurons; NA, nucleus ambiguus; TA, thyroarytenoid

muscle.
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allowed for more complete characterization of synaptic inputs between these

neuronal groups. Mendelowitz has demonstrated, using a patch-clamp technique

in brain slices from newborn rats, that depolarization of SLN neurons directly

excite cardiac vagal neurons within the NA (132,133). The result of this

excitation of cardiac vagal neurons is a decrease in heart rate. Thus, some SLN

fibers monosynaptically synapse upon cardiac vagal neurons accounting for the

bradycardia associated with activation of the LCR. Whether the properties of the

synapses change with development accounting for less significant reduction in

heart rate associated with the laryngeal chemoreflex with maturation, has not

been determined.

C. LCR Possible Mechanisms Explaining Apnea and
Bradycardia Associated with Oral Feeding and
Gastroesophageal Reflux in Premature Infants

Apnea and bradycardic events occur during bottle feeding (134,135) and

gastroesophageal reflux (GER) in preterm and term infants (136–138). These

apneic and bradycardic events are likely secondary to activation of the LCR

during feeding and GER (for review, see 138–141). Similar to unobstructed

sustained respiration, coordinated sucking and swallowing with breathing is a

skill that improves with maturation (142). Discoordination of pharyngeal and

palatal muscles during bottle feeding places the immature infant at increased risk

for undercoating of the epiglottis (location of receptors for LCR) or penetration of

liquids into the larynx. In addition, in the infant who has residual lung disease

who has increased work of breathing, tachypnea, and difficulty in coordination

sucking, swallowing, and breathing, bottle feeding is more likely to result in

inadvertent stimulation of the LCR and direct aspiration (4). Similarly, GER, to

the level of the pharynx associated with discoordinated swallow, may also

stimulate laryngeal receptors and activate the LCR (141).

Reflux of acidic fluid is a potent stimulus for inducing the LCR in young

animals (131) and is likely to be operative in premature and term infants

(137,139). The coordinate, mature response to fluid in the larynx is to swallow,

to arouse, and to cough. However, when factors associated with depressed

arousal are operative, life-threatening apnea with O2 desaturations and brady-

cardia may occur in response to GER to the level of pharynx in newborn animals

(143). As mentioned earlier, infants with BPD have depressed arousal responses

(107). Since these infants have reduced functional residual capacity (reduced O2

storage), they are at risk for repetitive hypoxic episodes during apnea (144).

Repetitive hypoxic episodes results in decreased ability to arouse in response to

an acute hypoxic stimulus in newborn animals (145), placing infants with BPD

at increased risk for prolonged apnea with hypoxemia associated with GER

(146).
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With maturation, coordination of upper-airway muscles improves, and the

physiological response to stimulation of the laryngeal chemoreflex decreases

(142,147). Specifically, the duration and severity of the apneic and bradycardic

events decrease (148). With postnatal maturation, inhibitory afferent inputs are

counterbalanced by increases in excitability of respiratory-related neurons within

the respiratory network (149). Differential expression of ion channels and

neurotransmitter receptor profiles that occur in hypoglossal motoneurons accounts

for some of the maturational effects on hypoglossal motoneuron excitability

(outlined above). Less has been reported on the effect of development on the

intrinsic properties of laryngeal motoneurons. Although the percent of myelinated

fibers in the SLN significantly increases with postnatal maturation (87), the

mechanisms accounting for the developmental change in the physiological

response to laryngeal stimulation is most likely a more sustained respiratory

drive from maturation of central components of the respiratory network. Elaborate

anatomical and cellular interactions between pacemaker cells in the pre-Bötzinger

complex and the respiratory network in the brainstem occur with maturation and

are associated with more stable respiratory patterns. Several excellent mono-

graphs have recently reviewed the studies describing cellular and anatomical

factors that contribute to stable respiratory pattern during late fetal and early

postnatal development (30,150). Changes in neurotransmitter profiles within the

brainstem network from predominantly inhibitory to excitatory profiles contribute

to the sustained rhythmic respiration that occurs with maturation (150). Thus,

pharmacological therapeutic interventions to stabilize respiration and decrease the

frequency of apnea, with and without upper-airway obstruction, in premature

infants have frequently targeted inhibitory neurotransmitter systems.

X. Why Therapies Are Effective in Treating Apnea in
Premature Infants

A. NCPAP

Multiple therapeutic interventions including pharmacological and nonpharmaco-

logical methods have been used for the treatment of apnea with upper-airway

obstruction in premature infants. These interventions have previously been

reviewed (151). The most commonly used nonpharmacological therapy is nasal

continuous positive airway pressure (NCPAP). NCPAP decreases the frequency of

mixed, central, and obstructive apnea in premature infants (152). Several factors

account for this effect: NCPAP [1] splints the upper airway open, making it less

collapsible (153), and [2] increases functional residual capacity, stabilizing O2

levels (153). A stable O2 level results in less variation between high and low

respiratory drive. Increased variability in respiratory drive destabilizes breathing

and precipitates apnea (154).
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B. Methylxanthines: Theophylline, Caffeine, and Aminophylline

Adenosine Receptor Blockers: Adenosine Depresses Respiratory
Drive

Theophylline and caffeine are the most commonly used pharmacological agents

for the treatment of apnea in premature infants (151,155). The most likely

mechanism responsible for the reduction in all types of apnea attributed to these

methylxanthines is that xanthines are potent adenosine receptor blockers

(156,157). Adenosine, a ubiquitous neuromodulator, is a breakdown product of

adenosine triphosphate (ATP), and is involved in modulating many neuronal and

cellular properties. In response to hypoxia, adenosine levels increase significantly

(158,159). Hypoxia is associated with ventilatory depression in mature animals

(160), adults (161), immature animals (162), and infants (163). Although several

neuromodulators may mediate hypoxic ventilatory depression, adenosine is the

major neuromodulator involved in hypoxic ventilatory depression (162), espe-

cially in immature animals. The fetus (162) and newborn are particularly sensitive

to the depressive effects of adenosine on respiration. This respiratory depression

results in apnea in the most immature animals (164,165). Adenosine receptor

antagonists (caffeine, theophylline, and aminophylline) either abolish or attenuate

the respiratory depression associated with hypoxic exposure in mature (160) and

immature models (164,165). The therapeutic benefits of caffeine and theophylline

in the treatment of apnea that occurs in premature infants are also well known

(151,155).

Endogenous adenosine produced during hypoxia will bind to all adenosine

receptors, some of which are linked to excitatory and inhibitory second-

messenger systems, resulting in depolarization or hyperpolarization of the cell

or neuron (166). There are four classes of adenosine receptors—A1, A2A, A2B,

and A3. All four receptor subclasses have been cloned. The cellular and

physiological affects of ligand binding to these receptors have been best

characterized for the A1 and A2 subclasses of receptors (167). A1 and A2

receptors are coupled to Gi and Gs protein, respectively (166). Caffeine and

theophylline block both A1 and A2 adenosine receptors (156,157). Caffeine and

theophylline increase central respiratory drive by blocking the effects of adeno-

sine on brainstem respiratory-related neurons (168,169). These respiratory

depressant effects are mediated through the A1-adenosine receptor. A1-adenosine

receptor binding has been found in key respiratory-related areas in the fetal sheep

brainstem: rostral ventrolateral medulla, nTS, and NA (170). The A1-adenosine

receptors are inhibitory and are present on glutamatergic neurons that send axonal

projections to phrenic motoneurons (171) and hypoglossal motoneurons (172).

Adenosine binding to presynaptic A1-adenosine receptors on glutamate contain-

ing neurons blocks the release of glutamate (173). Since glutamate is a major

excitatory neurotransmitter regulating respiratory-related neurons and upper-
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airway motoneurons, blocking A1-adenosine receptors with caffeine and theo-

phylline theoretically should result in increased activity of respiratory-related and

hypoglossal motoneurons, thereby stabilizing ventilation and decreasing the

frequency of apnea.

GABAA Receptor Blockers: GABA Depresses Respiratory Drive

Theophylline and caffeine may also increase excitatory activity of respiratory-

related neurons involved in GABA transmission. GABA, similar to glycine, has a

dual role in neurotransmission during fetal and postnatal development: during

early development, GABA and glycine depolarize neurons; during late develop-

ment, GABA and glycine hyperpolarize neurons (174,175). During postnatal

development, GABA and glycine are the two major neurotransmitters that depress

respiratory drive (176). Similar to adenosine levels, GABA levels significantly

increase in response to hypoxia and contribute to the ventilatory depression

resulting from hypoxic exposure (177,178). Inhibitory actions of GABA are

mediated through the GABAA receptor, an inotropic receptor that gates chloride

channels (179). Theophylline blocks the inhibiting effects of GABA in cells

transfected with recombinant GABAA receptor (180). Pharmacological experi-

ments suggest that GABAA receptors exist on phrenic motoneurons (181). GABA

binding to these receptors [1] inhibits excitatory glutamergic inputs to phrenic

motoneurons in a newborn rat brainstem preparation (181), [2] inhibits respira-

tory drive in response to hypercapnia in premature rabbits (182), and [3] increases

apnea frequency in response to repetitive hypoxic exposure in newborn piglets

(183). Thus, in addition to blocking adenosine receptors, methylxanthines may

also increase respiratory drive and reduce the frequency of apnea by competitive

blocking of GABAA receptors on phrenic motoneurons.

XI. Conclusions

In conclusion, maturation of intrinsic and extrinsic factors influences the control

of upper-airway muscles during development in premature infants with and

without coexisting lung disease. By describing the events that occur in the

premature infant, a natural model of respiratory system immaturity, I have

discussed the effect of development on changes in key central and peripheral

components of the respiratory system that ultimately leads to stable breathing

patterns with maturation. Several clinical conditions naturally occur in premature

infants: [1] prolonged apnea associated with upper-airway obstruction; [2]

significant apnea and bradycardia associated with hypoxemia; and [3] apnea

and bradycardia associated with oral feedings and GER. In this chapter, I have

presented evidence from recent scientific publications that explains the changes in

cellular and neuronal properties of central and peripheral neurons involved in
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respiratory control of upper-airway muscles which may account for these

physiological events that occur in premature infants. In addition, I have discussed

how some ex utero therapies used to sustain the smallest premature infants may in

fact predispose these infants to chronic lung disease, more apneic events with

upper-airway obstruction that persist past term gestation, and to weaken arousal

responses during apnea and hypoxic exposure. Understanding the key elements

responsible for maturation of the central and peripheral components responsible

for stable respiration is important, since infants who have persistent apnea with

upper-airway obstruction are at increased risk for sudden death (67). Lastly, I

have briefly presented probable mechanisms to explain how two widely used

therapies, NCPAP and methylxanthines, are effective in stabilizing breathing and

thereby decreasing the frequency of apnea.

I have taken the liberty of being selective, in order to provide clarity to an

extremely complex system that is constantly changing, not only during develop-

ment, but also moment to moment. I encourage the reader to peruse recent

reviews that I have included in the bibliography that discuss other aspects of

changes that occur in the respiratory network during postnatal development.
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I. Introduction

Behavioral states (e.g., sleep and wakefulness) are constellations of physiological

and behavioral variables that are stable over time and repeat themselves (1). The

concept of behavioral states has made it possible to group movements and

physiological parameters in definable entities whose graduate organisation

during nervous system maturation can be studied (2). The emergence of behavioral

sleep and wake states in infants is one of the remarkable achievements of the

central nervous system and a good indicator of normal or abnormal development

(3). Sleep can be considered as a window on the developing brain (4). Changes in

state are accompanied by changes in many key physiological measurements. Thus,

even when state is not of direct interest, its links with cardiorespiratory, neuro-

physiological, and behavioral functions mandate that state be monitored and taken

into account as an essential covariate when investigating these functions (5,6).

The main three behavioral states: wakefulness; slow-wave sleep (SWS), or

non-rapid eye movement sleep (NREM); and paradoxical or rapid eye movement

(REM) sleep are produced by the activity of excitatory and inhibitory neurons

located in several brainstem and forebrain centers organized into ‘‘systems’’ or

‘‘networks,’’ each of which is responsible for controlling a given state. General
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principles of sleep-wake control and the development of brain structures involved

(and related references) have been reviewed recently (3).

The degree of differentiation at birth and the rate of age-related modifica-

tions in states depend on the maturation of involved brain structures. In general,

REM sleep appears first, followed by NREM and wakefulness. Because of some

differences, especially in electroencephalographic (EEG) and motor patterns,

REM sleep in young animals and in infants during the first months of age is

usually named active sleep (AS), and NREM sleep is usually named quiet sleep

(QS).

II. Development of Behavioral States in Animals

Distinct behavioral states have been described in chronically implanted fetuses of

animal species whose brains are relatively mature at birth. In a study using rest-

activity and heart rate (HR) evaluation, Belich et al. (7) documented cyclic

occurrence of three states in rabbit fetuses beyond 25 days of gestation. REM and

NREM states were found in lambs between 120 and 140 days of gestation

(normal length of gestation, 150 days), while SWS increased. The timing of the

fetal sleep cycle was not correlated with that of the maternal sleep cycle (8,9). In

guinea pig fetuses, Astic et al. (10) recorded REM sleep beyond 41 days of

gestation, with a peak at 50 days of gestation, i.e., at the time of first appearance

of SWS. REM sleep then decreased until birth (normal length of gestation, 65

days), while SWS increased (Fig. 1A). Two distinct EEG states have been

described in baboon fetuses recorded at 143–153 days of gestation (normal

length of gestation, 175–185 days). State 1 (QS) was distinguishable from state 2

(AS) based on the presence of tracé alternant. A smaller percentage of time was

spent in state 1 than in state 2 (11).

In guinea pigs and sheep, whose brain is relatively mature at birth, the

characteristics of the three main states, including EEG patterns, were similar

during the first few days of life and adulthood (12,13) (Fig. 1B). AS and QS,

definition based on concordance of the electrocorticogram, electro-oculogram

(EOG), and nuchal electromyogram (EMG), were found in preterm lambs born at

133–135 days of gestation. Compared to full-term lambs (147 days of gestation),

the preterm lambs spent more time in AS (14).

Behavioral observations and polysomnographic recordings in chronically

implanted kittens and rat pups showed that three main behavioral states were

recognizable during the first few days of life (15). These states were designated as

[1] wakefulness (defined by moving and eating behavior), [2] QS (short periods

of quiescence), and [3] AS, or paradoxical, ‘‘sismic’’ REM sleep characterized by

neck muscle atony, rapid eye movements, and generalized sismic movements. In

these species characterized by marked immaturity at birth, AS prevailed (Fig. 1B),

150 Curzi-Dascalova



Figure 1 Fetal and neonatal behavioral states. (A) Fetal behavioral states in guinea pig

(chronic polygraphic study) (From Ref. 10.) (B) Behavioral states during the first month of

life in guinea pig (mature brain at birth), rat pups, and kittens (immature brain in at birth)

(chronic polygraphic study) (From Ref. 13.) Discont: discontinuous EEG; SWS: slow-

wave sleep; W: wakefulness; REM: rapid-eye-movements sleep. FT: full-term newborn;

d: age in days.
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but EEG findings were similar in all three states (13,16,17). Based on data

obtained by electrolytic lesions of anterior raphe nuclei and on analyses of

monoaminergic brain system in rats and cats (with immature brain at birth), some

authors suggest that AS and QS during the first few weeks of life may not be the

exact counterparts of REM and NREM sleep (18,19; other references in 3).

REM sleep occupies a larger proportion of time in newborns than in adult

animals (3,13) (Fig. 1).

III. Behavioral States in Early Human Ontogenesis

A. Fetal Studies

Advances in real-time ultrasonography made it possible to demonstrate that

during the last trimester of pregnancy, human fetuses exhibit behavioral states

similar to those observed in newborns with similar postconceptional age (PCA).

Estimates of the time of first appearance of behavioral states in utero have varied.

Prechtl and coworkers (20) defined four fetal behavioral states: state F1,

characterized by a slower regular HR, with startles but no eye movements;

state 2F, with an irregular HR, eye movements, and occasional gross body

movements; state 3F, with a fast regular HR and eye movements but no body

movements; and state 4F, with a fast irregular HR, eye movements, and continual

body movements. Based on the above criteria and state scoring, utilizing a 3-min

moving window, the first studies by Prechtl and coworkers found evidence of

behavioral state development in human fetuses between 36 and 38 weeks

gestational age (21). However, using a similar scoring system, Visser et al.

(22) reported correlations among HR, eye movement, and gross body movement

patterns in normal fetuses at 30 to 32 weeks’ gestation. Okai et al. (23)

documented stable periods of REM and NREM of more than 3min duration

between 28 and 31 weeks gestational age; they also found a strong correlation

between the occurrence of rapid eye movements and breathing movements after

27 weeks’ gestation. Interestingly, thoracic and abdominal fetal respiratory

movements usually occur out of phase during state 2F, a characteristic also

found during AS in newborns (5,24).

Fetal states are independent of maternal behavioral states (25).

Monitoring of fetal EEG activity and heart rate variability in healthy fetuses

during normal labor demonstrated two alternating sleep states identical to AS and

QS observed in newborns (26,27).

Based on the HR pattern and the presence or absence of eye and gross body

movements, behavioral states were assigned similarly in low-risk babies recorded

during the last weeks of pregnancy and during the first 2 weeks of postnatal life.

The proportions of AS, QS, and indeterminate sleep (IS) were virtually identical

in fetuses and neonates (28).
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B. Behavioral States in Premature and Full-Term Newborns

Behavioral states should be considered not only as a basis for descriptive

behavioral classification but also as distinct modes of brain activity. Scoring of

behavioral states should never be based on a single variable. In the definition of

states there is no limit to the number of variables that can be included in the

analysis. However, only relevant variables should be taken into account (1). Also,

the results obtained depend on the variables taken into account and on the

resolution of the time unit chosen for their classification (29).

Nonsleep States

Definition of nonsleep states is based mainly on behavioral criteria. Carefully

recorded information obtained by continuous direct or video monitoring observa-

tion is the only way to define crying, quiet wakefulness, and active wakefulness.

Charge-sensitive mattress recording can be useful for studying nonsleep states. To

our knowledge, systematic polygraphic investigations and quantification of

nonsleep states in premature infants have not been conducted to date.

Quiet Wakefulness

This is rare before 35 weeks PCA. It is defined by wide-open eyes with or without

exploratory eye movements. Body movements are absent or scarce (30). Beyond

35 weeks, low-voltage theta EEG, characteristic of wakefulness, can be distin-

guished from the active sleep EEG pattern (29,31). Chin EMG reveals high-

voltage activity on which is superimposed phasic activity related to facial

movements. Respiration is usually regular (29). Quiet wakefulness corresponds

to Prechtl state 3 (1), for which one of the criteria is a stable HR.

Active Wakefulness

This is defined by open eyes, eye movements, repetitive eye openings and

closings, frequent gross body movements, and irregular respiration (29). Active

wakefulness corresponds to Prechtl state 4 (1), for which one of the criteria is a

variable HR with accelerations.

Crying (Prechtl’s State 5)

This is accompanied by gross body movements and crying vocalization. The eyes

may remain open or closed. Polygraphic parameters are usually uninterpretable

because of the presence of artifacts. Although some authors include crying in the

waking period (30), crying may be classified as a separate state because of its

specific behavioral characteristics (1).

Even when most of the feeding time (breast or bottle) is spent in

wakefulness, progressive transition to other behavioral states, characterized by

changes in EEG patterns, can be observed despite persistent nutritive sucking.

Continuous gavage feeding usually does not disturb sleep states (29).
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Sleep States

The first description of sleep states was based on observation of simultaneous

cyclic modification of respiratory rate and body and eye movements in young

babies (32,33). Whereas the classification of sleep states was developed mainly

on the EEG patterns in adults (34), polygraphic recording became the gold

standard for state classification and developmental physiology in newborns.

Because of EEG and some quantitative behavioral characteristics differ in

neonates as compared with adults, the pioneers of sleep studies of newborns

argued that specific terms were needed to design sleep states in neonates (35–41).

They used combinations of several parameters to define states. Two major sleep

states are usually distinguished in early human ontogenesis: active and quiet

sleep, to which subsequently has been added an indeterminate sleep (IS) state.

Based mainly on behavioral ‘‘gestalt’’ evaluation of patterns, Prechtl and

coworkers, who do not use EEG pattern as a state criterion, classified QS-like

periods as state 1, and AS-like periods as state 2; this classification does not allow

distinction of IS (1,38). Attempts at state classification based on a single

parameter (movement or HR) have also been made (42–44).

Polysomnography is easy to perform in newborns, if some technical

requirements are taken into account (29):

1. The person in charge of the recording must have some training in

neonatal care.

2. The data should be interpreted by a person conversant with age-related

EEG characteristics in premature and full-term newborns (29,45–47).

3. Piezoelectric transducers rather than EOG should be used for eye

movement detection because of the very low amplitude of retino-

corneal electrical potential differences in neonates (Fig. 2) (29).

4. Chin EMG recording may be unsuccessful because of the possibility of

low-amplitude activity at this level.

5. Extremely lightweight transducers should be used for leg movement

detection.

Use of recording methods that are not suited to newborns causes errors in

sleep state identification. When the technician is experienced in neonatal

polysomnography, the baby usually falls asleep before the end of electrode

placement.

State scoring data depend on the answer to a number of questions:

1. What are the variables chosen for state definition (state-specific criteria;

Table 1, Fig. 3)?

2. What is the minimum duration of the state?

3. What is the tolerated duration of parameter discrepancies without

interruption of the ongoing state (state smoothing)?
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4. When does a given state start?

5. When does a given state end?

Briefly, a major state begins with the establishment of a typical stable

constellation of several state-specific criteria (> 1, 3min, etc.), is not interrupted

by brief incidents (< 60 sec), and ends with a longer-lasting discrepancy

(> 60 sec) between parameters or a new constellation specific for another state

(29).

In daily practice, sleep states in newborns are recognized by the minimum

requirement of two concordant criteria: the EEG patterns (visually classified as

continuous versus discontinuous), and the presence or absence of REMs.

According to Pan and Ogawa (48), automatic analysis of EEG criteria

Figure 2 Example of digitized polysomnographic recordings in a healthy preterm infant

at a postconceptional age (PCA) of 33 weeks. Active sleep (left panel) is characterized by a

continuous EEG pattern and rapid eye movements (observed and detected only by

piezotransducer recording). Quiet sleep (right panel) is characterized by both a discontin-

uous EEG pattern and the absence of eye movements. (From Ref. 29.) LEOG, REOG: left

and right electro-oculogram; eye: eye movements recorded using a piezotransducer (Sleep

Watch transducer, Respironics); C3O1 and C4O2: EEG recordings; RR: cardiotachogra-

phy based on instantaneous heart rate measurement; FLW: nasobuccal airflow detected by

thermistors; tho and abd: thoracic and abdominal respiratory movements detected by strain

gauges; MVTs: sum of right hand and left leg movements, detected by actimeters; sec:

time in seconds; Imp: respiratory movements detected by impedance technique.
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Figure 3 Sleep state determination based on differing state criteria. AS: active sleep;

QS: quiet sleep. (A) Hypnograms in a normal full-term newborn (39 weeks PCA, healthy).

The amount of AS (defined on the basis of EEG and eye movement criteria only) was

virtually unchanged when additional criteria were used (regular or irregular respiration;

presence or absence of chin EMG; presence or absence of body movements; and

concordance of all five criteria). In contrast, use of additional criteria resulted in a

reduction in quiet sleep in favor of indeterminate sleep (IS), which was especially striking

when concordance of all five criteria was required. (B) Mean values of AS and QS,

expressed as percent of EEG þ REM–defined values, in a group of 10 full-term (39–41

weeks) appropriate-for-gestational-age (AGA) infants. Addition of tonic chin EMG as a

criterion, for example, decreased the mean QS amount to 75% of that defined by

EEG þ REMs. AS amount remained nearly the same when different criteria were required

for state coding. (From Refs. 61, 70.)
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(power, discontinuity, etc.) may predict sleep state changes in preterm infants of

> 30 weeks PCA. Scher et al. (49) found that increasing values of spectral theta

predicted state changing in a cohort of asymptomatic 28–36 weeks PCA

infants. Despite advances in automatic sleep analysis, especially in adults,

there is no computerized method for state scoring in newborns (49–53). For

instance, state scoring based on heart rate variability (HRV) is not reliable; 11%

of the AS and 40% of QS epochs are misclassified in normal full-term

newborns when only HRV measures are used; such a classification is even

less accurate in premature infants (29,54). State scoring in premature and full-

term newborns therefore continues to be done manually on a computer screen or

on paper.

Two main sleep states can be distinguished in neurologically normal

newborns.

Active Sleep (Figs. 2–4, Table 1)

AS is characterized by the concordance of more continuous EEG and presence of

REMs. In very premature babies, REMs are few and isolated, but their presence

in successive 20- or 30-sec epochs are necessary for the definition of AS. Their

number increases with increasing PCA. Near full term, bursts of REMs become

more frequent. In term infants, REMs are usually of lower density at the

beginning of given AS, increasing over time before decreasing toward the end

of the state (29).

EEG during AS in newborns is characterized by more continuous delta and

theta waves than QS. Delta waves amount and amplitude progressively decrease

with age, mostly beyond 34 weeks PCA. Concordance between continuous EEG

and REMs during stable (> 3min) periods has been described at about 27 weeks

PCA. In < 34 weeks PCA, AS with REMs can be associated with semi-

continuous EEG pattern composed of short EEG depressions and continuous

delta activity during at least 70% of a given 20- or 30-sec scoring period (29,47).

Beyond 37 weeks PCA, two types of AS can be distinguished: the EEG of AS

following wakefulness contains a larger amount of slow waves, while AS

following the QS state is characterized by faster, lower-amplitude, predominantly

theta activity (6,29,45,47,55).

Tonic chin EMG is inhibited during most of the AS time. The remainder

(� 10%) of AS time is characterized by chin activation following phasic EMG

bursts related to body and facial movements (56,57). Active REM sleep is also

concomitant to inhibition of postural midline muscles, involved in paradoxical

thoracoabdominal respiratory movements and obstructive sleep apnea observed in

newborns (24,58,59).

AS is characterized by irregular respiration and more body movements than

QS (see below, motor activity).
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Quiet Sleep (Figs. 2–4, Table 1)

QS is defined by the absence of REMs and more discontinuous EEG than in AS.

EEG patterns for QS definition at different ages are as follows: [1] Up to 36

weeks PCA: discontinuous EEG; however, at 35–36 weeks PCA, QS may include

periods with more continuous delta activity (semidiscontinuous tracing); [2]

Figure 4 Sleep states and sleep cycle duration in preterm and term infants. Neuro-

logically normal preterm AGA infants at various ages (PCA in weeks), preterm infants at

term (PRT), and full-term, small-for-gestational-age (SGA) neonates are shown. (A) Sleep

states and sleep cycle duration are given in minutes. (B) Sleep states as percentage of total

sleep time. In A, sleep cycle duration at a given age is given by the sum of AS, IS, and QS

duration. (Abbreviations as in Fig. 3.)
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Beyond 37 weeks PCA: ‘‘trace alternant’’ or continuous delta activity. In near

term infants, QS EEG may be more continuous at the beginning of the state,

before the appearance of typical ‘‘trace alternant’’ (6,29,31,45,52,60).

Tonic chin EMG is present in � 80% of QS between 31 and 41 weeks PCA

(no data for younger premature infants). Normal, full-term newborns spend on

average 22% of their QS with absent tonic chin EMG; similar percentages have

been observed in NREM sleep in older infants and adults (56,57,61–63) (Fig. 3).

Respiratory rate can be regular or irregular. The amount of irregular

respiration described depends on the method of evaluation. We are scoring

respiratory rate as irregular when in given (20 or 30 sec) epoch the duration of

the longest respiratory cycle is 50% longer than the shortest one. Based on such

quantified evaluation, we found that the mean amount of QS epochs with

irregular respiration was between 45% and 70% (50% in normal, full-term

newborns; Fig. 3). However, in all PCA groups studied, the amount of irregular

respiration was significantly higher in AS than in QS (5,61). As a generalization

(gestalt pattern), respiratory rate is described as regular in QS (38).

Body and facial movements are fewer in QS than in AS (see below, motor

activity).

Indeterminate Sleep

IS exhibits characteristics of both AS and QS. It is also called undifferentiated

sleep, coincidence sleep, ambiguous sleep, or no-state (29,40,64,65). IS periods

are mainly characterized by absence of REMs during continuous EEG tracing. IS

can interrupt an ongoing state or be related to a between-state transition (66) (Fig.

3A). IS occupies � 30% of total sleep time from 27 to 34 weeks PCA and

decrease to < 10% starting at 35 weeks PCA. This decrease of IS favors AS

amount (61) (Fig. 4).

Between-State Transitions

Although sleep during transitions between QS and AS exhibits features of both

states, it is described as an independent, individualized mode of central nervous

system functioning. The order of disappearance of AS sleep parameters during

the switch from AS to QS sleep, and their order of appearance during the switch

from QS to AS sleep, may help to determine which brain structures control these

sleep states (67).

A stable, well-organized pattern of between-sleep-states transitions has

been described in healthy 30–41 weeks PCA newborn infants. Duration of AS to

QS transitions was significantly longer than duration of QS to AS transitions and

was independent of PCA. The sequence of changes in parameters (REM and

EEG) was invariable: REM cessation was the first change in AS to QS transitions,

and REM appearance was the last change in the QS to AS transitions (64,66).

Theses findings are in keeping with studies in human fetuses (21,69,70). They are
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in agreement with observations of well-defined sleep states very early in human

ontogenesis (3,53).

Sleep Cycling

The time pattern of sleep states in neonates is fairly stereotyped. In contrast with

older infants and adults who are normally falling asleep in NREM sleep,

wakefulness in newborns is followed by a brief episode of AS (shorter than

those between two QS episodes). Then, a short period of transitional sleep can

precede the onset of QS, which is followed by a longer episode of AS (either

directly or with intervening transitional sleep; Fig. 3A). Each sleep cycle includes

one complete AS and one complete QS state. Sleep cycle duration is measured

from the end (or the beginning) of a given state to the end (or the beginning) of

the next state of the same type (Fig. 3A).

Sleep cycle duration is variable across infants and across successive cycles

in a given infant. Nevertheless, mean sleep cycle duration increases with age,

from 40min at 27–30 weeks PCA to 45min at 31–34 weeks PCA and 50–70min

between 35 and 41 weeks PCA (3,29) (Fig. 4A).

Sleep state duration and percentages of different states in the sleep cycle are

age dependent. In healthy infants, IS occupies � 30% of the total sleep time from

27 to 34 weeks PCA, and decreases to < 10% starting at 35 weeks PCA. This

decrease in IS favors AS, which becomes the predominant state, occupying

> 60% of the sleep time between 35 weeks PCA and term (3,6,29,70) (Fig. 4B).

To our knowledge, the balance between AS and wakefulness, described in older

infants (3,71), has never been studied in newborn babies.

Using time-lapse video recordings, Ingersol and Thoman (72) found that

very low birth (born < 1500 g) preterm infants showed marked stability and

developmental changes in the organization of sleep-wake states from a very early

age, and that their states were related to demographic variables as well as

temporal measures of care giving.

Normal sleep cycling is observed in neurologically normal premature

reaching term and small-for-gestational-age neonates, as well as in artificially

ventilated premature infants (70,73) (Fig. 4). Disturbance of sleep cycling may be

observed during the first days of life in newborns with mild CNS abnormalities.

At this ontogenetic moment, the presence of sleep states organization has a

good prognostic value, as far as neurological future of the infant is considered

(74). Later sleep cycling may appear in babies with more severe CNS

damage. Holdish-Davis (75) found that, despite illness, high-risk preterm

babies between 29 and 39 weeks continued to achieve appropriate developmental

sleep organization.

Studies in human infancy have shown little or no evidence of circadian

sleep-wake rhythmicity at birth (76–78).
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C. Influence of Environmental Factors on Sleep Organization in
Neonates

Quantified studies on environment and behavioral state organization in neo-

nates mainly included infants evaluated before discharge from neonatal care

departments.

Sleep architecture is sensitive to environmental temperature. In both

premature and full-term newborns cool exposure decreases total sleep time as a

consequence of an earlier awakening, whereas AS duration increases at the

expense of QS (79–81). Tirosh et al. (82) found that moderate heating provokes a

significant decrease in the proportion of AS and an increase in QS. The

modification of sleep structure by a warm environment was not confirmed in

other studies (80). Discrepancy between these studies is probably related to

differences in the amplitude and the trend of temperature changes. Augmented

humidity does not change sleep structure if the incubator air temperature remains

constant (83). In contrast to adults, active thermoregulation occurs in the

premature infant during REM sleep (81,84). Mean rectal temperature has been

found lower in AS than in QS in only term, not premature, infants (81,85).

Prone sleeping position is frequent, especially in sick premature babies.

Keene et al. (86) did not find significant differences in cardiorespiratory stability

between supine and prone positions in preterm infants. However, many epide-

miological investigations suggested that, in older infants, prone sleeping increases

risk of sudden infant death syndrome (87). This augmented risk has been related

to arousal thresholds that increase when sleeping prone (88). There are few

reports on the effect of body position on behavioral states organization in

neonates. In healthy full-term newborns, Amemiya et al. (89) and Myers et al.

(90) observed more awake time in the supine than in the prone position;

wakefulness occurred at the expense of state 1 (QS) and=or state 2 (AS).

Newborn infants slept more in the prone position than in the supine, and QS

was significantly more in the prone position (90,91). In 36 weeks PCA

asymptomatic preterm infants, Goto et al. (92) described more awakenings

during all sleep states in supine than in prone position. After each feeding, the

first QS was significantly shorter when sleeping supine, but overall, the total sleep

and percent sleep state were not affected by sleep position.

Bosque et al. (93) found slightly lower total sleep and percentage sleep time

in neonates who experienced kangaroo care as compared with those sleeping in

incubators.

Ariagno et al. (94) did not demonstrate significant difference between sleep

parameters (sleep time, AS, QS, sleep transitions) in asymptomatic 36 weeks

PCA infants receiving neonatal individualized developmental care program

(NIDCAP) as compared with those receiving routine care. In < 32 weeks PCA

infants, Bertelle and Sizun (95) found significantly higher total sleep time
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(P < :02), QS duration (P < :02), and shorter sleep latency (P < :006) in

NIDCAP than in routine, non-NIDCAP caring conditions.

In general, both in the literature and in our own experience, sleep state

differentiation was documented earlier during ontogenesis in studies performed

after the 1980s than in those done previously (3). This is probably ascribable to

improvements made in neonatal care in industrialized countries during recent

decades.

D. Sleep and Methylxanthines

Methylxanthine derivatives are currently used to prevent or decrease apneas in

premature neonates. They cross the blood brain barrier (96,97), and their

antiapnea effect has been ascribed to respiratory center stimulation (98–100).

Available data on the effects of methylxanthine derivatives on sleep are hetero-

geneous and partly conflicting. Most of them were obtained with theophylline

because this was the first drug used to control apnea in premature neonates. Drug

effects probably depend on the drug used, animal species investigated, dosage,

whether use is acute or chronic, and age.

In premature babies treated by theophylline because of apnea, Demarquez

et al. (96) described an increase of awakening and a decrease of QS and IS.

Dietrich et al. (101) found a decreased amount of AS, while Gabriel et al. (102)

described that AS amount remained unaffected. Thoman et al. (103) found that 2

to 5-week-old postterm babies treated by theophylline when born premature

presented more wakening and AS, but noted that the clinical history of treated

babies was not similar to control groups. Theophylline is partially converted to

caffeine in preterm population (104).

In many neonatal departments, caffeine is preferred to theophylline because

of lower side effects on heart rate, urinary sodium excretion, gastrointestinal

intolerance, and behavior (105,106). Emory et al. (107) found correlations

between salivary caffeine levels and the number of state changes and startles

observed during administration of the Brazelton Neonatal Assessment Scale.

Preliminary data from Hayes et al. (108) suggested a dose-related effect of

caffeine in premature infants with a decrease in QS and increase in AS and

drowsiness as defined by the method of Thoman et al. (42) for state-scoring in

newborns, which relies mainly on motor behavior criteria.

To assess the potential effect on sleep organization of caffeine in standard

maintenance dosages, we recently performed 10-h polysomnographic recordings

in 15 neurologically normal and clinically stabilized 33–34 weeks PCA neonates,

of whom 10 had been treated for > 3 days with once-a-day oral caffeine citrate,

5mg=kg, given around 2 PM. We analyzed [1] the usual sleep-wake parameters,

including wakefulness, AS, QS, and IS expressed as the number of episodes,

duration, and percentage of total sleep time; [2] the duration and order of
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parameter modifications during transitions between the main AS and QS states;

and [3] the characteristics of morning data (before caffeine) compared to evening

data (after caffeine). We found no significant differences between the controls and

the infants on maintenance caffeine (Table 2). We conclude that caffeine in a

standard maintenance dosage does not modify sleep organization in neurologi-

cally normal and clinically stable 33–34 weeks PCA infants (109).

IV. Neurophysiological Correlates of Sleep States in
Premature and Full-Term Newborns

A. Sleep, Motor Activity, and Reflexes

Amount of Motor Activity

The amount of motor activity was one of the first criteria for behavioral states

description (32,33). Indeed, Dreyfus-Brisac, Monod, and Samson-Dolfus, the

pioneers of sleep ontogenesis studies in France (110), first designed the principal

two states in newborns by the terms ‘‘sommeil calme’’ and ‘‘sommeil agité,’’

which were later equated with the English terms quiet sleep and active sleep.

Behavioral states classification based on motor activity recording alone has been

advocated (42).

Table 2 Wakefulness and Sleep Parameters in Caffeine-Treated and Non-Caffeine-

Treated Infants

Criteria Caffeine No Caffeine P value

W: number 14.9� 8.9 20.4� 11.3 0.3

AS: number 26.7� 6.8 33.6� 9.8 0.2

QS: number 9.7� 3 9� 3.5 0.9

IS: number 30.7� 6.9 28.2� 8 0.6

W: % of recording 6.1� 4.3 7.6� 4.3 0.5

AS: % of TST 64.3� 9.7 63� 15.2 0.8

QS: % of TST 14.8� 3.4 14.9� 5.4 1

IS: % of TST 20.9� 8.2 22.1� 10.5 0.8

State transitions: number 81.6� 22.9 91.2� 15.1 0.4

AS)QS transition in min 6.4� 3.1 6.1� 3.7 (5.8) 0.7

QS)AS transition in min 1.7� 1.8 1.5� 1.8 0.7

Means�SD.

W, wakefulness; AS, active, REM sleep; QS, quiet, NREM sleep; IS, indeterminate sleep; TST, total

sleep time; min, between-state transition duration in minutes.

None of the comparisons showed significant differences (P at least > .3).

Source: Ref. 109.
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In both AS and QS, in newborns �31 weeks PCA (lower age limit of the

study), the initiation of spontaneous trunk and limb movements, under pyramidal

control, is inhibited during diaphragmatic contraction. This inhibition is seen

neither with movements accompanying sighs nor with movements mediated by

cranial nerves (111). Groom et al. (28) described stable individual differences in

motor activity level: infants who moved at a certain rate as fetuses generally

moved at the same rate as neonates.

When motor activity of the upper and lower limbs is recorded continuously,

periods with total quietness are nearly absent in normal premature and full-term

newborns (112,113). However, from 31 weeks PCA (the youngest PCA studied),

the amount of time spent moving is significantly greater during AS than during

QS (Fig. 5). The amount of movement in both sleep states remains stable until 38

weeks PCA and decreases significantly in full-term (39–41 weeks PCA)

newborns (112). Thus, 39 weeks PCA is a turning point characterized by a

significant decrease in motor activity during both AS and QS. The prevalence of

body movements in AS as compared with QS in premature infants reaching the

normal term and in small-for-gestational-age newborns is similar to that observed

in AGA newborns of the same PCA (70,114) (Fig. 5).

In parallel with between-state differences in quantified motor activity, state-

segregated motor patterns have been described by observation of neonatal

behavior (115,116). It is well established that rhythmic chin movements (about

3=sec) appear only (but not always) in QS; they usually occur in bursts (29).

Startles are highly characteristic of QS, while sigh frequency is lower in QS than

in AS (114,117). REMs, and small face and limb movements, mainly occur in

AS; their appearance allows detection of the onset of AS by visual observation.

Figure 5 Percentage of time spent with body movements in different sleep states. (From

Refs. 29, 112, 114). (Abbreviations as in Fig. 4.)
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Following some historical description of motor development in neonates

(38,91,115), the detailed study of Hayes et al. (116) demonstrated that state-

segregated behaviors were more likely to exhibit co-occurrence in infants 30

weeks PCA and older.

Motor Reflex Responses

The amplitude of the motor reflex responses to various stimuli depends on the

level of CNS structures (spinal=brain stem=cortical) involved and on the degree

of alpha and gama motoneurons’ inhibition=facilitation according to sleep states.

Most of the proprioceptive reflexes are of higher amplitude in QS than in AS, in

contrast with exteroceptive skin reflexes which are usually of higher amplitude in

AS than in QS. Table 3 summarizes some of the scarce data on between-state

differences of responses to sensory stimulations observed in neonates.

It is of highest importance to check behavioral state when evaluating

neurological status in newborns (51) using posture, muscle tone, motor, and

reflex parameters. Indeed, all these parameters are state dependent. Some of the

historical misunderstanding in evaluation of neurological maturation in neonates

seems to be partially related to the fact that some authors did the examination in

wakefulness after stimulating the baby (126), while others observed what was

happening during sleep (127,128).

B. Developmental Regulation of Sleep and Autonomic
Functions

‘‘Emotional’’ Sweating

Phasic modifications of electrical skin properties measured at the palms and soles

are related to emotions and mental activity during wakefulness, and sponta-

neously appear during sleep, prevailing during NREM sleep as compared with

REM sleep in adults (129,130). It has been reported that they reflect sweat gland

activity and are principally under sympathetic ANS control (131). The earliest

age at which spontaneous skin potential responses (SPRs) have been found in

sleeping newborns is 28 weeks PCA, which is the age at which sweat glands

become functionally mature (132). SPRs increase gradually with PCA, more

rapidly during AS than during QS (Fig. 6). The transition to an adultlike

prevalence of SPRs during QS is due to a steady increase in SPRs in QS

during the first 5 months of postterm life (oldest age studied), whereas the SPR

increase during AS stops earlier (133).

Storm (134) found that beyond 29 weeks gestational age and at > 10 days

of postnatal age (lower age limit of the study), skin conductance changes in

connection with heel prick were lowest in sleep and highest during crying
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(P < :05). The mean skin conductance level mirrored the behavioral state from

34 weeks gestational age (P < :05).

Respiratory Patterns

The first descriptions of sleep states in infants were based on observed differences

in respiratory rate: breathing was more irregular during AS and more regular

during QS (32,33,55). Striking state-related changes in respiratory pattern have

been documented from the time of appearance of differentiated sleep states (5).

Sleep-related respiratory characteristics in newborns are described in other

chapters in this book. Breathing parameters usually taken into account to evaluate

sleep states or respiratory control normality=abnormality are central respiratory

pauses, breathing regularity=irregularity, breathing frequency, and percentage of

time with out-of-phase (paradoxical) occurring between thoracic and abdominal

breathing movements. These parameters present large between-subject differ-

ences and fluctuations between one moment to the next in a given subject. Data

from the literature usually concern clinically and neurologically normal AGA

newborns older than 30 weeks PCA, because younger premature infants usually

have neonatal respiratory distress syndrome and are not appropriate for normal

respiratory development evaluation. Four parameters investigated showed signif-

icant between-state characteristics.

Central respiratory pauses of short duration are a normal phenomenon in

newborns. They have been documented during wakefulness following body

movements (135). However, they mainly occur during sleep. The apnea index,

defined as the percentage of nonbreathing time, is significantly higher during AS

than during QS. It remains at a high level until 38 weeks PCA and decreases

Figure 6 Spontaneous skin potential responses (SPRs) in active (AS) and quiet (QS)

sleep. SPRs were first detected at a PCA of 28 weeks. (From Ref. 132.)
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significantly during both AS and QS at 39–41 weeks PCA (136). Premature

infants at term and SGA newborns have significantly more respiratory pause than

AGA infants of the same PCA (136,137) (Fig. 7).

Beyond 35 weeks PCA, respiratory frequency is significantly higher during

AS than during QS. During both AS and QS, respiratory frequency increases

significantly at 39–41 weeks PCA (Fig. 7), and continues to increase during the

first 2 months of life decreasing progressively thereafter (138).

Phase shift between thoracic and abdominal breathing, a normal phenom-

enon during the first months of life (24,58,139–142), is closely related to

selective intercostal muscle inhibition in AS and to high chest wall compliance

(24). From 31 to 41 weeks PCA, the time spent with a 180� thoracoabdominal

phase shift remains unchanged and is significantly greater during AS compared

with QS.

Figure 7 Apnea index (percentage of nonbreathing time) and breathing frequency in the

two sleep states are shown. (From Refs. 29, 70, 136–138.) (For abbreviations, see Fig. 3.)
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In premature and full-term newborns, irregular breathing prevails signifi-

cantly during AS, covering > 90% of the time spent in this state. However, 20–

50% of QS is also accompanied with irregular breathing, with no differences

between the youngest premature and full-term newborns (29,61).

Artificially ventilated (18–54=min intermittent positive pressure ventila-

tion) but neurologically normal infants are more dependent on the machine for

ventilation in QS than in AS (143).

Heart Rate (HR) and Heart Rate Variability (HRV)

HR and HRV give valuable information on sympathetic and parasympathetic tone

during different sleep states in early ontogenesis (144,145). It is now well

established that sympathetic tone prevails in AS, while parasympathetic tone

prevails in QS (54,145,146). Because of methodological differences in frequency

band definition, it is difficult to compare published data on age-related modifica-

tions. HR and high-frequency HRV (related to the respiratory cycle and

principally under parasympathetic control) are the only parameters that are

comparable when different ages are considered.

Beyond 35 weeks PCA, HR is significantly faster and high-frequency HRV

significantly lower during AS than during QS. Although HR and high-frequency

HRV do not exhibit significant interdependence (54), they exhibit parallel trend of

age-related modifications. From 31 to 41 weeks PCA, HR decreases and high-

frequency HRV increases during both AS and QS (54,70) (Fig. 8).

In general, HR and HRV levels are modified in ‘‘at-risk’’ (but neurologi-

cally normal) premature infants at term and small-for-gestational-age infants

(70,147–151) (Fig. 8).

Sleep states in term neonates are also related to changes in cerebral

hemodynamic (152,153).

V. Comments and Summary

Sleep or wake onset and sleep state changes are coordinated processes involving

simultaneous or quasisimultaneous changes in sensory, motor, autonomic,

hormonal, and cerebral processes. The neural structures underlying each of

these processes must reach a certain degree of development before the corre-

sponding state can appear. Differentiated behavioral states are present in humans

in utero during the third trimester of gestation.

Polysomnography, the gold standard for state definition, is easy to perform

in newborns if the persons in charge of the recording are conversant with age-

related EEG and REM characteristics and if they have some training in neonatal

care.
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Scoring of behavioral states should never be based on single variable. The

quantified results obtained depend on the variables taken into account. As early as

27 weeks PCA, stable AS and QS states can be distinguished, based on

concordance between the EEG and REM characteristics of a given state.

Additional criteria, such as respiratory rate, HR, tonic chin EMG, and body

movement have virtually no effect on the amount of AS (which is maturing earlier

in the ontogenesis). In contrast to AS, up to the normal term, QS can be reduced

Figure 8 Heart rate (top panel) and heart rate variability (HRV) in the high-frequency

(middle panel) and low-frequency (bottom panel) spectra in the two sleep states. (From

Refs. 29, 54, 148, 149.) (For abbreviations, see Fig. 3.)
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in duration in favor of IS by the presence of irregular respiration, inhibited tonic

chin EMG, and body movements.

Between 27 and 34 weeks PCA, IS state is 30% of the sleep time (definition

based on EEG þ REM criteria). Its amount significantly decreases beyond 35–36

weeks PCA in favor of AS. Up to the normal term in humans, sleep is

characterized by stable periods (� 20–22%) of QS (NREM) and a very high

(up to 70%) percentage of AS (as opposed to 20% in adults).

Knowledge of early state differentiation is important because a number of

physiological parameters are correlated to sleep states and a number of abnorm-

alities occur primarily in one or the other of the main sleep states. Most of state-

dependent differences in cardiorespiratory changes or disturbances are related to

the physiological specificity of the given state (Fig. 9).

AS is considered a more ‘‘dangerous’’ state in regard to cardiorespiratory

disturbances. It is normally characterized by postural muscle hypotonia, sensi-

tivity of brainstem respiratory centres to behaviorallike (environmental or

endogenous) stimuli, and prevalence of sympathetic ANS tone. These AS

characteristics are not only involved in out-of-phase thoracoabdominal respira-

tory movements and prevalence of obstructive respiratory events, but also in the

persistence of more autonomous respiratory movements in artificially ventilated

infants and in some cases of mild central alveolar hypoventilation (Ondine

syndrome). These state-dependent respiratory abnormalities will be discussed

in other chapters. The prevalence of sympathetic tone explains the higher

amplitude of low-frequency HRV in this state.

QS is normally characterized by the presence of postural muscle tone, high

dependence of brainstem respiratory centers functioning to ‘‘chemical’’ (mainly

CO2) stimuli, and prevalence of parasympathetic, vagal ANS tone. These QS

characteristics may explain the higher dependence on the ventilator in artificially

Figure 9 Schema of physiological interactions of active and quiet sleep on the control of

respiration, heart rate, and heart rate variability. ANS: autonomic nervous system.
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ventilated infants and the dramatic respiratory arrest in case of central alveolar

hypoventilation. The higher parasympathetic tone explains the higher amplitude

of HF HRV in this state. In addition, EEG abnormalities are more readily detected

during QS than during AS.

Finally, sleep cycling seems to be one of the basal functions of the central

nervous system, established early during human ontogenesis and resistant to

some deviations from the norm as prematurity, intrauterine growth retardation,

and artificial ventilation if the neurological and the biological status are not

affected.
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I. Introduction

The expectation that pulmonary air convection must meet metabolic demands is a

very likely one for organisms that depend on the lungs for gas exchange. Because

pulmonary ventilation ( _VVE) is an important determinant of alveolar ventilation

( _VVA), and metabolic rate, in conditions of equilibrium, corresponds to oxygen

consumption ( _VVO2
) or carbon dioxide production ( _VVCO2

), the closeness between

metabolism and _VVE implies stability in alveolar and blood gases.* Indeed, in adult

mammals, the expectation of a close relationship between _VVE (or _VVA) and

metabolic rate has been verified on numerous circumstances. During moderate

levels of exercise, the alveolar and arterial CO2 partial pressures (respectively,

PACO2 and PaCO2) remain nearly constant, until anaerobic metabolism provides

an additional stimulus to _VVE. Equally, variations in ambient temperature (Ta) offer

examples of changes in _VVO2
accommodated by nearly proportional changes in _VVE

(1). Pharmacological interventions raising metabolic rate result in isocapnic

hyperpnea, whether in normoxic or hypoxic conditions (2), and parallel changes
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*The alveolar gas equation for CO2 states that the alveolar partial pressure of CO2 is

proportional to the ratio between CO2 production and alveolar ventilation

½PACO2 ¼ ð _VVCO2
= _VVAÞ � Pb, where Pb is barometric pressure].



of _VVO2
and _VVE are observed daily, during the normal circadian patterns (3).

However, some deviations from the expectation are also known, such as

responses to exercise with hyperventilation* and hypocapnia (4), or cases of

hypo- or hyperventilation during warm or cold exposures (5). These deviations

from the expected pattern indicate that priorities other than strictly gas exchange

may intervene in dictating the level of _VVE. For example, in the cold, the necessity

of reducing the respiratory heat loss can pose a limit to the degree of hyperpnea,

whereas the opposite may occur when body temperature (Tb) increases, as during

muscle exercise in a warm environment.

In newborns, numerous situations could modify the relationship between
_VVE and metabolic needs. For example, sleep, which is the predominant state in

the neonatal period, in adults is known to alter numerous control mechanisms,

including the _VVA- _VVCO2
balance (6). Second, the homeostatic mechanisms

controlling Tb, so effective in adult mammals, are less functional in the newborn,

partly because of its small size and mostly because of the incomplete thermal

control. Changes in Tb can have a direct influence on the _VVE level, in addition to

the effect mediated by the change in metabolic rate (1). Further, because the

electrochemical neutrality varies with temperature, a change in Tb could require

some degree of hypo- or hyperventilation for the purpose of maintaining a

constant relative alkalinity and protection of the pH-dependent protein functions

(alphastat regulation) (7–9). Third, the structural characteristics of the respiratory

system, which in newborns is prone to distortion and mechanical inefficiency

(10), may pose a limit to the _VVE levels necessary to meet large metabolic

demands. Also, if the peripheral chemoreceptors were important in detecting

gaseous metabolism, their low postnatal sensitivity (11–14) could reduce the

ability of _VVE to track changes in metabolic rate. Finally, but not of little

importance, the common neonatal strategy of changing metabolic rate with

changes in oxygenation (15) places additional demands on the coupling between

metabolic rate and _VVE.

In this chapter I plan to consider conditions thought, or well known, to

modify the metabolic requirements of the newborn, and examine the correspond-

ing _VVE changes. Unfortunately, the survey is limited by the paucity of studies that

have specifically addressed this issue. Nevertheless, the review of the available

data permits some tentative conclusions regarding the extent of the coupling

between _VVE and metabolic rate in newborn mammals.

II. Glossary of Terms and Definitions

a, A arterial, alveolar

*Hyperventilation is a level of _VVA exceeding that required by metabolic demands (see also

Sec. II).
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HVR hypoxic ventilatory response, ml=min

O2, CO2 oxygen, carbon dioxide, mlSTPD
PO2, PCO2 partial pressure of O2, CO2, mmHg

Ta, Tb temperature, ambient or body, �C
_VVE, _VVA minute, alveolar ventilation, mlBTPS=min
_VVO2

, _VVCO2
rate of O2 consumption, CO2 production, mlSTPD=min

W body weight

Gaseous metabolism ( _VVO2
and _VVCO2

) and metabolic rate are used inter-

changeably.

Hypoxia: A decrease in O2 availability at the tissue level.

Hyper-, hypopnea: Respectively, an increase and decrease in the absolute

value of _VVE, relative to normoxia.

Hyperventilation: An increase in _VVE relative to metabolic demands. More

precisely, an increase in _VVA= _VVCO2
, i.e. a decrease in PaCO2, irrespective

of the absolute value of _VVE or _VVA.

Hypoventilation: An increase in PaCO2.

Hypometabolism: A drop in metabolic rate, relative to the normoxic value.

Thermoneutrality: The range of Ta over which, in normoxia, Tb is

maintained with minimal _VVO2
.

III. Interspecies Differences in Metabolic Rate

As in adults, in newborn mammals body weight–specific oxygen consumption

( _VVO2
=W) is greater in the smaller species.* Are these interspecies differences

accommodated by corresponding differences in _VVE? An ideal approach to answer

this question would be that of measuring simultaneously _VVE (or _VVA) and _VVO2
(or

_VVCO2
) in many species under identical conditions—for example, at thermo-

neutrality and at similar times of the circadian cycle. This has never been

done. However, after combining the results of many studies and averaging the

data pertaining to any given species, the figure that emerges (Fig. 1) is that of a

direct proportionality between _VVO2
and _VVE (10). The very small marsupials fall

on the same line of the more precocial eutherian mammals. On average, _VVE= _VVO2

equals 41 (mlBTPS=mlSTPD), which corresponds to _VVO2
being � 2.5% of _VVE.

On the assumptions that _VVE is directly proportional to _VVA, and that the

right-to-left shunts are minimal and similar among species, the proportionality

between _VVE and _VVO2
implies an interspecies similarity in the pressures of alveolar

and blood gases. Data of alveolar gas pressures are too few for any conclusion;

*However, the interspecies differences are not nearly as marked as they are in adults. In

fact, in adults _VVO2
/W0.75, whereas in newborn mammals _VVO2

/ to W0.99 (eutherian

mammals and marsupials, combined) or / to W0.91 (eutherians only) (10).
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those of arterial blood gases, from a number of newborn species, are quite

scattered, but do not show any systematic differences with the species body size

(10); the overall interspecies averages are respectively, 82 and 40mmHg for

arterial PO2 and PCO2, and 7.39 for pH.*

IV. Metabolic Rate During Body Growth and Aging

In the newborn, _VVO2
=W is usually higher than in the adult, with the exception of

some of the small rodents; in these species, in the first days after birth _VVO2
=W

actually increases, and only after several days does it begin the usual postnatal

Figure 1 Average values of pulmonary ventilation and the corresponding values of

oxygen consumption in newborn species. Data (represented in double log scale) of

eutherian mammals ( filled symbols) are from Ref. 10; values of the marsupials (open

symbols) are from Ref. 64 (dunnart) and Ref. 63 (wallaby). In the dunnart at 2–3 weeks, up

to one-third of total gas exchange occurs through the skin.

* These values exclude those obtained on the day of birth, because of the rapid changes

occurring at this time.
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decline (10). Although it is known that also _VVE=W is higher in newborns than in

adults, whether or not _VVE follows closely the postnatal changes in resting _VVO2
has

never been specifically addressed by experimental studies. A coarse perusal of

published data on Sprague-Dawley rats of different postnatal ages, between a few

days to 1 month, reveals a large variability in _VVE= _VVO2
, with values ranging from

25 to 45. This variability could be caused by differences in methodology and in

study protocols, which can influence _VVO2
and _VVE in numerous ways. In addition,

at any given age, differences in gender, Ta, Tb, time of day, and state of arousal

could cause variability in _VVE= _VVO2
by altering normoxic _VVO2

.

In Figure 2, data of _VVE=kg of normoxic rats during growth have been

plotted not as function of their age, but as function of their normoxic _VVO2
=W,

irrespective of the factors responsible for its value. Neither in male nor in female

rats was _VVE directly proportional to _VVO2
, and a pattern emerged of _VVE= _VVO2

tending to be lower in those conditions characterised by a high normoxic _VVO2
=kg.

Hence, a source of variability in _VVE= _VVO2
during growth would not be the

postnatal age per se, but the metabolic condition of the animal. Whether or not

this information may be of general value waits confirmatory data from other

species.

V. Circadian Patterns of Metabolism

In human infants and a few other newborn mammals in which measurements

have been performed, it is possible to document the existence of circadian

patterns in Tb and metabolic rate, reminiscent of what is well known in adults.

Studies in artificially reared animals demonstrated that the neonatal rhythm is of

endogenous origin, rather than the result of maternal influences (17,18). After a

couple of weeks, at least in rats, the Tb oscillations gradually decrease in

amplitude, almost disappearing around weaning age, to increase again thereafter

(19–21); this pattern is an intriguing phenomenon with no clear explanation.

In the rat pups, not only are _VVO2
and Tb lower during the morning hours,*

but also the thermogenic response to a cold environment is decreased, presumably

because of a lowering in the set point of thermoregulation (22). One implication

of this is that, for the same cold stimulus, the propensity for hypothermia is

greater in the morning than in the evening hours. Rat pups respond to this

situation behaviorally, by increasing in the morning their tendency to huddle

(Czerwinski, Seifert, and Mortola, 1999, unpublished observations).

In adult rats, _VVE and _VVO2
oscillate throughout the day with very similar

patterns, such that _VVE= _VVO2
presents minimal variations (3). Continuous record-

* The rat, like most rodents, is a nocturnal animal, with higher mean levels of activity at

night.
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Figure 2 Pulmonary ventilation (top panel) and ventilation oxygen consumption ratio

( _VVE= _VVO2
, bottom panel) in rats of different ages and at different metabolic levels. Numbers

indicate the number of rats for each range of _VVO2
. Data between genders did not differ

significantly, but for either gender _VVE= _VVO2
was lower when _VVO2

=kg was higher. (From Ref.

16.)
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ings are difficult to obtain in young pups, because of their frequent needs for

maternal care. Nevertheless, from intermittent measurements in 6-day-old rats it

was clear that both _VVO2
and _VVE were higher at 7:00 PM than at 7:00 AM, with a

similar _VVE= _VVO2
(23) (Fig. 3). It would be interesting to obtain circadian _VVE data

at later stages of postnatal development, when, as mentioned above, the amplitude

of the circadian patterns undergoes rapid changes. If indeed _VVE was following

closely the circadian oscillations of metabolism, as it seems, it would mean that,

as in adults, also in newborns the presence of a biological clock does not

compromise the normal role of _VVE in protecting blood gases. At the same time,

such results would indicate that the normal AM–PM difference in Tb, of �1�C,
has no appreciable effects on the relationship between _VVE and _VVO2

.

In adult rats, not only _VVE= _VVO2
during air breathing, but also the hyper-

ventilatory responses to hypoxia or hypercapnia (i.e., the percent increase in
_VVE= _VVO2

from normoxia) are quite similar between the AM and PM hours

(24–26). In newborn rats the hypoxic effects on _VVE were proportional to those

on _VVO2
in both the evening and the morning hours, such that the level of hypoxic

hyperventilation remained the same (23).

VI. Changes in Temperature

A. Cold

The metabolic responses of newborn mammals to changes in Ta have been

extensively investigated. The thermoneutral range is typically smaller, and at

higher Ta values, than in adults. As in adults, also in newborns a reduction in Ta

below thermoneutrality stimulates heat production, which in newborns is mostly

nonshivering thermogenesis, and behavioral heat conservation.

In adults, the increase in metabolic rate during exposure to cold is

accompanied by a proportional increase in _VVE (1). In lambs also, a decrease in

Ta was met by proportional increases in _VVO2
and _VVE (27), with no changes in Tb,

blood gases, or pH (28). In 11-day-old dogs exposed to Ta 20�C, _VVO2
and _VVA

increased proportionately from the corresponding values at 30�C, with minimal

changes in PaCO2, arterial O2 content, and PaO2 (29).

On the other hand, in newborn rats a reduction in Ta of just a few

degrees reduced the ventilation metabolism ratio (Fig. 3), and at 36�C _VVE= _VVO2

was � 35–38% higher than at 24�C (30,31). From a coarse review of the

published data, it seems that the drop in ventilation–metabolism ratio in the

cold may have some relationship with the drop in Tb, which occurs readily

when small newborns like the rat are exposed to cold (Fig. 4). Because changes

in Tb could influence the _VVE level (32), this could explain the greater inability

of the neonatal rat in maintaining _VVE= _VVO2
in the cold in comparison to the

newborn dog or sheep. Whether or not a cause-and-effect relationship between
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Figure 3 Mean values of pulmonary ventilation ( _VVE), oxygen consumption ( _VVO2
),

carbon dioxide production ( _VVCO2
), and body temperature (Tb) in 6-day-old rats, in the

morning (7:30) and evening hours (19:30), at ambient temperatures (Ta) of 29 or 33�C.
Gaseous metabolism and _VVE increased in the evening hours, in proportion to one another.

Bars indicate SEMs, which, when not represented, were within symbol size. * Significant

difference from the preceding measurement. (From Ref. 23.)
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Tb and _VVE= _VVO2
really exists will require further measurements. A reduced

hyperpnea in the cold limits the pulmonary heat loss, but, at the same time, this

mechanism for Tb protection implies some departure from complete acid base

homeostasis.

B. Heat Exposure

Most mammals live at temperatures below thermoneutrality. This probably

applies also to the majority of newborns, especially those of the medium-size

and large species. Over the thermoneutral range, because, by definition, _VVO2
is at

its minimum, the only possibility for maintaining Tb against a progressive

increase in Ta is by mechanisms of heat loss. These latter mechanisms, typically,

are very limited in newborns, and this is the main reason for their narrow range of

thermoneutrality. Hence, especially in some of the smallest species, warm

conditions can readily provoke an increase in Tb—i.e., hyperthermia (10).

Figure 4 Ventilation oxygen consumption ratio ( _VVE= _VVO2
) in cold conditions, expressed

as percent of the value in warm conditions (100%, dotted horizontal line), for newborn rats,

dogs, and lambs, as function of the change in body temperature between hypoxia and

normoxia. In the small newborn rat, cold reduced body temperature and _VVE= _VVO2
more than

in the larger newborns. Values of _VVE= _VVO2
, when not available at the source, were

calculated from the changes in PaCO2. (From Refs. 23, 28–31, 33.)
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Above thermoneutrality, _VVO2
increases partly because of the energetic cost of the

functions activated by the hyperthermia, and partly because of the Q10 effect.*

To these conditions of warm exposure, or overt hyperthermia, some adult

mammals respond with thermal polypnea, a rapid and shallow pattern that can

result in major increases of _VVE with a minimal impact on _VVA (5). In newborns,

experimental data on the _VVE response to heat stress are very few. In lambs and

human infants heat exposure resulted in no or modest increases in Tb and a

substantial increase in breathing rate (34,35). In these studies tidal volume was

not measured, but the fact that the elimination of CO2 increased, whereas _VVO2
did

not change, suggested that the subjects were hyperventilating. In another study, in

lambs of different age groups (27), as Ta was raised _VVE= _VVO2
clearly increased.

The data in animals agree with previous observations in infants (36,37), and

would indicate that in newborns, as in adults, during heat exposure the priorities

of respiratory regulation are shifting from the control of blood gases to the control

of heat loss. Indeed, during heat stress, the evaporative heat loss from the

respiratory tract can increase by 50% (infants) to 100% (lambs) (34,35).

In lambs, infants, and newborn rats, the breathing pattern has been

consistently found to be more irregular in warm than in cold conditions, and in

infants, the propensity to apneic episodes in warm conditions has been considered

a potentially life-threatening situation (38). Chemical stimuli, such as hypoxia or

hypercapnia, usually result in a breathing pattern more regular than during air

breathing, and also the cold-induced increase in metabolic rate appears to act as a

stimulus, stabilizing breathing. Hence, during warm conditions in normoxia the

chemical and metabolic stimuli on breathing are minimal, and this situation could

favor breathing irregularities (31).

VII. Changes in Respiratory Gases

Within the aim of the present chapter it is of interest to consider the changes in

oxygenation, because both hyperoxia and hypoxia alter metabolic rate in many

newborn species. However, changes in inspired CO2 (hypercapnia), at least

between 1% and 5% of inspired CO2, typically have negligible effects on

neonatal _VVO2
and Tb (33,39,40).

A. Hyperoxia

Data on the effects of hyperoxia on pulmonary convection ( _VVE or _VVA) and

metabolic rate ( _VVO2
or _VVCO2

) are limited to a few species. In mice, lambs,

* The Q10 (Arrhenius) factor expresses the change in reaction velocity for a 10
�C change in

temperature, Q10 ¼ ðA0=A00Þ½10=ðT 0�T 00 Þ�, where A0 and A00 are the enzymatic activities, or

reaction velocities, at the corresponding temperatures T0 and T00.
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newborn rats, and infants, hyperoxia most commonly increases _VVO2
(10). The

basis for this phenomenon is not clear. The simplest interpretation is that

normoxic _VVO2
may be limited by the availability of O2, and that hyperoxia

would resolve this limitation (1).

The time profile of the _VVE response to hyperoxia has been examined in

human infants. After the immediate and brief reduction in _VVE presumably due to

the lowering in carotid body inputs, _VVE increases at or above the normoxic value

(41–47). Experiments aiming to address the question of whether a proportionality

exists between the ventilatory and metabolic responses have been performed in

the newborn mouse and the human infant, with discordant results. In 1- to 2-day-

old mice, 5min of 100% O2 breathing resulted in an increase in _VVO2
and a drop in

breathing rate and _VVE (48). However, in the infant, after a few minutes of

hyperoxia _VVO2
, _VVE, and _VVA increased, with a drop in end-tidal CO2, indicating

that air convection increased disproportionately more than metabolic rate did

(45–47).

Presumably, the lack of proportionality between metabolic rate and _VVE in

hyperoxia can be attributed to the numerous factors which, in addition to _VVO2

itself, impact on the _VVE level. After the sudden inhibition of the chemoreceptor

inputs, the high O2 reduces the hemoglobin capacity for CO2 and, consequently,

provokes a reduction in cerebral tissue pH, which stimulates breathing. Hyper-

oxia could also stimulate breathing by direct action on the brain structures (49)

and, possibly, via activation of the airway receptors.

B. Hypoxia

As mentioned earlier, in first approximation in normoxia the level of _VVE varies in

proportion to the metabolic processes. Although this phenomenon has been

noticed and documented by experiments for over a century, the mechanisms

which permit _VVE to track metabolism are still unknown. Similarly, the metabolic

level is an important determinant of the magnitude of the ventilatory response to

hypoxia (HVR, ml=min). In fact, for any given level of hypoxia, the HVR is not a

fixed, predetermined value; rather, it increases when metabolic rate is elevated,

and decreases in situations of low metabolism (15), as if the metabolic level, from

a functional view point, was controlling the gain of the inputs from the

chemoreceptors (Fig. 5, top panel). From the concept that metabolic rate is

fundamental in determining the magnitude of the HVR, it also follows that a drop

in metabolism during hypoxia can lower the HVR; if the metabolic drop was

marked, then, the HVR can be nil or even negative (i.e., the _VVE level in hypoxia is

less than in normoxia; Fig. 5, B–B4 in bottom panel). Because of these two

reasons (the importance of _VVO2
in determining _VVE and the HVR, and the

possibility of a change in _VVO2
during hypoxia), it is important not to confuse

the HVR as an index of the hyperventilation. In fact, a correct assessment of the
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Figure 5 (Top) Schematic representation of the relationship between metabolic rate and

pulmonary ventilation, in normoxia (continuous line), or during an hypoxic condition

creating an hyperventilation ¼ 2� the normoxic value (i.e., halving the PaCO2, dashed

line). Any point on the dashed line indicates the same level of hyperventilation. However,

from A to A1 the magnitude of the hyperpneic response (HVR) is half that from B to B1. In

other words, although A-A1 and B-B1 indicate the same hyperventilatory response, B-B1
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degree of hyperventilation is not obtained simply from the HVR; rather, it can be

conveniently expressed by the increase in _VVE= _VVO2
or the drop in PaCO2. The

schematic examples in Figure 5, bottom, show that the same degree of hypoxic

hyperventilation (i.e., the same increase in _VVE= _VVO2
) can be achieved with

qualitatively different combinations of HVR and hypometabolism (B1 to B4).

With this premise, we can now examine the hypoxic hyperventilation of

newborn and young animals, with attention to the degree of stability of the

hyperventilatory response in conditions known to change normoxic _VVO2
, such as

body growth and exposure to cold, and among species with different metabolic

requirements.

Hypoxic Hyperventilation: Newborns of Small and Large Species

For the same level of hypoxia, the variability in the magnitude of the hypoxic

hyperventilation is very large, in both adult and newborn species. In the latter,

even small differences in postnatal age, in addition to the different degree of

maturity at birth, have an important impact on the function of the chemoreceptors

and on the HVR (10). Nevertheless, despite the variability, several points can be

made from these comparisons of newborn and adult species exposed to the same

degree of hypoxia (inspired O2¼ 10%; Fig. 6). First, the newborn’s hyperventila-

tion shows a scatter among species similar to, and within the range of, the

responses measured in adult species. Second, there is no obvious trend for a

change in the magnitude of the hyperventilatory response with normoxic _VVO2
=W.

In other words, the magnitude of the normoxic _VVO2
=W of the species does not

systematically influence the degree of hypoxic hyperventilation. In many

newborns hypoxia decreases Tb, and this is more marked in the smallest species

which have the highest normoxic _VVO2
=kg. Hence, the fact that there is no

systematic interspecies trend in the magnitude of the hyperventilation, nor a

systematic difference from the adults, suggests that the drop in Tb does not have a

major effect on the degree of the hypoxic hyperventilation.

Hypoxic Hyperventilation and Body Growth

In newborn rats, as in other newborn species, the HVR is almost nil, whereas the

hypometabolic response to hypoxia is very pronounced. By comparison, in adult

requires twice as much HVR than A-A1, because in B metabolic rate is twice than in A.

(Bottom) From B to B1, B2, B3, or B4, the hypoxic hyperventilation is the same, namely 2�
normoxia. However, the hyperventilation in B-B1 is strictly achieved by hyperpnea, with

no hypometabolism; in B-B3 is achieved only by hypometabolism; with no HVR; and in

B-B2 there is a combination of hyperpnea and hypometabolism. Finally, B-B4 is an

example of hyperventilation achieved with a large hypometabolic response and a negative

HVR.
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rats the hypoxic hypometabolism is small, whereas the HVR is marked. The

combination of these two responses is what determines the hyperventilation

(increase in _VVE= _VVO2
), and in newborn rats this is almost as large as in older rats of

different age and body weight (53).

Similarly to what adopted above (Sec. IV; Fig. 2), it is convenient to

represent the level of the hypoxic hyperventilation not as function of age or W,

but as function of the normoxic _VVO2
. When analyzed in this fashion (Fig. 7),

results of prepuberty rats appear to be very similar to those of older animals (16).

Hence, the hyperventilatory response to hypoxia is almost the same at various

levels of normoxic _VVO2
, whether it is achieved predominantly by hypometabo-

lism, by hyperpnea, or by any combination of the two.

Figure 7, incidentally, shows a rather important difference in the degree of

hypoxic hyperventilation between genders, the response being more pro-

nounced in female than in male rats, irrespective of normoxic _VVO2
. Sex hormones

are known to play a role in the control of _VVE (54), but the fact that the difference

is also manifest before puberty indicates that these hormones cannot be

considered a major factor responsible for the gender difference in hypoxic

hyperventilation.

Figure 6 Ventilation–oxygen consumption ratio ( _VVE= _VVO2
) in hypoxia (10% inspired O2)

expressed as percent of the normoxic value (dashed line) in various newborn species. All

newborn species hyperventilated (i.e., increased _VVE= _VVO2
), but the degree of hypoxic

hyperventilation was very variable. þ, Response of adult species exposed to the same level

of inspired oxygen as the newborns. (From Refs. 50–52.)
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Hypoxic Hyperventilation and Changes in Temperature

Analysis of the hypoxic hyperventilation during exposure to cold is included in

this chapter because cold and hypoxia combined cause major effects on Tb and
_VVO2

; hence, it is an opportunity to verify the strength of the metabolism-

ventilation linkage when some of the primary variables are modified.

The experiment summarised in Figure 8 refers to 11-day-old puppies (29),

studied in warm (open symbols) or cold conditions (filled symbols). In warm

conditions, a progressive decrease in the inspired O2 significantly reduced _VVO2

when PaO2 was � 40mmHg or less, and _VVA started to rise only when the

hypoxia was severe. In the cold, normoxic _VVO2
was higher than in warm

conditions, as expected because of the increased thermogenesis, and this increase

was accompanied by a proportional increase in _VVE. With hypoxia, _VVO2
was

beginning to drop significantly at PaO2 � 50mmHg, i.e., at a higher value than

in warm conditions, and _VVA decreased. As apparent from the PaCO2 values

(Fig. 8, top right), the degree of hyperventilation in the cold was identical to that

Figure 7 Ventilation–oxygen consumption ratio ( _VVE= _VVO2
) during hypoxia (10%

inspired O2), expressed as percent of the normoxic value (dashed line) in prepuberty

(open symbols) and postpuberty rats (filled symbols) with different metabolic levels. At all

levels of oxygen consumption ( _VVO2
=kg), the hyperventilatory responses were larger in

females. For either gender, the values of prepuberty rats were comparable to those of older

animals with high _VVO2
=kg. (From Ref. 16.)
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in the warm condition. Hence, this experiment illustrates the remarkable similarity

in hypoxic hyperventilation despite the major differences in metabolic and

ventilatory responses. In other words, gas convection responds appropriately,

maintaining the adequate _VVE= _VVO2
, irrespective of what the metabolic level may be.

It is important to point out that the drop in Tb with hypoxia, which occurs

both in warm and in cold conditions as the consequence of the hypometabolism

(1), was substantially more marked in the cold, when the decrease in Tb was as

Figure 8 Eleven-day-old dogs, exposed to progressive hypoxia, in warm (30�C, open
symbols) and cold conditions (20�C, filled symbols). _VVO2

, oxygen consumption; _VVA,

alveolar ventilation; PaO2 and PaCO2, arterial pressure of, respectively, oxygen and carbon

dioxide; Tb, body temperature. (From Refs. 29, 53.)
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large as 5�C (Fig. 8, bottom right). Since _VVE and _VVA were able to perfectly track

the metabolic requirements, the conclusion should be reached that even a rather

large change in Tb does not have any appreciable impact on the magnitude of the

puppy’s hyperventilatory response. It would be of interest to extend these

observations to other species, like newborn rats, which in normoxia are unable

to maintain a constant _VVE= _VVO2
when Tb drops (Sec. VII.B).

The drop in Tb during hypoxia also occurs in the human infant, and it is not

uncommon for neonatologists to artificially increase the incubator temperature in

an attempt to raise the Tb of the hypoxic infant; this practice has been questioned,

since it could be harmful to the infant’s strategy for survival (10). In newborn cats

and dogs, during hypoxia, an artificial increase in Ta until Tb is at the normoxic

level increased the ventilation–metabolism ratio, possibly with a mismatch

between _VVE and _VVA (55,56), a response that could reflect the necessity of the

newborn to heat-dissipate.

VIII. Extrapulmonary Gas Exchange

Attempts to gain further insights into the relationship between pulmonary

convection and metabolic rate have been made by adding to the lungs an

additional gas exchanger, such as an extracorporeal membrane lung. If the

level of _VVE was related to tissue metabolism via neural or humoral information

originated by the cellular activities, one would expect _VVE to change in proportion

with the changes in total metabolic rate, irrespective of how gas exchange is

partitioned between the lungs and the extracorporeal gas exchanger. On the other

hand, if gaseous metabolism ( _VVO2
or _VVCO2

) is the primary mechanism linking

cellular activity to _VVE, then _VVE should vary depending on pulmonary _VVO2
or

_VVCO2
, rather than on total metabolic rate.

In lamb and goat fetuses, even after disconnection from the placenta,

regular breathing did not initiate as long as the membrane lung was operating,

that is, as long as the metabolically produced CO2 was not allowed to rise above

normal (57–59). Earlier experiments in conscious resting adult sheep connected

to an extracorporeal membrane lung indicated that _VVE decreased as the rate of the

artificial exchanger increased, and eventually _VVE ceased when the removal of CO2

equaled that metabolically produced (60). Hence, the eventuality that the gaseous

aspect of cellular metabolism is the important variable in setting _VVE is more than

a mere hypothesis, and it finds support in some experimental observations.

Naturally occurring dual gas exchangers can be found among lower

vertebrates, but they are rare among mammals and birds; two notable exceptions,

the neonatal marsupial and the avian embryo at term, offer additional experi-

mental opportunities to explore the relationship between pulmonary convection

and metabolic rate during the early developmental processes.
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Marsupial neonates are born at a very early stage of development, being the

most altricial of all mammals (10). Some of them are born after < 2 weeks of

gestation, with body weights 10–100 times smaller than that of a newborn mouse!

In addition to the lungs, these animals rely heavily on the skin for gas exchange,

while the respiratory apparatus is quite inefficient (61,62).

In the tammar wallaby (birth weight � 450mg), the skin accounts for

� 30% of total _VVO2
on the day of birth, and its contribution to total gas

exchange remains significant for the first few postnatal days. During this time,
_VVE was found to be proportional to total _VVO2

, not to the gas exchange of the lungs

or skin separately considered. This observation led to the conclusion that even at

such early stages of development in mammals the mechanisms coupling _VVE to the

whole body metabolism were already operational, and that total _VVO2
was the

relevant parameter setting the _VVE level (62,63).

A different conclusion, however, emerged from experiments in the neonatal

dunnart, in which changes in whole-body metabolic rate were provoked by

changes in temperature. The Julia Creek dunnart is a marsupial born with a body

weight of only � 15mg, with the skin contributing almost the entirety of the

body gaseous exchange for several days (61). In experiments performed at � 2–3

weeks postnatally (64), when the skin provided � 1=3 of total _VVO2
, a drop in Ta

from 36 to 32�C greatly decreased both skin and lung _VVO2
, but had only a minor

effect on _VVE. Only with more severe cooling did all parameters decline together, a

result predictable from the Q10 effect on biological reactions.

In the chick embryo, the lungs become a functional gas exchange organ as

soon as the embryo pierces into the air cell at the blunted end of the egg, and at

this stage some aspects of its regulation of breathing resemble those of the

neonatal mammal. Hence, during the last day of incubation the embryo has a

double route for gas exchange, one provided by the chorioallantoic membrane

and the other by the lungs. Over the last 24–36 h of incubation, the gas exchange

function of the chorioallantoic membrane gradually declines, as that of the lungs

increases its relative importance. During all this time, an experimental increase in

T resulted in increases of both total gas exchange and _VVE. However, the increase

in _VVE was less than that of total _VVO2
; rather, it was proportional to pulmonary _VVO2

(Fig. 9). Hence, in line with the majority of the observations just summarized, the

observations in the chick embryo also imply that the _VVE control mechanisms are

linked to peripheral cellular needs not via neural or humoral information, but via

the gaseous component of tissue metabolism. Yet, how the mechanisms setting
_VVE are sensing the level of gaseous metabolism remains mysterious. The

peripheral receptors could be involved by sensing PaCO2, but the close propor-

tionality between _VVE and _VVO2
or _VVCO2

would imply a very high gain of the _VVE

response to CO2, and this is not what emerged from some experiments on the

avian embryo’s peripheral chemosensitivity (Menna and Mortola, unpublished

measurements).
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IX. Summary and Concluding Remarks

Does pulmonary ventilation track the changes in metabolic rate in newborns? The

question seems not to have a unique answer. In fact, from the information in our

hands and summarized in the previous sections, the answer would seem to be yes

or no, depending on the experimental conditions (Table 1). In reality, a closer

scrutiny reveals that the _VVE– _VVO2
relationship breaks down when Ta changes, i.e.,

when the respiratory system is engaged as an effector organ for thermoregulation.

Because in newborns the mechanisms for the control of heat loss are less effective

than in adults, as indicated by the narrow thermoneutral range, the possibility of
_VVE becoming a means for heat control is a more likely event than it is in adults.

When this happens, the only option for a coexistent homeostasis of blood gases is

left to the flexibility of the dead space, which permits a dissociation between _VVE

and _VVA. Some adult mammals are capable of varying the dead space in order to

fulfill thermoregulatory tasks with the respiratory system without seriously

compromising blood gas homeostasis (5); to what extent this strategy is used

in the neonatal period has not been the object of specific studies.

Adult mammals, by use of all their mechanisms of thermoregulation,

maintain homeothermy, and Tb changes only in extreme conditions. Newborns,

Figure 9 Chick embryos during the last 36 h of incubation. Pulmonary ventilation is

plotted against oxygen consumption ( _VVO2
) of the whole embryo ( _VVO2

total, left panel), or

against the component of _VVO2
exchanged through the lungs ( _VVO2

lung, right panel), at

33�C (open symbols) and at 39�C (filled symbols). Dashed lines join constant _VVE= _VVO2
, of

the values indicated. Continuous lines are the linear regressions through the data points.

An increase in temperature provoked an increase in _VVO2
total disproportionately greater

than the increase in _VVE, which, on the contrary, had a unique relationship with _VVO2
lung.

(From Ref. 65.)
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on the contrary, are far less capable of protecting Tb, especially in hypoxia (1).

The lax homeothermy, the limited thermogenesis, and the propensity for

hypometabolism of many newborn mammals represent a pattern quite reminis-

cent of the ectothermic behavior of lower vertebrates. In ectothermic animals, a

decrease in Ta is often accompanied by an increase in _VVE= _VVO2
, while the opposite

occurs when Ta increases (5). These responses are considered appropriate for the

constancy of protein functions. In fact, the pH of electrochemical neutrality varies

inversely with temperature, and the maintenance of the net charge of proteins

requires a change in blood pH to meet electrochemical balance. Specifically,

alpha-stat regulation, which refers to the control of the fractional dissociation

ratio (termed alpha) of the imidazole group of the amino acid histidine (alpha-stat

regulation) (7), implies changes in pH inversely with temperature; adjustments in

the relationship between ventilation and metabolism (namely _VVA= _VVCO2
) are a

Table 1 In Newborns, Are Changes in Gas Convection Proportional to Those of

Metabolic Rate?

Conditions Answer Section

Normoxia, among species Yes III

Normoxia, during growth and

aging

Probably No ( _VVE= _VVO2
is lower

when _VVO2
is higher)

IV

Normoxia, during circadian

oscillations

Yes V

Normoxia, during cold exposure Yes, when Tb is maintained VI.A

No, when Tb decreases ( _VVE= _VVO2

decreases at low Ta,

presumably for heat

conservation)

Normoxia, during heat exposure No ( _VVE= _VVO2
increases with the

increase in Ta, presumably for

heat loss)

VI.B

Hyperoxia, compared to

normoxia

Variable _VVE= _VVO2
responses VII.A

Hypoxia, during circadian

oscillations

Yes V

Hypoxia, among species Yes (although, large variability) VII.B

Hypoxia, during growth and

aging

Yes VII.B

Hypoxia, during cold exposure Yes VII.B

Hypoxia, during heat exposure No ( _VVE= _VVO2
increases with the

increase in Ta, presumably for

heat loss)

VII.B
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particularly suitable means to achieve it. Therefore, one could ask whether or not

also the newborn mammal, like the ectotherms, may adopt alpha-stat regulation,

in place of pH stability, and adjust the ventilation metabolism ratio to accom-

modate the changes in Tb. The data available do not support this possibility. For

example, in newborn dogs during hypoxia (Fig. 8), the hypocapnia and alkalosis

were of the same magnitude in cold and warm conditions, despite the much lower

Tb in the former case; hence, there was no indication of alpha-stat regulation.

Also, a decrease in Tb (such as cold exposure in normoxia) can be accompanied

by a decrease in _VVE= _VVO2
(Table 1), which is the opposite of what demanded by

alphastat regulation.

In conclusion, all the evidence suggests that in newborn mammals _VVE

tracks metabolic rate with the priority of controlling blood gases and maintaining

pH stability. These priorities can find some compromise in the control of heat

loss, when respiration is used as an effector organ for thermoregulation, but they

are not sacrificed for alpha-stat regulation. Hence, the newborn mammal uses

survival techniques, such as hypoxic hypometabolism and hypothermia, reminis-

cent of the ectothermic behavior of lower vertebrates, but its control of breathing

is geared for pH stability and homeothermy.
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I. Introduction

Respiratory control is complex. Our current understanding of the generation and

execution of this vital function, especially in the neonate, is fragmentary at best.

Generation of respiratory rhythm from a developmental perspective is addressed

in Chapter 1. This rhythm, generated by the central pattern generators located in

the brainstem, is continuously modified by proprioceptive and chemical feedback

mechanisms. In addition to these involuntary components, higher centers provide

a source for voluntary control of respiration. These involuntary and voluntary

feedback loops and their impacts on rhythm generation are discussed in greater

detail in preceding chapters.

II. Respiratory Control Disorders

The neural signal for breathing is converted into the motor act of breathing, the

final step in this sequence, by the respiratory muscles. Adequacy of this

respiratory output is reflected in the arterial blood gases, which in turn are

determined by alveolar ventilation and metabolism. Although global changes in
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the normal and diseased lungs can be assessed by blood gas, it lacks the ability to

assess regional variations that may be important in understanding and treating the

disease process. Abnormalities can occur anywhere in this chain, resulting in

respiratory failure. The causes of respiratory failure in the neonate are summar-

ized in Table 1. Of course, most cases of respiratory failure, both acute and

chronic, are not the result of primary respiratory control abnormalities. They are

often caused by diseases, which can be classified as obstructive or restrictive

respiratory diseases. Respiratory distress syndrome, pneumonia, pulmonary

edema, and airway obstruction account for the majority of these diseases.

Respiratory failure may be de novo or a complication of a chronic respiratory

Table 1 Causes of Respiratory Failure in the

Newborn

Central nervous system disorders

Immaturity

Depression

Infection

Associated with malformation

Chiari malformation

Dandy-Walker malformation

Möbius syndrome

Associated with genetic syndrome

Congenital central hypoventilation syndrome

Joubert’s syndrome

Miscellaneous

Respiratory flutter

Peripheral nervous system disorders

Agenesis or injury to phrenic nerve

Diseases or injury to spinal cord

Birth trauma to spinal cord

Anterior horn cell diseases

Neuromuscular disorders

Myasthenia gravis

Congenital myotonic dystrophy

Congenital myopathies

Chest wall disorders

Skeletal dysplasia

Asphyxiating thoracic dystrophy

Severe kyphoscoliosis

Diseases of the lung and airways

Obstructive respiratory diseases

Restrictive respiratory diseases
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disease (such as bronchopulmonary dysplasia) due to an intercurrent illness.

Nevertheless, changes in respiratory control occur secondarily, and they are

addressed in more detail in Chapters 20 and 21.

The most common respiratory control disorder in the neonate is apnea of

prematurity. It is the focus of several chapters to follow. Other respiratory control

disorders are quite rare. Central nervous system causes of apnea are listed in

Table 2. Some of the respiratory control changes are very transient and usually of

little clinical consequence. Yet, better understanding of these events may provide

unique insights into respiratory control. For example, both sighs and hiccups are

far more frequent in the neonate than in the older child or adult (1,2). Activities of

both diaphragm and upper-airway muscles (genioglossus and posterior cricoary-

tenoid) are increased concurrently during sighs (3), resulting in 2–3 times the

normal tidal volume. On the other hand, the diaphragmatic contraction during

hiccup generates an even larger negative intrapleural pressure, and yet very little

air enters the lungs (2). The lack of airflow during this brief, powerful diaphragm

contraction is the result of upper-airway obstruction. During a typical hiccup

spell, which lasts several minutes, nonintubated newborn infants may develop

hypoxia, hypercarbia, and acidosis due to hypoventilation, whereas in intubated

infants hyperventilation ensues (2). Upper-airway obstruction during

diaphragmatic pacing (in the absence of a tracheotomy) has a similar basis.

The activation of diaphragm during gasping is similar to hiccup in some respects

(e.g., duration of activation, time to peak activity); however, concurrent increased

activation of upper-airway muscles keeps the airway open facilitating autoresus-

citation (4).

Cry is an involuntary, reflexive modification of respiration. This is often the

way respirations begin in the delivery room. Until vocalization becomes an

integral part of our life, cry is one common way we express our displeasure. A

disorder that illustrates this aspect of respiratory control is breath-holding spells.

It is an involuntary, reflexic, nonepileptogenic paroxysmal phenomenon that is

not uncommon in childhood. This stereotypical behavior is often precipitated by

anger, fear, pain, or frustration, and can result in loss of consciousness. An

Table 2 CNS Causes of Apnea in the

Neonatal Period

Apnea of prematurity Malformation

Depression Tumors

Sedatives Seizures

Narcotics Hemorrhage

Hypoxia Infarction

Infection Hydrocephalus
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underlying autonomic dysregulation has been implicated in the loss of conscious-

ness (5). A positive family history is obtained in one-third of cases. An

autosomal-dominant trait with reduced penetrance has been documented in

some families (6). Typical color change associated with this phenomenon is

pallor or cyanosis. Significant improvement in the severity and frequency of

symptoms has been noted with iron therapy, even in infants without iron

deficiency (7,8). Severe bradycardia may occur during spells with pallor. This

group of infants with severe bradycardia have been successfully treated with

pacemakers (9). Although it is not often diagnosed during the neonatal period,

breath-holding spell may have its origin in the neonatal period. One large study

(193 patients) reports the origin of breath-holding spells in the first month of life

in 5% and in the first 2 months in 7% of patients (10).

Another related disorder, expiratory apnea, was reported by Southall and

coworkers (11). It is characterized by episodes of severe hypoxemia occurring

while awake in young infants after a sudden noxious stimulus. Rapid onset of

severe hypoxia in these infants with expiratory apnea has been attributed to

sudden right-to-left intrapulmonary shunting. This is not a benign disorder;

several infants required tracheotomy. Significant mortality was observed in this

group as well. A family history of breath-holding spells was present in nearly half

the infants. The relationship between expiratory apnea and breath-holding spells

is not entirely clear.

III. Assessment of Respiratory Control Disorders

From a conceptual framework, respiratory output can be measured anywhere

along the efferent limb from the controller downward. However, some of these

measurements are not feasible in the human neonate, whereas others are not

practical in routine clinical practice. In the newborn infant, respiratory output has

been measured at the level of the respiratory muscles, albeit primarily for research

purposes. Although invasive recordings of respiratory muscles have been

accomplished, surface EMG recording is typically utilized. Surface EMG of

the diaphragm has been recorded in the newborn for more than two decades (12).

The raw EMG signal obtained through surface electrodes is rectified and

integrated to provide a quantitative measure of the respiratory output. Since

this is not a standardized measurement, it has limited value in assessing adequacy

of the respiratory output. However, changes in muscle activity with progressive

hypercapnia, hypoxia, and respiratory loading can be evaluated in this fashion.

Relative increase or decrease in activity, especially when compared to simulta-

neous recordings of other respiratory muscles, such as the upper-airway muscles,

may provide a better understanding of respiratory control. It can also be useful in

assessing the changes in respiratory output during sleep. Furthermore, spectral

analysis of the raw EMG has been utilized in documenting muscle fatigue. When
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muscle fatigue occurs, the low-frequency component increases with a concomi-

tant reduction in the high-frequency component, resulting in decreased high- to

low-frequency ratio (13). One drawback of surface EMG is that it is often

contaminated with activity from neighboring muscles.

Pressure changes produced by the respiratory muscles have been used

primarily as a research tool in the neonate. Transdiaphragmatic pressure, the

difference between intrathoracic and intra-abdominal pressure, is an index of

force output of the diaphragm. Typically this is measured with the aid of

esophageal and gastric catheters. Airway occlusion pressure is the pressure

measured at the mouth during the occluded inspiratory effort. This noninvasive

test is relatively easy to perform in humans. A valve on the expiratory side of the

breathing circuit is occluded at end expiration. The pressure change during the

first 0.1 sec of the inspiratory effort is known as the P0:1. This index of respiratory

output, first reported by Whitelaw et al. (14), is an excellent index of neural

output of the respiratory center. Since no significant changes in lung volume

occur during the initial phase of the first occluded breath, P0:1 is considered to be

unaffected by elastance and resistance, and is thought to be relatively insensitive

to the effects of mechanical thoracopulmonary limitation. However, it may not

reflect the true neural output in cases of muscle weakness or fatigue. It may also

produce low values when the diaphragm is at a mechanical disadvantage, as in

hyperinflation, often seen in severe chronic lung disease. Pressure generated

during airway occlusion has been used to predict successful extubation in

ventilator-dependent patients. Its predictive value in neonates is limited (15);

still it is one of the valuable measures of neural respiratory output.

Another useful way to assess respiratory motor output is to measure

ventilation, which is the product of tidal volume and frequency. Tidal volume

in turn is determined by inspiratory flow and inspiratory duration. In normal

subjects the mean inspiratory flow (VT=Ti) reflects inspiratory drive. Resistive

and elastic loading of the lung and chest wall can alter the breathing pattern and

ventilation through airway and chest wall mechanoreceptors and chemoreceptors.

Maximal inspiratory pressure, maximum voluntary ventilation, and supine and

sitting vital capacities have been found useful in the evaluation of conditions such

as diaphragmatic paralysis in the adult. These measurements are not feasible in

neonates, but maneuvers like crying vital capacity may yield useful information.

The role of routine pulmonary function testing in the evaluation of neonatal

respiratory control disorders is not established. Ventilation can be measured

qualitatively with thermistors or quantitatively with a pneumotach attached to the

face mask. Alternatively, ventilation can be measured using nasal flow meters.

This is based on the premise that neonates are preferential nose breathers. A

thermistor or CO2 monitoring device must be incorporated into the system to

detect oral breathing. Alteration of the breathing pattern by the instruments used

is well documented (16). One must also be very vigilant for the occurrence of

leaks. A noninvasive way to measure ventilation is to use respiratory inductive
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plethysmography. An expandable coil is worn around the chest and abdomen.

This is particularly useful to document paradoxical movement of the chest and

abdomen, which is common among preterm infants. When used quantitatively, it

requires careful calibration. Changes in both frequency and tidal volume can be

determined from these measurements for judging adequacy of ventilation.

Chemical control of breathing is evaluated by the ventilatory responses to

hypercapnia and hypoxia. Peripheral chemoreceptors sense changes in PaO2. The

carotid body plays a predominant role in this response in humans. Changes in

CO2 are sensed by central chemoreceptors located in the rostral medulla. Changes

in PCO2 and arterial pH are also sensed by the carotid body. Ventilatory response

to hypoxia is unique in the newborn. This biphasic ventilatory response to

hypoxia as well as the ventilatory response to hypercapnia is discussed in more

detail in Chapter 5.

Another important variable in respiratory control, especially in the human

neonate, is sleep. The development of sleep states and the state-dependent

changes in respiratory pattern form the background to the most common

respiratory control disorder in the newborn, viz: apnea of prematurity. Various

aspects of this common disorder are discussed in subsequent chapters. Sleep has

important implications to respiratory control in other disorders, such as chronic

lung diseases and certain neurological and neuromuscular diseases. Sleep and

breathing in children are the focus of a recent monograph, and several chapters in

that monograph are very relevant to neonates (17). Some respiratory control

abnormalities may be masked by the volitional control system and become

manifest when the infant falls asleep. Congenital central hypoventilation

syndrome is a typical disorder in this category.

Finally, airway protective reflexes, elicited by the inhalation or aspiration of

an offending material, reflexively modify breathing pattern. One way to protect

the airway is to prevent further inspiration. Invariably, maintenance of tidal

ventilation is suppressed. This can be accomplished by the apneic response.

Another aspect of these protective reflexes is to expel the offending agent or

foreign body by coughing and other expiratory reflex. Significant maturational

changes in these reflexes occur during development. One common observation is

that coughing is rarely observed during intubation and suctioning in preterm and

term infants during the immediate neonatal period. These maneuvers invariably

elicit cough in an older infant. Irritant or rapidly adapting vagal afferents are

presumed to mediate these responses. Stimulation of these endings in the

premature infant may result in apnea instead (18).

IV. Summary

Understanding of respiratory control in the normal infant is a prerequisite for the

diagnosis and treatment of disorders of respiratory control. This is especially true
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in the newborn because several aspects of normal respiratory control are unique

to these infants when compared to older children or adults. Common respiratory

control disorders such as apnea of prematurity are discussed in detail in

subsequent chapters; insights gained from conditions such as sigh, gasp, and

breath holding are briefly discussed. Assessment of respiratory control disorders

includes monitoring of respiratory output under varied conditions. These include

monitoring of respiratory muscle EMG, respiratory pressure and timing changes,

ventilatory changes to hypoxia and hypercapnia, and state-dependent changes. In

the final analysis, adequacy of respiratory control is often determined clinically

on the basis of arterial blood gases or noninvasive monitoring of gas exchange

with pulse oximetry and capnometry. In suspected cases, further tests may be

needed to confirm these observations.
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I. Introduction

The predominant goal of monitoring is to allow for early detection of increased

cardiorespiratory instability and=or potentially dangerous pathophysiology.

Cardiorespiratory monitoring in the NICU largely comprises continuous surveil-

lance of the electrocardiogram and chest wall movements, and the noninvasive

determination of blood gases. This chapter will focus on a review of techniques

applied to monitor these parameters, with particular emphasis on blood gas

monitoring.

II. Electrocardiography (ECG) and Heart Rate
Monitoring

The ECG records electrical depolarisation of the myocardium. During continuous

monitoring, only heart rate can be determined with sufficient precision; any

analysis of P and T waves, axis, rythm or QT times requires a printout and=or a
12-lead ECG. Heart rate monitoring is often fraught with artifacts, which may

result from poor sensor contact or motion. Artifacts can be reduced by optimal

positioning of electrodes (Fig. 1) and by using pregelled electrodes with skin-

friendly adhesive (1,2).
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III. Monitoring of Chest Wall Movements

A. Impedance plethysmography

This is the technique most commonly used for monitoring chest wall movements

in the NICU. It is based on the physical principle that changes in the ratio of air to

fluid in the thorax, occurring during the respiratory cycle, create changes in

transthoracic impedance (3). This ratio, however, is also influenced by fluctua-

tions in blood volume occurring during the cardiac cycle and by changes in

impedance at the electrode skin interface. Particularly, fluctuations in blood

volume, also referred to as ‘‘cardiac artifact,’’ may become a source of consider-

able interference to the breathing signal and may even result in both a failure of

impedance monitors to detect apnea (4) and a misclassification of obstructive as

central apneas. Artifacts can be reduced, but not completely abolished, by optimal

electrode placement (Fig. 1).

B. Inductance Plethysmography

Changes in the volume of the thoracic and abdominal compartment create

changes in inductance, which is registered via abdominal and thoracic bands.

The sum of these changes is proportional to tidal volume, and several methods

have been developed to calibrate the systems so that tidal volume can be

quantified (5,6). However, this only works as long as the patient does not shift

position. Thus, this technique is only of limited usefulness for tidal volume

measurements in unsedated infants. Another potential advantage is that it allows

for the detection of paradoxical breathing, a pattern that occurs frequently during

normal infant sleep, but appears to be more prevalent in conditions associated

with an increased work of breathing (e.g., upper-airway obstruction or chronic

lung disease) (7).

Figure 1 Schematic drawing of the optimal electrode pair location for impedance

monitoring of ECG only (straight line) or both ECG and breathing movement monitoring

(dashed line). (From Ref. 1.)
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C. Strain Gauges

These are usually made of mercury in silicon rubber and sense respiratory efforts

by measuring changes in electrical resistance in response to stretching. Strain

gauges are not widely used for monitoring in the NICU, and their measurements

are not reproducible enough to quantitate tidal volume (8).

D. Pressure or Volume Displacement Capsules

These detect movements of an infant’s diaphragm by means of an air-filled

capsule that is taped to the abdomen and connected to a pressure transducer via a

narrow air-filled tube. The outward movement of the abdomen during inspiration

compresses the capsule to produce a positive pressure pulse that is interpreted as

a breath. The technique is predominantly used in apnea monitors and trigger

devices for infant ventilators, not for ICU monitoring; it is also not suitable for

quantifying tidal volume (9).

In a study comparing the ability of impedance and inductance plethysmo-

graphy to detect apneas, the overall reliability of both systems was good. The

impedance system, however, failed in three specific situations: [1] obstructed

breaths were consistently misinterpreted as breaths; [2] cardiac artifact caused

false breath detection in 11 of 29 studies; and [3] the first 1–2 breaths following a

sigh were often missed owing to the impedance signal going off scale (10).

Another study compared the pressure capsule with an impedance monitor and

found a lower specificity, but a higher sensitivity, of the capsule for the detection

of apneas (11). Thus, impedance appears less reliable than inductance plethys-

mography and possibly also less sensitive than abdominal pressure plethysmo-

graphy for apnea detection.

IV. Transcutaneous Partial Pressure of Oxygen
(PTcO2) Monitoring

A. Principle of Operation

PTcO2 electrodes measure the partial pressure of oxygen through the skin. They

consist of a platinum cathode and silver reference anode, encased in an electrolyte

solution and separated from the skin by an O2-permeable membrane. Electrodes

are heated to improve oxygen diffusion and to arterialize the capillary blood.

Oxygen is reduced at the cathode, generating an electric current proportional to

the O2 concentration in the capillary bed underneath the sensor. Sensors require a

10–15min warmup period after application and have to be calibrated once every

4–8 hours. Probably because they are somewhat cumbersome to use (see below),

most American NICUs have abandoned these devices, but they are widely used in

Europe.
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B. Factors Influencing Measurements

The agreement between arterial and skin surface PO2 depends on a fragile

balance between factors that increase the PO2, namely a shift to the right of the

oxygen dissociation curve and a decreased O2 solubility in blood, both of which

are caused by the heating of the skin, and factors which decrease the PO2, namely

the oxygen consumption in the heated skin and inside the electrode (12).

Sensor Temperature

There is good agreement with arterial PO2 (PaO2) only at 44�C, but then frequent

(every 2–4 hours) resiting is necessary. At lower sensor temperatures, PTcO2 will

underread PaO2, with the difference becoming larger with increasing PaO2 (13).

This is particularly important in preterm neonates, in whom high PaO2 levels

must be reliably detected to minimize the risk of retinopathy of prematurity.

Probe Placement

PTcO2 will underread PaO2 if the sensor is placed on a bony surface, if pressure

is applied on the sensor, or if too much contact gel is used. With patent ductus

arteriosus and right-to-left shunt, PTcO2 will be higher on the upper than on the

lower half of the thorax (14).

Peripheral Perfusion

PTcO2 depends on skin perfusion. If the latter is reduced, e.g., owing to

hypotension, anemia, acidosis (pH <7.05), hypothermia, or marked skin

edema, PTcO2 will be falsely low. If an underreading of PaO2 occurs, it is

advisable to check the patient for these conditions (15,16).

Skin Thickness

Close agreement with PaO2 can only be found in neonates. This does not imply,

however, that PTcO2 monitors can only be used in this age group. Studies in

children and adults did in fact show that the ratio between PTcO2 and PaO2 is

extremely constant in these patients (independent of age and PaO2); it merely is

20% lower than in neonates, i.e., �0.8 (17–19).

Response Times

In vitro response time (90% response to a sudden change in PO2 from 19 to

0 kPa) is �8 sec (20). The median in vivo response time (interval between oxygen

saturation measured by pulse oximetry (SPO2) falling to 60% and PTcO2

reaching 2.7 kPa) was 16 sec in one study (21).
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C. Detection of Hypoxemia and Hyperoxemia

Under optimal measurement conditions (sensor temperature � 44�C, hemody-

namically stable preterm neonates, PaO2 < 13 kPa), PTcO2 can be expected to be

within �1.3–2.0 kPa of PaO2 95% of the time (22,23). Clinically, however, it

seems more important to know whether the PTcO2 monitor will reliably detect all

situations where a patient has either too little or too much oxygen. Unfortunately,

there is as yet no clear definition of what constitutes a dangerously high or low

level of oxygenation. Most investigators defined hypoxemia as a PaO2 < 6.7 kPa

or as an SaO2 < 80%, and hyperoxemia as a PaO2 > 11–13 kPa (24–28), but it

should be born in mind that these thresholds were chosen rather arbitrarily.

Whatever the ideal threshold, the data available suggest that �15% of both

hypoxemic and hyperoxemic instances are missed by PTcO2 monitors, whereas

their specificity, particularly with regard to hypoxemia, is somewhat higher

(23–31).

V. Pulse Oximetry (SPO2)

A. Principle of Operation

Pulse oximeters, unlike PTcO2 monitors, do not measure the concentration of

oxygen that is dissolved in plasma, but the proportion of hemoglobin molecules

in the arterial blood which are loaded with oxygen. Deoxygenated hemoglobin

absorbs more light in the red band (at 600–750 nm), i.e., it looks less red, whereas

oxygenated hemoglobin absorbs more light in the infrared band (850–1000 nm).

The ratio of the absorbance of red and infrared light sent through a tissue

correlates with the proportion of oxygenated to deoxygenated hemoglobin in the

tissue. Conventional pulse oximeters determine the arterial component within this

absorbance by identifying the peaks and troughs in the absorbance over time,

thereby obtaining a ‘‘pulse-added’’ absorbance that is independent of the

absorbance characteristics of the nonpulsating parts of the tissue. These pulse-

added light absorbances are then associated algorithmically with empirically

determined arterial oxygen saturation (SaO2) values (12).

Next-generation instruments use additional and=or different techniques. For
example, the Signal Extraction Technology (Masimo, Irvine, CA) scans through

all red-to-infrared ratios (and corresponding SPO2 values) found in the tissue,

determines the intensity of these and chooses the right-most peak of these

intensities, which will correspond to the absorbance by the arterial blood in the

tissue. It also uses frequency analysis, time domain analysis, and adaptive

filtering to establish a ‘‘noise reference’’ in the detected physiological signal

(32), thereby improving the ability to separate between signal and noise (see

below). Other next-generation instruments use differential signal amplification to

achieve this goal.
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B. Factors Influencing Measurements

Pulse oximeters are easier to use than PTcO2 monitors: they do not require

calibration or heating of the skin, and they provide immediate information about

arterial oxygenation. However, it is probably because of this apparent ease of use

that potentially erroneous measurements on a pulse oximeter are more at risk of

being overlooked than those occurring with a PTcO2 monitor. A thorough

understanding of the factors potentially affecting the precision of a pulse oximeter

is therefore particularly important (12).

Probe Placement

The light-receiving diode must be placed exactly opposite the emitting diode, and

both must be shielded against ambient light and not be applied with too much

pressure. Light bypassing the tissue can cause both falsely high and falsely low

values. The sensor site must be checked every 6–8 hours. It was recently shown

that 42% of nurses in a neonatal intermediate-care nursery exceeded a pressure on

the skin of 50mmHg during fixation of a pulse oximeter sensor (33). Such high

pressures may result in a reduced signal-to-noise ratio and may thus severely

impair the precision of the SPO2 measurements (33). Highly flexible sensors

provide better skin contact and thus better signal-to-noise ratio.

Peripheral Perfusion

Conventional oximeters require a pulse pressure >20mmHg or a systolic blood

pressure >30mmHg to operate reliably (34). Because next-generation oximeters

rely less on pulse detection, they continue to operate even at lower blood pressure

levels (35).

Response Times

In theory, the response time of a pulse oximeter to a sudden fall in oxygen levels,

e.g., during an apnea, depends only on the time it takes for the blood to travel

from the lung to the sensor site, which, if the sensor is placed around a toe, is

�4 sec in neonates (36). However, all pulse oximeters currently available average

their values over periods of time varying from 2 to 15 sec or from 4 to 32 heart

beats in order to level-out any erroneous measurement which may occasionally

occur even under optimal conditions. This averaging, however, has unwanted

consequences:

1. It delays the response to a true fall in SPO2 values.

2. It may lead to a mixing up of true with falsely low SPO2 readings

during periods of intermittent body movements (e.g., during feeding),

which can result in the erroneous impression that the patient suffers
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episodes of prolonged hypoxemia. Such erroneous readings may be

indistinguishable from those where the patient is truly hypoxemic,

particularly if the light plethysmographic (pulse) waveforms are not

available for analysis of the signal quality.

3. The use of an averaging mode can lead to erroneous conclusions in

situations where a precise measurement of SPO2 is required, e.g.,

during sleep studies.

4. The averaging of SPO2 values makes it almost impossible to define

normal ranges for the frequency and severity of intermittent falls in

SPO2 in infants or children, since such data would only be valid for the

specific averaging mode with which they have been obtained. This is

particularly true for the next-generation instruments, which use vari-

able averaging times depending on measurement conditions, i.e., 2–

4 sec averaging under optimal conditions, and up to 15 sec averaging

during periods of motion.

Motion Artifact

The pulsatile (¼arterial) component contributes only �1% to the total absor-

bance measured by the pulse oximeter (37). Hence, at least conventional pulse

oximetry is very sensitive to sudden changes in background signal, e.g., due to

body movements. As already mentioned, next-generation instruments use various

techniques to identify and read through periods with low signal-to-noise ratios as

there are during motion. This resulted in a dramatic (>90%) decrease in false-

alarm rates (38,39). However, some of these improvements in false-alarm rates

were apparently achieved at the expense of not identifying true desaturation

during motion (40), which is unacceptable. Thus, each next-generation pulse

oximeter should be tested for its reliability in detecting desaturations during

motion before recommending it for use in unsedated patients, particularly infants.

With conventional oximeters, it is important to identify whether or not a

reading may have been affected by motion artifact. This can be best achieved if

the light plethysmographic waveforms from which the SPO2 measurements were

derived are displayed. Whenever these waveforms are distorted, SPO2 readings

become unreliable. An alternative way is to compare the pulse rate from the

oximeter with the heart rate from an ECG monitor, which should be identical

(41). Without these validation measures, readings from these instruments cannot

be interpreted.

For next-generation instruments, which are less reliant on a clean peak-and-

trough detection and thus an undisturbed pulse waveform, there is currently no

independently validated method to identify periods of poor measurement condi-

tions and thus potentially unreliable SPO2 readings. An interesting approach in

this regard is the signal quality indicator developed by Masimo (‘‘signal IQ’’). In
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a preliminary evaluation of this tool, involving manual analysis of raw red-to-

infrared absorption curves during 223 falls in SPO2 to <85% in nine preterm

infants, we recently found that below a signal IQ of 0.3, which is the threshold

suggested by the manufacturer to indicate poor measurement conditions, the

likelihood of artifactual measurements was indeed high (6=8, or 75%), whereas

above this value, erroneous measurements were not observed (42).

Other Hemoglobins and Pigments

Methemoglobin (MetHb) will cause SPO2 readings to tend toward 85%,

independent of SaO2. Carboxyhemoglobin (COHb) will cause overestimation

of SaO2 by 1% for each percent COHb in the blood (43). Fetal hemoglobin (HbF)

and bilirubin do not affect pulse oximeters, but may lead to an underestimation of

SaO2 by co-oximeters (44). In patients with dark skin, SPO2 values may be

falsely high, particularly during hypoxemia (45,46).

Algorithms

Pulse oximeters, in contrast to co-oximeters, do not measure O2 saturation, but

derive their values from a ‘‘look-up’’ table which is based on empirical data from

healthy adults. These may vary between brands and even between different

software versions from the same manufacturer. Also, some instruments subtract a

priori the typical levels of COHb, MetHb, etc. in healthy nonsmoking adults from

their measurements and will thus display SPO2 values that are some 2–3% lower

than those displayed by other instruments. This approach, i.e., to display the so-

called fractional SPO2 instead of the usual functional SPO2, has been largely

abandoned in recent years, probably because it resulted in an unacceptably poor

ability of instruments using this approach to detect hyperoxemia (47).

C. Detection of Hypoxemia and Hyperoxemia

In the absence of motion, pulse oximeters have both a high sensitivity and a high

specificity for the detection of hypoxemia (SaO2 < 80%), although they tend to

overestimate SaO2 during extreme hypoxemia (SaO2 < 70%) (48,49). Because of

the shape of the O2 dissociation curve, however, they are less well suited for

detecting hyperoxemia. The upper alarm limits that have to be chosen on

individual instrument brands to avoid hyperoxemia reliably range from 88% to

95% (47,50,51). An upper alarm limit of 95% was recently confirmed for three

next-generation instruments (Agilent Viridia, Böblingen, Germany; Masimo SET,

Nellcor Oxismart, Pleasanton, CA) (52). The reliability in detecting PaO2 values

>80mmHg via noninvasive monitoring can likely be increased if both SPO2 and

PTcO2 are monitored.
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VI. Transcutaneous Partial Pressure of Carbon
Dioxide (PTcCO2) Monitoring

A. Principle of Operation

The PTcCO2 sensor consists of a pH-sensing glass electrode and a silver–silver

chloride reference electrode, covered by a hydrophobic CO2-permeable

membrane from which they are separated by a sodium bicarbonate–electrolyte

solution. As CO2 diffuses across the membrane, there is a pH change of the

electrolyte solution (CO2 þ H2O=HCO
�
3 þ HþÞ, which is sensed by the glass

electrode. All instruments have built-in correction factors because their uncor-

rected measurements will be some 50% higher than arterial PCO2 (PaCO2; see

below). They must also be calibrated at regular intervals and require a 10–15min

run-in time following resiting.

B. Factors Influencing Measurements

Similar to PTcO2 monitors, the correlation between PTcCO2 and PaCO2 depends

on electrode temperature, probe placement, and peripheral perfusion, although

not to the same extent as with the former type of monitor.

Sensor Temperature

The carbon dioxide tension measured at the skin will always be higher than that in

the arterial blood. This difference between PTcCO2 and PaCO2 becomes larger

with increasing sensor temperature (53). This inherent overestimation of PaCO2

by the PTcCO2 electrode is caused by [1] an increased CO2 production resulting

from an increased skin metabolism due to the heated sensor, [2] a higher CO2 in

the tissue than in the arterioles, [3] the anaerobic heating coefficient of blood for

carbon dioxide, and [4] a countercurrent exchange in the dermal capillary loops

(54). As diffusibility for CO2 is greater than that for O2, a good correlation

between PaCO2 and PTcCO2 can already be obtained at an electrode temperature

of 37�C (53). Nonetheless, the correlation can be significantly improved if the

electrode is heated to 42�C. Further heating of the electrode seems to have no

effect on the correlation between arterial and transcutaneous CO2 values,

although it will further increase the above-mentioned systematic overestimation

of PaCO2 by the PTcCO2 electrode (53). Hence, if only PTcCO2 is measured, the

optimal sensor temperature with regard to skin irritation will be 42�C, whereas
combined sensors, which contain both a PTcO2 and a PTcCO2 electrode, should

be heated to 44�C (the optimal temperature for PTcCO2 measurements), and this

will not jeopardize the precision of the PTcCO2 measurement (55).
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Sensor Placement and Skin Thickness

PTcCO2 measurements are relatively independent of sensor site or skin thickness,

but PTcCO2 may be falsely high if pressure is applied onto the sensor.

Peripheral Perfusion

PTcCO2 monitors are comparatively independent of blood pressure, pH, and

body temperature. In a study on 24 newborn infants with severe cardiocirculatory

maladaptation and pH values ranging from 6.9 to 7.6, hematocrits between 0.28

and 0.65, body temperatures between 35.5 and 38:1�C, and systolic blood

pressures between 15 and 70mmHg, no systematic influence of pH, hematocrit,

body temperature, or systolic blood pressure on the relation between PTcCO2 and

PaCO2 was observed (56). Nonetheless, PTcCO2 may severely overestimate

PaCO2 if systolic blood pressure falls to <15mmHg (56) and=or under condi-
tions of severe hemorrhagic shock (57). The precision of the PTcCO2 measure-

ment, however, may already start to be impaired if PaCO2 is >6 kPa and=or if
arterial pH is <7.30 (58,59).

Response Times

The 90% in vitro response time to a sudden change in PaCO2 is between 30 and

50 sec (55,60). Data on the in vivo response time of PTcCO2 monitors are not

available.

C. Detection of Hypocarbia and Hypercarbia

Most investigators who validated PTcCO2 monitors in infants and children

reported that the instruments predicted PaCO2 to within �0.8–1.2 kPa 95% of

the time (53,61,62). This precision is somewhat higher than that of PTcO2

monitors (see above). Only two studies investigated the sensitivity and specificity

of PTcCO2 monitors to hypercarbia and hypocarbia. One found a sensitivity of

96% (21=22) for hypocarbia (defined as PaCO2 < 4:3 kPa) and of 76% (31=42)
for hypercarbia (PaCO2 > 6:1 kPa); specificity was not analyzed (26). The other

found a sensitivity of 72% (13=18) for hypocarbia (PaCO2 < 4.5 kPa) and of 88%

(58=66) for hypercarbia (PaCO2 > 5.6 kPa). Specificity was 83% (151=183) and
88% (106=121), respectively (27). Thus, sensitivity and specificity of PTcCO2

monitors are no better than those of PTcO2 monitors.

VII. End-Tidal Carbon Dioxide (ETCO2) Monitoring
(Capnometry)

A. Principle of Operation

ETCO2 analyzers usually operate via infrared capnometry; i.e., they are based on

the principle that CO2 absorbs light in the infrared band. An infrared beam is
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directed through a gas sample and the absorption of light caused by the CO2

molecules in the sample measured. The amount of light absorbed by the sample is

proportional to the concentration of CO2 in the sample. Instruments must be

calibrated at regular intervals to provide accurate measurements.

B. Factors Influencing Measurements

Gas Sampling Technique

Two approaches exist:

1. With mainstream capnometers, the CO2 analyzer is built into an

adapter which is placed in the breathing circuit. They have a fast

response time (10msec) and therefore are reliable even at high

respiratory rates. Their disadvantage is that they can only be used in

intubated patients and require 1–10 mL extra dead space.

2. Sidestream capnometers aspirate the expired air via a sample flow.

They do not create extra dead space, but their precision is considerably

lower than that of mainstream capnometers, particularly at high

respiratory rates. This is because there are conflicting requirements

with regard to the ideal sample flow. On the one hand, sample flow

must be low to avoid dilution of expired gas by entrainment of ambient

air at the sampling tube–patient interface. Such air entrainment will

occur when the expired gas flow falls below the sample flow. Sample

flow should also be low to avoid dispersion of the gas sample inside the

sample tube due to nonlaminar flow conditions. On the other hand,

sample flow must be high to achieve rapid filling and emptying, i.e., a

short time constant, of the sample cell (63,64). Theoretical and

practical analyses have shown that the ideal sample flow at which air

entrainment is avoided while still keeping the time constant of the

sample cell reasonably short is �150–200mL=min (63,64). Even at

this relatively high sample flow, some instruments start to system-

atically underread ETCO2 if respiratory rate exceeds 30=min. This

error, however, will remain clinically insignificant up to respiratory

rates of 60–70=min (65).

Influence of V=Q Mismatch

ETCO2 will only approximate PaCO2 if [1] CO2 equilibrium is achieved between

end-capillary blood and alveolar gas, [2] ETCO2 approximates the average

alveolar CO2 during a respiratory cycle, and [3] ventilation=perfusion relation-

ships are uniform within the lung (66). These conditions are rarely achieved in

patients with respiratory disorders. The reliability of an ETCO2 measurement can
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be assessed from the expiratory signal: this must have a steep rise, a clear end-

expiratory plateau, and no detectable CO2 during inspiration (Fig. 2).

Influence of Sampling Site and Length of Tubing

The length of the tubing influences the total delay time of the capnograph and

thereby the accuracy of the instruments: if total delay time exceeds respiratory

cycle time, ETCO2 measurements will become falsely low. The sampling tube

should therefore be as short as possible. In addition, the sampling site should be

as close as possible to the patient’s airway. This is particularly important in

sidestream instruments, where the error of the measurement can be significantly

reduced if the sampling tube is moved from the proximal to the distal end of the

endotracheal tube (67).

Response Times

While mainstream capnometers respond almost instantly to a change in ETCO2,

sidestream instruments require between 0.7 and 1.8 sec (or longer, if additional

tubing is put between the patient and the sample cell) to transport the gas sample

to the sample cell (68). As mentioned above, the response or delay time should be

shorter than the patient’s respiratory cycle time.

Calibration Errors

Most sidestream capnometers use water-permeable catheters to minimize the risk

of tube blocking by airway secretions. This results in a dry gas being measured in

the sample cell. The atmospheric barometric pressure compensation automati-

cally performed by all capnometers when displaying ETCO2 as a partial pressure

Figure 2 Normal capnogram. During initial expiration, CO2 remains close to zero as

gas from the anatomic dead space leaves the airway. CO2 then rises sharply as alveolar gas

mixes with dead space gas. The curve then levels as purely alveolar gas is exhaled (alveolar

plateau). The CO2 value at the end of this plateau represents the end-tidal PCO2.
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measurement rather than as a concentration must therefore be corrected for water

vapor pressure. This is not always done by manufacturers and can lead to an

overestimation of true ETCO2 by 0.5–1.3 kPa (69). Users should therefore be

aware whether their instrument corrects its measurements for water vapor

pressure.

VIII. False Alarms in the NICU

With an increasing number of parameters being monitored, false alarms become a

major burden on both patients and staff. In particular, preterm infants may

respond to the noise generated by these alarms, and the subsequent interventions,

with increased cardiorespiratory instability (70,71). A high rate of false alarms

also carries the risk of desensitizing caregivers, potentially resulting in danger-

ously long response times to true alarms (72). Thus, particular attention should be

given to the question of which parameters should be monitored, which brand

offers the best performance, including the lowest number of false alarms, and how

alarm limits should be set.

The issue of differences in false-alarm rates between monitor brands has

received surprisingly little attention, given the ubiquity of the problem. In a recent

comparison of alarm rates from three widely used monitor systems (Viridia,

Agilent; Kolormon, Kontron Instruments,Watford, UK [with Masimo pulse

oximetry]; Solar 8000, GE Marquette, Freiburg, Germany) in a tertiary neonatal

intensive care unit, there was, on average, one alarm every 9min of monitoring

(73). The median number of true alarms did not differ significantly among

systems, whereas the median number of false alarms differed widely, with the

Agilent system generating 32 (range 7–77) such alarms per 8 h, compared to 8

(0–19) for the Kontron and 15 (2–32) for the GE system (P < :01 Agilent vs.

Kontron & GE; P < :05 Kontron vs. GE). These differences between systems

were mainly due to differences in pulse oximeter and PTcCO2 monitor alarm

rates, each of which contributed �40% to the total number of alarms.

Thus, there are marked differences between both parameters and manu-

facturers in the frequency with which false alarms occur. Reductions in alarm

rates may be sought, for example, by using improved pulse oximeter technology

or by relying solely on pulse oximetry for hypoxemia and hyperoxema detection.

This approach, however, must be weighed against the physiological shortcomings

of measuring SPO2 in the high range of PO2, where small changes in the former

are associated with large changes in the latter (74). Another approach is to lower

hypoxemia alarms or to prolong averaging times, both of which may have marked

effects on alarm rates, but again must be weighed against the risks associated with

alarm delays (74). The issue of false alarms is an area that should receive more

attention if noninvasive monitoring in the NICU is to improve further.
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IX. Alarm Settings

A monitor should sound an alarm early enough to avoid the progression of an

intermittent cardiorespiratory instability or disturbance to potentially dangerous

pathophysiology, but not too early to avoid desensitization of caregivers (see

above). Unfortunately, there are no systematic studies on the effects of different

alarm settings on patient outcome. Thus, any recommendation on alarm limits

can only be based on observational studies. For example, with regard to heart rate

alarms, there is evidence that cerebral perfusion remains relatively constant

during apnea=bradycardia as long as heart rate stays >80=min, but it falls sharply

if heart rate drops to below this limit (75). Nevertheless, given the large

interindividual differences in heart rate between infants, is may be more logical

to define individual alarm limits, e.g., to alarm if heart rate falls to <2=3 of

baseline (36).

With regard to apnea alarms, it can be argued that an infant can indefinately

remain apneic as long as neither blood gases nor heart rate is affected; this is why, as

a practical consequence, we usually disable apnea alarms on our NICU monitors

(we never monitor only respiratory movements). With regard to hyperoxemia, an

observational study found that the risk of retinopathy of prematurity increased by

50% for every 12 h PaO2 was >80mmHg (10.7 kPa) (76). Hence, this threshold

is now commonly used as the upper limit of the recommended range for PaO2

(77), but it is less clear whether 40, 45, or 50mmHg would serve as an optimal

lower alarm limit. For other parameters, e.g. CO2, there is not even observational

evidence as to what constitutes a safe range; in contrast, there are conflicting data

whether hypercapnia or normocapnia is beneficial (78). Hence, it is impossible to

give unequivocal recommendations on alarm limits for this parameter.

The alarm limits suggested in Table 1 are those normally used in the

author’s NICU in both term and preterm infants (if not stated otherwise).

Table 1 Alarm Limits for NICU Monitors

Lower

limit

Upper

limit

Heart rate (1=min) 80 220

Respiratory rate=apnea duration disabled disabled

SPO2 in preterm neonates receiving oxygen (%) 85 95

SPO2 in preterms not receiving O2 or in term

infants (%)

85 disabled

PTcO2 in preterm neonates receiving oxygen

(kPa)

6.0 10.7a

PTcCO2 (kPa) 6.0 7.3

ETCO2 (never monitored as only parameter) disabled 7.3

aNot disabled in infants not receiving oxygen to alarm for poor sensor-skin contact.
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These alarm limits can only serve as an orientation, not as a recommenda-

tion, and may vary depending on patient condition, resting heart rate, and

bicarbonate levels.
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I. Introduction

Periodic breathing, a respiratory pattern in which breathing activity alternates

with breathing pauses, is common in neonates. This is particularly true in preterm

infants (1–12). Its high prevalence in preterm infants reflects immaturity of the

respiratory control system. The importance of this breathing pattern relates not

only to its association with more prolonged apneas, but also to the presence of

significant desaturations and bradycardias observed in very small infants (13,14).

When its presence is excessive in neonates at term, and is accompanied by

hypoxemia, it also reflects a predisposition for apparent life-threatening events

(ALTE) episodes in the first few weeks of life (15–18).

In this chapter, I shall discuss some of the important clinical characteristics of

periodic breathing in neonates and how these characteristics relate to Cheyne-

Stokes respiration in adults. An effort has been made to give a historical view of

how knowledge of this respiratory pattern has evolved. The physiological mechan-

isms that disrupt the normal control of breathing at this age will be examined.

Finally, the clinical significance of periodic breathing in neonates is discussed.

II. Concept, Morphology, and Prevalence

A. Concept

Periodic breathing is a respiratory pattern characterized by an alternation between

breathing periods and apnea (1–5,19). In the neonate, the duration of the
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breathing and apneic intervals are frequently similar, each lasting about 7–10 sec.

In some infants, however, the breathing will be longer or shorter than the apnea

(20,21). Low ventilation=apnea ratios are associated with hypoventilation

whereas high ratios are associated with hyperventilation (Fig. 1). In the early

1970s we thought the criteria for labeling an infant as having periodic breathing

should be standardized, and we suggested that it should be observed for at least

2min (1). During the following years this criterion has somewhat varied, but most

authors required at least three respiratory cycles (1 cycle ¼ 1 breathing þ 1

apneic interval) to say that the infant is breathing periodically (9–11,22,23). We

have also established that the apneic interval should not be less than 3 sec, to

avoid mistaking a prolonged expiration for apnea.

B. Morphology

We have recently studied the morphology of periodic breathing in neonates asleep

and in adult subjects falling asleep (19). We found that the crescendo=
decrescendo pattern of the breathing interval predominated in the premature

infant and this tended to decrease in favor of a decrescendo pattern toward

adulthood (Fig. 2). We suggested that this might be related to a greater ability of

the adult respiratory apparatus to translate the intense chemical stimulus, high

CO2 and low O2 at the end of apnea, into a large tidal volume compared to the

infant who is frequently incapable of doing this because of significant airway

narrowing and increased airway resistance. The average duration of the respira-

tory cycle is �15 sec in infants and twice as long in adults, �30 sec. The number

of breaths is similar in infants and adults and therefore the longer duration of the

respiratory cycle in adults are due to their longer breath duration. The ‘‘duty

cycle’’ (breathing interval=cycle duration) remains consistent with age. As

reported by others also, at the beginning of the breathing interval, PCO2 is

highest and PO2 and saturation lowest.

Figure 1 Respiratory flow illustrating two patterns of periodic breathing in two small

preterm infants. (A) Ventilation=apnea ratio is �2, and the infant hyperventilates in

relation to epochs of regular breathing. (B) Ratio is 0.4, and the infant hypoventilates.
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C. Prevalence

The true prevalence of periodic breathing in neonates is not precisely known.

Studies on the subject have examined diverse populations, and have used different

criteria to define periodic breathing leading to divergent estimates (3,8–10,22,24–

29). In general, the prevalence of periodic breathing is high in preterm infants and

lower in term infants. In preterm infants <1000 g at birth, our data show a

prevalence of 100% during the neonatal period. Others have also found a very

high prevalence: Gotzbach et al. (3), 100 %; Fenner et al. (8), 72.5%; Matthews et

al. (30), 91%; Hodgman et al. (26), 91%; Wilson and Howard (31), 76%; and

Albani et al. (28), 75%. In term infants the prevalence reported has usually been

less: Richard et al. (32), 69–80%, Kelly et al. (33), 78%; Fenner et al. (8), 41.03%;

Deming andWashburn (34), 8%; Howard and Bower (35), 40%; Albani et al. (28),

36%; and Flores et al. (36), 30%. This high initial prevalence of periodic breathing

decreases significantly in both preterm and term infants during the first 6–8 weeks

Figure 2 Illustration of periodic breathing in neonates and adult subjects. (A) Tracings

show the common crescendo=decrescendo pattern in these neonates. Term neonates

already show some tendency to have a decrescendo pattern. (B) Note the predominant

decrescendo pattern of the adult subject. (From Ref. 19.)
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of life. The percent of sleeping time occupied by periodic breathing in preterm

infants ranged from 8% to 19% (24–26,28,37), whereas in the full-term infant it

ranged from 0% to 5% (3,33,36,38,39). Using similar methodology, Kelly et al.

(33) and Gotzbach et al. (3,5) found this percentage to be 12% in preterm infants

and <2% in term infants. This value decreased to <1% at 12 months of age in term

infants. Values at 12 months of age for preterm infants have not been reported.

III. History

Hippocrates (40), in the First Book of the Epidemics, makes reference to an

unusual type of breathing. In describing the case of Philiscus, who died of an

acute disease of a somewhat indefinite kind, accompanied by an enlargement of

the spleen, he remarks: Tout�eeo
‘
pneûuma di �aa t�eelEoB o’�spEB �aanakaloum�eeno

‘arai�oon, m�eega, which Galen in his work ‘‘On Difficulty of Breathing,’’ translated

as: ‘‘His respiration was rare and large, like a person who forgot for a time the

need of breathing, and then suddenly remembered’’ (41). This appears to be the

first description of periodic breathing in humans. For centuries this type of

breathing did not receive much attention, and only in 1780 did Nicolas, a

physician of Grenoble, described this periodic respiration in a general officer

of 81 years (42). With the exception of the observation made by the Father of

Medicine and by the learned physician of Grenoble, this peculiar form of

respiration remained largely ignored until 1818, when Cheyne (43), in Dublin,

observed it in a patient with ‘‘fatty degeneration of the heart.’’ More descriptions

followed, including that of Stokes in 1854 (44) who labeled this respiration as

pathognomonic of fatty degeneration of the heart. This periodic respiration

became then known as Cheyne-Stokes respiration, although other nomenclatures

have been suggested over the years such as ‘‘pendulumlike breathing’’ (45),

‘‘brief recurrent apnea’’ (46), and ‘‘intermittent respiration’’ (47).

During the 1800s there was intense interest in this type of respiration, with

reports of its occurrence under both pathological and healthy conditions (48).

Observations in pathological conditions were made when patients were terminally

ill, usually with involvement of the heart, brain, or both. General infections could

also be associated with this pattern of breathing. Many investigators observed this

respiration under experimental conditions in lower species, including frogs,

tortoise, and alligators (48). This pattern was first observed in a healthy sleeping

adult by Henry Kennedy in 1874 (49). Other reports confirmed this observation

and suggested that sleep greatly favored the appearance of periodic respiration

(50–55). Mosso (52,53) also emphasized the low O2 of high altitude as a

triggering element for this respiration.

In children, the first report appears to be that of Bjôrnström in 1870 (56),

who reported periodic respiration in a 3-month-old child with ‘‘capillary’’
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bronchitis. Other reports in children followed, including the observation that it

could be observed in healthy infants during sleep (55,57–61). The first descrip-

tion in a neonate appears to be that of O’Connell in 1884 (62), who reported

periodic breathing in a neonate 12 h old. No indication of the diagnosis was

given.

From the end of the 1800s into the beginning of the 1900s efforts were

made to document this type of respiration. The experiments of Douglas and

Haldane (63) in the beginning of the 1900s became a landmark in the history of

periodic breathing. By rebreathing inside a long thin tube the investigators

became hypoxemic and developed periodic breathing; they then suggested that

periodic breathing was due to ‘‘want of oxygen.’’ The effective graphic recording

of periodic breathing in newborn infants started to cluster in the second quarter of

the last century (34,64,65), although description of Cheyne-Stokes breathing in

preterm infants was made during the first three decades of that century (66).

During this period efforts to document this breathing pattern in premature infants

during sleep were also made.

In the middle of the last century, Cross (6,7,67) and Miller et al. (12,68,69)

examined this respiration in many of their studies regarding control of ventilation

in response to oxygen and carbon dioxide. Efforts then began to study the

unstable nature of respiration in the small neonate and to search for tools to

control it. Significant work followed during the second half of the last century

which tried to elucidate the mechanisms underlying periodic breathing not only in

small infants but also in adults (1–5,70–78).

IV. Mechanisms of Periodic Breathing

A. General

Respiratory Rhythm Generation and Its Components

Physiologists have been interested in the automaticity of respiration and its

control for centuries (79). If we ignore ancient thoughts of its being dependent on

vital spirits and phlogistic influences, the first scientific effort to understand

respiratory control was made by LeGallois in 1812 (80), who sectioned the brain

rostral to caudal and noticed that when he reached a specified level in the upper

medulla, breathing would cease. He called this particular region, located near the

origin of the Xth nerve in the medulla, ‘‘the principle of life.’’ Flourens (81)

expanded on LeGallois’ experiments, sectioning the spinal cord, and localized the

noeud vitale in the anterior medulla, a 2.5-mm region on both sides of the

calamus scriptorius. The intellectual focus at the time was primarily to localize

where breathing originated. Historically, it is of interest that Gibson in 1892 (48)

stated that ‘‘after severing all the sensory stimuli to the respiratory center in the

medulla, inspiratory movements of the face and larynx continued, although
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thoracic movements necessarily came to an end. In this observation there is clear

proof that the respiratory center is in its nature thoroughly automatic.’’

In 1868 Hering-Bruer (82) described the role of the vagus nerve in

breathing and suggested that respiration was entirely self-regulated, inspiration-

inducing increase in lung volume which in turn inhibited inspiration through

vagal stimulation, allowing expiration to begin. Expiration, in turn, would

extinguish itself and allow inspiration to begin again. It is somewhat remarkable

that such a physiological theory survived for so many years, when none of the key

elements to be controlled, such as CO2 and O2, were incorporated. In 1908,

Haldane (83) produced evidence that respiration was essentially controlled by

CO2 originating in the tissues, in a negative feedback design, in which CO2

stimulates breathing and breathing in turn reduces CO2. In 1930, Heymans and

Heymans (84) suggested that the response to changes in O2 in the blood was

mediated through the carotid bodies, located in the bifurcation of the carotid

artery. For this discovery, Corneille Jean François Heymans received the Nobel

Prize for Physiology and Medicine in 1938.

Since then, most of the work related to the respiratory system has been

done on the chemical responsiveness of the system and its mechanical properties.

The last decade has heralded a new step forward in the paradigm, with the

discovery that the noeud vitale region, localized just rostral to the obex in the

upper medulla, contains neurons with intrinsic pacemaker properties (85–87). It

is now known that most of these neuronal cells occupy a very discrete region of

the anterior medulla named the pre-Bötzinger complex (88). This region appears

to be a unique kernel of inspiratory pacemaker neurons, distinguishing it from the

primary expiratory neurons present in the Bötzinger region itself (Fig. 3). This

little ‘‘nest,’’ not more than 300 mm in diameter, appears fundamental to the

generation of inspiratory rhythm which is then modified by various other inputs,

such as peripheral chemoreceptors, mechanoreceptors, behavioral inputs, and so

on. Of interest is that the pre-Bötzinger complex has its dendrites adjacent to the

surface of the upper ventrolateral medulla, a region that has been thought for

many years to be the location for central chemosensitivity to CO2 (89,90).

The pre-Bötzinger neuronal complex has recently been shown to be

responsive to CO2 (91,92), although the pacemakers in question were already

found to be highly responsive to CO2 a decade ago (85,87). Although much work

still needs to be done, we seem to have identified all the key elements of

respiratory control. The major issue still remaining is to discover how the rhythm

is modulated and sustained.

Critical Role of CO2

In parallel with efforts to discover the cellular structures that comprise the

respiratory control system, new developments occurred in the area of chemical
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control of ventilation. Experiments from various laboratories have shown

that the respiratory control system needs CO2 to function (93–97). Under

normal circumstances, the CO2 stores in the body are such that a basic level

of arterial CO2 tension, �40 torr, is maintained. If, such as during climbing

to high altitude, CO2 decreases below a minimum level—the so-called ‘‘CO2

apneic threshold’’—breathing stops. This notion of a CO2 apneic threshold is

crucial to our understanding of periodic breathing and apnea in humans.

Newborn infants, particularly preterm infants, switch spontaneously from

regular to periodic breathing, and it is possible to determine the CO2 apneic

threshold under resting conditions (98). We found that the average CO2 apneic

threshold in preterm infants is only 1.5 torr lower than the actual or baseline

PCO2, whereas in adults it is �5 torr lower (72–74,98; Fig. 4). This closeness of

the CO2 apneic threshold to the baseline CO2 in neonates, together with

other aspects of the immature respiratory feedback loop, likely contributes

to the high prevalence of periodic breathing in infants compared with

adults.

Figure 3 (A) Illustration of a pacemaker neuron in culture stained with antibodies

against choline acetyltransferase. These cells are multipolar and appear uniquely respon-

sive to CO2. (B) A bursting pacemaker cell increases firing frequency with administration

of CO2. (C) Single beating neuron also increases frequency of firing with CO2. Lower

tracing is a computer registration with enlarged time scale of the membrane potentials.

Membrane potentials are preceded by a spontaneous gradual ramp depolarization which

slope increases with administration of CO2.
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B. The Neonate

The Respiratory Controller in the Neonate

The respiratory system is more unstable during the neonatal period than at any

other period in life. At no other age does Douglas and Haldane’s (63) assertion

hold truer: ‘‘The surprising fact is not that we breathe regularly, but that we do not

breathe periodically most of the time.’’ Indeed, we have found many neonates

who breathe periodically most of the time.

The fundamental requirement for apnea to occur in a given infant is that

CO2 come below the apneic threshold. This threshold, as mentioned earlier, is

very close to the actual baseline PCO2 of the infant. This means that any

instability, such as that created by a brief hypoxic event, a sigh, a stretch, a leg

movement, or a change in sleep state, is likely to make breathing transiently

periodic. In infants, periodic respiration is not related to an increase in circulation

time as it is in adults with heart or central nervous system compromise. The

important elements contributing to periodicity in these infants are the systemic

low O2 levels, sleep, low functional residual capacity, and sighs. All of these may

have different actions, but a common denominator is the approximation of the

CO2 apneic threshold to the actual baseline CO2. The role of these factors are

elaborated below.

Figure 4 Diagrammatic representation of the relationship between the CO2 apneic

threshold and the baseline or actual PCO2 levels in neonates and adults. Because of the

proximity of these two levels in neonates, PCO2 is much more likely to dive below the

apneic threshold than in the adult.
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Hypoxia

Premature infants are normally somewhat hypoxic. Their level of arterial O2

tension is frequently in the 50–70 torr range. Because of this, their carotid

chemoreceptor drive at rest is a significant component of the overall drive to

breathe. When these infants are given an increased inspired O2 sufficient to

produce a ‘‘physiologic’’ denervation of the peripheral chemoreceptors, they

become apneic (1,6,7,99–102). The duration of this apnea is a measure of prior

baseline oxygenation, long apneas correlating well with low arterial O2 tension

(102–104). In parallel with this increased peripheral chemoreceptor drive, the low

O2 tension inhibits the respiratory center. This combination of an inhibited

respiratory center in the presence of a comparatively increased peripheral

chemoreceptor drive is very prone to induce respiratory instability. Because of

the exponential increase in peripheral chemoreceptor activity at low levels of

arterial O2 tension, small changes in PO2 cause large fluctuations in respiratory

drive.

Hypoxia has been known to be associated with periodic breathing for

centuries. In the 1800s Mosso (52,53) first documented how easily breathing of

adult subjects could become periodic at high altitude. In the adult, hypoxia

induces hyperventilation with a decrease in CO2 tension below the apneic

threshold level, causing apnea. In preterm infants, the hyperventilation with

hypoxia is poorly sustained, and in the very small preterm infant it is entirely

absent, the response being characterized by a decrease in minute ventilation

(105). What happens is that hypoxia also induces a decrease in metabolism in

these infants, with a decrease in CO2 production (106,107). This allows for a low

baseline CO2 tension which is susceptible to periodic dips below threshold level.

We and others have shown how easy it is to make breathing periodic in a newborn

infant by decreasing the inspired O2 concentration (2,6,31,35,69,108). On the

contrary, it is very easy to change a periodic breathing pattern into a regular

pattern by increasing the inhaled O2 concentration (6,31,35,109).

Sleep

Sleep has been known to favor the appearance of periodic respiration for a long

time (48,110–112). Puddicombe in 1893 (51) first reported an adult patient in

whom Cheyne-Stokes respiration was induced by sleep. Mosso (52,53), in his

expeditions to high altitude, reports on the profound effect of sleep in inducing

periodic breathing. In newborn infants, sleep is also a very important factor. We

suggested as early as 1972 that because sleep decreases ventilation with a

decrease in the CO2 response curve and a decrease in arterial O2 tension, it

may be an important factor contributing to periodic breathing (1). During sleep,

the unbalancing of respiration relates to the disproportionate feedback from O2

and CO2 chemosensors in the presence of an inhibited respiratory center. The

overall gain of the system is decreased, with a decrease slope of the ventilatory
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response to CO2, but because the baseline CO2 level increases, there is a greater

change in PCO2 per given change in ventilation. The decreased gain of the system

tends to stabilize breathing, but this is counterbalanced by greater oscillations in

CO2, which may come below the apneic threshold and cause apnea. Depending

on the balance of these two opposing forces, breathing may remain stable or may

oscillate into periodicity during sleep. Why oscillations persist following the

initial apnea remains a matter of debate. The assumption is that PCO2, having

decreased below threshold, creates the first apnea. PCO2 then increases during the

apneic pause and creates the chemical stimulus for breathing to resume. Because

of the intensity of this stimulus at the end of apnea, breathing is very forceful and

quickly eliminates the added CO2, bringing it again below threshold for a new

apnea. The cycle then tends to perpetuate itself until the cause for bringing the

PCO2 below threshold is eliminated.

Periodic breathing is present not only in REM sleep, as suggested originally

(37,113), but also in quiet sleep. Periodic breathing is very common in infants

during tracé alternans in quiet sleep (14,105,112). Periodic breathing in quiet

sleep tends to be very ‘‘regular’’—that is, with relatively consistent durations of

the breathing and apneic intervals—whereas in REM sleep it is very irregular,

likely owing to the various behavioral influences (Fig. 5). The regular shifts in

sleep state with the associated changes in ventilation likely lead to what Douglas

and Haldane (63) called ‘‘the hunting of the respiratory centre.’’ Sleep can also

contribute to periodic breathing through other mechanisms. For example, chest

distortion during REM sleep may trigger a respiratory pause through the

intercostal phrenic inhibitory reflex (114). The decrease in functional residual

capacity during REM sleep reduces the buffering capacity of O2, induces

hypoxemia, and predisposes to instability (115).

Low Functional Residual Capacity (FRC)

The reduced outward recoil of the chest wall, which in preterm infants is close to

zero, is by far the most important feature of the immature respiratory apparatus

(116,117). This is mainly due to lack of mineralization of the bones of the chest

wall. Gehardt and Bancalari (118) found the chest wall compliance in the preterm

infant at 32 weeks of gestation to be 6:4 ml � cmH2O
�1 � kg�1, as opposed to

4:2 ml � cmH2O
�1 � kg�1 in the term infant. Because the recoil of the lung is just

slightly less than that in adult subjects, the functional residual capacity of small

infants is only 10% of vital capacity. This is quite near the closing volume,

resulting in significant atelectasis (119–121). Together with the inactivation of

intercostal muscles during REM sleep and 30% decrease in lung volume (115),

the reduced outward recoil of the chest wall significantly compromises the

respiratory pump, favoring instability of the control system.

The functional implications of a low FRC are various. The low volume

means low O2 stores with less buffering capacity. Additionally, atelectasis allows
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Figure 5 Periodic breathing in one preterm infant during quiet and REM sleep. Note

that periodic breathing is more regular in quiet sleep; that is, the apneas and breathing

intervals are nearly constant, as opposed to the irregular periodicity observed in REM

sleep. Also note the presence of sighs in REM sleep. (From Ref. 14.)
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for intrapulmonary right-to-left shunt, reducing O2 tension and favoring the

establishment of periodic breathing. In preterm infants, Poets et al. (122) showed

that FRC was significantly lower during nonregular than during regular breathing,

and this was associated with fast desaturation. Thibeault et al. (123) showed

a decrease in lung volume associated with periodic breathing. Conversely,

maneuvers that increase FRC tend to eliminate periodicity. In the prone position

FRC increases, chest wall stabilizes with less distortion, ventilation=perfusion
and saturation improve, and periodic breathing decreases (124–129). Negative

pressure applied around the chest wall eliminates periodic breathing (123; Fig. 6),

and continuous positive airway pressure reduces apnea of prematurity and

periodic breathing (130).

Sighs

Sighs are more common during the neonatal period than at any other age in

humans (131,132). They are more frequent in REM than in quiet sleep. They

appear in the respiratory tracing as a ‘‘breath-on-the-top-of-a-breath,’’ and

represent one of earliest examples in physiology of positive feedback in man

(133). The increased presence of sighs at this age likely relates to the increased

tendency of lung volume to decrease; sighs would then restore lung volume.

Sighs are twice as frequent in preterm as in term infants, which is consistent with

a role in sustaining lung volume (131). The exact mechanism producing sighs is

not known, but it is believed that vagal-mediated changes in pulmonary irritant

reflexes and possibly chest wall reflexes, induced by a decrease in lung volume

and compliance, are important (132,134,135). Asphyxia and hypoxemia also

appear to be relevant in the neonate (131,136).

Are sighs important in triggering periodic breathing? In preterm infants we

found that sighs were equally distributed before and after the respiratory pauses

(131,137). In general, when occurring after the apnea, they occupy the first or

second breath of the breathing interval, suggesting a decrease in lung volume

during apnea (115,122). In term infants, however, sighs appeared to frequently

trigger a run of periodic breathing (138). Our experience confirms this. The

almost instantaneous changes that occur with a sigh include a decrease in PCO2

below threshold, an increase in PO2, and an increase in pH (139). It is likely that

the most important factor is the decline in PCO2 below threshold, thus initiating

an epoch of periodic breathing.

The Airway in Periodic Breathing

During periodic breathing airway obstruction is rare (5,14,24,25). However,

Miller and coworkers (140) have shown airway obstruction in their premature

infants with periodic breathing. We have used the presence of a magnified cardiac

oscillation signal present in the respiratory flow tracing to determine patency of
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the airway and its absence to detect obstruction (141; Fig. 7). Using this method

we found that the airway is almost never closed, the magnitude of the cardiac

oscillation remaining relatively unchanged during apnea (Fig. 8). In a few

instances where there is evidence of narrowing of the airway, it begins at

�1 sec into the respiratory pause, and is maximal at �8 sec into the apnea

(142; Fig. 9). We further investigated whether contraction of the respiratory

muscles of the chest was important in causing some degree of obstruction. We

found that obstruction was frequently observed in the absence of any respiratory

effort (143). We therefore believe that some degree of obstruction, when it occurs,

has to do with a lack of tone and flaccidity of the upper-airway smooth muscle,

which occurs simultaneously with the induction of central apneas (144). Thus,

obstruction is usually coincident with, rather than a cause of, apnea.

Maneuvers That Reduce Periodic Breathing in the Neonate

Periodic breathing per se does not require management in the neonate, but it is

useful to recognize the various manoeuvres that are able to reduce or abolish it.

Inhaled O2 is usually very effective (1,6,68). This effect has been known since the

first half of the last century (31,35,145). In the earlier observations, 100% O2 was

used to show this effect, but lately lower concentrations of inhaled O2 were also

shown to be effective (109; Fig. 10). Even a modest increase in inhaled O2 to

23–25% makes a significant difference. There are two reasons fundamentally for

Figure 7 Classification of respiratory pauses according to the cardiac airflow oscillation

method. Central apneas are those in which the cardiac airflow oscillation is present,

obstructive apneas are those in which it is absent, and mixed apneas are those in which the

oscillation is present during part of the apnea. (From Ref. 141.)
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this action of O2. First, inhaled O2 increases the stores of O2 in the body,

providing a buffer against hypoxemia. Second, increased O2 facilitates breathing.

It has been suggested that hypoxia acts as an anesthetic inhibiting the central

neuronal network responsible for breathing (146); supplemental O2 alleviates this.

Since we do not treat periodic breathing per se, O2 is not used for this purpose.

However, periodic breathing and prolonged apnea of prematurity frequently occur

together, and in the management of apnea we recommend saturations to be kept at

94% (range 92–96%) and we adjust inhaled O2 accordingly.

Carbon dioxide is also very effective in making breathing continuous in

infants with respiratory periodicity (1,31,35,67,68,108,147,148). Wilson et al.

(31) were probably the first to show this in babies in the first half of the last

century, although such effects had been shown earlier in adults (83). We have

examined different concentrations of inhaled CO2 in treatment of respiratory

periodicity and apnea in infants, and have found that concentrations as low as

0.5% are very effective (149). CO2, the natural stimulus to breathe, increases

ventilation, making it continuous. If used in low concentration, the increase in

ventilation is sufficient to keep the arterial CO2 tension unchanged, so its action is

Figure 8 Periodic breathing in a preterm and a term infant to illustrate the commonly

seen patency of the airway throughout the apneic period. Note the constant amplitude of

the cardiac airflow oscillation, which can be better recognized when the standard flow

tracing is amplified tenfold (bottom tracing).

Periodic Breathing 251



Figure 9 Changes in relative amplitude of the cardiac oscillations over time for apneas

of different durations. Note that the critical period of maximum narrowing occurs at the

same time despite different durations. Values are mean �SE with number of apneas shown

above each data bar. *P 	 :05 compared with preceding with time 0; �P 	 :05 compared

with the preceding time interval. (From Ref. 142.)

252 Rigatto



through an increase in respiratory drive. We have found that all respiratory

pauses, not just those present in periodic breathing, are reduced or abolished by

low inhaled CO2. Because of this experimental observation we are now

conducting a clinical trial using low inhaled CO2 to treat apnea of prematurity,

and comparing this effect with that obtained with theophylline (Fig. 11). The

attraction of this strategy is that CO2 is devoid of adverse side effects, unlike

methylxanthines.

In the past we have suggested that anything that stimulates breathing will

make respiration continuous (100,150). Methylxanthines do exactly that. The

rationale for using methylxanthines was based on the evidence that this medica-

tion was also effective to treat Cheyne-Stokes respiration in adults. The use of

aminophylline was first suggested by Shannon et al. (151) and Uauy et al. (152)

in 1975 as effective in the treatment of apnea of prematurity. In the infants having

apnea, periodic breathing is also present and eliminated with this medication

(153). We examined the action of theophylline on breathing, both physiologically

and pharmacokinetically (150,154). Theophylline increases breathing primarily

by increasing tidal volume, but frequency may also increase. Methylxanthines

Figure 10 Illustration of the change in respiratory pattern with gradual increase in

inspired O2. Respiratory flow recorded in one preterm infant, age 16 days, 1600 g. Note

regularization of breathing pattern with increased inspired O2. (From Ref. 109.)
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have an additional effect on the respiratory musculature, enhancing muscular

contraction. A loading dose of theophylline of 8 mg=kg and a maintenance dose

of 6 mg=kg=day are currently used to treat apnea of prematurity. This regimen

also eliminates periodic breathing.

Increase in FRC reduces periodic breathing (123–127). Chest wall disten-

sion, using either negative pressure around the chest or continuous positive

airway pressure (CPAP), is a physiological maneuver that effectively reduces

apnea of prematurity and periodic breathing. Thibeault et al. (123) elegantly

showed the effect of negative pressure applied on the chest wall in correcting

respiratory periodicity in preterm infants. The effect is mediated through various

mechanisms including better oxygenation with increased lung volume, change in

reflex feedback from the lungs, and possible inhibition of the costophrenic

inhibitory reflex (114,155).

V. The Clinical Scenario

A. Preterm Infants

Periodic breathing is rare in the first few days of life (1,2). It generally becomes

prominent in the second, third, and maybe fourth weeks of life, after which it

Figure 11 Illustration of the effects of theophylline and low inhaled CO2 concentration

(0.5%) on the respiratory pattern in two preterm infants. Note that CO2 seems as effective

as theophylline to regularize breathing. (From Ref. 149.)
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tends to decrease to reach a nadir at about 6–12 weeks in small babies (1,2,5,6,8–

11,14,24,25). The average length of the periodic cycle is �15 sec, and of the

apneic interval 7 sec. The absence of periodic breathing in the first few days has

never been clearly explained, but it may relate to better FRC at this age, with

better oxygenation (123). Perhaps an increased respiratory drive, with increased

respiratory frequency due to increased pulmonary impedance, may also play a

role. Increased impedance may be due to the presence of residual pulmonary fluid

in the lungs as well as some minor air trapping (156). The decreased FRC after

the first few days of life in preterm infants has been shown previously (123), a

change which is associated with lower arterial O2 tension and higher arterial CO2

tension, giving the profile that Burnard et al. in 1958 (157) labeled the

‘‘respiratory insufficiency of prematurity.’’ These physiological changes set the

stage for the appearance of respiratory periodicity. In many small preterm infants

who stay on the ventilator for a while this is still observed after they are extubated,

although the whole scenario is shifted to a slightly more advanced postnatal age.

The sequence of events described above was very much the norm in the

days prior to the use of methylxanthines and early closure of the ductus

arteriosus. With these procedures, changes in PO2 and PCO2 are not as large

as before. We have examined values for alveolar PCO2 and PO2 during periodic

breathing and found that they may be at different levels for different babies (158;

Fig. 12). It appears that each baby has a critical combination of CO2 and O2

tensions at which periodic breathing is observed.

Documentation of periodic breathing clinically can easily be done by

observing the infant’s respiration. It alternates between bursts of breathing efforts

and respiratory pauses. In general, desaturations during periodic breathing are

modest, there is no change in color of the infant, and there is no or minimal

change in heart rate. In some very small infants, however, significant desatura-

tions and bradycardias may be observed (13). These events can be observed

through conventional monitors. In a recent work examining the factors that

determine active resuscitation in the nursery, we found nursing notes quoting

periodic breathing associated with significant desaturations and bradycardias

(159). This seems to indicate that the periodic breathing observed in the nursery

and triggering an alarm is likely associated with longer apneas than usual,

meaning that periodic breathing is occurring on the edge of true ‘‘pathological’’

apneas.

Periodic breathing is frequently associated with prolonged apnea in preterm

infants. In a study carried out in our laboratory we were able to show that a

prolonged apnea (�20 s) almost never occurred in the absence of preceding short

pauses such as observed in periodic breathing, and that the risk of a prolonged

apnea occurring increased significantly when the preceding period contained an

increased number of apneic episodes, increased duration of the longest apnea, or

increased duration of the apneic time (160; Fig. 13). We believe that periodic
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breathing is a marker for apnea of prematurity, since apnea almost never occurs

abruptly in infants breathing regularly, but only in infants whose respiratory

pattern is characterized by significant periodicity.

B. Term Infants

The presence of periodic breathing is not unique to preterm infants, as mentioned

before. It is also present in some term infants. Their presence as a percentage of

sleep time is low, however, �2% soon after birth and decreasing to <1% by 5–6

weeks of age. It then appears to remain at this low level for the first year of life.

The morphology of this periodic breathing is very much the same as that of

preterm infants, with an average respiratory cycle length of 14 sec and apnea

length of 6 sec. In our apnea laboratory we have studied a significant number of

infants at term who breathed periodically for >50% of the time, some for the

entire sleep time. The striking finding was that they were invariably hypoxemic,

Figure 12 Illustration of various combinations of PAO2 and PACO2 preceding apneic

intervals during periodic breathing. Five infants—A, B, C, D, and E—are represented.

Each vertex represents the PAO2, PACO2 of the breath preceding apnea. Thus each vertex

also represents an apnea. Note that infants may become apneic anywhere along the

regression line. Each infant also chooses a combination of these values at which apnea

occurs, and these are very specific for each infant. (From Ref. 158.)
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with transcutaneous PO2 in the 50–65 torr range .These infants came to us from

the normal newborn area or were admitted because of an ALTE episode at home.

They were polygraphically studied for 3–4 h through various behavioral states. Of

interest is the fact that the healthy adult with Cheyne-Stokes respiration is also

hypoxemic (161).

Because the term newborn infant is not monitored for apneic events in the

nursery, the diagnosis of periodic breathing is made by observation of the infant’s

respiration. There is no significant decrease in heart rate or oxygen saturation.

C. Adult Subjects

Although this chapter is about periodic breathing in neonates, it would not be

complete without a review of its presence in adulthood. In past centuries, periodic

(Cheyne–Stokes) breathing was described mostly in adult subjects in the later

years of life, usually >60, who had significant involvement of heart or central

nervous system (48,77,162). This involvement was very significant from a

clinical point of view, since the therapeutic tools to treat these diseases were

Figure 13 Likelihood of a prolonged apneic episode during the 11th minute of

monitoring according to the number of apneic episodes. The risk per 1000 is plotted

against the number of apneic episodes in the last 10min. There is a significant increase in

the risk between periods preceding the prolonged apnea without any apnea and periods that

contain an increased number of apneic episodes. (From Ref. 160.)
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essentially nonexistent. Today, such involvement is of much lesser degree and

consequently we see less Cheyne-Stokes respiration due to pathological involve-

ment of these systems.

The duration of the respiratory cycle in pathological conditions is very

prolonged, averaging �60 sec, with the breathing interval occupying slightly

>50% of the cycle (162–165). Usually patients who present with this type of

breathing pattern are very sick and semicomatose. There are interesting descrip-

tions in the literature of patients being able to communicate only during the

breathing period, and of instances in which a question posed during one breathing

interval could only be answered in the next breathing interval, the patient being

unconscious during the apneic interval (48,166). Because the respiratory pattern

in these patients is generally related to increased circulation time, the priority is to

correct the primary pathology. Aminophylline may help to correct the respiratory

pattern in some patients.

Cheyne-Stokes respiration in situations of health, such as during climbing

to high altitudes and during sleep, is made of much shorter respiratory cycles,

�30 sec, although they are still twice as long as those observed in neonates.

Periodic breathing of high altitude is very common and triggered by low O2

hyperventilation. This periodic respiration immediately ceases when the climber

descends to low altitude. It is also much more dramatic during sleep, when the

subject ‘‘rarely breathes,’’ as described by Mosso in 1884 (52,53). Today,

climbers to high altitude usually breathe from O2 tanks to avoid the ill effects

of this type of respiration, such as intense dyspnea.

Periodic breathing during sleep is rare in adults at rest. After Mosso’s

(52,53) first description, Fenoglio (54) tried to see whether Mosso’s observations

were correct and studied 100 males and 100 females of old age, during sleep (48).

He found six males presenting with this type of periodic respiration during sleep

but no females. It is more frequently observed when the subject falls asleep,

indicating an unbalancing of the respiratory chemosensor system (165). It is also

transient. We studied this breathing pattern in subjects investigated for sleep

apnea and found it to be transient also (19). However, even during sleep, this

periodic respiration is frequently associated with some abnormal clinical findings,

such as transient partial upper-airway obstruction, hypoxemia, or both. The rarity

of it in normal adult subjects is clearly reflected by the fact that when

physiological measurements are needed, such as to calculate the CO2 apneic

threshold, forced ventilation is required to induce it.

VI. Clinical Significance in Neonates

The traditional view of periodic breathing has been that this is a benign

respiratory pattern and we should not be too concerned about it. This view has

been based on the following assumptions: [1] This respiratory pattern per se does
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not cause a major decrease in O2 saturation or heart rate and therefore it is benign

(3–5,9,10). [2] Some studies in the literature have not linked it to more prolonged

apnea (3–5,9–11). [3] Its relationship to subsequent risk, such as ALTE or SIDS,

could not be clearly established (3,5,11,26,168–175).

We have been concerned about this traditional view for the following

reasons:

1. The only form of periodic breathing that seems innocent to us is that

occurring very transiently when the subject falls asleep, or when there

is a sharp change in sleep state with a brief disturbance of the chemical

control of breathing (14,100,102,150,167). All other forms are highly

pathological, including that of the climber at high altitude who feels

miserable and highly dyspneic with periodic breathing, and that of term

neonates with excessive periodicity. By excessive we mean breathing

periodically for 50% or more of the sleeping time.

2. We have found and presented data suggesting that periodic breathing

per se can be detrimental in very small preterm infants (13,176). We

found that preterm infants < 1500 g had significant decrease in minute

ventilation (38%) during periodic breathing, accompanied by a

decrease in O2 saturation from 92% to 80% during the apneic period

(Fig. 14). Transcutaneous O2 tension was low too. In small babies,

breathing periodically for most of the sleeping time may represent a

considerable exposure to low O2.

3. I believe that periodic breathing and prolonged apnea of prematurity

have the same basic physiological roots, with apnea reflecting a more

severe instability (1,2,14,177–180). In a study carried out in our

Figure 14 Illustration of a periodic breathing pattern associated with major desaturation

and decrease in heart rate. It usually happens somewhere during an epoch of periodic

breathing, when there is a minor delay in resuming breathing at the end of an apneic pause.
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laboratory and mentioned earlier (160), we noticed that these

prolonged apneas almost never occurred in the absence of preceding

short apneas, and the appearance was preceded by shorter pauses. We

have observed this link consistently in our polygraphic studies, the

long apnea usually occurring in an ocean of small apneas such as in

periodic breathing (Fig. 15).

4. We have also examined more critically the periodic breathing occurring

in term infants (18). We found that this pattern of breathing occurs

excessively when the transcutaneous PO2 is low for this age group,

usually 50–65 torr. These are infants who are breathing periodically for

>50% of the time and frequently for the entire sleep time. Furthermore,

in a group of infants with this periodicity and hypoxemia, the incidence

of ALTE was much higher—55% in the periodic group and only 9% in

the nonperiodic group. It is clear from our observations and those of

others that ALTE is more frequent in infants who have excessive

periodic breathing and are hypoxemic (17,18,23,181).

ALTE is not an innocent event and should not be ignored. It is usually

associated with a significant hypoxic event and is a very alarming situation for the

parents. The possibility that excessive periodic breathing may be followed by

ALTE makes it important for us to be vigilant. It is relevant that previous studies

failing to show a correlation between periodic breathing and future risk of

Figure 15 Illustration of a periodic breathing pattern followed by a prolonged mixed

apnea, with desaturation and bradycardia. Note progressive increase in desaturation during

periodic breathing preceding apnea. The prolonged apnea is mixed with a central

component initially followed by airway collapse and obstruction.
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prolonged apnea or ALTE included infants who breathed periodically as little as

15% of the sleeping time (3–5, 10,11,15,168,170,171,174,182,183). The overall

prevalence of periodic breathing was <50% of the sleeping time. With little

periodicity we do not expect an increased risk of future complications. In our

experience, the risk is increased when these infants breathe at least 50% of the

time periodically, and is very high when this percentage increases to 80–100% of

the time.

VII. Long-Term Developmental Speculation

Preterm infants do not always come out of the perinatal period intact. One-third of

small preterm infants intact at 2 years of age will show some degree of neurologic

dysfunction at school age (184). The etiology and mechanisms of these late

sequellae are not known, but the problem is of great concern. Many feel that

much of it derives from the development of the immature brain in the

unphysiological conditions of the newborn nursery (185,186). If so, these

deleterious conditions will have to be identified and examined. Preterm infants

are subject to a number of physiological insults, which does not affect survival

but may affect the development of the immature brain. Because periodicity often

coexists with prolonged apneas and significant hypoxemia, a preterm infant who

breathes periodically for >50% of the time or for the entire sleep time may be

subject to a more damaging insult than we have so far appreciated. As mentioned

earlier, this periodicity often coexists with prolonged apneas and significant

hypoxemia. Our speculation is that this exposure is not healthy and may be

damaging. Unfortunately, studies trying to unravel the role of these events on late

outcome have used developmental markers which do not have the discriminating

power to assess the weight of these early individual insults (171). These

conventional markers are affected by so many other variables that they are

unable to assess accurately the effect of one single variable. New strategies are

needed to assess the effects of these events on the ultimate outcome, but

prevention by adjusting inspired O2 or distending chest pressures seems a

reasonable thing to do. Although we have dramatically reduced mortality, we

are far from understanding the morbidity of these neonates later in life.
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I. Introduction

Apnea, bradycardia, and oxygen desaturation are the most common clinical

problems facing neonatologists today. These problems are seen in the critically ill

infants, infants recovering from lung diseases, feeding and growing premies, and

infants approaching discharge. They arise not only in spontaneously breathing

infants but also in mechanically ventilated infants. Optimal clinical management

of these infants depends on understanding the complex pathophysiology of these

episodes. Continuous cardiorespiratory monitoring is an integral part of clinical

care provided to these high-risk neonates. Cardiorespiratory monitoring in the

NICU and related issues are addressed in detail in Chapter 9. The primary

purpose of this chapter is to summarize the current understanding of events

leading to these episodes and to offer some insights into their management. Since

the pathophysiology and management of apnea of prematurity, the most common

cause of these episodes, are discussed in detail in subsequent chapters, the main

focus of this chapter is on other etiologies of apnea.

II. Definition and Classification

A. Apnea

Apnea is traditionally defined as absence of breathing. Unfortunately, there is no

universally accepted time period that qualifies as apnea; it varies from 5 sec to
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>20 sec (1–6). The American Academy of Pediatrics task force on prolonged

apnea defines clinically significant apnea as apnea >20 sec or <20 sec if it is

associated with bradycardia, cyanosis, or pallor (7). Apnea alarms in most NICUs

are set at 15 or 20 sec.

Apnea occurs commonly in the more immature infants. Its incidence is

inversely proportional to birth weight and gestational age (4,5) with essentially all

infants under 1000 g experiencing at least one clinically significant apnea.

Initially, the term apnea was synonymous with central apnea or absent respiratory

efforts. Once other forms of apnea were recognized, the definition was expanded

to include all types of apnea. The definition of apnea now is based on the absence

of airflow. Three types of apneas are recognized: central, obstructive, and mixed

(Figs. 1, 2). When the lack of airflow is due to the absence of respiratory efforts, it

is defined as central apnea. On the other hand, respiratory efforts are present

during obstructive apnea. In mixed apnea elements of both central and obstructive

apnea are present during the same episode. There are significant differences in the

reported incidences of various types of apnea. Largely, this discrepancy reflects

differences in methodology and population studied. The general consensus now is

that mixed apnea accounts for the majority of apneic spells in premature infants,

followed by central apnea (4,5). Pure obstructive apnea is the least common type.

Larger infants, both preterm and term, have predominantly central apnea (8).

Figure 1 Central apnea. Esophageal pressure (top trace), airflow (middle), and tidal

volume (bottom) are shown. Note the absence of both respiratory efforts and airflow for

several seconds. Small fluctuations seen on the flow trace are due to cardiac artifacts.

(From Ref. 2.)
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Milner and coworkers first reported the occurrence of airway closure during

some central apneas on the basis of lack of cardiac artifacts in the airflow trace

(2). This observation has been extended recently by Rigatto and coworkers (9).

Based on the presence or absence of cardiac oscillations in the respiratory flow

tracing, these investigators proposed a new definition of central, obstructive, and

mixed apnea (see also Fig. 7 in the chapter on periodic breathing). It is interesting

to note that some of the apneas previously defined as central would be classified

as obstructive or mixed based on the new criteria. This classification is superior to

the widely accepted definition in that the timing of airway occlusion can be

accurately determined, providing further insight into the mechanisms involved.

Since respiration is routinely monitored in the NICU by impedance

technique (and since airflow is not monitored), only central apneas and the

central component of mixed apneas are clinically recognized. The limitations of

thoracic impedance changes used in clinical monitoring of respiration in neonates

are discussed in detail in the chapter on cardiorespiratory monitoring.

Figure 2 Mixed apnea. Traces are as in Figure 1. Airflow is absent for nearly 15 s. No

respiratory efforts are seen during the initial part of this episode, whereas obstructed

respiratory efforts are seen subsequently. (From Ref. 2.)

Apnea, Bradycardia, and Desaturation 275



Nursing documentation of apnea is often used in daily management

decisions, although it has been known for a long time that nursing documentation

grossly underestimates these events. In one study, nurses documented 54% of all

apneic episodes and were especially ineffective at detecting mixed and obstruc-

tive events (10). One reason is that all events witnessed by the nurses are not

being documented. Another reason is that the central apnea, which triggers the

alarm, may have resolved spontaneously by the time the nurse has responded.

Also, she may not recognize the small, obstructed breaths; instead she records

that the infant is not being apneic during the episode. Hence, nursing documenta-

tion is either lacking or misleading in a significant portion of these spells.

Because of limited usefulness of nursing documentation with regard to apnea,

one has to rely more on other resources in the diagnosis and management of

apnea on a daily basis. The newer monitors with memory at least have the ability

to document the events missed by the nurses, although it still has the inherent

problem of not recognizing the obstructed breaths. Addition of nasal thermistors

or respiratory inductance plethysmographs may provide further clarification of

these events.

B. Bradycardia

Bradycardia is defined as a decrease in heart rate below a predetermined

threshold. Generally, a heart rate <100 beats per minute in preterm infants is

defined as bradycardia (5). Several points need to be considered in determining

the clinical importance of such events (see also chapter on cardiorespiratory

monitoring). Suffice it to say that EKG and heart rate are typically displayed on

the bedside monitor. Changes in monitored heart rate due to loose leads and

movement artifacts are often easy to detect; therefore, the heart rate has been

more reliable than respiration or oxygen saturation in most clinical situations.

What constitutes clinically significant bradycardia is a matter of debate.

The resting heart rate is higher in preterm infants than in term infants, and heart

rate increases markedly with stimulation or handling. The lowest heart rate during

an episode can be calculated in a number of ways; the longest R-R interval, the

longest three R-R intervals, and utilization of moving averages are used

commonly in determining bradycardia. Most clinicians would agree that a

heart rate <100 bpm for 5 sec or more in an infant with resting heart rate

between 140 and 160 bpm is significant. Alternatively, one could use a percentage

decline from baseline (e.g., 25–33%) as a yardstick in defining significant

bradycardia. This is especially true among infants with low resting heart rates.

Most neonatologists would consider an instantaneous drop in heart rate to

<100 bpm for a beat or two unlikely to be meaningful or clinically significant

unless one is evaluating arrhythmias. Because clinical monitoring of apnea is not
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reliable, bradycardia is often used as a proxy to document clinically significant

episodes of apnea.

C. Oxygen Desaturation

Pulse oximetry has contributed immensely to our understanding of the patho-

physiology of apnea. As a result of reduction in alveolar ventilation during the

apneic period, a decrease in oxygen saturation is usually observed. Since

monitoring of respiration is unreliable and the development of bradycardia,

especially in the term infants, may be a late phenomenon during apnea,

oxygen desaturation has become an important tool in the diagnosis of apnea in

the newborn period. Pulse oximetry has been discussed in more detail in the

preceding chapter. Although pulse oximetry has provided valuable insight into

our understanding of the pathophysiology of apnea, it also has brought a number

of difficult issues to clinical practice, the most important being false alarms.

Movement artifact has been the main culprit. Ignoring the alarms or delay in

responding to them has become commonplace in most NICUs, especially among

infants with very labile oxygenation. Innovation in technology and algorithms are

beginning to have an impact on this problem. The new Masimo monitors, for

example, have decreased the false alarms significantly without sacrificing

accuracy (11). Pulse oximeters are likely to continue as the mainstay in the

clinical diagnosis and management of apnea in NICUs. In most centers the low

saturation alarm is set between 85 and 90%. Saturation below that level for

3–5 sec can be considered desaturation. Oxygen saturation between 80% and

90% is considered mild desaturation, between 70% and 80% moderate, and

<70% severe. When episodes of desaturation are prolonged and occur more

frequently, they have the potential for adversely affecting the outcome of

neonates.

III. Differential Diagnosis

Apnea is a symptom and not a diagnosis. Immaturity of the brainstem makes the

premature infant uniquely vulnerable to apnea. As mentioned earlier, apnea of

prematurity is the most common cause. Since it is a diagnosis of exclusion, other

etiologies must be considered first (Table 1). Evaluation for apnea must include a

review of historical facts. These include relevant maternal and neonatal history,

which may give important clues as to the etiology of apnea. For example, apnea

history in the immediate postpartum period alerts the physician to ask about

sedatives and narcotics administered to the mother as well as any peripartum and

intrapartum infections. Respiratory depression from perinatal asphyxia or intra-

cranial hemorrhage needs to be considered in infants born after prolonged and

difficult labor. Development of intracranial hemorrhage is an important etiologi-
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cal factor in the first few days of life, especially in very low-birth-weight infants.

Recent administration of sedatives and narcotics to the neonate should also be

investigated, whenever a sudden onset or sudden increase in frequency of apnea is

noted in the neonate.

With increased survival of extremely low-birth-weight infants, nosocomial

infections have become commonplace in most tertiary care units. Nosocomial

infection must be foremost in one’s mind while evaluating apnea in this group,

because any potential delay in initiating treatment may contribute to a fatal

outcome, particularly in cases of gram negative infections (12). Although

bacterial infection is the primary concern, viral or fungal infections may

complicate the clinical picture as well. If bacterial and fungal cultures are

negative, viral infections assume greater significance, especially when sudden

clustering of cases is seen (13). In winter months, infection due to respiratory

syncytial virus (RSV) becomes part of the differential diagnosis. Apnea is not an

uncommon presentation in the neonate with RSV. It may be the initial manifesta-

Table 1 Causes of Apnea in the Neonatal Period

Central nervous system Hematological

Apnea of prematurity Severe anemia

Depression Sepsis

Sedatives, narcotics Bacterial

Postanesthesia Viral

Hypoxia Fungal

Intracranial hemorrhage Temperature regulation

Seizures Hypothermia

Tumors Hyperthermia

Hyperekplexia Airway obstruction

Hydrocephalus Choanal atresia

Malformation Pierre Robin sequence

Infection Neck flexion

Meningitis Secretions

Meningoencephalitis Reflex

Circulatory Passage of nasogastric tube

Patent ductus arteriosus Vigorous suction

Heart failure Cold stimulus to the face

Shock Metabolic disorders

Gastrointestinal Hypoglycemia

Nasopharyngeal reflux Nonketotic hyperglycinemia

Gastroesophageal reflux Urea cycle disorders

Necrotizing enterocolitis Miscellaneous

Nipple feeding Immunization

Prostaglandin-E1
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tion of RSV infection, often occurring before other respiratory signs. Apnea

occurs in � 20% of infants hospitalized with RSV infection (14,15). Premature

infants with a history of apnea are at greatest risk for developing apnea with RSV

infection (16).

Although apnea is a common symptom during the onset of sepsis, the exact

mechanism is still unclear. Output of the respiratory controller can be altered by

changes in neural and chemical input as well as by changes in threshold or

sensitivity of the controller. For example, if the sepsis is associated with infection

of the airway epithelium or lung parenchyma, it is likely that the afferent input

from the upper- and lower-airway mechanoreceptors would be altered. Lindgren

and coworkers observed increased apnea response to laryngeal water stimulation

in RSV-infected lambs (17). On the basis of this finding coupled with intact

peripheral and central chemoreceptor function, these investigators suggested that

sensitivity of laryngeal chemoreceptors is altered by RSV infection. In a

subsequent study these investigators provided supporting histological evidence

(18). Stimulation of these afferents has been well documented to have an

inhibitory effect on breathing (19–22). Similarly, development of atelectasis or

pneumonia is likely to alter the microenvironment of pulmonary afferents such as

rapidly adapting (irritant) receptors, slowly adapting stretch receptors, and

bronchial and pulmonary C-fibers. Again, alteration in the activity of these

endings is known to have an immediate effect on the regulation of breathing

(19–22).

The respiratory center can be affected either directly or indirectly. The role

of inflammatory mediators in eliciting apnea is not entirely clear. A correlation

between apnea and concentrations of interleukin 1-beta in pharyngeal secretions

has been documented in RSV-infected infants (23). Infection has also been shown

to alter the central respiratory response to afferent input (18,24). For example,

Lindgren and coworkers (18) documented a state-dependent difference in the

apnea response elicited by laryngeal stimulation in RSV-infected lambs. These

investigators also noted a delay in arousal during active sleep following laryngeal

chemostimulation. Apneic response to electrical stimulation of superior laryngeal

nerve normally present in kittens can be elicited in adult cats following viral

tracheobronchitis (24,25). This change in central response may persist even after

the clinical symptoms of infection have resolved. Similarities in apnea of

prematurity, upper-airway reflex apnea, and the apneas in infants with RSV

infection have led Thach and coworkers to speculate that these various kinds of

apnea may have related causal mechanisms (26).

Apnea is common among infants developing necrotizing enterocolitis.

Since septicemia is not observed in the majority of these cases, apnea is likely

to be mediated by the systemic inflammatory mediators or by the alteration of

vagal afferent input. Distension of the bowel loops increases afferent input from

vagal mechanoreceptors. Since abdominal distension alters pulmonary mechanics
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and residual lung volume, alteration of pulmonary mechanoreceptor input may

contribute to the apnea as well.

Preterm infants with patent ductus arteriosus may manifest apnea. The

development of pulmonary edema from left-to-right shunting is the likely

mechanism. Pulmonary C-fibers are activated by pulmonary edema. Stimulation

of pulmonary C-fibers is known to cause apnea and rapid shallow breathing (27–

29). Hence, vagal afferents are likely to play a significant role in the initiation of

apnea observed in infants with pulmonary edema.

A premature infant, whose upper airway is very small to begin with, is

uniquely vulnerable to obstruction from secretions, edema, neck flexion, and

mandibular hypoplasia (see also Chap. 22). The mechanism of apnea in condi-

tions such as Pierre Robin sequence is clear. A markedly narrow pharyngeal

airway predisposes infants to obstructive apnea, especially when they are supine.

The greater negative pressure change seen during obstructed inspiratory effort has

an inhibitory effect on breathing. It may inhibit inspiration completely, manifest-

ing as central apnea with resultant prolongation of the apneic episode. This

inhibitory reflex response has been demonstrated in animal studies by applying

large negative pressures to the isolated upper airway while the animal is breathing

through the tracheotomy (30). Similar reflex response has also been demonstrated

in human neonates (31). Occlusion of the upper airway inducing a central apnea

in a neonate is illustrated in Figure 3.

Figure 3 Apnea induced by airway occlusion. Esophageal and mouth pressures are

shown. When the airway is occluded by closing a shutter attached to the face mask, the

infant becomes apneic after the first obstructed effort until the shutter is released. (From

Ref. 31.)
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Other recognized causes of apnea include seizures, asphyxia, intracranial

tumors, and metabolic disorders (32–44). The mechanism of apnea in a number

of these conditions is unclear. These include some of the metabolic and

electrolyte disorders. The author is unaware of any clear and convincing evidence

that apnea occurs in electrolyte disorders such as hyponatremia and hypocalcemia

in the absence of seizures. Seizures rarely present as apnea, or apnea can occur

during or immediately following seizures (32,33). The association between

anemia and apnea is discussed in Chapter 12.

An increase in the number of apneic and bradycardic episodes following

immunization has been reported by several groups of investigators (45,46). For

example, Sanchez et al. reported that following immunization 12% of infants

experienced a recurrence of apnea and 11% had at least a 50% increase in the

number of episodes (45). Apnea was attributed to the pertussis component of the

vaccine. However, a recent study by the same group showed a temporal relation-

ship between immunization and apnea in very low-birth-weight infants despite

the use of acellular pertussis vaccine (47). Similarly, an increased incidence of

apnea has been reported in premature infants during the postoperative period (48–

50). Postanesthetic depression of the respiratory center is presumed to be

responsible for this finding. Significant differences in the incidence of apnea

are observed among different institutions. Methodological differences and dura-

tion of monitoring used, at least in part, account for these differences. Despite

these limitations, one can conclude that postoperative apnea correlates inversely

to both gestational age and postconceptional age (49). Caffeine can be used to

prevent postoperative apnea and bradycardia in these growing preterm infants

(51).

IV. Time of Occurrence

It is important to understand the time of occurrence of apnea and bradycardia

episodes. For example, the significance of apnea, bradycardia, and desaturation

spells during feeding should invoke an entirely different clinical strategy than if

these episodes are occurring during sleep. The feeding-related episodes typically

occur in preterm infants before 36 weeks postconceptional age. This is a

reflection of brainstem immaturity in coordinating the acts of suck, swallow,

and breathing, and in most cases, these spells disappear before they reach term

postconceptional age (52). More mature infants may exhibit these episodes on the

first day of life during bottle feeding (53,54). It is extremely rare in breast-fed

infants. Infants with brochopulmonary dysplasia (BPD) and neurologically

impaired infants are at increased risk for these complications (52,55,56).

Respiratory control during feeding and associated disorders are discussed in

detail in Chapter 16.
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An increase in bradycardia and desaturation episodes may occur in the

immediate postprandial period. One or more mechanisms have been implicated in

these episodes. A decrease in pulmonary function has been documented imme-

diately following feeding (56). A significant decrease in tidal volume, minute

ventilation, and dynamic compliance, as well as an increase in pulmonary

resistance, are observed after intermittent feedings; in comparison, the pulmonary

function remains unchanged after continuous feedings (57). These findings

suggest that gastric distension is an important contributing factor to the worsening

pulmonary mechanics, although a contribution from a vagally mediated reflex

response cannot be excluded. Another variable that needs to be considered is GE

reflux (see also Chap. 21).

State of the infant is another important factor—that is, whether the infant is

asleep or awake during the episodes critical to our understanding of the

pathophysiology. Apnea of prematurity typically occurs during sleep; in fact,

an increase in the number of spells has been documented during active sleep (58).

Motor activity during apnea and bradycardia is being recognized with increasing

frequency. Transient arousal or microarousal was associated with nearly a third of

apneic spells in one study (59). These events are typically associated with

laryngeal closure and Valsalva maneuvers. In some of these spells, the infant

goes back to sleep, whereas in a minority of cases frank arousal follows. In

infants with BPD and bronchomalacia, increase in positive intrathoracic pressure

during expiration may lead to small-airway collapse with further worsening of

hypoxia and development of bradycardia.

V. Significance of Sequence of Events

The temporal relationship among apnea, bradycardia, and oxygen desaturation

provides important insight into the pathophysiology and helps us to optimize the

management of infants in the NICU. However, this relationship among apnea,

bradycardia, and oxygen desaturation is complex (Fig. 4). The usual cause of

episodic desaturation is hypoventilation secondary to apnea. This fall in oxygen

saturation triggers reflex bradycardia through carotid chemoreceptors (60,61).

Apnea due to prematurity, sepsis, and CNS depression generally exhibits this

sequence. Since airflow is not monitored, we may simply see oxygen desaturation

followed by bradycardia. The rapidity with which desaturation develops depends

on baseline oxygen saturation, pulmonary oxygen reserve, and intrapulmonary

shunting. Upper-airway closure during the apnea has been suggested as an

important factor in the development of bradycardia (62). In the recovery period

some acceleration in heart rate may occur before a significant increase in alveolar

ventilation can be documented; lung inflation has been implicated in this response

(61).
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Another sequence is the development of bradycardia concurrently with

apnea, well before the development of oxygen desaturation. This sequence of

events is suggestive of inhibitory reflexes. The best example is the diving reflex, a

reflex mediated through the trigeminal nerves (63). Stimulation of these nerves

can reflexively induce apnea and bradycardia. Other examples of this sequence

include the laryngeal and pulmonary chemoreflexes. Occurrences of apnea,

bradycardia, and hypertension with laryngeal chemoreflex, and apnea, bradycar-

dia, and hypotension with pulmonary chemoreflex have been well documented in

carefully controlled animal studies (27–29,64–67). Even when apnea and

bradycardia are elicited by the same stimulus, there may be a slight difference

in the time of onset of each. Elicitation of pulmonary chemoreflex by intravenous

administration of capsaicin, for example, showed a greater delay for cardiovas-

cular response compared to the respiratory response (68). Lower conduction

velocity of vagal efferents and=or greater number of interneurons involved in the

cardiovascular response may account for this observation (68).

The inhibitory cardiorespiratory reflexes may occur spontaneously or can

be elicited in the human neonate. Sudden increase in vagal or trigeminal afferent

input has an inhibitory effect on both cardiovascular and respiratory output,

which manifests as a sudden slowing of the heart and a decrease in breathing

frequency or apnea. Passage of nasogastric tube or vigorous suctioning of the

pharynx can induce both apnea and bradycardia. It has been shown that rapid

passage of the nasogastric tube is more likely to be associated with apnea and

bradycardia than slow passage (69). The role of laryngeal and pulmonary

chemoreflexes in preterm infants is less clear. The existence of laryngeal

chemoreflex has been documented; development of apnea or respiratory pause

without immediate bradycardia was seen in these studies (70–72). Inhibitory

reflexes can be triggered by the stimulation of laryngeal receptors during

Figure 4 Apnea and its relationship with desaturation and bradycardia. The most

common sequence is depicted with filled arrows. (Modified from Ref. 60.)
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swallowing and obstructed respiratory efforts. Gastric distension and GE reflux

may also elicit inhibitory reflexes.

The concept that enhanced vagal tone predisposes the infant to apnea and

bradycardia is not new. Evidence supporting this concept has been emerging. An

elevation in baseline parasympathetic activity was observed among infants who

developed bradycardia during feeding (73). Spectral analysis of EKG signal was

used to document increased vagal tone. Would prevention of the enhanced vagal

tone reduce or prevent apnea in this group of patients? Intriguing results of a

recently published study (74) may have shed some light on this question. Sub-

stantial reduction in the number of episodes of apnea and hypopnea, along with a

reduction in the number of arousals and an increase in arterial oxyhemoglobin

saturation, was achieved with atrial overdrive pacing at night in a group of adult

sleep apnea patients (74). Also of interest is the observation that the vast majority

of children with severe bradycardia due to breath-holding spells improved after

pacing (75). These studies clearly indicate the influence of cardiac stimuli in

stabilizing respiratory control.

VI. Episodic Bradycardia and Desaturation Among
Intubated Infants

Not infrequently episodic desaturation and bradycardia are encountered among

ventilated very low-birth-weight infants. Although there is no one pathophysio-

logical explanation for all the desaturation episodes, there appears to be a

common thread in the majority of patients. Typically these spells occur in infants

with evolving BPD, often triggered by movement. In some, these desaturation

episodes can be frequent and quite severe. Although no prevalence rate has been

reported, desaturation episodes are not uncommon among the ventilated low-

birth-weight infants during the exudative (edema) phase of BPD.

The sequence of events leading to the hypoxemia is quite complex;

however, significant insight has been provided by two elegant studies (76,77).

Boliver et al. studied 10 infants with episodic desaturation � 1 month of age (76).

Active expiration, evidenced by an increase in esophageal pressure, preceded

both the reduction in lung volume and the decrease in tidal volume. The resulting

hypoventilation was associated with a marked decrease in lung compliance and a

large increase in inspiratory resistance (Fig. 5). Approximately 30 sec after the

beginning of hypoventilation, the arterial oxygen saturation reaches the hypox-

emic level (76). A closure of the small airways and the development of

intrapulmonary shunts are likely to exacerbate the fall in oxygen saturation.

Dimaguila et al. monitored tidal volume, respiratory rate, oxygen saturation, heart

rate, and body movements in a similar group of infants (77). An acceleration in

heart rate was observed at the onset of these episodes. Three-fourths of the
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desaturation spells began in association with body movements. These episodes

had similarities to the apnea, bradycardia, and desaturation events observed

during motor activity in nonintubated infants (59). Rarely one comes across an

infant with episodic ‘‘death spells’’ while still being mechanically ventilated.

Often these episodes are attributed to bronchospasm (‘‘clamped down’’) by the

nursing staff. It is likely that small-airway collapse and intrapulmonary shunting,

in addition to the reduction in lung volume and ventilation, play a significant role

during these severe hypoxemic spells. These spells have similarities to the

observations of Southall and coworkers in more mature infants (78,79). Some

of the recurrent episodes of severe hypoxemia were seen among intubated infants

and were associated with continued respiratory efforts (78). Milner and Fagan

suggested that active exhalation was the triggering point for the development of

severe hypoxemia (80). Amato and coworkers evaluated the events associated

with hypoxemia in ventilated patients with CT scan. In the supine position a

decrease in lung volume elicits airways closure primarily in the posterior parts of

the lower lobes. This generates local air trapping and low V=Q areas. At low FIO2

conditions, these areas contribute to arterial hypoxemia without evident radio-

graphic evidence. At high FIO2 conditions, these areas promote reabsorption

atelectasis with dense and visible infiltrates on CT (M. Amato, personal

communication, 2002). A change in body position from supine to prone

significantly decreased the frequency of the hypoxemic episodes in ventilated

infants (77). An increase in the FRC, a decrease in chest wall distortion, and=or a
decrease in ventilation=perfusion mismatch presumably account for this improve-

ment (see also Chap. 10).

Figure 5 Minute ventilation and airway resistance before and during hypoxemic

episodes in intubated infants. A marked reduction in ventilation and a marked increase

in inspiratory resistance (both mechanical and spontaneous) can be seen (*P < 0:005).
(From Ref. 76.)
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A small subset of ventilated low-birth-weight infants exhibit periodic

desaturation on low ventilator rates. On closer observation, it becomes evident

that these infants are having typical apnea of prematurity and that the decrease in

desaturation is the result of marked decrease in spontaneous ventilation. Brady-

cardia is seldom seen in these infants. Sometime this sequence may be coupled

with the movement-related spells described above. These infants respond to

increasing ventilatory rate and=or the initiation of methylxanthine therapy. Suc-

cessful extubation can be accomplished in most cases, once steady-state levels of

methylxanthines are achieved.

Sudden onset of severe bradycardia without oxygen desaturation is seen in

a small number of mechanically ventilated infants. Desaturation may develop

later during the episode. Inhibitory reflexes of vagal origin are likely to be

mediating these episodes. Possible sites of origin of these reflexes include the

carina and the laryngeal-epilaryngeal area, both areas of dense innervation.

Infants in the exudative phase of BPD with edema and low FRC may

benefit from higher PEEP and prone positioning to decrease the episodes of

desaturation, whereas sleep-related apnea of prematurity with episodic decreases

in spontaneous ventilation may benefit from methylxanthine therapy. These

infants can be successfully extubated after initiation of methylxanthine therapy.

The infants with evolving BPD, on the other hand, need to remain on the

ventilator until the edema phase is resolved and the pulmonary compliance is

improved, whereas the infants who manifest frequent arousal because of loud

external noise and frequent hands-on interventions may benefit from minimum

stimulation protocol and reduction of noise. These examples illustrate why

understanding the pathophysiology of episodic events such as bradycardia and

desaturation is important in their management.

VII. Apnea and Neurodevelopmental Outcome

The clinical significance of recurrent apnea on neurodevelopmental outcome

remains a subject of considerable debate (61). In the absence of randomized trials

specifically designed to evaluate the neurodevelopmental outcome of apneic

infants, adverse outcome attributable to apnea of prematurity is difficult to

quantify, especially when the clinical definition used excludes the majority of

apneic spells with airway obstruction. Be that as it may, several studies have

reported the developmental outcome of apneic infants with conflicting results

(81–85). No adverse outcome attributable to apnea was found in some studies

(81,82), whereas associations between apnea of prematurity and neurologic im-

pairments and cerebral palsy were observed in others (83–85). Case control or

cohort nature of these studies and small sample sizes render these conclusions

less robust. A slightly higher rate of retrolental fibroplasia was seen in one large
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study (86). The facts that the above finding is the result of secondary analyses of

infants enrolled in another study and that this finding could be the result of

zealous treatment of apnea rather than apnea itself make this conclusion less than

reassuring. Therefore, the conclusion of the 1987 National Institutes of Health

Consensus Development Conference on Infantile Apnea that there is no evidence

that apnea of prematurity per se causes subsequent morbidity still appears to be

valid (87). The presence of persistent neonatal apnea without additional adverse

perinatal events is not associated with a higher incidence of significant develop-

mental problems (82). Long-term safety of methylxanthines, the mainstay in the

treatment of apnea of prematurity, has been raised as an issue recently (88). No

harmful effects of neonatal methylxanthine therapy on cognitive functioning were

demonstrated at 18-month follow-up in one study (89). Davis et al. recently

reported the relationship between theophylline therapy and outcome at 14 years

of age in surviving preterm children (90). Theophylline therapy in the newborn

period was associated with some evidence of harmful as well as helpful

sensorineural effects at 14 years of age. Incidence of cerebral palsy and

psychological test scores were higher in infants who received theophylline even

after adjusting for potential confounding variables (90). In the final analysis, the

risk of recurrent episodes of apnea or its treatment on the long-term outcome of

the extremely low-birth-weight preterm infant is yet to be determined conclu-

sively. Whether persistence of cardiorespiratory events in high-risk infants

approaching discharge represents a subtle marker for neurodevelopmental delay

or sleep or other disturbances of childhood is also unclear (61).

VIII. Summary

Apnea, bradycardia, and oxygen desaturation are common occurrences in NICUs.

Although apnea of prematurity is by far the most common cause, the etiology of

apnea in the neonatal period is quite varied. Routine monitoring of apnea by the

impedance technique is not sensitive to detect obstructive apnea and therefore

is not very useful by itself in evaluating or managing apnea. Detection of

bradycardia is much more reliable. However, there is no consensus as to what

constitutes a clinically significant bradycardia. Oxygen saturation monitoring is a

sensitive measure of apnea and hypoventilation. Until recently false alarms have

limited its usefulness for this purpose. The time of occurrence of these events and

their sequences are important in understanding the etiology and pathophysiology

of these episodes. In general, apnea of prematurity occurs during sleep, whereas

feeding-related bradycardia and desaturation occur with oral feeding. Apnea of

prematurity is a diagnosis of exclusion. Pathophysiology and treatment of apnea

of prematurity are discussed in detail in subsequent chapters. Sudden onset of

marked bradycardia (almost instantaneous) should prompt one to consider
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inhibitory reflexes. Oxygen desaturation seldom occurs at the onset in these

cases, and recovery is usually spontaneous. Some mechanically ventilated infants

develop desaturation and bradycardia, usually with forced expiration, a decrease

in lung volume, and a decrease in ventilation. These episodes are generally

triggered with body movement. Minimal handling, prone positioning, and

increased PEEP are generally effective in minimizing these episodes.
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Implications from Observational Studies
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I. Introduction

In the past, observational studies on apnea of prematurity concentrated predo-

minantly on an analysis of respiratory disturbances such as central and obstruc-

tive apneas (1–3). From a physiological point of view, however, it is not the apnea

per se but its effect on oxygenation and=or heart rate that is relevant to the well-

being of an infant. This chapter will therefore concentrate on these latter two

phenomena. This is also because, at least in term infants and children, the

propensity to develop intermittent episodes of oxygen desaturation decreases with

age, while the frequency of spontaneous apneas remains remarkably constant

(Fig. 1) (4–7). Changes in desaturation rate may therefore be a better indicator for

developmental changes in respiratory control than those in apnea rate.

II. Relationship Between Apnea, Bradycardia, and
Desaturation

One of the most striking findings in recordings of respiration, heart rate, and

pulse oximeter saturation (SpO2) in preterm infants is the close temporal
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relationship among apnea, bradycardia, and desaturation (8). Early studies

suggested that the bradycardia resulted from a chemoreceptor reflex elicited by

the rapid development of hypoxemia during apnea (9,10). Subsequent investiga-

tors, however, claimed that the fall in heart rate commenced too early during the

apnea to be attributed to apnea-induced hypoxemia, and suggested instead that

bradycardia was caused by a reflex response to the cessation of lung inflation

(11,12).

We analyzed the relationship among these three phenomena in 80 preterm

infants with a mean gestational age of 32.5 weeks (SD 2.6) at birth and 36.3

weeks (2.3) at time of study. Focusing on bradycardia, which was defined as a fall

in heart rate to <2=3 of baseline for �4 sec, we found that 86% of these

(143=166) were accompanied by a fall in SaO2 to 	80%, and 83% by an apneic

pause of 4 sec or longer (13). Analysis of the time intervals between apnea and

bradycardia showed that almost all bradycardias (97%) commenced after the

onset of apnea (median interval, 4.8 sec). In most instances (86%), bradycardia

also began after the onset of the fall in SpO2 (median interval, 4.2 sec). This was

predominantly because the interval between the onset of apnea and that of

desaturation, corrected for lung-to-toe circulation time (i.e., the time it takes for

the blood to travel from the lung to the pulse oximeter sensor site) was extremely

short (median 0.8 sec, Fig. 2) (13).

Figure 1 Data on the frequency of apnea (�4 s) and desaturation (SpO2 	80%) from

various studies (4–7) obtained with the same methodology. Note that except for preterm

infants (PT), the frequency of apneas remains remarkably constant (� 6=h), whereas that
of desaturations falls from 1=h at 6 weeks to 0.1 at 1 year and to 0.0 at 5 years of age.
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These temporal observations support the concept that hypoxemia causes

bradycardia, e.g., via stimulation of peripheral chemoreceptors (14). But why was

it apparently not the hypoxemia per se, but its coincidence with an apneic pause

that resulted in the development of bradycardia? The answer to this may be found

in experiments by Angell-James and Daly (15). These authors performed cross-

perfusion studies in dogs and showed that the fall in heart rate was far more

pronounced if there was a combination of both apnea and hypoxemic excitation

of arterial chemoreceptors than with either apnea or hypoxemia alone. They

concluded that the appearance of bradycardia during apnea depends on there

being no overriding effect from the pulmonary inflation reflex, which is known to

Figure 2 Example for the close temporal relationship among apnea, bradycardia, and

desaturation. The delay caused by the time it takes for the blood to travel from the lung to

the pulse oximeter sensor attached to the foot can be estimated from the delay between the

first breath following an apnea and the onset of the recovery in SpO2 (C). This was

subtracted from the interval between the onset of apnea and that of desaturation (A) and

from the interval between the onset of bradycardia and that of desaturation (B; see text).
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cause an increase in heart rate (15). One possible explanation for the compara-

tively high frequency of bradycardia in preterm infants, therefore, is that

bradycardia is primarily caused by hypoxemia [which is common in this age

group (16)], and that the resultant effects on heart rate are potentiated by the

concomitant cessation of lung inflation during apneic pauses. This would also

explain why, despite a similar severity of the accompanying hypoxemia, brady-

cardia is more common with central than with mixed or obstructive apnea (17).

III. Changes in Lung Volume During Apnea

A surprising finding in the above study (13) was the brevity of the interval

between the onset of apnea and that of desaturation. We speculate that there

would have been far less bradycardia had the hypoxemia not occurred so early

during apnea. It remains unclear, however, whether this early onset of hypoxemia

was due to preceding hypoventilation, nonapneic mechanisms, or both. Hypo-

ventilation was suggested by Adams et al. to precede apnea (18). These authors

used inductive plethysmography to quantify tidal volume and found that 62% of

events with SpO2 <80% were preceded by breaths with a tidal volume of <50%

of baseline (18).

A nonapneic mechanism that could explain the early onset of hypoxemia

during apnea is a low lung volume. This is particularly relevant to young infants,

whose relaxation volume is only 10–15% of total lung capacity and thus very

close to residual volume, predisposing them to the development of airway closure

(19). To compensate for this disadvantage, both term and preterm infants actively

maintain their end-expiratory lung volume above relaxation volume (which is one

reason for their high respiratory rate) (20–22) whereas lung volume falls if

respiration ceases (23). To investigate this issue further, we measured functional

residual capacity (FRC) repeatedly in 48 ‘‘healthy’’ preterm infants (mean

gestational age at study 36.6 weeks, SD 2.0) during unsedated sleep using a

modified heliox=nitrogen washout technique (24). Breathing movements and

SpO2 were recorded throughout and analyzed for apneas (�4 sec), sighs, and

desaturations (SpO2 	90%) during the last 2min prior to each FRC measure-

ment. Apneas resulted in a significant decrease in FRC: mean FRC was

20.0mL=kg (SD 6.8) following an apnea, 26.0mL=kg (SD 5.8) after a sigh

(P < 0:001), and 23.9mL=kg (SD 7.7) if there had been neither a sigh or an

apnea (P < 0:05). The interval between the apnea and the FRC measurement had

no effect on FRC. Thus, apneas resulted in a persistent reduction in FRC, which

was restored by a sigh. These findings provide further evidence for the hypothesis

(25,26) that one of the main functions of sighs in preterm infants is to reverse falls

in lung volume caused by apneas.
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What does this have to do with the interval between apnea and desatura-

tion? The FRC serves as a buffer to stabilize oxygenation during brief periods of

apnea. Lung volume is an important determinant of the speed with which

desaturation develops during voluntary breath holding (27), and preapneic lung

volume was found to have a strong influence on the hypoxemia that occurs during

sleep apnea in adults (28). In the above study (24), we found an inverse

correlation between FRC and the speed with which SpO2 fell during desaturation;

i.e., the lower the lung volume following an apnea, the more rapid the fall in SpO2

during the apnea.

A clinical scenario in which the potential influence of lung volume on

oxygenation becomes particularly evident is periodic apnea. During this respira-

tory pattern, SpO2 was observed to fall twice as fast as during isolated apneas (8.4

vs. 4.3%=sec; P < 0:005) (8). Although other factors, e.g., a fall in mixed venous

SO2 (29), may also play a role, we hypothesize that the main reason for the more

rapid fall in SpO2 is a progressive fall in lung volume during the repeated apneas,

resulting in peripheral airway closure.

Another potential consequence of the reduction in lung volume occurring

during spontaneous apneas is a further inhibition of respiration via activation of

the Hering-Breuer deflation reflex. In term infants this vagally mediated reflex,

which acts around FRC, terminates expiration while initiating inspiration. In

preterm infants, however, induction of this reflex via chest compression resulted

in a shortening of inspiratory time and a tendency to have short apneas (2–5 sec)

(30). A similar inhibition of breathing may result if lung volume falls sponta-

neously, e.g., during apnea.

These considerations provide a theoretical basis for the effectiveness of

strategies that increase or stabilize lung volume in reducing the frequency and=or
severity of both bradycardia and desaturation in preterm infants (31). In fact,

Thibeault et al. (32) observed as long as 30 years ago that recurrent apnea may be

abolished by increasing functional residual capacity via the application of

negative extrathoracic pressure. The same effect can also be achieved by

continuous positive airway pressure (CPAP) (33). The striking effects of CPAP

on the frequency of apneic=hypoxemic episodes in preterm infants have led to

suggestions that ‘‘the apnea in these infants may be related to a decreasing lung

volume and increasing intrapulmonary shunt’’ (33).

IV. Role of Feeding and Gastroesophageal Reflux

A frequent observation in infants with apnea of prematurity (AOP), first noted

almost 80 years ago (34), is that symptoms increase during and after feeding. The

hypothesis that this association could be a result of ‘‘the full stomach interfering
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with the action of the diaphragm’’ was put forward in 1936 (35). Since then the

effects of feeding on respiration have been studied extensively (36–46). It is now

clear that some preterm infants, particularly those with bronchopulmonary

dysplasia (BPD), may become severely hypoxemic during and immediately

after bottle feeding (35–39), and that gavage feeding may also cause a significant

reduction in blood oxygen levels (40–43). Hypoxemia during feeding may be

caused by a reduction in minute ventilation due to an immature coordination

between breathing, sucking, and swallowing (39,43,44), activation of the laryn-

geal chemoreceptor reflex (46), gastroesophageal reflux, diaphragmatic fatigue

(47), or combinations of these mechanisms. Hypoxemia after feeding was

suspected to be due to a reduction in lung volume and an increased work of

breathing resulting from gastric distension (44). If this is true, avoidance of

gastric distension via slow or continuous gavage feeding should ameliorate the

problem.

To test this hypothesis, we studied the effect of bottle feeding, as compared

to two methods of gavage feeding, on apnea, bradycardia, and episodic desatura-

tion in 30 ‘‘healthy’’ preterm infants with a mean gestational age of 28.6 (SD 2.1)

weeks at birth and 34.0 (SD 1.4) weeks at study (48). During a 9-h recording of

SpO2, ECG, breathing movements, and nasal airflow, 3� 21mL=kg of milk were

administered to each infant using three different feeding techniques in random

order: bottle feeding, bolus gavage feeding, and slow gavage feeding (over 1 h).

Recordings were analyzed for apneas (>4 sec, bradycardias (heart rate <2=3 of

baseline), and episodic desaturation (SpO2 	80%). We found three times more

desaturations (up to 165=h) with bottle feeding than with bolus gavage feeding

(P < 0:001), but no further reduction with slow gavage feeding and no difference

in baseline SpO2. With all three feeding techniques there were significantly more

desaturations in the hour the feeds were given than during the following 2 h. The

deleterious effects of bottle feeding were most evident during the hour of feeding,

but desaturation frequency remained significantly higher than with gavage

feeding during the following 2 h. In contrast, there was no significant effect of

feeding technique on the frequency of apnea or bradycardia (48).

Thus, bottle feeding in these premature infants conferred a significantly

increased risk of episodic desaturation, which was surprisingly long-lasting.

White this may be avoided by switching infants exhibiting frequent desaturation

during bottle feeding to gavage feeding, we were puzzled that slow gavage

feeding (over 1 h) offered no advantage over bolus gavage feeding. Gastric

emptying time in preterm infants is �30–60min (49). We thus considered that

significant gastric distension, although not specifically assessed in our study, had

been avoided with slow gavage feeding. We suspected instead that gastroeso-

phageal reflux (GER) would be the most likely explanation for the observed

increase in desaturation during and immediately after feeding.
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A relationship between GER and AOP has long been suspected (50,51) but

was difficult to prove because most GER in this age group is nonacidic and thus

undetectable by pH monitoring, the current standard for GER detection. Recently,

we used the new multiple intraluminal impedance (MII) technique which allows

pH-independent reflux detection via changes in impedance caused by a liquid

bolus inside the esophagus to investigate whether there is a temporal relationship

between GER and AOP (52). For this, 19 infants with AOP underwent recordings

of MII, breathing movements, nasal airflow, ECG, and SpO2. MII signals were

analyzed, independently of cardiorespiratory (CR) signals, for reflux episodes

(RE), defined as a fall in impedance in at least the two most distal channels

(Fig. 3). CR signals were analyzed for CR events, i.e., apneas of �4 sec duration,

desaturations to 	80%, and falls in heart rate to 	100=min. A temporal

relationship between an RE and a CR event was considered present if the two

commenced within 20 sec of each other. We found high numbers of both apneas

Figure 3 Example of a recording of cardiorespiratory channels and esophageal

impedance. There is a fall in impedance starting at the lowest (i.e., most distal) channel,

and extending orally from there. This is followed by a brief apnea in this example.
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(median 67, range 10–346) and RE (25; 8–62). The frequency of apnea occurring

within � 20 s of an RE was not, however, significantly different from that found

during reflux-free epochs (0.19=min (0.00–0.85) vs. 0.25=min (0.00–1.15),

P > 0:05); the same was true for desaturations and bradycardias. Also, RE

occurred similarly often within 20 sec before as after an apnea (2; 0–14 vs. 1; 0–

17, P > 0:05). A minority of apneas (3.5%) were associated with an RE reaching

the pharyngeal level; of these, significantly more (45 vs. 26; median 1; 0–10 vs.

1; 0–7, P < 0:05) occurred after rather than before an RE. Thus, both CR events

and GER were common in these infants but, with few exceptions, did not appear

to be temporally related (52).

That GER does not play a significant role in the pathogenesis of AOP was

also, albeit indirectly, demonstrated in a recent study on the effects of antireflux

treatment (cisapride or metoclopramide) on AOP. In this study, the documented

frequency of bradycardia and hypoxemia in the last 5 days prior to treatment was

similar to that in the first 5 days on treatment (53).

These studies may have practical consequences as they show that the

widespread practice (54) of giving antireflux medications to infants with AOP is

futile. They do not answer the question, however, why these symptoms are closely

associated with feeding. A potential explanation that has so far received little

study is a shift in blood flow distribution. Changes in systemic blood flow

distribution after feeding were shown as long ago as 1978, when Krauss et al.

measured a significant fall in peripheral blood flow 5min after feeding in

association with marked elevations in peripheral vascular resistance (55). To

affect oxygenation, however, changes in pulmonary blood flow or ventila-

tion=perfusion matching would be required. Whether such changes occur in

relation to feeding remains, at best, speculative.

An alternative explanation, although initially considered unlikely, is

diaphragmatic fatigue. Diaphragmatic work increases significantly after gavage

feeding, whereas FRC decreases (44). Although we originally considered this

explanation unlikely to account for the increase in episodic hypoxemia with slow

gavage feeding (48) owing to the above data on gastric emptying (49), we cannot

rule it out and have not yet found a convincing alternative to explain this

observation.

V. Chest Wall Distortion, Anatomical Dead Space, and
Diaphragmatic Fatigue

What is the evidence that diaphragmatic fatigue plays any role in the pathophy-

siology of AOP? Owing to their highly compliant chest wall, preterm infants are

disadvantaged with regard to their respiratory mechanics. Chest wall distortion,
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clinically apparent as paradoxical breathing, is common in infants and is

especially visible in preterm infants. It has been suggested that this distortion

increases the volume displacement of the diaphragm during inspiration (47,56).

In longitudinal studies, Heldt showed that the minute volume displacement of the

diaphragm was almost twice as large as pulmonary ventilation at 29–30 weeks

GA and fell to �90% of pulmonary ventilation at 36 weeks GA. Concomitantly,

diaphragmatic work was almost halved (56). The author speculated that this

additional workload not only may represent a significant expenditure of calories

in these infants but may also contribute to the development of diaphragmatic

fatigue and apnea (56). Further contributing to this fatigue is the fact that, because

of their relatively large head size, anatomical dead space is �45% of tidal volume

in newborns, compared to 25% in adults (19,22).

Circumstantial evidence that muscle fatigue may indeed be involved in

neonatal apnea stems from the time course of apnea in term and preterm infants.

This was already noted over 40 years ago to become more problematic toward the

end of the first week of life (57), while chemoreceptor resetting, which otherwise

might also explain this phenomenon, is essentially complete within �24–48 h of

birth (58). Fenner et al., studying periodic apnea, also noted that these only began

after the first 2 days of life, reaching a maximum during the 2nd and 3rd weeks

(59). In our own studies, we also found that preterm infants studied at �4 weeks

of age showed more desaturation than those studied during their first week of life,

but at a lower postconceptional age: while the 95th centile for desaturation

frequency was 8 per 12 h in the latter group, it was 61 in the former (16,60). A

similar relationship between postnatal age and desaturation rate was found for

term infants (Fig. 4) (4,61).

Indirect evidence for the role of muscle fatigue in AOP stems from the

observation that enrichment of total parenteral nutrition (TPN) solutions with

branched-chain amino acids, which improve diaphragmatic function in vitro,

resulted in a decrease in the average number of episodes of apnea. These fell from

58 during standard TPN to 11 with the enriched solution infusion during matched

12-h periods (P < 0:01) in an open crossover study design (62). Also, frequency

spectrum analysis in diaphragmatic EMG recordings in newborn infants (mean

birth weight 1241 g) showed that, in 7 of 15 infants studied, EMG segments

indicating diaphragmatic fatigue were followed by periods of apnea (47). A

mechanism through which labored breathing may produce apnea in preterm

infants is the intercostal-phrenic inhibitory reflex. This may be elicited both by rib

cage distortion (63) and respiratory loading (64), and is known to inhibit

respiratory effort in infants.

Thus, it is conceivable that similar to the obstructive sleep apnea syndrome

in adults, where an increased work of breathing due to upper-airway obstruction

may lead to an increased rate of central apneas, an increased work of breathing

may also play a role in the pathophysiology of AOP.
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VI. Upper-Airway Obstruction

Traditionally, apnea has been divided into central, obstructive, and mixed.

However, analyses of artifacts on the nasal thermistor signal, produced by the

transmission of cardiac impulses on the patent airway, revealed that airway

obstruction may also occur during apparently central apneas (65). By amplifying

these cardiac oscillations, Rigatto’s group from Canada was able to assess

changes in airway diameter. They analyzed these oscillations during 4456 central

apneas in 41 preterm infants and found indications for airway narrowing during

585 of these, which started after only 1 sec, irrespective of the apnea duration, and

with maximal narrowing usually occurring within 9 s of the onset of apnea. They

speculated that their finding reflects a loss of upper-airway muscle tone during

apnea (66). The same group also reported that diaphragmatic action is not needed

to occlude the airway in mixed apneas, and speculated that airway closure during

these apneas most likely reflects a lack of upper airway muscle tone that is not

reinstated at the time the diaphragm starts to contract again.

Figure 4 Data on the proportion of 12-h recordings containing prolonged episodes of

desaturation (SpO2 	80% for �4 s) and on the 95th centiles for desaturation rate per 12 h

in various groups of term (right) and preterm (left) infants. Note that episodic desaturation

in both term and preterm infants is less frequent shortly after birth than at 2–3 weeks of age

and decreases again thereafter. Median age at study for each group is given both as

postconceptional (left) and postnatal age (right). (From Refs. 4,8,60,61.)
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An alternative explanation for the airway occlusion potentially occurring

during apparently purely ‘‘central’’ apneas was given in an elegant preterm lamb

study from Canada. Obtaining continuous EMG recordings of the laryngeal

adductor muscle, these authors found continuous EMG activity throughout

88.4% of all apneas and 98.4% of those occurring during periodic breathing,

independent of sleep state (67). EMG activity, however, was less likely to be

continuous during apneas that were triggered by a sigh or a swallow. They

concluded that active glottic closure, similar to that preventing outflow of lung

water during the prolonged apneas that occur in utero (68), would prevent gas

from flowing out freely from the lungs, thereby preserving lung volume during

apnea. Although evidence for active glottic closure has also been reported during

obstructive apneas in human preterm infants and in a case report on a term infant

during periodic breathing (69,70), it is not yet known whether active glottic

closure also generally occurs during central apneas in the human preterm infant.

Not only can apparently ‘‘central’’ apnea result in upper-airway obstruction,

but also vice versa. Using a face mask and a pneumotachograph, including a tap

that could block the mask inlet and outlet to provide an effective external

obstruction, Upton et al. studied the response to airway obstruction in 23 preterm

infants born at <33 weeks gestation (71). Of 398 obstructions recorded, apnea

occurred during the obstruction in 19%, and upon relief of the obstruction in

32%. This happened independently of where in the respiratory cycle the

obstruction occurred. They speculated that their observation on the response to

airway occlusion may be important in the prolongation of initially short

respiratory pauses during which airway closure may occur (72).

Waggener et al. (73) analyzed oscillations in breath-by-breath ventilation of

preterm infants, and observed that central, mixed, and obstructive apneas all

occurred at the minimum phase of spontaneous ventilatory oscillations, suggest-

ing that the three patterns had one common underlying mechanism. Hence, it

appears that central, mixed, and obstructive apneas form a continuum, i.e., that

obstructive components are also involved in apparently purely central apneas, and

vice versa. This is probably related to the fact that the narrow upper airways of

preterm infants are actively maintained open via a respiratory center input, and

that it depends on which component stops being activated first (diaphragm or

upper airway) whether an apnea will appear as central or obstructive. At autopsy

the upper airway of young infants is closed, again suggesting that a neuromus-

cular mechanism is necessary to maintain airway patency during life (74). The

mechanism(s) through which airway closure occurs during apnea, however, is

(are) largely unclear. One factor may be flow- or pressure-sensitive airway

receptors. In animal experiments, flow up and down the upper airway resulted

in the maintenance of pharyngeal patency via increased genioglossus activity

(73). Thus, when flow ceases, genioglossus activity falls and the airway collapses.

Alternatively, cessation of respiratory drive may cause an immediate loss of lower
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(and probably also upper) airway tone (75), or airway closure occurs as an active

reflex, as suggested from the preterm lamb data mentioned above (67). Whatever

the precise mechanism for both apnea types, the strict separation into apparently

purely central or purely obstructive apneas cannot be maintained in the light of

these data.

VII. Hypoxic Ventilatory Depression

It has been known for almost 70 years that respiration in the fetus is diminished if

oxygen supply via the placenta is reduced (76). This is in contrast to adults, who

show a sustained increase in ventilation in the presence of hypoxia. While this is

probably beneficial in fetal life, where respiratory movements are a waste of

energy that the fetus cannot afford if oxygen supply via the placenta is reduced,

this pattern is counterproductive ex utero. As shown in the classic studies by

Rigatto et al. (77), the switch-over from the fetal to the adult hypoxic ventilatory

response only occurs some time after birth. They also showed that the respiratory

response was biphasic; i.e., an initial increase in ventilation for �1min was

followed by a sustained period of hypoventilation (77). This may not be true for

less mature infants: in a group of infants born at 29 weeks gestation and studied

at a mean age of 17 days, Alvaro et al. found a 33% reduction in minute

ventilation which had already begun after 30 s and was mainly due to a fall in

respiratory rate; there was no initial period of hyperventilation (78). More

recently, Martin et al. showed that the neonatal hypoxic response persists at

least until approximately 35 weeks postconceptional age, which correlates well

with the clinical course of apnea of prematurity (79).

Below what PaO2 level does hypoxic ventilatory depression occur? This

has not been studied systematically in infants. An early study suggested, however,

that breathing already becomes irregular, and apnea starts to occur, if PaO2 falls

to below 75–97mmHg, levels close to or even above those associated with an

increased risk of retinopathy of prematurity (80). Weintraub et al. measured

minute ventilation in 15 preterm infants (mean GA 29 (SD 2) weeks, age 20 (9)

days) at 21, 25, 30, 35 and 40% oxygen. With the increase in FiO2, breathing

became more regular, apneas decreased, but minute ventilation did not change

significantly; only breath-to-breath variability in inspiratory and expiratory times

and tidal volume decreased. They concluded that oxygen facilitates the appear-

ance of regular breathing independently of an increase in minute ventilation (81).

Interestingly, their study subjects had a relatively low SpO2 in room air (mean,

90.8%), which increased to 92.5% in 25% O2. Even this relatively small increase

in FiO2 was associated with a decrease in apnea rate (�3 sec) from 128 to 63 per

hour (P < 0:05). Thus, although not necessarily resulting in a fall in minute
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ventilation, breathing irregularities and an increased propensity for short apneas

may already develop at a PaO2 <60–90mmHg. Whether this response to

changes in PaO2 is mediated via the same mechanisms that elicit the hypoxic

ventilatory depression, however, is not known.

An important question, well beyond the focus of this review, is which

molecular mechanisms are responsible for the hypoxic ventilatory depression and

how the switch-over to the adult pattern is programmed (see Chap. 5). One

potential mechanism, however, should be mentioned in this context since it may

have therapeutic consequences, namely the creatine-phosphocreatine (Cr-PCr)

system. In the absence of oxidative phosphorylisation, provision of phosphate for

generation of adenosine-triphosphate (ATP) relies predominantly on the PCr

pool, before anaerobic glycolysis, with increased production of lactate and Hþ, is
activated (82). This is particularly relevant to tissues with a high energy

metabolism such as the central nervous system. A fall in intracellular ATP is

an important trigger for hypoxia-induced neuronal damage, and maintenance of

ATP levels is therefore of fundamental importance for neuronal protection from

hypoxic insult (83). This may also be relevant to the adaptation of ventilation

during hypoxia. Investigations of the cytosolic levels of PCr during moderate

hypoxia in adult rats by 31P nuclear magnetic resonance spectroscopy of the

brainstem showed that the occurrence of hypoxic ventilatory depression was

preceded, by 30 sec, by a significant decrease in PCr levels. This reached its

minimum level 30 sec after maximal respiratory depression and occurred without

a significant change in ATP levels (84). In the neonatal rat brain, total creatine

kinase activity increases 2–3 times over the first month of life, reflecting a

doubling of PCr content during this time span (85). Thus, the neonatal brain is

relatively deficient in creatine, and it is tempting to speculate that the much earlier

onset of the hypoxic ventilatory depression in this age group is related to a

decreased availability of PCr in the neonatal brainstem.

PCr is also important in muscle metabolism, where it serves as an energy

buffer to guarantee provision of sufficient substrate for the phosphorylisation of

ADP to ATP (86). Creatine levels can be increased via creatine supplementation

(86). In adults, creatine supplementation was shown to result in an increased

exercise performance (87) and less muscular fatigue (88,89). Wilken et al.

recently showed that brainstem slices from pups of creatine-fed mice

(2 g=kg=d) showed higher phosphocreatine contents and significantly less

hypoxic ventilatory depression (�14 vs. �41%), than those from nonsupple-

mented control animals. This corresponded to nearly constant cerebral ATP levels

in the former vs. a 54% decrease in the latter animals after 30min of anoxia (90).

Also, measurements of the maximal respiratory amplitudes in such pups during

hypoxia showed an increase by 51%, compared to 22% in control animals (91).

Thus, the newborn can be regarded as creatine deficient, and creatine supple-
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mentation may be a way to influence the characteristic hypoxic ventilatory

depression seen in this age group.

VIII. Anemia

One way through which tissue hypoxia may develop is anemia. Indeed, anemia

has repeatedly been implicated in the pathophysiology of AOP and also of

cyanotic episodes in infants (92,93). It would thus seem logical to hypothesize

that blood transfusions are an effective treatment modality in infants with AOP

who are anemic. Data on the effect of blood transfusions on the frequency of

these episodes, however, are conflicting. Some authors found less apnea and=or
bradycardia following transfusion (94–98); others did not (99–100). None of the

above studies, however, included data on the frequency of hypoxemic episodes. In

an initial study on the effect of blood transfusion on episodic hypoxemia and=or
bradycardia, we performed cardiorespiratory recordings in 21 spontaneously

breathing preterm infants (median GA at birth 28 weeks [range 23–31], age at

study 22 days [3–84]) with AOP who were mildly anemic (median hemoglobin

level 109 [82–120] g=L) before and after transfusion of 20mL=kg of packed red

blood cells and found no significant changes in the frequency, severity, or

duration of apnea (�4 sec), bradycardia (heart rate <2=3 of baseline), or

desaturation (SpO2 	80%) following transfusion (102).

One potential explanation for this lack of effect was that the infants studied

were not sufficiently anemic, although the thresholds used to define anemia were

similar to those used in studies on the effect of erythropoietin to prevent anemia

of prematurity. Recently, we therefore repeated the above study (102), using

thresholds to define anemia that were some 20 g=L lower than in our first study on

this subject. We now recorded data in 19 preterm infants (median GA 25 weeks

[range 22–30], age at study 5.5 weeks [1–13]), who had a median hemoglobin

level of 78 g=L (range 63–98) (103). However, despite this more severe level of

anemia, there was again no significant change in the combined frequency of

bradycardia and desaturation, the primary endpoint in this study (median 6.4=h
[3.0–13.5] before vs. 4.6=h [0.6–15.7] following transfusion), although there was

slightly less bradycardia (0.8 [0.0–8.8] vs. 0.7=h [0.0–5.1]; P < 0:05). Also, in
contrast to the initial study (102), there was now a significant decrease in baseline

heart and respiratory rate, which decreased from 163 (140–182) and 58 (34–98),

respectively, to 152 (134–172) and 55=min (36–82), P < 0:01, suggesting that

there was at least some clinical benefit resulting from the blood transfusion.

Nevertheless, blood transfusion had little effect on AOP, the condition for which it

had been intended. Based on these data, we would be reluctant to recommend

blood transfusion in anemic infants who exhibit frequent episodes of AOP as their

only clinical symptom.
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IX. Termination of Apnea

As important as the question of what causes an apnea is that of what terminates it.

This issue, however, has received surprisingly little attention. In adults, recovery

from apnea is usually associated with arousal from sleep, probably induced by

activation of peripheral chemoreceptors and potentially resulting in severe sleep

deprivation (104). In the preterm infant, the situation is somewhat more complex.

Mathew et al. found that in 202 of 352 apneic events in 10 preterm infants, motor

activity preceded the onset of apnea and continued during these episodes; i.e.,

they occurred after arousal rather than resulting in it (105). Similar findings have

been reported by others (106,107). The majority of these awake episodes,

however, did not result in bradycardia and=or hypoxemia; in fact, two-thirds of

those that did, occurred during sleep (104). When looking for signs of behavioral

arousal in sleep-related apneas, the same group found that such arousals were

significantly more frequent during apneic than during nonapneic sleep time

(0.59=h vs. 0.25=h) (108). Also, arousal was more likely to occur with longer

(>15 sec) than shorter (5–15 sec) apneas, with those that were associated with

hypoxemia (SpO2 <80%) or bradycardia (HR< 100=min), and with mixed

compared to central apneas. They concluded that several factors affect the

occurrence of arousal during apneas in preterm infants: sleep state, severity of

hypoxia=hypercapnia, airway afferent input, and sleep fragmentation=habituation
resulting from previous apneic episodes (108).

One potential caveat in the above study (108), aknowledged by the

authors, was the lack of EEG recordings to detect arousal. This issue was

recently addressed by Wulbrand et al., who studied a group of 10 preterm

infants repeatedly at 36, 40, 44 and 52 weeks postconceptional age (109). They

found no changes in EEG frequency at apnea termination, but 64% of rapid

eye movement (REM) and 79% of non-REM sleep apneas were terminated

by a simultaneous ‘‘gasplike’’ activation of submental and diaphragmatic

EMG. These EMG activities corresponded to a deep inspiration on the respira-

tory channels that was immediately preceded by a short expiration (109).

Similarly, in term infants at a mean age of 9.5 weeks, McNamara et al. found

EEG changes indicative of cortical arousal during only 7.9% of apneic events

(110). In contrast, a more recent study examining 163 isolated apneas in 17

infants at 47� 4 weeks postconceptional age found increases in EEG frequency

indicative of cortical arousal coinciding with termination of apnea in 61% of

events (111). The reason(s) for these discrepancies between studies remain

unclear, but may be related to maturity, methodology used for obtaining and

interpreting the EEG, or both. The question also remains whether there is a

functional difference between a cortical arousal that can be detected via surface

electrodes and a subcortical arousal resulting in respiratory or behavioral but not

in EEG changes. Whatever the precise arousal mechanism, the observations
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summarized above suggest that chemoreceptor activation plays a role in apnea

termination.

X. Conclusion

Apart from the issue of hypoxic ventitatory depression, this review has focused

on mechanical rather than central factors. Although there is some evidence of

brainstem immaturity in infants with AOP (112), there is nothing to suggest that

infants with AOP have gross deficits in respiratory control (113). As suggested by

the data summarized above, it appears that the early (and frequent) occurrence of

hypoxemia during apnea in preterm infants is related to their low expiratory lung

volume, which falls even further during apnea, while the accompanying brady-

cardia results from this combination of apnea and hypoxemia. Feeding is an

important trigger for AOP. While hypoxemia during feeding is most likely related

to an immature coordination between sucking, swallowing, and breathing, that

after feeding may be caused by diaphragmatic fatigue; GER does not appear to

play a major role. The time course of AOP, i.e., increased occurrence during the

second and third rather than the first week of life, together with data from

physiological studies, also suggests a role for diaphragmatic fatigue in AOP.

Additional factors include upper airway obstruction and the unique response of

the preterm to hypoxia. These observational data cannot provide definite answers

on cause-and-effect issues. They may, however, provide a starting point for

further studies into mechanisms involved in AOP and trials of new and old

therapeutic interventions, such as nasal CPAP therapy or other means to stabilize

the chest wall, as well as branched-chain amino acid and=or creatine supple-

mentation. Thus, there is reason to hope that there will soon be better solutions to

the clinical problem of AOP than there have been in the past.
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88. Sahlin K, Tonkonogi M, Söderlund K. Energy supply and muscle fatigue in

humans. Acta Physiol Scand 1998; 162:261–266.

89. Green AL, Hultman E, Macdonald IA, Sewell DA, Greenhaff PL. Carbohydrate

ingestion augments skeletal muscle creatine accumulation during creatine supple-

mentation in humans. Am J Physiol 1996; 271:E821–E826.

90. Wilken B, Ramirez JM, Probst I, Richter DW, Hanefeld F. Anoxic ATP depletion in

neonatal brainstem is prevented by creatine supplementation. Arch Dis Child Fetal

Neonatal Ed 2000; 82:F224–F227.

91. Wilken B, Ramirez JM, Richter DW, Hanefeld F. Supplemental creatine enhances

hypoxic augmentation in vivo by preventing ATP depletion (abstract). Eur J Pediatr

1998; 157:178.

92. Pohl CA, Epstein M, Kaplon D, Gibson E. Role of a screening hematocrit for

pathologic apnea and bradycardia in healthy preterm infants. Pediatr Pulmonol

1998; 26:445.

93. Poets CF, Samuels MP, Wardrop CAJ, Picton-Jones E, Southall DP. Reduced

haemoglobin levels in infants presenting with apparent life-threatening events—a

retrospective investigation. Acta Paediatr 1992; 81:319–321.

94. Bifano EM, Smith F, Borer J. Relationship between determinants of oxygen delivery

and respiratory abnormalities in preterm infants with anemia. J Pediatr 1992;

120:292–296.

95. DeMaio JG, Harris MC, Deuber C, Spitzer AR. Effect of blood transfusion

on apnea frequency in growing premature infants. J Pediatr 1989; 114:1039–

1041.

96. Joshi A, Gerhardt T, Shandloff P, Bancalari E. Blood transfusion effect on the

respiratory pattern of preterm infants. Pediatrics 1987; 80:79–84.

Pathophysiology of Apnea of Prematurity 315



97. Sasidharan P, Heimler R. Transfusion induced changes in the breathing patterns of

healthy preterm anemic infants. Pediatr Pulmonol 1992; 12:170–173.

98. Stute H, Greiner B, Linderkamp O. Effect of blood transfusion on cardiorespiratory

abnormalities in preterm infants. Arch Dis Child 1995; 72:F194–F196.

99. Blank JP, Sheagren TG, Vajaria J, Mangurten HH, Benawra RS, Puppala BL. The

role of RBC transfusion in the premature infant. Am J Dis Child 1984; 138:831–

833.

100. Keyes WG, Donohue PK, Spivak JL, Jones MD, Oski FA. Assessing the need for

transfusion of premature infants and role of hematocrit, clinical signs, and

erythropoietin level. Pediatrics 1989; 84:412–417.

101. Meyer J, Sive A, Jacobs P. Empiric red cell transfusion in asymptomatic preterm

infants. Acta Paediatr 1993; 82:30–34.

102. Poets CF, Pauls U, Bohnhorst B. Effect of blood transfusion on apnea, bradycardia

and hypoxemia in preterm infants. Eur J Pediatr 1997; 156:311–316.

103. Westkamp E, Adrian S, Soditt V, Bohnhorst B, Poets CF. Bluttransfusionen bei
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I. Introduction

Idiopathic apnea of prematurity is a condition that affects a large percentage of

premature infants. It is especially common in the very low and extremely low

birth weight infants. In infants <1000 g up to 90% will be affected by apnea of

prematurity (1,2), and one study found significant apnea in all infants of <34

weeks gestational age (3). This is due mainly to the immature development of

both the brain and the respiratory system. Idiopathic apnea is not solely due to a

central event, but rather up to 50% of events have an obstructive component (4).

Apnea by definition is the cessation of breathing for up to 10 sec or greater, which

may be associated with bradycardia and=or oxygen desaturation (5). While

mechanical ventilation and continuous positive airway pressure (CPAP) are

used to treat apnea of prematurity, pharmacotherapy is the commonest treatment

utilized. Methylxanthines (caffeine and theophylline) have been the mainstay of

therapy. Doxapram, not commonly used in the United States, has also been shown

to be an effective therapy and may be useful for the treatment of apnea resistant to

methylxathinines.

II. Theophylline

A. Mechanisms of Action

The exact mechanism by which theophylline acts to reduce apnea of prematurity

is unknown. Theophylline is known to increase ventilation and increase the

sensitivity to carbon dioxide, which is thought to occur through lowering the
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threshold of central chemoreceptors (6–8), and is mediated at the level of the

brainstem and may involve the action of the neurochemical dopamine (9).

Theophylline also exerts significant behavioral effects, which are thought to

occur as a result of antagonism of endogenous adenosine and central nervous

system excitation. The respiratory stimulant effects of xanthines are linked to

phosphodiesterase inhibition and to the antagonism of adenosine (10,11). In

addition, it has been demonstrated that theophylline can enhance respiratory

muscle activity and decrease muscle fatigue through a mechanism involving

excitation-contraction coupling mechanisms (12–16), although some studies in

animals and neonates have failed to confirm such an effect (17–20).

B. Evidence of Efficacy

The initial studies demonstrating the efficacy of theophylline were done in the

1970s, were not blinded placebo-controlled trials, and used infants as their own

controls (21–25). The first placebo-controlled trial appeared �7 years after the

first reported use of this agent for neonatal apnea and noted that 66% of the 15

patients treated with theophylline had a decrease in apnea, as defined by nursing

observations, for a period of up to 48 h (26). The following year Jones et al.

compared theophylline to CPAP, using a continuous recording technique and

found a greater reduction in short (<10 sec) apnea frequency and bradycardia

with theophylline. In addition, 5=18 theophylline-treated infants compared with

12=14 CPAP infants required mechanical ventilation (27). In 1985, Sims et al.

performed the first placebo-controlled trial, which included 43 preterm infants.

While theophylline did reduce respiratory failure and apneic episodes in the

preterm infant, the study identified a subgroup of infants who were unresponsive

to theophylline (28).

The only double-blind, randomized, controlled study was done by

Peliowski and Finer (29) in 1990. The study included the continuous monitoring

of the heart rate, impedance respiratory rate, oxygen saturation and=or transcu-
taneous oxygen pressure, and end-tidal CO2. In the past the efficacy of theophyl-

line had been based on bedside heart rate and impedance monitoring and nursing

observations (29). This methodology has been shown to miss a large number of

significant apneas (30). In addition to being placebo controlled, Peliowski’s study

also evaluated the use of doxapram and provided a crossover if either of the study

drugs was not effective. The results revealed that doxapram and theophylline were

effective both individually and together in reducing the incidence of apneas on a

short-term basis.

C. Pharmacokinetics

The pharmacokinetics of theophylline have been described in a number of

studies, which led to widely discrepant recommendations for dosing of this

agent. The standardization of theophylline dosing was difficult owing to the
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immaturity of the cytochrome P450 system in preterm infants as well as the

extended half-life. The FDA attempted to standardize the dose of theophylline

and provided a dosing guideline (31). However, Gillman and Gal (32) challenged

this guideline. Their study revealed that following this guideline resulted in

subtherapeutic levels of theophylline in 80% of the study population. Similarly

Murphy et al. (33) commented that in their experience the volume of distribution

was greater than that noted by the FDA. Their infants also received larger loading

and maintenance doses, while remaining in the therapeutic range. Other studies

have attempted to individualize the dose of theophylline through the use of

several equations (34,35). Bhatt-Mehta et al. (34,35) first compared two equations

using postnatal and gestational age to determine maintenance dosage of theophyl-

line. Infants were placed into two categories: infants <30 days and infants >30

days of life. They found that using these two equations did not provide reliable

standard maintenance dosing. However, they used this knowledge to create two

new equations, which they prospectively evaluated in 54 infants at 27–34 weeks

gestation. Bhatt-Mehta et al. determined that by using equations that included

gestational age, weight, and postnatal age they were successful in reaching their

target concentration in 74% of the infants. The failure to reach their target

concentration was thought to be due to interindividual variation (35).

D. Metabolism

Theophylline is metabolized by the hepatic cytochrome P450 enzyme system. It

is methylated in the neonate to form caffeine (36,37). Bory et al. (37) evaluated

the transformation of theophylline to caffeine in the premature infant. They found

that the caffeine level increased from day 1 to day 7. In addition, they determined

that while both drugs decreased after discontinuation of theophylline, caffeine

remained present in the blood 9 days following discontinuation. The metabolism

of this agent increases during the first 6 months of age and the half-life appears to

decrease with increasing postnatal age (38,39). Theophylline levels should be

monitored very closely as the drug has a very narrow therapeutic window and

toxicity can rapidly occur. The therapeutic level ranges from 6 to 12mg=L,
although some infants may require levels up to 20mg=L (40).

E. Side Effects and Toxicity

The most common side effects of theophylline are tachycardia (41), feeding

intolerance, jitteriness, and exacerbation of gastroesophageal reflux (42). Because

of the narrow therapeutic window and iatrogenic misadventures, cases of

theophylline toxicity have been reported with plasma theophylline levels

>13mg=L (43,44). Infants can present with jitteriness, seizures, feeding intoler-

ance, electrolyte imbalance, vomiting, and abdominal distension (45). While the

mainstay of therapy for theophylline overdose includes discontinuation of the
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drug and intravenous hydration, both activated charcoal and exchange transfusion

have been used in the management of severe theophylline overdose (46–48).

There have been no controlled trials to evaluate the effectiveness or the safety of

these procedures in preterm infants. While the use of activated charcoal and

exchange transfusions appears to be safe in the case reports, they should be

considered only after all other methods of treatment have been exhausted in a

severely affected and symptomatic neonate.

F. Routes of Administration

In addition to oral and intravenous dosing, theophylline can also be administered

rectally. While early experiences suggested that it was difficult to achieve

uniformity of dose using suppositories (49), one group has produced and

administered a rectal gel, which appears to provide consistent blood levels

(50). In addition, Evans et al. (51) have demonstrated that aminophylline may

be administered percutaneously to preterm infants with satisfactory blood levels

being achieved for up to 20 days.

III. Caffeine

Caffeine citrate, a methylxanthine like theophylline, has been used in infants for

the treatment of apnea for over 20 years. In the past theophylline use was favored,

even though its therapeutic index was much smaller and the risk of toxicity was

greater, owing to the lack of a standard formula for caffeine. If caffeine was to be

used it had to be created by each individual hospital pharmacy. This changed in

1999 with the development of a standard oral and injectable preparation of

caffeine citrate. Caffeine is now regarded as a first-line therapy for the treatment

of apnea of prematurity.

A. Mechanism of Action

Caffeine’s mechanism of action for the reduction of apnea of prematurity is

generally unknown (52,53). It antagonizes adenosine receptors, inhibits phos-

phodiesterase, and mobilizes intracellular calcium (54). It also affects many

different organ systems in the body, including the brain, the lungs, the kidneys,

and the heart.

Caffeine is known to stimulate the central respiratory system in the brain,

resulting in increased pulmonary blood flow, increased respiratory rate, and

minute volume. Similar to theophylline, caffeine improves diaphragmatic muscle

contractility and lessens fatigue. Caffeine, however, does not require extracellular

calcium for this action, unlike theophylline (55). Some studies have suggested
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that caffeine may be more potent than theophylline in improving contractility and

reducing diaphragmatic fatigue (56).

The effect on the cardiovascular system is well documented in adults.

Robertson et al. described an increase in blood pressure, serum renin, norepi-

nephrine, and epinephrine (57). In neonates a study by Walther et al. measured

left ventricular outflow, stroke volume, and heart rate by Doppler echo and mean

arterial blood pressure by oscillometry. Although they noted no changes in heart

rate, both left ventricular outflow and stroke volume were increased during day 1

through day 7 of the study. Mean blood pressure increased on day 3 of the study

and returned to normal by day 7 of the study. This inotropic and pressor effect

was noted in infants at 25 to 33 weeks gestation and is thought to be due to the

increase in cyclic adenosine monophosphate via inhibition of phosphodiesterase

and the release of calcium and the antagonism of adenosine receptor (58).

Rothberg et al. also found no change in heart rate in neonates receiving caffeine

(59).

Renal effects include increased urine flow rate, creatine clearance, and

water output-to-input ratio (60). Clinical studies which evaluated urine output did

not report large diuresis associated with caffeine administration.

B. Evidence of Efficacy

Aranda et al. reported a significant decrease in the number of apneas after loading

the infants with 20mg=kg of caffeine citrate and providing premature infants with

a maintenance dose between 5 and 10mg=kg 1–3 times per day depending on

their clinical response (61). Murat et al. compared 18 premature infants of �30

weeks gestation. They randomized infants to caffeine or no therapy (control

group) and found the apnea index to be lower for the caffeine-treated infants on

days 1 and 5 of therapy (62). Anwar et al. used 23 infants as their own controls.

Pneumograms were performed before caffeine and then 10 days later (63). The

recent study by Erenberg et al. is the only double-blind, placebo-controlled,

multicenter trial to evaluate the efficacy and the safety of caffeine citrate (64).

Eighty-five infants between 28 and 32 weeks gestation were enrolled at 24 hours

of life after they had at least six apneic events. They were loaded on 10mg=kg of

caffeine base IV and then received 10 days of maintenance caffeine at

2.5mg=kg=day. Those that failed were provided with open-label rescue. The

study did show a 70% reduction in the number of apneas in the study group.

However, the placebo group did show a remarkable reduction of 40% from

baseline in the number of apneas, demonstrating that infants benefit from

enrollment in clinical trials (65).

C. Side Effects and Toxicity

Caffeine has a wide therapeutic index, relatively few side effects, and few

reported cases of overdose. The studies done with a loading dose of 20mg=kg

Pharmacotherapy of Apnea of Prematurity 321



caffeine citrate and maintenance of 5mg=kg=dose reveals few if any side effects.

One study by Lee et al. used intravenous caffeine at 30mg=kg after a loading

dose of 60mg=kg and found it to be well tolerated. Infants were noted to tolerate

serum levels >70mg=L (66).

The side effects that have been reported include jitteriness, irritability, and

restlessness. Romagnoli et al. reported hyperglycemia, vomiting, regurgitation,

and tachycardia when compared to an age-matched control. Significant tachy-

cardia was observed in infants who received 5mg=kg=day of caffeine (67). Bauer

et al. recently reported an increase in oxygen consumption and a reduction in

weight gain as compared to infant controls that did not receive caffeine (68).

Toxicities have been reported in the literature, but are generally due to

massive overdoses. Perrin et al. reported an acute poisoning after 10 times the

prescribed dose of caffeine which resulted in tremors, hypertonia, opisthotonos

posture, and crying (69). The serum caffeine level was 160mg=L. Likewise, Van
den Anker reported an overdose with a serum level of 346mg=L, which resulted

in tachypnea, tachycardia, vomiting, and seizures (70).

D. Pharmacokinetics

The pharmacokinetics of caffeine in the neonate were initially reported in the late

1970s and found that postnatal age, birth weight, and gestational age had no

influence on clearance or half-life of caffeine (71,72). However, Thomson et al.

evaluated 60 neonates and found that clearance was influenced by both body

weight and postnatal age, but no factors influenced the volume of distribution

(73). Using current guidelines, >70% of the neonates would fall into the target

range of 25–100mnol=L (73). Lee et al. described an association between

clearance and volume of distribution and body weight and postnatal age (66).

Le Guennec et al. found that infants <30 weeks gestation had a longer half-life

than those >33 weeks. They concluded that it is better to use the postconceptual

age than the postnatal age to indicate maturation, and that this change in half-life

is due to hepatic maturation (74). The half-life of caffeine has been noted to be

much longer than in adults and has been described to be anywhere from 75 to

144 h while the clearance has been reported to be 8.5–8.9mL=kg=h (75,76). This

prolongation in both clearance and half-life in premature infants is thought to be

related to the immature liver and decreased activity of the hepatic cytochrome

P450 mono-oxygenase system.

The standard dosage has been 20mg=kg load of caffeine citrate intrave-

nously followed by 5mg=kg=day given as a single dose (52,54). The therapeutic

range is between 8 and 20mg=L. Lee et al. stated that this recommendation is too

conservative and would result in maintenance levels that are <15mg=L (66). As

noted above, higher loading and maintenance doses have been noted in the

literature and appear to be well tolerated and more effective in reducing the
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incidence of apnea of prematurity. Some have recommended that levels be

checked once or twice per week, but the majority of users do not evaluate or

rely on such levels.

E. Comparison of Theophylline and Caffeine

A number of studies have evaluated the comparative effects of theophylline and

caffeine. Scanlon et al. placed infants in three study groups (41). Group 1 was

loaded with caffeine at 12.5mg=kg and given an oral maintenance of 3mg=kg.
Group 2 was loaded with caffeine at 25mg=kg and given an oral maintenance of

6mg=kg. Group 3 was placed on theophylline, loaded with 7.5mg=kg, and given

a maintenance dose of 3mg=kg. The infants were then evaluated for 48 h for

apneas. Although all three groups of infants showed a reduction in the number of

apneas by 24 h, only the higher-dose caffeine and the theophylline groups showed

a 50% reduction in apneas at 24 h and significant improvement at 8 h of life (41).

Fuglsang et al. designed a double-blind and randomized trial to compare caffeine

and theophylline. They found the two drugs to be equally effective in reducing

apnea and bradycardia (77). Likewise, Bairam et al. (78) and Brouard et al. (79)

compared the two methylxanthines and had similar findings. Yet, unlike previous

studies, Bairam et al. found that caffeine had an earlier effect on the respiratory

system. The infants on caffeine increased their mean respiratory rate from 43 bpm

before the administration of the drug to 52 bpm on day 1 (P < 0:05), while those
infants receiving theophylline did not have a significant increase (78). Most

investigators have concluded that they would rather administer caffeine owing to

the ease of administration and the marked reduction in potential serious side

effects.

Two studies evaluated caffeine for apnea that was unresponsive to theophyl-

line. Davis et al. placed infants who had breakthrough apnea despite an adequate

theophylline level on caffeine. They found a reduction in the number of apneic

events by 88% (P < 0:01). Similarly, Harrison et al. noted that 14 of 16 infants

who failed theophylline therapy, responded to caffeine (81).

IV. Doxapram

Doxapram is an analeptic agent which has been used effectively in central

hypoventilatory syndrome (82,83), in acute respiratory failure in adults (84,85),

and as a respiratory stimulant postanesthesia (86–88).

A. Mechanism of Action

Doxapram acts on the central nervous system as a nonspecific stimulant.

Doxapram is thought to act mainly through stimulation of the carotid chemo-
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receptors in small doses, with larger doses having a direct effect on stimulation of

the medullary respiratory neurons (89,90). This agent increases ventilation and

the sensitivity to carbon dioxide in normal adults (91) and in neonates with apnea

of prematurity (92).

B. Evidence of Efficacy

Initial use of this agent in the newborn was to stimulate breathing after birth (93).

The first report of its use in neonatal apnea was that of Burnard et al. (94). The

majority of subsequent studies documented the effectiveness of doxapram in

treating infants who had failed to respond to methylxanthines (92,95–98). Bairam

et al. used a continuous infusion of doxapram in eight premature infants. They

found a significant decrease in the number of apneas on days 1 and 2 (P < 0:001)
and an increase in the apneic events following cessation of the drug. They also

suggest a dose response, i.e., 1mg=kg=h being more effective than 0.25mg=kg=h.
However, this study was limited both in the small study group and in the

noncontrolled nature of the trial (99). Poets et al. found that doxapram resulted in

a significant decrease in the apnea frequency (22 [range 11–27] vs. 14 [7–23]=h,
P < 0:01), bradycardia (3 [0–7] vs. 1 [0–3]=h, P < 0:01) and hypoxaemia (8 [0–

18] vs. 2 [0–17]=h, P < 0:01) after 1 day of treatment an improvement that was

sustained throughout the 6-day study period (100). Side effects included an

increase in the proportion of time spent awake (5 [0–24] vs. 12% [3–28],

P < 0:01) and in gastric residuals (0% of feeding volume [0–5] vs. 4% [0–19],

P < 0:05). They had to switch to intravenous doxapram in three of their nine

infants because of gastrointestinal side effects.

Peliowski et al. provided the only blinded, randomized, placebo-controlled

trial of doxapram. They compared 31 infants with significant apnea and

randomized them to doxapram, placebo, or theophylline. The doxapram dose

was 2.5mg=kg=h. These authors found essentially no significant difference

between the responses to theophylline and doxapram. In the second part of the

study 10 infants who had apneas despite theophylline were then treated with

doxapram. Eight of the 10 infants showed a beneficial response (29). Several

other studies have also evaluated the use of doxapram to promote earlier

extubation from the ventilator in the premature infant (101–103). However,

these trials failed to show significant benefits, although doxapram did reduce

apnea.

C. Pharmacokinetics

Both Beaudry and Jamali et al. initially described the pharmacokinetics of

doxapram (104,105). The half-life was 6.6–8.17 h. Plasma clearance was 0.2–

0.56 L=kg=h. After these evaluations and calculations the recommended dose for

doxapram was a loading dose of 3mg=kg by Beaudry et al. (104) and 5.5mg=kg
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by Jamali et al. (105), followed by a maintenance dose of 1mg=kg=h. The

previous studies have used anywhere from 0.25 to 2.5mg=kg=h of doxapram.

Although Bairam et al. found that doxapram was effective at the low dose of

0.25mg=kg=h, there does appear to be a dose response. Barrington et al. reported

that 47% of the neonates had a significant response to doxapram at 0.5mg=kg=h,
with the percent responding increasing up to 89% at 2.5mg=kg=h (106).

Hayakawa et al. found that six of their 12 patients responded to doxapram

doses of 0.5–0.8mg=kg=h, while three responded to the higher dose of 1–

1.5mg=kg=h (107). While it appears that higher doses of doxapram are more

effective in reducing the incidence of apnea of prematurity, it also appears that

these higher doses (>1.5mg=kg=h) are associated with increased side effects

(107).

Doxapram may be administered orally in the neonate, but because of poor

absorption it must be given in large doses up to 24mg=kg every 6 h using the

intravenous preparation (108). Oral doxapram has been shown to be effective in

controlling apnea resistant to methylxanthines, and Poets noted that they had to

revert to intravenous treatment in one-third of their infants (100).

D. Side Effects of Doxapram

The side effects of doxapram include a significant increase in blood pressure

(106), abdominal distension, irritability, jitteriness, vomiting, and increased

gastric residuals and feeding intolerance (100,107). De Villiers et al. expressed

concern that doxapram could be linked to prolonged QT syndrome in a published

case report using the intravenous preparation (109). A major concern with respect

to the use of doxapram in the United States is that it is prepared with benzyl

alcohol. A dosage of 2–2.5mg=kg=h would deliver �20–30mg=kg=day of

benzyl alcohol as a preservative, significantly less than that reported to be

associated with the gasping syndrome, but nevertheless a significant concern

with respect to its administration. Brion et al. used the form of doxapram with

benzyl alcohol and found no increase in morbidity or mortality in these infants

(95). If one uses the lower doses of doxapram that have been found to be

efficacious, the amount of benzyl alcohol delivered would be even less, and

certainly compatible with that found in other agents commonly used for the

newborn, including phenobarbital.

V. Gastroesophageal Reflux and Apnea

While idiopathic apnea of prematurity is largely thought to be due to an immature

brain and respiratory system, there is strong belief that reflux may cause apnea.

Few studies support this widely held belief. While significant and severe reflux
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may trigger obstructive apnea (110,111), there is no good evidence that supports

the view that apnea and reflux are temporally or causally related (112) and that the

use of antireflux medications including cisapride and metoclopramide decrease

apneas in neonates (113).

Cisapride, a gastrointestinal prokinetic agent, was commonly used in the

neonatal nursery to decrease episodes of reflux. While it has been found to be

effective in reducing symptoms of gastroesophageal reflux, it does not appear to

reduce apnea associated with reflux (114). Its side effect of prolongation of the

QTc interval became widely reported in the late 1990s (115–118), and the drug is

no longer marketed in the United States.

Metoclopramide, a dopamine antagonist, is not well studied in the neonate.

There is mixed evidence as to its effectiveness in the reduction of gastroesopha-

geal reflux (119,120). However, there are no randomized trials to evaluate its role

in the reduction of apnea in preterm neonates. Cases of metoclopramide-induced

methemoglobinemia and increased serum aldosterone have been reported

(121,122).

VI. Conclusion

Idiopathic apnea of prematurity will remain a common problem as neonatologists

care for increasing numbers of surviving very low birth weight and extremely low

birth weight infants. While methylxanthines remain the mainstay of pharmaco-

logic therapy, there is a shift to the use of caffeine over theophylline due to its

wider safety index and ease of use. Doxapram, while not a preferred agent in the

United States, may be useful for a number of infants and should be considered as

a second-line agent. CPAP and noninvasive methods of ventilatory support

including nasal synchronous intermittent mechanical ventilation may be useful

in infants whose apneas are resistant to pharmacologic treatments, and particu-

larly helpful in those infants that have problematic apneas with a large obstructive

component (123). These therapies are more fully discussed elsewhere in this

volume. Perhaps the most significant question regarding apnea of prematurity is

whether treatment of this disorder improves the longer-term outcomes of the most

immature infants. While there are a number of reports of series of infants who

were treated with single or multiple agents (124,125), there are no studies to date

that have compared outcomes in infants treated with any agent compared to a

similar group of infants with similar occurrences of apnea without such treatment.

It is unlikely that such studies will ever be performed. Current studies under way

will hopefully shed more light on this important issue.

326 Graham and Finer



References

1. Alden ER, Mandelkorn T, Woodrum DE, Wennberg RP, Parks CR, Hudson,WA.

Morbidity and mortality of infants weighing less than 1,000 grams in an intensive

care nursery. Pediatrics 1972; 50:40–49.

2. Daily WJR, Klaus M, Meyer HBP. Apnea in premature infants: monitoring,

incidence, heart rate changes, and an effect of environmental temperature. Pediatrics

1967; 43:510–518.

3. Barrington K, Finer N. The natural history of the appearance of apnea of

prematurity. Pediatr Res 1991; 29(4 Pt 1):372–375.

4. Finer NN, Barrington KJ, Hayes BJ, Hugh A. Obstructive, mixed and central apnea

in the neonate: Physiologic correlates. J Pediatr 1992; 121:943–950.

5. Aranda JV, Turmen T. Methylxanthines in apnea of prematurity. Clin Perinatol

1979: 6(1):87–108.

6. Gerhardt T, McCarthy J, Bancalari E. Aminophylline therapy for idiopathic apnea in

premature infants: effects on lung function. Pediatrics 1978; 62:801–804.

7. Gerhardt T, McCarthy J, Bancalari E. Effect of aminophylline on respiratory center

activity and metabolic rate in premature infants with idiopathic apnea. Pediatrics

1979; 63:537–542.

8. Davi MJ, Sankaran K, Simons KJ, Simons FER, Seshia MM, Rigatto H. Physio-

logic changes induced by theophylline in the treatment of apnea of preterm infants.

J Pediatr 1978; 92:91–95.

9. Eldridge FL, Millhorn DE, Waldrop TG, Kiley JP. Mechanism of respiratory effects

of methylxanthines. Respir Physiol 1983; 53(2):239–261.

10. Howell LL. Comparative effects of caffeine and selective phosphodiesterase

inhibitors on respiration and behavior in rhesus monkeys. J Pharmacol Exp Ther

1993; 266:894–903.

11. Eldridge FL, Millhorn DE, Kiley JP. Antagonism by theophylline of respiratory

inhibition induced by adenosine. J Appl Physiol 1985; 59:1428–1433.

12. Aubier M, De Troyer A, Sampson M, Macklem PT, Roussos C. Aminophylline

improves diaphragmatic contractility. N Engl J Med 1981; 305(5):249–252.

13. Gauthier AP, Yan S, Sliwinski P, Macklem PT. Effects of fatigue, fiber length, and

aminophylline on human diaphragm contractility. Am J Respir Crit Care Med 1995;

152(1):204–210.

14. Vinogradova IA, Shevchenko AI. The pharmacological correction of respiratory

musculature fatigue. Eksp Klin Farmakol 1997; 60(4):35–37.

15. Prostran M, Todorovic Z, Varagic VM. Some new evidence on antifatigue action of

aminophylline on the isolated hemidiaphragm of the rat. Gen Pharmacol 1993;

24(1):225–232.

16. Heyman E, Ohlsson A, Heyman Z, Fong K. The effect of aminophylline on the

excursions of the diaphragm in preterm neonates. A randomized double-blind

controlled study. Acta Paediatr Scand 1991; 80(3):308–315.

17. Levy RD, Nava S, Gibbons L, Bellemare F. Aminophylline and human diaphragm

strength in vivo. J Appl Physiol 1990; 68(6):2591–2596.

Pharmacotherapy of Apnea of Prematurity 327



18. Mayock DE, Standaert TA, Watchko JF, Woodrum DE. Effect of aminophylline on

diaphragmatic contractility in the piglet. Pediatr Res 1990; 28(3):196–198.

19. Janssens S, Derom E, Reid MB, Tjandramaga TB, Decramer M. Effects of

theophylline on canine diaphragmatic contractility and fatigue. Am Rev Respir

Dis 1991; 144(6):1250–1255.

20. Polaner DM, Kimball WR, Fratacci MD, Wain JC, Torres A, Kacmarek RM, Zapol

WM. Effects of aminophylline on regional diaphragmatic shortening after thora-

cotomy in the awake lamb. Anesthesiology 1992; 77(1):93–100.

21. Kuzemko JA, Paala J. Apnoeic attacks in the newborn treated with aminophylline.

Arch Dis Child 1973; 48:404–406.

22. Shannon DC, Gotay F, Stein IM. Prevention of apnea and bradycardia in low-

birthweight infants. Pediatrics 1975; 55:589–594.

23. Uauy R, Shapiro DL, Smith B, Warshaw JP. Treatment of severe apnea in

prematures with orally administered theophylline. Pediatrics 1975; 55:595–598.

24. Bednarek FJ, Roloff DW. Treatment of apnea of prematurity with aminophylline.

Pediatrics 1976; 58:335–339.

25. Peabody JL, Neese AL, Lucey JF. Decreased hypoxic, hyperoxic and bradycardic

episodes as responses of neonates to theophylline. Pediatr Res 1977; 11:419.

26. Gupta JM, Mercer HP, Koo WWK. Theophylline in treatment of apnoea of

prematurity. Aust Paediatr J 1981; 17:290–291.

27. Jones RAK. Apnoea of immaturity: a controlled trial of theophylline and face mask

continuous positive airways pressure. Arch Dis Child 1982; 57:761–765.

28. Sims ME, Yau G, Rambhatla S. Limitations of theophylline in the treatment of

apnea of prematurity. Am J Dis Child 1985; 139:567–570.

29. Peliowski A, Finer NN. A blinded, randomized placebo-controlled trial to compare

theophylline and doxapram for the treatment of apnea of prematurity. J Pediatr

1990; 116:648–653.

30. Muttitt SC, Finer NN, Tierney AJ, Rossmann J. Neonatal apnea: diagnosis by nurse

versus computer. Pediatrics 1988; 82(5):713–720.

31. U.S. Departement of Health and Human Services. Use of theophylline in infants.

FDA Drug Bull 1985; 15:16–17.

32. Gilman JT, Gal P. Inadequacy of FDA dosing guidelines for theophylline use in

neonates. Drug Int Clin Pharm 1986; 20:481–484.

33. Murphy JE, Erkan NV, Fakhreddine F. New FDA guidelines for theophylline dosing

in infants. Clin Pharm 1986; 5:16.

34. Bhatt-Mehta V, Johnson CE, Donn SM. Accuracy and reliability of dosing

equations to individualize theophylline treatment of apnea of prematurity. Pharma-

cotherapy 1995; 15(2):246–250.

35. Bhatt-Mehta V, Donn SM, Schork MA. Prospective evaluation of two dosing

equations for theophylline in premature infants. Pharmacotherapy 1996; 16(5):769–

776.

36. Bonati M, Latini R, Marra G. Theophylline metabolism during the first month of

life and development. Pediatr Res 1981; 15:304.

37. Bory C, Baltassat P, Porthault M. Metabolism of theophylline to caffeine in

premature newborn infants. J Pediatr 1979; 94:988–993.

328 Graham and Finer



38. Dothey CI, Tserng KY, Kaw S, King KC. Maturational changes of theophylline

pharmacokinetics in preterm infants. Clin Pharmacol Ther 1989; 45:461–468.

39. Martin ES III. The population pharmacokinetics of theophylline during the early

postnatal period. J Pharmacokinet Biopharm 1991; 19:59S–77S.

40. Bhatia J. Current options in the management of apnea of prematurity. Clin Pediatr

2000; 39:327–336.

41. Scanlon JEM, Chin KC, Morgan MEI, Durbin GM, Hale KA, Brown SS. Caffeine

or theophylline for neonatal apnoea? Arch Dis Child 1992; 67:425–428.

42. Vandenplas Y, De Wolf D, Sacre L. Influence of xanthines on gastroesophageal

reflux in infants at risk for sudden death syndrome. Pediatrics 1986; 77:807–

810.

43. Robertson WO. Index of suspicion case 1. Pediatr Rev 1992; 13(3):113–114.

44. Strauss AA, Modanlou HD, Komatsu G. Theophylline toxicity in a preterm infant:

selected clinical aspects. 1985; 5:209–212.

45. Simons FE, Friesen FR, Simons KJ. Theophylline toxicity in term infants. Am J Dis

Child 1980; 134:39–41.

46. Shannon M, Amitai Y, Lovejoy FH. Multiple dose activated charcoal for theophyl-

line poisoning in young infants. Pediatrics 1987; 80:368–370.

47. Ginoza GW, Strauss AA, Iskra MK. Potential treatment of theophylline toxicity by

high surface area activated charcoal. J Pediatr 1987; 111:140–142.

48. Osborn HH, Henry G, Wax P. Theophylline toxicity in a premature neonate-

elimination kinetics of exchange transfusion. Clin Toxicol 1993; 31(4):639–644.

49. Waxler SH, Schack JA. Administration of aminophylline (theophylline ethylene-

diamine). JAMA 1950; 143:736–740.

50. Cooney S, Dillon S, Bennett G, Trehane C. Rectal aminophylline gel in treatment of

apnoea in premature newborn babies. Lancet 1991; 337:1351.

51. Evans NJ, Rutter N, Hadgraft J, Parr G. Percutaneous administration of theophylline

in the preterm infant. J Pediatr 1985; 307–311.

52. Kriter KE, Blanchard J. Management of apnea in infants. Clin Pharm 1989; 8:577–

587.

53. Assael BM, Bonati M, Latini R. Clinical use of methylxanthines in the treatment of

apnea in the premature neonate. In: Soyka LF, Redmond GP, eds. Drug Metabolism

in the Immature Human. New York: Raven Press, 1981:249–263.

54. Aranda JV, Cook CE, Gorman W. Pharmacokinetic profile of caffeine in the

premature newborn infant with apnea. J Pediatr 1979; 94:663–668.

55. Aubier M, Murciano D, Viires N, Lecocguic Y, Pariente R. Diaphragmatic

contractility enhanced by aminophylline: role of extracellular calcium. J Appl

Physiol 1983; 54(2):460–464.

56. Golgeli A, Ozesmi C, Ozesmi M. The effects of theophylline and caffeine on the

isolated rat diaphragm. Acta Physiol Pharmacol Ther Latinoam 1995; 45(2):105–

113.

57. Robertson D, Frolich JC, Carr RK. Effects of caffeine on plasma renin activity,

catecholamines and blood pressure. N Engl J Med 1978; 298:181–186.

58. Walther FJ, Erickson R, Sims ME. Cardiovascular effects of caffeine therapy in

preterm infants. Am J Dis Child 1990; 144:1164–1166.

Pharmacotherapy of Apnea of Prematurity 329



59. Rothberg AD, Marks KH, Ward RM. The metabolic effects of caffeine in the

newborn infant. Pediatr Pharm 1981; 1:181–186.

60. Gillot I, Gouyon JB, Guignard JP. Renal effects of caffeine in preterm infants. Biol

Neonate 1990; 58:133–136.

61. Aranda JV, Gorman W, Bergsteinsson H. Efficacy of caffeine in treatment of apnea

in the low-birth-weight infant. J Pediatr 1977; 90:467–472.

62. Murat I, Moriette G, Blin MC. The efficacy of caffeine in the treatment of recurrent

idiopathic apnea in premature infants. J Pediatr 1981; 99:984–989.

63. Anwar M, Mondestin H, Mojica N. Effect of caffeine on pneumogram and apnoea

of infancy. Arch Dis Child 1986; 61:891–895.

64. Erenberg A, Leff RD, Haack DG. Caffeine citrate for the treatment of apnea of

prematurity: a double-blinded, placebo-controlled study. Pharmacotherapy 2000;

20:644–652.

65. Schmidt B, Gillie P, Caco C. Do sick newborn infants benefit from participation in a

randomized clinical trial? J Pediatr 1999; 134:151–155.

66. Lee TC, Charles B, Steer P. Population pharmacokinetics of intravenous caffeine in

neonates with apnea of prematurity. Clin Pharm Ther 1997; 61:628–640.

67. Romagnoli C, De Carolis MP, Muzii U. Effectiveness and side effects of two

different doses of caffeine in preventing apnea in premature infants. Ther Drug

Monit 1992; 14:14–19.

68. Bauer J, Maier K, Linderkamp O. Effect of caffeine on oxygen consumption and

metabolic rate in very low birth weight infants with idiopathic apnea. Pediatrics

2001; 107:660–663.

69. Perrin C, Debruyne D, Lacotte J. Treatment of caffeine intoxication by exchange

transfusion in a newborn. Acta Paediatr Scand 1987; 76:679–681.

70. Van den Anker JN, Jongejan HTM, Sauer PJJ. Severe caffeine intoxication in

preterm neonates. Eur J Pediatr 1992; 151:466–468.

71. Aranda JV, Cook CE, Gorman W. Pharmacokinetic profile of caffeine in the

premature newborn infant with apnea. J Pediatr 1979; 94:663–668.

72. Gorodisher R, Karplus M. Pharmacokinetic aspects of caffeine in premature infants

with apnoea. Eur J Clin Pharm 1982; 22:47–52.

73. Thomson AH, Kerr S, Wright S. Population pharmacokinetics of caffeine in

neonates and young infants. Ther Drug Monit 1996; 18:245–253.

74. Le Guennec J-C, Billon B, Pare C. Maturational changes of caffeine concentrations

and disposition in infancy during maintenance therapy for apnea of prematurity:

influence of gestational age, hepatic disease, and breast-feeding. Pediatrics 1985;

76:834–840.

75. Aranda JV, MacLeod SM, Renton KW. Hepatic microsomal drug oxidation and

electron transport in newborn infants. J Pediatr 1974; 85:534.

76. Neims AH, Warner M, Loughnan PM. Developmental aspects of cytochrome P450

mono-oxygenase system. Annu Rev Pharmacol 1976; 16:427.

77. Fuglsang G, Nielsen K, Nielsen LK. The effect of caffeine compared with

theophylline in the treatment of idiopathic apnea in premature infants. Acta Paediatr

Scand 1989; 78:786–788.

330 Graham and Finer



78. Bairam A, Boutroy MJ, Badonnel Y, Vert P. Theophylline versus caffeine:

comparative effects in treatment of idiopathic apnea in the preterm infant. J Pediatr

1987; 110:636–639.

79. Brouard C, Moriette G, Murat I. Comparative efficacy of theophylline and caffeine

in the treatment of idiopathic apnea in premature infants. Am J Dis Child 1985;

139:698–700.

80. Davis JM, Spitzer AR, Stefano JL. Use of caffeine in infants unresponsive to

theophylline in apnea of prematurity. Pediatr Pulmonol 1987; 3:90–93.

81. Harrison H. Apnea of prematurity: theophylline vs caffeine. Alaska Med 1992;

34:173–176.

82. Lugliani R, Whipp BJ, Wasserman K. Doxapram hydrochloride: a respiratory

stimulant for patients with primary alveolar hypoventilation. Chest 1979; 76:414–

419.

83. Hunt CE, Inwood RJ, Shannon DC. Respiratory and nonrespiratory effects of

doxapram in congentital central hypoventilation syndrome. Am Rev Respir Dis

1979; 119:263–269.

84. Moser KM, Luchsinger PC, Adamson JS. Respiratory stimulation with intravenous

doxapram in respiratory failure. N Engl J Med 1973; 288:427–431.

85. Edwards G, Lond MB. A double-blind trial of five respiratory stimulants in patients

with acute ventilatory failure. Lancet 1967; ii:226–229.

86. Robertson GS, MacGregor, Jones CJ. Evaluation of doxapram for arousal from

general anaesthesia in outpatients. Br J Anaesth 1977; 49:133–140.

87. Noe FE, Borrillo N, Greifenstein FE. Use of a new analeptic, doxapram hydro-

chloride, during general anesthesia and recovery. Anesth Analg 1965; 44:206–213.

88. Council on Drugs. A new analeptic agent. JAMA 1966; 196:147–148.

89. Mitchell RA, Herbert DA. Potencies of doxapram and hypoxia in stimulating

carotid-body chemoreceptors and ventilation in anesthetized cats. Anesthesiology

1975; 42:559–566.

90. Burki NK. Ventilatory effects of doxapram in conscious human subjects. Chest

1984; 85(5):600–604.

91. Calverley PMA, Robson RH, Wraith PK. The ventilatory effects of doxapram in

normal man. Clin Sci 1983; 65:65–69.

92. Barrington KJ, Finer NN, Peters KL, Barton J. Physiologic effects of doxapram in

idiopathic apnea of prematurity. J Pediatr 1986; 108(1):124–129.

93. Gupta PK, Moore J. The use of doxapram in the newborn. J Obstet Gynaecol Br

Commun 1973; 80:1002–1006.

94. Burnard ED, Moore RG, Nichol H. A trial of doxapram in the current apnea of

prematurity. In: Stern L, Oh W, Friis-Hansen B, eds. Intensive Care in the Newborn.

II. New York: Masson, 1976:143–148.

95. Brion LP, Vega-Rich C, Reinersman G. Low-dose doxapram for apnea unresponsive

to aminophylline in very low birthweight infants. J Perinatol 1991; 11:359–364.

96. Alpan G, Eyal F, Sagi E. Doxapram in the treatment of idiopathic apnea of

prematurity unresponsive to aminophylline. J Pediatr 1984; 104:634–637.

97. Barrington KJ, Finer NN, Peters KL. Physiologic effects of doxapram and

aminophylline. Arch Dis Child 1984; 59:281–283.

Pharmacotherapy of Apnea of Prematurity 331



98. Sagi E, Eyal F, Alpan G. Idiopathic apnoea of prematurity treated with doxapram

and aminophylline. Arch Dis Child 1984; 59:281–283.

99. Bairam A, Faulon M, Monin P. Doxapram for the initial treatment of idiopathic

apnea of prematurity. Biol Neonate 1992; 61:209–213.

100. Poets CF, Darraj S, Bohnhorst B. Effect of doxapram on episodes of apnoea,

bradycardia and hypoxaemia in preterm infants. Biol Neonate 1999; 76:207–213.

101. Huon C, Rey E, Mussat P. Low dose doxapram for treatment of apnea following

early weaning in very low birthweight infants: a randomized, double-blinded

controlled study. Acta Paediatr 1998; 87:1180–1184.

102. Barrington KJ, Muttitt SC. Randomized, controlled, blinded trial of doxapram for

extubation of the very low birthweight infant. Acta Paediatr 1998; 87:191–194.

103. Eyal F, Alpan G, Sagi E. Aminophylline versus doxapram in idiopathic apnea of

prematurity: a double-blinded controlled study. Pediatrics 1985; 75:709–713.

104. Beaudry MA, Bradley JM, Gramlich LM. Pharmacokinetics of doxapram in

idiopathic apnea of prematurity. Dev Pharm Ther 1988; 11:65–72.

105. Jamali F, Barrington KJ, Finer NN. Doxapram dosage regimen in apnea of

prematurity based on pharmacokinetic data. Dev Pharm Ther 1988; 11:253–257.

106. Barrington KJ, Finer NN, Torok-Both G. Dose-response relationship of doxapram

in the therapy for refractory idiopathic apnea of prematurity. Pediatrics 1987;

80:22–27.

107. Hayakawa F, Hakamada S, Kuno K. Doxapram in the treatment of idiopathic apnea

of prematurity: desirable dosage and serum concentrations. J Pediatr 1986;

109:138–140.

108. Bairam A, Akramoff-Gershan L, Beharry K. Gastrointestinal absorption of doxa-

pram in neonates. Am J Perinatol 1991; 8:110–113.

109. De Villiers GS, Walele A, Van der Merwe P-L. Second-degree atrioventricular heart

block after doxapram administration. J Pediatr 1998; 133:149–150.

110. Newell SJ, Booth IW, Morgan MEI. Gastro-oesophageal reflux in preterm infants.

Arch Dis Child 1989; 64:780–786.

111. Marino AJ, Assing E, Carbone MT. The incidence of gastroesophageal reflux in

preterm infants. J Perinatol 1995; 15:369–371.

112. Menon AP, Schefft GL, Thach BT. Apnea associated with regurgitation in infants. J

Pediatr 1985; 106:625–629.

113. Kimball AL, Carlton DP. Gastroesophageal reflux medications in the treatment of

apnea in premature infants. J Pediatr 2001; 138(3):355–360.

114. Ariagno RL, Kikket MA, Mirmiran M. Cisapride decreases gastroesophageal reflux

in preterm infants. Pediatrics 2001; 107:58–71.

115. Dubin A, Kikkert M, Mirmiram M, Ariagno R. Cisapride Associated with QTc

prolongation in very low birth weight preterm infants. Pediatrics 2001; 107:1313

116. Hill SL, Evangelista JK, Pissi AM. Proarrhythmia associated with cisapride in

children. Pediatrics 1998; 101:1053–1056.

117. Lewin MB, Bryant RM, Fenrich AL. Cisapride-induced long QT interval. J Pediatr

1996; 128:279–281.

118. Bernardini S, Semama DS, Huet F. Effects of cisapride on QTc interval in neonates.

Arch Dis Child Fetal Neonatal Ed 1997; 77:F241–F243.

332 Graham and Finer



119. Tolia V, Calhoun J, Kuhns L, Kauffman RE. Randomized, prospective double-blind

trial of metoclopramide and placebo for gastroesophageal reflux in infants. Pediatr

Pharm Ther 1989; 115:141–145.

120. Noerr B. Metoclopramide. Neonat Net 1993; 12:77–78.

121. Kearns GL, Fiser DH. Metoclopramide-induced methemoglobinemia. Pediatrics

1988; 82:364–366.

122. Fanning S, Ishisaka DY, Merritt TA. Possible metoclopramide-induced increase in

serum aldosterone in a premature infant. Am J Health Syst Pharm 1995; 52:316–

319.

123. Barrington KJ, Bull D, Finer NN. Randomized trial of nasal synchronized inter-

mittent mandatory ventilation compared with continuous positive airway pressure

after extubation of very low birth weight infants. Pediatrics 2001; 107(4):638–641.

124. Cheung PY, Barrington KJ, Finer NN, Robertson CM. Early childhood neurode-

velopment in very low birthweight infants with predischarge apnea. Pediatr

Pulmonol 1999; 27:14–20.

125. Mathew OP. Neurodevelopmental outcome of apneic infants treated with doxapram.

Pediatr Res 2001; 49:379A.

Pharmacotherapy of Apnea of Prematurity 333





14

Nonpharmacological Management of Idiopathic
Apnea of the Premature Infant

EDWARD E. LAWSON

Johns Hopkins University School of Medicine

Baltimore, Maryland, U.S.A.

I. Introduction

This chapter is a review of nonpharmacological means to manage infants having

obstructive, central and mixed apnea related to prematurity. While many of these

management strategies may be effective for apnea of other etiologies, the chapter

will not directly discuss management of those other causes.

Breathing activity in newborns, children, and adults results from neuronal

signals that originate in the brainstem and transmit excitatory signals causing

contraction of various respiratory muscles. These neuronal signals originate from

a network of brainstem neurons that oscillate between three states of activity—

inspiration, postinspiration, and expiration (1–3). The outputs from these neurons

innervate (often via intermediary neurons) muscles of the upper airway, chest,

diaphragm, and abdomen. Periodic contraction of these muscles controls inhala-

tion and exhalation of air. Inspiration is the phase where the upper airway and

larynx dilate by contraction of upper-airway dilator muscles, and then lungs

expand by contraction of the diaphragm and inspiratory intercostal muscles. In

postinspiration, the larynx is closed or partially closed controlling air flow across

the vocal cords. Postinspiration actively restricts expiratory pulmonary airflow.

During the expiratory phase, passive relaxation or active contraction of inter-

costal, abdominal, and airway muscles results in outward flow of air from the

lungs.

The major principle behind most nonpharmacological methods of apnea

management is that apnea is often secondary to lack of sufficient neuronal
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activity in the brainstem centers for the respiratory network to oscillate between

the three stages of respiration. Some evidence suggests that when failure of

oscillation occurs, postinspiratory activity (4) due either to lack of neuronal

inputs or to direct stimulation of the postinspiratory neurons prevents oscillation

through the other phases. In any case whether postinspiratory activity is the root

cause of central apnea is unimportant in understanding the mechanisms of

pharmacological and nonpharmacological apnea therapies. The concept that

effective therapies often work by generating excitatory neuronal activity in the

brainstem centers such that these centers oscillate between the various respiratory

stages is sufficient mechanistic understanding for the clinician. In effect, any

nonspecific neuronal activity impinging upon the brainstem respiratory centers

acts to give ‘‘momentum’’ to the oscillation between the various respiratory states.

In turn, lack of nonspecific and specific (e.g., chemosensory) input to the

brainstem allows dissolution of the oscillating momentum, resulting in respiratory

apnea. Further, reduced neuronal output to the upper airway muscles to maintain

sufficient tone is one physiologic mechanism resulting in obstructive or mixed

obstructive=central apnea. Another important concept regarding obstructive

apnea is that the obstruction occurs in the pharynx (or perhaps the larynx) secondary

to structural characteristics of the small airway in premature infants in addition to

loss of neuronal drive to the airway-dilating muscles of the upper airway.

Lack of neurologic activity in the brainstem respiratory control centers

derives from reduced excitatory influences that counterbalance inhibitory influ-

ences. Neurons in the brainstem of newborn infants, in particular premature

infants, are characterized by higher density of inhibitory receptors and transmit-

ters than excitatory receptors and transmitters. Additionally, fewer neurons are

present, so maintaining synchronous oscillatory neuronal activity appears more

difficult than in older subjects. Other mechanisms associated with apnea in

newborns are: various sleep stages that result in reduced excitatory and increased

inhibitory inputs to the brainstem, lack of nonspecific neuronal inputs from

peripheral sensory inputs, strong inhibitory inputs from vagal and laryngeal

receptors, and various causes of hypoxemia. Finally, obstructive apnea in

newborns is particularly common secondary to structural issues unique to the

premature infant. The size of the upper airway allows easy closure of the pharynx

if sleep, anesthetics, sedatives, etc., inhibit the airway muscles (5). Also, neck

flexion easily results in airway closure secondary to the small diameter of the

airway and the high compliance of these structures (6).

II. Positioning

A. Prone vs. Supine

One of the apparent inconsistencies in management of premature infants is the

frequent use of prone positioning in the neonatal intensive care unit and the
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recommendation to parents that infants are placed on their backs for sleep at

home. This apparent conflict arises from older research that demonstrated

improved pulmonary function in preterm infants when placed on their stomach

(7–9), as well as the historical teaching of the American Academy of Pediatrics

that infants should be placed prone in order to prevent aspiration during sleep.

The research regarding pulmonary function improvement when prone was limited

to premature infants recovering from respiratory distress syndrome and breathing

without aid of mechanical devices (e.g., continuous positive airway pressure or

mechanical ventilation). Nevertheless, the recommendation was generalized and

many premature infants are regularly placed prone on their stomachs in

incubators and bassinets while in hospitals. More recent information indicates

that the incidence of apnea among preterm infants is not affected by supine or

prone position (10). Another recent report indicates that term healthy infants have

improved lung volume and decreased upper-airway resistance when placed supine

rather than prone (11).

Other work has demonstrated that infants sleeping at home are at increased

risk for sudden infant death syndrome (SIDS) when placed to sleep in the prone

position (12–14). This has led to the recommendation for supine positioning of

infants when they are sleeping. The mechanism of death is uncertain, but likely

relates to rebreathing of exhaled air leading to hypercapnia and carbon dioxide

narcosis. Data supporting this hypothesis derive from epidemiological, anecdotal,

human, and animal studies (15–19). Another possibility is that covering the face

results in obstructive apnea, especially in a head-down position in infants too

young to allow head lifting if they arouse in response to the acute airway

obstruction (18). Another hypothesis is that swallowing is inhibited in the prone

position and therefore laryngeal receptors are more likely to be stimulated

resulting in apnea (20).

Removing soft bedding, pillows, sheepskins, and crib ‘‘bumpers’’ prevents

accidental entrapment and face-covering situations (15–17). Again, common

practices in the NICU are often at odds with recommendations to parents.

Physicians and nurses should be aware of the different circumstances leading

to use of soft bedding materials and sheepskins in the NICU that are inconsistent

with home care needs.

B. Head=Neck Flexion

Neck flexion has been shown to result in airway closure, particularly in premature

infants, but also in term infants (6). It has been long recommended that to prevent

obstructive apnea and cardiac arrest during procedures such as lumbar puncture

the holder should place the caudal hand on the shoulders in order to flex the back,

but to avoid flexing the neck. In premature infants another cause of neck flexion is

the common practice of placing the infant on an inclined surface to reduce gastro-
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esophageal reflux. An active infant may creep down the incline and then its head

may further droop resulting in airway occlusion and apnea (21). Treatment of this

form of apnea is based on a high index of suspicion given the clinical situation.

C. Gastroesophageal Reflux (GER)

Whether gastroesophageal reflux results in apnea is controversial. Most current

literature indicates a lack of direct correlation of reflux episodes with apnea

events (22–24) as well as lack of improvement in apnea events following onset of

effective therapy (25). However, using a newer technique of intraluminal

impedance, Wenzl et al. (26) demonstrated a positive correlation of GER with

apnea in premature infants, but this is not in agreement with similar studies by

Peter et al. (24).

Despite the general lack of correlation of GER and apnea, many clinicians

invoke various therapies to reduce or minimize GER in premature infants in order

to reduce apnea events. Thickening feeds by adding cereal to formula and placing

the infant on an inclined surface (reverse Trendelenberg) are the two most

common nonpharmacological therapies. As mentioned above, the inclined

plane may result in obstructive apnea if the head flexes due to gravitational

forces. A surgical procedure to create a one-way valve from the lower esophagus

into the stomach (Nissen procedure) is the extreme therapy to prevent GER.

However, this procedure should not be performed to manage apnea without

careful evaluation that clearly establishes the correlation of GER with apnea in

the individual patient. This evaluation would at minimum include simultaneous

polysomnography with esophageal pH monitoring and the newer multiple

intraluminal impedance technique (24,26). Since stomach pH in infants is

frequently >4, regurgitated material in the esophagus may not register as

reflux when using simple pH monitoring.

GER is likely to be very overmanaged with the current medications and

nonpharmacological management techniques. Indeed, it is reasonable to suggest

that in absence of clear evidence of aspiration events or esophagitis, the usual

GER may be a mild if not benign problem in otherwise normal preterm infants. In

this case one should not provide antireflux medical management unless the reflux

is actually interfering with nutritional intake and growth.

III. Nonpharmacological Mechanisms to Stimulate the
Central Nervous System

Respiratory drive originates in neuronal clusters of the brainstem that sponta-

neously oscillate between the various states of respiration. Specific neuronal

inputs such as inhibitory and excitatory reflexes (e.g., vagal stretch receptors from

the lungs) and chemosensory information derived from oxygen sensors in the
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carotid body and carbon dioxide sensors in the brainstem provide important

modulation of this respiratory oscillator. Another source of important neuronal

activity that also excites the respiratory neurons is nonspecific neural activity

deriving from myriad sensors throughout the body, as well as excitatory and

inhibitory inputs from the higher brain. Neuronal activity from body sensors may

derive from any of the peripheral tactile, stretch and thermal sensors in skin,

muscle, and joints. Inhibition or accentuation by influences of the higher brain

due to wakefulness, sleep, speech, eating, muscle commands, etc., from mid- or

higher-brain centers also interacts at the brainstem level, affecting the drive to

these oscillating neuronal pools. The following sections review common practices

for preventing apnea and for interrupting apnea once initiated using stimulation

techniques.

A. Cutaneous=Muscle=Joint Stimulation

Initiation of respiratory activity in the delivery room is classically associated with

onset of massive cutaneous and thermal stimuli. The cutaneous stimuli derive

from poking, prodding, and rubbing by mother and associated caretakers shortly

after delivery. Observations of the effects of these stimuli have resulted in clinical

practices such as mild shaking, rubbing, and patting of feet and hands to stimulate

an infant once apnea has persisted for a designated period. In modern times the

act of drying infants in the delivery room provides a great amount of cutaneous

stimulation, often resulting in initiation of respiratory activity.

An old-time classic means for preventing apnea of the premature infant was

to attach a string or tape to the leg of a premature infant and then to periodically

pull the leg, resulting in prevention of apnea for a short period. This technique

presumably stimulated joint receptors as well as cutaneous sensors, resulting in a

burst of stimulatory activity in the brainstem (27). Mild apnea was stopped and

the effect lasted for a brief time following each pull of the tape. This technique

was apparently widely accepted in the 1970s, but has been supplanted by use of

methylxanthine therapy. Other problems with the technique were a perception that

the technique could interfere with normal sleep patterns as the stimulation also

resulted in arousal of sleeping infants.

B. Kinesthetic Stimulation—Oscillating Waterbeds=Airbeds

Following the understanding that cutaneous and joint stimuli resulted in preven-

tion of apnea for brief periods, many neonatologists began searching for an

automated technique that would provide continuous central nervous system

stimulation to prevent or reduce apnea events. The logical technique to try was

stimulation of vestibular receptors (kinesthetic stimulation), the logic being that

these receptors are quiet when the infant is not moving and that any movement of

the infant would result in a nonspecific excitatory stimulus to the brainstem.
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Indeed, the technique was shown to work utilizing an electric oscillating bed (28–

33). The sleep surface of the infant was tilted from front to back or from side to

side in order to stimulate the vestibular system. Modifications of this system

included use of waterbeds and a bladder underneath the mattress that was

periodically inflated by a spare mechanical ventilator, and most recently airbeds

(34). Each system had advocates, and each was shown to reduce the incidence of

apnea over periods of several hours. Unfortunately, with protracted use of these

devices, apnea gradually recurred, indicating loss of effectiveness of these

devices. Except for a recent report of use of gentle rocking to prevent obstructive

apnea (35), these devices have fallen out of routine clinical practice (36).

Ignoring the physiological mechanism of central nervous system accom-

modation was the critical error in attempts to utilize these devices. Accommoda-

tion is the neural mechanism by which a repetitive stimulus to the brain is

ultimately inhibited so that the previous stimulatory effect becomes negated. Neural

accommodation is essentially a learning mechanism and it develops over hours.

While the new stimulus remains unique, many of the peripheral stimulatory

techniques initially worked but then ultimately lost their therapeutic effects.

Unfortunately, the initial enthusiastic reports of efficacy measured incidence of

apnea only for the first few hours after initiation of the repetitive stimulation. In

contrast, other peripheral stimulatory techniques continue to be effective because

they are irregularly applied or are unique in each application. Recognizing that

accommodation resulted in loss of efficacy of the oscillating bed, several groups

investigated use of a randomly oscillating bed. These devices had similar effects

to the regularly oscillating bed, though perhaps a slightly longer period of time

was required for accommodation to occur (33). They too are no longer widely

utilized.

C. Facial Air Jets

Air jets, directed at the face or nares, result in arousal from sleep. At least one

group postulated in a preliminary fashion that an air jet stimulus following onset

of protracted apnea may be an effective remedy by inducing arousal (personal

communication). Though the technique can be automated in response to apneas

and may be set to respond to only protracted apneas, this technique has not been

developed widely as a tool for prevention of apnea in premature infants. Reasons

for this may be twofold. First, if the stimulus is repetitively applied, then it may

lose the stimulatory effect with repetitive exposure. Second, the face also is richly

innervated with receptors that stimulate an inhibitory respiratory effect known as

the ‘‘dive response.’’ This reflex results in profound apnea, bradycardia, and

redistribution of blood flow from peripheral organs to central organs. The

possibility of initiating such a reflex when attempting to reverse central or

obstructive apnea of the premature infant is clearly not desired, especially when
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other, similar techniques, such as cutaneous stimulation, are known to be

effective.

D. Audible Alarms

Numerous people have questioned the efficacy of audible alarms for reinitiating

respiratory efforts; most recently a report of home monitoring questioned whether

alarms resulted in premature termination of protracted apnea events (37). In the

clinical environment of the modern NICU, electronic cardiorespiratory and

oxygen saturation monitoring devices often initiate a rather loud alarm in

response to apnea, bradycardia, or protracted arterial hemoglobin desaturation

in order to alert caretaking personnel that an apnea event is occurring. Whether

the auditory alarm may independently effect recovery from the apnea event is an

area of some interest. In the clinical NICU, most infants are managed within a

closed incubator that reduces transmission of sound into the infant’s environment.

Consequently, one would predict that without an audible alarm within the

incubator, audible alarms would generally be ineffective in the NICU.

In contrast, many susceptible infants are in open bassinets or cribs, and the

auditory alarm may indeed bring about recovery without other intervention. The

strongest evidence to date for this hypothesis comes from the recently completed

CHIME trial of recorded home monitors, wherein reinitiating of respiration was

observed to frequently follow onset of the alarm without other intervention (37).

This finding, however, may not be relevant to the premature infant with idiopathic

apnea as the alarms were louder than tolerable in an NICU, the infants were

generally of older postconceptual age than the usual premature infant in an NICU,

and the apnea events were not occurring with sufficient frequency to be of

concern regarding the possibility of accommodation.

E. Neuronal Entrainment Techniques—‘‘Breathing Bear’’

Various stimuli have been used to entrain respiratory efforts or to stabilize

respiratory function. Two reports of devices indicate that there may be some

improvement in apnea when audible or vestibular devices are used at a pace

similar to that of normal respiratory frequency. One device, the ‘‘breathing’’ teddy

bear (38), emits a sound that ‘‘is a source of optional rhythmic stimulation that

reflects the breathing rate of the individual infant it is with.’’ This device was

shown to entrain premature infants’ breathing efforts, resulting in more regular

respiratory rhythm. Another device uses gentle rocking with an audible sound to

mimic in utero sounds, and claims improved outcomes as well as reduced

incidence of apnea (39). Those advocating cobedding of infants and mothers

have described similar effects, but this has not been proven in studies (40).
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IV. Thermal Environment

A. Neutral Thermal Environment

The thermoneutral environment is defined as the external temperature at which a

warm-blooded animal maintains normal body temperature using the minimal

amount of metabolism to generate heat. In an environment either warmer or

cooler, greater metabolism is necessary to maintain normal body temperature.

One principle of nursing infants, particularly ill premature infants, is to maintain a

thermoneutral environment to minimize metabolism necessary to maintain body

temperature. Under these circumstances, growth and injury repair may theoreti-

cally proceed despite limited external metabolic supply. Under normal NICU

circumstances the thermoneutral environment is maintained through use of an

incubator or radiant warming device. The incubator ambient temperature may be

regulated using a predetermined target depending on gestational age and body

mass. Alternatively, skin temperature may be used as a proxy for core temperature

and then the ambient temperature in the incubator, or the heating source of a

radiant warmer may be servocontrolled.

B. Relationship of Body Core Temperature to Respiratory
Control

Wide Swings in Ambient=Core Temperature

Clinical experience indicates that respiratory pattern abnormalities, including

apnea, occur when infants have abnormally low body temperature or when they

are somewhat overheated (41). Apnea seems particularly prevalent when an infant

is increasing core temperature above the normal 37�C. Mechanisms for this effect

are entirely speculative, but may include inhibition from midbrain thermal

regulatory centers excited by changes in core temperature. Alternatively, high

core temperatures may initiate panting activity that results in hyperventilation,

causing hypocapnea and apnea. Infants under radiant warmers may be particu-

larly prone to varying core temperature (42), particularly if they are in an area

susceptible to drafts that would accentuate changes in skin temperature indepen-

dent of core temperature. Of course many standard nursing practices are used to

prevent this possibility, including: reflective and insulating patches over the

thermode, placement of the thermode over the liver (a high-heat-source solid

organ), placement of the infant in prone position with the thermode between the

infant and the radiant heat source, prevention of drafts, and development of

incubators having dual radiant and ambient temperature regulation possibilities

(Giraffe, Ohmeda Medical).
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Skin Core Temperature Gradient

When an infant has a stable core temperature and is in a thermoneutral ambient

environment, an old technique for decreasing the density of apnea events is to

lower the ambient temperature by � 0.5�C. Evidence for this comes from work of

Daily et al., who demonstrated that preterm infants in an incubator with a skin

temperature set-point at 36�C had less apnea than when the set-point was 36.8�C
(41). Similarly, at least two groups have shown that higher ambient temperatures

(between 20–24�C and 30�C) result in higher incidence of apnea despite little

change in rectal=core temperature (43,44). The theory is that increased ambient

temperature, within the thermoneutral range, decreases the skin core temperature

gradient, resulting in loss of nonspecific thermal related neuronal signals to the

brainstem. The positive effect of lowering ambient temperature presumably

depends on skin thermal receptors being relatively activated by this change in

temperature gradient hence resulting in increased nonspecific neural information

impinging upon the brainstem and the respiratory centers.

The SIDS literature is replete with many articles that indicate hyperthermia

as a mechanism causing apnea and associated with sudden unexpected death of

older infants (44,45). These data may be relevant to the care of premature infants

with apnea as well. Overwrapping and face covering (18) are associated with

changes in body temperature and apnea. Mild increases in environmental

temperature of preterm infants at term as well as term infants results in increased

incidence of apnea during sleep (43). Attention to amounts of wrapping and to

environmental temperature allowing adequate self-regulation of temperature is

likely to result in simple means to reduce the incidence of apnea.

V. Oxygen

A. Oxygen Effects on Apnea

As is discussed in Chapter 12, the respiratory response to hypoxia in

infants (particularly premature infants) less than a few weeks of age is different

from that of older children and adults. The respiratory response is ‘‘biphasic’’

with an initial phase of increased respiratory activity followed shortly by a phase

of declining breathing secondary to loss of drive to the diaphragm (46–48). This

loss of drive may actually be a central inhibition of the brainstem respiratory

centers by higher central nervous system structures (49). In any case, the lack of

sustained respiratory response may lead even to apnea in some infants with

significant hypoxia of sufficient duration. One tenet of managing apnea in

premature infants is then to avoid situations that may lead to hypoxemia that

would initiate the sequence of respiratory inhibition. Infants with pulmonary

failure secondary to respiratory distress syndrome and pneumonia may present

with apnea due to their relative hypoxemia. To avoid hypoxemia, use of
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supplemental oxygen is frequently done by nasal cannula or by enriching the

inhaled air by use of a hood or oxygen directly flowing into an incubator.

On the other hand, otherwise well premature infants may develop a

respiratory pattern identified as periodic breathing (50–53). Periodic breathing

is characterized by repetitive periods of relatively high ventilation interspersed

with periods of no respiratory activity; occasionally the respiratory pauses will

last long enough to trigger the electronic monitoring system or even convert to a

true mixed or central apnea. In these situations, the one attractive explanation for

the cause is a peripheral oxygen-sensing system that has a higher output than is

appropriate (54). In this case the carotid body senses hypoxemia, the infant

hyperventilates, carbon dioxide drops, and peripheral oxygen increases, thus

reducing the chemical drive to breathe at both peripheral and central sensing

systems. This is followed by the respiratory pause during which carbon dioxide

rises and blood oxygen falls, leading the central respiratory system to over-

ventilate again. These seemingly wide shifts in respiratory drive are thought to be

secondary to a carotid body that is too responsive to mild reductions in blood

oxygen. Weintraub et al. (54) have demonstrated that simply increasing the

inhaled oxygen to 0.40 FiO2 may stop the periodic or irregular breathing patterns.

This may be accomplished by use of either hood oxygen or nasal prongs.

Alternatively, the mechanism for the effect of increased ambient oxygen is

actual relief of central nervous system hypoxia in the face of inadequate carotid

body response to peripheral hypoxemia (55,56).

Management of apnea with oxygen is not without risk. One obvious issue is

whether increased ambient oxygen may predispose small premature infants to

retinopathy of the premature. This issue is not clear, though the levels of oxygen

recommended to reduce apnea and periodic breathing should not achieve blood

levels associated with ROP. Continuous percutaneous arterial hemoglobin satura-

tion (SpO2) monitoring is recommended to ensure that the infants do not have

persistent hyperoxemia. A second concern is that external oxygen may actually

accentuate the periodic pattern leading to prolonged apnea, an effect recently

reported by Berger et al. (57).

B. Carbon Dioxide Effects on Apnea

Newborn infants increase respiratory activity in response to increased ambient

carbon dioxide (58,59), but the increase is not as great as for older infants and

children (corrected for size). Hence, carbon dioxide levels in blood do affect

respiratory drive. In the awake state, normal spontaneous ventilation maintains

blood carbon dioxide levels below the threshold to drive ventilation. However, in

non-REM sleep, the infant becomes completely dependent on the chemical

stimulus to breathe exerted by carbon dioxide and oxygen blood levels. Infants

may exhibit apnea secondary to low blood carbon dioxide levels, but usually only
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in circumstances such as controlled mechanical ventilation. When apnea is noted

but not desired in the ventilated infant, a reduction in minute ventilation will

usually result in onset of spontaneous breaths.

Only one report of examining carbon dioxide administration to ameliorate

apnea in newborns is available (60). Otherwise, administration of carbon dioxide

has not been used in the clinical environment to affect breathing patterns on a

routine basis. Concerns regarding the effects of respiratory acidosis and the

effects of high levels of carbon dioxide on cerebral blood flow (61,62) limit its

use.

In contrast, hypercapnia due to rebreathing or face-covered circumstances

that may occur when the face is buried in soft bedding in the prone position or the

face is covered by bed sheets or blankets, is one of the major theories explaining

the mechanism for SIDS (19,63). In these circumstances carbon dioxide in animal

models has been shown to increase to levels associated with carbon dioxide

narcosis that may result in death (16).

C. Erythrocyte Transfusion

Anemia has long been associated with an increase in incidence of periodic

breathing and apnea in premature infants. Those who invoke anemia as a cause of

apnea tend to suggest that tissue hypoxia secondary to lack of red blood cells

results in central nervous system ‘‘depression’’ as the mechanism (56). They then

suggest that transfusion of small amounts of packed red blood cells that reverses

anemia would also ameliorate apnea. As one would suspect, this thesis resulted in

a rather extensive literature with both proponents of transfusion (56,64,65) and

those who have not found transfusion (66–68) to be an effective means to manage

apnea.

Proponents of transfusion to ameliorate apnea in otherwise well premature

infants suggest that the hematocrit should be < 25% to be effective. The clinician

considering transfusion to treat apnea should evaluate the following issues:

1. Is the apnea new in origin or has it been longstanding?

2. Has the apnea incidence increased as anemia worsened?

3. Is the child receiving oxygen or other ventilatory support?

4. Has heart rate increased?

5. Are other respiratory rhythm changes, such as periodic breathing, more

prominent?

Association of these signs with apnea would support a trial of transfusion.

The clinician may also consider whether management with erythropoietin would

be preferable to a transfusion. Erythropoietin has been shown to be an effective

means to maintain hematocrit higher than the nadir that would ordinarily occur

(64). However, erythropoietin is not suitable for acute management of anemia.
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Now that blood banks can supply packed red blood cells from a single donor for a

period as long as a month, the clinician may have a lower threshold for

transfusion if exposure to another donor is not being considered.

D. Patent Ductus Arteriosus (PDA) Closure

Patent ductus arteriosus with apnea secondary to intractable congestive heart

failure has been cited as an indication for surgical ligation. The mechanism is

likely to be relative central nervous system hypoxia causing inhibition of

respiratory drive. PDA as a cause of apnea is mentioned mostly in older literature

(69) as apnea seems no longer to be a major indicator for closure of the ductus.

Reasons for this may be that newer modalities for diagnosis of a PDA, such as

bedside echocardiography, and wide acceptance of early indomethacin usage,

now result in only the very rare case of clinically significant progressive heart

failure. PDA should remain in the differential diagnosis of apnea, but certainly

surgical closure to manage apnea will remain an unusual indication.

VI. Mechanical Airway Support

A. Nasal Cannulas

Nasal cannulas are frequently used to administer oxygen in increased concentra-

tion without relegating the infant to a closed environment. The mechanism by

which this common clinical practice prevents apnea is not entirely clear. It is clear

that use of either 100% oxygen at low flow rates (0.25 L=min or lower) or varying

concentrations of oxygen at higher flow rates often result in stabilization of

irregular respiratory patterns and often dramatically reduce the incidence of apnea

in an individual infant (54). However, on occasion we note infants in whom we

are unable to remove the nasal cannulas even when only 21% oxygen is being

administered. This seeming paradox has not been explained satisfactorily in the

literature. Three possible mechanisms may be posited. First, the nasal cannula

may act like an air jet and provide a stimulus that activates the central respiratory

control system. This is unlikely, as one would certainly expect accommodation to

eventually reduce the effectiveness of the signal. Second, the 1–2.5 liter per

minute flow through the cannula results in a functional nasal continuous positive

airway pressure that may result in increased blood oxygen levels or may prevent

obstructive events (70). A third hypothesis (J. Pomerance, personal communica-

tion) is that the flow of air into the upper airway effectively reduces airway dead

space such that the infant’s ventilation results in slightly higher blood oxygen

level sufficient to prevent apnea secondary to hypoxemia. Such an effect could be

sleep=wake state dependent.
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B. Oral and Nasal Airways

Apnea secondary to anatomic obstruction may occasionally be treated by

fashioning a nasal or oral airway allowing passage of air around or through an

anatomic obstruction. A nasal endotracheal tube is often adequate for this process

on a temporary basis. Various infant-size oral devices are commercially marketed

for this purpose. However, experience indicates that these devices are adequate

for temporary use, but are often inadequate for long-term usage. All these devices

are inadequate for management of apnea of premature infants whether obstructive

or central in origin. Permanent anatomic obstruction that may not be surgically

approached for a period of time is best bypassed by use of a tracheostomy. These

are difficult to manage in newborns.

C. Continuous Positive Airway Pressure (CPAP)

When apnea is resistant to the mild stimulation techniques and is demonstrated to

be obstructive or mixed obstructive=central, then delivery of continuous positive

airway pressure is often highly effective in preventing further episodes (27,71–

73). Obstructive apneas may be detected by careful physical examination—

particularly pulmonary auscultation to demonstrate obstructed breaths. Alterna-

tively, multichannel recording of airflow at the nose or use of inductance

plethysmography may also demonstrate more rigorously the diagnosis of

obstructive apnea components. Finally, one can simply apply nasal CPAP and

demonstrate efficacy, thus establishing that obstructive apnea was the problem.

Providing positive airway pressure preventing closure of the pharynx may

appropriately treat persistent apnea with an obstructive component (73–77). In

this circumstance the positive airway pressure results in reduced upper-airway

resistance (78) and expansion of the larynx. These positive forces counteract

passive tendencies to close the pharynx, as well as negative pressures generated

by inspiration that augment closure (71,79). Effective pressure may be generated

using many different techniques. The most common of these is use of a short

pronged nasal cannula that generates pressure through many different techniques.

Continuous flow to the nasal prongs with a resistance generator (e.g., a ventilator

or simply a bottle of water) develops adequate pressure, but the airflow should be

two to three times greater than the maximal inspiratory airflow. This elevated flow

rate is necessary to prevent rebreathing of the baby’s exhaled breath. The original

description of a continuous positive airway generator is by Gregory et al. (80) and

was originally described for treatment of respiratory distress syndrome. A device

that generates variable flow continuous airway pressure using a Venturi effect has

also been patented and may be more effective than conventional nasal CPAP (72).

Other airway techniques to generate CPAP include use of an endotracheal

tube positioned just above the epiglottis in the pharynx (76), long silastic thin

prongs that extend from the nares to the nasopharynx, and face masks (81). While
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face masks may provide adequate pressure to adequately treat obstructive apnea,

they have been associated with posterior fossa hemorrhage secondary to skull

deformation of the tight bands needed to provide sufficient force to seal the mask

to the face. The endotracheal tube technique requires increased surveillance, as

airway secretions tend to accumulate and require suctioning. The long prong

technique has its advocates, as the devices tend to stay in place well and may

reduce nasal trauma due to their softness and the reduced pressure needed to

apply them to the nose.

CPAP should not be attempted with an intubated patient for protracted

periods. An intubated patient is unable to generate the airway closure necessary to

produce sighs that result in maintenance of functional residual capacity. In the

case of protracted intubation without intermittent positive pressure ventilation,

functional residual capacity inevitably declines over time resulting in inadequate

ventilation.

D. Intermittent Positive Pressure Ventilation

When CPAP fails (and in the case of central apnea when methylxanthines, and

possibly doxapram, fail) then the affected infant having many significant apnea

episodes requires mechanical ventilation. Intermittent positive pressure breaths

delivered through a nasal cannula may be effective initial therapy. The earliest

reports of nasal intermittent positive pressure ventilation (NIPPV) indicated no

advantage over nasal CPAP alone (82), but more recent reports demonstrate

NIPPV to be effective therapy in treating respiratory distress syndrome, and

presumably would also be effective in treatment of resistant clinical apnea

(72,83). Effective techniques to synchronize and deliver positive pressure

during an infant’s inspiratory effort have led to the development of synchronized

nasal intermittent positive pressure ventilation using the normal nasal CPAP

device (84,85). The acronym that I prefer for this technique is ‘‘SNIPPV’’ (we

need another snappy acronym!). This technique has been shown to very effec-

tively prevent extubation failure (e.g., apnea) in infants.

The final nonpharmacological technique for management of apnea of

prematurity is intubation and mechanical ventilation. In infants with intractable

apneas despite optimizing nonpharmacological and pharmacological manage-

ment, this technique may be utilized. Most infants in this circumstance have

relatively normal pulmonary compliance; hence low pressures and low ventila-

tory rates may be utilized simply to provide minimal ‘‘backup’’ ventilation for the

infant having many episodes of desaturation. Synchronized intermittent manda-

tory ventilation or assist control ventilatory styles may be less traumatic to the

lungs than conventional intermittent mandatory ventilation. Mechanical ventila-

tion seems most commonly needed in extremely low birth weight infants whose

pulmonary function is otherwise normal yet whose chest wall compliance is quite
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low, resulting in inability to maintain functional residual capacity causing

hypoxemia. Clinically, this may be recognized a ‘‘fatigue’’ or ‘‘retractions’’ by

medical staff. SNIPPV may be a preferred alternative as we gain experience with

these newer techniques.

VII. Concluding Remarks

Regular respiratory rhythm depends on a set of brainstem neurons constantly

oscillating between phases of activity that regulate inspiration, postinspiration,

and expiration. Both pharmacological and nonpharmacological methods to

prevent apnea in premature infants are based on stimulating these neurons to

maintain their rhythm. In many circumstances the techniques utilized are

designed to activate these respiratory neurons, but some techniques are also

designed to prevent inhibition of the neuronal network.

Many infants also have episodic airway obstruction due to anatomic and

neurologic differences in the upper airway. In the latter case, in addition to

increasing neural activity, nonpharmacological methods are designed to prevent

airway closure. Astute clinicians utilize both nonpharmacological and pharma-

cological approaches in various combinations to reduce the incidence of apnea in

infants.
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I. Introduction

The control of breathing, like many other physiologic functions, differs greatly in

the newborn infant from the older child and adult, and imposes important

challenges. The most profound challenge occurs at birth, with the switch from

irregular, episodic, nonrespiratory fetal breathing movements to the sustained

respiratory rhythm essential to extrauterine life. Although the structural, ana-

tomic, and cellular mechanisms for ventilatory homeostasis are in place at birth,

the newborn must compensate for neurophysiologic immaturity and the mechan-

ical disadvantages of the immature chest wall.

The infant born prematurely has even greater challenges than the term

infant. The preterm infant is vulnerable to frequent apneas that are often

associated with hypoxemia and bradycardia. This disorder, known as apnea of

prematurity, results from immaturity in central respiratory drive, respiratory

reflexes, and chemoreceptor and mechanoreceptor function. Research into the

mechanisms underlying apnea of prematurity has enhanced our understanding of

the maturation of respiratory control.

The study of the control of breathing soon after birth and its maturation in

infancy has inherent difficulties. Most studies of breathing in newborns are

performed during sleep, typically in the supine position. A face mask or nasal
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prongs with a device to measure airflow or airway pressure, a procedure that

would not be tolerated by an awake infant, can be applied to a sleeping newborn.

Thus, understanding the effects of both behavioral state and body position on

breathing is important to the interpretation of studies of breathing and its control.

In addition, in contrast to measurements in newborns, most studies in adults are

typically performed during wakefulness. This limits the comparisons that can be

made between newborns and adults. As a result, much of our understanding of

the maturation of respiratory control in humans comes from comparisons of

premature to term newborns or to older infants.

This chapter will review the effects of sleep state on respiratory muscle

activity in the newborn, and maturation and development of neuromuscular and

reflex responses of the respiratory pump muscles and the upper airway. Special

consideration will be given to the disorder of apnea of prematurity as a model for

maturation of respiratory control. The issues of ventilatory patterns, periodic

breathing, and the effect of maturation on chemical control of breathing will be

discussed elsewhere (see Chapters 4 and 10).

II. Sleep and Breathing

A. Definitions of Sleep State

Respiratory control is profoundly influenced by sleep state. Understanding the

effects of sleep state on breathing is especially important in newborn infants, who

spend most of the time sleeping. The development of sleep states is addressed in

detail elsewhere in this book (see Chapter 6) and will be considered briefly here.

In the adult, stable and well-defined states of wakefulness, non–rapid eye

movement (NREM) sleep, and rapid eye movement (REM) sleep are readily

identified using neurophysiological measurements (1). Recordings are made of

encephalographic activity (electroencephalogram, EEG), eye movements (elec-

trooculogram, EOG), and postural muscle electromyogram (EMG). Based on

these recordings, distinct states of neurophysiological organization can be

recognized as NREM and REM sleep. NREM sleep is characterized by a

synchronized high-voltage low-frequency EEG pattern, low levels of tonic

postural muscle tone, and little or no eye movement on EOG. REM sleep is

characterized by desynchronized low-voltage high-frequency EEG patterns

similar to the awake state, lack of postural muscle tone, and rapid conjugate

eye movements.

Neurophysiological criteria can be used to determine sleep state in the

infant born at term (40 weeks’ gestation). Cyclic organization of NREM and

REM sleep, as defined by EEG, EOG, and EMG criteria, is present after 36–37

weeks’ gestational age (2,3). However, full maturation of NREM sleep into true

slow-wave sleep that is similar to the adult does not occur until several weeks
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after birth. Before 36 weeks’ gestation, NREM sleep is poorly organized, with a

discontinuous EEG pattern.

In contrast to NREM sleep, REM sleep can be identified earlier in

gestation. Continuous, organized REM sleep EEG patterns are first recognized

in the human as early as 32 weeks’ gestation, and become fully mature at 34–35

weeks (3). Other neurophysiologic measurements, such as the EOG and postural

muscle EMG, are not useful to discriminate state until after 32–33 weeks’

gestation (4).

Because of the difficulties in using neurophysiological criteria during early

human development, behavioral criteria have been widely used to determine sleep

state (5). Two distinct states, active and quiet sleep, have been characterized using

observations of body and eye movements and respiratory patterns. These states

correspond to REM and NREM sleep, respectively. Respiratory patterns are

especially useful, because variability of respiratory cycle time has been shown to

be almost as accurate as neurophysiological criteria in the determination of sleep

state in the term infant (6). Using behavioral criteria, active and quiet sleep can be

differentiated as early as 30 weeks’ gestation (3). With behaviorally defined

states, premature infants spend 50–80% of the time in active sleep; term infants

spend slightly less time in that state. A significant proportion of sleep time in

newborns, especially those born preterm, may be indeterminate, that is, neither

active nor quiet.

B. Sleep State Effects on Respiratory Muscle Activity in the
Newborn

Intercostal Muscles and Diaphragm

The function of the entire motor system is dramatically altered by sleep,

especially REM sleep. During REM, or active, sleep, tonic postural muscle

activity ceases (7). In contrast, in NREM, or quiet, sleep, tonic postural muscle

activity persists. These effects have significant consequences to respiratory

muscle activity and control of breathing. Loss of tonic intercostal muscle activity

and depression of phasic activity during REM sleep results in a further increase in

compliance in the newborn’s already highly compliant chest wall (Fig. 1). During

REM sleep, as the diaphragm shortens with inspiration, the rib cage moves

inward and abdominal displacement increases, leading to the characteristic

‘‘paradoxical’’ breathing during this state (Fig. 1). This is especially pronounced

in the preterm infant, whose chest wall is more compliant than that of the term

infant. Indeed, increased activity of the intercostal muscles may not be sufficient

to offset the increased flexibility of the rib cage in the preterm infant. As a result,

preterm infants may continue to demonstrate paradoxical chest movement during

neurophysiologically determined NREM sleep (8).
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With maturation, rib cage distortion decreases, resulting in improved

mechanical stability of the respiratory system (9). In NREM sleep, tonic and

phasic activity of the intercostal muscles helps to stabilize and ‘‘stiffen’’ the chest

wall (12) (Fig. 1). As noted above, the amount of time spent in REM sleep also

decreases with maturation. As a result, the rib cage contribution to tidal volume

increases with development (10,11).

Diaphragm contraction is not subject to the generalized inhibition of

skeletal muscle activity that occurs during REM sleep. In contrast to other

respiratory muscles, phasic diaphragmatic EMG activity may increase during

active sleep (13). This may represent a compensatory response to the loss of the

intercostal muscle contribution to ventilation (14). In newborns, however, a

significant proportion of diaphragmatic work may be expended on distortion of

the chest wall. This inefficiency may be more problematic with decreasing

maturity. In preterm infants, diaphragmatic volume displacement during para-

doxical breathing can be up to twice the volume change of the lung, leading to

inefficient diaphragmatic work (15). Some have hypothesized that this ineffi-

ciency in diaphragmatic activity may lead to muscle fatigue, which may

contribute to apneic spells (16).

Figure 1 Diaphragm and intercostal muscle EMGs and rib cage and abdominal motion

measured with magnetometers in a preterm infant in quiet and REM sleep. Note the

paradoxical rib cage and abdominal movement and increased abdominal excursion during

REM sleep. In REM sleep, phasic intercostal EMG activity markedly decreases, and

diaphragm EMG activity increased compared to quiet sleep. (From Ref. 14.)
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Although the phasic activity of the diaphragm is similar across sleep states,

differences exist in both its tonic and postinspiratory activity. These changes can

affect the infant’s ability to maintain end-expiratory lung volume above the

mechanically determined level (17). The basal level of diaphragm tone is lower in

REM than in NREM sleep (18,19). In addition, postinspiratory inspiratory

activity (PIIA) is considerably more variable in REM sleep than NREM. The

reduction in PIIA is evident in both preterm (20) and term infants (17).

The mechanism of this variability in PIIA is uncertain. It may be a centrally

mediated state-related phenomenon or secondary to changes in peripheral afferent

input. The latter is supported by studies in preterm infants during REM sleep.

During this state, neural inspiratory time and PIIA are shortened with increased

chest wall distortion (21). However, if the rib cage is stabilized with continuous

positive airway pressure, both inspiratory time and PIIA increase. These results

suggest that changes in diaphragmatic activity that occur with sleep may be

mediated indirectly by changes in mechanical feedback, such as differences in

chest distortion or lung volume.

Upper-Airway Muscles

The upper airway, specifically the larynx, pharynx, and nose, contributes

significantly to total pulmonary resistance to airflow (22). Similar to other

respiratory muscles, the muscles of the upper airway are subject to state-related

modulation of their activity.

It is likely that total upper-airway resistance is increased in REM compared

to NREM sleep (23), but the contribution of changes in laryngeal aperture versus

other upper-airway structures to this increase is unclear. Respiratory activity of

the posterior cricoarytenoid (PCA) muscle, the sole abductor of the vocal cords,

mimics that of the diaphragm during different states of sleep. In studies in

preterm infants in which PCA EMG activity was measured with an esophageal

surface electrode, tonic and phasic activity increased during NREM sleep (19),

which should result in decreased inspiratory resistance.

Expiratory resisistance may also be influenced by increased activity of the

thyroarytenoid muscle, the principal adductor of the larynx. In newborn animals,

phasic activity of the thyroarytenoid is increased during NREM sleep; this results

in glottic narrowing and slowing of expiratory airflow (24). Demonstration of

active laryngeal adduction in human infants is difficult because the thyroary-

tenoid is not accessible to surface EMG measurements. In newborn infants,

however, expiratory flow patterns suggest that active laryngeal narrowing may

contribute to establishment of lung volume immediately after birth (25). Active

adduction of the larynx also occurs during expiratory ‘‘grunting’’ observed in

newborn infants with lung disease.
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The muscles of the pharynx are also affected by sleep state. Loss of phasic

and tonic activity of the pharyngeal dilators may make upper airway collapse

more likely during REM sleep (26). The pharynx is the most common site of

upper-airway obstruction during spontaneous mixed or obstructive apnea in

preterm infants (27). In one study in preterm infants, increased negative pressure

generated during inspiratory efforts against an added elastic load resulted in a

higher frequency of upper-airway obstruction during active compared to quiet

sleep (28).

The stability of the upper airway increases with development. Although

airway obstruction appears more likely during REM sleep when considered on

mechanical factors alone, experimental data suggest that reflexes that promote

upper-airway patency continue to operate during sleep in more mature infants.

For example, term infants, in contrast to those born prematurely, are able to

maintain airway patency during active sleep despite increased negative pressures

generated during occluded efforts (29,30).

III. Maturation of Neuromuscular Reflex Responses

A. Control of Lung Volume

One of the most striking features of the respiratory system in the newborn is the

highly compliant chest wall (31). Inward recoil of the lung is only slightly less

than that of the adult. However, this opposes the minimal outward recoil of the

chest wall. As a result, the passively determined functional residual capacity

(FRC) in the newborn is � 10% of total lung capacity, and below its closing

capacity (32). However, measurements in newborn infants show that end-

expiratory volume is substantially higher than the passively determined FRC

during quiet sleep (33). Newborns maintain an elevated end-expiratory lung

volume by actively interrupting expiration and initiating inspiration before

passive deflation is complete. This interruption is accomplished by shortening

expiratory time, retarding expiratory airflow by PIIA activity of the diaphragm,

and=or laryngeal narrowing (Fig. 2) (17,20,34). End-expiratory lung volume is

lower during active sleep, owing in part to loss of these active mechanisms (33).

Decreased intercostal muscle tone that helps to stiffen the chest wall also plays a

role. Lower end-expiratory lung volume during REM sleep leads to lower and

less stable oxygen tensions in newborn infants (35) and a more rapid decline in

oxygen saturation than is seen in adults during the brief periods of apnea and

hypoventilation that are characteristic of this sleep state (36).

Mechanical stability of the respiratory system is a bigger challenge in

preterm infants, owing in part to their more compliant chest wall. Although many

of the breathing strategies used by term infants to defend lung volume are

operative (17,34,37), the vulnerability of preterm infants is increased by the

longer time spent in active sleep, greater irregularity of respiratory rhythm, and

360 Eichenwald and Stark



frequent apneas. Reduced lung volume and the lower, more variable oxygen

levels during active sleep may lead to rapid development of hypoxemia even

during brief respiratory pauses (Fig. 3) (36). Mechanical support of the chest wall

achieved by placing preterm infants prone rather than supine improves the rib

Figure 2 Example of expiratory braking in a full term infant in quiet sleep. In panel (A)

expiration is passive, in contrast to panel (B), where there is marked slowing of expiratory

airflow. Note that expiratory EMG activity of the posterior cricoarytenoid (PCA),

quantified by the moving time average (MTA), is high in panel (A), and low in panel

(B), indicative of glottic narrowing slowing expiratory airflow. (V¼ airflow; V:¼ tidal

volume; DI¼ diaphragm). (From Ref. 34.)

Figure 3 Recordings of volume, rib cage, and abdominal motion during breathing and

unobstructive apnea in a preterm infant. (A) Quiet sleep; (B) active sleep. End-expiratory

lung volume during apnea falls from that during breathing in quiet sleep and remains

unchanged in active sleep. (From Ref. 20.)
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cage contribution to tidal volume and the ventilatory response to inhaled carbon

dioxide (38). However, this intervention does not appear to be associated with a

decrease in the frequency of apnea (39).

With maturation, chest wall compliance decreases and the mechanical

advantage of the chest wall muscles improves, enhancing the mechanical stability

of the respiratory system (9). Motor activity, such as sitting and crawling,

increases abdominal and intercostal muscle strength, and progressive mineraliza-

tion of the rib cage stiffens the chest wall. The transition from a dynamically

maintained end-expiratory lung volume to one determined passively occurs by

� 1 year of age (Figs. 4, 5) (40). A substantial increase in expiratory time also

occurs in this time frame (41), and allows older infants to breathe from their

relaxed FRC.

B. Upper Airway

The tendency of the preterm infant to develop obstructive apnea demonstrates the

central role of upper-airway muscle activity in ensuring regular breathing. Reflex

protection of the upper airway occurs through several mechanisms, including

inhibition of pump muscle activity. Negative suction pressure applied to the upper

airway during inspiration, as might occur during airway obstruction, inhibits

respiratory pump muscle activity and shortens inspiratory time in normal

newborns (42,43). In tracheotomized infants, whose upper airways are isolated

Figure 4 Examples of flow-volume loops of tidal breaths obtained by respiratory

inductance plethysmography at three different ages demonstrating transition from a

dynamically maintained to a relaxed end-expiratory lung volume. (A) Tidal breath in a

4-month-old infant in which airflow is interrupted above the relaxation volume; (B) tidal

breath in a 17-month-old child with the expiratory limb continuing uninterrupted to zero

flow; (C) tidal breath in a 1-month-old infant in which the flow pattern (interrupted or

relaxed) could not be determined. (From Ref. 40.)
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from their lower airways, negative pressure spontaneously generated during

inspiratory efforts against an upper airway occlusion also depressed ventilation

(43).

These upper-airway inhibitory reflexes may be important in the recovery

from obstructive apnea. During apnea, inspiration in the face of upper-airway

obstruction increases negative pressure below the site of obstruction. Reflex

inhibition of diaphragmatic contraction due to increasing negative pressure in the

airway lumen would result in a decrease in luminal pressure, helping the airway to

reopen. It is likely that similar reflexes are active in preterm infants, although their

tendency to have frequent obstructive apnea suggests that this protective effect

may increase with maturation.

Immaturity may also disturb the relationship of the timing of onset of

upper-airway and pump muscle activity, predisposing the immature infant to

airway obstruction. In the normal sequence of inspiration, activation of the upper-

airway muscles occurs before the diaphragm. This promotes a decrease in upper-

airway resistance prior to the onset of inspiratory airflow. Activation of the upper-

airway muscles first also stabilizes the pharynx from the negative pressure

generated by pump muscle activity and protects against upper-airway collapse.

Figure 5 Distribution of relaxed (expiratory flow uninterrupted to zero flow), inter-

rupted (expiratory flow interrupted before reaching relaxation volume), and indeterminate

breaths shown as number of breaths (right) or percent of breaths (left). The percent of

breaths with dynamic maintenance of end-expiratory volume above relaxation volume

decreased with maturation. (From Ref. 40.)
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In a study comparing timing of PCA activation (measured by esophageal surface

EMG electrode) to that of the diaphragm (also measured by surface EMG

electrodes), preterm infants were found to have frequent ‘‘uncoupled’’ breaths

in which diaphragm EMG activity preceded PCA activity (44). Although this

uncoupling of PCA and diaphragm activity was also observed in term newborns,

it occurred significantly less frequently than in the preterm infants.

Development also affects other upper-airway muscle reflex responses that

promote airway patency. Upper-airway muscle activity increases more than pump

muscle activity during experimental airway occlusions in both preterm and term

newborns (45,46), as well as in older infants (29). However, differences were

observed between preterm infants who had frequent apnea spells from those who

did not. Upper-airway closure occurred more commonly with nasal occlusion in

preterm infants with apnea than in those without (30,47). In addition, preterm

infants with apnea were less likely to recruit genioglossus muscle activity during

airway occlusion compared to those without apnea (48). Finally, in preterm

infants chemoreceptor stimulation appears to accentuate diaphragmatic activity to

a greater extent than upper-airway muscles (49). This might predispose preterm

infants to upper-airway obstruction during the enhanced diaphragm activity

associated with increased ventilatory drive. Differential response of the respira-

tory muscles to hypercapnia may explain the observation in preterm infants of

several obstructed inspiratory efforts that may follow a central apnea.

C. Laryngeal Reflexes

Upper-airway protective mechanisms involving the pharynx and larynx include

coughing, sneezing, swallowing, and laryngeal or pharyngeal closure. The

laryngeal chemoreflex appears to be active in the newborn and may be clinically

important. This reflex can be elicited by dripping a small amount of fluid (water

or saline) into the hypopharynx of a newborn infant. The response includes

central apnea, swallowing, and obstructed breaths (Fig. 6) (50–52). Cough, the

most prominent adult response to similar stimulation of the larynx, is rarely

elicited. Preterm infants demonstrate a stronger protective response than term

infants, with a higher frequency of obstructive and central apnea, as well as more

prolonged apneas with associated bradycardia (Fig. 6) (51). Hypoxia appears to

reinforce this reflex response (53). The response to stimulation of the laryngeal

chemoreflex in preterm infants is similar to observations during spontaneously

occurring apneas, suggesting that this reflex may contribute to the etiology of

some apneic spells. Swallows, which are prominent in both induced and

spontaneous apneas in preterm infants, are more common during apneas than

in periods of quiet breathing during sleep (54), and do not occur during periodic

breathing (55). This reflex response to apnea may be important in reestablishing

pharyngeal airway patency by reducing adhesion forces in the collapsed tissues.
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IV. Maturation of Respiratory Control: Resolution of
Apnea of Prematurity

The major clinical correlate of immaturity of respiratory control is the disorder

known as apnea of prematurity. Studies of its pathophysiology and resolution

have added to our understanding of the development of respiratory control. This

condition is one of the most frequent diagnoses in newborn intensive care units,

and delay in its resolution may prolong the hospital stay (56,57). The pathogen-

esis of apnea of prematurity is multifactorial, as detailed in Chapter 12. Thus, the

resolution of recurrent apneic spells involves the maturation of multiple inter-

active aspects that influence respiratory control, and remains poorly understood.

It is not surprising, therefore, that the time required for apnea of prematurity to

resolve varies greatly in infants born at different gestational ages. It is clear,

however, that maturation of respiratory control occurs in parallel with other

measures of physiologic maturity, including feeding behavior (56,57). Cessation

of apnea of prematurity may be a reflection of overall brainstem maturation (58),

although it is likely that changes in respiratory muscle function and reflex activity

also play a role.

Figure 6 Frequency of swallows, obstructed breaths, central apnea, arousal, and cough

to saline bolus pharyngeal stimuli in preterm and term infants. (From Ref. 51.)
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In infants born at 35–36 weeks’ gestational age, apnea of prematurity is not

usually a clinical problem. In infants delivered at a gestational age > 28 weeks,

apnea typically resolves by 35–36 weeks’ postmenstrual age (59,60). This

suggests that the maturational processes leading to development of respiratory

control in the preterm infant continue as they would have in the fetus. However,

infants born at extremely early gestational ages (24–28 weeks) have a longer time

course to resolution of their apnea than infants born after 28 weeks (56,60).

Apnea in these younger infants frequently persists beyond 40 weeks’ postmen-

strual age (Fig. 7), indicating that respiratory control of infants who are very

immature at birth may develop more slowly. Similar results were found in a

smaller study of preterm infants discharged with a home cardiorespiratory

monitor (61). In that study, the mean postmenstrual age of resolution of apnea

was � 41 weeks, although no correlation between the degree of prematurity and

the postmenstrual age at last apnea was observed. In infants born at 24–28 weeks’

gestation, bronchopulmonary dysplasia was associated with later resolution of

apnea (56). This suggests that lung disease may influence the maturation of

peripheral and central respiratory control in ways that are poorly understood.

Consistent with this hypothesis is the observation that maturation of chemo-

receptor function is delayed in preterm infants with a prolonged requirement for

Figure 7 Individual (u) and mean (j) (� SD) values for last postnatal day with a

documented apnea and=or bradycardia event of any type for cohort of infants delivered at

24–28 weeks. Dotted lines indicate when infants in each gestational age group reach 36,

38, and 40 weeks’ postmenstrual age. Apnea of prematurity frequently persisted beyond

term gestation for all gestational ages. (From Ref. 56.)
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oxygen supplementation compared to infants with no supplemental oxygen need

after birth (62).

The time course of resolution of apnea of prematurity appears to have a

consistent natural history. Severe apnea events that require intervention (tactile

stimulation or positive pressure ventilation with oxygen) are the first to disappear,

followed by episodes that resolve spontaneously without intervention. Transient

spontaneously resolving episodes of bradycardia without associated observed

apnea are the last to disappear (Fig. 8) (56). These results are confounded,

however, by variability in monitoring practices and the inability of standard

cardiorespiratory monitors to detect obstructive apnea (63).

Continuous cardiorespiratory recordings prior to hospital discharge demon-

strate that preterm infants continue to have significant abnormalities of breathing

patterns, apneic events, and bradycardias, although their clinically apparent apnea

was thought to have resolved (64–67). Similarly, preterm infants who are

monitored at home have persistent abnormalities of ventilatory control docu-

mented on home monitor memory recordings (68,69). In the largest longitudinal

study of cardiorespiratory events to date in infants monitored at home (69),

asymptomatic preterm infants were shown to be at higher risk for significant

breathing abnormalities than healthy term infants until � 43 weeks’ postmen-

Figure 8 Mean (� SE) for the last postnatal day with a documented apnea=bradycardia
event requiring tactile stimulation or other intervention (.), self-resolved apnea and

bradycardia event (s), and self-resolved bradycardia without documented apnea (j) for

the same subject cohort as Figure 7. Note the similar progress of resolution of apnea for the

different gestational ages. (From Ref. 56).
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strual age. In this study, 20% of asymptomatic preterm infants experienced one or

more episodes of severe apnea of at least 30 sec duration or heart rate < 60 bpm

for at least 10 sec duration during the 6 months of home monitoring. The clinical

significance of these events remains uncertain. However, these findings indicate

that respiratory control, even when thought to be mature by conventional

measures, may remain unstable in infants born prematurely, even when they

reach a postmenstrual age of 40 weeks or older.

V. Conclusions

Newborn infants are presented with several challenges to their control of

breathing. Their highly compliant chest wall puts them at a mechanical disad-

vantage that is worsened by the inhibitory effects of sleep on respiratory muscle

activity. Respiratory reflexes, such as upper-airway responses to negative pres-

sure, which are adaptive in the adult, may depress ventilation in the newborn. In

no other species do newborns display prolonged respiratory pauses that resolve

with maturation.

Understanding the maturation of respiratory control in the newborn has

been enhanced by research into the pathophysiology of apnea of prematurity.

Growth and development bring greater stability of respiratory control, but the

preterm infant remains vulnerable to disturbances of breathing well beyond term

postmenstrual age, suggesting that premature birth may slow the course of

maturation that occurs during fetal development. Further research on how

maturation affects the developing respiratory system will enhance our under-

standing of its disorders in early infancy.
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I. Introduction

Oral feeding in the neonate is usually accomplished in one of two ways: breast or

bottle feeding. Achieving full oral feeding is an important milestone prior to

discharge. Feeding-related bradycardia and desaturation are common among

premature infants and infants with chronic lung disease. Before discussing the

pathophysiology of feeding-related bradycardia and desaturation, an understand-

ing of the following concepts is vital.

1. The upper airway constitutes a common conduit to both respiratory and

digestive tracts.

2. Feeding and breathing present conflicting priorities.

3. Oral feeding in the neonatal period consists of sucking and swallowing

into which the act of breathing is integrated.

4. Contraction of a number of upper-airway muscles occurs during this

complex motor act.

5. Unless the airway can be protected during oral feeding, aspiration

ensues.

For optimal performance of this complex motor act, sequential and

coordinated activation of the upper-airway muscles is a must. Regulation of the
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activity of these muscles during development is discussed in detail in Chapter 5.

In order to better understand the interplay of sucking and swallowing on

breathing, the motor acts of sucking and swallowing and their development are

reviewed first. Changes in the breathing pattern observed during oral feeding and

the factors implicated in the etiology of this ventilatory depression are discussed

next. The primary focus of this chapter is on feeding-related changes in the

control of respiration.

II. Sucking

Sucking has been documented in fetal life by week 15 of gestation (1) and rarely,

neonates are born with sucking blisters. Gryboski described an immature suck-

swallow pattern in newborn infants between 32 and 34 weeks’ gestation and a

mature sucking pattern, which consists of multiple swallows during a sucking

burst, in these infants by 6–12 postnatal weeks (2). Among infants born at 34–36

weeks, a mature pattern was observed by 2 weeks of age (2). Hack et al. (3), on

the other hand, reported mouthing movements in infants at 28 weeks, a clear

burst-pause pattern by 32 weeks, and a stable rhythm by 34 weeks.

Two types of sucking have been recognized: nutritive and nonnutritive.

Nonnutritive sucking has been observed from the time of birth in both healthy

and sick neonates. The newborn infant is capable of sucking and breathing

simultaneously. This can be accomplished by functionally isolating the oral cavity

from the pharynx. Physiological studies reveal that negative pressure changes are

produced within the oral cavity during sucking (4–10). Suction pressure is

generated by the rhythmic contractions of jaw muscles. These studies on sucking

have also documented the presence of positive pressure changes in the oral cavity.

These negative and positive pressure changes have been termed suction and

expression components, respectively. During nutritive sucking, milk is expressed

from the breast or bottle into the oral cavity. The relative importance of negative

and positive pressures has been the focus of several investigators. Based on

cineradiographic studies, Ardran and coworkers suggested that infants express

milk by squeezing (11,12) and attributed greater importance on positive pres-

sures. Pressure measurements by Colley and Creamer (13), on the other hand,

indicated that suction pressure created by the pistonlike movements of the tongue

and jaw is the critical factor in milk expression. Recent ultrasonographic studies,

which permit visualization in both horizontal and transverse planes (14–17),

indicate that suction component is the critical factor in milk expression, even in

breastfeeding (14).

A number of factors determine how much milk is expressed per suck; these

include the integrity of the labial, facial and palatal muscles to create a seal

around the nipple, as well as the magnitude of contraction of the pressure-
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generating muscles. Decreased milk flow observed with the paralysis of facial

muscles, inability of infants with cleft palate to generate negative sucking

pressure, and reduced pressure changes seen among infants born to mothers

receiving sedation during labor (4,18) support this line of reasoning. The volume

of milk expressed per suck depends, in addition, on the characteristics of the

container system. Rigid glass vs. collapsible containers, presence or absence of

vent holes, as well as the shape, consistency, and size of feedhole all have an

effect on milk flow (19). Nipples for premature infants in general have a softer

consistency and a larger feedhole than nipples for term infants (20). Wide

variability in milk flow is observed within and among the different nipple

types; this is primarily attributable to the variability in the size of the feedhole

(21). Variability in milk flow within a given nipple type can be significantly

reduced by decreasing the variability in the size of the feedhole (22), for example,

by utilizing technological innovations during the manufacturing process.

One should balance the work of sucking against the potential detrimental

effect of greater milk flow. One could easily choke the infant by exceeding

his=her autoregulatory capacity or increase the work of sucking by markedly

restricting flow. Reduced variability in the size of feedhole is essential to ensure

uniform milk flow in any given nipple type. A flow rate of 0.15–0.20mL per suck

would be adequate for most newborn infants, corresponding to the suck volume

observed at the beginning of a feed in breastfed babies (23). Nipple units with

lower or higher flow may have a role in feeding infants who generate markedly

higher or lower sucking pressure than average so that milk flow=suck can be

maintained within the range of autoregulation.

Infants usually suck vigorously and continuously at the beginning of the

feed. This initial period, continuous sucking phase, often lasts >30 sec and is

typically followed by a period in which the sucking bursts alternate with periods

of rest or pause, termed intermittent sucking phase. In breastfed infants a linear

relationship between milk flow and sucking frequency has been demonstrated

(24). Sucking pressures vary markedly (4). In term infants, sucking pressure

during bottle-feeding decreases when flow rate increases (13). A decrease in

sucking pressure and an increase in time between sucking clusters are seen

towards the end of the feeding. These findings suggest that term infants exhibit an

autoregulatory mechanism during feeding. The premise for a larger feedhole for

preterm infants is that higher milk flow compensates for the lower sucking

pressures. However, when nipples for term and preterm infants are compared, no

significant difference in sucking pressures or frequency is seen in preterm infants

(10), suggesting that preterm infants are unable to autoregulate milk flow. An

alternative explanation for this finding is that the variability in milk flow within

the two types of nipples tested is too great. In fact, studies with laser-cut nipples

with less variable feedhole sizes show a significant difference in sucking

pressures between high and low flow nipple units among preterm infants (22).
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This finding supports the notion that preterm infants have at least a limited ability

to autoregulate milk flow. Drooling during oral feeding is more common at high

flow in both preterm and term infants, but it is more prominent in preterm infants

(25). The fact that drooling was more common in preterm infants likely reflects

the decreased ability of these infants to adequately regulate milk flow. Never-

theless, according to these investigators, the ability to drool while continuing to

feed may be a mark of feeding competence, rather than incompetence (25).

In recent years, several groups of investigators have studied the develop-

mental pattern of nutritive sucking. Gewolb and coworkers (26) showed that the

percentage of sucks organized into run increased with increasing postmenstrual

age (PMA). Similarly stability of suck rhythm expressed as a coefficient of

variation of suck-suck interval showed a significant relationship to increasing

postmenstrual age. However, these changes showed no relationship to postnatal

age, suggesting an intrinsic maturational pattern rather than a learned behavior

(26). Lau et al. (27) showed that the premature sucking pattern consisted

primarily of the expression component. With age, infants shifted to more frequent

use of the term sucking pattern with the rhythmic alternation of suction=
expression. These investigators also observed a positive correlation between

different stages of sucking and postmenstrual age (28). Bu’Lock (16) also showed

that adequate neuromuscular coordination during oral feeding is more a function

of gestational maturity than of postnatal sucking experience. In a longitudinal

study of term infants, Gewolb et al. showed that suck rate, percentage of suck

aggregated into runs, and length of suck runs increased over the first 4 weeks

(29). Further increase in sucking rate with increasing postnatal age was reported

by McGowan (30) in older term infants. However, stability of sucking rhythm is

established by 40 weeks, and no significant change occurs between infants at term

and at 1 month of age (29).

Ability to alter sucking rate has been demonstrated by several groups of

investigators. Schrank et al. observed that preterm infants responded similarly to

term infants with respect to increased suck and swallow activity in response to

increases in milk flow (25). A decrease in the rate of both sucking and swallowing

frequency was noted during oral feeding in acute hypercapnia, suggesting that

increased ventilatory drive may directly inhibit nutritive feeding behavior of

premature infants (31). However, no difference in sucking frequency was seen

between BPD and non-BPD infants, although suck rhythm was less stable in BPD

infants (32). This difference in sucking rates between the two studies may be

attributable to chronic hypercapnia of the BPD group.

III. Swallowing

Sequential activation of various upper-airway muscles is critical for suck-

swallow coordination. Three distinct phases of swallowing have been recognized:
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oral, pharyngeal, and esophageal. Detailed discussion of these phases is beyond

the scope of this chapter, and readers are referred to excellent reviews on this

topic (33–35). Nutritive sucking constitutes the oral phase of swallowing in

neonates. In the pharyngeal stage, the bolus is propelled through the pharynx into

the esophagus. The esophageal phase is a continuation of the pharyngeal motion

and begins as the bolus enters the esophagus. The pharyngeal and esophageal

phases are under involuntary control. Slowly adapting mechanoreceptors located

in the mucosa of the pharynx and larynx responding to water and light touch

initiate swallowing (36).

Neurophysiological influences of swallowing on central control of breath-

ing have been studied in both adult and neonatal animals. In general, breathing is

transiently inhibited during swallowing (37). Respiratory activity of some

neurons in the reticular activating system is abolished during swallow. These

neurons may exhibit a burst of impulses with swallowing and often remain silent

for 1.0–2.0 sec; respiratory discharges then resume. Other neurons may cease

firing during repetitive swallowing. A similar pattern has been seen in phrenic

motoneurons as well (38).

The mechanical act of swallowing has been studied extensively by

cineradiography, ultrasonography, and electromyography. Findings of earlier

cineradiographic studies have been confirmed recently by ultrasonography (15).

Horizontal transbuccal, as well as transverse and longitudinal submental projec-

tions show a depression in the posteromedial aspect of the tongue along the

median raphe. Expressed milk is conveyed posteriorly toward the pharynx, while

the lateral portion of the tongue encloses the nipple and the bolus. A number of

events occur during swallowing. These include closure of velopharynx, closure of

the glottis, and relaxation of the cricoesophageal sphincter. Velopharyngeal

closure prevents pharyngonasal reflux, glottic closure prevents aspiration into

the trachea, and relaxation of the cricoesophageal sphincter allows propulsion of

the bolus into the esophagus. In addition, the pharynx moves anteriorly and

cranially, while the larynx is pulled forward and upward. The muscles contracting

at the onset of swallow are the superior pharyngeal constrictor, genioglossus,

styloglossus, stylohyoid, geniohyoid, and mylohyoid. The sequence of activation

of these muscles during swallowing has also been investigated extensively by

electromyography (39,40).

A. Dysphagia

A number of clinical conditions are associated with dysphagia in neonates; some

are congenital, others are acquired. Symptoms of dysphagia include difficulty in

sucking and swallowing, vomiting, nasal regurgitation, cough, stridor, and

hoarseness. Congenital structural abnormalities of the nasal airway, face,

palate, pharynx, larynx, and neck may frequently result in dysphagia. For

example, palatal and laryngeal clefts, pharyngeal and laryngeal cysts, choanal
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atresia, macroglossia, and esophageal atresia often cause dysphagia. Some

neuromuscular diseases such as muscular dystrophy and myasthenia gravis as

well as prematurity can also be included here. Acquired causes include cerebral

palsy and acquired causes of mental retardation and developmental delay.

The evaluation of the swallowing mechanism may yield important diag-

nostic information about airway dysfunction. Video fluoroscopy of swallowing,

also known as the modified barium swallow, is ideal for the evaluation of the

swallowing mechanism. The oral cavity, the pharynx, and the larynx are evaluated

using small amounts of liquids of various viscosities. Preterm neonates exhibit

immature feeding skills and discoordinated swallowing and respiratory functions.

Preterm babies usually develop sufficient airway protective mechanisms to allow

feeding without aspiration by 36 weeks. In preterm infants with bradycardia and

oxygen desaturation during oral feeding, video fluoroscopy is rarely needed

before 36 weeks. If the infant aspirates with thin liquids, semithick and thickened

liquids can be tried. Additionally, feeding positions can be changed, and oral

support maneuvers can be attempted to alter the swallowing dysfunction during

the fluoroscopic examination. The single most important aspect of this examina-

tion is the determination of the immediate effects of feeding intervention per-

formed during the procedure, as it may allow parents and caretakers to modify

feeding habits. Nasal regurgitation, also termed pharyngonasal reflux, may occur

in premature infants (41). It appears to be rare, but its prevalence has not been

documented.

Swallow rhythm is established by 32 weeks PMA; it stabilizes well before

the stabilization of suck rhythm. The stability of swallow rhythm does not change

from 32 weeks PMA to term (26,29). Timms et al. (31) reported a decrease in

swallow frequency in preterm infants during acute hypercapnia. This is likely to

be a secondary effect of decreased sucking frequency. However, no decrease in

swallow frequency was seen in a group of BPD infants (32). A difference in the

response between acute and chronic hypercapnia may account for this observed

discrepancy. Nevertheless, swallow rhythm, expressed as the percentage of

swallows aggregated into runs and average length of swallow runs, was decreased

in BPD infants when compared to non-BPD infants of similar postmenstrual age

(32). This may be indicative of dysmaturity rather than immaturity. It is not clear

whether this observation has any value in predicting adverse neurological

outcome.

IV. Breathing

Coordination of breathing and feeding poses fundamental challenges, since these

two vital functions utilize a common pathway. As mentioned earlier, swallowing

and breathing are mutually exclusive, and swallowing has an inhibitory influence

378 Mathew



on the respiratory center. Breathing, however, can continue during the sucking

phase. This can be accomplished by maintaining a nasopharyngeal airway and by

compartmentalizing the sucking to the oral cavity.

As mentioned earlier, sucking can be categorized as nutritive or nonnu-

tritive. Even nonnutritive sucking has an effect on breathing. Expiratory duration

during the sucking burst is shorter, resulting in an increase in breathing frequency

(9). An increase in transcutaneous oxygen tension has been reported during

nonnutritive sucking (42). However, this finding cannot be attributed to an

increase in minute ventilation, since breathing frequency, tidal volume, and

minute ventilation for the entire nonnutritive period remain unchanged (9).

Hence, this increase in transcutaneous oxygen tension can only be explained as

a result of a decrease in ventilation-perfusion mismatch.

Unlike sucking, swallowing interrupts breathing. Until the cineradiographic

studies by Ardran and Kemp (11) showed that airway closure occurs during

swallowing, infants were believed to be capable of breathing during swallowing.

This followed the suggestion by Negus (43) that many herbivorous animals are

able to pass food through the pharynx without interrupting breathing. The fact

that the epiglottis is rather long in neonates and can even overlap the soft palate

added credence to this notion. Recent studies unequivocally show that airflow is

interrupted during swallowing in humans (4,44–46). Accurate measurement of

ventilation during feeding is not easy, and significant methodological and analytic

differences exist between studies (4). Nevertheless, it is clear from these studies

that the minute ventilation decreases markedly during nipple feeding. Ventilation

decreases dramatically during the initial continuous sucking phase (7,47). A

reduction in both frequency and tidal volume is seen. Partial recovery occurs in

premature infants during the intermittent sucking period (Figs. 1 and 2), and this

recovery is greater in the more mature infants (47). Mathew et al. observed a

Figure 1 Breathing pattern of a term infant during intermittent sucking phase. Ventila-

tion is markedly reduced during the sucking period. Note that most of the ventilation

occurs during the pause in sucking. (From Ref. 7.)
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complete recovery of ventilation in term infants during the intermittent sucking

period (7). However, a marked difference in ventilation can be seen even within

the intermittent sucking period; minute ventilation, breathing frequency, and tidal

volume are significantly lower during the sucking burst compared to the pause

period (Fig. 1). In fact, the overall recovery in term and preterm infants depends

on the duration of these pauses and the infants’ ability to increase ventilation

during these periods (7,47). Interestingly, Mizuno et al. (48) documented that

feeding in the prone position may reduce some of the disadvantages of oral

feeding on ventilation. Better oxygenation and larger tidal volume, when

compared to the traditional supine positioning, were observed in the prone

position (48).

Newborn infants have limited ability to regulate milk flow during feeding.

What are its implications on breathing pattern and ventilation? Several of the

studies documenting a reduction in ventilation were conducted with a reservoir

Figure 2 Minute ventilation during feeding in two groups of premature infants.

Ventilation during the continuous sucking phase is significantly lower than control in

both groups. Note that greater reduction in ventilation occurs in the more immature group

of infants. (From Ref. 47.)
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nipple system (7,47). In this system, milk is delivered from the container through

a tube into the oral cavity, essentially bypassing the nipple. Although it is true that

milk flow depends on sucking pressure, the flow rate in this system is at least

twice the flow through the nipple (10). Hence, it is difficult to determine from

these studies how much of the decrease in ventilation is flow dependent. A

significant insight into this issue can be obtained by evaluating breastfed infants.

It is a well-known fact that milk flow is low during the first few days of

breastfeeding. Breathing pattern was only minimally altered during the first few

days of breastfeeding, whereas marked alteration in breathing pattern was

observed during formula feeding (5). However, this difference became minimal

when expressed breast milk was fed from a bottle. This finding indicates that the

difference in ventilation between formula feeding and breastfeeding is not

primarily due to differences in composition but rather to a difference in flow

rate. It is also in agreement with the results of the study using low and high flow

laser-cut nipples (49). A greater reduction in ventilation occurred with high-flow

nipples (49).

In a more recent study, physiological stability of infants during cup feeding

was compared to breast and bottle feeding (50). No significant differences were

observed between bottle and cup feeding with respect to feeding time, amount

ingested, heart rate, respiratory rate, or oxygen saturation. However, physiological

stability was greater during breast feeding than in the other two regimens

(50). Breast feeding time was significantly longer, which suggests that the flow

rate was low during breast feeding and consequently, the effect on ventilation

smaller.

As mentioned above, a marked decrease in ventilation occurs during nipple

feeding in both preterm and term infants. Several factors have been implicated in

the etiology of this ventilatory depression. These include laryngeal chemoreflex,

repeated swallowing, prolonged airway obstruction, and behavioral overriding.

Ventilatory response to inhaled CO2 is reduced during feeding (51). Durand et al.

attributed this reduction in ventilatory response to behavioral overriding (51).

Since the cortical influences are similar in nutritive and nonnutritive sucking, and

since no alteration in minute ventilation is seen during nonnutritive sucking,

Mathew et al. (9) concluded that the reduction in ventilation during feeding is not

due to behavioral overriding.

Johnson and coworkers showed that the breathing pattern of human

neonates is altered during nipple feeding and suggested that laryngeal chemo-

receptors are likely to be responsible for this phenomenon (52). Studies in

neonatal animals have shown that instillation of distilled water into the larynx of

newborn animal elicits apnea. Superior laryngeal nerve afferents mediate this

reflex response (53,54). Elegant studies by Boggs and Bartlett subsequently

showed that lack of small anions such as chloride is responsible for the laryngeal

chemoreflex (54). Davies et al. (55) and Perkett and Vaughn (56) provided further
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support for the existence of the laryngeal chemoreflex in human neonates by

showing that instillation of distilled water into the pharynx alters breathing

pattern compared to saline. Nevertheless, the marked difference in breathing

pattern between human milk and artificial formula reported by Johnson and his

colleagues has not been replicated by others (5,57). Guilleminault and Coons

(57), as well as Mathew and Bhatia (5), were unable to show a marked difference

in breathing pattern between human milk and formula feeding. It should be

pointed out that chloride ions are low in both human milk and formula.

Furthermore, chloride ions are even lower in human milk than in cow milk and

formula (4). Therefore, the laryngeal chemoreflex does not appear to be the

primary factor in the reduction of ventilation during feeding. In some infants it

may play a contributory role.

Vocal cord closure during swallowing interrupts nasal airflow. The duration

of this flow interruption of individual swallow varies from 0.35 to 0.70 sec (45).

Often, there is a 1 : 1 correlation between sucking and swallowing during the

continuous sucking period. Since neonates are capable of swallowing up to 30

times per minute (19), the time for ventilation is substantially reduced during

nipple feeding. An inverse relationship between the frequency of swallowing and

ventilation (Fig. 3) has been documented (45). In a subsequent study, the same

Figure 3 Relationship between swallow frequency and minute ventilation. For term and

preterm infants minute ventilation decreases as swallow frequency increases. (From Ref.

45.)
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group of investigators (58) showed that increased formula consumption is

associated with reduced ventilation, a predictable consequence of increased

swallowing fre-quency. Additionally, when consumption rate is high, the infant

increases swallowing volume. Similarly, at low consumption rate, swallowing

frequency is reduced, resulting in an increase in the suck-to-swallow ratio. These

findings indicate that infants can autoregulate milk flow (through alteration of

sucking pressure) as well as volume per swallow. This ventilation sparing strategy

can be considered as a protective response.

The airway normally reopens in a cephalocaudal sequence at the end of the

swallow and ventilation resumes. However, sometimes the airway fails to reopen.

Such episodes can result in prolonged airway closure, not an uncommon finding

during feeding (45). Two types of obstructed breaths have been observed during

feeding: a small-amplitude swallow breath occurring before the swallow, and

normal or increased amplitude respiratory efforts occurring at any time (45). A

teleological explanation of the swallow breath is to remove air from the pharynx

and prevent air swallowing. In this regard these swallow breaths appear to be

inefficient in preventing aerophagia, since almost all infants need burping

following feeding. Factors implicated in prolonged airway closure are mucosal

adhesive forces, continued activation of pharyngeal constrictors, and insufficient

activation of airway dilators.

Feeding efficiency and respiratory integration have been evaluated in older

infants with bronchiolitis (59). These infants spent less time sucking than healthy

controls. Mean volume per suck was lower during their illness. Unlike newborn

infants in whom swallowing frequency is maintained at the expense of eupnea,

feeding is subordinate to breathing in these infants. This finding is similar to the

observation reported by Timms et al. that sucking and swallowing frequency

decrease when respiratory drive increases (31).

Changes in pulmonary function following feeding have been the focus of

several studies (60–64). The results of these studies have been conflicting;

differences in birth weight, postnatal age, and lung disease status may account

for some of these discrepancies. For example, differences in baseline pulmonary

function among the study infants can be attributed to the fact that some of these

infants were normal whereas others were recovering from acute lung disease or

were suffering from chronic lung disease. Overall, these studies tend to suggest

that the impact of feeding on pulmonary mechanics is likely to be greater in

infants with poorly compliant lungs, compliant chest wall, and collapsible

airways. Blondheim et al. (65) studied a group of low birth weight infants

recovering from respiratory distress syndrome and showed that tidal volume

decreased by 38%, minute ventilation by 44%, and dynamic compliance by 28%

immediately following gavage (over 15–20min) feeding. No such change in

pulmonary function was seen following continuous nasogastric feeding. Abdom-

inal loading is the likely basis of for the deterioration in pulmonary function (61).
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Although functional residual capacity was not measured in the above study (65),

a decrease in lung volume after feeding has been documented in neonates

recovering from lung disease (64). These changes in pulmonary mechanics

may result in apnea, cyanosis, and=or oxygen desaturation (66,67). Therefore,

a continuous feeding appears to be advantageous for infants with chronic lung

disease as well as for infants recovering from acute respiratory distress.

V. Disorders of Breathing During Feeding

Apnea, bradycardia, and oxygen desaturation during feeding have become

common clinical problems in neonatal intensive care units. It can be attributed

in part to an overzealous feeding regimen in a group of vulnerable infants. As

discussed earlier, ventilation decreases significantly during nipple feeding in all

neonates. This reduction in ventilation that occurs during feeding decreases PO2

and increases PCO2 (6,47). However, this change in ventilation with feeding is

likely to have a greater impact in preterm infants and in sick term infants (4).

Greater breathing difficulties during initiation of oral feeding are often seen

among infants following prolonged intubation and tracheostomy. Laryngeal

penetration of formula in these infants with transient laryngeal dysfunction

probably accounts for this observation. Development of apnea and bradycardia

during nipple feeding (Fig. 4) is a common occurrence in preterm infants (6,57,68).

Similarly, a higher incidence of oxygen desaturation is seen during oral feeding in

infants with chronic lung disease (69). Preterm infants breathed more during

sucking bursts in breast-feeding sessions than in bottle-feeding sessions, and had

fewer episodes of oxygen desaturation during breast feeding (70).

Mature infants without any underlying pulmonary disease usually tolerate

oral feeding without developing any apnea or bradycardia. Occurrence of apnea

and bradycardia is rare, especially beyond the first few days of life. Even during

the first 48 h, apnea and bradycardia in term neonates are usually limited to the

first feeding (71) or when the milk flow is very high (8). However, the normal

term infant has little coordination between swallowing and breathing rhythms

before 48 h and maintains rhythmic swallowing at the expense of eupnea (72).

Mild transient oxygen desaturation without bradycardia is not uncommon among

term infants during the first 48 h (72).

Understanding the mechanisms leading to the development of these

symptoms is important in providing optimal clinical care. Because of the

monitoring technique used, apnea is difficult to detect in the usual clinical

setting, unless it is central. Prolonged airway occlusions often go undetected.

Decrease in ventilation, either due to apnea or hypopnea, results in a decrease in

oxygen saturation. How quickly it becomes clinically significant depends on two

factors: baseline oxygenation prior to feeding, and pulmonary oxygen reserve. If
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baseline oxygenation is borderline, hypoxemia may develop quickly, because it is

on the linear portion of the oxygen dissociation curve. Similarly, infants with

parenchymal lung disease may develop desaturation rapidly as a result of limited

pulmonary oxygen reserve.

Timing of bradycardia during feeding is also important in understanding

the pathophysiology. Oxygen desaturation and bradycardia usually develop

during the initial continuous sucking phase in term infants (8). It may occur at

any time in preterm infants; often they may have recurrent episodes during the

same feeding (6). In term infants oxygen desaturation occurs first, followed by

cyanosis. Bradycardia often occurs last, at much lower oxygen saturation levels

than in preterm infants. It is not clear whether the bradycardia is a direct effect of

hypoxia on SA node or mediated through the peripheral chemoreceptors. If

bradycardia occurs early, especially when it occurs with normal oxygen satura-

tion, it is unlikely to be due to a decrease in ventilation. A reflex bradycardia is

more likely. Vagal afferents are presumed to mediate this response. An elevated

level of baseline parasympathetic activity has been noted in the group of

premature infants suffering from bradycardia during feeding (73). Stimulation

of vagal afferents can induce both apnea and bradycardia in neonatal animals and

in human neonates (74). In these cases, oxygen desaturation follows the onset of

bradycardia and is likely to be delayed by several seconds. Even when the apnea

and bradycardia responses are elicited by the same stimuli, respiratory and

cardiovascular responses may not occur simultaneously. In animal studies, the

respiratory responses preceded the cardiac response by approximately 0.5 sec

(75). In addition to the occurrence of apnea, bradycardia, and desaturation during

nipple feeding, these episodes may be observed shortly after feeding. A number

of mechanisms have been implicated. A decrease in pulmonary function has been

noted immediately following feeding (76). Abdominal loading is likely to

decrease lung volume. Increase in feeding-related bradycardia observed within

24 h of their screening examination for retinopathy of prematurity may have a

similar basis as well. Decreased gastric motility due to the effects of mydriatic

agents is associated with decreased gastric emptying, resulting in increased

gastric residuals, episodes of emesis, and abdominal distension (77). In addition,

the gastric distension increases vagal afferent feedback. Rarely GE reflux may

also induce some of these events.

Feeding-related bradycardia and desaturation can be managed in a number

of ways. If these spells are severe and occur with every feed, nipple feeding

should be postponed. This is particularly true in premature infants. Preterm

infants who are normally oxygenated in room air but have significant desaturation

during bottle feeding can be managed effectively by gavage feeding. Slow gavage

feeding, however, offers no advantage over bolus gavage feeding with respect to

oxygen desaturation (78). In less severe cases nipple feeding should be limited to

once or twice a shift, until these infants are more mature. Continuous sucking,
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owing to the dramatic reduction in ventilation, has more detrimental effects on

infants’ breathing than intermittent sucking (4,79). Interruption of feeding by

removing the nipple from the mouth for a few seconds, essentially converting this

long continuous sucking into more stable intermittent sucking, is often sufficient.

Whether the preterm infants’ limited ability to regulate milk flow contributes to

the development of these events is not known. The extent of the ventilatory

depression can be attenuated by the use of low-flow nipple units (49). Although

certain type of nipple units have high flow, it is impossible to predict the flow in

an individual nipple with certainty. Mechanically drilled feedholes have the

highest variability.

Feeding-related respiratory control may have some relevance in SIDS. In

1976 Steinschneider and Rabbuzzi reported two infants with feeding-related

bradycardia subsequently dying of SIDS (80). Increased incidence of apnea=
airway obstruction during feeding was seen in the neonatal period among SIDS

victims in a subsequent prospective study by the same group of investigators (81).

However, this finding was not sufficiently discriminating to identify SIDS victims

prospectively. Nevertheless, it must be pointed out, no one has tested the

hypothesis that persistence of feeding-related apnea increases the risk for SIDS.

VI. Maturation

Respiratory control matures as myelination advances. Changes in the ventilatory

responses to hypoxia and hypercapnia as well as changes in the auditory evoked

response can be utilized in evaluating the maturation of the respiratory control

system. Issues related to the maturation of respiratory control are discussed in

greater length in Chapter 15. Henderson-Smart showed that conduction time

decreases as myelination in the auditory pathways increases (82). This coincided

with maturation of the brainstem respiratory center as reflected by the resolution

of apnea (82). The inhibitory effect of afferent feedback from the upper airway on

respiration is greater in the neonate (83). That more immature infants experience

greater respiratory depression with the same feeding regimen (47) is consistent

with this line of reasoning. Similarly, apnea duration associated with swallowing

decreased as infants matured along with the number and length of episodes of

multiple-swallow apnea (84). Maturation of respiratory control during feeding, in

general, appears to be related to postmenstrual age rather than postnatal age or

feeding experience (26,84). It is not complete at term gestation. Prolonged

episodes of apnea associated with swallowing remained significantly more

frequent in preterm infants reaching term postconceptual age compared to term

infants (84), suggesting that myelination may be somewhat delayed in infants

born markedly prematurely. A delay in the maturation of vagal function in

preterm infants has been reported by Suess et al. (85). They studied two groups of
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premature infants at 33 weeks PMA. The less prematurely born infants exhibited

expected decreases in respiratory sinus arrhythmia during feeding and returned to

prefeed levels (85). The more prematurely born infants, on the other hand, did not

return to prefeed levels during the study period. It is intriguing to note that earlier

maturation has been seen in breast-fed infants (86).

VII. Summary

Nipple feeding is a complex motor act consisting of sucking and swallowing into

which the act of breathing is integrated. Sequential and coordinated contractions

of a number of upper-airway muscles are essential for optimal performance of

nipple feeding. Ventilation decreases markedly during oral feeding. Greater

reduction in ventilation occurs during the initial continuous sucking phase

when compared to the intermittent sucking phase. Both tidal volume and

breathing frequency decrease during oral feeding. The decrease in ventilation is

greater in the more immature infants. Several factors have been implicated in the

etiology of this ventilatory depression. These include repeated swallowing,

laryngeal chemoreflex, prolonged airway obstruction, and behavioral overriding.

Reduction in ventilation results in a decrease in oxygen saturation. How quickly it

becomes clinically significant depends on baseline oxygenation prior to feeding

and pulmonary oxygen reserve. Feeding-related bradycardia and desaturation are

common in premature infants. Infants with chronic lung disease are also at higher

risk for feeding-related bradycardia and desaturation. Frequency of sucking and

swallowing decreases when respiratory drive increases acutely. Feeding related

abnormalities of respiration typically resolve near term PMA, reflecting the

maturation of the brainstem.
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Idiopathic Congenital Central Hypoventilation
Syndrome

DEBRA E. WEESE-MAYER and JEAN M. SILVESTRI

Rush Children’s Hospital

Chicago, Illinois, U.S.A.

I. Introduction

Idiopathic congenital central hypoventilation syndrome (CCHS) is a rare entity

with abundant case reports, but likely fewer than 200 living children worldwide.

Children with CCHS typically present in the newborn period with symptoms

including duskiness or cyanosis upon falling asleep, and decreasing oxyhemo-

globin saturation with increasing carbon dioxide levels, yet no increase in

breathing frequency or awakening. While some infants appear to have diminutive

chest wall movement, others will appear apneic both awake and asleep.

II. Differential Diagnosis

If a diagnosis of CCHS is considered, studies must be performed to rule out

primary neuromuscular, lung, or cardiac disease, or an identifiable brainstem

lesion. Because CCHS may mimic other diseases, the possibility of a discrete

congenital myopathy, myasthenia gravis, altered airway or intrathoracic anatomy,

diaphragm dysfunction, congenital cardiac disease, a structural hindbrain or

brainstem abnormality, or Mobius syndrome should be considered. Specific
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metabolic diseases such as Leigh disease, pyruvate dehydrogenase deficiency, and

discrete carnitine deficiency should also be considered in the differential

diagnosis. Confounding variables including asphyxia, infection, trauma, tumor,

and infarction should be distinguished from the unique diagnosis of CCHS.

III. Initial Evaluation

The initial evaluation should include a detailed neurologic assessment that may

require a muscle biopsy, chest x-ray, fluoroscopy of the diaphragm, broncho-

scopy, electrocardiogram, Holter recording, echocardiogram, and an MRI of the

brain=brainstem. Serum and urinary carnitine levels to rule out an inborn error in

fatty acid metabolism should be obtained from a laboratory with known expertise

in their assessment. The infant with carnitine deficiency may require a muscle

biopsy for diagnostic confirmation. A detailed ophthalmologic evaluation should

be performed to assess pupillary reactivity and optic disk anatomy. A rectal

biopsy should be considered in the event of abdominal distension and delayed

defecation to assess for Hirschsprung disease.

IV. Control of Breathing Deficit

CCHS is characterized by generally adequate ventilation while the child is awake,

but alveolar hypoventilation with monotonous respiratory rates, shallow breathing

(diminished tidal volume), and progressive hypercapnia and hypoxemia during

sleep (1–18). However, more severely affected children hypoventilate both awake

and asleep, with improved ventilation in rapid eye movement (REM) sleep

compared with non-REM (NREM) (3). During sleep, ventilatory sensitivity to

hypercarbia is negligible or absent, and ventilatory sensitivity to hypoxemia is

variable or absent (2–16). These children lack an arousal response to the

endogenous challenges of isolated hypercarbia, hypoxemia, and to the combined

stimulus of hypercarbia and hypoxemia (2). Awake ventilatory responsiveness to

hypercarbia and hypoxemia is generally absent (2,3,19), as is the perception of

asphyxia (i.e., behavioral awareness of hypercarbia and hypoxemia), even when

awake minute ventilation is adequate.

Each infant should be studied in detail in a pediatric respiratory physiology

laboratory to evaluate spontaneous breathing during sleep (NREM and REM) and

wakefulness. The recording montage should include at a minimum tidal volume

(pneumotachograph), movement of the chest and abdomen (respiratory induc-

tance plethysmography), hemoglobin saturation with pulse waveform, end tidal

carbon dioxide, and electrocardiogram. Careful observation should be made of

the infant’s tidal volume and respiratory frequency response to the endogenous

challenges of hypercarbia and hypoxemia both awake and asleep. Such endo-
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genous challenges during spontaneous breathing awake and asleep may preclude

the need for exogenous challenge testing. The distinction of need for artificial

ventilatory support asleep only, or awake and asleep, should be made after several

detailed evaluations in a controlled laboratory setting.

V. Associated Conditions

Conditions associated with CCHS include Hirschsprung disease (1,2,7,8,16,

17,20–25), ganglioneuroma (26), neuroblastoma (16), ganglioneuroblastoma

(2,8,9), lack of heart rate variability (2,8,27–29), and eye abnormalities (2,30)

including diminished pupillary light response. Feeding difficulty with esophageal

dysmotility in infancy, breath-holding spells, poor temperature regulation with

the basal body temperature typically <98�F, and sporadic profuse sweating

episodes with cool extremities have been described anecdotally (1). Children with

CCHS lack a perception of dyspnea but maintain conscious control of breathing

(31) (i.e., ability to ‘‘take a big breath’’ when asked). During exercise these

children may be at risk for hypercarbia and hypoxemia, though the degree of

exercise and the severity of the CCHS likely impact on the response for each

child (32–34). Perception of anxiety is also decreased among children with CCHS

(35).

VI. Autonomic Nervous System Dysfunction in CCHS

Abnormalities of the autonomic regulation of cardiovascular and=or respiratory
function have long been postulated in children with CCHS (1,7,8,12). Supportive

cardiac measure data include the above-cited decreased heart rate beat-to-beat

variability, increased ratios of low-frequency band to high-frequency band

spectral power and transient asystoles, and an attenuated heart rate response to

exercise. Supportive respiratory measures include the above-cited alveolar

hypoventilation, lack of normal ventilatory and arousal responses to hypercarbia

and hypoxemia, and limited breath-to-breath variability.

Children with CCHS often have additional symptoms compatible with

altered physiologic regulation of the autonomic nervous system (ANS), and in

one report, ‘‘autonomic crises’’ with and without elevated urinary catecholamines

have been described (36). A recent report of manifestations of potential ANS

dysfunction among 56 children with CCHS [through meticulous review of their

medical records and a scripted questionnaire (37)] indicated remarkably prevalent

symptoms of ANS dysfunction (ANSD). Incidences among the more prevalent

symptoms (experienced by >15% of CCHS probands) are indicated below. It

should be noted that among age-, race-, and gender-matched control subjects the
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median percent of children with any of the symptoms listed below was 0, with a

range of 2–4% affected for only seven of the symptoms listed below.

Symptom of ANS dysfunction Percent of affected CCHS probands

Alveolar hypoventilation 100

Altered temperature regulation 68

Altered sweating 66

Decreased heart rate variability 55

Nonreactive=sluggish pupils 55

Altered perception of pain 50

Constipation without Hirschsprung disease 43

Altered lacrimation 41

Extreme breath-holding spells 39

Dysrhythmia 39

Dysphagia 38

Anisocoria 27

Altered perception of anxiety 27

Vasovagal syncope with normal SaO2 and CO2 23

Miosis 21

Gastroesophageal reflux 21

Hirschsprung disease 21

Facial pallor 18

Headache with normal SaO2 and CO2 16

Diarrhea without Hirschsprung disease 16

Many children with CCHS also have anatomic findings compatible with

altered development of neural crest–derived structures, including the above-cited

Hirschsprung disease and tumors of neural crest origin. Finally, neuropathologic

findings that support the notion of deficient ANS function=structure include

neuronal loss of the reticular nuclei and nearby cranial nerve nuclei (nucleus

ambiguus, hypoglossal, dorsal motor nuclei of the vagus) in one child (11). These

physiologic, anatomic, and neuropathologic observations reflect a reduced

capability for a homeostatic, compensatory response among children with CCHS.

VII. Familial Occurrence of CCHS

Data on familial occurrence include reports describing one case each of mono-

zygotic (MZ) female twins (10), sisters (8), male–female half-sibs (20), and

male–female sibs (2) with CCHS. The MZ female twins are the only cases

reported of familial recurrence of CCHS without Hirschsprung disease in at least

one sib.
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The association of Hirschsprung disease [a common malformation char-

acterized by the absence of parasympathetic intrinsic ganglion cells of the hindgut

and regarded as a neurocristopathy (38)] with CCHS has provided an important

avenue for studying genetic mutations that might account for the complex

phenotype of CCHS. Mutations in several genetic loci have been identified in

Hirschsprung disease, including receptor tyrosine kinase (RET) (39,40), endo-

thelin signaling pathway genes (41–44), and glial-derived neurotrophic factor

(GDNF), a ligand of the RET proto-oncogene (45–47). Two discrete mutations in

RET have also been reported in two unrelated CCHS patients (48,49) and the

unaffected father of one. A mutation in endothelin-3 was reported in a third

patient (50), and a mutation in GDNF was reported in another patient and his

unaffected mother (48). A mutation in brain-derived neurotrophic factor (BDNF)

was reported in a patient with CCHS and in his non-CCHS father with symptoms

of ANS dysfunction (50b).

A segregation analysis of 50 families with a CCHS index case provided

further data consistent with familiality of CCHS, although multifactorial and

major locus models could not be distinguished statistically, probably owing to a

lack of statistical power (51). In that segregation analysis, two ANSD symptoms

were investigated (constipation and Hirschsprung disease); heterogeneity tests

found no significant differences in the genetic analysis results between those

families whose index case had Hirschsprung disease or chronic constipation and

those who did not (51). The variable expression of a respiratory control defect in

RET-=-homozygous mice when exposed to increased carbon dioxide (52)

supports the consideration of a genetic origin of CCHS and diseases of the

ANS and neural crest.

A recent report of a child with CCHS born to a woman who had

neuroblastoma as an infant (53) provides evidence for a transmitted component

in the relationship between CCHS and the ANS. Likewise, two and potentially

three infants born to four young women with idiopathic CCHS illustrate

transmission of altered respiratory control by CCHS into the next generation.

Further, one of the three infants has confirmed CCHS (53b).

VIII. Familial Occurrence of ANSD

Results from a recent study utilizing a scripted questionnaire administered to

families of 56 CCHS cases and 56 age-, race-, and gender-matched controls

support the hypothesis that findings consistent with ANSD are more likely to be

found in relatives of CCHS cases than in controls or relatives of controls (37).

Furthermore, relatives of the CCHS cases tended to manifest a milder form of

ANSD, with fewer systems and=or fewer symptoms than the cases (37). To our

knowledge, this represents the first study of ANSD in families of children with

CCHS.
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A subsequent study designed to test the hypothesis that CCHS is the most

severe manifestation of general autonomic nervous system dysfunction (ANSD)

applied a case control family study design to determine if the familiality of ANSD

was consistent with a genetic pattern among 52 probands with CCHS as well as

52 age-, race-, and gender-matched controls (54). ANSD phenotypic features

were characterized in the cases, controls, and their family members. We

performed major locus segregation analysis of ANSD utilizing regressive

models. CCHS probands were assumed to be affected; controls and relatives

were designated as affected if they had two or more relevant symptoms. The

hypothesis of ‘‘no transmission and no familial effects’’ was rejected in both case

and control families. Case families were consistent with transmission of a major

effect; control families were not (the difference in the pattern of results was

significant; P < 0:0001). In the total dataset, the best-fitting model was codomi-

nant Mendelian inheritance of a major gene for ANSD. The case control family

studies support the hypothesis that CCHS is the most severe manifestation of a

general ANS dysfunction, with a family pattern consistent with Mendelian

transmission.

Further clarification of the complex phenotype for primary generalized

ANS dysfunction as a unique entity and as expressed in kindreds with CCHS

index cases is timely as many of the children with CCHS are reaching

reproductive age. Although there are some indirect leads for specific candidate

genetic loci for ANSD, results thus far with those candidates have not been

uniform in CCHS subjects, and need to be further investigated. After the

relationship between ANSD and CCHS is more clearly delineated, the identified

differences can be applied to better understand the physiology of the ANS

dysfunction.

IX. Ventilatory Support Options

As soon as a diagnosis of CCHS is confirmed, a tracheostomy should be

performed by a pediatric otolaryngologist. A transition to a home mechanical

ventilator should be made to allow ample time for parental training prior to

discharge. Arrangement for discharge to home with the primary mechanical

ventilator and a backup ventilator should be completed, and requests for adequate

home nursing care made. Typically 24-h=day care with highly trained registered

nurses is required to optimize patient management in the home. Discharge with a

pulse oximeter and an end-tidal carbon dioxide monitor is an essential part of the

home management of a child with CCHS. These monitors often provide objective

evidence for early deterioration of ventilation or ‘‘outgrowing’’ of ventilator

settings, in both cases preventing clinical deterioration, risk for prolonged

hospitalization, and risk of cor pulmonale. Because these patients do not
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demonstrate dyspnea in response to chronic hypoventilation or acute pulmonary

infection, objective measures of physiologic compromise are necessary to assure

early clinical intervention.

Several ventilatory support options are available for the infant and child

with CCHS. Typically the infant who requires ventilatory support 24 h=day will

have a tracheostomy and use a home mechanical ventilator in the pressure-plateau

mode. As the infant becomes ambulatory, the possibility of diaphragm pacing by

phrenic nerve stimulation (55,56) should be considered to allow for increased

mobility and improved quality of life. The paced older infants and toddlers may

use a Passy-Muir one-way speaking valve while awake, allowing for vocalization

and use of the upper airway on exhalation, but only after thorough assessment in a

pediatric respiratory physiology laboratory. The paced child may also be assessed

for capping of the tracheostomy tube during pacing while awake, allowing for

inspiration and exhalation via the upper airway. Again, the capped tracheostomy

during pacing should be carefully assessed in a pediatric respiratory physiology

laboratory before introducing it into clinical management. Nonetheless, these

24-h=day-supported patients will still require a tracheostomy for the nighttime

mechanical ventilation. Though not yet accomplished, the older child with an

entirely normal airway may be able to rely on pacing awake and Bi-Pap mask

ventilation asleep eliminating the need for a tracheostomy. In the event of

severe pneumonia requiring more aggressive ventilatory management, such a

child would require interim endotracheal intubation to allow for adequate

ventilation.

Those children who consistently require ventilatory support during sleep

only (as opposed to sleep and wakefulness) and who are able to cooperate can be

considered as candidates for noninvasive ventilation with either Bi-Pap or a

negative pressure ventilator. If successful, a tracheal decanulation can be

considered, but with the recognition that in the event of an overwhelming

pneumonia the child may require interim endotracheal intubation, and may

require ventilatory assistance awake and asleep during an intercurrent illness.

Regardless of the method of ventilatory support, the goal is to optimize

oxygenation and ventilation for each child. Typically the recommendation is for

hemoglobin saturation values �95%. The end-tidal carbon dioxide range may be

broad with limits of 30–45mmHg, allowing for variation with sleep position.

The rationale for achieving relative hyperventilation in the respiratory physiology

laboratory is to ensure that when the child is later exposed to potentially

suboptimal conditions at home or school, end carbon dioxide values will never

be worse than in the normal range of 35–45mmHg. The goal for chronic care is

thus to minimize exposure to hypoventilation, not to achieve hyperventilation.

The value of long-term hyperventilation with low end-tidal carbon dioxide values

during sleep (25–35mmHg) versus ‘‘normal’’ values (35–45mmHg) has not

been studied prospectively.
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For each of the above-described modalities, the goal is to match the patient

with the optimal technology for her=his lifestyle needs. Although diaphragm

pacing is not typically recommended in the young child who requires only

nighttime support (the benefits do not outweigh the risks), in the older child this

might be an appropriate consideration.

X. Long-Term Comprehensive Management

Meticulous follow-up and coordination of care by the family in conjunction with

the local pulmonologist and the physicians in a center with recognized expertise

in CCHS are vital to the successful outcome of each child. Ideally, infants and

young children should be evaluated every 1–2 months by their local pulmonol-

ogist and pediatrician, and every 6 months by a center with recognized expertise

in CCHS. The local evaluations should include assessment of growth, speech, and

mental and motor development. The evaluations every 6 months should include

an in-hospital evaluation with detailed recording during sleep and wakefulness in

a pediatric respiratory physiology laboratory to monitor the adequacy of ventila-

tion. Since many infants appear to ‘‘acquire’’ awake hypoventilation at 2–3 years

of age when the natural decrease in respiratory frequency occurs, toddlers in this

age group must be closely monitored to assure adequate ventilatory support. With

advancing age, physiologic assessment of oxygenation and ventilation during

exercise and recovery from exercise should be performed on a routine basis.

After � 3 years of age the child can be seen for the detailed center evaluation on

an annual basis. An echocardiogram should be performed every 6 months to

evaluate for right ventricular hypertrophy and pulmonary hypertension, occurring

as the result of unrecognized hypoxemia. A Holter recording should be consid-

ered annually to assess for transient asystole, and especially in the event of

dizziness or syncope. A bronchoscopy should be performed every 12–18 months

to assess for suprastomal granulation tissue and=or adenotonsillar hypertrophy
that may interfere with successful use of the Passy-Muir one-way speaking valve

or mask nocturnal ventilation. Detailed developmental and ophthalmologic

assessments should be performed every 12 months to verify that the child is on

track and=or to provide guidance for intervention. Pulmonary function testing

should be performed as needed to identify and follow the status of reactive airway

disease.

XI. Long-Term Outcome

Published data show prolonged survival of children with CCHS as well as overall

good quality of life (2,4,57,58). Long-term follow-up and neurodevelopmental

outcome reveal a broad range of results, with a great deal of variability. Sadly,
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many children demonstrate findings that may be related to sequelae of inter-

mittent hypoxemia. Thus it is difficult to determine whether neurodevelopmental

outcome is related to a diffuse central nervous system process specific to CCHS

or is secondary to intermittent hypoxemia. These studies of neurodevelopmental

follow-up serve to emphasize the importance of early diagnosis, ongoing vigilant

care in the day-to-day management of these special children with CCHS, and

management in collaboration with a center with broad experience with CCHS. It

should be noted that with meticulous management, several of the children with

CCHS have demonstrated excellent neurodevelopmental outcome.

XII. Key to the Successful Management of the Child
with CCHS

Management of CCHS requires a cooperative and diligent effort on the part of the

parents and other family members, home health care personnel, and referring

physicians. With an increasing awareness of the disease entity, patients will be

recognized and referred earlier than in the past. With earlier diagnosis and referral

to centers with known expertise in the management and research of CCHS,

vigilant management of ventilation, and rigorous efforts to support an age-

appropriate and progressively independent lifestyle, the outcome for these

children is encouraging.

Because these patients are not like other children on home ventilators, they

must be managed with extreme vigilance owing to their lack of responsiveness to

hypoxemia and hypercarbia. Likewise, these patients are not like normal children

with adequate responses to exercise and infection. Special consideration with

regard to normal childhood activities and infections must be considered in their

management. Guided by maximally conservative management, these children

should be participating in noncontact sports with a moderate level of activity and

frequent rest periods; they should not be swimming, even in those cases where the

tracheostomy has been removed. Recalling that they do not perceive the

challenges of hypoxemia and hypercarbia even with adequate awake ventilation,

these children with CCHS will likely swim farther and longer than their friends

without sensing their physiologic compromise (hypoxemia, hypercarbia, and

acidosis). Infection is another key area where children with CCHS will differ

from the non-CCHS ventilator-dependent child. Children with CCHS do not

typically increase their respiratory rate or have dyspnea in response to pneumo-

nia. The absence of these symptoms does not preclude severe respiratory

compromise. Likewise, they rarely develop a fever in spite of an infection.

These limitations emphasize the importance of three key factors:

1. The objective measures of hemoglobin saturation and end tidal carbon

dioxide by noninvasive monitoring in the home
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2. Highly skilled and consistent caretakers in the home

3. The need for ongoing care by a center with known expertise in CCHS

allowing for close supervision of each child.

Early intervention is clearly in the best interest of the child, the family, and

the health care provider with the goals of optimal neurodevelopmental outcome

balanced with a satisfactory quality of life.

XIII. Limitations to Optimal Care for the Child with
CCHS

The diagnosis of CCHS is often delayed because the practitioners may never have

seen a case. Further, ongoing care may be inappropriately commensurate with a

chronically ventilated child without attention to the unique needs of the child with

CCHS. Finally, limitations of financial resources imposed by health care

providers often prevent these children from receiving optimal evaluation and

long-term care in pediatric referral centers that have expertise in CCHS from both

the diagnostic and treatment perspectives, and have the interest and expertise to

provide and=or coordinate the long term follow-up. The introduction of a written

statement from the ATS has increased the knowledge base of the practitioner,

minimized delays in diagnosis, standardized the initial evaluation and subsequent

management, and will hopefully optimize the outcome of these special children

by tailoring their care to their individual needs.
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I. Introduction

Respiratory muscle function can be affected in many ways by neuromuscular

diseases, which in turn may manifest as abnormalities in mechanical output

and=or in their control. These diseases can be classified as those originating in the
central nervous system, at the level of the lower motor neuron, the peripheral

(cranial) nerves, the neuromuscular junction, or the muscles. Hypoventilation and

apnea are the most commonly manifested respiratory abnormalities; they occur

primarily during sleep. Occurrences of obstructive apnea are, at least in part, due

to upper airway muscles weakness, which is further aggravated by the physio-

logical inhibition of these muscles during rapid eye movement (REM) sleep.

Respiratory control abnormalities may result in central apnea. Failure to propa-

gate the respiratory signals from the brainstem or to convert them into mechanical

output due to impairment of the neural pathway or muscle function may also

manifest as breathing abnormalities.

Sleep influences breathing profoundly (1,2). Inhibitory influences dominate

in the neonate, especially in premature infants because of neuroanatomic

constraints. Neonates spend more time in REM sleep than older children (2).

The preterm infant has some distinct mechanical disadvantages to breathing, and
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these disadvantages are exaggerated during sleep (especially in REM sleep).

Lung immaturity, poor lung compliance, residual lung disease, compliant chest

wall, and decreased intercostal muscle activity contribute to this unique vulner-

ability. The thoracic contribution to the tidal volume is less in the newborn

because the ribs are nearly horizontal and, therefore, intercostal muscles are less

effective in expanding the rib cage. Furthermore, lack of rib cage mineralization

reduces outward recoil and increases compliance, often resulting in paradoxical

breathing during wakefulness, especially in preterm infants. Neonates are

primarily abdominal breathers. Their functional residual capacity is near the

closing volume. Postinspiratory activity of the diaphragm, believed to be an

important mechanism for maintaining lung volume, decreases in REM sleep (3).

Activities of intercostal and upper-airway muscles are also inhibited markedly

(especially during REM sleep), increasing ribcage deformation; the decrease in

lung volume approximates 30% (3). Changes in breathing pattern during sleep

are discussed in detail in Chapter 10.

Generalized hypotonia, weakness, and feeding difficulties are common

symptoms of neuromuscular diseases in neonates and infants. Signs and symp-

toms of respiratory distress due to neuromuscular diseases are nonspecific. These

infants often exhibit tachypnea, intercostal retractions, and paradoxical breathing.

A bell-shaped thorax is usually seen with the prenatal onset of the disease. The

degree of respiratory abnormalities can be assessed by oxygen saturation

monitoring during wakefulness and sleep, serial blood gases, pulmonary function

tests, and polysomnography. Patients with diaphragmatic weakness have

decreased maximal inspiratory pressures. Abdominal muscle weakness reduces

maximal expiratory pressures. Vital capacity reduction also suggests respiratory

muscle weakness. However, these measurements are often impractical in the

neonate. In the vast majority of neuromuscular diseases, respiratory abnormalities

do not manifest during the neonatal period. A detailed discussion of these

disorders is beyond the scope of this chapter; readers are referred to excellent

recent reviews (1,2). Focus of this chapter is on neuromuscular diseases begin-

ning in the neonatal period; comparisons to diseases in children and adults are

made when appropriate.

Progression of respiratory abnormalities in adults with neuromuscular

diseases is well documented (2). Initial abnormalities, noted exclusively during

REM sleep, may remain relatively stable for several years depending on the

progression of the underlying disease and its complications and may progress

later to involve non-REM (NREM) sleep. Respiratory abnormalities during

wakefulness, such as hypercarbia, decreased mean oxygen saturation, and

constitutional symptoms (fatigue, morning headache), may follow. Finally,

respiratory failure ensues during wakefulness. Progression of respiratory abnorm-

alities is less well defined in infants and children with neuromuscular diseases.

The type and extent of disease clearly plays a role in this population as well.
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Diaphragmatic involvement generally indicates earlier onset and greater severity

(4). Neonatal respiratory failure due to neuromuscular diseases is associated with

markedly increased mortality (5).

II. Central Nervous System

Neurological causes of respiratory failure and apnea in the neonate are listed in

Chapters 8 and 11. Apnea of prematurity and congenital central hypoventilation

syndrome are the focus of several preceding chapters. Central hypoventilation

syndrome (CHS) in Arnold-Chiari malformation (ACM), a neurological disease

often exhibiting neonatal respiratory abnormalities, will be highlighted in this

section.

Central hypoventilation syndromes may be congenital or acquired. The

differential diagnosis and workup of these disorders are discussed in Chapter 17.

Idiopathic CHS and CHS associated with ACM account for the majority of

congenital disorders. ACM is commonly seen in infants with myelomeningocele

and hydrocephalus. The importance of folic acid supplementation before and

during early pregnancy in reducing the incidence of neural tube defects is clear

(6–8). The low incidence of neural tube defects in the folic acid supplemented

groups probably reflects the genetically determined rate of occurrence. Both the

American Academy of Pediatrics and the U.S. Public Health Service recommend

that ‘‘all women capable of becoming pregnant consume 0.4 mg of folic acid

daily to prevent neural tube defects’’ (9).

Acquired causes of hypoventilation syndromes, including encephalitis,

brain tumors, rupture of vascular malformations, and cerebrovascular accidents,

are rare during infancy (10). Brainstem damage can result in respiratory control

abnormalities; however, the pattern depends on the site of injury and extent of the

lesion (11). If the damage is associated with injury to the motor tracts, weakness

of the respiratory muscles may be seen.

ACM is a congenital malformation of the hindbrain. The major features are

inferior displacement of the medulla and the fourth ventricle, elongation and

thinning of the lower pons and upper medulla, inferior displacement of the lower

cerebellum through the foramen magnum, and a variety of bony defects of the

foramen magnum, occiput, and cervical vertebra (12). Other anomalies of the

CNS in these patients include hypoplasia of the falx and tentorium, low

placement of the tentorium, abnormalities of the septum pellucidum, thickened

interthalamic connections, and widened foramen magnum. Another common

feature is impaired neuronal migration; cortical dysplasia was seen in 90% of

patients in one neuropathological study, with polymicrogyria being present in

nearly half (13).
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Several brainstem malformations, such as defective myelination, hypoplasia

of cranial nerve nuclei, and hypoplasia or aplasia of olives and basal pontine

nuclei, have been documented in ACM patients (13). Congenital malformation or

compression of the brainstem may cause brainstem dysfunction. Infants with

ACM may exhibit clinically significant hypoventilation, obstructive apnea,

stridor, and breath-holding spells (14–16). Abnormal vocal cord motion from

laryngeal paralysis (17) and=or reduced pharyngeal muscle response (18) pre-

dispose these infants to obstructive apnea. Infants with stridor and obstructive

apnea generally respond to reduced intracranial pressure (16,19) but the role of

additional decompressive therapy is less clear (16,19–21). Some patients respond

to posterior fossa decompression (20). In a group of 17 symptomatic infants with

functioning ventricular shunts, upper cervical laminectomy resulted in resolution

of symptoms in 15 infants (22). In a group of myelomeningocele patients, Waters

et al. (23) reported five or more respiratory events per hour of sleep in nearly 20%

(17=83). Nearly 40% of the patients evaluated had posterior fossa decompression

prior to the study. Infants with severe symptoms are less likely to respond (16,19),

suggesting an underlying malformation or irreversible damage.

Abnormal ventilatory patterns during sleep occur in infants with ACM.

Central apnea, hypoventilation, and hypoxia during sleep are the typical abnorm-

alities (20). Even the vast majority of infants without clinically apparent apnea or

hypoventilation had abnormal two-channel pneumograms (24). There was no

relationship between abnormalities during sleep and the neural tube defect level

(24). Waters et al. (23) investigated the prevalence of sleep-disordered breathing

in myelomeningocele patients. Some degree of abnormality was seen in nearly

two-thirds of the patients; 20% exhibited moderate or severe abnormalities. The

sleep-related respiratory abnormalities were worse during REM sleep. Sleep-

disordered breathing was higher in children with brainstem malformations,

scoliosis, restrictive lung disease, and spina bifida lesions at the level of the

thorax or higher (23). Also, life-threatening apneic spells may occur during the

transition to REM sleep in infants (25).

Ventilatory responses to hypoxia and hypercapnia have been investigated in

patients with ACM (26–28). During wakefulness and sleep, ventilatory responses

to hypercapnia are significantly lower in children with ACM (26). Abnormal

ventilatory responses to CO2 were observed in 60% of newborns with myelo-

meningocele (27) and 61% of children with spina bifida (29). A correlation

between abnormal CO2 response and brainstem dysfunction was also noted (29).

In contrast, hypoxic ventilatory response was not significantly different between

myelomeningocele patients with ACM and the control group (26,28). Some

patients with ACM, however, had markedly low ventilatory response to hypoxia

(26,28). Gozal and coworkers suggested that central chemosensitivity and central

integration of chemoreceptor output are altered in ACM (28). These abnormal

ventilatory responses persist into adolescence and adulthood (26). Scoliosis, low
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lung volume, and limited rib cage excursion can result in ventilation=perfusion
mismatches, which may be further aggravated during sleep (30).

Arousal from sleep is an important defense mechanism. In the absence of

intact arousal responses to hypoxia and hypercapnia, infants with hypoventilation

and apnea are at an increased risk for both morbidity and mortality. Aspiration

resulting from dysfunctional swallowing complicates the pulmonary problems. In

children with ACM, impaired arousal responses to hypoxia and hypercarbia (31)

may also result in aspiration. In one large study, ventilatory dysfunction was

documented in nearly 6% infants and children with ACM (32). Two-thirds of

these patients died; apnea, stridor, and=or aspiration were the primary cause of

death in the majority. These findings indicate that hypoventilation and sleep-

disordered breathing contribute significantly to both morbidity and mortality. A

severe form of the breath-holding spell has been reported in this population.

These spells occur during wakefulness, resulting in hypoxia, hypercarbia, and

even sudden death (16,20). Tracheostomy does not improve these spells (16,20).

Respiratory control abnormalities in patients with myelomeningocele and

ACM may be caused by abnormalities of brainstem nuclei and=or their mechan-

ical compression. No intervention can improve the function of abnormally

developed nuclei. However, relief of mechanical obstruction should be under-

taken promptly, since marked improvement in symptoms has been noted in some

patients following surgery (16,19,21,22). If the symptoms persist after controlling

the intracranial pressure, posterior fossa decompression should be considered to

prevent further damage to the brainstem. These infants need to be watched closely

for hypoventilation. Chronic ventilatory assistance is often required to improve

the quality of life. Continuous positive airway pressure (CPAP) and mechanical

ventilation during sleep may be useful adjuncts in their management.

III. Anterior Horn Cells

Anterior horn cell diseases account for 20–25% of arthrogryposis multiplex

congenita and can be divided into dysgenetic, destructive, and degenerative types

(12). The dysgenetic type results from a decrease in the number or migration of

neurons. The destructive type usually results from an intrauterine ischemic event.

Several autosomal-recessive syndromes cause the degenerative type. During the

neonatal period, spinal muscular atrophy predominates among the anterior horn

cell diseases.

A. Spinal Muscular Atrophy

Spinal muscular atrophy (SMA) is an autosomal-recessive disorder involving the

anterior horn cells. It is divided into three types based on the time of onset

(12,33). Type 1 SMA, also known as Werdnig Hoffman disease, is the most
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severe. The gene defect involves the q13 region of chromosome 5 (34). DNA

testing is available. Clinical signs are present at birth in nearly a third of cases and

in the first 2 months in another third (35). Decreased fetal movements are

reported in neonates with signs at birth or early in the neonatal period. Prenatal

onset with ventilatory compromise at birth and death by 3 months is noted in a

subset of these patients, and some investigators suggest type 0 designation for this

group (36).

Clinical features of type I SMA include severe hypotonia, severe general-

ized weakness, weak cry, difficulty in sucking and swallowing, and areflexia (33).

The anterior horn cells are diffusely affected in severe cases. Cranial nerves

involved are VII, IX, X, XI, and XII. Diaphragmatic function is relatively

preserved, whereas intercostal muscles are weak. The chest wall is often

collapsed. These infants exhibit intercostal and subcostal retractions and develop

partial airway obstruction during sleep. Aspiration is a frequent complication,

especially among infants with cranial nerve involvement. Tube feedings are

instituted to provide adequate nutrition, and tracheostomy may be needed for

positive pressure breathing.

Type 1 SMA infants have progressive respiratory failure, with most dying

before 2 years (12). In type 2 SMA, the onset may be delayed up to 18 months.

These infants do not develop the ability to stand, and death occurs after 2 years. In

type 3 SMA, symptoms begin after 18 months. These infants can stand and walk;

death typically occurs in adulthood. Distinction between types 1 and 2 can be

difficult, especially when marked muscle weakness develops before 6 months.

Given the significant difference in clinical course and prognosis between the two

types, the decision to initiate ventilatory assistance is a difficult one. Primary

respiratory insufficiency, secondary to diaphragmatic involvement, is reported in

a variant of infantile SMA (37).

Sleep studies performed early in the disease in infants with type 1 SMA

reveal tachypnea, hypocapnia, and decreased baseline oxygen saturation (38).

Children with type 2 disease may manifest hypoventilation and oxygen desatura-

tion during sleep (39); these signs are generally not recognized initially.

Respiratory failure is usually precipitated by infection (39). In at least one

report on type 2 SMA, mild to moderate hypercarbia and low oxygen saturation

during sleep were documented in all children (40). One child had obstructive

apnea as well (40)

B. Spinal Cord Injury

Injury to the spinal cord is rare in neonates. Such injury is often associated with

difficult labor and delivery. The onset of respiratory symptoms is immediate, and

the severity depends on the level of the lesion; preservation of diaphragmatic

function is seen in injuries below C5. There are no published polysomnographic
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studies in neonates with spinal cord injuries. Infants who do not die during the

neonatal period usually require long-term ventilation (41).

IV. Nerves, Neuromuscular Junction, and Muscles

Muscle weakness in these disorders is due to nerve injury, neuromuscular

junction abnormalities, or intrinsic disorders of muscles themselves. Diaphrag-

matic paralysis, transient myasthenia gravis, and myotonic dystrophy are the

prototype of these disorders in the neonatal period. These infants often exhibit

respiratory problems during the neonatal period.

A. Diaphragmatic Paralysis

Diaphragmatic paralysis in the neonate is almost always associated with brachial

plexus injury. Phrenic nerve involvement occurs in 5–10% of cases of brachial

plexus injury (12,42). Intercostal muscles are intact in these cases. The onset of

symptoms is immediately after birth. These infants hypoventilate in spite of their

tachypnea. With ventilatory assistance, they tend to stabilize or improve over the

next several days. The clinical course is biphasic in some infants. Further

deterioration in respiratory status occurs after several days or weeks owing to

the development of atelectasis or infection (12). Most infants recover over the

next several months (43,44). Mortality is �10%. The vast majority of infants

improve over time with expectant management, but some infants need surgical

plication of the diaphragm. Expectant management is generally advocated for at

least 2 months before performing surgical plication (45). The improvement of

symptoms over time is related primarily to recovery of diaphragmatic function.

Increased thoracic contribution to breathing from maturation of the intercostal

muscles and increased stiffness of the ribcage may also help. In the rare infant

with bilateral diaphragmatic involvement, respiratory failure is invariably present

from birth. Nearly 50% of these infants die (43–45).

B. Neonatal Transient Myasthenia Gravis

Approximately 10% of infants born to myasthenic mothers are affected (46). In

autoimmune myasthenia gravis, there is a decrease in available acetylcholine

receptors at the postsynaptic membrane due to circulating antibody. The affected

infants show increased levels of antiacetylcholine receptor antibody (47), which

may be antifetal or antiadult. A high ratio of antifetal=antiadult antibody levels in

the mother is generally predictive of neonatal transmission (48). However, host

factors also play a role in the pathogenesis (12).

Most affected neonates develop clinical symptoms within the first few

hours of birth, and invariably within the first 72 hours (49). Generalized muscle
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weakness and hypotonia are present. Feeding disturbances typically include

sucking and swallowing difficulties (49). Ptosis and occulomotor problems are

infrequent. On the other hand, respiratory difficulties are very common (49) and

are due to respiratory muscle weakness as well as the infant’s inability to handle

secretions. Nearly a third of affected patients need ventilatory assistance.

Polyhydraminos, pulmonary hypoplasia, and neonatal death are common in the

most severely affected patients (46). The diagnosis is confirmed by demonstrating

the myasthenic phenomenon on electrophysiological testing. The vast majority of

infants with neonatal onset require anticholineesterase therapy for 7–10 days (46).

Exchange transfusion (50,51) and high-dose intravenous immunoglobulin (52,53)

have been used as adjunct therapy with variable results. The mean duration of

illness is 18 days.

C. Congenital Myasthenic Syndromes

These syndromes are caused by presynaptic, synaptic, or postsynaptic abnorm-

alities. The observed abnormalities include defects in acetylcholine synthesis,

packaging, decrease in synaptic vesicles, and deficiency of acetylcholine or its

receptors. Familial infantile myasthenia is a rare autosomal-recessive disorder

with onset during the neonatal period (54,55). The defect involves synthesis or

packaging of acetylcholine into the vesicles (55,56).

The affected infants are typically hypotonic, exhibit facial weakness, have

significant feeding problems, and often require resuscitation at birth (54,55).

Episodes of apnea are not uncommon. These infants generally require anti-

cholinesterase medication. In spite of significant neonatal problems, spontaneous

remission occurs in subsequent months. The disease may worsen in infancy with

infection. Anticholinesterase therapy is recommended for a year to avoid apnea

and sudden death (12). In general, the disease improves over time.

D. Hypermagnesemia

Hypermagnesemia in neonates is related to maternal treatment of preeclampsia

with magnesium sulfate. High serum levels of magnesium can affect the function

of several organ systems. Neonatal serum levels correlate well with maternal

serum levels (57). High serum magnesium levels cause muscle weakness,

hypotonia, and hyporeflexia (58). High levels may also depress the central

nervous system. Term infants with hypermagnesemia (cord Mg level

4.15� 0.74mg=dL) showed no respiratory embarrassment, suggesting intact

diaphragmatic function (57). However, these infants had poorer sucking and

cry responses than the control infants. Their oral intake was also significantly

lower. These findings suggest weakness of some skeletal muscles. Hypermagne-

semia also depresses smooth muscle function, resulting in abdominal distension.

Pathogenesis is impairment of presynapatic mobilization of acetylcholine (12).
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Management is supportive. Hypocalcemia, if present, should be treated aggres-

sively.

E. Congenital Myotonic Dystrophy

Congenital myotonic dystrophy is by far the most common myopathic disorder

seen in the neonatal period. This is an autosomal-dominant disorder. Significant

insight into this disease has been provided by molecular genetic studies

(12,33,59–61). The defect is located on chromosome 19q13 involving the

myotonin–protein–kinase encoding gene (61). Abnormal triplet sequence in the

gene increases in length in successive generations. The gene defect alters the

function of several organs since it is not tissue specific (60).

Polyhydraminos is common during pregnancy and is a sign of severe

involvement of the fetus (62,63). Pregnancy may result in abortion or premature

birth (33,62,64). The clinical symptoms often manifest during the first few hours

and days. Severe respiratory involvement at birth may result in birth asphyxia, in

which case the myopathic origin of the asphyxia is often overlooked initially. The

congenital form of myotonic dystrophy has distinctive differences from that seen

in adults; it is characterized by severe hypotonia rather than myotonia. Besides the

generalized hypotonia and respiratory distress, these infants also exhibit feeding

problems, facial diplegia, areflexia, muscle atrophy, and arthogryposis (33,62,63).

The respiratory difficulties are due to respiratory muscles weakness and difficulty

handling secretions due to impaired swallowing. Hypotonia and facial weakness

are the most common clinical manifestations in less severe cases.

Overall mortality is �10–15%; however, it is nearly 50% in severely

affected infants (12). Infants requiring ventilation for >30 days have a poor

prognosis (65). Muscle strength improves in surviving infants. There is no

correlation between the severity of illness during the neonatal period and the

severity of illness during later life. Surviving infants almost invariably show

mental retardation (33,63). Cardiac involvement is common in adult patients with

myotonic dystrophy (see below). However, onset of cardiomyopathy during the

neonatal period has been reported (66). Poorly developed diaphragm and

pharyngeal muscles are noted at autopsy (65).

The adult (classic) form of myotonic dystrophy is caused by the same

genetic defect as the neonatal form but has fewer triplet repeats. This type of

myotonic dystrophy presents with muscle weakness, myotonia, and muscle

wasting. These patients may also exhibit excessive sleepiness, cardiac dysrhyth-

mias, and psychiatric problems as well as endocrine and gastrointestinal dysfunc-

tions. The most frequent arrhythmias are atrial and ventricular extrasystoles, atrial

flutter and fibrillation, and ventricular tachycardia. The mechanisms underlying

ventricular arrhythmias are conduction disturbances, prolongation of the QT

interval, and impaired autonomic function. Cognitive function is often normal
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(67). Some of these patients are prone to develop malignant hyperthermia, which

may result in postoperative respiratory failure and even sudden death (68,69).

Unlike in the neonatal form, more data on respiratory function abnormal-

ities are available in patients with the classic form of myotonic dystrophy.

Pulmonary function tests in these patients show a decrease in maximal voluntary

ventilation, decrease in vital capacity, and elevated awake CO2 levels (70–72).

Decreased maximal voluntary ventilation suggests inspiratory muscle weakness.

Higher transdiaphragmatic pressures that were observed during normal breathing

are attributed to expiratory muscle myotonia (73). However, in other studies,

myotonia of the respiratory muscles was observed only at higher ventilation

levels (74). Decreased vital capacity and decreased inspiratory and expiratory

pressures indicate a restrictive abnormality (72).

Alveolar hypoventilation and sleep-disordered breathing are documented in

this population (70). The available evidence suggests that hypoventilation in

myotonic dystrophy is probably caused by diaphragmatic weakness. However, an

impairment of conduction in the respiratory motor pathways occurs in some

patients (75). Sleep apnea is a common finding in these patients. A potential

mechanism for sleep apnea (76) involves muscle weakness during the neonatal

period, which limits the growth of the mandible and face, resulting in a small

airway. An increased apnea index and oxygen desaturation are seen during sleep

in young adults with myotonic dystrophy (70). Sleep-disordered breathing

evidenced by increased apnea=hypopnea index was also reported by Veale and

coworkers. Irregular breathing pattern, present during wakefulness, is not

observed during slow wave sleep, suggesting there is no underlying central

control abnormality in the medulla (72). An intact central drive and a normal

afferent limb are suggested by other studies as well (77). Central apneas occur in

all sleep stages (78). Obstructive apnea is less frequent. Hypoxic and hypercap-

neic responses are abnormal (2).

F. Congenital Muscular Dystrophy

Congenital muscular dystrophy is a group of disorders with common clinical and

myopathological features (12,79,80). Typically they are divided into two types:

those with only myopathy, and those with myopathy and CNS involvement.

Among the former, often termed classic, or merosin-positive muscular dystrophy,

the common symptoms are hypotonia; weakness involving the face, trunk, and

proximal limbs; and contractures (12,81). Respiratory difficulty and dysphagia

are less frequent (81). Involvement of diaphragm and intercostal muscles occurs

later in infancy and childhood (82). Although the severity of hypotonia and

weakness is greater in the subgroup of myopathic infants with CNS involvement,

ventilatory problems are not common during the neonatal period.
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Histologically the myopathies include central core disease and nemaline,

myotubular, mitochondrial, metabolic, and other specific congenital myopathies.

Myopathies with neonatal respiratory abnormalities will be highlighted here. In

central core disease, respiratory difficulties are unlikely during the neonatal

period. In the more common form of nemaline myopathy, weakness and

hypotonia are not prominent features (83–85). However, in the less common

form, marked hypotonia, weakness, and severe respiratory problems are the norm

(12,84,86). These infants may need resuscitation at birth. Weakness of the

respiratory muscles predisposes these infants to respiratory failure requiring

ventilatory assistance. Some infants die during the neonatal period or early in

infancy (5,87,88). The most common defect involves nebulin on chromosome 2,

whereas the clinically severe disease has a defect of alpha-actin on chromosome 1

(89–91). Two forms of myotubular myopathy have been described. Again, the

common form is the milder one; the less common form is the more severe, with

marked hypotonia and respiratory failure (89,92–94). Polyhydraminos, decreased

fetal movements, and birth asphyxia are commonly observed (95). The gene

defect has been linked to Xq28 (96,97), which encodes myotubularin.

In older children, pulmonary function tests reveal a reduced vital capacity

consistent with restrictive lung diseases (98–100). These patients developed

apnea and marked oxygen desaturation during sleep. Improvement in symptoms

was noted following positive pressure ventilation.

Mitochondrial myopathies result from primary abnormalities of mitochon-

drial structure and function (12). Biochemically, mitochondrial myopathies can be

divided into defects of substrate utilization, oxidation-phosphorylation coupling,

and defects of the respiratory chain. Respiratory chain disturbances typically

manifest during the neonatal period. Cytochrome-c oxidase deficiency accounts

for the majority of neonatal disorders and is inherited as an autosomal-recessive

disorder. Common neonatal signs are hypotonia, lethargy, feeding and respiratory

difficulties, failure to thrive, psychomotor delay, seizures, and vomiting. Lactic

acidosis is a distinct feature of cytochrome-c oxidase deficiency. Laboratory

studies show increased levels of lactate, an increased lactate=pyruvate ratio,

hypoglycemia, and elevated ketone bodies. Respiratory failure is often seen

during the neonatal period, with death occurring in the first year of life (101,102).

A benign form of the diseases has also been reported (103,104).

V. Summary

The vast majority of neuromuscular diseases become clinically apparent beyond

the neonatal period. However, diseases that manifest during this period, regardless

of etiology, have some common characteristics. These include generalized

hypotonia, muscle weakness, and feeding difficulties. The most severely affected
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infants often require resuscitation at birth and may even exhibit contractures.

Mortality in this group of infants is significant. The surviving infants are

particularly vulnerable to develop hypoxia and hypercapnia during sleep, and

polysomnography is useful in assessing the severity of the disease. Pulmonary

functions tests have very limited value. Supportive care is the only available

treatment option.
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Regulation of Breathing in Acute Ventilatory Failure
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I. Introduction

During mechanical respiratory support for acute ventilatory failure, neonates may

be apneic. The majority of infants, however, do exhibit respiratory activity. Dis-

tinct patterns of spontaneous respiration with positive pressure inflations can be

seen (1), and generally are the result of provocation of respiratory reflexes. In this

chapter, the patterns of respiratory activity, the physiological mechanisms under-

lying them, and the factors influencing which pattern occurs will be described.

Methods of detecting respiratory activity during mechanical ventilation and their

role in the management of infants with acute ventilatory failure will be discussed,

and the impact of respiratory activity on the outcome of ventilated infants will be

considered.

II. Respiratory Activity During Mechanical Ventilation

A. Apnea

During the acute stages of respiratory distress, apnea is uncommon except in

heavily sedated and=or very immature infants. It is more likely to occur when fast

rates are used, particularly when infants are supported by high-frequency

oscillation (2). After the perinatal period, spontaneous respiratory activity is
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less common in infants who are fully supported by mechanical ventilation (3).

Possible explanations include that respiratory reflexes are less likely to be

provoked in older infants or in infants with compliant lungs.

B. Patterns of Respiratory Activity

Four distinct patterns have been described:

1. Prolongation of the spontaneous expiratory period during positive

pressure inflation (Fig. 1); this is due to stimulation of the Hering Breuer inflation

reflex.

2. Active expiration against positive pressure inflation (Fig. 2); this is also

due to stimulation of the Hering Breuer inflation reflex.

3. Larger inspiratory effort provoked by positive pressure inflation

(Fig. 3); this is due to provocation of an augmented inspiration, likened to

Head’s paradoxical reflex (4).

Figure 1 Hering Breuer inflation reflex. Between positive pressure inflations, the infant

breathes well (note narrow negative deflections in esophageal pressure trace). Each positive

pressure inflation, however, causes a brief period of apnea (flat esophageal trace during

positive pressure inflation). (From Ref. 1.)
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Figure 2 Active expiratory effort against positive pressure inflation. Between positive

pressure inflations, the infant breathes well (narrow negative deflections in esophageal

pressure tracing and large inspiratory and expiratory volume changes). Each ventilator

inflation, however, is associated with a small amount of air entry into the infant’s chest

(upward deflection), and after this the infant is able to inhibit further air entry into the chest

(resetting of integrator at zero airflow to zero during positive pressure inflation, despite

maintenance of the peak pressure). During one positive pressure inflation, an active

expiratory effort by the infant causes air to leave lungs (downward deflection in volume

tracing) despite positive pressure inflation continuing. (From Ref. 1.)
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4. Coincidence of inspiration with positive pressure inflation (Fig. 4); this

interaction is described as synchrony. Infants may breathe synchronously with

each or a proportion of positive pressure inflations, that is, with every second or

third inflation when fast (�60 breaths=min) ventilator rates are used.

When examined during a short period of time (1), infants’ respiratory

patterns were persistent, provided the blood gases remained in the therapeutic

Figure 3 Provoked augmented inspiration. Positive pressure inflation (in the center of

the tracing) provokes a large negative deflection in the esophageal tracing at least twice that

caused by spontaneous inspiration. (From Ref. 1.)
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range, the infants were not disturbed by nursing procedures, and the ventilator

settings not altered (1). Usually only one respiratory pattern was seen but, on 28

of the 120 study occasions on which infants were assessed, provoked augmented

inspirations occurred with one other respiratory pattern (1). Uncommonly, infants

exhibit chaotic respiratory activity, which has no relationship to positive pressure

inflation; this can occur when infants are hypoxic and=or hypercarbic.

III. Respiratory Reflexes

A. Hering Breuer Reflexes

Hering and Breuer (5) reported that distension of the lungs in anesthetized

animals decreased the frequency of inspiration (the Hering Breuer inflation

reflex), and if the inflation was prolonged, an active expiratory effort was

provoked. The reflex is mediated by pulmonary slowly adapting stretch receptors,

whose afferents run in the vagus nerve to the nucleus solitarius. The reflex is

Figure 4 Synchrony. The recording shows that the baby makes a spontaneous inspira-

tion (negative deflection in esophageal pressure tracing) synchronously with each positive

pressure inflation. (From Ref. 1.)
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volume dependent; larger volume changes in early rather than late inspiration are

required to halt inspiration and inhibition increases with increasing tidal volumes

(6), as evidenced by the duration of the expiratory apnea being proportional to the

inflating volume (7). The reflex is an important respiratory control mechanism in

premature infants with immature higher centers, whereas in older children and

adults it may not operate in the tidal volume range. The reflex was first

demonstrated in human neonates by Cross and colleagues in 1960 (4). Bag and

mask inflation of the infants’ lungs provoked the reflex. Similarly, positive

pressure inflations of mechanical ventilation can provoke the reflex (8). Lung

inflation resulting from the application of negative pressure around the chest, as

occurs during continuous negative pressure ventilation, also provokes the Hering

Breuer inflation reflex, as evidenced by an increase in expiratory time (9,10).

Hering and Breuer also demonstrated that deflation of the lungs caused

stronger and more frequent inspirations, the Hering and Breuer deflation reflex

(5). The reflex, as evidenced by an increased respiratory rate and inspiratory

force, has been reported following acute lung deflation in adult patients with

pneumothoraces and in situ chest drains (11). Whether this reflex occurs in

ventilated infants has not been formally tested, but it can be provoked in healthy

infants by rapid lung volume reduction using an inflatable jacket (12). It has been

suggested that the reflex may be of physiological importance only during exercise

or coughing (13), but others (12) hypothesized that it might have a role in infancy

in protecting functional residual capacity.

B. Provoked Augmented Inspirations

Head (14) described a lengthened and stronger contraction of the diaphragm on

rapid inflation of the lung when vagal conduction was partially blocked (Head’s

paradoxical reflex). It is likely that this reflex is mediated via vagally innervated,

rapidly adapting irritant receptors, which are spread throughout the epithelial cells

of the trachea and bronchi, but most are in the large airways. Stimulation of these

irritant receptors can augment inspiratory activity and cause coughing or rapid

shallow breathing. Irritant receptor stimulation may also initiate the augmented

breaths or sighs that occur periodically during normal breathing and maintain

lung expansion. Cross et al. (4), using a bag and mask to inflate the lungs, were

able to provoke augmented inspirations, which they likened to Head’s paradoxical

reflex. Positive pressure inflations during mechanical ventilation also provoke

augmented inspirations (15). In the first few days after birth, augmented

inspirations aid establishment of a functional residual capacity. The increase in

lung volume is presumed to be due to opening of alveolar units (16). Provoked

augmented inspirations improve lung compliance (17,18).
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IV. Factors Influencing Respiratory Activity

A. Gestational Age

In ventilated infants, the Hering Breuer reflex can be identified by an increase in

the spontaneous expiratory time (apnea) provoked by the volume change of

positive pressure inflations (8). It is not possible, using such a technique, to

determine whether the strength of the reflex is influenced by gestational age, as

the length of apnea cannot be used to quantify the reflex (19). The reflex,

however, was present in ventilated infants as immature as 25 weeks’ gestation,

and the frequency of elicitation of the reflex did not correlate with gestational age

(8). Using an end-inspiratory occlusion technique, the strength of the Hering

Breuer reflex was found to decrease with increasing gestational age in 26 preterm

ventilated infants with and without respiratory distress syndrome (RDS) (20).

This is consistent with data from nonventilated infants (21,22). Olinsky et al. (22)

demonstrated that the reflex was present in infants of gestational age of 29 weeks

and stronger in premature than term infants. The extrauterine environment was

associated with a significant delay in the disappearance of the reflex with

increasing maturity (21). In those studies (21,22), an end-expiratory airway

occlusion technique was used to provoke the reflex. When the airway is occluded

at end expiration, respiratory efforts produce no volume change, so there can be

no stretch receptor stimulation. If inspiration is usually terminated by stretch

receptor stimulation, that is, the Hering Breuer reflex is present, then end-

expiratory occlusion will be associated with a prolonged inspiratory time.

Others, however, have used the end-expiratory technique and arrived at different

conclusions regarding the influence of gestational age on the Hering Breuer

reflex. Bodegard (23) found the reflex to be infrequent in infants of 32 weeks’

gestational age, to increase to a maximum strength at a postmenstrual age of 36–

38 weeks and then the strength of the reflex to decline. No significant relationship

of the occurrence of provoked augmented inspirations to gestational age was

noted in ventilated infants (8).

B. Postnatal Age

The influence of postnatal age on the Hering Breuer reflex may differ between

ventilated and nonventilated infants and with respect to maturity at birth. Whereas

in ventilated, preterm infants the reflex persisted throughout the first 11 days after

birth (8), in term infants requiring no form of respiratory support studied serially

at 10, 60, and 90 min and a few days of age, prolongation of the inspiratory time

during end-expiratory occlusions was less as the infant’s age increased (24). The

Hering Breuer reflex does persist during tidal breathing beyond the neonatal

period, with apparently no statistically significant change in its strength during the

first 2 months after birth in healthy infants during natural sleep (25). In addition,
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the reflex can be provoked in nonventilated (26) and ventilated children (27) and

anesthetized adults (28,29). The significant volume-related inhibition of inspira-

tory muscle activity during mechanical ventilation (30) is not dependent on

afferent information from the rib cage, as it is seen in both normal and

quadriplegic patients (31). The reflex, however, may become less easy to provoke

with increasing age. In ventilated children, an inverse relationship of the reflex

with postnatal age was demonstrated (27). In conscious adults, the reflex was only

provoked outside the tidal range (6). Using CO2-induced increased ventilation, no

change in inspiratory duration in conscious adult humans was demonstrated until

the tidal volumes were twice the resting values (6). Widdicombe (32) also found

that the Hering Breuer reflex was weak or absent in awake adult subjects.

The active expiratory component of the Hering Breuer inflation reflex is

less prominent in older ventilated, prematurely born infants. Assessment of the

respiratory interactions of 27 preterm ventilated infants during the first 14 days

after birth demonstrated that the active expiration was only seen in the first few

days (3). In the second week, �50% of the infants were apnoeic and, despite

studying the infants at a series of rates (30, 60, and 120 bpm), active expiration

was rarely provoked (3). The change in the occurrence of the reflex, however,

may be explained by a change in respiratory compliance (33) rather than an effect

of advancing postnatal age per se. When studied in the second week, the infants

had recovered from RDS and thus would be predicted to have less stiff lungs than

when examined in the perinatal period. Those data (3) highlight that, after the first

week after birth, it is usually unnecessary to manipulate ventilator rate to avoid

active expiration, and may explain why there is a low pneumothorax rate in

ventilated infants after the perinatal period.

In ventilated preterm infants, provoked augmented inspirations were seen

only in the first 5 postnatal days regardless of gestational age (8). Similar results

have been reported in nonventilated infants born at term (4). Augmented

inspirations occurred most frequently soon after birth (4) and were commoner

during the first day of life than on subsequent days (16). The activity of the reflex

was noted to decrease during the first 5 days after birth (4).

C. Respiratory Function

In ventilated, prematurely born infants, the active expiratory component of the

Hering Breuer reflex is commoner in infants with noncompliant lungs (33). The

strength of the Hering Breuer inflation reflex was also noted to decline at a slower

rate with increasing gestational age in ventilated infants who had a low

respiratory compliance or RDS (20). Those data are consistent with the findings

that, in adult animals, decreased lung compliance caused an increased discharge

from the stretch receptors of the lungs (34), and that in nonventilated infants with

stiff lungs, neither increasing postnatal age nor maturity affected the strength of
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the Hering Breuer inflation reflex (35). It seems likely, then, that the level of lung

compliance is the most important determinant of the strength of the reflex. In

support of that hypothesis is the finding that in spontaneously breathing infants,

the correlation of the strength of the inspiratory inhibitory reflex to pulmonary

compliance was stronger than the correlation between reflex strength and

gestational age (36). In addition, serial examination of two healthy newborns

and four with respiratory problems revealed a decrease in the strength of the

reflex as the compliance increased (36).

Provoked augmented inspiration is also commoner in infants with noncom-

pliant lungs. In one series (15), provoked augmented inspirations were only seen

in infants with a lung compliance of <2mL=cmH2O. In addition, the frequency

of elicitation of the reflex was inversely proportional to the lung compliance

(Fig. 5), as was the ventilator pressure provoking the reflex. An inverse relation-

ship between the sensitivity of Head’s paradoxical reflex and lung compliance has

also been demonstrated in cats (37).

D. Blood Gases

No chemoreceptor influence on the occurrence of the Hering Breuer reflex has

been demonstrated in ventilated infants (8,20). In one of the studies (20), an end-

Figure 5 The frequency of elicitation of provoked augmented inspirations related to

dynamic compliance. m, Babies on no medication except antibiotics; u, babies recovering

from paralysis with pancuronium; j, babies receiving treatment with theophylline. Each

subpopulation is associated by its regression line. A higher incidence of augmented

inspirations was seen in infants receiving theophylline or recovering from paralysis with

pancuronium. (From Ref. 15.)
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inspiratory occlusion technique was used, but in the other (8) the results may have

been biased by failure to maintain ventilator inflation until the breakpoint of the

reflex was reached. In both studies, the majority of infants had blood gases within

the normal range, which may have further influenced the results. In nonventilated

infants, there is disagreement regarding the effect of blood gases on the strength

of the reflex. The inspiratory time during an occlusion has been demonstrated to

correlate significantly with carbon dioxide tensions in healthy newborns (36), but

this has not been a consistent finding (19,38) and it has not been seen in cats (19).

No relationship of the occurrence of provoked augmented inspirations to

blood gases was noted in preterm, ventilated infants (15). That is not inconsistent

with the finding that in mature cats the frequency of augmented breaths increased

with increasing levels of hypercapnia and hypoxia, as hypoxia was a very potent

stimulus (39), and only a minority of the preterm infants studied were hypoxic

(arterial oxygen tension <40mmHg) (15). In addition, the infants studied were

born very prematurely, and complex pathways of chemoreceptor influence

modifying mechanical reflexes (40) may not be present in such infants during

the first days after birth.

E. Medication

Administration of theophylline in prematurely born infants has been associated

with an increase in the strength of the Hering Breuer reflex (41), as has caffeine

administration in anesthetised newborn rabbits aged 2–7 days (42). Those data

perhaps indicate an alteration in the phasic vagal afferent impulses from

pulmonary stretch receptors. In a subsequent study (43), however, there was a

significant reduction in the strength of the Hering Breuer reflex when preterm

infants were given caffeine. Overall, a significant inverse relationship was found

between the infants’ compliance of the respiratory system and the strength of the

Hering Breuer reflex. Thus, the decrease in the strength of the reflex is likely to be

explained by the improvement in compliance the caffeine-treated infants experi-

enced, rather than an effect of caffeine administration per se. Methylxanthine

administration enhanced the frequency of provoked augmented inspirations in

preterm ventilated infants (Fig. 5) (15,44). Theophylline increases diaphragmatic

contractility and so may improve the efferent part of the reflex. The increase in

reflex strength resulting from methylxanthine administration may be one of the

mechanisms by which this therapy facilitates early extubation (45).

Infants thought to be actively expiring have been paralyzed to prevent the

development of air leaks (46). Nowadays, the preferred option is to sedate infants

or to administer analgesics with the hope that this will suppress respiratory

activity. When formally tested, however, sedation was shown to have no effect on

the strength on the Hering Breuer reflex, but only infants born at term were

studied (47). Infants recovering from neuromuscular blockade with pancuronium
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in the first day after birth have been shown to have a high frequency of provoked

augmented inspirations (15). Pancuronium has effects on autonomic ganglia,

although minimal (48), and can cause tachycardia by partial vagal blockade (49).

Possibly, this causes a differential effect on vagal conduction during recovery,

such as is seen during cooling (14), and other reflex loops are selectively blocked

to enhance the elicitation of the reflex.

Maternal administration of corticosteroids has been associated with a

reduction in RDS and neonatal mortality. In addition, infants exposed to

corticosteroids antenatally and exogenous surfactant postnatally have more

compliant lungs; as a consequence, respiratory reflexes are less likely to be

provoked (see above). The respiratory activity of ventilated infants routinely

exposed to antenatal corticosteroids and postnatal ‘‘surfactant,’’ however, has not

been systematically examined.

F. Mode of Ventilation

Continuous Positive Airway Pressure (CPAP)=Positive End-Expiratory

Pressure (PEEP)

Elevation of the PEEP or CPAP level can result in prolongation of expiratory time

and slowing of the respiratory rate (50,51). Application of 0, 3, and 6 cmH2O of

CPAP resulted in a progressive increase in FRC and expiratory time, with a fall in

respiratory rate in term infants (52). Elevation of end-expiratory lung volume by

administration of continuous negative pressure also results in an increase in the

duration of expiration and a reduction in respiratory rate (10). The mechanism of

slowing of the respiratory rate is that elevation of lung volume stimulates the

Hering Breuer reflex.

Conventional Ventilation

During conventional ventilation, ventilator rate has an important influence on

which respiratory pattern occurs. Active expiration is more common in infants

ventilated with slow rates (53). At slow rates, long-duration positive pressure

inflations are frequently employed; such inflations are particularly likely to

stimulate active expiration (33). The mean spontaneous inspiratory time of

prematurely born infants studied in the perinatal period is �0.3 s (54). Thus, a

long positive pressure inflation results in inflation extending into expiration; this

has been termed asynchrony, and leads to active expiration and airleak. Active

expiration also occurs when the commencement of a square wave positive

pressure inflation is in a spontaneous respiratory window (�0.2 sec) around the

end of inspiration (55). Positive pressure inflations are only ‘‘square wave’’ at

relatively low frequencies (56); this may be another explanation for the associa-

tion of active expiration and slow-rate conventional ventilation. Increasing
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ventilator rate and by necessity reducing inflation time, however, does not

universally suppress the active component of the Hering Breuer inflation reflex

(53).

Augmented inspirations only occur when slow ventilator rates are used. In

one series (15), augmented inspirations were only provoked if the ventilator rate

was 15 bpm or less. In anesthetised cats (39) and rabbits (57), the inspiration-

augmenting reflex has also been shown to have a relatively long refractory period.

This refractoriness relates to the accompanying increase in end-expiratory volume

following a provoked augmented inspiration. In contrast, synchrony is more

common at fast rates, that is, 60 bpm or greater (58). Examination of 24

prematurely born infants at a series of ventilator rates (30, 60, and 120 bpm)

(58) revealed that 17 became synchronous at a rate of 120 bpm and a smaller

number (four) at 60 bpm. Two infants were only synchronous if ventilated at their

own spontaneous respiratory rate, and one infant was asynchronous throughout

the study. The 17 infants synchronous at 120 bpm were less mature and had a

faster spontaneous respiratory rate than those synchronous at 60 bpm. Those data

are consistent with the findings that the spontaneous respiratory rate of preterm

infants in the first days after birth was inversely proportional to their gestational

age (58) (Fig. 6) and that smaller animals have been shown to breathe faster than

larger ones, possibly due to a stronger Hering Breuer reflex (34). To entrain

infants’ respiratory activity to positive pressure inflations and hence induce

synchrony, the ventilator rate must be faster than, but similar to, the infants’

respiratory frequency. Thus, rates of 120 bpm did not induce synchrony in more

mature infants (58).

High-Frequency Oscillation (HFO)

At the very fast frequencies employed during HFO, animals are apneic (59); this

is the consequence of lowered carbon dioxide tensions and is reversed by

vagotomy (59). In anesthetised cats, rhythmic phrenic discharge inhibited by

HFO reappears following neuromuscular blockade (60). Those data suggest that

the apnea during HFO results from inspiratory inhibition mediated by chest wall

and vagal afferents. A possible source for the vagal inhibition is stimulation of

slowly adapting stretch receptors. In neonates, spontaneous respiratory rate was

shown to significantly decrease on transfer from conventional ventilation to HFO,

but only a minority of the infants became apneic (2). It has been suggested that

spontaneous respiratory activity during HFO usually occurs in response to the

stimulus of pain or handling, carbon dioxide retention, or pneumothorax (60).

Respiratory activity, however, has been described in the absence of such stimuli

and in association with improvements in blood gases (2). The duration of the

apnea resulting from stimulation of the Hering Breuer inflation reflex varies

directly with the inflation volume (40), and, in cats, apnea can be induced by
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increasing the delivered volume to at least 5mL=kg (61). Thus, the difference

between the results in infants and those in animal models may be explained by the

lower volume, �2.5mL=kg, delivered to infants during HFO (62) and the infants’

being normocarbic when studied (2).

Patient-Triggered Ventilation

During patient-triggered ventilation (PTV), the infant’s respiratory efforts trigger

positive pressure inflations. In synchronized intermittent positive pressure venti-

lation (SIPPV), otherwise known as assist=control (A=C), any number of

Figure 6 Spontaneous respiratory rate of ventilated infants studied in the first days after

birth related to gestational age. The solid line depicts the regression line: Respiratory rate,

223.97–4.71; gestational age, (P < .01) r ¼ �0:85. (From Ref. 58.)
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inflations can be triggered provided the change in pressure, flow, volume, etc.,

exceeds the critical trigger level, whereas in synchronized intermittent mandatory

ventilation (SIMV), only a preset number of inflations can be triggered regardless

of the frequency of the infant’s spontaneous respiratory efforts. As, during either

SIPPVor SIMV, the infant’s respiratory efforts trigger positive pressure inflations

it was expected that these ventilatory modes would provoke synchrony with

improvements in blood gases. In physiological studies involving infants with

acute respiratory distress, PTV compared to conventional ventilation was indeed

associated with higher rates of synchrony, better blood gases, and higher tidal

volumes; additional advantages were lower rates of work of breathing and

fluctuations in blood pressure and cerebral blood flow velocity. Comparison of

the different ventilation modes, however, was only made over very short periods,

and only relatively mature infants were examined. Subsequent studies have

demonstrated that asynchrony does occur during PTV (63). Then PTV is much

more likely to fail, that is, the infant develops apnea, irregular triggering, or a

metabolic or respiratory acidosis. Asynchrony, inflation extending into expiration,

results from a long trigger delay. The trigger delay is the time from the onset of

the infant’s spontaneous inspiration and the commencement of a positive pressure

inflation. The length of the trigger delay is affected by the performance of the

ventilator’s triggering system (see below) and the nature of the infant’s respiratory

efforts, which are influenced by the infant’s lung function and respiratory drive.

For example, a long trigger delay is likely to occur in infants with high airways

resistance if a device triggered by a critical change in airflow is employed or in

very immature infants with feeble respiratory efforts if an airway pressure trigger

is used (64). The use of a ventilator with an airway pressure trigger may explain

the lack of superiority of PTV over conventional ventilation in a recently

published randomized trial (65). Failure of PTV is also associated with a low

triggering rate related to the infant’s gestational age, which is more common

in immature infants (66). Prolonged inflation times, that is, >0.4 sec, can also

reduce the triggering rate by stimulation of the Hering Breuer reflex (67).

In premature infants recovering from RDS, the results of a randomized trial

demonstrated that the duration of weaning during conventional ventilation was

longer than on SIPPV (68). SIMV compared to SIPPV allows more flexible

weaning, as weaning can be by pressure and=or rate reduction. Nevertheless, the
results of three randomized trials failed to demonstrate that weaning by SIMV

rather than SIPPV was more advantageous (69,70). Indeed, overall there was a

tendency for a shorter duration of weaning in infants randomized to SIPPV,

particularly if the SIMV rate was reduced below 20 breaths=min (69,70). Oxygen

consumption is increased at low levels of ventilator support (71). Thus it seems

likely that at least 20 spontaneous breaths=min must be supported by positive

pressure inflations to overcome the work of breathing imposed by the endo-

tracheal tube.
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Pressure Support Ventilation (PSV )

During PSV, the infant triggers a pressure-supported breath at a preset level. The

patient determines the duration of the positive pressure inflation, as the triggering

device senses not only the beginning but also the end of the infant’s inspiratory

effort. Inflation is terminated when the inspiratory flow is reduced to a certain

level, for example, at 15% of maximum flow when the Draeger Babylog 8000

(Draeger Medical, Luebeck, Germany) is used and at 15–25% of maximum flow

when the termination sensitivity of the Bird VIP (Bird Products, Palm Springs,

CA) is employed. Employment of PSV thus should eliminate asynchrony. In a

group of very immature infants (72), increasing the termination sensitivity to

maximum was associated with almost total elimination of asynchrony. The

reduction in asynchrony resulted from shortened inflation times as the termina-

tion sensitivity was increased but, despite the lower inflation time, volume

exchange was maintained. Delivered volume is compromised in certain ventila-

tors when inflation time is reduced (73). The maintenance of delivered volume, as

the termination sensitivity was increased, suggests then that this was as a result of

an increase in the infant’s respiratory efforts. Thus, although PSV may increase

the likelihood of synchrony, it is important to determine if preterm infants can

compensate for very short inflation times throughout their ventilatory career or

whether use of this ventilatory mode should be restricted in infants ready to wean.

In addition, whether the lower rate of asynchrony during PSV translates into a

reduced rate of airleak needs to be investigated.

Proportional Assist Ventilation (PAV )

Ventilatory support during PTV is synchronized with the beginning and some-

times the end of the infant’s inspiration, but during PAV it is synchronized

throughout the infant’s respiratory cycle. The applied pressure is servocontrolled

throughout each spontaneous breath, and increases in proportion to the tidal

volume and inspiratory flow generated by the patient. The frequency, timing, and

amplitude of lung inflation are controlled by the patient (74). The results of a

crossover study (74) indicated that gas exchange might be maintained with

smaller transpulmonary pressure swings during PAV than during intermittent

mandatory ventilation or PTV. Only 36 infants, however, were studied during

three consecutive 45-min periods. Potential problems with PAV could occur if

there was a significant leak around the endotracheal tube, inadvertent over-

compensation leading to lung overdistension or a lack of responsiveness to apnea

or hypoventilation (75).

Volume Guarantee Ventilation (VSV )

During VSV, a preset volume is delivered to the infant, so this mode of ventilation

compensates for changes in the mechanical characteristics of the respiratory
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system. Preliminary studies comparing VSV to conventional ventilation suggest

that during conventional ventilation infants be overventilated (76–78). During

VSV adequate ventilation was achieved with lower airway pressures than during

other ventilatory modes, the likely explanation being that, when VSV is

employed, infants contribute more to the volume exchange (76). To date, the

physiological studies examining VSV have only been of short term, and it

is important to assess whether VSV is a suitable long-term ventilatory mode

for preterm infants and, like PSV, it is likely to be most useful in the recovery

stage.

V. Methods of Detecting Respiratory Activity During
Mechanical Ventilation

A. Physiological Recordings

Spontaneous respiratory activity can be recorded using a pressure measuring

device in the esophagus, such as a balloon or catheter, to reflect changes in

pleural pressure (79), or by monitoring chest wall movements using impedance.

Esophageal pressure measurements are inaccurate in infants with chest wall

distortion (80). Nevertheless, under such circumstances, the esophageal pressure

signal can be used qualitatively to indicate respiratory timing, particularly in

relationship to positive pressure inflations. Simultaneous recording of the infant’s

respiratory activity and changes in airway pressure will reveal if expiration is

occurring during positive pressure inflation. An alternative method of detecting

active expiration is to record the fluctuations between the maximum and

minimum systolic peaks of the arterial blood pressure, active expiration being

present when the fluctuations are increased (81).

B. Clinical Observation

Respiratory patterns may be inaccurately diagnosed if an infant is observed at

only one respiratory rate. Selective paralysis, when used with physiological

monitoring to detect active expiration, was an effective method of preventing

pneumothoraces (46). If, however, clinical observation alone was used, then

selective paralysis was no more effective in reducing the incidence of pneu-

mothoraces than paralyzing all infants (82), suggesting that active expiration may

have been misdiagnosed. Visually assessing respiratory activity at two different

ventilator rates, particularly if changes in transcutaneous oxygen concentrations

were also considered, improved diagnostic accuracy (83). Synchrony was

diagnosed when the infant’s respiratory efforts became less obvious when the

ventilator rate was increased, and this was associated with an improvement in

oxygenation. Similarly, active expiration was diagnosed when the infant’s

respiratory efforts became more obvious, or there was poor chest wall expansion
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or even a downward movement of the chest wall during positive pressure inflation

which was associated with impairment of oxygenation when the ventilator rate

was reduced. Using such criteria all infants who breathed synchronously were

correctly identified by clinical observation and active expiration=asynchrony
correctly identified on 88% of occasions (83).

C. Importance of Recording Respiratory Activity During
Mechanical Ventilation

During mechanical ventilation, the infant’s respiratory efforts may impair gas

exchange and=or result in a pneumothorax. It is important, then, to determine

whether the infant’s inspiratory efforts are in time with each positive pressure

inflation. Some infants, however, may expire during each positive pressure

inflation. This can be revealed by watching the direction of chest wall movement

while timing each positive pressure inflation by listening to the ventilator. A more

secure method of detecting active expiration, however, is to simultaneously record

airway and esophageal pressure changes (see above). Similarly, successful

suppression of respiratory activity by administering sedative=analgesic agents

cannot be assumed and will only be accurately assessed if the infant’s respiratory

efforts are directly monitored.

Recording respiratory activity can identify infants in whom PTV is more

likely to fail. PTV is frequently unsuccessful if there is a long trigger delay and in

those immature infants who have a weak Hering Breuer reflex (84). The trigger

delay can be assessed by simultaneous recording of esophageal and ventilator

pressure changes (85). From such recordings, the sensitivity of the triggering

system can also be determined, the sensitivity being demonstrated by the

proportion of the infant’s inspiratory efforts that trigger ventilation inflations.

Simultaneous esophageal and airway recordings also highlight when triggering is

occurring in expiration, as can occur in very immature infants when an abdominal

movement sensor is used as the triggering mechanism (86). There have now been

many studies, in both animal models and infants, comparing the performance of

different triggering systems. Unfortunately, the majority have concentrated on

relatively mature infants with RDS, and it is important to be aware that triggering

systems have poorer performance in very immature infants (85). A further

limitation of the literature is that different triggering systems with different

ventilators have usually been compared and that the ventilators available vary in

performance (73). Thus, differences may reflect differences in performance of the

triggering system, the ventilator, or both. To correctly identify differences in the

performance of triggering systems it is essential to compare them using the same

ventilator (64).
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VI. Influence of Respiratory Activity on the Outcome
of Mechanical Ventilation for Acute Ventilatory
Failure

One pattern of respiratory activity, active expiration, has been shown to result in a

poor ventilation outcome. Examination of 34 infants on 120 occasions (1)

revealed that only one type of respiratory pattern, active expiration, consistently

preceded the development of a pneumothorax. The association was confirmed by

the results of a trial in which infants demonstrated to be actively expiring were

randomly allocated to receive standard therapy and a neuromuscular blocking

agent, pancuronium or standard therapy alone (46). Pneumothoraces developed in

all of the infants who continued to actively expire, but in only one of those whose

active expiratory efforts were inhibited by administration of pancuronium. The

likely mechanism of pneumothorax development following active expiration is

that the active expiratory efforts opposing positive pressure inflation increase the

shearing forces to which the lung is subjected.

It had been postulated (87) that pneumothorax would occur if the infant

took a spontaneous breath simultaneously with positive pressure inflation,

synchrony, as that combination would generate large transpulmonary pressure

swings rupturing the airways or alveoli. Synchrony, however, was shown not to

result in air leak but rather had a positive influence on the outcome of ventilation

(88). Blood gases improved when synchrony was provoked (88), and this has

been an incentive to develop ventilation modes which guaranteed synchrony.

Augmented inspirations provoked by positive pressure inflations also do not lead

to air leaks (1), but to an improvement in compliance (44).
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I. Introduction

The markedly improved survival of extremely immature neonates in recent

decades has not been without significant costs—�30% of infants with a birth

weight <1000 g develop lung injury in form of chronic lung disease (CLD) (1).

For the most part, this term is synonymous with bronchopulmonary dysplasia

(BPD). The disease has been attributed to respiratory distress that requires

therapeutic interventions such as ventilatory support and oxygen therapy. Infants

with BPD not only suffer from serious respiratory problems during the neonatal

period but are also impaired by prolonged respiratory insufficiency in subsequent

years. BPD is a complex disease characterized by stiff lungs, decreased

alveolarization, poor lung mechanics, extremely compliant chest wall, and an

insufficient muscle mass to sustain adequate ventilation. Together with an

inadequate respiratory drive and frequent hypoxemic episodes, these pathological

characteristics result in suboptimal growth, poor lung functions, affected cogni-

tion, and inferior motor development in the long term. Despite the intensive

research in the last decade, the etiology of BPD is still unclear. The pivotal

consensus focusing on the key questions regarding BPD has been published

recently after a workshop organized by National Institute of Child Health and

Human Development (2).
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Because of the complexity of the disease this chapter is devoted mainly to

respiratory control issues that have bearing on the clinical care of infants with

BPD. The short- and long-term outcomes of preterm born infants with BPD are

also briefly discussed.

II. Definition and Etiology

The most widely used definitions of BPD have been based predominantly on the

duration of oxygen therapy. In the report from the workshop on BPD in 1979, the

disease has been defined on the basis of specific radiographic changes in the

lungs and the need of oxygen therapy for at least 28 days (3). The results from

studies on late pulmonary sequelae of BPD have shown that oxygen therapy at 36

weeks of postmenstrual age has been a significant predictor for long-term

respiratory outcome. That led to changes in the definition so the requirement

for supplemental oxygen at 36 weeks of postmenstrual age was required for the

diagnosis (4). In the report from the recent workshop on BPD (2) a new definition

and criteria for grading of the severity of BPD have emerged. The ‘‘new’’

definition uses different criteria for infants born before and after 32 weeks of

postmenstrual age, takes into consideration the length and intensity of O2

supplementation and=or the need for ventilatory support, and disregards radio-

graphic findings (2).

In the 1970s BPD developed in those preterm born infants who were treated

with positive pressure ventilation and with high levels of supplemental oxygen for

respiratory distress syndrome (RDS). The improvement of ventilatory support in

the 1980s increased survival of extremely premature infants and significantly

decreased the overall morbidity among those born at later gestation. The

introduction of antenatal corticosteroids and surfactant treatment in the late

1980s and early 1990s resulted in the dramatic increase in survival among

extremely preterm infants. However, the decline in the mortality among these

infants has been paralleled by an increase in the prevalence of BPD (5) (Table 1).

Table 1 Mortality and Incidence of BPD Among VLBW

Infants (<1500 g) at Vanderbilt NICU 1976–1990

Time period Mortality (%) BPD (%)

1976–1980 26.4 10.6

1981–1985 18.3 21.2

1986–1990 15.9 32.9

Source: Ref. 5.
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Furthermore, the improvements in assisted ventilation techniques changed the

character of BPD. The ‘‘old,’’ classic BPD was characterized by severe alveolar

septal and peribronchial fibrosis, squamus metaplasia, and=or hypertensive

vascular bed (6–8). These aberrations are not seen in the ‘‘new’’ BPD. However,

smooth muscle hypertrophy in the airways and abnormalities in the elastic fibers

are seen both in the classic and in the new BPD (9,10). The new BPD is also

characterized by alveolar hypoplasia, saccular wall fibrosis, and minimal airway

disease (11). Interestingly, the new BPD has been described in newborns with

initially no or minimal lung disease who develop increasing need for both

ventilatory support and oxygen therapy in the ensuing weeks (12).

The structurally immature and surfactant-deficient lung is extremely

susceptible to injury because these alveolar units are prone to collapse. The

use of mechanical ventilation to open airways induces lung injury by over-

distension of the airways and alveoli. Surfactant treatment prior to initiation of

assisted ventilation seems to counteract the atelectasis by promoting more

uniform inflation of the lungs (13). The susceptibility to volume trauma due to

mechanical ventilation is further potentiated by high chest wall compliance. The

following mechanical injury leads to protein and fluid leakage into airways,

alveoli, and interstitium; inhibition of surfactant function; and inflammation (14).

These processes are reinforced by antenatal exposure to inflammatory mediators

and infection (15,11). Since multiple proinflammatory factors are prominent in

the airways, the inflammation seems to be a central factor in BPD (16).

Besides the mechanical injury and inflammatory processes, the prolonged

oxygen treatment seems to be a significant factor leading to lung damage. Since

the antioxidant systems develop as late as during the third trimester, the exposure

to hyperoxia leads to an overproduction of superoxide and perhydroxy radicals

and results in inflammation and diffuse lung damage (17). Treatment with

supplemental oxygen aimed at keeping oxygen saturation between 89% and

94% or between 96% and 99% (18) clearly demonstrated higher prevalence of

BPD and retinopathy of prematurity (ROP) in the group of infants with the higher

range for saturation.

III. Control of Breathing in BPD

Respiration is regulated by chemical mechanisms, so called chemoreceptors,

which monitor PO2 and PCO2 and adjust ventilation to maintain blood gases and

pH within normal ranges. Rise in PCO2 and=or decrease in PO2 augments

inspiratory activity and stimulates respiration to facilitate absorption of O2 and

excretion of CO2 to maintain homeostasis.
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A. Peripheral Chemoreceptors

Function and Developmental Aspects

The peripheral chemoreceptors play a crucial role in the defense against hypoxia

and in control of breathing (19,20). In healthy infants and in adults a fall in partial

pressure of O2 (PaO2) elicits a hyperventilatory response, which is mediated

predominantly by peripheral chemoreceptors in the carotid bodies and, to a lesser

degree, by receptors in the aorta (21). The reactivity to hypoxia is present in the

fetus and it responds to an acute O2 deficiency by cessation of breathing

movements (22). At birth, the shift from fetal life to extrauterine air breathing

requires resetting of the sensitivity in the peripheral chemoreceptors to higher O2

levels. During the first few days after birth, the carotid chemoreceptors seem

crucial for maintaining adequate respiration but their importance disappears with

age; in newborn lambs and piglets the carotid body denervation leads to abnormal

breathing pattern, prolonged apneas, and deaths (23,24), while the bilateral

denervation of carotid bodies in adult humans (25) does not have any effect on

respiratory control.

The study on the maturation of the peripheral chemoreceptors in very

prematurely born infants (gestational age 28.8 � 2.7 weeks) described a marked

decrease in the response time to 100% O2 between 36 and 40 gestational weeks

(26).

The function of peripheral chemoreceptors in humans can be examined by

measuring changes in ventilation while breathing hypoxic or hyperoxic gas

mixtures (see below). Even though the ventilatory response to hyperoxia=hypoxia
reflects complex integrated inputs from peripheral chemoreceptors, central

nervous system mechanisms, and changes in metabolism, the hypoxic=hyperoxic
ventilatory response is predominantly controlled by carotid chemoreceptors. As

such, the response mirrors function of these receptors (20).

Methodological Approaches

In clinical tests the hyperoxic exposure to breath-by-breath alternating inhalation

of 100% O2 and air or inhalation of 100% O2 for at least 30 sec (so-called

chemodenervation), is most frequently used. In studies on peripheral chemo-

receptor function in infants with RDS or BPD, the exposure to hyperoxia lasting

several seconds is preferred owing to maldistribution and reduction in the

perfusion area, and the unevenness in the ratio between alveolar ventilation

and vascular perfusion (27,28). It seems likely that the structural changes in the

dysplastic lung delay the delivery of the hyperoxic stimuli to peripheral

chemoreceptors. Infants with BPD need a significantly longer time to reach the

peak in oxygenation when breathing 100% O2 than preterm infants without lung

disease (29) (for a short review of the methods, see Ref. 30).
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Development of Peripheral Chemoreceptor in BPD

The postnatal adjustment to higher partial pressures of O2 can be altered when the

fetus (31,32) or child is subjected to low PO2 levels. Infants born at high altitude

do not react to hyperoxia by changes in ventilation during the first 5 days of life,

but show an adequate response at 2–6 months of age (33). Similarly, the weakest

or absent response to oxygen in very preterm infants was found in infants

requiring the long-lasting treatment with supplemental O2 (26), particularly in

those suffering from BPD (29,34).

The clinical consequences of defective function of the peripheral chemo-

receptors are very serious. In animal models it has been linked with severe

disturbances in respiratory control mechanisms (35), an absence of arousal from

hypoxia (36), and, in infants, with apparent life-threatening events (37). Further-

more, it has been suggested that absent or attenuated peripheral chemoreceptor

function may, at least in part, explain the significantly increased incidence of

SIDS in infants with BPD (34,37–39). However, the lack of sensitivity in

peripheral chemoreceptors is not permanent. In infants with BPD with absent

response to hyperoxia, the response appeared at the mean postnatal age of 14

weeks (range 9–33 weeks) (40). This suggests that infants with BPD are in fact

unprotected against hypoxia at the age when they are at highest risk for SIDS (see

Fig. 1).

B. Central Chemoreceptors—CO2 Drive in BPD

Increases in PCO2 and=or Hþ stimulate central chemoreceptors, located on the

ventral surface of the medulla, and give rise to significant cardioventilatory

interaction. Even though other areas also react to CO2, their effect on ventilation

is not well established. The action of CO2 on medullary chemosensitive cells is

essential for the maintenance of normal breathing, particularly during deep sleep

(41,42). Therefore, the ventilatory response to hypercapnia is often employed in

studies of central respiratory control mechanisms (41,43–46). The ventilatory

response to CO2 is the result of an interaction between central and peripheral CO2

drives, central control mechanisms, CO2 storage in blood and tissues, and

respiratory mechanics.

Methodological Approaches

The ventilatory CO2 response as a measure of central chemoreceptor activity has

been studied either by the steady-state or the rebreathing method. Both

techniques describe the respiratory system controlled predominantly by central

chemoreceptors. The ventilatory response to inspired CO2 is measured when

PCO2 equilibrium at the alveolar, arterial, and central levels is reached, which

corresponds to venous CO2 concentrations. The steady-state procedure is based
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on inhalation of at least three gas mixtures of different CO2 concentrations (e.g.,

2%, 4%, and 6% CO2 in air). The time necessary to obtain steady state for each

mixture varies from 5 to 10min (47). Thus, the steady-state method is a laborious

procedure and therefore seldom used in studies in sleeping infants. In contrast,

the rebreathing method, also called the Read method, is much more efficient and

therefore preferable (48). The procedure is based on rebreathing from a small bag

with a gas mixture initially containing 3–7% CO2 in oxygen. The procedure lasts

only 3–4min, during which time a marked increase in ventilation occurs. The

slope of the regression line describing the relationships between the increase in

the end-tidal PCO2 and the increase in ventilation is used as a measure of the

sensitivity of respiratory system to CO2.

Developmental Aspects

The CO2 drive has been seen in fetus with significantly increased breathing

movements in response to maternal inhalation of 4–6% CO2. However, the

response was only seen during low-voltage electro-oculogram, corresponding to

REM sleep (22). After birth the threshold for CO2 response decreases almost

immediately, and the response is seen in all sleep stages (49). The postmenstrual

Figure 1 Postnatal age at the appearance of the hyperoxic response in relation to the

severity of BPD.
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age seems to play a role since preterm infants have lower sensitivity to CO2 than

term infants (46,50–52), but the response increases with advancing postnatal age

(50,53). Lower sensitivity to CO2 in preterm infants has mainly been attributed to

low responsiveness of the central chemoreceptors (42,52) and=or to suboptimal

respiratory mechanics such as highly compliant chest wall (42,50). This is

illustrated in Figure 2 (personal data); the ventilatory response in the same

preterm infant at a postconceptional age of 36 and 40 weeks as compared to a

full-term infant at 5 days and at 3 months of age. As seen in the figure the preterm

infant reacted to CO2 with an initial increase in ventilation and a subsequent

leveling of the ventilatory response. The first part of the response implies well-

functioning chemoceptive mechanisms. The second part, the leveling of the

response, may be explained by an inability to sustain hyperventilation due to

suboptimal respiratory mechanics such as lower lung compliance, fatigue in

respiratory muscles, and=or decrease in central drive. Beyond the observations

described above, very little can be extrapolated specifically to BPD infants. So far

only one study (54) has examined CO2 response in infants with BPD and

compared it with the response in non-BPD preterm infants (with apneas and

IVH). A similar ventilatory response to CO2 was observed in both groups. The

serious shortcoming of this study was the use of chloral hydrate that, despite no

obvious effect on chemosensitivity (55) might have influenced the infants in

different ways and thus secondarily influenced the reported results (56).

IV. Relationships Between Control of Heart Rate and
Respiration

Respiration and heart rate (HR) are rhythmic phenomena with distinct intrinsic

frequencies that are functionally linked to interactions of oscillating centers in the

brainstem. Our knowledge about the control of HR has been based on analysis of

HR and HR variability (HRV) in either time or frequency domain. The latter

analysis, called spectral analysis, is based on the assumption that control of HR

consists of general rhythmic, linear components and nonlinear, spontaneous, and

chaotic elements, which give rise to chaotic oscillations and irregularities in HR

(57). The periodic components of R-R intervals are defined in terms of low-

frequency (LF; 0.02–0.2 Hz), high-frequency (HF; >0.2–1.5Hz) power spectra

and as the ratio between LF and HF (LF=HF). The LF component is influenced by

both sympathetic and parasympathetic efferents to the heart, while the HF

component is governed predominantly by parasympathetic system. Thus, by

investigating HR oscillations in different physiological conditions and sleep

states, one may gain a deeper insight into the autonomic control of HR (58). It

has been shown that the ratio between LF and HF spectra decreases after 28

postnatal days in healthy newborn infants, suggesting a more pronounced

parasympathetic control of HR with postnatal age (59).
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Figure 2 Breath-by-breath changes in ventilation in response to increases in the end-

tidal PCO2 during rebreathing tests in a premature infant (36 and 40 weeks’ postconcep-

tional age) and a full-term infant (5 and 92 days).
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Spectral analysis of HRV in infants with BPD and infants born at term at

the same postnatal age revealed significantly reduced LF spectra in QS and thus

lowered LF=HF ratio in BPD infants compared to healthy controls. This suggests

a lowered sympaticovagal balance of the autonomic control of HR in infants with

BPD. Furthermore, the autonomic control of HR can be modulated by changes in

SaO2; a mild lowering in SaO2 accelerates HR and changes LF and HF spectra

(60). The reduced LF spectra might also imply a reduced baroreceptor activity in

these infants (61).

Similarly to HR, the respiratory rhythm consists of basic oscillations in

form of inspiratory=expiratory phases. Superimposed on these basic oscillations

are frequent (<0.2Hz) modulations of the amplitude and frequency of the breaths

(62,63).

The coupling of breathing and HR rhythms is controlled by a network of

interactive processes, is fine-tuned by external stimuli and emotional influences,

and changes with age. For example, during first 3 days of life HR oscillations are

influenced predominantly by modulations in breath amplitude while in older

infants and adults breathing frequency contributes significantly to HR variability

(64) at HF spectra, inducing so-called respiratory sinus arrhythmia (RSA).

The coordination between cardiovascular and respiratory systems can be

disturbed in different clinical situations. Numerous studies on cardiorespiratory

control mechanisms in SIDS suggest some loss of coordination between

cardiovascular and respiratory systems and that influences of one system on

the other are diminished. Infants who succumb to SIDS show weaker minute-by-

minute correlation between cardiac and respiratory measures (65) and reduced

respiratory influence on cardiac rate (66,67). Infants with severe or mild recurrent

apneas in sleep and infants who have experienced apparent life-threatening events

(ALTE) have an adequate ventilatory response but divergent HR response to mild

hypercapnia; these infants respond to mild hypercapnia with an adequate increase

in ventilation but with a simultaneous decrease in heart rate (68). Since infants

with BPD are at significantly higher risk for SIDS (38,69), one can assume

similar background mechanisms.

Cardiorespiratory control undergoes maturational changes during first 6

months of life (70). The disturbances in ventilation during sleep, particularly

REM sleep, are most frequent during first 6 months of life (71). Furthermore, the

observed decrease in the frequency and duration of nighttime desaturations,

which is not paralleled by an improvement in respiratory mechanics, might be

explained by maturation of the ventilatory control mechanisms (29).

V. Hypoxemia in BPD

Despite long-term oxygen supplementation, infants with BPD usually exhibit

varying degrees of hypoxemia and hypercapnia. The rationale for supplemental
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O2 therapy has been to elude the adverse effects of hypoxia while avoiding O2

toxicity. Until the early 1990s, the clinical recommendation for weaning infants

with BPD from supplemental O2 was set at the average SaO2 between 88% and

90%. However, the negative effects of suboptimal oxygenation (see below) were

described in a number of clinical studies. As a consequence, a baseline oxy-

genation in air breathing between 93% and 95% is now recommended to justify

discontinuation of oxygen treatment.

Nevertheless, future studies are needed to establish the effect of supple-

mental O2 therapy on mortality and morbidity in infants with BPD. Studies

evaluating oxygen therapy showed that the initiation of O2 therapy with the prime

aim of maintaining optimal oxygenation (saturation >93%) has been associated

with a marked decrease of the incidence of sudden unexpected deaths from 11%

to 0% among infants with BPD (38,72,73). It is certainly possible that obtaining

optimal oxygenation levels in this infant population might favorably improve an

overall developmental outcome.

Figure 3 illustrates the etiology and clinical consequences of hypoxia

experienced by infants with BPD. Respiration in BPD is characterized by

tachypnea and hyperventilation that indicate high respiratory load. As a result

of damage in the lung parenchyma, infants with BPD have lower transcutaneous

PO2 and oxygen saturation. That together with blunted chemosensitivity (29)

Figure 3 Etiology and clinical consequences of hypoxia in BPD.
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makes them susceptible to hypoxia. In fact, infants with BPD, when on

ventilatory support, have frequent desaturations that are associated with alveolar

hypoxia and an increased pulmonary resistance (74). Also in spontaneously

breathing infants with BPD suboptimal oxygenation causes airway constriction

and wheezing (75). The latter is the sum result of airway narrowing during

hypoxia due to airways hypersensitivity and increased airway secretion. Measure-

ments of lung mechanics during hypoxic episodes demonstrate that lung

mechanics in infants with BPD worsened further during hypoxia: lung resistance

and FRC increased by �50% and 26% respectively, and lung compliance

decreased by 24% (76). Administration of supplemental oxygen reverses the

negative effect of hypoxia and improves the mechanical properties of the lung

significantly (75).

Besides its negative effect on lung mechanics, hypoxemia has a marked

effect on central control of ventilation as well: it increases both the prevalence of

central apneas and the densities of periodic breathing while elevation of saturation

above 93% stabilizes the breathing pattern (77). Furthermore, an elevation of

mean saturation from 87–91% to 94–96% markedly decreased the incidence of

spontaneous desaturations (78).

The positive effect of improved oxygenation in severe BPD with persistent

pulmonary hypertension has also been reported. A study on the effect of an

increase in inspired oxygen fraction during cardiac catheterization in six infants

with BPD showed clearly the therapeutic benefit of supplemental O2 therapy in

the form of a reduction in mean pulmonary artery pressure from 48 by at most

10mmHg (79) since the pulmonary vascular bed is highly responsive to sup-

plemental oxygen. Furthermore, right ventricular hypertrophy resolved under

treatment with supplemental O2. More generally, supplemental oxygen therapy

facilitates physical growth and development (80).

VI. Respiration During Sleep in BPD

During wakefulness, the respiratory control systems provide an effective control

of overall ventilation. Sleep onset and oscillations in sleep states destabilizes

breathing by reducing central respiratory drive and responsiveness to changes in

the external milieu. The relationships between sleep and respiration are complex:

on the one hand, sleep aggravates respiratory symptoms in infants with breathing

disorders (for review see 81); on the other hand, respiratory disorders per se

change sleep architecture (Fig. 4).

In infants with a variety of respiratory problems, sleep alters mechanical

properties of breathing apparatus and chemical drives. That results in an increase

of upper-airways resistance and obstruction, and gives rise to apneas and

hypoxemic episodes. The system reacts to obstructive apneas and hypoxia with
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arousal, during which saturation is restored to optimal levels. An insufficient

propensity to arouse decreases our ability to survive exposures to noxious

conditions during sleep.

In infants who suffer from obstructive apneas, sleep is fragmented by

frequent arousals. Similarly, in infants with BPD, sleep is characterized by an

increased frequency and duration of arousals. These arousals are partly a

consequence of obstructive apneas and desaturations that appear predominantly

in REM sleep (39). Even though infants with BPD have an intact arousal

response to mild hypoxia, the period directly following the arousal is, in as

many as one-third of events, characterized by apnea and bradycardia (Fig. 5) that

require brief ventilatory assistance to restore normal breathing (39).

Obstructive apneas in BPD infants during sleep increase further work of

breathing and aggravate hypoxia. This vicious circle is reinforced by an inability

of BPD infants to compensate for respiratory loading.

Greenspan et al. (82) measured respiratory effort in response to applied

resistive load in 11 BPD infants and 11 healthy preterm born infants. BPD infants

showed no changes in respiratory drive in response to added load-in, whereas

healthy preterm infants showed an adequate response in form of increased airway

pressure. Besides arousals due to obstructive apneas, sleep fragmentation in BPD

patients seems to be directly associated with the levels of oxygenation. Subopti-

mal oxygenation affects sleep by reducing the number and duration of REM sleep

episodes (39,83,84). Interestingly, sleep fragmentation is observed even when

mean saturation in sleep is kept above 90% (39). Furthermore, frequent episodes

of clinically unexpected arterial oxygen desaturations in sleep are common even

when saturation during wakefulness is kept at 90–92% (85). However, when

Figure 4 Interactive effects of sleep and respiratory control in lung disease.
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supplemental oxygen levels are further elevated, the frequency of arousals and

sleep fragmentation decrease, and the total sleep time and duration of REM sleep

periods increase (84).

VII. Respiratory Sequelae in BPD Infants

The neonatal course of very preterm infants is complicated by varying degree of

pulmonary problems. Structural and physiological processes alter the elastic and

resistive properties of the immature pulmonary system. Restrictive lung (low

compliance) is a result of increased interstitial tissue, interstitial fibrosis, or

pulmonary edema. Mucosal edema, peribronchial swelling, bronchospasm, and

mucous plugging of the airways give rise to an increased resistance in the

airways. At 3 months of age minute ventilation is still elevated, indicating

abnormal lung function (86). Increased pulmonary resistance and decreased

lung compliance contribute to increased work of breathing while low FRC at

first 6 months of age mirrors alveolar collapse (86). With age, a parallel lung

growth and formation of new alveoli are mirrored by an increase in lung

compliance.

Figure 5 Arousal response to hypoxia in normal and BPD infants. Secondary effects are

seen only in BPD infants.
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Generally, the first 2 years of life are characterized by frequent respiratory

illnesses that require hospitalizations (87). Even though symptoms for neonatal

injury typical for BPD alleviate with age, in the long term perspective,

particularly in infants with severe BPD persisting wheezing, chronic cough and

chest congestion restrict physical activities by 7 years of age (88). Incidence of

airway hyperactivity in adolescents and young adults with neonatal BPD is high

(89). Significantly decreased forced expiratory volumes (90), markedly lower

specific airway conductance, and larger residual volume in the presence of normal

spirometric measurements (91) have been described as well. The abnormal

pulmonary functions, however, are related to severity of BPD since infants

with relatively mild BPD had normal respiratory mechanics and diffusing

capacity (92).

The long-term studies of respiratory functions in infants with BPD born

today are necessary. Despite the pronounced intratest variability in pulmonary

mechanics (93), sequential measurements demonstrate age-dependent character-

istics of lung mechanics and might provide insight into the postnatal development

of respiratory system in BPD.

VIII. Short- and Long-Term Neuromotor and Cognitive
Development

Exposure to frequent hypoxic episodes renders infants with BPD to be at high

risk for deviations in motor and mental functions (94–96). Long-term sequelae in

terms of growth and neurodevelopmental and cognitive outcome have been

subject of ongoing concern. The frequency of neurological sequelae among

infants with BPD has been reported to be much higher than among very low birth

weight (VLBW) infants without chronic lung complications (40% vs. 6%,

respectively) (97). In several studies, however, the impaired development of

infants with BPD has been linked to intraventricular hemorrhage (IVH) and=or
periventricular leukomalacia (PVL) rather than to lung disease per se (96,98–

102). Nevertheless, a large cohort study involving 122 infants with BPD, 84

VLBW infants without BPD and 123 full-term infants at 3 years of age revealed

that BPD itself is a specific high-risk condition affecting predominantly motor

performance, while neurological neonatal risk factors (IVH and PVL) and social

class have adverse effect on mental development (103). At school age VLBW

infants without BPD and infants born at term have significantly better cognitive

performance than infants with BPD (104,105).

Whether the severity of BPD affects development is not clear, and opinions

are divided. Katz-Salamon et al. (106) described significantly poorer motor

performance of volitional movements and lower total sum in the Griffiths test

in infants with severe BPD (grade III) at 10 months of age. The deviations in
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specific skills persisted until school age (107). Severe BPD, as defined by the

need for supplemental oxygen therapy after discharge home, was described as a

potent risk factor for neurological and motor deficits at school age: 71% of BPD

infants as compared to 19% preterm-born infants without BPD had cerebral palsy,

subtle neurological signs, and behavioral difficulties. Furthermore, more than half

of BPD infants have deviations in gross and fine motor skills (108). On the other

hand, Luchi et al. (109) did not find any correlation between the severity of BPD

and the neurodevelopmental outcome at 2–4 years of age.

IX. Conclusions

Bronchopulmonary dysplasia, a lung injury in very preterm born infants, is the

most common lung disorder in infancy. The complexity of the disease comprises

arrest of and=or disturbances in lung development, inadequate oxygenation,

suboptimal lung mechanics, and immature respiratory control mechanisms.

The clinical picture is further complicated by the use of a variety of

therapeutic strategies that might improve one aspect of the disease but adversely

alter another (for example, the use of antenatal or postnatal systemic steroids

stimulates lung maturation but affects alveolarization). Despite improvements in

the neonatal care of very preterm born infants, BPD, owing to its complexity, may

have lifelong consequences. However, one should be aware that the long-term

data describing respiratory morbidity pertain to children born before the era of

prenatal steroids, surfactant, and high-frequency ventilation. Thus they are not

representative of infants with BPD born and cared for today.

Furthermore, studies on neuromotor and cognitive development of infants

who suffered from BPD during the neonatal period clearly show that while

medical complications are most pronounced in early childhood, the socioeco-

nomic status of the family confounds the outcome at pre- and early school age.

More research is needed to improve our knowledge about pathophysiology of

BPD. In the final analysis, the therapeutic strategies to promote better long-term

health ought to be the primary focus.
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107. Böhm B, Katz-Salamon M. Cognitive development of preterm children with

chronic lung disease at 51
2
years of age. (Submitted.)

108. Majnemer AR, Riley P, Shevell M, Birnbaum R, Greenstone H, Coates AL. Severe

bronchopulmonary dysplasia increases risk for later neurological and motor

sequelae in preterm survivors. Dev Med Child Neurol 2000; 42:53–60.

109. Luchi JM, Bennet FC, Jackson JC. Predictors of neurodevelopmental outcome

following bronchopulmonary dysplasia. Am J. Dis Child 1991; 45:813–817.

472 Katz-Salamon



21

Gastroesophageal Reflux and Related Diseases

TAHER OMARI

University of Adelaide and Women’s and Children’s Hospital

Adelaide, South Australia, Australia

I. Introduction

Physiological gastroesophageal reflux (GER), or benign feed-related regurgita-

tion, is common in infants and usually resolves spontaneously by 6 months of

age. Gastroesophageal reflux disease (GERD), however, affects <10% of infants

and can cause varying degrees of morbidity from irritability, feeding problems,

and intolerance to failure to thrive and respiratory complications, including

exacerbation of chronic lung diseases and initiation of apnea episodes. In this

way, infant GERD is considered to be clinically different from GERD in older

children and adults in whom chest pain or frequent ‘‘heartburn’’ is a more

common symptom. In the adult and older child, long-term exposure of the

esophagus to acid and pepsin results in esophagitis, dysmotility (altered peri-

stalsis and reduced lower esophageal sphincter pressure), and anatomical changes

(strictures, hiatus hernia, Barrett’s esophagus).

The occurrence, frequency, and extent of GER are above all else influenced

by the motor mechanisms responsible for gastroesophageal competence, esopha-

geal volume clearance, and gastric emptying. Factors that influence physiological

GER in the infant do so by altering these basic mechanisms. In GER disease,

these mechanisms are altered sufficiently to cause a pathological increase in the

occurrence of GER and greater esophageal exposure to acid and pepsin. In
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infants, compared to adults, GER is more frequently low acid (pH >4) owing to

regular milk feeding. The occurrence of supraesophageal GER is also more likely

due to a proportionately shorter esophagus and lower ratio of esophageal to

gastric volume; hence, the likelihood of an interaction of low-acid refluxate with

pharyngeal and laryngeal structures is increased. Such interactions will initiate

neural reflexes that are protective against aspiration, and these protective

mechanisms are also, paradoxically, a potential cause of apnea triggering.

II. Gastrointestinal Motility

The term gastrointestinal motility refers to the integration of neural control

mechanisms and gastrointestinal smooth muscle contraction to enable the

purposeful movement of foodstuffs through the gastrointestinal lumen. This

process begins with swallowing, which is initiated in response to posterior

propulsion of mouth contents toward the pharynx by the lingual musculature.

Pharyngeal swallowing enables food to be propelled through the upper esopha-

geal sphincter (UES) and into the esophageal body, and esophageal contraction

further propels the food bolus through the lower esophageal sphincter (LES) into

the stomach. In the stomach food is mixed with gastric secretions and emptied in

a regulated fashion into the duodenum, where the bulk of chemical digestion and

nutrient absorption occur.

With respect to mechanisms of gastroesophageal reflux and clearance of the

refluxate, the regions of most interest include the pharynx, UES, esophageal

body, LES, and the stomach. Motility of the upper GI tract has now been well

characterized in infants owing to the development of micromanometric tech-

niques, for direct measurement of peristaltic and sphincter pressures, and

noninvasive tests such as breath tests for measurement of gastric emptying and

electrogastrography (EGG) for measurement of gastric pacemaker activity.

A. Esophageal Peristalsis

Swallowing initiates primary persitaltic esophageal contractions, which can be

measured as pressure wave sequences propagated in an aborad direction along the

length of the esophageal body (Fig. 1). Normal primary esophageal peristalsis has

been recorded in the human premature infant from 26 weeks’ gestation and older

(1–3). The human premature infant also exhibits frequent esophageal body

contractions that are not triggered by swallowing and are propagated in a

retrograde, synchronous, or incomplete fashion (Fig. 1) (1–3). Similar, ‘‘swal-

low-unrelated’’ esophageal motor activity has been observed in adults, but these

events are less common and are usually associated with occurrence of the

migrating motor complex of the small intestine (4). Swallow-unrelated pressure

wave sequences appear to be a characteristic feature of the motility of the
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immature esophagus, and occur as a background to what appears to be normal,

mature, ‘‘swallow-induced’’ peristalsis. Hence, although a feature of prematurity,

they do not appear to impair esophageal function.

B. Sphincter Competence

Upper esophageal sphincter pressure is generated predominantly by tonic

contraction of the cricopharyngeus muscle. With swallowing, the cricopharyn-

geus muscle is inhibited, producing relaxation, and the UES is then opened by the

pressure of the food bolus and the superior excursion of the hyoid and larynx

(5,6). Premature infants exhibit UES resting tone and UES relaxation in response

to dry swallow (7). The magnitude of UES resting pressure is dependent on

behavioral state with periods of apparent ‘‘comfort’’ associated with significantly

lower UES pressures than periods of activity and apparent ‘‘discomfort,’’ or

abdominal straining (7). These findings are consistent with the effect of behavior

and arousal reported in older children and adults (5,6,8). Measurements of UES

relaxation interval, which corresponds closely to the physiological opening and

closing of the UES (6), also appear similar to those recorded in healthy adult

subjects [7].

The LES functions as a physical esophagogastric antireflux barrier and

comprises two sphincter mechanisms—the intrinsic smooth muscle sphincter, and

the crural diaphragm, which provides extrinsic support and squeeze. The two

sphincter components work together and contribute to LES pressure. Early

reports concluded that premature infants have poor LES tone owing to immaturity

of sphincter control mechanisms (9–12). However, more recently it has been

shown that premature infants have a LES that generates tonic pressures that are

sufficiently higher than intragastric pressure to maintain effective esophagogastric

competence (5–10mmHg) (1–3,13,14).

The LES relaxes with swallow to allow passage of a food bolus. This

‘‘swallow-related’’ relaxation lasts for 3–6 sec during which the LES pressure

drops to within 2–4mmHg of intragastric pressure. Swallow-related relaxation

(Fig. 1) is well developed in the premature infant (3). In addition to swallow

related relaxation, the LES exhibits transient LES relaxation (TLESR). TLESR is

part of the normal belch mechanism required for venting gas from the stomach to

prevent gastrointestinal bloating (15). TLESR is also the major mechanism of

reflux triggering (15) (refer to Sec. III. B).

C. Gastric Emptying

Gastric emptying in neonates is generally considered a function of fluid (milk)

flow across the pylorus; however, upon acidification, milk does separate into

semisolid curd and liquid whey fractions. The presence of milk in the fundus

stimulates gastric contraction that empties the milk into the duodenum. In
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premature infants as young as 30 weeks’ gestation, gastric half-emptying times

have been shown to vary from 17 to 72min dependent on the feed volume, type,

and caloric content where emptying is slowed by higher volumes and greater

coloric content and is slower for formula-fed infants than breast milk (16,17).

One recent EGG study reported a significantly higher proportion of abnormal

gastric pacemaker activity in infants <29 weeks’ gestation, but older infants were

essentially normal (18).

Studies in adults have shown that gastric motility is highly complex and

that in the fed state the spatial and temporal coordination of fundic tone, antral

contraction, and pyloric contraction changes substantially over time. During the

early phase of gastric emptying, proximal gastric tone provides the driving force

for gastric emptying and phasic contractions of the pylorus, known as isolated

pyloric pressure waves (IPPWs), serve to regulate flow of gastric contents through

the gastric outlet. In addition, coordinated patterns of propagated antral pressure

wave sequences facilitate mixing and pumping gastric contents into the duode-

num (19). Evaluations of antral motility in premature infants have also shown that

patterns of antral and pyloric motility are well developed by 30 weeks (20).

III. Gastroesophageal Reflux

Gastroesophageal reflux is the retrograde flow of gastric contents (gas or

acidic=nonacidic liquid) into the esophagus. GER can manifest as gas, liquid,

or a combination of liquid and gas, the liquid being either acidic (pH <4), low-

acidic (pH 4–7), or nonacidic (pH �7) depending on the timing relative to

feeding. Immediately after feeding GER is nonacidic and then becomes gradually

more acidic during the postprandial period (Fig. 2). Gastric secretory capacity in

premature infants appears to be well developed, as they have the ability to acidify

gastric contents to pH <4 by 25 weeks’ gestation (21). However, infants feed

more frequently than adults, buffering intragastric pH such that infants fed at

shorter intervals have higher intragastric pH and less acid reflux (22).

Figure 2 indicates that very few acid GER episodes (pH <4) and mostly

low-acid GER episodes (pH 4–7) are recorded by pH probe in the first 2 h after

feeding. The relatively recent development of combined multichannel intralum-

inal impedance catheters has allowed all forms of reflux (gas, liquid, acid,

nonacid) to be precisely measured in infants. Impedance studies have shown

that >70% of GER episodes occur during the first 2 h after feeding and are

nonacidic (23). Nonacid GER can also be measured by intraluminal manometry

where GER episodes produce a characteristic ‘‘common-cavity episode,’’ which is

an abrupt sustained equalization of intragastric, LES, and esophageal pressures.

This equalization occurs subsequent to flow of liquid and=or gas from the

stomach into the esophagus. Like the impedance studies, manometry in prema-
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ture infants has shown that �70% of common cavities recorded in the first 2 h

after feeding are not associated with an esophageal pH drop (2). These observa-

tions clearly highlight the limitation of pH probes alone for measurement of GER

where almost all GER episodes occurring in the early postprandial period are not

identified.

A. Mechanisms of GER Triggering

The likelihood of reflux occurring is dictated by both the pressure gradient

between the stomach and the esophagus (positive in the stomach with respect to

the esophagus), and the pressure at the esophagogastric junction, which forms the

antireflux barrier. The gastroesophageal pressure gradient is changing constantly,

usually increasing with each inspiration and=or abdominal straining event. The

basal pressure at the gastroesophageal junction is generated by both tonic

contraction of the LES and the extrinsic ‘‘squeeze’’ of the crural diaphragm;

Figure 2 Correlation of acid GER and intragastric pH. Bars show the extent of

esophageal pH change (from basal pH to nadir) during 57 acid GER episodes, recorded

in 14 breast-fed premature infants at 35–37 weeks’ gestation. Acid GER was defined as

an esophageal pH drop of >1 pH unit with a nadir pH >4 (low acid GER) or a nadir pH <4

(acid GER). Median gastric pH determined by three pH sensors located in the stomach.
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this physical pressure barrier protects against reflux and is maintained as long as

LES pressure exceeds intragastric pressure. GER will occur if either LES pressure

is low (<5mmHg) or absent (e.g., during LES relaxation) or if gastric pressure

rises sufficiently to surpass LES pressure (eg during abdominal straining events).

As previously mentioned, healthy infants, including premature infants, have

a competent LES. Therefore most GER events are associated with relaxation of

the LES. A number of motor mechanisms of GER triggering have been identified,

including predominantly failed peristalsis, multiple swallowing, and TLESR (2)

(Fig. 3). Common to all of these reflux-related motor events is the temporary

absence or inhibition of LES pressure coupled with the absence or inhibition of

esophageal peristalsis.

B. Transient LES Relaxation

TLESR is by far the most common mechanism of GER triggering in normal

subjects and has been described in all age groups from 26-week-old premature

infants through to adults. Compared to normal swallow-related LES relaxations,

TLESRs occur independently of pharyngeal swallowing, are prolonged in dura-

tion (>10 sec), relax more completely (lower nadir), and are associated with

inhibition of the esophageal body and crural diaphragm. The inhibition of the

crural diaphragm is critically important for reflux to occur, as crural squeeze

pressures alone are often sufficient to prevent reflux during prolonged periods of

absent LES pressure (24).

Physiologically, TLESRs serve to vent gases from the stomach during

belching to prevent gastrointestinal bloating (15,24). TLESRs are also stimulated

in response to a meal, being most common in the early postprandial period and

reducing in frequency over time (Fig. 4). Although fewer in number, TLESRs

occurring later postprandially trigger proportionately more acid GER (Fig. 4).

The meal-induced stimulation of TLESRs is primarily due to gastric distension

(25). Distension of the proximal stomach with nonmeal stimuli such as air

insufflation or balloon inflation will similarly induce TLESRs (26–28). By this

we can infer that the occurrence of TLESRs is dependent upon the size of the

meal and (probably) the rate of gastric emptying which serves to regulate the

degree and duration of gastric distension.

Neurophysiologically, TLESRs occur via a vagovagal reflex initiated by

stretch-sensitive receptors located in the smooth muscle of the stomach wall; the

greatest concentration of these receptors is likely to be in the cardia of the

stomach, which is the region most sensitive to TLESR triggering (28). The

stretch-sensitive sensory nerve fibers of the afferent arm of the reflex pathway

terminate in the brainstem (nucleus tractus solitarius) and ultimately synapse with

vagal motor neurones (dorsal motor nucleus of the vagus nerve and nucleus

ambiguous) projecting to the LES, esophagus, pharynx, and crural diaphragm.
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The brainstem structures implicated in the reflex collectively form the neural

pattern generator, which exquisitely choreographs the complex series of events

that manifest as a TLESR (24) (Fig. 5).

A range of neurotransmitters, including acetylcholine (ACh), cholecysto-

kinin (CCK), gamma-amino-butyric acid (GABA), glutamate, nitric oxide (NO),

Figure 3 Examples of manometric tracings of mechanisms of acid GER in premature

infants: spontaneous TLESR (A), TLESR occurring after esophageal body contraction (B),

multiple swallows (C), and peristaltic failure (D). Dotted lines indicate the onset of GER

episodes. Black bars indicate duration of LESR. (From Ref. 2.)
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and opioids, have been immunohistochemically and pharmacologically impli-

cated in the TLESR reflex pathway. These are believed to act either peripherally,

regulating excitability of the stretch receptor, or centrally, regulating signal

transduction and=or activation of vagal motor neurones (24).

That premature infants have TLESRS with the same characteristics (dura-

tion, nadir pressure) as those described in adults (3) indicates that the basic

neurological mechanisms underlying TLESRs are well developed in these infants.

C. Mechanisms of GER clearance

Peristalsis serves to clear the esophagus of its contents (collectively known as

esophageal volume clearance) and therefore is important in both feeding and in

the clearing of gastroesophageal refluxate. Normal primary (swallow-related)

peristalsis has been recorded in the human premature infant, and, when recorded

in conjunction with esophageal pH, primary peristalsis effectively facilitates rapid

esophageal volume clearance of acid gastroesophageal refluxate as indicated by

the resolution of esophageal pH from <4 to >4 (2). Secondary peristalsis is

usually initiated in response to the abrupt sustained increase in intraesophageal

pressure (common cavity), which accompanies all reflux episodes. The secondary

peristaltic pressure wave is usually synchronous and leads to termination of the

common cavity episode (2). Any refluxate remaining in the esophageal lumen is

Figure 4 Postprandial occurrence of TLESRs, TLESRs with common cavities (nonacid

GER), and TLESRs with acid GER. Data from 10 premature infants at 37–39 weeks’

gestation.
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then cleared by primary peristalsis, whereby swallows trigger pressure wave

sequences propagated down the body of the esophagus at a velocity of �3 cm=sec
(2).

Impedance studies have shown that the bulk of refluxate is rapidly cleared

from the oesophageal lumen. In the case of acid reflux however, it usually takes

longer to remove all acid residues and return esophageal pH to prereflux values.

Swallowed saliva plays an important role in buffering postreflux acid residues.

The frequency of swallowing and type of pressure wave sequence propagated are

important in determining the effectiveness of peristalsis for esophageal volume

clearance and acid residue clearance. In infants, increased swallowing and

peristalsis are the normal responses to GER; studies that have directly compared

preterm infants with newborn full-term infants suggest that, in the newly born,

Figure 5 Schematic representation of triggering and control of TLESR. Gastric

distension activates mechanoreceptors in the proximal stomach and send signals to the

brainstem centers (DMV, dorsal motor nucleus of the vagus; nTS, nucleus of the tractus

solitarius) via vagal afferent pathways. The structured sequence of resultant motor events

and consistent and complex pattern of activation suggest that it occurs in a programmed

manner, thought to be controlled by a pattern generator within the region of the vagal

nuclei. (From Ref. 24.)
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GER stimulates swallowing, but only 40% of these swallows trigger esophageal

peristalsis, leading to slower clearance. In the preterm infant at term age, a higher

proportion of swallows trigger peristalsis, leading to more effective esophageal

clearance (29). This suggests that a degree of maturation of clearance mechan-

isms occurs in the early postnatal period.

IV. Pathophysiology of GER Disease

A. Normal Values for GER: Physiological vs. Pathological

Reflux disease is typically characterized by a greater-than-normal exposure of the

esophageal lumen to acid and pepsin and=or an association of reflux episodes

with symptoms. In older infants and children, extended distal esophageal pH

monitoring has proven to be an effective clinical tool for the recognition of

pathological degrees of esophageal acid exposure, establishment of associations

between symptoms and the occurrence of GER and to evaluate the effectiveness

of antireflux therapy. In the preterm and term infant, however, there are no

consistent and uniformly accepted ‘‘gold standard’’ pH monitoring criteria for

GERD. Some studies have applied adult pH monitoring reflux index (% time pH

<4) criteria (i.e., >5%) to confirm the clinical diagnosis of GERD in premature

infants (30,31), one of these (31) indicating that infants selected in this way have

increased acid oropharyngeal aspirates, which may in itself be useful diagnosti-

cally.

Normative data in term infants asymptomatic of GER suggest that 95th

percentile of reflux index scores decreases from 13% in the first month of life to

8% at 1 year of age (32). Twenty-four-hour esophageal pH monitoring studies in

asymptomatic premature infants have reported mean reflux indices in this group

with a high degree of variability, ranging from 0.7% to 11.9% (33–37). The

applicability of extended pH monitoring to term and preterm infants remains

controversial, but given the difficulties in performing endoscopic evaluations in

such small infants, is the only diagnostic test available. In different centers, the

reflux index cutoff considered to be indicative of pathological GER has ranged

from 5% to 12%.

B. Role of TLESRs in GERD

The evidence for the role of TLESRs in the pathophysiology of pediatric GER

disease is now unequivocal. TLESRs were originally described in children with

GERD by Werlin et al. (38), and a number of studies have now reported that 34–

100% of acid GER episodes recorded in infants and children with GERD are

triggered by this mechanism (39–42). This is also the case in preterm infants

where TLESRs trigger 50–100% of acid GER episodes (43). It is now well
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established that TLESR is the single most common mechanism underlying GER

in GERD at all ages.

In the absence of normal data from healthy children, it is unclear whether

GERD in children is characterized by either a higher rate of TLESR or a greater

incidence of GER episodes during TLESR. Studies in adults have been incon-

clusive on this issue, as studies have recorded both a higher rate of TLESRs (25)

and a greater incidence of GER episodes during TLESRs (44,45). Studies in

infants agree with the latter observation that there is a greater incidence of GER

during TLESR (43) (Fig. 6). This suggests that infants with reflux disease may

Figure 6 Number of TLESRs (A) and proportion of TLESRs (B) associated with acid

GER during the period from 0 to 4 h after feeding in preterm and term infants with GER

disease. GERD is characterized by a higher proportion of acid GER in association with

TLESR. Data from 36 infants at 33–40 weeks’ gestation comprising 22 health controls and

14 infants with GERD.
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have anatomical or functional differences that increase the likelihood of liquid

(rather than gas) reflux during TLESR.

To date, only pH criteria have been used to detect (acid) GER in infants

with GER disease; however, as previously discussed, these criteria cannot

accurately detect nonacid GER during the early postprandial period. Nonacidic

liquid GER is likely to be of great importance in neonatal reflux disease as it

occurs during the period of time that is usually associated with most putative

‘‘reflux-related’’ events, especially apnea and regurgitation. The precise role of

nonacidic liquid reflux in the pathophysiology of infant GERD still requires

further evaluation, particularly the role of nonacidic supraesophageal reflux,

occurring in the early postprandial period, which may be responsible for initiating

reflex apnea.

C. Role of Esophageal Dysmotility in GERD

Esophageal dysmotility leading to delayed esophageal clearance appears to be

less important in the pathophysiology of infant GERD than it is in older children

and adults. Infants do not exhibit esophageal dysmotility in relation to GERD

(40). Sondheimer et al. (46) reported few motility defects in infants with GERD,

but found that these infants swallowed less frequently, particularly during sleep.

Studies in older children with GERD do indicate delayed clearance of acid reflux

due to higher incidence of ‘‘nonspecific esophageal motility defects,’’ which

become more prevalent with increasing severity of disease. Severe pediatric

GERD with reflux esophagitis is also associated with a 30–50% decrease in

pressure wave amplitude (41), indicating that the contractile strength of the

esophagus is also impaired.

D. Delayed Gastric Emptying

Hillemeier and colleagues (47) first reported delayed gastric emptying in pediatric

GERD, and since then a number of studies have reported both normal (48–52)

and delayed (39,53–57) gastric emptying in infants and children with GERD.

EGG studies indicate that there is a higher proportion of abnormal EGG patterns

in children with GERD (51,58). The precise role of delayed GE in the

pathophysiology of GERD is still unclear. Delayed GE may exacerbate GER

by prolonging gastric distension and increasing the frequency of transient LES

relaxation; however attempts to correlate gastric emptying with acid GER have

been unsuccessful (37,48). Despite these conflicting observations, impaired

gastric motor function leading to delayed gastric emptying is apparent in a few

well-defined subgroups of patients at the severe end of the reflux spectrum—

particularly those with failure to thrive and=or vomiting when associated with

neurological or respiratory disease (47,53,57,59).
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E. Straining

Previous studies in children with GERD indicate that abdominal straining and

GER are often associated (38). Several different straining patterns can be

identified, including sustained strains (associated with defecation or movement),

and transient strains (associated with inspiration=expiration or cough). Straining

results in a simultaneous, sometimes rapid increase=decrease in gastric, LES, and

esophageal pressures. During straining the extrinsic LES support rendered by the

crural diaphragm and the fact LES pressure changes to a similar extent as

intragastric pressure help maintain the antireflux barrier (24). Hence, GER

episodes that occur during straining usually occur when LES pressure is low or

absent either as the result of sphincter incompetence or even during LES

relaxation. In infants and children, TLESRs occurring during straining are

more likely to trigger acid GER than TLESRs that are not associated with

straining (43). It is likely that straining exacerbates GER during TLESR because

both LES tone and crural diaphragm tone are inhibited by the TLESR reflex.

A further straining pattern that has been described is transient abdominal

pressure increases caused by sudden contraction of the diaphragm and abdominal

respiratory muscles. This event causes a sudden elevation (or spike) of gastric

pressure, which provides a driving force for active expulsion of gastric contents.

This appears to be the major mechanism of common postprandial regurgitation or

‘‘spitting up’’ (61). As shown in Figure 7, esophageal manometric studies in

infants suggest that during these events the LES relaxes completely several

seconds prior to straining and regurgitation. Strain-related regurgitation episodes

such as these are responsible for 5% of acid GER episodes in infants (2).

V. Respiratory Disease and GER

A. Methylxanthine Therapy

Methylxanthines (aminophylline, theophylline, and caffeine) are potent bron-

chodilators and CNS respiratory stimulants, and are commonly used in the

treatment of chronic obstructive pulmonary diseases, asthma, and apnea. Methyl-

xanthines also appear to exacerbate GER. Studies in premature and term infants

with apnea or at risk of sudden infant death syndrome (35,62–63) have shown

that methylxanthine therapy augments esophageal acid exposure recorded by

esophageal pH probe. These findings have largely been attributed to the fact that

methylxanthines are known to stimulate gastric acid secretion and to inhibit LES

tone (64–66). Other specific effects of methylxanthines on esophageal function

per se have not been investigated. One study has indicated that theophylline

therapy may also augment the frequency of transient LES relaxations in healthy

premature infants (3), but this observation was not supported by a similar study of

infants with chronic lung disease (67).
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B. Respiratory Effort

As previously mentioned, the abdominothoracic pressure gradient provides the

driving pressure for GER to occur, but intragastric pressure must exceed the

pressure at the LES for GER triggering. Two dominant factors influence the

abdomino-thoracic pressure gradient, respiratory effort and abdominal straining

(see Sec. IV.E above).

With increased respiratory effort, such as is the case in chronic lung

disease, the abdominothoracic pressure gradient is increased (i.e., intrathoracic

pressures become more negative and intragastric pressures become more posi-

tive). It is important to recognize that this increase in pressure gradient alone is

insufficient to overcome LES pressure and trigger GER, and TLESR is still the

predominant mechanism of GER in these infants (67). However, the association

of GER with TLESR is much more likely because, owing to higher intragastric

pressures, the LES does not need to relax as completely to trigger a GER

episode.

C. Reflux and Apnea

Apnea is a major problem in infants with the incidence being inversely

proportional to gestational age (68). Frequent apnea and bradycardia, particularly

with feeding, is a common clinical correlate of GERD which may (69–71) or may

not (72) improve with antireflux therapy. However, the precise role of GER in the

pathophysiology of apnea is still unclear. Apnea with feeding and=or due to GER

may result through one of three predominate mechanisms: poor coordination of

suck and swallow with breathing; neural reflex mechanisms initiated by chemical

stimulation of the larynx and pharynx; or neural reflex mechanisms initiated by

esophageal distension.

Anatomically, the laryngeal inlet is located higher in the pharynx in the

infant than in the adult, and the epiglottis extends into the nasopharynx,

separating the respiratory passages and digestive conduit (73). This anatomical

arrangement reduces the risk of aspiration and limits laryngeal stimulation during

feeding and after reflux. Swallowing also plays an important protective role in

clearing the pharynx of residues and in turn limiting or preventing aspiration

and=or stimulation of laryngeal chemoreflexes (see below). Swallowing is

commonly observed during regurgitation and GER episodes where swallowing

and primary peristalsis serve to clear the pharynx and esophagus of gastric

refluxate (see Fig. 7). Neonates possess a normal airway protective mechanism

which is triggered prior to pharyngeal swallowing (74). Although protective

against aspiration, this respiratory inhibition can itself lead to apnea episodes if

suck, swallow, and breathing are not adequately coordinated, as is the case in the

newborn or preterm infant [75].
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The laryngeal chemoreflex is a protective mechanism preventive against

aspiration. Sensory nerve endings at the laryngeal opening, located in the narrow

interarytenoid space, are stimulated by contact with fluid; this triggers a series of

centrally mediated responses including swallowing, cessation of breathing,

bronchoconstriction, and coughing. The sensory endings that initiate the reflex

are thought to be chemoreceptors rather than mechanoreceptors because the re-

ceptors are more sensitive towater than to an equal volume of saline. The laryngeal

chemoreflex is more readily initiated in preterm infants than in term infants, which

may explain why apnea is a greater problem in premature infants (76).

The esophagoglottal closure reflex is one of a number of reflex responses

that can be initiated by esophageal distension, including secondary esophageal

peristalsis, UES closure, and UES relaxation. The esophagoglottal closure reflex

results in adduction of the vocal cords and narrowing the interarytenoid space and

therefore is thought to provide airways protection. The sensory endings that

initiate the reflex are mechanoreceptors located in the body of the esophagus. The

threshold for initiation of the reflex is high (requiring balloon distension), and the

reflex is therefore unlikely to be initiated during most GER episodes but is more

likely to occur during episodes of abrupt esophageal distension, such as that

which occurs during vomiting (77).

GER may be a direct or indirect trigger for apneic episodes via the

mechanisms described above, or, alternatively, the likelihood of GER occurring

may be exacerbated by a transient increase in the gastroesophageal pressure

gradient resulting from airways obstruction. Studies that have evaluated the

temporal association between reflux and apnea have required prolonged simulta-

neous monitoring of both reflux and respiratory events. Such studies have

produced conflicting findings of either little or no association (78–85) or an

association (86–91) between apnea and GER. Two studies have evaluated these

associations using impedance methods. Wenzl et al. (91) reported that 29.7% of

apnea episodes were temporally associated (within �30 sec) with GER of which

77.6% were nonacidic (64). In contrast, Peter et al. (85) found that the frequency

of apnea during GER was no different from the frequency of apnea occurring

independently of GER, suggesting that the majority of temporal associations were

random associations rather than cause and effect. A small minority of apnea

episodes were, however, associated with supraesophageal GER, and in these

circumstances apnea usually occurred after GER, suggesting a potential link

between the two.

It is clear from these recent investigations that a high proportion of GER

episodes are missed using standard pH monitoring and that supraesophageal

reflux, which may be an important precursor to the initiation of apnea reflexes,

may not be adequately measured using standard methodologies. In light of these

new observations, the diagnosis of GERD in the neonate and our assumptions

regarding the relationship of GER and apnea may need reexamination.
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I. Introduction

The respiratory tract is a complex structure and is generally divided into the upper

and lower airways. From the physiologic standpoint, the intrathoracic portion of

the airways is defined as the lower airways, and the extrathoracic portion as the

upper airways. Besides serving as an air conduit during breathing, the respiratory

tract participates in several important physiologic functions, such as deglutition,

olfaction, humidification, vocalization, and airway protection. Our understanding

of upper-airway physiology and pathophysiology has increased substantially over

the past two decades. Obstructive sleep apnea and sudden infant death syndrome

(SIDS) have served as the impetus for this increased interest. The focus of this

chapter is on disorders of airway patency in the neonate. Several unique problems

in airway maintenance faced by the neonates are discussed in detail in subsequent

sections.

II. Maintenance of Airway Patency

Activity of the muscles of the upper airway plays an important role in the

maintenance of upper airway patency. For a detailed discussion of control of

upper airway muscle activity during development, the reader is referred to
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Chapter 5, by Dr. Gauda. A thorough knowledge of normal airway anatomy is a

prerequisite for understanding the pathophysiology of airway disorders. The

upper airway, which extends from the nose or mouth to the extrathoracic portion

of the trachea, is a complex structure with some areas being fairly rigid, other

areas being very soft and collapsible. It also contains several valvelike structures

that add to the complexity in function. For example, some segments of the nose

have rigid bony or cartilaginous support, whereas others depend primarily on the

action of dilator muscle activity. The pharynx, on the other hand, is the most

collapsible portion of the upper airway (Fig. 1). It can be divided into three

regions: velopharynx, oropharynx, and hypopharynx. The pharynx has little bony

or cartilaginous support and is primarily surrounded by muscles. The hyoid bone,

which is located anterior to the epiglottis, is literally suspended by several groups

of muscles (1,2). The anterior, posterior, and lateral walls of the oropharynx are

formed by a number of structures. The soft palate, tongue, and lingual tonsils

form the anterior wall of the oropharynx. The superior, middle, and inferior

constrictor muscles form the posterior wall of the oropharynx and hypopharynx.

Several muscles form the lateral walls, including the hyoglossus, styloglossus,

stylohyoid, stylopharyngeus, palatoglossus, palatopharyngeus, and the pharyn-

geal constrictors (superior, middle, and inferior). The styloglossus, stylohyoid,

and stylopharyngeus muscles arise from the styloid process, and the hypoglossus,

middle constrictor, and stylohyoid muscles insert on the hyoid bone. The lateral

pharyngeal walls are complex structures made up of a number of muscles with

varying functions. The activity of these muscles plays an important role in

maintaining pharyngeal airway patency as well. The larynx has multiple bony,

cartilaginous, and muscular components. Thyroid, cricoid and arytenoid carti-

lages form the skeleton of the larynx connecting the pharynx to the trachea (Fig.

2). The activity of intrinsic muscles such as the cricoarytenoid and thyroarytenoid

determine the size of the laryngeal lumen; the extrinsic laryngeal muscles control

the location of the larynx.

Patency of the airway depends on several factors, and the relative signifi-

cance of these factors varies from one segment to the next. These dependent

variables include cross-sectional area, compliance, and pressure-flow dynamics.

Cross-sectional area is an important determinant of airflow resistance. Nasal

resistance in infants, for example, accounts for nearly one-half of the total airway

resistance (3). Deviated nasal septum, mucosal edema, or nasal congestion can

alter the nasal resistance markedly. Compliance characteristics of the airway walls

are another important determinant of airway patency. A highly compliant

pharyngeal airway decreases in size when subjected to subatmospheric pressure.

Upper-airway dilator muscle activity increases the rigidity of these walls and the

cross-sectional area of the lumen. Vascularity of the tissue and mucosal factors

also contributes to airway wall rigidity. Micrognathia can influence pharyngeal

airway patency adversely by decreasing cross-sectional area. Although several
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models have been proposed to describe the pressure-flow relationship in the upper

airway, none are very satisfactory. Changes in airflow characteristics, changes in

cross-sectional area during breathing, and the series of valves each having its own

pressure-flow characteristics may explain this. Craniofacial abnormalities or

increases in the size of upper-airway soft-tissue structures may narrow the

Figure 1 Drawing of paramedian section of the pharynx, larynx and posterior portion of

the mouth in an infant. (Bosma, 1986.)
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Figure 2 Anterior and posterior views of adult and infant hyolaryngeal skeletons.

(Bosma, 1986.)
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upper-airway lumen, predisposing the airway to collapse. In the majority of sleep

apnea patients, airway closure during sleep occurs in the retropalatal and retro-

glossal regions (4,5).

III. Airway Imaging Studies

Endoscopy has been the most valuable diagnostic procedure in the evaluation of

pediatric airway disorders (6). Radiologic evaluation of the airway has been used

as a screening tool and as an adjunct to endoscopy. In recent years noninvasive

airway imaging has fast become the procedure of choice. Airway imaging

modalities in the adult include acoustic reflection, fluoroscopy, nasopharyngo-

scopy, cephalometry, computerized tomography (CT), and magnetic resonance

imaging (MRI). Some of these techniques have limited usefulness in the neonate.

The ideal imaging study should be not only highly accurate but also noninvasive

and inexpensive. Radiation should be avoided or limited whenever possible.

A. Acoustic Reflection

Acoustic reflection is a noninvasive technique and has been used primarily as a

research tool. It is based on the analysis of sound waves reflected from the

respiratory system (7–9). It has no role in the evaluation of airway in the

newborn.

B. Cephalometry

Cephalometry is a standardized lateral radiograph of the head and neck. It is

widely available, easily performed, and relatively inexpensive. It is useful in

quantifying skeletal and soft-tissue structures in patients (10,11). It has limited

clinical utility in the neonate; it may be useful in neonates with craniofacial

abnormalities such as micrognathia.

C. Airway Fluoroscopy

Airway fluoroscopy provides a quick, safe, and noninvasive way of evaluating the

entire airway (12–16). Compared to the newer technologies, fluoroscopy is widely

available and relatively inexpensive. It is a useful adjunct to flexible fiberoptic

nasolaryngoscopy, particularly in the workup of neonatal stridor. A fixed lesion

can be seen throughout the respiratory cycle, whereas a functional lesion changes

during breathing. Airway fluoroscopy is useful not only in demonstrating

dynamic lesions such as tracheobronchomalacia but also in correlating its

severity, extent, and location when compared to other simple radiographic

modalities. The sensitivity of airway fluoroscopy is reported to be 100% for

oropharyngeal collapse, 80% for subglottic lesions, 73% for tracheal lesions, and
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75% for bronchial causes of airway obstruction (17). It is less sensitive for

supraglottic and glottic lesions.

D. Functional Swallowing Studies

Dysphagia often complicates the clinical course of infants with congenital

structural abnormalities of the upper airway as well as neuromuscular disorders.

Evaluation of the swallowing mechanism may yield important diagnostic infor-

mation about upper-airway dysfunction. Modified barium swallow or video-

fluoroscopy of swallowing, largely developed at the Johns Hopkins University

Swallowing Center, is especially suited for this purpose (1,18). Preterm neonates

with apnea and bradycardia constituted a large portion of the patients evaluated at

this center. Immature feeding skills and respiratory functions predispose the

preterm neonates to aspiration (19). Since feeding-related apnea and bradycardia

are primarily maturational disorders, videofluoroscopy is not widely used for this

purpose in other centers unless these symptoms persist. One of the most

important aspects of this examination is that the effect of proposed feeding

intervention, such as thickening feeds, could be documented during the proce-

dure.

E. Computed Tomography

CT accurately determines airway cross-sectional area in the supine position. It is

widely available and relatively expensive, and exposes the infant to radiation.

Images are obtained in the axial plane only. CT is superior to MRI for evaluating

craniofacial structures. Three-dimensional image reconstructions of the airway

and bony skeleton by CT may also be helpful in planning the surgical approach

(20,21). However, soft-tissue contrast resolution of MRI is superior to CT (21).

F. Magnetic Resonance Imaging

MRI is the ideal modality for imaging the airway because it provides excellent

upper-airway and soft-tissue resolution, accurately determines cross-sectional

area and volume, and allows imaging in the axial, sagittal, and coronal planes. It

can be performed during wakefulness and sleep without radiation (21–23). MRI

is available in most hospitals; however, it remains expensive.

G. Dynamic Imaging During Respiration

Dynamic upper-airway imaging has been performed during respiration with CT,

MRI, and nasopharyngoscopy (24–27). The respiratory changes in the upper-

airway geometry have been documented with excellent temporal and spatial

resolution using electron beam CT (26). Four distinct phases of breathing have

been recognized during wakefulness. At the onset of inspiration, there is an
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increase in upper-airway lumen, presumably reflecting the action of upper airway

dilator muscles. The size of the lumen is maintained relatively constant during the

remainder of inspiration, suggesting a balance between upper-airway collapsing

and dilating forces. At the beginning of expiration, the airway enlarges again,

reflecting the effects of positive intraluminal pressure. The largest airway caliber

is seen at the beginning of expiration. There is a rapid reduction in upper-airway

size toward the end of expiration. The airway may be particularly vulnerable to

collapse at the end of expiration because it is no longer kept open by upper-

airway dilating muscle activity or positive intraluminal pressure. The respiratory-

related changes in the upper airway lumen demonstrated in CT studies (26) were

noted predominantly in the lateral dimension, indicating that the lateral walls play

an important role in modulating airway caliber. However, no such data are

available in the neonates.

A significant increase in the size of the upper-airway lumen is seen with the

application of nasal continuous positive airway pressure (CPAP) in normal

subjects and patients with obstructive sleep apnea (28–30). With the aid of CT,

Kuna and colleagues demonstrated that upper airway dilatation was greatest in the

lateral dimension with the application of CPAP (29). Others have recently

confirmed this finding (22). Although similar data are lacking in the newborn,

it is likely that the reduction in mixed and obstructive apnea observed with nasal

CPAP application has a similar basis (31).

IV. Disorders of Airway Patency

Airway disorders can be classified as those causing complete obstruction and

those causing incomplete or partial obstruction. In some cases, the cause of

airway obstruction is anatomical. Choanal atresia is an excellent example of

complete anatomic obstruction, whereas obstructive sleep apnea is an example of

intermittent complete functional obstruction. Stridor, on the other hand, is typical

of an incomplete airway obstruction. These episodes often occur intermittently in

infants with an underlying anatomic abnormality. Although both congenital and

acquired lesions can cause airway disorders in the neonate, the focus of this

chapter is on congenital abnormalities. Some of these disorders may manifest

soon after birth, whereas others may become symptomatic after many months or

even years.

The respiratory tract continues to undergo growth and development

following birth. Irregular breathing patterns are common in neonates. This is a

reflection of immaturity of the nervous system at birth. Usually these irregular

breathing patterns are benign and improve over time. However, these abnormal-

ities are more pronounced in premature infants and are the focus of several

chapters. The majority of the episodes of apnea in premature infants are
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associated with upper-airway obstruction. Airway closure is seen not only in

mixed and obstructive apnea but also in some central apneas (32). There are

several significant differences in respiratory control between infants and adults;

these issues have been addressed in the preceding chapters, especially in those

chapters on chemical and neural control of breathing. In addition to control

abnormalities, there are anatomic differences between the airways of the neonate

and those of the older child or adult. The laryngeal lumen, for example, is much

smaller in the neonate (Fig. 3). Furthermore, although neonates are capable of

oral breathing (as in crying), they are preferential nose breathers at rest. Ability

for sustained oral breathing is not established for several weeks in these infants.

A detailed discussion of all airway disorders is beyond the scope of this

chapter. Therefore, I have decided to focus on three congenital disorders: choanal

atresia, Pierre Robin sequence, and laryngotracheomalacia. These conditions

represent common airway disorders among neonates; they involve abnormalities

of different segments of the airways and represent different degrees of severity.

Among acquired airway disorders in the neonate, subglottic stenosis is the most

common lesion. Numerous conditions associated with airway disorders in the

newborn are listed below; others are given in Table 1. Airway management in the

delivery room is addressed separately, because it presents some unique challenges

of its own.

A. Airway Management in the Delivery Room

Management of the airway is an important part of resuscitation in the delivery

room. In most nondepressed infants, it consists of suctioning the oropharynx and

the nose and positioning of the infant to avoid flexion of the head and neck. On

the other hand, management of the airway in the delivery room is more critical in

the depressed infant. Following oropharyngeal suction, if cutaneous stimulation

of the infant is unsuccessful in initiating or sustaining breathing, positive pressure

ventilation with bag and mask must be initiated. Since the tone of upper-airway

muscles is diminished or absent, the position of the head and neck is particularly

important (Fig. 4). In the absence of muscle tone, the upper-airway remains

occluded in the human infant when the head is flexed, and remains open when

slightly extended (34). Positioning of the infant and obtaining a good seal are the

two key factors in determining a successful outcome of positive pressure

ventilation. Good chest movement ensures that these two factors are adequately

addressed. Endotracheal intubation may be attempted in the unresponsive infant if

skilled personnel are available.

Airway management in the delivery room can be particularly difficult in a

small subset of infants. In these cases, the difficulty is often due to obstruction at

the level of the pharynx or larynx, either from extrinsic causes, as in space-

occupying lesions, or from intrinsic causes as in laryngeal atresia. Although rare,
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infants with potential airway obstruction are being recognized antenatally with

increasing frequency because of widespread use of prenatal ultrasound. The

space-occupying lesions, which can occlude the upper airway at birth, are often

diagnosed prenatally because they interfere with in utero swallowing and result in

polyhydraminos. These include epignathus, teratoma, dermoid, epulis, macro-

glossus, and encephalocele (35–39). Epignathus is a teratomalike tumor arising

from the palate or pharynx, and is the most commonly reported oropharyngeal

lesion. A higher incidence has been seen among female infants.

Extrinsic compression from cervical masses may also result in airway

obstruction. Cervical teratoma, cystic hygroma, and goiter comprise the vast

majority of these lesions (40). When these conditions are diagnosed in utero, a

prenatal MRI may be helpful in delineating the mass.

In some of these cases, difficulty in airway management can be expected at

birth. These infants should be delivered in an institution where physicians

experienced in difficult airway management are available (41). The team

should consist of perinatologist, neonatologist, anesthesiologist, and pediatric

or ENT surgeon. Because of expected airway management problems, a cesarean

section under general anesthesia should be considered to optimize survival and,

whenever possible, delivery should wait until a mature lung profile can be

assured. Generally infants are delivered before anesthesia depresses the newborn

infant. In these infants with compromised airway, however, respiratory depression

from general anesthesia may be an advantage. It prevents the fetus from

attempting to breathe at birth when a tracheotomy might be required. Placental

circulation can be maintained while the airway is being secured either by

Table 1 Laryngeal and Tracheal Causes of Neonatal Stridor

Location Specific Diagnosis

Laryngeal

supraglottic bifid epiglottis, floppy epiglottis, laryngeal saccular

cysts, supraglottic web, anomalous cuneiform cartilage

glottic laryngomalacia, laryngeal paralysis, laryngeal web,

posterior laryngeal cleft

subglottic Stenosis (congenital or acquired), hemangioma

Tracheal

tracheal stenosis generalized tracheal hypoplasia, funnellike stenosis, short

segmental stenosis

complete tracheal rings stovepipe trachea

tracheal compression complete vascular rings, anomalous innominate artery,

pulmonary artery sling, intrathoracic tumors

tracheomalacia congenital or acquired
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intubation or by tracheotomy. Use of this ex utero intrapartum treatment (EXIT)

procedure (42–44) can be potentially life saving.

On rare occasions, difficulty in airway management arises unexpectedly.

When there are no personnel in the delivery suite skilled in emergency airway

management, physicians skilled in tracheotomy and=or fiberoptic tracheal intuba-
tion should be contacted immediately, while attempting to secure an airway.

When the difficulty in airway management is due to space-occupying lesions, and

Figure 4 Effect of head position on pharyngeal airway lumen. Neutral, flexed, and

extended head positions are shown. Airway narrows during head flexion. (Olson et al.,

1988.)
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intubation is not possible, a small endotracheal tube inserted nasally and placed in

the posterior pharynx may improve oxygenation (41). When this method is used

as the mode of ventilation, inserting a nasogastric tube through the other nostril

into the stomach can prevent abdominal distension. For intrinsic lesions such as

laryngeal atresia, percutaneous transtracheal ventilation may be attempted as a

temporizing measure, while preparing for tracheotomy. Percutaneous transtra-

cheal ventilation involves the insertion of a large (10- or 12-gauge) catheter

through the cricothyroid membrane to permit oxygenation. There are several

important considerations regarding the oxygen source for percutaneous transtra-

cheal ventilation and variations in the technique for patients of various ages. The

reader is referred elsewhere to review these important principles (45). Once the

airway is secured, ventilation and oxygenation should be evaluated using pulse

oximetry and arterial blood gases. Other associated defects, including congenital

heart disease, may be seen in a small percentage of infants. Further diagnostic

studies can be performed once the infant is stabilized. Because of unexpected

presentation, these lesions tend to be fatal. However, with increasing number of

lesions being diagnosed prenatally, the number of survivors of these rare

disorders is increasing.

B. Disorders of the Nose and Nasopharynx

Nasal obstruction at birth can cause central cyanosis and represents a potentially

life-threatening condition. Causes of neonatal nasal obstruction include choanal

atresia, encephalocele, hemangioma, dermoid cyst, dacryocystocele, nasal septum

deviation, hematoma, and nasal glioma. Choanal patency is routinely checked in

the delivery room by introducing a catheter through each nostril. However, the

catheter may cause trauma to the nasal mucosa.

Choanal Atresia

Choanal atresia occurs in approximately 1 in 8000 births. The atresia is unilateral

in the majority of cases and is seen more often in female infants (46–48). In

nearly half the cases other congenital anomalies are present, and these anomalies

occur more frequently in bilateral choanal atresias. Other anomalies observed

include craniofacial anomalies, polydactylism, congenital heart diseases, colo-

boma of the iris, external ear malformation, esophageal atresia, TE fistula,

craniosynostosis, meningocele, and mental retardation. These anomalies may

be part of a syndrome such as Treacher Collins syndrome or CHARGE

association (49–51).

Nasal placodes develop on the inferior part of frontonasal prominence as

bilateral oval thickenings of the surface ectoderm during the fourth week. As the

face develops, nasal placodes become depressed forming nasal pits, which

subsequently deepen forming the primitive nasal sacs. The nasal sacs are initially

506 Mathew



separated from the oral cavity by oronasal membrane. This membrane ruptures

during the sixth week. There are several theories about the embryogenesis of

choanal atresia (48,52). These include the failure of rupture of the bucconasal

membrane, and misdirection of mesodermal flow by local factors leading to

malrotation of the burrowing nasal pits. The anatomic deformities observed

include a narrow nasal cavity, lateral bony obstruction by the lateral pterygoid

plate, medial obstruction by a thickened vomer, and a membranous obstruction.

Choanal atresia was believed to be bony in 90% and membranous in 10%. Unlike

earlier reports, more recent studies using CT classify the anatomy as bony, mixed

bony-membranous, or pure membranous (53). These studies show that the

incidence of pure bony lesion is <30%. The vast majority of atresias are mixed

bony-membranous; pure membranous atresia is very rare (53).

Neonates with bilateral choanal atresia have a characteristic presentation.

They are symptomatic at rest and exhibit marked retractions without any air

movement. Their symptoms improve with crying. However, marked variability in

symptoms has been noted among these infants. Although once considered

obligatory nose breathers, neonates are now recognized as preferential nose

breathers. Intermittent oronasal breathing has been well documented even in

preterm infants (54). Intermittent oral breathing may explain, at least in part, the

variability in observed symptoms. Unilateral atresia may go undetected in the

neonatal period but become symptomatic later during upper respiratory infection.

Functional patency of the nose can be tested in a number of ways. These

include holding a thin wisp of cotton fibers, listening to breath sounds, looking

for frosting on a mirror, installing a colored solution into the nose and gently

blowing air into each nasal cavity with Politzer bag. Nasal obstruction can be

confirmed clinically when a feeding tube cannot be passed through the nose into

the pharynx. However, one should be cautious in making a diagnosis of choanal

atresia, if the infant did not exhibit any signs of distress around the time of birth

but develops these symptoms later, especially if they have been suctioned

vigorously in the delivery room. Mucosal edema of the nose can present with

similar signs and symptoms. A simple clinical maneuver to check choanal

patency has been suggested as an alternative to passing the nasogastric tube

(55). With the left little finger, the examiner gently keeps the newborn’s mouth

closed while the thumb obstructs the left nostril. The stethoscope’s membrane is

held by the right hand just under the right nostril detecting the gentle sound of

airflow. This maneuver is then repeated on the opposite side. These authors

claim that the ‘‘nasal airflow test’’ has never failed to demonstrate choanal

patency (55).

Oropharyngeal airway or orotracheal intubation is a must in suspected cases

of bilateral choanal atresia. Once a stable airway is established and the site of

obstruction bypassed, further investigations can be undertaken to establish the

diagnosis. If mucosal edema is suspected, no attempt should be made to pass a
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nasopharyngeal tube for 48–72 h. Although choanogram can be helpful in

establishing the diagnosis, the imaging of choice is computerized tomography

(47,48,56). Images in the orbitotragal plane often yield the best results. Secretions

in the nose may give a falsely thickened appearance of the atretic segment. The

application of a decongestant or suctioning before the CT reduces secretions.

Thickness of the bone and the degree of stenosis are important for surgical

planning. Other related diagnoses that should be entertained include posterior

choanal stenosis and anterior nasal stenosis or stenosis of the pyriform aperture

(41,57).

For patients with bilateral atresia, definitive surgery should be performed

before discharge from the hospital (41,48,58). Transnasal and transpalatal

approaches have been utilized. Transantral or transseptal approaches are not

suitable for the neonate. A period of stenting with silastic tubing is routinely used,

most surgeons recommending postoperative stenting for 4–6 weeks, followed by

serial endoscopy with dilatation and removal of granulation tissue. Major

reported disadvantages of transpalatal repair are the potential effect on palatal

growth and subsequent cross bite deformity. The incidence of cross bite has been

reported as high as 50% in the operated group, compared to 4% in the control

group (59). In recent years lasers have been used to repair choanal atresia (48).

No case-controlled data are available comparing different types of laser or

comparing the laser with conventional surgery in the management of choanal

atresia. Restenosis is a well-recognized but uncommon complication.

C. Disorders of the Oropharynx

Compromise of the oropharyngeal airway can occur in the neonate for a variety of

reasons, some of which have been discussed already. Since neonates cannot

adequately control their head and neck position, even neck flexion can result in

airway obstruction (60). This problem is exacerbated in infants with hypotonia.

From a clinical standpoint, one should be vigilant about airway obstruction while

caring for infants with hypotonia. These include premature infants, infants with

hypoxic ischemic encephalopathy, infants with neuromuscular diseases, and

infants with trisomy 21 and other syndromes. Oropharyngeal and cervical

masses causing airway obstruction are discussed under delivery room manage-

ment. Narrowing of the oropharyngeal airway can occur with macroglossia. It

presents as tongue protrusion from muscular hypertrophy (Beckwith-Wiedemann

syndrome), vascular malformations (hemangiomas or lymphangiomas), systemic

disorders (hypothyroidism and the mucopolysaccharidoses), or tumors (61).

Pharyngeal airway obstruction also occurs in infants with micrognathia. Pierre

Robin sequence is an excellent example of such a condition and is discussed

below.
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Pierre Robin Sequence (PRS)

Although the triad of cleft palate, micrognathia, and airway obstruction was

described earlier, Robin was the first to report the association of micrognathia

with glossoptosis. Cleft palate was subsequently added to his original description

(62). This triad was known as Pierre Robin syndrome until the term Pierre Robin

anomalad was introduced in mid-1970s (63,64). The currently accepted term,

Pierre Robin sequence, was proposed by an international working group (65).

The widely accepted incidence is 1 : 8500 varying from 1 : 2000 to 1 : 30,000

(66,67).

Infants with PRS are classified into two major categories: nonsyndromic

and syndromic. The majority of infants is nonsyndromic (68) and has the

potential for normal growth and development. The facial features are often

typical with a flattened base of the nose and micrognathia. A U-shaped palatal

cleft is characteristic of PRS. Syndromic patients have poorer prognosis for

normal growth and development even with early intervention.

Life-threatening respiratory distress and severe feeding difficulties are seen

among newborns with glossoptosis. Marked anteroposterior mandibular defi-

ciency is invariably present at birth. An objective definition of micrognathia can

be helpful in the diagnosis of glossoptosis and possible airway obstruction. The

Jaw Index was developed for this purpose (69). The Jaw Index quantifies

maxillomandibular discrepancy in the newborn. A linear relationship between

mandibular growth and gestational age or biparietal diameter is normally seen.

The jaw index is three to four times greater in infants with PRS. Recently, a jaw

index for the fetus, validated by postnatal measurements, has also been reported

(70). However, one should be aware that the jaw index is calculated differently in

the fetus. The fetal jaw index had 100% sensitivity and 98% specificity in

diagnosing micrognathia and is superior to subjective estimate from the fetal

profile (70).

Mandibular catchup growth occurs during infancy and early childhood in

patients with PRS (71,72). Mandibular growth potential is better if intrauterine

positioning is the cause of the mandibular deficiency. If there is an intrinsic

growth disturbance, as in many syndromic PRS, self-correction may not occur

(73,74). In others, ‘‘partial mandibular catchup growth’’ may be seen (73).

Because of limited data, it is difficult to predict the outcome with certainty in

any given infant.

Airway obstruction has been recognized as an important part of the clinical

symptomatology. Posterior displacement of the floor of the mouth and tongue by

retrognathia was believed to be the cause of airway obstruction. Other symptoms

such as failure to thrive and cor pulmonale resulting from airway obstruction were

soon recognized. Large negative pressure swings during the inspiratory efforts

were subsequently confirmed (75,76).
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It is now generally accepted that airway obstruction is multifactorial in

nature. Both anatomic and neuromuscular components such as retroposition of

the mandible and diminished effectiveness of the genioglossus muscle have been

implicated (77). Varying degrees of neuromuscular impairment have been

reported in the genioglossus and other pharyngeal muscles. Delorme and

coworkers emphasized the inadequacy of muscular insertions of the tongue on

the anterior mandible (78). They proposed the controversial view that the retruded

mandible is the result, not the cause, of the tongue position. Evaluation of the

activity of genioglossus, the main tongue muscle, by intramuscular electromyo-

grams revealed respiratory activity that was modulated by airway mechano-

receptors and chemoreceptors (79). This respiratory modulation in micrognathic

infants was qualitatively similar to that observed in normal neonates and children

(79). When pharyngeal airway stability was tested by nasal mask occlusions (to

increase negative pharyngeal airway pressures during inspiration), midinspiratory

pharyngeal obstructions developed in both normal and micrognathic infants (80).

However, airway obstructions were more frequent in micrognathic infants (80).

The mechanism of airway obstruction was studied using flexible fiberoptic

nasopharyngoscopy (77). On the basis of endoscopic findings, four types of

obstructions were identified. The posterior movement of the tongue contacting the

posterior pharyngeal wall constituted type 1; posterior movement of the tongue

compressing the soft palate against the posterior pharyngeal wall constituted type

2. The lateral pharyngeal walls moved medially in type 3, and the pharynx

constricted in a sphincteric manner in type 4. The mechanism of obstruction was

either type 1 or 2 in 80% of cases studied (77). Taken together, these findings

suggest that the genioglossus muscle is less effective in micrognathic infants in

counteracting the effects of negative pressure generated during inspiration either

because of its intrinsic properties or because of its mechanical disadvantage.

Medical Management

Clinical symptoms are less severe in the prone position. Prone placement of the

infant relies on gravity to displace the tongue anteriorly. It may be useful for

infants with mild symptoms. However, it does not allow observation of retrac-

tions, the major symptom of upper-airway obstruction. A nasopharyngeal airway

placed transnasally into the pharynx may be used either as a temporizing measure

(7–10 days) or as a form of chronic treatment (several weeks). A single

nasopharyngeal tube with an internal diameter of 3.0mm is advanced until

good air movement is observed. The positioning of this tube above the larynx but

below the base of the tongue is not easy. In addition to air flowing through its

lumen, air movement can occur at the side as well. Nasopharyngeal airway is

often appropriate in the early management of airway problems until clinical issues

are sorted out. Gavage feeding through a nasogastric tube is recommended during

this period (81). Controlled endotracheal intubation is appropriate when position-
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ing and nasopharyngeal tubes have not been successful. Although it provides

adequate temporary relief, it has significant disadvantages as well. Intubation

using standard laryngoscopes is difficult at best and occasionally impossible. In

emergency situations, pulling the tongue forward with toothed forceps or suture

may improve airway patency.

Surgical Management

A variety of surgical interventions to relieve airway obstruction have been

described over the years (81–83). However, the vast majority of these procedures

are seldom used nowadays, with the exception of tracheotomy. If positioning and

nasopharyngeal tube fail, prolonged endotracheal intubation or tracheotomy are

the two viable options. Other, rarely used surgical procedures include glossopexy,

mandibular distraction osteogenesis, and subperiosteal release of the floor of the

mouth.

Tracheotomy. Tracheotomy bypasses the pharyngeal obstruction and is

usually reserved for patients who have failed other forms of airway management.

Frequency and severity of the clinical symptoms are important determinants.

Most infants can be successfully decannulated between 3 and 18 months.

Tongue-Lip Adhesion and Other Glossopexy Procedures. The lip-to-

tongue adhesion procedure was designed to alleviate upper airway obstruction

by correcting abnormal tongue positioning. In this procedure the mucosal surface

under the tongue over the alveolus and onto the lower lip is denuded, and the

tongue is then sutured in place in a more anterior position. It has significant

failure rate. A modified glossopexy procedure is most commonly used today (84).

A nasogastric tube, left in place for 2–3 days, is used for feeding while the tissues

are healing. Development of speech is of concern in patients undergoing

glossopexy. Speech development at age 18 months in these patients is equivalent

to that of patients with cleft palate and their syndrome-matched counterparts (85).

Mandibular Distraction Osteogenesis. A definitive structural resolution

of micrognathia is provided by mandibular distraction osteogenesis with correc-

tion of both hard and soft tissue deformities (86). Internal or external devices can

be used for mandibular distraction osteogenesis. Initially, an osteotomy is

performed and the segments are fixed with a distraction device. Postoperatively,

a fibrovascular bridge is allowed to form at the osteotomy site. The appliance is

then activated. Once the desired lengthening is obtained, 4–6 weeks is allowed for

consolidation. The distraction device is then removed. This procedure is techni-

cally more difficult than other alternatives and requires good compliance from the

parents.

Subperiosteal Release of the Floor of the Mouth. Through a submental

incision, the periosteum of the inferior border of the mandible is incised up to the

mandibular angle. This procedure releases the geniohyoid, genioglossus, and

mylohyoid muscles from their attachment to the mandible, allowing the devel-
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opment of a new and more favorable equilibrium (78). Endotracheal intubation is

maintained for 1–2 weeks. Limited experience with this procedure suggests that it

may have a role in selected patients (87).

Syndromes with PRS

Syndromes associated with PRS include Stickler syndrome, velocardiofacial

syndrome, and Treacher Collins syndrome. All three syndromes have auto-

somal-dominant inheritance with variable expression. Stickler syndrome is a

connective tissue dysplasia (71). The craniofacial spectrum ranges from normal

facial appearance to midfacial flattening, prominent eyes, epicanthal folds,

depressed nasal bridge, long philtrum, and small chin (67). The mandibular

morphology is characterized by a short ramus and notching of the body.

Velocardiofacial syndrome includes typical facies, prominent nose, retrognathic

mandible, cardiovascular anomalies, palatal cleft, velopharyngeal insufficiency,

and learning disability. Patients with Treacher Collins syndrome have a convex

facial profile with prominent nasal dorsum and a retrusive mandible. Malar

hypoplasia, antimongoloid slanting of the palpebral fissure, and cleft palate with

or without cleft lip are also seen (82). Its prevalence is equal in males and

females.

D. Larynx=Trachea

Complete obstruction of the larynx or trachea such as laryngeal atresia and

tracheal agenesis manifests itself in the delivery room. Therefore, the airway

disorders originating from this segment of the airway and becoming symptomatic

subsequently tend to be either partial or intermittent complete obstruction. Stridor

is a common symptom of partial airway obstruction and can be defined as a

variably pitched respiratory sound caused by tissue vibration due to turbulent

airflow through a narrow tube (88,89). Stridor is not normal in neonates;

therefore, whenever stridor is noted in neonates, it should be watched closely.

In some cases, stridor may require immediate airway intervention. The most

common laryngeal and tracheal lesions causing stridor in infants are listed in the

Table 1.

The clinical presentation of stridor varies considerably in neonates. In most

cases, these infants are mildly tachypneic (90). Small caliber of the airway and the

less rigid supporting cartilage make the airway in the newborn inherently more

vulnerable to the effects of partial narrowing (91). Changes in the laryngeal

lumen during development are substantial (Fig. 5). Distinctive vibratory patterns

produced in this narrowed segment are transmitted to the surrounding soft tissues

(92). Volume, pitch, and phase are three important characteristics. Loud stridor

generally indicates a significant narrowing of the airway. However, a sudden

decrease in volume in cases of progressively worsening stridor can signify
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impending airway collapse (91). In general, high-pitched stridor is caused by

obstruction at the level of the glottis (93), low-pitched stridor by supralaryngeal

lesions; intermediate pitch usually signifies obstruction below the glottis (94).

On the basis of its timing within the respiratory cycle, stridor can be

classified as inspiratory, expiratory, or biphasic. Stridor produced by the collapse

of nonrigid soft tissues is usually inspiratory, with laryngomalacia being the most

common cause (95). Obstructive lesions of the nasopharynx and oropharynx

typically produce a low-pitched stridor similar to snoring. Biphasic stridor results

from fixed obstruction at the level of the glottis or below (93,95,96). Vocal cord

paralysis and subglottic stenosis account for the majority of biphasic stridor in

neonates (91,93). Tracheomalacia and bronchomalacia often produce an expira-

tory stridor (94,97).

History is an important part of the evaluation of stridor in the neonatal

period, including birth history, reason for and duration of intubation, and any

suspected intubation trauma (94,98). Additionally, the age at the onset of stridor,

its duration, association with precipitating events (crying or feeding) or position

(prone, or supine), quality and nature of crying, and presence of other symptoms

(cough, aspiration, or drooling) should be sought and documented. Stridor

present since birth is most commonly caused by laryngomalacia, congenital

subglottic stenosis, vocal fold paralysis, or vascular compression of the trachea

(95,97,99). Stridor present only during agitation and crying is likely to be due to

unilateral vocal fold paralysis (99).

Severity of the stridor can be assessed rapidly during the physical

examination by observing the heart rate, respiratory rate, oxygen saturation,

and skin color. Use of accessory muscles, nasal flaring, and chest wall retractions

are useful in assessing the severity as well. When the stridor is severe enough to

warrant transfer, experienced personnel, utilizing pulse oximetry and cardio-

respiratory monitoring, should transport the infant. Consultation with=or referral

Figure 5 Changes in laryngeal lumen with body growth. Mean and standard deviation

of maximal transverse (left) and vertical (right) dimensions are shown. (Bosma, 1986.)
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to an otolaryngologist experienced in the evaluation of stridor in infants is

indicated in most cases.

Laryngomalacia

As mentioned earlier, laryngomalacia is the most frequent cause of stridor in

infants (102). Stridor often begins in the neonatal period, is inspiratory in nature,

and progresses in severity over a period of several months. It is usually benign

and typically resolves within 12–18 months. Retractions, tachypnea, and feeding

difficulties are seen in severe cases. Agitation or supine positioning may

exacerbate the symptoms, whereas positioning the infant in the prone position

or on the side may relieve the stridor. Although the exact cause(s) of laryngo-

malacia is not clear, an altered embryologic development of the larynx is the most

likely etiology (102). No inherent cartilaginous abnormality has been demon-

strated in histological studies.

History and physical examination are sufficient in making a tentative

diagnosis. Flexible laryngoscopy, however, is the gold standard, and the typical

findings are an omega-shaped epiglottis, redundant aryepiglottic folds, and

excessive tissue in the supra-arytenoid area that may prolapse into the laryngeal

inlet during inspiration. In some cases laryngomalacia may be site specific,

primarily posterior laryngomalacia with prolapse of the supra-arytenoid tissue, or

anterior laryngomalacia with prolapse of the anterior aspect of the aryepiglottic

folds and epiglottis into the airway.

In general, the treatment of laryngomalacia is supportive. In the majority of

patients, laryngomalacia resolves spontaneously over time and no surgical

intervention is required. Parental counseling, reassurance, and prone or side

positioning of the infant are often enough. Acute upper-respiratory infection may

precipitate admission to the hospital. In some infants symptoms may be severe

enough to cause feeding difficulties, apnea, cyanosis, and failure to thrive,

symptoms warranting surgical intervention. In the past, tracheotomy was the

procedure of choice. Epiglottoplasty represents an alternative to tracheotomy. In

fact, epiglottoplasty or supraglottoplasty is now considered the surgical procedure

of choice. Epiglottoplasty is performed endoscopically and involves the excision

of redundant mucosa over the lateral edges of the epiglottis, aryepiglottic folds,

arytenoids, and corniculate cartilages. Results of this procedure are very encoura-

ging (102). Conservative resection minimizes the likelihood of complications,

such as supraglottic stenosis or aspiration. A secondary procedure may be

performed if symptoms are not adequately relieved.

Tracheomalacia

Tracheomalacia may occur with laryngomalacia or bronchomalacia. Two types of

tracheomalacia are recognized: primary and secondary. Inherent structural weak-
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ness causes primary tracheomalacia. In secondary tracheomalacia, the collapse

may be due to extrinsic compression by a mass or vascular structure. Secondary

tracheomalacia occurs in conditions such as tracheoesophageal fistula, laryngo-

tracheoesophageal cleft, vascular compression, or compression by mediastinal

masses. Patients with tracheomalacia may present with minimal symptoms or

severe life-threatening airway obstruction. The classic symptom of tracheomala-

cia is expiratory stridor, which may be present at birth. Primary tracheomalacia

has a good prognosis. The expiratory stridor is usually of mild or moderate

severity, and demonstrates gradual improvement over time. In contrast, secondary

tracheomalacia may cause persistent symptoms even after the external compres-

sive factor is corrected. Sometimes the stridor may not be apparent until the infant

develops respiratory tract infections.

Endoscopy confirms the diagnosis of tracheomalacia. The tracheobronchial

tree is more collapsible in a newborn than in an adult. Tracheomalacia is defined

as collapse of the trachea on expiration, which results in >10–20% obstruction of

the airway (103,104). The abnormal shape of the tracheal lumen is diagnostic of

fixed tracheomalacia. Findings in dynamic tracheomalacia are subtle. When

examined endoscopically, the normally round airway lumen appears flattened

with reduction in the anteroposterior dimension. During expiration, this weak

area collapses further. Plain static radiographs may reveal areas of collapse, but

airway fluoroscopy invariably provides better functional detail. Evidence of

vascular compression may be seen on barium swallow. MRI and echocardio-

graphy may be warranted in cases of suspected vascular compression. Acquired

tracheomalacia is often seen in infants with severe bronchopulmonary dysplasia.

The treatment of tracheomalacia depends on the severity of symptomatology. No

intervention is necessary in mild cases. It often resolves within the first 2 years of

life. Surgical decompression of the trachea may improve symptoms significantly

when the underlying problem is related to airway compression. Surgical proce-

dures that have been attempted include placement of internal and external

tracheal stents, segmental resection, and cartilage grafting (105).

Subglottic stenosis

Subglottic stenosis in the neonate can be either congenital or acquired. Acquired

stenosis is primarily a complication of prolonged intubation. Other well-recog-

nized risk factors include traumatic intubation, multiple intubations, and bacterial

colonization of the endotracheal tube. Extubation failure and postextubation

stridor are often the first clinical signs. At present subglottic stenosis is an

infrequent complication of endotracheal intubation in very low birth weight

infants. The estimated incidence of subglottic stenosis in the 1980s varied from

1% to 8% among intubated infants. The reported incidence decreased to 0– 2% in

the 1990s (105,106). Improvement in the management of ventilated infants is
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primarily responsible for this reduced incidence. Less severe complications are

still common. Endoscopic evaluation is still the cornerstone in the diagnosis of

subglottic stenosis. It can be classified into four grades (107): grade I, up to 50%

obstruction; grade II, from 51% to 70%; grade III, >70% with any detectable

lumen; and grade IV, with no lumen.

Detailed examination of the subglottis is often better performed with a rigid

endoscope under general anesthesia. Airway imaging may be helpful in selected

cases. Infants with occasional symptoms of stridor without retractions or feeding

difficulties can be managed conservatively. Infants with stage I and some stage II

stenosis fall in this category. Surgical treatment options include anterior cricoid

split, tracheotomy, endoscopic resection, and laryngotracheal reconstruction.

Anterior Cricoid Split

The underlying premise is to avoid tracheotomy in these low birth weight infants

with subglottic stenosis. However, it should be limited to acquired subglottic

stenosis in the absence of significant glottic, supraglottic, or tracheal obstructions.

Therefore, patient selection is extremely important. Infants with severe chronic

lung disease, especially those requiring high peak pressures, are not good

candidates for this procedure. Criteria for patient selection have been established

(108). These include extubation failure on at least two occasions secondary to

subglottic laryngeal pathology and weight >1500 g. To avoid serious complica-

tions, anterior cricoid split must only be performed in a setting with a high level

of medical and nursing skills (109).

Endoscopic Management

Surgical intervention with an endoscope is often performed with a CO2 laser.

This is generally reserved for mild cases of isolated subglottic stenosis (108). The

CO2 laser is a useful adjunct during laryngotracheal reconstruction as well.

Tracheotomy

This is often the initial step in caring for a neonate with severe subglottic stenosis.

It allows the infant time to recover from chronic lung disease and gain weight

while awaiting laryngotracheal reconstruction. However, one must be aware of

the fact that tracheotomy has some morbidity and mortality risk for these infants.

They may develop delays in language skills as well. Early airway reconstruction

is therefore attractive.

Laryngotracheal Reconstruction

Laryngotracheal reconstruction has become the standard of care for symptomatic

subglottic stenosis in the pediatric age group. A variety of techniques of

laryngotracheal reconstruction have been described (108). Anterior cartilage

grafts with a tracheotomy is generally indicated for isolated anterior subglottic

stenosis. The concept of single-stage procedure is appealing because of the
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advantages of immediate tracheotomy decannulation or even the avoidance of a

tracheotomy. These advantages must be weighed against the potential for airway

complications. There is no uniform agreement concerning the management of

these patients in the immediate postoperative period (108). The options include

heavy sedation, pharmacologic paralysis, and management while awake.

V. Summary

The airway is a vital part of the respiratory system. Besides serving as a conduit

for gas exchange, it participates in several important functions. Patency of the

airway is actively maintained in certain segments of the airway such as the

oropharynx. It is easily compromised in the neonate with positional changes as

well as with physiological changes such as sleep. Congenital and acquired lesions

may further compromise the narrow airway of the newborn infant. These lesions

may result in partial or total obstruction of the airway. Airway disorders involving

different segments of the airways are discussed in greater detail to illustrate the

differences with particular attention being paid on airway imaging studies.

Clinical management of these infants is also discussed.
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I. Introduction

The incidence of sudden infant death syndrome (SIDS) has continued to decrease

into the 21st century. However, sudden infant death syndrome remains a leading

cause of infant mortality. In 1992 the American Academy of Pediatrics (AAP)

recommended that infants sleep nonprone to reduce the risk of SIDS (1). After

examining further epidemiological evidence, the recommendation was revised in

1996 to ‘‘Back to Sleep’’ as the preferred sleep position to reduce the risk of SIDS

(2). These landmark public health interventions divide studies into the pre– and

post–Back to Sleep eras. Identification of sleep position has become critical in

understanding any epi-demiological or physiologic studies. Infant position has

also been critical in newborn respiratory physiology especially in the preterm

infant. The epidemiology of SIDS, with emphasis on the modifiable risk factors

of prone sleep position and cigarette smoking, contrasting the pre– and post–

Back to Sleep eras, as well as understanding mechanisms that may explain these

risk factors as they relate to the infant in the newborn and special care nurseries

will be the focus of this review.

II. Definition and Risk Factors

Sudden infant death syndrome is defined as the ‘‘sudden death of an infant under

one year of age, which remains unexplained after a thorough case investigation,

525



including performance of a complete autopsy, examination of the death scene,

and review of the clinical history’’ (3). Risk factors that have been identified in

both the pre– and post–Back to Sleep eras include prone sleep position, soft

sleeping surface, maternal smoking during pregnancy, overheating, poor prenatal

care, young maternal age, male gender, prematurity, and low birth weight (4–6).

Other characteristics regarding SIDS include observations that the majority of

deaths occur unobserved during nighttime sleep and to mothers with higher

parity. Also breastfeeding, which has many other benefits and thus is promoted in

our newborn and special care nurseries, does not have an independent protective

effect on reducing the risk of SIDS (7). The lack of a dose-response effect

suggests that the earlier observations of a protective effect may be a marker of the

lifestyle of mothers who chose to breastfeed (6). In the United States, African-

Americans and American Indians have consistently higher rates of SIDS. In

England, the Confidential Enquiry for Stillbirths and Deaths in Infancy (CESDI)

study identified a strong association of SIDS and other sudden unexpected infant

deaths with extreme poverty, socioeconomic deprivation, unemployment, and a

high degree of ‘‘social chaos’’ (7).

III. Age at Presentation

SIDS is rare in the newborn nursery and the first month of life. From the CESDI

study (which did not include deaths under 7 days), 5% of SIDS deaths were of

infants aged 1–4 weeks. From the Avon study �2–3% of sudden deaths under 1

year of age occurred at <7 days of life (P.J. Fleming, personal communication,

2001). SIDS has been reported in the literature in full-term infants in newborn

nurseries as a rare event in the pre–Back to Sleep era (8,9). The peak incidence of

SIDS is between 2 and 4 months of age and then declines with >95% of deaths

occurring in the first 6 months of life.

IV. Gestational Age

A. SIDS and the Preterm Infant

Prematurity and low birth weight are also risk factors for SIDS, with increasing

risk for greater immaturity and lower birth weight. However, the age at death may

differ by 4–6 weeks between preterm and term infants. In a restricted analysis of a

large cohort of infants with appropriately classified gestational ages, preterm

infants died at a later postnatal age but at a younger postconceptional age than

term infants, which implies an altered peak of vulnerability for the preterm infant

(10). In evaluating two large cohorts of infants in the pre– and post–Back to Sleep

eras in the United States, African-American infants and infants born at <1000 g

had an increased relative risk compared to non-Hispanic white infants weighing

526 Silvestri and Weese-Mayer



>2500 g (11). A comparison of SIDS deaths in the pre– and post–Back to Sleep

era demonstrates that there has been a decline in SIDS rates across all gestational

and birth weight categories (12). This implies that the reduction of prone sleep

has been effective in reducing SIDS in preterm and low birth weight infants as

well as term infants. However, prematurity and low birth weight still remain risk

factors for SIDS, and ethnic=racial differences are even more apparent.

B. SIDS and the Term Infant

Other aspects of the newborn period are associated with an increased risk of

SIDS. In the CESDI study, SIDS infants had a higher chance of needing

resuscitation at birth as well as being admitted to a special care baby unit (7).

This factor remained significant after preterm infants were excluded from the

analysis.

V. Modifiable Risk Factors for SIDS

A. Prone Sleep Position

In terms of modifiable risk factors, prone sleeping has been consistently

implicated as a risk factor for SIDS. Although less of a risk than prone sleeping,

side sleeping also has an increased risk for SIDS. It is in part related to the

inherent instability with the infant likely to roll into the prone position, but there

may be other mechanisms related intrinsically to the side position (7,13). Even in

countries where there is a low incidence of SIDS and a low incidence of prone

positioning in the Back to Sleep era, prone sleeping continues to be a major risk

factor, with a large number of deaths associated with the prone position (14,15).

In the United States as the rate of SIDS has decreased, so has the rate of prone

sleeping; however, there is a marked racial and ethnic disparity in sleep position.

In the most recent publication of the National Sleep Position Study, prone sleep

decreased to 17% among white infants as compared to 32% among black infants

(16). Further, studies have demonstrated that the incidence of prone sleep in-

creased from 1 to 3 months of age just at the time of the peak incidence of SIDS

(17), suggesting that parents are not understanding the importance of avoiding

prone sleeping as it relates to SIDS.

Although SIDS is rare in the newborn period and first month of life, the

birth hospitalization is the ideal time for critical education and preparation of the

family to understand the risk reduction process. Despite evidence that prone

positioning is one of the major risk factors for SIDS, hospitals have not

consistently placed newborns on their backs to sleep in the newborn nursery

(18). Nurses cited that side positioning was an acceptable alternative (18). Also,

mothers who saw their infants placed prone in the hospital intended to place their

infants prone at home. Thus, it is imperative for physicians and neonatal nurses
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not only to know the potential SIDS risk factors, but also to educate parents and

infant caretakers since physician and neonatal nurse recommendations signifi-

cantly increase the probability of supine placement of infants (16).

Why Is Prone Sleep a Risk Factor for SIDS Among Term Infants?

Diaphragm thickness

An ultrasound study in 16 healthy term infants demonstrated that the diaphragm

is thicker (and thus shorter) at both end expiratory and inspiratory volumes when

in the prone position (19). Thus the diaphragm is placed at a mechanical dis-

advantage with regard to a potential environmental stressor when an infant is in

the prone position.

Sleep Characteristics by Position

Khan et al. (20) examined the differences in sleep characteristics between prone

and supine positioning among 34 term infants who routinely slept prone and 34

infants who routinely slept supine. Prone-positioned infants demonstrated a

significant increase in sleep duration and non REM sleep and a significant

decrease in the number and duration of arousals, regardless of their routine sleep

position (20). Galland et al. (21) reported full awakenings in response to the tilt

test to be common in active sleep, but significantly less in the prone position

(15% of prone as compared to 54% supine) among 37 healthy term infants at 2–4

months of age.

Physiologic Measures of Heart Rate and Temperature by Position

Skadberg and Markestad (22) reported higher heart rates and peripheral skin

temperature in REM and NREM sleep in the prone as compared to supine

position among 32 term infants studied at 2.5 and 5 months of age. Galland et al.

reported reduced heart rate variability in REM and NREM sleep among 37

healthy infants at 2–4 months of age in the prone position as compared to supine

(21).

Ventilatory and Arousal Responses by Position

Galland et al. reported that prone positioning altered the ventilatory sensitivity to

mild asphyxia (5% carbon dioxide, 13.5% oxygen) only during active sleep

among 53 infants studied at 3 months of age as compared to supine (23).

Ventilatory responses were unaffected by sleep position in the newborn period. In

contrast to their prior studies, older infants were twice as likely to arouse as

newborns, and prone positioning increased the chances of arousal.

Physiologic and Arousal Responses to Auditory and Nasal Air Jet Stimulus
by Sleep Position

Among 20 term healthy infants (age 8–15 weeks) presented with an auditory

challenge during REM sleep, there were significantly fewer changes in heart rate,
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heart rate drops, less heart rate variability, and fewer and shorter central apneas in

the prone as compared to the supine position (24). Auditory arousal thresholds

during REM sleep were higher in prone as compared to supine among 22 healthy

term infants age 4–12 weeks (25). Arousal to air jet stimulation was reduced in

the prone position among 24 healthy term infants studies at 2–3 weeks and 2–3

months, but unchanged when studied at 5–6 months (26).

Arousal Responses to Obstructive Apnea by Position

Reduced behavioral arousals after an obstructive apnea have been seen in 20

preterm and term infants aged 3–13 weeks sleeping prone (31.3%) as compared

to supine (57.5%) as well as a significantly delayed time to arousal after an

obstructive apnea in the prone position (10.5 sec) as compared to supine (8 sec)

(27).

In summary, there are several studies that aid in our understanding why

prone sleep may be associated with a higher risk of SIDS. The prone position in

healthy term infants affects anatomy, sleep architecture, cardiorespiratory para-

meters, and autonomic function as reflected in heart rate variability and ventila-

tory and arousal responses.

Why Is Prone Sleep a Risk Factor for SIDS Among Preterm Infants?

Although preterm infants are at higher risk of SIDS, it has been controversial in

the NICU as to when to recommend the supine position as the preferred sleep

position for the convalescing preterm infant. In 1996 the AAP included

asymptomatic preterm infants in the recommendation of nonprone sleep.

Advantages of Prone Sleep

There are several publications that address the advantages of the prone position in

the ill preterm infant (28–30). In the convalescing preterm infant, the prone

position improves oxygenation, reduces chest wall asynchrony (31), reduces the

incidence of apnea and periodic breathing (32), and reduces energy expenditure

(33).

Apnea, Bradycardia, and Desaturation by Position

In a study of 22 preterm infants studied at 31.9 � 3 weeks PCA, no significant

difference was found in the incidence of apnea �15 sec, heart rate <90 bpm, and

hemoglobin saturation >90% between the prone and supine positions (34). In a

study of 16 older preterm infants with a PCA of 36.5 � 0.6 weeks, there was no

apnea <15 sec, apnea with bradycardia and=or desaturation, or difference in the

amount of periodic breathing in either prone or supine position (35).

Sleep Characteristics by Position

Among 23 preterm infants at 31–36 weeks PCA, prone sleep was associated with

a 79% increase in quiet sleep and a 71% decrease in awake time, with increases in
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quiet sleep in the prone position found in the first hour postfeeding and near the

end of the interfeed interval (36). Thus, sleep position can alter sleep state

organization in the preterm infant, and the effect of feeding may play a role.

Physiologic, Ventilatory, and Arousal Responses by Position

Increased arousals were found in the supine position (36). Among 19 healthy

convalescing preterm infants (postconceptional age �35 � 1 weeks), the supine

position was associated with a significantly higher respiratory rate and lower

hemoglobin saturation than prone (37). An attenuated response to hypercapnia

was seen in the supine position as compared to prone; however, significance

depended on the methodology of measurement. Among 16 convalescing preterm

infants (postconceptional age 36.5 � 0.6 weeks), more awakenings were seen in

all sleep states in the supine than in the prone position (35). However, sleep

duration, percent sleep state, and arousal as defined as body movement �10 sec,

cry, or eye opening �5 sec, were unaffected by position. In quiet sleep maximal

heart rate and heart rate variability were higher in the supine than the prone

position. Older premature infants (n ¼ 9) of 31–35 weeks gestation studied at 36

weeks, 2–3 weeks and 2–3 months postterm demonstrated no state-related

difference in arousal threshold to nasal air jet stimulation at 36 weeks or 2–3

weeks; however, at 2–3 months arousal was higher in quiet sleep than in active

sleep (38). This study did not provide detail of sleep position.

As in the term infant, the prone position in preterm infants affects sleep

architecture, cardiorespiratory parameters, and ventilatory and arousal responses.

How Does Prone Positioning Interact with Other Factors in the Sleep

Environment?

Term Infants

Prone positioning may interact with other factors in the sleep environment such as

soft bedding and temperature, resulting in physiologic compromise. Among 11

term infants studied prone in the laboratory, all infants slept face down for

variable periods of time but more often after a cold stimulus than after a warm

stimulus (39). When in the face-down position, all had impaired ventilation; in

addition, rebreathing was increased on soft bedding. Observations in the home

environment of 10 healthy prone sleeping infants confirm that infants often sleep

in the face-straight-down or in the face-near-straight-down position (40).

However, only a small subset of these (3% of face-near-straight-down and 14%

face-straight-down) positions are associated with airway obstruction. Thus prone

positioning in concert with environmental stressors and potentially defective

arousal responses in the prone position could lead to SIDS in vulnerable infants.
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Preterm Infants

Among 15 prone sleeping preterm infants (PCA 40 � 1 weeks) nearing hospital

discharge, it was observed that they seldom turned their heads during sleep and

rarely demonstrated the face-near-straight-down or face-straight-down position

(41). This is in contrast to the term infant and may provide insight into the age of

risk of death in SIDS.

The dilemma still exists owing to a lack of substantial acute and long-

itudinal studies to identify the effect of sleep position on sleep and cardio-

respiratory physiology as infants are discharged from the NICU. Many of the

studies are flawed by small numbers of infants at different gestational ages and

other known and unknown variables that may interact in the experimental design,

such as clothing, feeding, intrauterine cigarette smoke exposure, time of study

(day vs. night), variations in neonatal intensive care, and caretaker interface. The

impact of factors that the preterm infant experiences such as chronic prone

sleeping, prior apnea and bradycardia, IVH of any degree, and intrauterine smoke

exposure is also unclear. All of these factors may place stress on key physiolo-

gical systems as they are developing, and may ultimately lead to alterations in the

development of these same systems that can result in maladaptation to an

environmental stress.

Possible Complications of Prone Sleeping

Concern for Aspiration

A primary concern among medical and nursing personnel has been the risk of

aspiration with supine positioning. Nurses cited risk of aspiration as the largest

barrier in placing infants supine in the newborn nursery (18). There has been no

increase in infant deaths attributable to aspiration in the United Kingdom with the

change from prone to supine sleeping (42). There is evidence that infants who are

prone are at greater risk of choking if they are sleeping face down.

Swallow Mechanics

When term (n ¼ 14) and preterm (n ¼ 9 with apnea) infants are presented with

small boluses of normal saline delivered to the oropharynx, swallows and

obstructed breaths occurred frequently, and cough and prolonged apnea infre-

quently (43). Prolonged apnea was more common in preterm infants. In addition,

postmortem data demonstrate that when supine, pooling of fluid occurs in the

piriform fossae when fluid is introduced in the pharynx, and the path of flow was

dependent on head position—face up or face to side. When term (n ¼ 5) and

preterm (n ¼ 7) infants studied at term are presented with pharyngeal fluid

infusions (n ¼ 229) in the supine position, swallowing rather than apnea was the

primary defense mechanism (44). Swallowing was related to the volume infused.

Spontaneous swallows were influenced by sleep state, being more frequent in
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active sleep. Sleep state did not effect swallowing (occurrence or frequency) after

fluid infusion. Without an increase in significant apnea, there is protection from

laryngeal chemoreflex stimulation, and the response is dependent on intact

swallowing. In contrast to the prior study, where apnea was common in preterm

infants, this may reflect a maturational response of the preterm infant. Multiple

infusions (n ¼ 164) of small amounts of water (0.4mL) in 10 term infants studied

at 3–5 days of age evoked swallowing (95%) and arousal (54%). In active sleep,

there was a significant decrease in swallowing and breathing, but not arousal in

prone as compared to supine (45). These studies indicate that airway protective

mechanisms are reduced in prone sleep and may suggest that different receptors

are activated at the pharyngeal or laryngeal level depending on sleep position

(prone vs. supine).

There may be interaction with an inhibitory effect of other factors such as

smoking and the influence of nicotine. Term (n ¼ 12) and preterm (n ¼ 11)

infants studied at term did not differ in spontaneous swallowing rates when

supine in active sleep, and had little swallowing in quiet sleep (46). In active sleep

term infants increased swallows=min as a result of GER and preterm infants did

not, but they had a larger proportion of pharyngeal propagated swallows. In

summary, position and sleep state influence pharyngeal and laryngeal airway

defenses that are all influenced by maturation with younger infants being more

vulnerable.

B. Cigarette Smoke

Exposure to cigarette smoke is a modifiable risk factor in SIDS. Smoking was

identified as a major risk factor for SIDS in studies in the pre–Back to Sleep era

(4), and it remains a strong independent risk factor in the post–Back to Sleep era

with a dose-response effect (7,13,47). In addition, passive exposure has been

identified as a risk factor with a dose-response relationship between number of

hours of exposure and increased risk (7,47). In a large population-based study

among different ethnic groups in the United States, after controlling for other risk

factors, smoking remained a strong risk factor for SIDS even in the low-risk

groups of Hispanics and Asian and Pacific Islanders, with the risk increasing with

the number of cigarettes smoked (48).

Why is Cigarette Smoking a Risk Factor for SIDS?

Animal Models

Animal models of nicotine infusions in the developing lamb have demonstrated

an attenuated response to hypoxia, an increased response to hyperoxia (49),

delayed arousal to hypoxia in quiet sleep, and a lower level of hypoxemia to

initiate arousal as well as an attenuated ventilatory response to hypoxemia (50).

Nicotine may alter responses with a direct effect on carotid body chemoreceptors
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and central processing of carotid body chemoreceptor discharge in addition to

cortical activation mechanisms.

Human Infant: Pathology, Respiratory Physiology, and Arousal

Poor fetal growth and altered nervous system development (51,52) are well-

known sequelae of smoking during pregnancy. In the human infant a correlation

between smoke exposure during pregnancy and brainstem gliosis associated with

hypoxic-ischemic events has been observed in SIDS infants (53). Prenatal smoke

exposure has correlated with an increase in frequency and length of obstructive

apneas in newborns and infants (54). Infants of smoking mothers had less

auditory habituation and orientation to noise while awake than controls (55).

Physiologic studies have demonstrated in some cases altered ventilatory and

arousal responses in infants of smoking mothers. Deficient hypoxia awakening

responses were found in 13 term infants of smoking mothers studied at 8–12

weeks of age as compared to 34 control infants (56). However, ventilatory

responses to hypoxia and hypercapnia were similar whether mothers smoked or

not.

On the other hand, another study demonstrated attenuated responses to

hypoxia in six term infants of smoking mothers as compared to nine control

infants who were studied between 2 and 12 months of age (57). Among newborns

and infants 4–21 weeks of age whose mothers smoked during pregnancy, a

decreased arousal to an auditory stimulus was observed (58). In addition,

behavioral awakenings occurred less frequently in infants of smokers, emphasiz-

ing the impact of exposure before birth.

In a study that controlled and matched for confounding factors such as

social class, maternal age, parity, feeding, birth weight, gestational age, and

gender, no significant differences were found in respiratory timing or control

during nighttime sleep among 17 term infants of smoking mothers and 23

controls studied at 8–12 weeks of age (59). One presumes these infants were

supine, but this is not explicitly stated in the study. In addition, the change in end-

tidal oxygen level when 40% oxygen was used was higher in the smoking group

as compared to controls. This information may provide further understanding

regarding mechanisms and warrants further study.

Human Infant: Heart Rate Response

Spectral analyses of heart rate evaluated by sleep state revealed that infants of

smoking mothers (n ¼ 18) had significantly lower high-frequency (HF) and

normalized HF powers and higher LF=HF ratios than nonsmokers (n ¼ 18) in

REM sleep. Values did not reach significance in non REM sleep. Infants were

studied supine at 6–16 weeks. No differences were found in sleep characteristics

(60). Heart rate responses were altered in apparently healthy-appearing term

newborn infants (23 smoking mothers and 23 controls) exposed to hypoxia and
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hypercarbia (61). Overall, heart rate decreased in response to hyperoxia and

increased in response to hypoxia and hypercarbia, and the change was correlated

to the change in ventilation. The number of cigarettes smoked by the mother was

associated with sharper heart rate declines and smaller heart rate rises. For all

infants, the heart rate response lagged behind the ventilatory response, and the lag

was significantly longer among the smoke-exposed infants.

Although nicotine appears to have a consistent effect on arousal, there is

not a consistent effect on respiratory responses to oxygen in the developing

human. Limitations of these studies are related to the small sample size, variable

amount of smoke exposure in both the infants of smoking mothers and controls,

as well as quantification of passive smoke exposure, day vs. night studies, and

other epidemiologic factors.

VI. Summary

Although modifiable risk factors may act independently, they can interact with

each other and other risk factors. The preterm infant discharged from the special

care nursery is particularly vulnerable, both epidemiologically and physiologi-

cally. It is the combination of an acute stressor with the individual vulnerability

and a developmental immaturity of the infant that may result in death. In

understanding future directions in SIDS research, there is a need to further

understand the biologic mechanisms underpinning the risk factors—which in

some cases such as prone position and smoking are strong enough to imply

causality. However, how does one explain the infant who dies of SIDS and does

not have risk factors?

After 15 years of investigation of brainstems of 52 infants who died of

SIDS compared to acute and chronic controls, a map has emerged of the

neuropathology and neurotransmitters of the ventral medulla (62). Decreased

muscarinic, kainite, and serotonergic receptor binding have been identified in the

arcuate nucleus as well as decreased serotonergic receptor binding in nucleus

raphe obscurus. It is postulated that SIDS or a subset of SIDS is a result of this

abnormality in the medulla and related sertonergic neurons including the caudal

raphe and the arcuate nucleus. This can cause a failure in homeostatic mechan-

isms in that a vulnerable infant may be unable to respond to a potentially life-

threatening environmental stressor and result in a SIDS death. This medullary

serotonergic defect hypothesis requires further verification and validation, in

addition to identification of underlying cellular and molecular mechanisms. These

need to be translated to implement pathophysiologic studies of cardiorespiratory

control in the human infant. Because the serotonergic system does not play a key

role in the autonomic nervous system (ANS), a system considered to be

dysfunctional among infants who have succumbed to SIDS, the role of the
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serotonergic system relative to the ANS will need to be further delineated. Other

insights may be uncovered as other investigators explore the underlying genetic

basis of SIDS such as defects in polymorphisms in the serotonin transporter gene

(63).

Until a better understanding of the mechanisms of SIDS is elucidated, it is

the responsibility of all health care professionals to educate infant caretakers

about modifiable SIDS risk factors that can reduce the risk of SIDS. An

opportunity for this educational process exists at the birth of the infant, either

in the newborn nursery or in the epidemiologically high-risk special care nursery.

If health care providers can model sleep position and a safe sleep environment,

there is great potential to further reduce the incidence of prone sleeping and SIDS

risk. In addition, efforts to reduce smoke exposure to fetuses and infants may be

one of the most important interventions to substantially lower the incidence of

SIDS.
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