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Preface

This is the third in a series of four volumes, all written at an elementary calculus
level. The complete course covers the most important areas of classical physics,
such as mechanics, thermodynamics, statistical mechanics, electromagnetism,
waves and optics. The volumes are the result of a translation, an in-depth revision,
and an update of the Italian version published by Decibel–Zanichelli. This third
volume deals with classical electromagnetism.

The vast majority of physics phenomena naturally taking place around us
originate in electromagnetic forces. The largest portion of the technology that holds
sway over so much of our lives and our civilization is the result of our knowledge
and control of electromagnetic forces.

The forces that keep atoms together internally, binding electrons to nuclei, and
externally, binding those atoms within molecules, are electromagnetic. As a con-
sequence, the energies developed in all chemical reactions are electromagnetic,
including the biochemical ones, which are the basis of life itself. Contact forces,
such as friction, between solid surfaces are electromagnetic, and so is the drag force
acting on a body moving in a fluid. Elastic forces, cohesion forces, and the force
that results from the earth’s magnetism are all electromagnetic. Light itself is an
electromagnetic wave, whose wavelength is in the range to which our eyes are
sensitive. The radio waves we use in telecommunications, radio, television, and
cellular phones are electromagnetic as well, utilizing much greater wavelengths. As
a matter of fact, all the phenomena on scales larger than those of the atomic and
molecular have a gravitational or electromagnetic origin.

Modern technology is more than 99 % reliant on electromagnetism. In hydro-
electric power stations, for example, big turbines are moved by water falling on
them through large pipes under pressure. The turbines move electromagnetic
generators, made of massive copper coils rotating between the poles of an elec-
tromagnet. The generators produce an electromotive force that is then distributed
through a network of thousands of copper wires across distances of hundreds of
kilometers to factories, offices, and houses. Here, the electric power is used by
electric motors to produce all types of objects, to control chemical processes, or
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simply to light our rooms or wash our dishes. All of these are electromagnetic
processes. Cellular phones emit and receive electromagnetic waves, which are
produced or detected and amplified by electronic circuits. Our computers store,
process, and transmit information using electronic circuits of ever-increasing
complexity and miniaturization.

However, the electromagnetic nature of natural phenomena does not appear at
first sight and remained substantially unknown until roughly two centuries ago.
Lighting is the phenomenon with the most evident (to us) electric nature, but it was
not the genesis of the study of electric and magnetic phenomena. On the contrary,
the first observations were in regard to the curious properties of amber, which, when
rubbed, attracted small pieces of papyrus, and of magnetite, a stone capable of
attracting pieces of iron. These phenomena were reported by the Greek philosopher
Thales from Miletus in the sixth century BC. Twenty-two centuries had to pass
before the first systematic observations and the first attempts at interpretation of
electric and magnetic phenomena would occur, with William Gilbert’s publication
of his work in the book De magnete in 1600. Still, almost two more centuries would
go by before Charles Augustin de Coulomb would make the fundamental mea-
surement of the electric force between two charges and its dependence on their
distance in 1785, finally paving the way for electric and magnetic research.

The basic reason for this late scientific birth of electromagnetism can be traced to
the fact that, even if the electric force is billions of billions of billions of billions
stronger than the gravitational force, it can be attractive or repulsive, depending on
the sign of the charges, and because matter is made of positive and negative charges
so exactly equal and opposite and so intimately mixed together that they perfectly
balance one another. Nobody knows, even today, the reason for this perfect
equality. Phenomena in different sectors of physics, mechanics or acoustics, for
example, have always been known to the common man, and later scientists have
gradually discovered the underlying laws. Contrastingly, the entire electromagnetic
world is a discovery of science.

The life spans of the principal contributors to electromagnetism are shown in
Fig. 1.

The next fundamental step forward after Coulomb was credited to Alessandro
Volta, who published his discovery of the pile in 1800. The production of voltages
and electric currents became available for further experiments and the pace of
progress grew very rapidly, leading to a complete understanding of electromag-
netism in less than a century. Volta’s pile made possible the experiment with which
Hans Christian Ørsted, in 1820, first discovered the magnetic effects of electric
currents, connecting electricity and magnetism for the first time. Between 1820 and
1826, André Marie Ampère completely clarified the relation between the magnetic
field and electric currents with a series of beautiful experiments. In 1831, Michael
Faraday discovered electromagnetic induction, the phenomenon in which magnetic
fields variable with time produce electric fields. Finally, in 1865, James Clerk
Maxwell wrote the differential equations that contain the complete theory of
electromagnetism. The equations not only foresaw a new phenomenon, electro-
magnetic waves, but also that light itself is such a wave. The theoretical prediction
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of the electromagnetic waves, specifically those that we call radio waves, was
experimentally confirmed by Henrich Rudolf Hertz with a series of experiments,
also quite beautiful, between 1886 and 1889. Twelve years later, in 1901,
Guglielmo Marconi succeeded in sending the first radio transmission across the
Atlantic Ocean. The message, consisting simply of the Morse code signal for the
letter “s”, traveled more than 2000 miles from Cornwall in England to
Newfoundland in Canada.

As opposed to Galilei–Newton mechanics, the electromagnetic theory also
appeared to hold in its original formulation of Maxwell at the highest velocities up
to the speed of light. In other words, the electromagnetic theory was born being
already relativistically correct. Better still, it was that very progress in the in-depth
experimental study of electromagnetic phenomena, in particular, with the out-
standing experiment of Albert Abraham Michelson (with Morley) in 1887, and the
revolutionary theoretical analysis between 1895 and 1905 by, mainly, Hendrik
Antoon Lorentz, Henri Poincaré and Albert Einstein, that led to special relativity.

Classical electromagnetism is a magnificent scientific construction that quanti-
tatively describes a huge number of phenomena and is the basis of modern tech-
nology. However, it does not work in the interpretation of electromagnetic
interaction at atomic or smaller scales. The experimental and theoretical progress
over the past century led to the development of quantum electrodynamics, which
contains the classical electrodynamics as an approximation valid on large enough
scales and fully explains the phenomena down to the smallest scales explored
experimentally thus far.

The scope of these lectures is the description, at an introductory level, of clas-
sical electromagnetism. The reader is assumed to be acquainted with differential
calculus, including the simplest partial differential equations, the gradient, diver-
gence and curl operators and their basic theorems.

1900 195018001700

MAXWELL

GILBERT
COULOMB

VOLTA

ØRSTED

AMPÈRE

EINSTEIN

MARCONI

POINCARÉ

HERTZ

LORENTZ

MICHELSON

FARADAY

16001550

Fig. 1 Life spans of the greater contributors to electromagnetism
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Physics is an experimental science, meaning that it is based on the experimental
method, which was developed by Galileo Galilei in the seventeenth century. The
process of understanding physical phenomena is not immediate, but rather, it
advances by trial and error, in a series of experiments, which might lead, with a bit
of fortune and a lot of thinking, to the discovery of the governing laws. Induction
of the process of physical laws goes back from the observed effects to their causes,
and, as such, cannot be purely logical. Once a physical law is found, it is necessary
to consider all its possible consequences. This is now a deductive process, which is
logical and similar to that of mathematics. Each of the consequences, the predic-
tions, of the law must then be experimentally verified. If only one prediction is
found to be false by the experiment, even if thousands of them had been found true,
it is enough to prove that the law is false. This implies that we can never be
completely sure that a law is true; indeed, the number of its possible predictions is
limitless, and at any historical moment, not all of them have been controlled.
However, this is the price we must pay in choosing the experimental method, which
has allowed humankind to advance much further in the last four centuries than in all
the preceding millennia.

The path of science is complex, laborious, and highly nonlinear. In its devel-
opment, errors have been made and hypotheses have been advanced that turned out
to be false, but ultimately, laws were discovered. The knowledge of at least a few
of the most important aspects of this process is indispensable for developing the
mental capabilities necessary for anybody who wishes to contribute to the progress
of natural sciences, whether they pursue applications or teach them. It is for this
reason that we shall read and discuss the descriptions some of these authors have
put forth of their fundamental experiments.

Each chapter of the book starts with a brief introduction on a scope that will give
the reader a preliminary idea of the arguments he/she will find. There is no need to
fully understand these introductions at the first reading, as all the arguments are
fully developed in the subsequent pages.

At the end of each chapter, the reader will find a summary and a number of
queries with which to check his/her level of understanding of the chapter’s argu-
ments. The difficulty of the queries is variable; some of them are very simple, some
more complex, a few are true numerical exercises. However, the book does not
contain any sequence of full exercises, considering the existence of very good
textbooks dedicated specifically to that.

The first four chapters deal with electrostatics, namely electric phenomena under
time-independent conditions. Chapter 1 is on electrostatics in a vacuum. The
concept of the electric charge is introduced and the basic properties of this fun-
damental physical quantity are discussed. We then discuss the force between
charges at rest, introduce the concept of the electric field and discuss its properties.
The materials can be schematically classified, from the electric point of view, into
two main classes, the conductors and the insulators, which are also called dielec-
trics. We deal with the former in Chap. 2, and latter in Chap. 4. Chapter 3 is
dedicated to the energy of the electrostatic systems in a vacuum and with con-
ductors. Chapter 5 treats the steady electric currents. Chapter 6 is on magnetostatics,
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namely magnetic phenomena under time-independent conditions, in a vacuum. In
Chap. 7, we start our study in dynamic, namely time-dependent, situations with the
important phenomena of electromagnetic induction, which link electricity and
magnetism. Chapter 8 is dedicated to the study of the energy of the magnetostatic
systems in a vacuum. In Chap. 9, we study magnetic phenomena in the presence of
matter, in particular, diamagnetism, paramagnetism, and ferromagnetism. Finally,
in Chap. 10 , we reach the full description of the Maxwell equations, both in a
vacuum and in matter, discover the new phenomena they foresee and study the
Lorentz invariance of the equations.

Padua, Italy Alessandro Bettini
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Symbols

Symbols for the Principal Quantities

a, as Acceleration
a, a Angular acceleration
x Angular frequency
l, L Angular momentum
P Canonical momentum
C Capacitance
q, Q Charge
q Charge density
g Conductivity
j Current density
I Current intensity
C Curve
j Dielectric constant
qe Elementary charge
p Electric dipole moment
D Electric displacement
E Electric field
U, UE Electric flux
ve Electric susceptibility
E Electromotive force (emf)
U, UE, Um Energy
w Energy density (of the field)
S Energy flux (of the field)
F Force
m Frequency
G Gravitational field
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Z Impedance
L Inductance
UK Kinetic energy
c Lorentz factor
H Magnetic auxiliary field
l Magnetic dipole moment
B Magnetic field
U, UB Magnetic flux
l Magnetic permeability (absolute)
j Magnetic permeability (relative)
R Magnetic reluctance
vm Magnetic susceptibility
M Magnetization
m, M Mass
<x> Mean value of x
p Momentum
g Momentum density (of the field)
M Mutual inductance
GN Newton constant
T Period
e Permittivity
h, a Plane angle
h, / Polar angle
q, h, / Polar coordinates (space)
P Polarization (density)
r Position vector
/ Potential (electrostatic and scalar)
V Potential difference
Up Potential energy
p, P Pressure
r, R Radius
Z Reactance
l Reduced mass
R Resistance
q Resistivity
L Self-inductance
X Solid angle
S, R Surface
r Surface charge density
k, ks Surface current density
t Time
M Total moment
ut Unit vector of v
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i, j, k Unit vectors of the axes
n Unit vector normal to a surface
e0 Vacuum permittivity
l0 Vacuum permeability
A Vector potential
v, t Velocity
c Velocity of light (in a vacuum)
b Velocity divided by light velocity
V Volume
W Work

Base Units in the SI

Quantity Unit Symbol

Length metre/meter m

Mass kilogram kg

Time second s

Current intensity ampere A

Thermodynamic temperature kelvin K

Amount of substance mole mol

Luminous intensity candela cd

Decimal Multiples and Submultiples of the Units

Factor Prefix Symbol Factor Prefix Symbol

1024 yotta Y 10−1 deci d

1021 zetta Z 10−2 centi c

1018 exa E 10−3 milli m

1015 peta P 10−6 micro µ

1012 tera T 10−9 nano n

109 giga G 10−12 pico p

106 mega M 10−15 femto f

103 kilo k 10−18 atto a

102 hecto h 10−21 zepto z

10 deka da 10−24 yocto y

Symbols xix



Fundamental Constants

Quantity Symbol Value Uncertainty

Light speed in a vacuum c 299,792,458 m s−1 defined

Newton constant GN 6.67308(31)� 10−11 m3 kg−1 s−2 47 ppm

Avogadro number NA 6.022140857(74)� 1023 mole−1 12 ppb

Boltzman constant kB 1.38064852(79))� 10−23 JK−1 570 ppb

Vacuum permittivity e0 ¼ 1= c2l0ð Þ 8.854187 817…� 10−12 Fm−1 defined

Vacuum permeability l0 ¼ 1= c2e0ð Þ 12.566370 614…� 10−7 NA−2 defined

Vacuum impedance Z ¼ l0c 376.730313461 …X defined

Elementary charge qe 1.6021766208(98) …� 10−19 C 6.1 ppb

Unified atomic mass u=1g/NA 1.660539040(20) � 10−27 kg 12 ppb

Electron mass me 9.10938356(11) � 10−31 kg 12 ppb

Proton mass mp 1.672621898(21) �10−27 kg 12 ppb

Greek Alphabet

alpha a A iota i I rho q P

beta b B kappa j K sigma r, 1 R

gamma c C lambda k K tau s T

delta d D mu l M upsilon t !, �

epsilon e E nu m N phi /, u U

zeta f Z xi n N chi v X

eta η H omicron o O psi w W

theta h, 0 H pi p P omega x X

xx Symbols
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Chapter 1
Electrostatic Field in a Vacuum

Abstract After defining the electric charge, we shall describe Coulomb’s experiment
on the force between two point charges at rest in a vacuum andMillikan’s experiment
on the elementary charge. We shall introduce the electric field and its potential, in
time-independent conditions, and find and discuss the equations ruling these quan-
tities, both in integral and differential form.We shall look at four important properties
of electric charge, namely charge conservation, charge quantization, charge invari-
ance and the equality of positive and negative elementary charges.

As recalled in the introduction, electromagnetic interaction is one of the four fun-
damental interactions known in nature. The other three are gravitational interaction,
which was examined in Chap. 4 of the first volume of this course, and weak and
strong nuclear interactions. The latter two are active at the microscopic level, are
described by quantum mechanics and are beyond the scope of this course.
Electromagnetic interaction is responsible for all macroscopic phenomena, gravi-
tational examples aside. All fundamental interactions propagate in space through a
“field” of force. For example, as discussed in the first volume, the sun generates a
gravitational field in the space around it. An object, like the earth, at a point will then
feel a force that is given by the field at that point times its own mass. Space is never
empty. Even in a vacuum, where there is no matter, fields of force are always present,
and energy and momentum with them, as we shall learn in subsequent chapters.

In this chapter, we study electric interaction in the simplest situation, namely
between point charges at rest in a vacuum. After a few hints as to the charged
constituents of matter, we shall describe the properties of the electric charge. We
shall see that it is quantized, namely that the charge cannot be small at will.
Contrastingly, an elementary charge exists, which is the charge of the electron and
the proton. We shall also mention that electric charge can neither be created nor
destroyed. Electric charge is always conserved. However, we must defer the
quantitative description of charge conservation and of the governing equations to
Sect. 5.2, after having introduced the concept of electric current. A third funda-
mental property is the invariance of the electric charge under transformations
between inertial reference frames in relative motion. In other words, the electric
charge of an object, for example, an electron or a nucleus, is independent of its
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velocity, similar to its mass. We shall discuss the invariance of the charge in
Sect. 1.9, after having gained the necessary knowledge.

In Sect. 1.2, we shall see that the force between two point charges at rest, as
established by Coulomb, is very similar to the Newtonian force between two
point-like (or spherical) masses. We shall also discover that the electric force obeys
the superposition principle. The principle states that the force acting on the charge
A due to the charges B and C together is equal to the vector sum of the force exerted
on A by B when acting alone and that exerted by C when acting alone.

In Sect. 1.3, we shall introduce the concept of the electric field, under the
particular conditions being discussed, namely produced by charges at rest. For this
reason, we shall call it electrostatic, which simply means an electric field inde-
pendent of time. An electric charge produces a “vector field” in the space around it
independently of the presence of other charges. When a charged body, however, is
present at a certain point, it will feel a force equal to the electric field at that point
times its own charge. In Sect. 1.5, we shall see that the electrostatic field is con-
servative and hence define the electrostatic potential. In the subsequent two sections
we shall show how to calculate an electric field and the potential for simple charge
distributions.

Physics is an experimental science, based on the experimental method, which is
the instrument for its progress. The history of physics is rich in fundamental and
ingenious experiments. The study of a few of allows appreciating how physics did
and will progress. Two experiments are described in some detail in this chapter, the
Coulomb experiment on the force between two charges in Sect. 1.2, as already
mentioned, and the Millikan measurement of the elementary charge in Sect. 1.8.

After having defined the geometrical concept of solid angle in Sect. 1.10, we
shall introduce the physical concept of the flux of an electric field in Sect. 1.11 and
show its fundamental properties, which are stated as the Gauss law. In Sects. 1.12
and 1.13, we apply the Gauss law, calculating electric fields in symmetric
geometries and finding the discontinuities of the field through a charged surface.
The two important partial differential equations of Poisson and Laplace obeyed by
the electrostatic potential are the objects of study in Sect. 1.15.

In the last two sections of the chapter, we shall study the simplest system beyond
the point charge, namely the electric dipole, consisting of two equal and opposite
point charges at a fixed distance. We shall consider both the field it produces and
the torque and the force acting on a dipole in an external field.

1.1 Electric Charge

In the first years of VI Century BC, the Greek philosopher Thales of Miletus
(Greece, c, 624–c 546 BC) reported that what we now know as an electric charge
could be “produced” or, more accurately, accumulated by rubbing fur on several
substances, amber in particular. Twenty-two centuries later, in 1600, the English
scientist William Gilbert (UK, 1544–1603) published De magnete (for brief), in
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which he not only dealt with magnetism, but also coined the word electricus from
the Greek word élektrikon, meaning amber.

The electric charge is a fundamental property of matter. It is the source and
receptor of one of the fundamental interactions of nature, electromagnetic inter-
action. As we shall learn in this book, electric, magnetic and chemical phenomena,
and light itself, are all electromagnetic phenomena. Our civilization depends
completely on electromagnetism. Just think about what our everyday life would be
like if electric power were permanently cut.

There are two types of electric charges, called positive and negative. Charges of
the opposite sign attract one another, charges of the same sign repel. Note that the
adjectives ‘positive’ and ‘negative’ are just names; they do not mean that charges
have the mathematical characteristics of positive and negative numbers.

A simple device for a semi-quantitative determination of an electric charge is the
electroscope, from the Greek word skopeo, to look. A common type, the gold-leaf
electroscope, originally developed in 1787 by Abrham Bennet (UK, 1749–1799), is
shown in Fig. 1.1. It consists of a vertical conductor bar, made of a metal, commonly
brass. From the lower end of the bar hang two parallel thin flexible gold leaves, which
are enclosed in a glass container to protect them from drafts of air. The container has a
metallic base that is grounded for safety reasons. The upper end of the bar terminates in
ametallic plate (or sphere), uponwhich the charge to bemeasured is deposited. Part of
this charge spreads along the entire conductor, in particular, on the leaves. The leaves
being charged with the same sign, they repel each other, opening into a “V” that gets
wider as the charge gets larger. In this way, we have an evaluation, rather then a
quantitative measurement, of the electric charge. Figure 1.1 also shows an electro-
static spoon, which is a small metallic sphere supported by an insulating handle. The
spoon is used to take the charge from the point to be tested (for example, the surface of
a conductor), to the electroscope, respectively touching the point of origin and then the
electroscope’s plate with the sphere.

Instruments based on the same principle, called electrometers, have been
developed to measure the electric charge more accurately.

Matter is made of very small particles, namely molecules that, in turn, are made
of atoms. Atoms characterize the elements, molecules the chemical substances. The
physical laws at the atomic and sub-atomic scales are quantistic and cannot be
discussed at the level of this course. Consequently, we shall not enter into any
detail, limiting the discussion to the basic elements, similar to what we did in
Chap. 4 of the 2nd volume of this textbook.

Even if the atoms are the elementary objects in the chemical reactions, they have
an internal structure. Atoms are composed of a central nucleus, which has a positive
electric charge, and electrons, which are negative and form a “cloud” around the
nucleus. Atoms are electrically neutral; the binding force is electromagnetic. The
atomic nucleus has an internal structure as well; it is made of protons and neutrons.
The force keeping the nucleus together is called the strong nuclear force. Protons
and neutrons are also composite objects; they are made of quarks, bound by the
so-called color force, for which “color” is a funny name given to it by physicists,
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despite having nothing to do with color as we know it. The strong nuclear force, to
be precise, is a consequence of the color force.

The geometrical dimensions of the atoms, different from one atomic species to
another, are the dimensions of this negative “cloud”. The order of magnitude is a
tenth of a nanometer, or 10−10 m. The nuclear diameters are four orders of mag-
nitude smaller, between 1 fm and 10 fm (10−15–10−14 m). If we were to magnify a
nucleus to the size of the dot on an “i” on this page, the atom would be a few meters
in size.

The number of electrons (symbol e), called Z, which characterizes the element,
varies from 1 for hydrogen to 92 for uranium in the Mendeleev table, which is
named after Dimitri Mendeleev (Russia, 1834–1907). The electrons inside atoms
behave according to quantum, rather than classical, laws. In particular, electrons do
not have well-defined trajectories; we cannot properly speak of electron orbits
around the nucleus (even this is still found in many books). Atomic electrons move
very fast compared to macroscopic objects; their speeds are on the order of 104 m/s,
which, however, are much smaller than the speed of light. The characteristic times
of the electrons’ motion are much smaller than the resolving times of our instru-
ments and, consequently, we observe an average configuration of the atom. We see
the electron charge as continuously distributed in a region around a nucleus with

+ ++ ++ +
+ +

Fig. 1.1 Gold-leaf
electroscope and electrostatic
spoon
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larger density where the probability of finding one electron is greater, and more
sparsely where the probability is smaller. We can then think of a cloud of charge
even if there is only one electron, as in the case of hydrogen.

The atomic nucleus is made of protons (p) that are positive and neutrons (n) that
are neutral. The electric charge aside, protons and neutrons are very similar and are
collectively called nucleons. For every element, the number of protons is equal to
the number of electrons. Protons and electrons have equal and opposite charges;
atoms, as we said, are globally neutral.

The proton and electron electric charge is the smallest charge existing free in
nature, and is called the elementary charge. As a matter of fact, quarks have smaller
charges. Nucleons contain two types of quark, called up (u) and down (d). Their
charges are 2/3 and –1/3 of the elementary charge, respectively. The proton con-
tains 2 u and 1 d, the neutron 1 u and 2 d. However, quarks are never free; they live
inside the nucleons and other particles of the same category. The charges of all the
other objects are integer multiples of the elementary charge. One might consider
adopting the elementary charge as the unit, but this is not convenient, because
enormous numbers would represent all the usual charges. The unit of electric charge
in the SI is the coulomb (C), which we shall soon define. The value of the ele-
mentary charge is

qe ¼ 1:6021766208ð98Þ � 10�19 C: ð1:1Þ

where the two digits in parentheses are the uncertainty of the last two digits of the
reported value. We shall describe, in Sect. 1.8, the measurement by Millikan of this
fundamental quantity.

The value of the elementary charge is commonly used to define an energy unit
that is useful at the atomic and molecular scales, which is called the electronvolt.
The electronvolt is the kinetic energy gained by an electron falling under the
potential difference of one volt. As such, its numerical value in joule is equal to the
elementary charge, namely, in a round figure,

1 eV ffi 1:60� 10�19 J: ð1:2Þ

The presence of neutrons in the nucleus is necessary to guarantee its stability.
Inside the nucleus, the repulsive electric force between protons tends to destroy it.
The nuclear force is, however, attractive and, under the same conditions, has the
same intensity between protons, between neutrons and between a proton and a
neutron. The balance between electric and nuclear forces is realized when the
number of neutrons is somewhat larger than the number of protons. The neutron
excess increases with increasing nuclear size. The number of neutrons is indicated
with N, the total number of nucleons (protons plus neutrons) with A (A = N + Z),
which is called the atomic number. For a given atomic species (namely a given Z),
more than one nuclear species may exist, with different values of N and conse-
quently of A. All of them have the same chemical properties and are lodged in the
same box of the Mendeleev table. For this reason, they are called isotopes (=‘same
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place’ in Greek). The percentages of the different stable isotopes of an element are
fixed in nature.

For example, hydrogen has two stable isotopes: 1H (the superscript is A), the
nucleus of which is simply the proton, and 2H, the deuteron, the nucleus of which is
made of a proton and a neutron. A third isotope, tritium 3H, exists but is unstable,
having a half-life of 12.32 years. It is continuously produced by cosmic ray col-
lisions in the atmosphere. The second element is helium, which has two stable
isotopes, 3He (2p, 1n) and 4He (2p, 2n), and so on.

Let us now see the values of the masses. The electron mass is

me ¼ 9:10938356ð11Þ � 10�31 kg: ð1:3Þ

The proton is 1836 times larger, namely

mp ¼ 1:672621898ð21Þ � 10�27 kg: ð1:4Þ

The neutron has a mass almost equal to, but a bit larger than, the proton, namely

mn ¼ 1:674927471ð21Þ � 10�27 kg, ð1:5Þ

From the above values, we see that the largest fraction of the atom mass, and
with them of the mass of matter, is concentrated in the nucleus. The electrons’
contribution is only a few parts in ten thousand. One might think that the atomic
masses of the elements are integer multiples of the proton mass. This is so only in a
rough approximation, for three reasons. First, several elements are a mixture of
different isotopes with different values of A, in some proportions; second, the proton
and neutron masses are almost, but not exactly, equal; third, the mass of the nucleus
is not equal to the sum of the masses of its nucleons; it is smaller than that due to the
binding energy, as discussed in Chap. 6 of the 1st volume.

The masses of the u and d quarks are about two per mille and four per mille of
the nucleon mass, respectively. This is really surprising. From where does the
largest fraction of the mass of the nucleons, and consequently of the nuclei, of the
atoms, of matter in general, come? The answer is in the very peculiar behavior of
the (quantum) color force. On one side, it increases with the distance so much that
quarks cannot be taken apart; on the other, its binding energy is positive and very
large. Consequently, instead of a mass defect, such as in atoms and nuclei, in the
nucleons, there is a mass excess. Namely, the mass of the nucleon is much larger
than the sum of the masses of its components. This excess is the largest fraction of
the mass of matter, we included.

As far as we know, electrons and quarks do not have an internal structure and are
point-like. Namely, their sizes, if any, are smaller than the experimental resolution,
which is presently on the order of the attometer (10−18 m). The nucleons have a
radius smaller than, but comparable to, nuclei, of about 1 fm, and, as we already
said, are composed of quarks. In our discussion of dielectrics, conductors and
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magnetic materials, we shall not need to know more details of the internal structure
of nuclei.

In conclusion, matter is made of an enormous number of very small charged
elementary constituents, with electric charges of both signs, which are so intimately
and precisely mixed that their effects, which are enormous inside the atoms, almost
disappear outside them. We shall see that the forces between charges are similar to
the gravitational force, but far more intense. The fact that their effects are almost
unnoticeable at the macroscopic level is due to their perfect cancellation at the
atomic level, resulting in the global neutrality of matter.

QUESTION Q 1.1. What is the charge of a mole of electrons? h

Electric charge conservation. A fundamental property of electric charge is its
conservation. The creation or destruction of electric charge is impossible, in the
sense that the total charge, the algebraic sum of positive and negative charges, cannot
vary. It is true that, for example, an electron can “annihilate” with its antiparticle, the
positron, which has an equal and opposite charge in the final state of two photons,
which are neutral. But both the initial and final charges are globally zero. Similarly,
the process in which a photon “materializes” in an electron positron pair is possible,
because the total charge is conserved. Another example is given by the neutron,
which, when free outside a nucleus, is unstable. As a matter of fact, neutrons decay,
by the weak nuclear force into a proton, an electron and an antineutrino. Their
charges are +qe, –qe and 0, respectively. The total charge is conserved.

Notice than when one talks, somewhat colloquially, of “producing” charge, for
example, by rubbing fur on amber, as we did in the first lines of this section, one
always means separating some negative charges (that remain on the fur) from
positive ones (that remain on the amber).

1.2 Coulomb’s Law

In 1785, using the torsion balance he had invented, Charles Augustin de Coulomb
(France, 1736–1806) demonstrated that two like charges repel, and two unlike
charges attract, each other with a force that varies according to the inverse square of
their distance. Before describing this famous experiment, we must state the cir-
cumstances under which two charges are equal and establish what multiple and
submultiple charges are. We say that two charges are equal, in value and sign, when
they separately exert equal forces in magnitude and direction on a third charge at
the same distance from both. The two charges are equal in magnitude and opposite
in sign, if, under the same conditions, they exert forces equal and opposite. Before
accepting the definition, we need to verify experimentally that what we have
defined as equality indeed behaves as equality does. We must ask: is the transitive
property satisfied? Namely, if, with the definition we have given, charge A is equal
to charge B and charge B is equal to charge C, are charges A and C equal? The
experimental answer is yes. Notice that this conclusion cannot be reached through
pure logic; it needs to be experimentally verified.
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As for the multiples, a charge n times a given charge is obtained putting together
n charges equal to the given one. We obtain the submultiples by dividing the charge
under symmetric conditions. We give the charge to be divided to a small con-
ducting, and insulated, sphere. We then touch it with an identical sphere that has not
been charged, taking care that the surrounding bodies respect the symmetry
between the two spheres. The initial charge divides into two equal parts on the two
spheres. We finally verify experimentally, as in the case of equality, that our def-
initions are coherent.

In his first memoire to the French Royal Academy of Sciences in 1785, Coulomb
starts by explaining

how to construct and use an electric balance [he means a torsion balance] based on the
property of the metal wires of having a reaction torsion force proportional to the torsion
angle

For a discussion of the torsion balance, see Sect. 8.9 in the 1st volume.
Figure 1.2a, b, taken from the memoire, show the apparatus. A thin metal (Ag) fiber
is attached to the suspension head on the top of the apparatus. The lower end of the
fiber, at the bottom of a column and in a glass cylinder, is attached at the middle
point of the balance crossbar (Fig. 1.2c). The equilibrium angle of the balance, in
absence of applied torque, can be adjusted acting on the suspension head and read
out from the position of an index moving on a scale on the head. The torque exerted
by the wire when the crossbar is rotated out of equilibrium is proportional to the
rotation angle, as in the above sentence by Coulomb. The rotation angle is mea-
sured on a scale placed around the glass cylinder (Fig. 1.2a). This gives the torque,
having calibrated the balance in advance. A small conducting sphere is fixed at one
end of the crossbar, a counterweight at the other end. The sphere is charged at the
beginning of the experiments. A second conducting sphere can be placed near the
suspended one, through an opening at the top of the glass cylinder, by means of the
small bar shown in Fig. 1.2b. In each experiment, it is charged outside and then
introduced into the apparatus.

Coulomb started charging the spheres with the same sign. In his first measure-
ment, he set the unperturbed equilibrium position of the balance at a certain angle
h10. The equilibrium between the torque of the electric force and the elastic torque of
the fiber was reached when the centers of the spheres were at the distance, say, d1f,
and the angle of the balance was h1f. The torque (and the force) was proportional to
h1f–h10. In the second measurement, he changed the unperturbed position to, say, h20
so that the equilibrium distance between the spheres would be one half of the first
measurement, namely d2f = d1f/2. The corresponding angle was h2f. Coulomb found
that the torque, proportional to h2f–h20, had quadrupled. He halved the final distance
once more, finding the torque quadrupled again. He thus concluded:

It follows therefore from these three tests, that the repulsive action that the two balls
electrified of electricity of the same type exert on one another varies in inverse proportion to
the square of the distance (between centers).
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The attractive force is more difficult to measure, because if the product of the
charges is larger than a certain angle-dependent value, the electric torque cannot be
equilibrated by the elastic torque of the wire. The balls approach, touch each other
and discharge. Coulomb found, however, that an allowed operational range exists,
in which he performed his measurements. He published the results in a second
memoir in the same year, in which he stated

Finally, comparing the different experiments, I concluded that the attractive force between
electrified balls, one of electricity that I shall call positive, the other of that I shall call
negative, is inversely proportional to the square of the distance, as already found for the
repulsive force.

Other experiments, halving the charge of the sphere of Fig. 1.2b, showed that the
force is proportional to the product of the charges. The conclusion is Coulomb’s law

(a)

(c)

(b)

scale
0

Fig. 1.2 Coulomb’s torsion balance experiment. a the apparatus, b detail showing the fixed
sphere; both are from the memoire, c torsion balance detail, showing the crossbar, charged spheres
and counterweight
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F ¼ k
q1q2
r2

: ð1:6Þ

The force is also called Coulomb’s force or an electrostatic force. Let us make a
few observations. The first one is that Coulomb’s law holds only for the force
between two charges at rest (the term “electrostatic” recalls that). It does not hold if
the charges are in motion, as we shall learn subsequently. In addition, the law was
established for the force between point charges. However, Coulomb’s force
depends on the distance as the gravitational force. Consequently, the force between
two spherical distributions of charges, as in the case of the Newton force between
masses, is equal to the force between those charges concentrated in the centers of
the spheres. Coulomb’s law is rigorously valid in a vacuum. We shall see the effects
of a medium in Chap. 3. We anticipate here that if the medium is air, as in
Coulomb’s experiment, the effects are extremely small. Finally, we observe that
Coulomb’s experiment had a limited sensitivity. The inverse square distance
dependence of the force is rigorously established by observing the electrostatic
shielding effects, which exist only for the inverse square behavior. These effects,
which we shall study in Sect. 2.10, are analogous to the property of the Newton
force of being zero inside a spherical mass shell.

The value of the proportionality constant k depends on the measurement unit
chosen for the electric charge. In the SI, the base quantity is the current intensity,
which is the electric charge that goes through a section of a conductor in a second.
This is called an ampere, after André-Marie Ampère (France, 1775–1836), and has
the symbol A. The definition of the ampere is based on the magnetic effects of the
current, and we must defer study of it to Sect. 6.12. The unit of charge is the charge
passing in one second in a circuit traversed by a stationary current of 1 A. It is
called a coulomb and its symbol is C, namely 1 C = 1 A � 1 s.

In the SI, the proportionality constant k is defined in terms of another constant,
e0, called the electric permittivity of the free space or vacuum permittivity, as

k ¼ 1
4pe0

: ð1:7Þ

The electric permittivity of the free space is a fundamental constant of nature. As
we shall learn in this course, in the SI system, it is linked to a fundamental invariant
quantity, the speed of light in a vacuum. The value of the latter, as known from the
study of mechanics, is given by the definitions of the second and of the meter. The
consequence is that the value of e0 is also fixed by those definitions. As such, it is
said to be “exact”, having moved the experimental uncertainties in the definitions.
Its value is

e0 ¼ 8:854187817 � 10�12 N�1 m�2 C2: ð1:8Þ

We shall meet e0 continuously in the following calculations and we should
remember the first digits of its value by heart. This is more easily done using the
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measurement unit of the electrostatic capacitance, which is the farad (F). We shall
define the farad in Sect. 2.6. Here, we need only know that the dimensions of e0 are
capacitance per unit length, namely the unit is 1 F/m. We write the first digits of
Eq. (1.8) in the easy to remember form of

e0 ¼ 8:8 pF/m: ð1:9Þ

Equation (1.6) expresses the magnitude of the force. To obtain its vector
expression, let us consider the point charge q1 at rest in an inertial frame at the
position vector r1 and the point charge q2 at rest at the position vector r2 and let
r12 = r2 − r1 be the vector from the first to the second charge and u12 its unit
vector, as shown in Fig. 1.3. The electrostatic force exerted by q1 on q2 is

F12 ¼ 1
4pe0

q1q2
r212

r12
r12

¼ 1
4pe0

q1q2
r212

u12: ð1:10Þ

The expression shows, in particular, that if the charges have the same sign, F12

and r12 have the same direction, namely the force is repulsive, while if the charges
have opposite signs, F12 and r12 have opposite directions, namely the force is
attractive.

Let F21 be the electrostatic force exerted by q2 on q1. The question arises as to
whether F21 is equal and opposite of F12 and on the same application line. In other
words, does the action-reaction law hold for these forces? The answer must be
given by experiments, and is positive. Notice that this is not at all a priory obvious.
A counter example is given by the electric charges in motion. The forces they
exchange, as we shall see in Sect. 10.6, do not obey the second Newton law.

Consider now a point charge q0 at rest at r0 and a number, say n, of other
charges, which are point like and at rest too, say q1 at r1, q2 at r2, q3 at r3 … qn at
rn. It is experimentally found that the superposition principle holds for the elec-
trostatic forces, namely that the total force is the sum of the forces that each charge
would exert if acting alone. If ri0 = ri − r0 is the vector from the generic charge qi
to q0 and ui0 is its unit vector, the force on q0 is

z

y
O

F
F

r r

r
21

12

2

q1
2

1

q 12

x

Fig. 1.3 Electrostatic forces
between two point charges at
rest in a vacuum
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F ¼ q0
4pe0

Xn
i¼1

qi
r2i0

ui0; ð1:11Þ

Coulomb’s force between two point charges q1 and q2 at rest in a vacuum is very
similar to the Newton force between two point-like masses m1 and m2, which is, we
will recall,

FN
12
¼ �GN

m1m2

r212
u12: ð1:12Þ

where the minus sign tells us that the force is attractive in any case. This is an
important difference between electrostatic and gravitational forces. The second
important difference is their magnitude. We recall that the value of the Newton
constant is GN ¼ 6:67� 10�11 N m2 kg�2. Take, for example, a proton and an
electron in a hydrogen atom. They act on one another with the electrostatic and
gravitational forces. We can compare their ratio at any distance, said ratio being
independent of distance because the two forces vary in the same way. We have

Felectrost epð Þ
Fgravitaz epð Þ ¼

q2e
4pe0GNmemp

ffi 1039:

This number is very huge indeed. Consider two heavenly bodies, the earth and
the moon, for example. The protons and electrons of one of them act on the protons
and electrons of the other, both electrically and gravitationally in the intensity ratio
we have just seen. But we do not see any resulting electric force; we see only the
gravitational one. This is because positive and negative charges are intimately and
accurately mixed in matter and because the proton and electron charges are, in
absolute value, exactly equal.

As an example, suppose the electron charge to be a bit larger than the proton charge,
say of a part in a billion, i.e., | qe | = 1.000000001 qp. What is the electrostatic
attraction between two iron spheres each of 1 kg mass at the distance of 1 m? A Fe
atom has 26 electrons, 26 protons and 29 neutrons. Its molar mass is, consequently,
about 55 g. Each sphere contains (1000/55) � 6.02 � 1023 = 1.1 � 1025 atoms, and
consequently, 2.8 � 1026 electrons and as many protons. In the above hypothesis, the
charge of each sphere would be q ¼ 2:8� 1026 � 1:6� 10�19 � 10�9 ¼
4:6� 10�2 C. The electrostatic attraction would be 4:6� 10�2ð Þ2= 4p� 8:8�ð
10�12Þ ¼ 2:4� 107 N, which is about the weight of 2400 t. We shall come back to
charge equality in Sect. 1.9.

QUESTION Q 1.2. Evaluate the ratio between electrostatic and gravitational forces
between two electrons at 1 mm, and then 1 m, distance. Do the same for two
protons. h
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1.3 The Electrostatic Field

The concept of a field of forces is central in physics. In the first volume of this
course, we studied the gravitational field, which is the field of the Newton force.
Similarly, the field of Coulomb’s force is the electrostatic field, which we shall now
define. More generally, in this book, we shall study the properties of the electric
field, which is, in general, a function of position and time. When it does not depend
on time, namely is constant, it is called electrostatic.

The electrostatic filed is produced by electric charges. Let us consider the
simplest case, namely a single, point charge q1 at rest in the position r1, which we
shall call the source of the field. Its field is a mean for describing its action on other
charges. Let q0 be such a charge, r0 its position, ri0 = r1 − r0, the vector from q1 to
q0 and u10 its unit vector. The electrostatic force on q0 is

F10 ¼ q0
1

4pe0

q1
r210

u10; ð1:13Þ

which is proportional to q0, namely the charge that “feels” the force and that we
shall call the explorer charge, and to a vector term, which depends on q1 and its
position

E r0ð Þ ¼ 1
4pe0

q1
r210

u10; ð1:14Þ

This is the electric field produced by the source q1. The force acting on q0 is

F10 ¼ q0E r0ð Þ; ð1:15Þ

The just made argument did not introduce anything new in addition to
Coulomb’s law; it has just changed the point of view. Indeed, we have introduced
an asymmetry in the way of thinking about the two charges. We have considered
one of them, namely q1, as giving origin to an entity, the electric field, at all the
space points around q1, and we have called it the source of the field for this reason.
The next step of the argument is that, if we place another charge q0 at a generic
point in space, this charge, which we call the receptor, feels a force equal to its own
value times the field at that point, which is independent of q0. The implication of
this way of thinking is that the field also exists when q0 is not there. To measure the
field at a point, we must put an exploring charge at that point, measure the force on
it and divide this force by the charge we have used.

The concept of field becomes more useful when we deal with sources more
complex than a single charge. Indeed, Eq. (1.11) tells us that the force felt by the
charge q0 in the presence of n other point charges is also the product of q0 and of a
vector independent of q0, which we shall again call the electric field, namely
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F ¼ q0E r0ð Þ ð1:16Þ

with

E r0ð Þ ¼ 1
4pe0

Xn
i¼1

qi
r2i0

ui0: ð1:17Þ

We recognize the right-hand side immediately as being the sum of terms as in
Eq. (1.14), one for each of the n charge sources of the field. These are the fields that
each of them would produce if alone. Clearly, the superposition principle also holds
for the electric field.

Equation (1.17) is a vector equation. Let us write one of its Cartesian compo-
nents (the other ones are obviously similar) explicitly in terms of the coordinates of
ri = (xi, yi, zi) and r0 = (x0, y0, z0), remembering that ui0 ¼ ri0=ri0. We have

Ex x0; y0; z0ð Þ ¼ 1
4pe0

Xn
i¼1

qi x0 � xið Þ
x0 � xið Þ2 þ y0 � yið Þ2 þ z0 � zið Þ2

h i3=2: ð1:18Þ

This equation, and those analogous for the other components, must be used to
calculate the field of any system of point charges at rest of known values and in
known positions.

It is often convenient to think of a continuous distribution of charges, ignoring
their discrete nature. This is certainly the case for macroscopic objects that gen-
erally contain an enormous number of microscopic charges. If Dq is the charge in
the small volume DV at (x, y, z), the charge density

q x; y; zð Þ ¼ lim
DV ! 0

Dq
DV

¼ dq
dV

ð1:19Þ

where the limit is meant for volumes very small relative to the macroscopic
dimensions but still big enough to contain a large number of molecules. This is
completely similar to the definition of mass density. The physical dimensions of
charge density are a charge per unit volume, namely C m−3.

Consider a generic continuous charge distribution, represented by a grey area in
Fig. 1.4. The electric field at the point r1 = (x1, y1, z1) is the sum of the contri-
butions of the charge elements dq = q dV2 = q dx2 dy2 dz2 located at r2 = (x2, y2,
z2), namely

E r1ð Þ ¼ 1
4pe0

Z
V

q r2ð Þu21
r221

dV2: ð1:20Þ

where V is the volume of the charge distribution source of the field.
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An electric charge may be distributed along surfaces or lines, rather than in
volumes. The electric field generated by such distributions is given by an expres-
sion similar to Eq. (1.20), with integrals on those surfaces or lines, rather than a
volume. In these cases, we deal with surface charge density, namely the charge per
unit surface, or the linear charge density, namely the charge per unit length.

The expressions we have found allow us to calculate the static electric field of a
given charge distribution at every point in space.

Let us now look more carefully at the operational definition of the electric field.
We want to measure the electric field at a generic point r, independent of whether or
not we know its sources. We must place a known charge q0 at rest in r and measure
the force F(r) on it. The field is then E(r) = F(r)/q0. To be precise, however, we
should consider that when we place the exploring charge in r, that charge neces-
sarily exerts forces on the charge sources of the field. These forces will induce
changes in the field we are measuring. The smaller this unwilled effect is, the
smaller the exploring charge. Let DF(r) be the force on the exploring charge Dq at
rest in r. Then, the electric field in r is defined as

E rð Þ ¼ lim
Dq ! 0

DF rð Þ
Dq

ð1:21Þ

In this way, we can know, in principle, the electric field at any point we are
interested in with a series of measurements, even ignoring the sources of the field.
We observe that, in practice, the exploring charge Dq has to be lodged in a material
body. We can think of a small metallic sphere to fix ideas. The force we measure is,
consequently, the effect of the field averaged on the dimensions of the sphere. These
dimensions may be small, but cannot be less then some reasonable limit, which is
certainly enormous in comparison to the molecular dimensions. In addition, the
measurement operation requires some time; it cannot be instantaneous. This time is

z

x

y

dV2

O

r1
2

21r

r

Fig. 1.4 Calculating the
electric field of a continuous
charge distribution
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also enormous in comparison with the characteristic molecular times. The field at
point r in the instant t, which is determined with our operational definition, must be
thought of as an average over a volume around r, which is very small on macro-
scopic dimensions but very large on the nanometric scale, and on a time interval
around t, small on the macroscopic scale but long on the molecular phenomena
scale (femtosecond).

From the conceptual point of view, the field concept eliminates the action at a
distance. Let us consider the simple case of two point charges q1 and q0 at rest. The
physical fact we observe is a force on q0 and an equal and opposite force on q1.
Each of them is an action at a distance, for example, of q1 on q0. With the field
concept, we think that q1 creates an electric field all around, even when there is no
q0 to sense it. When q0 is present, the field manifests itself as a force at the point
where q0 is. The effect is now local. The two descriptions are completely equivalent
as long as we are in static conditions. In other words, in electrostatics, it is
impossible to answer the question: does the electric field really exist when there is
no exploring charge to sense it? The answer to this question, however, exists and is
a yes under general dynamic conditions. We shall see that when the field changes in
time, there are physical phenomena that show the presence of the field without the
need for any explorer charge. Empty space in which an electric field is present does
not contain matter, but it does contain something physical, something that we
measure. It contains energy, linear and angular momenta. We shall also see that the
description of the interactions between charges is much simpler in terms of fields
(electric and magnetic) than in terms of forces.

The electric field has physical dimensions of a force per unit charge. Its mea-
surement unit is one newton per coulomb (N/C) or, equivalently and more often
used, the volt per meter (V/m).

1.4 Calculating Electric Fields

In this section, we shall give two examples of calculation of an electric field
produced by geometrically simple charge distributions. We should mention that
computer applications are available to calculate numerically the field of any charge
distribution.

Linear charge distribution.
Consider a charge distribution along an infinite straight line with uniform linear
density (namely charge per unit length) k. We calculate the field at the generic point
P at a distance r′ from the line. Let us take the z-axis on the line, as shown in
Fig. 1.5. Given the symmetry of the problem, the field in P can depend only on r′
and we can take the x-axis through P without losing the generality of the argument.
Let us start by expressing the contribution to the field of the charge element
between z and z + dz (see Fig. 1.5), which is
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dE ¼ 1
4pe0

kdz
r2

: ð1:22Þ

The symmetry of the problem tells us that the total field is necessarily perpen-
dicular to the line, namely in the x direction. As a consequence, we shall sum
(integrate) the elementary x-components, namely

dEx ¼ 1
4pe0

kdz
r2

cos h: ð1:23Þ

We take h as the integration variable between –p/2 and +p/2. Expressed in this
variable, the other quantities are r ¼ r0= cos h, z ¼ r0 tan h and dz ¼ r0= cos2 hð Þdh
and the integral of Eq. (1.23) is

Ex ¼
Zþ p=2

�p=2

dEx ¼ k
4pe0r0

Zþp=2

�p=2

cos hdh ¼ k
2pe0r0

: ð1:24Þ

Observe that the field decreases as the inverse of the distance from the wire
rather than with the inverse squared. This is because, at any given distance, the
main contribution comes from a length of wire of the same order of the distance
itself. Moving away, the contribution of each element decreases as the inverse
distance squared, but the number of those that substantially contribute increases in
proportion to the distance.

Planar charge distribution
Consider an indefinite plane of uniform charge density (charge per unit surface) r.
Le P be a point at a distance r′ from the plane. We take a reference frame with the
y and z axes in the plane and the x-axis through P. This choice does not affect the
generality of the argument, because the symmetry of the problem implies that the
field in P depends only on its distance from the plane.

θ

dz

x

r

r'

z

O xP d E

d E

Fig. 1.5 Infinitesimal
contribution to the electric
field of an element of a linear
uniform charge distribution
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The symmetry of the problem also implies that the total field is perpendicular to
the plane. As in the previous example, we can only consider the sum of the x-
components of the charge elements. We lump together all the elements whose field
has the same x-component. These are the elements of the annuluses between q and
q + dq, as shown in Fig. 1.6.

The contribution of the infinitesimal annulus, whose area is 2pqdq, is

dEx ¼ r
4pe0

2pqdq
cos h
r2

: ð1:25Þ

We now express it all in terms of r. First, observe that, given that r02 þ q2 ¼ r2

and r′ being fixed, we have qdq ¼ rdr. In addition, it is r0 ¼ r cos h. Substituting in
Eq. (1.25) and integrating r from its minimum value, which is r′, to infinity, we have

Ex ¼ r
2e0

r0
Z1

r0

dr
r2

¼ r
2e0

ðx[ 0Þ: ð1:26Þ

We have specified that the solution holds for x > 0 because the field is directed
away from the plane when r > 0, and towards the plane when r < 0. Consequently,
Ex has the same sign of r for x > 0, as in Eq. (1.26), and the opposite sign for x < 0.
Namely, it is

Ex ¼ � r
2e0

ðx\0Þ: ð1:27Þ

We observe that the field, which is normal to the charged surface, has a dis-
continuity across the surface equal to r /e0. In Sect. 1.13, we shall see that this
property holds for charged surfaces of any shape.

z

x

y

r
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θ x
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Fig. 1.6 Infinitesimal
contribution to the electric
field of an element of a planar
uniform charge distribution
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We also notice that the magnitude of the field is independent of the distance.
This is so because when the distance increases, the number of substantially con-
tributing charge elements increases as the distance squared. The case of an infinite
plane is, however, clearly unrealistic. Nonetheless, Eqs. (1.26) and (1.27) are good
approximations at points sufficiently close to the plane.

1.5 Electrostatic Potential

We shall now show that the electrostatic force produced by any set of charges at rest
on a generic charge q is conservative. The corresponding field is said to be con-
servative as well. We first demonstrate the statement for the field produced by a
single point charge q0 and then generalize the result to any number of charges using
the superposition principle.

When dealing with a single charge q0, it is convenient to choose a reference
frame with the origin O in its position, as in Fig. 1.7. The force on the charge q in
r (unit vector ur) is

F rð Þ ¼ q
q0
4pe0

ur
r2

: ð1:28Þ

Let us calculate the work needed to move the charge q from the initial position
vector r1 to r2, along a certain trajectory C. We shall show that the work is
independent of the trajectory and depends only on the initial and final positions.

We are interested in the work done against the field force Eq. (1.28). Integrating
on the curve C from position r1 to position r2, we have

W ¼ �
Z2

1;C

F � ds ¼ �q
q0
4pe0

Z2

1;C

1
r2
ur � ds ¼ �q

q0
4pe0

Z2

1

1
r2
dr:

Note carefully that in the last member, we have dr because the force is radial.
The last integral is independent of the trajectory, which ultimately gives us

O

dr E

r2

r1

r

ds

q
0

Γ

Fig. 1.7 Elements for the
line integral of the field of a
point charge
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W ¼ �q
q0
4pe0

1
r1

� 1
r2

� �
: ð1:29Þ

We have shown that the electrostatic force generated by a point charge is con-
servative and we can thus define an electrostatic potential energy U. The potential
difference between positions 2 and 1 is equal to the work to be done against the field
force to move the charge q from point 1 to point 2, namely

W ¼ U r2ð Þ � U r1ð Þ: ð1:30Þ

As is always the case, the electrostatic potential energy is defined up to an
additive constant. Namely, it is

U rð Þ ¼ q
q0
4pe0

1
r
þ const: ð1:31Þ

In this case, it is natural, but not necessary, to define the potential energy as
being zero at infinite distance. With this choice, the additive constant is zero.

Consider now the force field of n point charges or of a continuous charge
distribution, at rest in both cases. The electrostatic force on a charge q at a generic
point P due to the distribution of charges is the resultant of the forces exerted in
P by each charge of the distribution. All the forces being applied at the same point
P, the work of the resultant is equal to the sum of the works of those forces. Each of
them is due to a point charge; and we have already shown that its work is inde-
pendent of the integration path. Such is also the sum of their works, which is the
work of the resultant. In conclusion, the electrostatic force due to any distribution of
charges at rest is conservative and we can define its potential energy.

The electrostatic force acting on the unitary charge is the electric field (elec-
trostatic in this case, to be precise). The potential energy difference per unit charge
is called the electrostatic potential difference. Explicitly, the electrostatic potential
difference between two points r1 and r2 is the work we must do against the field
force to move the unit charge from point r1 to point r2:

/ r2ð Þ � / r1ð Þ ¼ �
Zr2
r1

E � dr: ð1:32Þ

As the potential energy, the potential is defined up to an additive constant. The
constant is fixed by defining the potential at an arbitrarily chosen point as zero. Let r0
be the position vector of this point. The potential in a generic position r is the work to
be done against the field force to move the unit charge from r0 to r. To find it, we
choose an arbitrary curve from r0 to r, and along it, we calculate the integral as
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/ rð Þ ¼ �
Zr

r0

E � dr: ð1:33Þ

In the particular case of a point charge q0, the potential difference is

/ r2ð Þ � / r1ð Þ ¼ q0
4pe0

1
r2

� q0
4pe0

1
r1
: ð1:34Þ

The potential of a point charge q0 at rest in the origin of the axes is then

/ rð Þ ¼ q0
4pe0

1
r
þ const: ð1:35Þ

The constant is zero if we choose the potential to be zero at infinite distance.
With this choice, the potential at a point is the work to be done against the field to
move the unit charge from infinite distance to that point.

The potential at point r0 due to the n charges q1 in r1, q2 in r2, q3 in r3,…, qn in rn is

/ rð Þ ¼ 1
4pe0

Xn
i¼1

qi
ri0

þ const: ð1:36Þ

Similarly, the potential at point r1 = (x1, y1, z1) due to a continuous distribution
of charge with density q(x2, y2, z2) is

/ r1ð Þ ¼ 1
4pe0

Z
V

q x2; y2; z2ð Þ
r21

dV2 þ const ð1:37Þ

where dV2 ¼ dx2dy2dz2.
In the latter cases as well, it is usually convenient, but not necessary, to define

the potential at infinite as zero. The “const” in the above equations is then zero.
The electrostatic potential has the physical dimensions of an energy per unit

charge. Its unit is the volt, named after Alessandro Volta (Italy, 1745–1827) and
equal to one joule per coulomb, 1 V = 1 J C−1.

We have seen how we should calculate the potential differences once we know
the electric field. We shall now look into how to express the field knowing the
potential. This is an immediate consequence of the gradient theorem of vector
calculus. The theorem states that, for every scalar field / (satisfying the conditions
specified by calculus that are always met in practice), the line integral of its gradient
(r/) on every curve from r1 to r2 is equal to the difference between the values of /
at the two extremes, namely
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/ r2ð Þ � / r1ð Þ ¼
Zr2
r1

r/ � dr ð1:38Þ

The left-hand side of this equation and Eq. (1.32) are equal. In addition, the
relations hold for arbitrary integration paths on their right-hand sides.
Consequently, the integrands must be equal, namely

E ¼ �r/ ð1:39Þ

The electric field is the opposite of the gradient of the potential. Indeed, stating
that a vector field is the gradient of a scalar function is equivalent to stating that the
line integral of the vector depends only on the origin and the end of the line. As a
matter of fact, there are two other ways of stating the same thing.

The line integral on every closed line (called circulation) of the vector is zero:

I
E � ds ¼ 0: ð1:40Þ

The curl of the vector is identically zero (it should be known from the vector
calculus that the curl of a gradient is identically zero):

r� E ¼ 0: ð1:41Þ

Equations (1.40) and (1.41) state the same thing, but the latter is local, stating
that the curl of the field is zero at each point of the space, and the former is a global
(or integral) expression.

Finally, we note that the electrostatic potential gives a description of the system
equivalent to the electrostatic field. Being one quantity instead of three, the former is
often easier to compute. However, what we measure are the forces, namely the field.

1.6 Generating Electrostatic Potential Differences

The experimental study of electric phenomena, including the majority of those
classified as electrostatic, is made possible by the availability of physical sources of
potential difference. Batteries are the most common sources of continuous voltage,
as the potential difference is also called. A battery is a device able to store electric
energy in chemical form.

The description of the chemical and physical processes at the basis of the
operation of voltage sources is beyond the scope of this course, and neither shall we
need it. We shall, however, give a few basic pieces of information here.
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A battery generates a voltage between two metallic parts, called its electrodes or
poles, and an electric current when those electrodes are connected by a conductor.
The electrode of higher voltage is called positive while the other one is negative. In
this chapter, we shall use the device simply to produce a voltage, while it shall be
used to produce currents in the next.

Historically, the first batteries were developed by Alessandro Volta in the last
decade of the XVIII century and made public in 1800. Volta found that two dif-
ferent metals immersed in an electrolytic solution develop a definite potential dif-
ference. The basic unit is a “cell”, which was originally made of two disks, one of
copper and one of zinc, separated by a disk of felt soaked in a solution of sulfuric
acid H2SO4. The cell has a voltage of about 1 V, with the copper acting as the
positive pole. Volta also found that overlapping n cells one on top of the other in a
pile, namely disks of copper, electrolyte, zinc, copper, electrolyte, zinc, and so on,
he could obtain a voltage n-times larger than he could with a single cell. This is the
Volta pile. A picture of a reproduction of one of Volta’s original piles is housed in
the History Museum of Pavia University and is shown in Fig. 1.8.

The pile opened the way to the study of electric currents and their effects,
including magnetic fields. The technique was strongly developed in the subsequent
years. Note that voltaic piles, and their similar successors, can only deliver a finite
amount of charge, namely a temporary current. The current is produced by chemical
reactions inside the pile. Rechargeable batteries were developed starting in the
second half of the XIX century.

Today, a large number of different batteries have become available, from the
heavy ones used in our cars to the light and very light ones in our laptops and cell
phones. The technology is still one under important development.

Fig. 1.8 Alessandro Volta
pile (reproduction by Gelside
Guatterini 1999). Museo per
la Storia dell’Università—
Sistema Museale di Ateneo—
Pavia University
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1.7 Calculating Electrostatic Potentials

In this section, we shall calculate the potentials of two simple charge distributions.
We have already calculated the corresponding fields in Sect. 1.4. These distribu-
tions extended to the infinite and are unrealistic, but they are useful in demon-
strating a particular difficulty and how to deal with it.

Linear charge distribution.
Consider a linear distribution of uniform linear charge density k. Let us calculate
the potential difference between a generic point at a distance r′ from the line and a
reference point at a distance r00. The field is given by Eq. (1.24). The potential
difference is

/ r0ð Þ � / r00
� � ¼ �

Zr0

r00

E:ds ¼ � k
2pe0

Zr0

r00

dr0

r0
¼ � k

2pe0
ln r0 þ k

2pe0
ln r00: ð1:42Þ

The result looks strange at a first sight because the arguments of the logarithm
functions should be, but are not, pure numbers. The consequence seems to be that,
if we change the measurement unit of length, we obtain a different value, which is
clearly absurd. The problem does not exist, however, because only potential dif-
ferences are meaningful and because the difference between two logarithms is the
logarithm of the ratio between their arguments, and that ratio is dimensionless.
Indeed, we can write the above equation as

/ r0ð Þ � / r00
� � ¼ � k

2pe0
ln

r0

r00
: ð1:43Þ

Looking back at Eq. (1.42), we observe that the additive constant of the
potential, which is k

2pe0
ln r00, diverges when the reference point, namely r′0, goes to

infinity. This means that the work to be done against the field force to move the unit
charge from infinity to any point at finite distance from the line is infinitely large.
This is because the force decreases very slowly when the distance increases, a
consequence of the line being infinitely long. This never happens in practice.
Indeed, the potential differences between points at finite distances are finite.

Let us now directly calculate the potential. As we can see in Fig. 1.9, the
contribution to the potential of an infinitesimal segment dz is

d/ ¼ k
4pe0

dz
r

where we have put the zero potential at infinity. This is completely safe for the
segment dz. The problem arises when we sum up, namely we integrate on the line.
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To this purpose, let us express all terms as functions of h, namely r ¼ r0=cos h,
z ¼ r0 tan h and dz ¼ r0=cos2hð Þdh, obtaining

d/ ¼ k
4pe0

dh
cos h

:

We now integrate from –p/2 to +p/2, obtaining

/ ¼ k
4pe0

Zþp=2

�p=2

dh
cos h

¼ k
4pe0

2
Zþp=2

0

dh
cos h

¼ k
2pe0

j
p=2

0
ln tan h=2þ p=4ð Þ ¼ k

2pe0
ln tan p=2ð Þ � ln tan p=4ð Þ½ � ¼ 1:

The result cannot be used. However, in practice, one always deals with finite
segments of line. The limits of the integral are never +p/2 to –p/2, there are no
infinites, and the result makes sense.

Planar charge distribution.
Let us now consider an infinite plane with uniform surface charge density r. Let us
try to calculate the potential at a generic point P at a distance r′ from the plane,
summing the infinitesimal contributions of surface elements in the form of annu-
luses, as shown in Fig. 1.10. We write the contribution of an element as

d/ ¼ r
4pe0

2pqdq
1
r
;

which, once more, assumes zero potential at infinity. When we sum all the ele-
mentary contributions, we shall calculate the work needed to move the unit charge
from infinity (the reference point) to a finite position. We already know that the
result will be infinite, because the force is constant up to infinite distances. This is
clearly a non-physical situation, but let us do the calculation anyway.

θ

dz

x

r

r'

z

O P

Fig. 1.9 Infinitesimal
contribution to the electric
potential of an element of a
linear uniform charge
distribution
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We take into account that r02 þ q2 ¼ r2 with r′ being fixed, and, consequently,
that qdq ¼ rdr. Then, we have

/ r0ð Þ ¼ r
2e0

Z1

r0

qdq
r

¼ r
2e0

Z1

r0

dr ¼1� rr0

2e0
:

This is the potential difference between a point at distance r′ and one at infinite
distance. As expected, it is infinite. Once more, this is because the charge distri-
bution is unlimited, which never happens in practice. However, even in this case,
the potential difference between two points at finite distances is finite. Let r′1 and r′2
be such distances. Their potential difference is

/ r02
� �� / r01

� � ¼ �
Zr02

r01

E � ds ¼ � r
2e0

Zr02

r01

dr0 ¼ � rr02
2e0

þ rr01
2e0

We see once more that the potential difference diverges when one of the two
points moves to infinite distance. The above discussion was conducted to warn the
reader that he/she might meet apparently absurd results, which, however, can be
easily controlled. With this warning, we have no problem writing the potential of an
infinite charged plane as

/ r0ð Þ ¼ � rr0

2e0
þ const ð1:44Þ

z

x

y

r

r'O
θ

ρ
P

d

ρ

Fig. 1.10 Infinitesimal
contribution to the electric
potential of an element of a
uniform planar charge
distribution
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1.8 Measuring the Elementary Charge. Millikan’s
Experiment

Starting in 1909, Robert Millikan (USA; 1868–1953) developed and performed a
series of elegant and precise experiments. He proved that electric charges are
multiples of an elementary unit, called the elementary charge, which is the charge of
the electron. He also accurately measured the electron charge. The electron itself
had been discovered by Joseph John Thomson (UK, 1856–1940) in 1897.
Millikan’s method consists of the observation of small oil drops carrying a few
elementary charges moving in an electric field. We shall take a historical point of
view and describe the ingenious oil-drop experiment in some detail. We shall see, in
particular, how the experimental demonstrations of the two statements above, while
employing the same method, are largely independent of one another. We shall
follow almost verbatim the description given by Millikan in the second edition of
“The electron”, a small, beautiful book he published in 1924.

The device in its simplest form is shown schematically in Fig. 1.11. Using an
atomizer, one blows oil droplets into the upper chamber C. The droplets are
minuscule, with diameters of a few micrometers. They appear as a fog and slowly
fall down. From time to time, one of them goes through the minuscule hole p made
with the point of a pin in the middle of the plate M (22 cm in diameter). This plate
and a second parallel one N form a capacitor. The two plates are taken at a distance
of 16 mm by insulating spacers (three ebonite columns located along the circum-
ference). Usually, the gas between the two plates is air at atmospheric pressure but
different gases can be inserted if needed. Acting on the switch I, one can connect the
plate M to a positive voltage source up to a few kilovolts, to a similar negative
voltage, or to ground. Plate N is grounded. In this way, one can establish between
the plates a vertical uniform electric field upward or downward directed of a few
kV/cm or no field.

Atomizer

 + V

 – V
0 VI

C

M

N

c c

p

Fig. 1.11 Scheme of the
Millikan oil-drop experiment
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An intense light beam enters and exits through two small glass windows
c through the volume in which the drop that has gone through the hole is moving.
The drop is observed with a telescope through a third small window (not shown in
the figure) at 90˚ with the light beam. The droplet scatters some light and appears to
the experimenter as a bright star in a dark field.

The droplets are usually charged due to rubbing produced in the atomizer when
the fog is blown. One can chose the direction and magnitude of the field to cause
the droplet under observation to slowly rise toward M. Immediately before it
reaches M, the switch I is moved to zero electric field and the droplet falls down
under the action of its weight. Immediately before it reaches the plate N, the field is
switched back on so that the droplet will rise again. In this way, one obtains a
sequence of up and down motions of the same droplet. The motions are under the
action of two “active” forces, the weight and the electrostatic force, and the air
resistance. The latter is proportional to the velocity, which is the velocity for which
the drag equilibrates the resultant active force.

Two horizontal reference lines separated by a known distance in the eyepiece of
the telescope allow the observer to determine the velocities by measuring the times
taken by the drop to move from one line to the other.

Table 1.1.1 features one of Millikan’s first measurement series. In this initial
phase, he measured the times with a simple handheld stopwatch, with a probable
error of a few tenths of a second. The real distance between the two reference lines
was d = 5.222 mm.

The tg row of the table shows the series of fall times. One sees that they are
identical within the measurement errors. The tF row reports the corresponding series
of ascent times under the action of the electric field, whose magnitude was
3.157 kV/cm. One sees that, from the second to the third ascent, the time changes
from 12.4 to 21.8 s. Millikan knew from the direction of the field that the drop was
initially positive. The observed change thus meant that the droplet had captured a
negative ion from the air during the second descent. Note that no ion can be
captured when the field is on, because any ion present drifts immediately to one of
the electrodes (depending on its sign). The following ascent time was 34.8 s,
showing that a second negative ion had been captured. The next ascent time was
84.5 s, corresponding to the capture of a third negative ion. This charge was kept
equal for two ascents. After them, the ascent time went back to 34.6 s, showing the
capture of a positive ion. The newly captured positive ion had to have exactly the
same charge, but with opposite sign, of the negative ion that had caused the
opposite variation of the time (namely from 34.8 to 84.5 s).

The obvious objection to the above conclusions is that the drop might have lost
an ion, instead of capturing one of the opposite sign. Millikan, however, showed
that his droplets never lose ions with the following experiment. He measured the

Table 1.1 Oil drop ascent and descent times in a Millikan experiment

tg(s) 13.6 13.8 13.4 13.4 13.6 13.6 13.7 13.5 13.5 13.8 13.7 13.8

tF(s) 12.5 12.4 21.8 34.8 84.5 84.5 34.6 34.8 16.0 34.8 34.6 21.9

28 1 Electrostatic Field in a Vacuum

www.ebook3000.com

http://www.ebook3000.org


charge rate of change of drops while decreasing air pressure. He found the rate to be
proportional to the pressure down to a few hectopascal. At this low pressure, a
droplet could keep its charge invariable for several hours. The conclusion was that
drops change charge by ion capture, not by ion emission.

From these simple measurements, we reach the extremely important conclusion
that electric charge is always an integer multiple of a well-defined one, namely that
electric charge is quantized. This conclusion is reached under the simple hypothesis
that the droplet velocity is proportional to the active force (weight) when it is falling
with no electric field and to the resultant of weight and electrostatic force when the
field is on. The hypothesis implies the assumption of independence of the drag force
of the droplet charge. Millikan took care to verify experimentally the correctness of
these assumptions.

Let us go back to the data in Table 1.1 and indicate with w the droplet velocity in
its descent. We can take the mean value of the measurements because they are
consistent. Let us indicate with t, t′, etc., the ascent velocities. In the just made
assumptions, w is proportional to mg (if m is the mass of the droplets) and each t is
proportional to qE-mg, where q is the charge of the droplet in that ascent (do not
confuse it with an ion charge). We have

w
t
¼ mg

qE � mg
ð1:45Þ

or, solving for q,

q ¼ mg
wE

wþ tð Þ ð1:46Þ

Consider when an ion capture changes the drop charge from a q to q′ and, as a
consequence, the speed from t to t′. The captured charge should be

Dq ¼ q0 � q ¼ mg
wE

t0 � tð Þ ð1:47Þ

The factor mg/wE is constant for a given drop. Consequently, each captured
charge is proportional to the change in the drop velocity (t′ − t) in the electric field
E. Note that we can reach this conclusion without knowing the field, the drop mass,
etc. We can group the ascent times tF in Table 1.1 in five sets, each with equal
values within the errors. Each set corresponds to a different charge. We take the
mean values of tF, divide the known observation distance d = 5.222 mm by these
mean values, and obtain the values in Table 1.2.

Table 1.2 reports, in the first column, the ascent velocities of the drop, and in the
second column, the velocity change for an ion capture. We see that all the captured
charges have the same value, within the errors, with three exceptions. In these three
cases, the captured charge is exactly twice as large.
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Here, we have just given an example of the many similar measurements made by
Millikan. He observed thousands of droplets of different sizes, some of them for
several hours, in the presence of different gases at different pressures, with tens of
thousands of ion captures. He increased the precision of the time measurements.
The captured charges were always equal to the smallest charge or to a small integer
multiple of it. He then concluded:

Here, then, is direct, unimpeachable proof that the electron is not a “statistical mean”, but
that rather the electrical charges found on ions all have either exactly the same value or else
small exact multiples of that value.

We note that Millikan’s method works because the electric force on a few
elementary charges is comparable to the weight of a droplet. This happens because
electric force is much larger than gravitational force. Let us look at the orders of
magnitude. The oil droplets had diameters on the order of a micrometer, hence
weights, as is immediately computed, of a few femtonewton. We see that the
electric force on a few elementary charges in a field 10 kV/m has the same order of
magnitude. Notice that, even if very small, a drop contains billions of molecules,
while the number of ions on it is of a few units.

We can use the measurements of the descent speeds, i.e., when the field is not
present, to obtain the initial charge of the droplet, produced by friction in the
atomizer. Looking at Eqs. (1.46) and (1.47), we see that the charge of the droplet is
proportional to (w + t) by the same coefficient of proportionality as the captured
charge is proportional to (t′ − t). Adding the mean value of the descent speed w to
the speed of the first ascent t, we have w + t = 0.8038 mm/s. Dividing this value
by 9, we have 0.0893 mm/s, which differs by less than 2 per mille from the values
of the second column of Table 1.2. We conclude that the charge obtained by
rubbing, in this case, is nine elementary charges. Millikan made many similar
measurements with drops of different diameters and different materials, both con-
ductors and insulators, reaching the same conclusion in all cases: electric charge is
quantized. In his words:

Our experiment has then given us for the first time a means of comparing a frictional charge
with the ionic charge, and the frictional charge has in this instance been found to contain
exactly 9 electrons.

Table 1.2 Ascent velocities
and descent velocity changes
in a Millikan experiment

t (mm/s) t′ – t (mm/s)

5.222/12.45 = 0.4196

5.222/21.85 = 0.2390 0.1806:2 = 0.0903

5.222/34.7 = 0.1505 0.0885:1 = 0.0885

5.222/85.0 = 0.06144 0.0891:1 = 0.0891

5.222/34.7 = 0.1505 0.0891:1 = 0.0891

5.222/16.0 = 0.3264 0.1759:2 = 0.0880

5.222/34.7 = 0.1505 0.1759:2 = 0.0880

5.222/21.85 = 0.2390 0.0891:1 = 0.0891
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Let us now consider the measurement of the absolute value of the elementary
charge. Let us start with the theoretical analysis of the droplet motion.

In the descent, the drop moves under the action of its weight and of the viscous
drag. As learnt in the second volume of this course, the drag on a perfectly rigid and
smooth sphere of the size and at the speeds we are considering is given by the
Stokes law. If η is the viscosity of the medium, usually air, a the radius of the
droplet and w its velocity, the drag force is

R ¼ 6pawg ð1:48Þ

This law, theoretically established by George Gabriel Stokes (Ireland and UK,
1819–1903), was experimentally and very accurately verified by Harold De Forest
Arnold (USA, 1883–1933) (see Vol. 2, Sect. 1.14) for rigid spheres having radiuses
between 10 µm and 1 mm. The Millikan droplets were smaller by about an order of
magnitude, but let us assume the Stokes law to be valid for them.

During its fall, the droplet immediately reaches the regime speed, at which the
resultant active force and the drag are equal and opposite. The active forces, to be
precise, are the weight and the buoyancy (which we had neglected up to now as
being irrelevant for the relative measurements). If q and q′ are the densities of oil
and of air, respectively, we have

4
3
pa3 q� q0ð Þ ¼ 6pagw: ð1:49Þ

An additional force acts in the ascent, at constant velocity t. This is the elec-
trostatic force, which is parallel and opposite to the weight. In this case, let us also
write the equation of the equilibrium of the forces, taking into account that above,
we have taken the speeds directed upward as positive. We have

qE � 4
3
pa3 q� q0ð Þ ¼ 6pagt: ð1:50Þ

In this equation, the electric field E is known, knowing the potential difference
between the plates and their distance. We can also measure densities and viscosity.
We obtain the radius a of the droplet by measuring the descent velocity and using
Eq. (1.49). Equation (1.50) then gives us the drop charge q.

We must be very careful here, because we want to obtain the absolute value of a
fundamental constant. The uncertainties of all the quantities of the game, densities,
viscosity, electric field, etc., contribute (by error propagation) to the uncertainty of
the final result. Viscosity, in particular, depends on temperature. In a second version
of his experiment, Millikan submerged the apparatus in a bath of constant tem-
perature within 0.02 °C. Under these conditions, he knew and could control vis-
cosity within one per mille.

A further condition is the validity of the Stokes law. Millikan observed that the
values of the elementary charge calculated under this assumption for drops falling at
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the same velocity, which had equal radiuses, were equal within errors.
Contrastingly, values were different for drops of different velocities, hence of dif-
ferent radiuses. The resulting differences were up to several percent. Millikan
concluded that the Stokes law could not be completely valid. As a matter of fact,
one of the assumptions made by Stokes is the homogeneity of the medium. The air
can be considered to be such as long as we do not look at it at scales comparable to
the distances between molecules. The Stokes law cannot hold when the radiuses of
the droplets are comparable to the vacancies between the air molecules. One can
think of the average size of these vacancies as being on the order of the mean free
path l between collisions of the gas molecules. As we saw in Sect. 6.4 of Vol. 2 of
this course, the mean free path is inversely proportional to pressure, being about
70 nm at STP. The relative values of the ratio between Millikan’s droplet radiuses
and the mean free path were quite small, namely l/a = 0.1 − 0.01. Millikan per-
formed a series of very accurate experiments dedicated to the measurement of the
corrections to be applied to the Stokes law under such conditions. In 1916, he
published the first measurement of the elementary charge:

qe ¼ 1:592� 0:0016� 10�19 C: ð1:51Þ

The accuracy was already of 10−3. Today, this fundamental constant is known
with a 6 ppb (ppb = part per billion) accuracy:

qe ¼ 1:6021766208� 0:0000000098 � 10�19 C: ð1:52Þ

QUESTION Q 1.3. Find the velocity given by Eq. (1.50) of a droplet of 20 µm
radius in a field of 10 kV/m. h

1.9 Invariance of the Electric Charge

We have already seen two fundamental properties of the electric charge; conser-
vation and quantization. The third property is invariance, namely the electric charge
of an object being independent of its velocity, whatever it may be. Considering that
an object in motion appears to be at rest to an observer moving at its velocity, the
just made statement is equivalent to saying that the electric charge is invariant in
the transformation between a (inertial) reference S and another (inertial) one S′
moving at any velocity v relative to S. Clearly, no confusion can be made between
charge invariance and charge conservation. Electric charge and speed of light are
the two fundamental invariants of physics.

Let us look at a few of the simplest experimental proofs of electric charge
invariance. We shall take advantage of the perfect equality, in absolute value, of the
proton and electron charges, which we already mentioned in Sect. 1.2.

Let us consider a hydrogen molecule, which is composed of two hydrogen
atoms. Each of them is made of a proton and an electron. To establish if the
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molecule is globally neutral, we must measure its charge. We shall never be able to
state that it is exactly zero, due to the experimental errors, but we shall rather find it
to be smaller than a certain value determined by the experimental sensitivity.

Let dq be the absolute value of the difference between the absolute values of the
electron and proton charge. A direct measurement of dq is done by producing a
beam of H2 molecules, projecting it through an intense electric field and looking for
any deflection of the beam. In an experiment of this type conducted in 1963, J.C.
Zorn (USA, born 1931), G.E. Chamberlain and V.W. Huges (USA, 1921–2003)1

were able to set the limit dq < 10−15 qe, which is very small indeed. Even more
sensitive are the experiments using beams of alkali atoms, both because they are
easier to detect (see Chap. 5 of the second Volume) and because such atoms contain
many more protons and electrons. The same authors working with a Cs beam
obtained the limit of dq < 10−18 qe.

An even more sensitive method, but somewhat indirect, being on a macroscopic
system, consists of letting a gas escape from an electrically-insulated metal con-
tainer. If each molecule had even an extremely small charge, the container would
gradually build up a charge as the gas exits. This charge is measured with an
electrometer. The method is, in principle, extremely sensitive, because it deals with
some 1022 molecules. Clearly, the presence of even a very small number of ions
must be avoided. This can be done by properly de-ionizing the gas. In an experi-
ment of this type in 1960, J.G. King (USA, 1925–2014)2 established the neutrality
of both hydrogen molecules and helium atoms, obtaining limits of a few 10−20 qe.

Let us examine the consequences of both hydrogen molecules and helium atoms
being neutral. Both of them contain two protons and two electrons (we ignore the
two neutrons of helium, which are neutral). However, in the molecule, protons and
electrons have “atomic” kinetic energies on the order of the electronvolt. In helium,
the electrons have similar energies, but the protons are inside the nucleus, where the
kinetic energies are on the order of the MeV, namely a million times larger. In the
two systems, the electrons’ velocities are similar, while those of the protons are very
different. The neutrality of both systems proves that the proton charge does not vary
when its velocity changes by three orders of magnitude.

1.10 The Solid Angle

This section deals with a few geometric concepts that we shall need in the subse-
quent sections. We shall define the solid angle and its infinitesimal element. We shall
see the relation between the latter and the volume element in polar co-ordinates.

Let us recall that, in planar geometry, an angle is the portion of a plane included
between two half-lines, called sides, starting from a common point, say O, called

1C. Zorn, G.E. Chamberlain and V.W. Huges; Phys. Rev. 129, 2566 (1963).
2J.G. King Phys. Rev. Lett. 5, 562 (1960).
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the vertex. Let us take a circle with center in O and any radius R and let L be the
length of the arc cut by the two sides of the angle on this circumference. The ratio L/
R is independent of R and depends only on the amplitude of the angle. For this
reason, this ratio is taken as the measure of the angle, namely / = L/R. The unit is
the radian (rad).

Let d/ be an infinitesimal angle with vertex O, dL the arc of the circle of radius
R cut by the sides of this angle and uR the unit vector of R. Consider also the arc dl
of an arbitrary curve cut by the sides of d/ and let n be the unit vector normal to dl,
as shown in Fig. 1.12. Let h be the angle between dl and dL, which is also the angle
between n and uR. Clearly, it is dL = dl cosh and we can write the following
equivalent expressions of d/

d/ ¼ dL
R

¼ dl cosh
R

¼ n � uRdl
R

: ð1:53Þ

Let us now consider a point O in three dimensions. Take an arbitrary, but not
through O, closed regular curve and all the half-lines from O touching the points of
this curve. The space region defined by these lines is a solid angle. In other words, a
solid angle is a cone of arbitrary section.

Consider a spherical surface centered in O of arbitrary radius R. The area S of the
spherical cap cut by the solid angle on this surface is proportional to R2, and we can
take as the measure of the solid angle the ratio, which is independent of R, between
the area of any spherical cap with center in O and the square of its radius, namely

X ¼ S
R2 : ð1:54Þ

The unit of the solid angle is the steradian (sr). The complete solid angle
measures 4p sr.

Figure 1.13 shows an elementary solid angle. It cuts two surfaces: dS, which is
part of the sphere centered in O of radius R, and dR, which is arbitrary. Let n be the
unit vector normal to dR, uR the unit vector of the radius R, which is normal to dS,

R

O

θ θ

n

u
R

dldLd φ

Fig. 1.12 Planar elementary
angle
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Fig. 1.13 Solid elementary
angle
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and h the angle between them. dS being normal to the radius, the elementary solid
angle is dX = dS/R2. If we need it in terms of dR, we must take the projection of
this surface as being normal to the radius. Equivalent expressions of the elementary
solid angle are

dX ¼ dS
R2 ¼

dR cos h
R2 ¼ n � uRdR

R2 : ð1:55Þ

The solid angle under which a finite surface R is seen from O is obtained by
integration on that surface, namely

X ¼
Z
R

dX ¼
Z
R

n � uRdR
R2 : ð1:56Þ

The solid angle element Eq. (1.55) is immediately linked to the volume element
in polar co-ordinates. A system of polar co-ordinates (r, h, /) is shown in Fig. 1.14.

It is not infrequent to encounter problems that have spherical symmetry. In these
cases, it is usually convenient to use polar co-ordinates, rather than Cartesian
co-ordinates. When a volume integration is needed, what is the expression of the
elementary volume element dV? In Cartesian co-ordinates, this is simply the pro-
duct of the differentials of the co-ordinates, namely dV = dx dy dz. In polar
co-ordinates, it is not so simple.

Let us determine the area drawn by the position vector r when the polar angle
varies from h to h + dh and the azimuth varies from / to / + d/. The tip of

r

r d θ

d

r sinθ

r s
inθdφ

θ θ

d φ

O

φ

y

z

x

Fig. 1.14 Volume element in
polar co-ordinates
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r moves along the arc r dh in the polar angle variation and along the arc r sinh d/ in
the azimuth variation. The two displacements being perpendicular, the area is
dS = r2 sinh dh d/. This area is normal to the position vector and is consequently
equal to the solid angle dX under which it is seen from O multiplied by the distance
square r2. In conclusion, the solid angle element is

dX ¼ sin hdhd/: ð1:57Þ

To obtain the volume element, we must now vary the third co-ordinate, namely
the position vector, from r to r + dr. We obtain a volume of base dS and height dr.
Hence, the volume element is

dV ¼ r2dr sin hdhd/ ¼ r2drdX: ð1:58Þ

QUESTION Q 1.4. Evaluate the solid angle under which you see the fingertip of
your thumb with your arm outstretched. h

1.11 The Flux of E and the Gauss Theorem

Let E(r) be an arbitrary (regular) vector field, dR an oriented surface element and
n the unit vector of its positive normal. We define as the flux of the vector E through
dR the quantity

dU ¼ E � ndR: ð1:59Þ

The reason for the name is clear. If E is the velocity of an incompressible fluid,
the above-defined flux is the volume of fluid flowing through the surface dR in a
second.

The flux through a finite surface R is obtained by integration:

U ¼
Z
R

dU ¼
Z
R

E � ndR: ð1:60Þ

The flux of E through R is the integral on R of the component of E normal to R.
The just given definition holds for any vector field. We now consider the electric

field E. We start from the field of a point charge q. Let R be a closed surface
enclosing q oriented with the positive unit vector outward, as in Fig. 1.15a. Let us
express the flux of the electric field of q through R. To be precise, this is the
outgoing flux, given the choice we made for the orientation of R. Let r be the
position vector drawn from q and ur its unit vector. The flux through the surface
element dR is
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dU ¼ E � ndR ¼ q
4pe0

1
r2
ur � ndR ¼ q

4pe0
dX: ð1:61Þ

where we have used Eq. (1.55). We see that the flux of the field depends only on
the solid angle under which the charge “sees” the surface element. This is due to
two properties of the electric field of a point charge at rest: it is radial and its
magnitude is inversely proportional to the distance squared. As such, the field
decreases exactly as the subtended area increases and the two variations cancel one
another out. Even the smallest difference from –2 in the exponent of r would
destroy the cancellation.

The outgoing flux through thewhole surface is obtained by integration, namely it is

U ¼
Z
R

E � ndR ¼ q
4pe0

Z
all

dX ¼ q
e0
: ð1:62Þ

The flux of the electric field of a point charge at rest through any closed surface
enclosing the charge is equal to that charge divided by e0, independent of the
position of the charge, provided it is inside. We shall soon see that this result holds
for any number of charges. Before doing that, let us express the flux through a
closed surface of the field of a point charge outside the surface, as in Fig. 1.15b. As
we see in the figure, every solid angle element dX cuts two surface elements (or,
more generally, an even number of elements). The fluxes through them are equal in
magnitude, for what we have just seen, and opposite in sign, because the outside
normal to the surface has opposite directions relative to the field. As a result, the
flux elements cancel in pairs and the total result is zero.

Consider now the electric field produced by an arbitrary distribution of charges
and a closed surface R, as in Fig. 1.16. The flux of the electric field outgoing from
R is simply the sum of the outgoing fluxes of each of the charges, because the
superposition principle holds for the field and because integration is a linear
operation. Each of the internal charges qi contributes to the flux with qi/e0. All the
external charges give zero contributions. In conclusion, calling Qin the sum of the
internal charges, the flux of the electric field of the distribution is

Σ Σd

dq

E

n(a) (b)

d

n

E

Σ

q

Σd

EnΩ

Ω

Fig. 1.15 Flux of electric field of a point-charge a inside, b outside the surface
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U ¼ Qin

e0
: ð1:63Þ

This is the Gauss law, after the great German mathematician Carl Friederich
Gauss. The law states that the flux of the electric field outgoing from a closed
surface is equal to the charge inside that surface divided by e0.

Suppose now that we can consider the charge to be continuously distributed with
density q, which is, in general, a function of the position. In this case, the charge
inside the surface is the volume integral of q over the volume V inside the surface,
and we have

U ¼
Z
R

E � ndR ¼ 1
e0

Z
V

qdV : ð1:64Þ

This is the Gauss law in integral form. We can also express it in an equivalent
differential form. We do that using a theorem of vector calculus called the diver-
gence theorem, which is also credited to Gauss. The theorem states that the volume
integral of the divergence of a vector field on volume V is equal to the flux of that
vector outgoing from the surface R surrounding that volume, namely thatZ

V

r � EdV ¼
Z
R

E � ndR: ð1:65Þ

Equation (1.64) becomes Z
V

r � EdV ¼ 1
e0

Z
V

qdV :

Being that this is true for every volume V, the equality must hold for the
integrands and, ultimately, we have

r � E ¼ q
e0
: ð1:66Þ
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Fig. 1.16 A charge
distribution and a closed
surface
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This fundamental equation is equivalent, as we said, to Eq. (1.64). However, it is
a local relationship. It establishes the equality between its sides at each space point.
To know the divergence of the field at a point, we need only to know the charge
density at that point.

The properties of the electric field we have established under static conditions in
this section also hold under dynamic conditions, as we shall see in subsequent
chapters.

1.12 Graphic Representation of the Electric Field

The electric field is mathematically a vector field. A vector field is a vector that is a
function of the space point and, in general, of time. If it does not depend on time, as in
the case we are considering now, the field is said to be static. The three components of
the electric field are continuous and differentiable, singular points apart, as we shall
see immediately. Equations (1.41) and (1.66) give the curl and the divergence of the
field at every space point. Vector calculus teaches that the knowledge of curl,
divergence and boundary conditions completely define a vector field. The divergence
of the electrostatic field is continuous where the charge density is continuous. Such is
also the case with the field, its curl always being zero, hence continuous. If point
charges are present, in their position, the charge density, and hence the divergence of
the electric field, are infinite. These are singular points of the field.

We shall now describe a graphic representation of the vector fields that is useful
for visualizing the field, within certain limits, using lines of force and equipotential
surfaces. We considered this exact representation in Sect. 4.8 of the first volume for
the gravitational field, but we shall repeat the description here. The gravitational
field is extremely similar to the electrostatic one, with the exception that its
“charges”, the gravitational masses, have only one polarity, namely the gravita-
tional field has sources but no sinks.

A line of force is an oriented curve having at every space point the positive
direction of the field at that point. The lines of force are infinite in number, but there
is only one of them at each point, singular points apart. In other words, the lines of
force never cross each other; otherwise the field would have two directions at the
crossing point. Beyond direction, the line of force can also represent the field
intensity if we draw a number of lines such that their density at a point (namely the
number of lines crossing the unitary surface normal to them) is proportional to the
field intensity at that point.

The lines of force of the electrostatic field are continuous everywhere the field is
continuous. They exit from the positive charges, which are called sources of the
field, and enter the negative charges, called the sinks. The lines cannot start nor end
at a point where there is no charge. This is a consequence of the inverse square
dependence from distance of the field of a point charge. Figure 1.17 shows the lines
of force of the field of a point charge Q. In this example, the charge is positive, and
the lines exit from it because the field points out. They are straight. This guarantees
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that numbers of lines crossing all the spheres of any radius centered on the charge
are equal. Consequently, the lines cannot end or start outside the charge. We shall
take the convention that the number of lines crossing a surface is equal to the flux of
the electric field through that surface. Then, the number of lines coming out from
Q if positive, or going into it if negative, should be Q/e0.

Figure 1.18a shows graphically the field of two equal and opposite point char-
ges, Fig. 1.18b of two equal (positive) charges. In the first case, all the lines leaving
from the positive charge end in the negative one, with the exception of the line on
the axis, which goes to infinity, and comes back on the other side. Such a pair of
equal and opposite charges is called a dipole. In Fig. 1.18b, there is no negative
charge and all the lines go to infinity. If two charges have opposite signs but are
different in magnitude, for example, +3q and –q, a fraction of the lines out of the
positive charge (1/3 in this case) ends in the negative charge, while the rest goes to
infinity.

It is also useful to include in the same graphic representation the potential, by the
equipotential surfaces. An equipotential surface is the locus of points at which the
potential have the same value. The surfaces, one for every potential value, are
infinite in number. One chooses a value for the difference between two consecutive

Q

Fig. 1.17 The lines of force of the electrostatic field of a point positive charge

+ ++ –

(a) (b)

Fig. 1.18 Lines of field (continuous) and equipotential surfaces (dotted) for a two equal and
opposite charges (a dipole), b to equal positive charges
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surfaces, for example, one volt, and draws the surfaces at such a step. The
equipotential surfaces (the dotted lines in Fig. 1.18) are perpendicular to the field,
and hence to the field lines, at every point. Indeed, the field is the opposite of the
gradient of the potential and the latter has zero components on the equipotential.
The field intensity is larger where the equipotentials are closer to one another.

Notice in Fig. 1.18b the 8-shaped section of an equipotential. The crossing
point, which is halfway between the charges, is a saddle point for the potential.
Indeed, the equipotential surface there is shaped like a saddle. Moving in the
direction of the charges, the potential increases on both sides, while moving per-
pendicularly to the line joining the charges, the potential decreases on both sides.
The curve obtained by cutting the equipotential with a plane through the charges
has a minimum at the saddle point, while the curve cut by a perpendicular plane has
a maximum there.

The lines of force of the electrostatic field cannot be closed. This is a conse-
quence of the curl of the field being identically zero. Indeed, if there were a closed
line, the circulation integral about that line of the electric field would not be zero.

In the following section, we shall encounter fields lacking the latter property.
Such are the magnetic field and the electric field itself in dynamic conditions.

1.13 Applications of the Gauss Law

The fundamental properties of the electrostatic field, as we have seen, are that its
circulation around any closed line is zero and its flux outgoing from any closed
surface is equal to the charge inside divided by e0. Alternatively, we can say that the
curl of the electric field is always zero and its divergence is the charge density
divided by e0. The solution to the problem of finding the field, for a given charge
density, generally requires the use of both properties. However, particularly simple
and symmetric charge distributions exist for which the problem can be solved using
the Gauss law alone, with a bit of intuition. We shall now see some examples of
that. In Chap. 2, we shall see the most important applications of the Gauss law,
which are the properties of the conductors.

Charged spherical shell.
Consider a spherical surface with center at O and radius R. Let the charge q be
distributed on the surface with uniform density. This is an idealized situation,
because all the real charge distributions have a thickness, which might be small, but
is never zero. Let us calculate the electric field of our surface.

Let us start from a point outside the sphere, at a distance r (r > R) from its
center. Having the source spherical symmetry, the solution must have spherical
symmetry as well. Consequently, the magnitude of the field shall depend only on
the distance from the center, and its direction shall be the direction of the radius. Let
E(r) be the field magnitude.
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Let R1 be a spherical surface centered at O through the considered point, as in
Fig. 1.19, and let us apply to that the Gauss theorem. The flux calculation is
immediate, noticing that the field is perpendicular to the surface at all its points and
its magnitude is equal at all of them. We have

U ¼
Z
R1

E � n ¼ E rð Þ4pr2 ¼ q
e0
; ð1:67Þ

from which we find the field. Let us include in its expression the direction that we
know to be radial:

E rð Þ ¼ q
4pe0r2

ur for r[R: ð1:68Þ

We see that, outside the sphere, the field is equal to that which would occur if all
the charge were concentrated in the center.

Consider now a point inside the sphere, namely at the distance from center
r < R. We now once again apply the Gauss law to a spherical surface through the
point that is now inside the sphere (R2 in Fig. 1.19). The outgoing flux is zero,
because the charge inside R2 is zero. In addition, the symmetry of the problem
requires the field to be equal at all the points along the surface. Hence, the field
inside is zero.

E rð Þ ¼ 0 for r\R: ð1:69Þ

The readermay remember from thefirst volume that Eqs. (1.68) and (1.69) also hold
for the gravitational field. Indeed, both fields decrease as the inverse square distance.

We now notice that the surface charge density is r = q/(4pR2) and that
Eq. (1.68) gives us on the surface of the sphere, namely for r = R,

Σ1

2 R

O

Σ

E

RO r

Fig. 1.19 Electric field of a
charged spherical shell
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E r ¼ Rð Þ ¼ r
e0
ur: ð1:70Þ

Crossing the surface, the electric field has a discontinuity equal to r/e0. We shall
immediately see other examples of the same behavior.

Charged sphere.
Consider a solid sphere of radius R uniformly charged with total charge q.
We reason as in the previous case. The geometry is shown in Fig. 1.20. Outside

the sphere (r > R), Eq. (1.68) still holds, because the symmetry of the problem is
the same and the charge inside the surface is also the same. Inside the sphere, for
r < R, we apply the Gauss law to the sphere R2 in Fig. 1.20. The uniform charge
density is q ¼ q= 4=3ð ÞpR3½ � and we have

U ¼
Z
R2

E � n ¼ E rð Þ4pr2 ¼ 1
e0

Z
V

qdV ¼ q
e0

r3

R3

and then

E rð Þ ¼ q
4pe0R3 rur for r\R: ð1:71Þ

Inside the sphere, the field increases linearly with the distance from center. On
the surface, Eqs. (1.71) and (1.68) give the same value. As opposed to the charged
shell, the field is continuous.

Two spherical charged surfaces
A third case in which we can use the same arguments is the case of two charged
surfaces, both centered at O. Let R1 and R2 (R1 < R2) be their radiuses. Let the two
charges be equal and opposite, +q on the inner sphere and –q on the outer one.

Σ

E

1

2 R

O

Σ

RO r

Fig. 1.20 Electric field of an
uniformly charged sphere
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The argument now leads to the conclusions that the field is zero both outside the
outer sphere (r > R2) and inside the inner one (r < R1), because, in both cases, the
total charge contained on the spherical surface is zero. Between the charged spheres
(R1 < r < R2), the field depends only on the charge of the inner one and is equal to
that which would occur if the entire charge were concentrated in the center. In
conclusion,

E rð Þ ¼ q
4pe0r

ur for R1\r\R2; E rð Þ ¼ 0 for r\R1 and r[R2: ð1:72Þ

Charged cylindrical surface
Consider an infinite cylindrical surface having z as axis and radius R uniformly
charged with surface charge density r. Let r′ be the distance from the axis.
Figure 1.21 shows the geometry.

We start with a point P outside the surface, namely at r′ > R. We apply the
Gauss law to the cylindrical surface R1 coaxial to the charged cylinder through
P (hence radius r′) and height l, as shown in Fig. 1.21. For the symmetry of the
problem, the field should have a magnitude dependent only on the distance from the
axis (r′) and be directed radially and perpendicularly to the axis. Hence, we have

R

l

R r'

Σ

Σ

E

2

1

Fig. 1.21 Electric field of a
cylindrical shell
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U ¼
Z
R1

E � ndR ¼ 2pr0lE r0ð Þ ¼ 2pRl
r
e0

and

E r0ð Þ ¼ r
e0

R
r0
ur0 for r0 [R: ð1:73Þ

We can also express the field as a function of the linear charge density, namely
the charge per unit length of the cylinder, and call it k = 2pRr. We have

E r0ð Þ ¼ k
2pe0r0

ur0 for r0 [R; ð1:74Þ

which we recognize to be equal to the field of a linear charge density on the axis of
the cylinder in Eq. (1.24).

Consider now a point inside the surface, namely at r′ < R. We apply the Gauss
law to the cylindrical surface R2 coaxial to the charged cylinder through it (hence
radius r′) and height l, as shown in Fig. 1.21. By the now familiar symmetry
argument, and because the charge inside the surface is zero, we have

E r0ð Þ ¼ 0 for r0\R: ð1:75Þ

The field (which is perpendicular to the surface) has the discontinuity r/e0 at the
charged surface.

Solid charged cylinder.
Consider now a cylinder with radius R uniformly charged with charge density q.
The corresponding charge per unit axis length k is given by k = pR2q. The field
outside the cylinder is given by the same arguments as for the cylindrical surface,
and the result is the same. If we express it in terms of the charge per unit length, we
again have

E r0ð Þ ¼ k
2pe0r0

ur0 for r0 [R: ð1:76Þ

To have the field inside the cylinder, at the distance from the axis r′ < R, we
consider the usual cylindrical surface R2 with radius r′ and height l. The Gauss law
says that

U ¼
Z
R2

E � ndR ¼ 2pr0lE r0ð Þ ¼ qpr02l
e0

¼ kpl
pR2e0

r02;

which gives us

1.13 Applications of the Gauss Law 45



E r0ð Þ ¼ kr0

2pe0R2 ur0 for r0\R: ð1:77Þ

We immediately see that, on the surface of the cylinder, namely for r′ = R,
Eqs. (1.75) and (1.76) give the same value. The field is continuous.

Two cylindrical charged surfaces.
Consider two coaxial cylindrical charged surfaces. Let R1 and R2 (R1 < R2) be their
radiuses. Let the two surface charge densities be equal and opposite, +r on the inner
surface and −r on the outer one.

Once again applying the Gauss law, you find that the field is zero both inside the
inner cylinder (for r′ < R1) and outside the outer one (for r′ > R2). Indeed, in both
cases, the charge on the Gauss surface is zero. Between the two surfaces, the field is
due to the inner one only and is given by Eq. (1.74), namely

E r0ð Þ ¼ k
2pe0r0

ur0 for R1\r0\R2; E r0ð Þ ¼ 0 for r0\R1 and for r0 [R2:

ð1:78Þ

Charged plane.
Consider an indefinite planar distribution of uniform surface charge density r. Let
P be the point at which we want the field and x a coordinate axis perpendicular to
the plane through P. We apply the Gauss law to a cylindrical surface R of faces
parallel to the charged surface, one through P, the other symmetrically. The height
of the cylinder is 2x (Fig. 1.22).

For the symmetry of the problem, the field must be directed perpendicularly to the
charged plane, outward if the charge is positive, inward if negative. In both cases, the
directions on the two sides are opposite. The magnitude of the field can depend only
on the distance from the plane x, if any. Applying the Gauss law, we have

P x
EE

σ

A

Fig. 1.22 Electric field of a
uniformly charged plane
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U ¼
Z
R

E � ndR ¼ 2E xð ÞA ¼ rA
e0

;

which gives us, taking the sign into account,

Ex xð Þ ¼ r
2e0

for x[ 0; Ex xð Þ ¼ � r
2e0

for x\0; ð1:79Þ

which is the result, independent of x, that we already obtained in Sect. 1.4. We note
that the discontinuity of the perpendicular component of the field (the only existing
one) in crossing the charged plane is, once more, r/e0.

Double plane
Consider two parallel planar distributions with uniform equal and opposite surface
charge densities ±r at a distance that, as we shall see, we do not need to specify, as
in Fig. 1.23.

Applying the superposition principle to the just found result, we find that the
field is zero outside the region between the plane (where the contributions of the
two planes are equal and opposite). Between the planes, the field is twice the field
of a single plane in between, because the contributions are equal in magnitude and
sign, namely

E ¼ r
e0

directed fromþr to �r; ð1:80Þ

Once more, the discontinuities of the perpendicular field components at the
charged surfaces are r/e0. In the next section, we shall see that this result is general.

E=σ/ε
0

E=0E=0

σ

Fig. 1.23 The field of two
parallel oppositely charged
planes
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1.14 Discontinuities of the Electric Field

In the last section, we found, in several simple cases, that the perpendicular com-
ponent of the field has a discontinuity of r/e0 across a sheet of surface density r. We
generalize now the result proving that: when crossing any surface charge distri-
bution with surface density r, the component of the field perpendicular to the
surface has a discontinuity r/e0, while the tangential component is continuous. We
shall meet such charge distributions on the surfaces of the conductors and of the
dielectrics.

Consider the oriented surface R shown in Fig. 1.24. Let n be its positive normal
unit vector and P1 and P2 two points very close to the surface and to one another,
one on the negative side and one on the positive. Let En be the perpendicular
component of the field, namely its component on n. Figure 1.24 shows the section
of a small box having bases at P1 and P2, both of infinitesimal area dA and lateral
surface infinitesimal of an superior order to that of dA. We apply the Gauss law to
the box. Whatever the components of the electric field can be, the flux through the
lateral surface is infinitesimal of superior order by construction and can be
neglected. Taking into account that En has the direction of n on one side and the
opposite on the other, the Gauss law gives En P2ð Þ � En P1ð Þ½ �dA ¼ rdA=e0.

Hence, the perpendicular component discontinuity of the field, say
DEn � En P2ð Þ � En P1ð Þ, is

DEn ¼ r
e0
: ð1:81Þ

We now consider the components parallel to the charged surface. We used the
plural because we have two of them. Indeed, let us consider a plane tangent to R at
the point we are considering. The projection on this plane (and locally on R) is a

Σ

n

P2

E1 E2

P1

n1 n2

σ

dA dA

Fig. 1.24 A surface charge
distribution and a Gaussian
surface
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two-dimensional vector that we call Et, whose components are both tangent to R. To
study their behavior, we shall now exploit the fact that the field is conservative.
Consider again two points P1 and P2 very close to the surface and to one another, one
on the negative side and one on the positive. Let us take the origin of our reference
system at the point of R between P1 and P2, the z-axis normal to R in the direction
from P1 to P2 and x and y on the plane tangent to R. Figure 1.25 is drawn on the xz
plane. Consider the x-components of the field, say Etx, on both sides of R.

Figure 1.25 looks similar to Fig. 1.24, but there is a difference, namely the small
rectangle here represents a curve C. Its longer sides are parallel to R through P1 and
P2 and have equal infinitesimal lengths dl. The other two sides, normal to R, are
infinitesimal of an order superior to that of dl. We now impose that the circulation of
the field about C be zero. The contributions along the perpendicular sides are neg-
ligible by construction. Taking into account that the direction of Etx is equal to that of
C on one side, and opposite on the other, we can write Etx P2ð Þ � Etx P1ð Þ½ �dl ¼ 0,
namely the x-component of the field is continuous. The same argument holds for its
y-component. Hence, the tangential component of the field is continuous, namely
the difference between the two sides DEt � Et P2ð Þ � Et P1ð Þ is

DEt ¼ 0: ð1:82Þ

Σ

n

P P

E1 E2

1 2

Γ

x

σ

dl dl

Fig. 1.25 A surface charge
distribution and a closed path
integral
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1.15 Poisson and Laplace Equations

Let us recall the two fundamental properties of an electric field in a static condition:
it is conservative and obeys the Gauss law. The expressions in differential form are

r� E ¼ 0 ð1:83Þ

and

r � E ¼ q
e0
: ð1:84Þ

We start by recalling Eq. (1.39), which is equivalent to Eq. (1.83), namely

�r/ ¼ E: ð1:85Þ

We substitute this equation in Eq. (1.84), obtaining r � r/ ¼ �q=e0. On the
left-hand side of this expression, we have the divergence of the gradient of a scalar
function. This is called the Laplacian, and in Cartesian coordinates, it is the sum of
the pure second partial derivatives with respect to the coordinates, namely the
square of the gradient, which is a vector operator, namely

r � r ¼ r2 ¼ @2

@x2
þ @2

@y2
þ @2

@z2
: ð1:86Þ

The differential equation in / is, in conclusion,

r2/ ¼ � q
e0
: ð1:87Þ

This is an inhomogeneous second order partial differential equation in / that is
explicitly written as

@2/ x; y; zð Þ
@x2

þ @2/ x; y; zð Þ
@y2

þ @2/ x; y; zð Þ
@z2

¼ � q x; y; zð Þ
e0

: ð1:88Þ

This is a famous equation in mathematical physics called the Poisson equation.
Solving the equation, one obtains the potential and, hence, the electric field,
everywhere. As a matter of fact, we already know the expression of the solution.
This is just the potential of the given charge distribution Eq. (1.37), namely

/ r1ð Þ ¼ 1
4pe0

Z
V

q x2; y2; z2ð Þ
r21

dV2 þ const ð1:89Þ
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where V is the volume containing the charge. Mathematics rigorously proves that
this is the solution provided that, at infinity, the function / vanishes at least as
1/r and its gradient at least as 1/r2. In practice, this means requesting that there are
no charges at infinite distance.

In a region of space deprived of electric charges, namely where q = 0, the
Poisson equation becomes

r2/ ¼ 0: ð1:90Þ

This homogeneous equation is known as the Laplace equation. The equation has
been the object of extensive study by mathematicians and is very important for
physics as well. A function that is a solution of the Laplace equation is called a
harmonic function. We shall use the Laplace equation in the subsequent chapters.

In this section, we met two fundamental equations of mathematical physics,
which are named after two of the greatest mathematicians of all times, Pierre Simon
de Laplace (France, 1749–1827) and Siméon Denis Poisson (France, 1781–1840)

1.16 The Electric Dipole

The simplest charge distribution beyond the single point charge, sometimes called a
monopole, is the dipole. It consists of two equal and opposite charges, say +q and
–q, at a fixed distance d. Let d be the vector from –q to +q and let us choose a
reference frame with the z-axis in the positive direction of d and the origin at the
middle point of the dipole. Let P be the generic point where we want to express the
potential, r its position vector from the origin and r+ and r– the vectors from the
positive and negative charge to P, respectively, as shown in Fig. 1.26.

d

+q

-q

P

x

z

yd 
co

sθ

θ

r

r+ r–

Fig. 1.26 A dipole and a
reference frame
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The potential in P is

/ Pð Þ ¼ 1
4pe0

q
rþ

� q
r�

� �
¼ q

4pe0

r� � rþ
r�rþ

:

This expression is exact. We now look for an approximation valid at distances
from the dipole much larger than it size, namely for r– 	 d (and, consequently,
also r+ 	 d). Under these conditions, we can write, approximately, r– r+ ≅ r2 and
r+ – r– ≅ d cos h, where h is the polar angle, namely the angle between d and r,
and we get

/ Pð Þ ¼ q
4pe0

d cos h
r2

:

We define the vector quantity p = q d as the electric dipole moment, and we
write the last equation, namely its potential, at distances much larger than the dipole
size as

/ Pð Þ ¼ 1
4pe0

p � r
r3

¼ 1
4pe0

p � ur
r2

: ð1:91Þ

Note the following. First, the dipole potential does not depend separately on
d and q, but only on the dipole moment. Secondly, the potential decreases as the
inverse distance square, rather than as the inverse distance, as with the monopole.

QUESTION Q 1.4. An electron and a proton are separated by a 100 pm distance.
What is the electric dipole moment of the system? h

The electric field is the gradient of the potential. Let us start from its axial
component z. We have

Ez ¼ � @/
@z

¼ � p
4pe0

@

@z
z
r3

� �
¼ � p

4pe0

1
r3

� 3z2

r5

� �
¼ p

4pe0

3 cos h� 1
r3

: ð1:92Þ

Similarly, the x and y components are

Ex ¼ p
4pe0

3xz
r5

; Ey ¼ p
4pe0

3yz
r5

: ð1:93Þ

The cylindrical symmetry of the system suggests that we look for the perpen-
dicular field component, namely the projection of E in the xy plane. This is

E? ¼ p
4pe0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
x þE2

y

q
¼ p

4pe0

3 cos h sin h
r3

: ð1:94Þ
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Notice, from Eqs. (1.92) and (1.94), that the dipole field decreases with the
inverse of the cube of the distance. The field lines are shown in Fig. 1.27. At a
given distance, the field is stronger in the polar direction than in the equatorial.
On the axis, outside the dipole, the field has the positive direction of the dipole, and
the opposite at the equator. The field intensity on the axis is twice that at the equator
at the same distance.

Consider now a dipole in an external electric field. Let / be the external elec-
trostatic potential. We take the reference frame as shown in Fig. 1.28. Let r be the
position vector of the negative charge. The position vector of the positive charge is
then r + d. The dipole potential energy is U ¼ q/ rþ dð Þ � q/ rð Þ. Consider now a
situation in which d is small enough compared to the distance over which the
potential varies sensibly. Let @/=@d be the directional derivative of / in the
direction of d. We have

/ rþ dð Þ � / rð Þ ffi @/
@d

d ¼ r/ � d ¼ �E � d:

+

-

Fig. 1.27 The electric dipole
field force lines
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Fig. 1.28 A dipole in an
external field
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In conclusion, we write

U ¼ �E � p: ð1:95Þ

Notice the following. First, the dipole potential energy in an external field, in the
hypotheses we considered, does not depend separately on q and d but only on the
dipole moment. Secondly, we have not specified the point of the dipole at which the
electric field is to be taken. This is irrelevant in the assumption we made having
very small variations of the potential, and consequently of the field too, over the
dipole.

Consider now a dipole constrained at its middle point, but free to rotate about it.
Looking at Eq. (1.95), we see that the system has two equilibrium positions. One of
these is stable, corresponding to the minimum of the potential energy. This is when
p has the same direction and sense as E. The other position is unstable, being at a
maximum of potential energy. This is when p is parallel and opposite to E. To better
understand the situation, think about the forces acting on the two charges. In both cases,
they form a zero-arm couple, but in the former case, they pull the ends of the dipole
(stable equilibrium), while in the second, they push them (unstable equilibrium).

Consider now the dipole in a generic position. Let h be the angle made by its
moment with the external field, as shown in Fig. 1.29. In the approximation we
made, the field can be considered uniform over the dipole. Consequently, the
resultant force acting on its charges is zero (we shall see instances later for which
this is not the case). Let s be the torque on the dipole, which we now wish to
express. To do that, we choose a reference with the origin in the negative charge,
the x-axis in the direction of the external electric field E and the y-axis in the plane
of E and p. Let h be the angle leading from E to p in the direction seen as
counterclockwise from the z-axis, as in Fig. 1.29.
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+q
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Fig. 1.29 Forces acting on a
dipole in an external field
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Let us apply the virtual works principle. The work done for a virtual rotation by
dh is equal to the opposite of the corresponding change of potential energy, namely
szdh ¼ �dU, or

sz ¼ � dU
dh

¼ � d
dh

�pE cos hð Þ ¼ �pE sin h

The minus sign on the right-hand side means that the moment s tends to move
p parallel to and in the positive sense of E. It is immediate to see that s is the (axial)
vector

s ¼ p� E: ð1:96Þ

If the assumption made so far about the uniformity of the external field over the
dimensions of the dipole does not hold, the resultant external force on the dipole is
not zero. Let F be that resultant. We find it using, again, the virtual works principle.
Let us choose a direction s and look for the component Fs of F in that direction. We
must think of the dipole as only being free to move in that direction, namely we
must consider the virtual work for an infinitesimal rigid translation in that direction.
The corresponding energy variation is dU ¼ �F � ds ¼ �Fsds. In particular, for the
virtual displacements in the directions of the Cartesian axes, we have

Fx ¼ � @U
@x

; Fy ¼ � @U
@y

; Fz ¼ � @U
@z

:

We take the partial derivatives of Eq. (1.95), starting with x, remembering that
the vector p is constant for the translations we are considering, and obtain

Fx ¼ � @U
@x

¼ � @

@x
�pxEx � pyEy � pzEz
� � ¼ px

@Ex

@x
þ py

@Ey

@x
þ pz

@Ez

@x
:

We can express the right-hand side in terms of the sole x-component of the field
with the following argument. We write, for example, for the y-component,

@Ey

@x
¼ � @2/

@x@y
¼ � @2/

@y@x
¼ @Ex

@y
:

Doing that, we get

Fx ¼ px
@Ex

@x
þ py

@Ex

@y
þ pz

@Ex

@z
¼ p � rEx
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Finally, the resultant force on the dipole is

F ¼ p � rEx; p � rEy; p � rEz
� � ¼ p � rð ÞE: ð1:97Þ

We see that the resultant force is proportional to the gradients of the components
of the electric field.

1.17 Dipole Approximation

Consider now a distribution of charges at rest limited in a certain arbitrary volume.
We shall now find a very useful approximate expression for the potential, and,
hence, for the field, at a point P that, compared to its diameter, is at a large distance
from the distribution. To be concrete, we consider point charges qi. Our reasoning
can be trivially extended to a continuous distribution.

Let O be the origin of the reference frame at an arbitrary point inside the volume
of the distribution and di the position vector of the generic charge qi. Let R be the
position vector of point P where we want the potential and ri the vector from qi to
P, as shown in Fig. 1.30. Obviously, it is ri = R − di. The potential at P is

/ Pð Þ ¼ 1
4pe0

X
i

qi
ri
; ð1:98Þ

which is exact. However, in the hypothesis we made, we have R 	 di for all i. In a
very first approximation (if P is very far away), we can simply consider all the ri to
be equal to R, obtaining

/ Pð Þ ¼ 1
4pe0

1
R

X
i
qi ¼ 1

4pe0

Q
R

ð1:99Þ

where Q is the total charge

Q ¼
X

i
qi: ð1:100Þ

This simply means that, at a large distance, the distribution appears as point-like.
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Fig. 1.30 A charge
distribution seen from a
distance
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That which we have just considered is called monopole approximation and is
often insufficient. It is certainly so when the total charge is zero (Q = 0). This is a
very common situation. For example, atoms and molecules are globally neutral
charge distributions. Let us then consider the next order approximation, which is the
dipole approximation.

Looking at Fig. 1.30 and thinking that P is at a large distance, we understand
that the projection of di on R is approximately equal to the difference between
R and ri. Hence, calling uR the unit vector of R, we can write ri ffi R� di � uR. In
Eq. (1.98), we have its reciprocal, which can be approximated as

1
ri
ffi 1

R 1� di
R � uR

� � ffi 1
R

1þ di
R
� uR

� �
:

We substitute in Eq. (1.98), obtaining

/ Pð Þ ¼ 1
4pe0

Q
R
þ uR

R2 �
X

i
qidi

� �
: ð1:101Þ

This expression contains the first two terms of a series expansion. The first term
is the monopole that we already found and is clearly the most important at large
R when Q 6¼ 0. The second term decreases faster, namely as 1/R2, but is the
dominant one if Q = 0. It can immediately be recognized as a dipole potential, by
defining as the electric dipole moment of the charge distribution the vector

p ¼
X

i
qidi: ð1:102Þ

The potential in P when Q = 0 is, from Eq. (1.101),

/ Pð Þ ¼ q
4pe0

p � uR
R2 : ð1:103Þ

The definition of Eq. (1.102) generalizes the expression p = q d valid for a
dipole, to which it reduces, as is immediately verified, for two equal and opposite
charges.

The definition of electric dipole moment Eq. (1.102) apparently depends on the
choice of the origin O of the reference frame, because the vectors di depend on this
choice. We now show that this true if Q 6¼ 0, but for a globally neutral distribution,
p is independent of this choice. Indeed, let us take as the origin another point, say O′.
The moment becomes

p0 ¼
X

i
qid0i ¼

X
i
qi OO

0 þ dið Þ ¼
X

i
qidi þOO0 X

i
qi ¼ pþOO0Q:

Hence, p′ is equal to p if Q is zero.
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Equation (1.103) shows that the potential, and hence the electric field, at a large
distance from a globally neutral charge distribution is equal to that of a dipole (two
equal and opposite charges) with the same moment. Let us define more precisely
such an equivalent dipole. Let us mentally separate the positive charges, which we
call qþ

i , and the negative ones, which we call q�i . Let Q
+ and Q– be their sums,

respectively (Q– = –Q+). We define as the centers of the positive and negative
charges, in analogy with the center of mass of a mass distribution, the points
identified by the position vectors

dþ ¼
P

i q
þ
ij jdiP

i q
þ
ij j ¼

P
i q

þ
ij jdi

Qþ ; d� ¼
P

i q�i
		 		diP
i q

�
ij j ¼

P
i q�i
		 		di
Q�j j : ð1:104Þ

We can now write Eq. (1.102) as

p ¼
X

i
qþ
i

		 		dþ
i �

X
i
q�i
		 		d�i ;

which, for Eq. (1.104), gives us

p ¼ Qþ dþ � d�ð Þ ¼ Qþ d; ð1:105Þ

having defined the vector from the center of the negative charge to the center of the
positive charge as d ¼ dþ � d�.

In conclusion, the electric field of a globally neutral charge distribution at dis-
tances that are large compared to its size is equal to the field of an electric dipole
with all the negative and positive charges concentrated at the respective centers. As
a consequence, the dipole moment is zero when the two centers coincide. This is the
case for atoms and molecules with spherical symmetry. They do not have an
“intrinsic” electric dipole moment. However, very often, molecules do have an
electric dipole moment. A very important example is the water molecule. Its rather
large dipole moment has a strong influence on the physics of water.

Figure 1.31 gives a schematic representation of the H2O molecule. The oxygen
atom has a negative net charge, while the hydrogen atoms have net positive
charges. From the figure, it is clear that it is not a dipole. However, the field of the
molecule is the dipole field at distances that are large compared to its diameter,
which is about 0.29 nm.

–

+ +

O

H H
104˚

–Fig. 1.31 Schematic
representation of a water
molecule
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The dipole moments of an unperturbed molecule are called intrinsic electric
dipole moments. As we shall see in Chap. 4, external electric fields acting on a
molecule modify its charge distribution, producing an induced moment even on the
molecules with zero intrinsic moment.

Summary

In this chapter, we have learnt the following principal concepts:

1. The constituents of matter are charged with positive and negative elementary
charges. The elementary negative charge is exactly equal to and opposite of the
positive one.

2. The force between two point charges at rest in a vacuum is inversely propor-
tional to the square of their distance.

3. The concept of (static) electric field.
4. The method for calculating the electrostatic field produced by a known distri-

bution of charges in fixed positions in a vacuum.
5. That the electrostatic field is conservative (or irrotational) and the concept of

electrostatic potential.
6. The method for calculating the electrostatic potential produced by a known

distribution of charges in fixed positions in a vacuum.
7. The measurement of the elementary charge.
8. The flux of the electrostatic field and its properties.
9. The equations for the divergence and the curl of the electrostatic field.

10. The Poisson and Laplace equations.
11. The discontinuities of the electrostatic field.
12. The electric dipole and the dipole approximation of the field of a globally

neutral charge distribution.

Problems

1:1. Does a closed line of force exist in an electrostatic field? Do lines of force
irradiating from a point exist?

1:2. How do you calculate the electric field and the potential of three point
charges q1, q2 and q3, at rest, respectively, at r1, r2 and r3?

1:3. Can one produce an electric field of 1 kV/m having a battery of 1.5 V?
1:4. Describe a measurement of the elementary charge.
1:5. What is the relative precision needed to show the discrete nature of charge

measuring a 1 nC charge?
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1:6. Let S1 and S2 be two closed surfaces, with S1 being completely contained in
S2. The flux outgoing from S1 is positive. The flux outgoing from S2 is zero.
What can you say about the charges generating the field?

1:7. A proton moves toward a potassium nucleus (Z = 19). Find the repulsive
electrostatic force when it is at 50 fm.

1:8. A spherical soap bubble has a charge of Q = 100 pC. What are the fields in
its center and at a point immediately outside? Are all the components of the
field continuous crossing its surface?

1:9. A charge Q is uniformly distributed in the volume of a sphere of radius
R. Find the field and the potential at its center.

1:10. Consider the electric field E = ai + bj + ck, where a, b, c are constants and
i, j, k are the unit vectors of the reference frame. Is the field uniform? What
is the expression of the potential?

1:11. The electric dipole moment of a water molecule is p = 6.1 � 10−30 C m.
How far should be a proton be from an electron for them to have the same
dipole moment? Compare the result with the water molecule diameter.
Calculate the electric field in the equatorial plane of the dipole at 1 nm
distance from axis.

1:12. Find the electric field at the distance of 0.5 nm from a monovalent ion (taken
as point-like).

1:13. What are the properties of the electric dipole moment of a globally neutral
charge distribution?

1:14. A charged droplet of mass m = 1 fg is between the parallel and horizontal
plates of a capacitor (using to produce a uniform vertical electric field). When
no field is present, the droplet falls at a certain constant speed. If a field of
3 � 105 V/m is applied, the droplet falls at half that velocity. How much is
the charge on the droplet? To how many elementary charges does it
correspond?

1:15. An electron at rest at 10 nm distance from a water molecule is subject to a
certain electric force. How does this force vary if the distance increases to
20 nm? (Assume that the shape of the molecule does not vary.) Compare the
result with the force between two elementary charges at the same distance.

1:16. Two horizontal plane surfaces are uniformly charged. The charge densities
are r1 = +3 nC m−2 on the lower plane and r2 = –6 nC m−2 on the upper
one. What is the electric field between the planes and in the spaces above and
below them?
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Chapter 2
Conductors in Equilibrium

Abstract Conductors are characterized by their containment of electric charges,
electrons or ions, which are free to move about inside their body. These are the
metals, the electrolytes and the ionized gases. In this chapter, we study the behavior
of the conductors under electrostatic conditions, namely constant in time. We shall
study electrostatic induction between two and more conductors, the capacitors and
the electrostatic shield.

In the first chapter, we studied the electrostatic field in a vacuum generated by
charges in fixed positions. In real life, material bodies are always present, con-
taining an enormous number of electric charges. Consequently, under practical
circumstances, the electric field is due both to the charges under our control and to
the charges of the surrounding bodies. The building blocks of matter, molecules and
atoms, contain positive and negative charges in equal quantities and are conse-
quently globally neutral. The electric field generated by these nanoscopic structures
is zero at distances that are large compared to their size under unperturbed con-
ditions. Contrarily, an externally applied field may deform and move the molecules,
as well as the free charges existing in the conductors, changing the internal charge
distribution and contributing the macroscopic field.

The electric field we shall consider is “macroscopic”, because our description
shall always deal with macroscopic phenomena, which happen on distance scales
that are enormous compared to the sub-nanometer scale of the molecules and on
time scales quite significantly longer than the characteristic times of atomic phe-
nomena. Consider, for example, a piece of metal between the plates of a capacitor.
The field generated by the capacitor is a macroscopic field. If we look into the metal
at the atomic scale, we shall see a field that varies very rapidly from point to point;
it is very strong between a nucleus and the electrons, but it is almost zero outside
the atom. In addition, the field is far from being constant, but varies over very short
times depending on the motions of the electrons. At the atomic level, there is never
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an electrostatic field, but rather an electric field that rapidly varies in time and with
position. This is an extremely complicated situation, but it is not what we are
interested in. We are interested in the field we can measure with our instruments.
These instruments are macroscopic bodies with geometrical dimensions much
larger than the molecular ones that integrate on time scales much longer than those
of the microscopic variations. This is the macroscopic field.

The material bodies can be schematically divided into two classes; the con-
ductors, studied in this chapter, and the dielectrics or insulators, studied in Chap. 4.
In this chapter, we shall always deal with static, namely time independent,
conditions.

In Sect. 2.1, we shall see how the conductors containing elementary charges can
move freely. These charge carriers, as they are called, are electrons in metals, ions
in electrolytes and in gases, “holes” and electrons in semiconductors, etc. Under
static conditions, the charge carriers randomly move, similarly to the molecules of a
gas. There is no ordered motion under these conditions.

In Sect. 2.2, we shall see that when a conductor is brought into an external
electric field, some of its free charges move to the surface and arrange themselves in
such a way as to cancel, with the field they produce, the applied field in the entire
volume of the conductor. Under static conditions, the electric filed is zero in a
conductor, which is consequently an equipotential volume. The charge density
inside the conductor is also zero, while a surface charge density can be present on
the surface.

Suppose we want to have an electric field of certain intensity and certain shape in
a region of space. The way to produce it is to build a number of conductors having
surfaces of the right shape and to give them the right potentials. In doing that, we
control the potentials, not the charges. The underlying mathematical problem is
finding the potential in a region of space once the values on the surfaces sur-
rounding the region are fixed. We shall see in Sect. 2.4 that the solution of the
problem is unique and we shall study some of its properties. We shall also see that
the only available general means to find the solution are not analytical, but
numerical.

In Sect. 2.6, we shall consider a system of two conductors and learn the con-
ditions that must be satisfied for it to be a capacitor. Capacitors are important
elements of any electronic and electric circuit. We shall study their properties in
Sects. 2.7 and 2.8. In Sect. 2.9, we shall extend the study to systems of more than
two conductors.

In Sect. 2.10, we shall study the electric field of a system of conductors com-
pletely surrounded by a hollow conductor. We shall see how the latter divides the
space into two independent regions, as far as electrostatic phenomena are con-
cerned. This is the electrostatic shielding action. This action is a consequence of the
inverse square law of the electrostatic force and its study allows for verifying this
dependence with extreme precision. We shall give examples of the practical
importance of electrostatic shielding.
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2.1 Conductors

A body is defined as an electric conductor if it contains, in its bulk or on its surface,
electric charge carriers that are free to move. As we know, all bodies contain, or, to
be more precise, are made of, charged particles, such as electrons and nuclei. These
charged particles are inside atoms or molecules, which are globally neutral and are
generally not free to move over macroscopic distances. In the conductors, a small
fraction of these charges can move over macroscopic distances. The principal types
of conductors are as follows.

Metals.
Metals in their solid phase are made of microcrystals. A small fraction of the
electrons, typically one or two per atom, are free to move about inside the metal.
These are called free electrons. To fix the orders of magnitude, typical free electron
densities in metals are np = 1029–1030/m3. With a good approximation, at the usual
temperatures, we can think of the free electrons as behaving like a gas, with a
velocity distribution similar to that of the molecules of a common gas. Their mean
kinetic energy at room temperature is like that of a gas, in a round figure, 1/40 eV.
The electrons are free inside the metal, but cannot leave it because they are attracted
by the array of positive ions that they have abandoned. The energy needed to be
given to an electron to extract it from the metal depends on the metal, but is
generally of a few electornvolt, much larger than their mean kinetic energy at room
temperature.

Semiconductors.
Different types of semiconductor exist, both natural and artificially produced. We
shall only mention the simple example of a pure element, the Si. The Si atom has
four valence electrons, namely four electrons taking part in its chemical bonds. In a
Si crystal, every atom is linked to four other atoms through covalent bonds.
A covalent bond is made of two electrons, one for each partner atom. The bonds are
very stable and very few of them break, freeing electrons. Technologies are
available to dope the crystal, namely to grow it in the presence of a few impurities.

Doping can be done with a pentavalent element, the atoms of which are fit to
substitute for Si atoms in the crystal lattice. These extraneous atoms do form four
links with four Si atoms, but are left with an extra valence electron. This electron is
only weakly bound and detaches due to the thermic motion already at low tem-
peratures. This is the case of the n-type semiconductors, where “n” stands for
negative, because the charge carriers are the electrons. The carrier density depends
on the applied doping level, but is always much smaller than in metals, because
only a small number of Si atoms is substituted by the dopant. A typical order of
magnitude is np = 1020/m3.

If Si is doped with a trivalent element, we obtain a p-type semiconductor, where
“p” stands for positive, because such is the charge of the carriers. When a trivalent
atom substitutes for a Si in the ladder, it can only establish three bonds. The fourth
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is made by one electron alone. There is a “hole”, namely a point where an electron
is missing. This situation is not stable, and it soon happens that an electron of a
nearby bond jumps into the hole. But, in so doing, another hole is produced and the
process repeats and propagates. We can also say that the hole moves in the opposite
direction from one position to the other and that a positive charge moves with it.
Indeed, holes behave like positively charged particles, with a chaotic motion similar
to that of electron gas.

Electrolytes.
Ionic molecules, such as the common salt NaCl, are made by two oppositely
charged ions, Na+ and Cl– in the example. As we shall see in Chap. 4, the elec-
trostatic force is much weaker in water than in a vacuum. Consequently, the ion
bond breaks in water and the two ions become free. A small quantity of ions (of
both signs) is always present in water, which is consequently a conductor. The ion
carrier density can be reduced by distillation or increased by adding salts.

Gases.
A small fraction of ionized molecules is also always present in gases. Ionization is
mainly caused by natural radioactivity from the rocks and from cosmic rays. The
charge carriers are ions of both signs.

Other types of conductors are plasmas, some non-metallic substances like gra-
phite, some organic substances, etc.

2.2 Conductors in Equilibrium

In this chapter, we study the properties of the conductors in equilibrium, namely
under static conditions. We have already encountered the concepts of charge
density and electric field in a vacuum. We now need these concepts in a conductor,
which is a material medium. Matter is made of molecules, and inside molecules,
there are electrons separated from the nuclei of their atoms by empty spaces much
larger than the nuclear diameters. These particles are not at all at rest, but move
continuously at high speeds. The charge density that we shall consider is an average
taken on “physically infinitesimal” volumes, namely very small relative to the
macroscopic dimensions but containing a large number of molecules. This is
possible because the atomic radiuses are on the order of a tenth of a nanometer.

Inside the material, the electric field changes by large factors over distances on
the order of atomic diameters. Fields are very intense inside an atom, becoming
almost zero immediately outside of it. In addition, at the atomic scale, the field
varies very rapidly, namely over times on the order of the femtosecond, due to the
fast motion of the electrons. This electric field at the nanometer and femtosecond
scales is not the field we measure with our macroscopic instruments, as we already
stated in Sect. 1.3 when we gave the operational definition of the field. The
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macroscopic field we shall deal with at point r at the instant t is an average on a
volume around r, very small in macroscopic dimensions but very large on the
nanometric scale, and on a time interval around t, small on the macroscopic scale
but very long on the femtosecond scale.

The conductors’ properties we shall now discuss only hold for homogeneous
conductors. This means that temperature, chemical composition, aggregation phase
(in short, all their chemical and physical properties) are independent of position.

We shall now discuss four properties. They are very simple, but there is a logical
order (that should be remembered) in which they have to be considered.

1. Within a conductor in equilibrium, the charge density is zero.

Indeed, if the field is not zero, there are forces acting on the free charges. These
would accelerate and the condition would not be static. Let us look more closely at
what happens.

Consider, for example, a metal, and let us bring it into an electric field. Initially,
the field penetrates inside the metal and exerts forces, in particular, on the free
electrons. Being unbound, they start moving in the direction opposite to the field. In
this way, two charge accumulations develop, a negative one on the side to which
electrons move, and a positive one on the opposite side. To be clear, we anticipate
that these accumulations are on the surface of the body, as we shall soon see. These
charge densities produce an electric field having a direction opposite to that of the
external field and tending to cancel it out. As a matter of fact, the free carriers must
adjust their position to cancel the external field completely. Otherwise, they have
not yet reached the equilibrium state. Note that not all the free charges need to
move, a very small fraction being sufficient. Note also that the time needed to reach
the equilibrium in a metal is extremely short.

We can easily see that this property does not hold for an inhomogeneous con-
ductor. Consider, for example, a metal bar whose extremes are at different tem-
peratures. The conduction electron gas has a higher temperature, hence a higher
mean kinetic energy at one extreme than at the other. The carriers will then also
move from the hotter to the colder extreme when no external field is present. Under
these conditions, the equilibrium is reached when the field in the conductor has a
certain, non-zero, value due to the distribution of its carriers.

2. A conductor is an equipotential volume.

This is an immediate corollary of the previous property. Indeed, the potential
difference between two points of the conductor is the line integral of the field
between those points. If the points are inside, we can always find a line completely
inside the conductor, on which the field is zero. Hence, all internal points have the
same potential. The same is true, by continuity, on the surface. We shall see
important applications of this property.

If we want to generate an electric field with a certain shape, we need to fix the
potential values in certain space regions. We can do that by building metallic
elements of the right shape and giving them the right potentials.
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3. The charge density is zero inside a conductor in equilibrium.

Let us apply the Gauss law to an arbitrary closed surface R completely inside the
conductor. The field is zero at all the points of R, and consequently the flux is zero.
If DV is the volume surrounded by R, the Gauss law gives us

Z
DV

q dV ¼ 0:

ΔV being arbitrary, q must be identically zero in the entire inside volume

q x; y; zð Þ ¼ 0 inside: ð2:1Þ

Clearly, this does not mean that there is no charge in the conductor; rather, it
means that the net charge is zero.

Note that the just-stated theorem does not hold on the surface. Indeed, a surface
element cannot be enclosed in a Gauss surface completely inside the conductor.
Indeed, a net free charge exists on the surface in the presence of an external electric
field or when the conductor is charged.

We can say that, in general, a charge of density r, which is a function of the
position, is present on the surfaces of the conductors. The integral of r over the
surface is the net charge of the conductor.

4. The electric field immediately outside the surface of a conductor in equilibrium
with surface density r is normal to the surface and has a normal component
equal to r/e0.

Indeed, all the field components are zero on the internal face of the surface.
Through the surface, the tangent ones are continuous, while the normal one has a
discontinuity r/e0. More precisely, if n is the unit normal outgoing vector, the field
on the outside face of the surface is

E ¼ r
e0
n: ð2:2Þ

Note that the field is directed outward if r > 0, and inward if r < 0.
We now describe electrostatic induction. The phenomenon, not to be confused

with electromagnetic induction, which will be discussed in Chap. 7, can be
observed with elementary means. Figure 2.1 represents a metallic conductor on an
insulating support. Let us bring a charged object, for example, a glass bar charged
by friction (the charge is positive in this example), near to an extreme of the
conductor. Under these conditions, some negative free charges move to the region
of the conductor nearer to the positively charged body. Correspondingly, a net
positive charge density develops on the opposite side. This induced charge rear-
rangement is such as to cancel the electric field in the entire volume of the con-
ductor. However, the net charge of the conductor remains zero, being insulated.
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Consequently, if we now turn away the bar, the positive and negative induced
charges in the conductor, so to speak, recombine and the charge density goes back
to zero through the entire volume.

A slightly different set-up is shown in Fig. 2.2. Here, the conductor is made of
two parts, both on an insulating support. Initially, the two parts are in contact and
behave as a single conductor. The effect of the glass charged bar in Fig. 2.2a is
equal to that in Fig. 2.1. With the bar still in position, we now separate the two
parts, as in Fig. 2.2b, touching the insulating supports (our body is a conductor).
When we turn the bar away, the induced negative and positive charges can no
longer recombine. In each part, the charge redistributes in order to cancel the field
inside the conductor. We end up with two conductors whose surfaces are charged
with opposite sign surface charge densities. We say that the bodies have been
charged by induction.

The induction phenomenon is easily observed with a gold-leaf electroscope. If
we place a body charged by friction, like a glass or plastic bar, near the small sphere
of the instrument, without touching it, we observe the leaves opening up, as in
Fig. 2.3. If we remove the charged body, the leaves close back up. The phe-
nomenon produced by the charged bar is clearly the electrostatic induction we have
just described. If the bar has positive charges, the charges induced on the leaves,
which are in the farther side of the electroscope conductor, are positive too, while
negative charges are induced on the upper sphere. When we take the charged body
away, the induced charges recombine and the leaves discharge.

Figure 2.4 shows how to charge an electroscope permanently by induction. To
do that, we just touch the sphere of the electroscope with a finger when the inducing
bar is still present. Our body being a conductor, this action electrically connects the
sphere with the ground. The charges on the sphere, opposite to those on the
inducing body, run away as far as they can, namely to the ground. We now remove
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Fig. 2.1 Producing electrostatic induction on an isolated conductor
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Fig. 2.2 Charging two insulated conductors by induction
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our finger from the sphere and then take the inducing body away. The electroscope
is now permanently charged with the sign opposite to that of the inducing body. We
can check that by bringing back the charged bar. We see the leaves closing down.

If we observe the leaves of an electroscope we have charged, we see them
gradually closing down. The electroscope is discharging because the air in its glass
container is not a perfect insulator due to the presence of ions. Ions are continuously
formed in air through natural radioactivity. As a matter of fact, we can measure the
induced activity rate in air by measuring the discharge time of a properly built
electroscope. Here, we open a parenthesis to summarize how cosmic rays were
discovered. In 1910, Domenico Pacini (Italy, 1878–1934) developed techniques for
measuring the discharge rate of an electroscope underwater. He took measurements
three meters underwater in a lake and in the sea, namely under a water thickness
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Fig. 2.3 Inducing charges on an electroscope

++
+

–
––––
––

–
––

– ––––
–
––

– ––––

–
–

– ––––

– –––––

+

+

+

+
+(a) (b) (c)

Fig. 2.4 Charging an electroscope by induction
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sufficient to absorb the largest fraction of the radiation from the ground. The
observed discharge rate had decreased, compared to on shore, but it was still
relevant. Pacini concluded that an ionization source different from those in the rocks
had to exist. The extraterrestrial origin of the source was established by Victor Hess
(Austria, 1883–1964), with a series of balloon ascensions between 1911 and 1912.
Hess found that the ionization rate in the atmosphere, as measured by the discharge
time of his electroscope, was constant or slightly decreasing up to about 2000 m,
somewhat equivalent to Pacini’s 3 m of water. Above 2000 m, the ionization rate
monotonically increased up to the maximum altitude of 5000 m that he was able to
reach. Hess concluded that the source of the ionizing radiation found by Pacini had
an extraterrestrial origin. These are the cosmic rays, as Robert Millikan (USA,
1868–1953) named them, high energy charged particles, protons, nuclei and elec-
trons, coming from the universe.

2.3 Surface Charges on a Conductor

As we have just seen, the electrostatic field just outside the surface of a conductor at
a point at which the surface density is r is normal to the surface and has magnitude
r/e0. Consider now the force exerted by the field on the surface charges. Notice first
that the force is, in any case, directed outward, namely tending to rip away the
charges. Indeed, where r is positive, the field is directed outwards and the force has
its direction, while where r is negative, the field is inward but the force is opposite
to it. As we are dealing with the charge per unit surface, we should consider the
force per unit surface as well. This has the dimensions of a pressure and we shall
indicate it with P.

One might think this pressure to be the product of the field r/e0 and the charge
on the unit surface r, namely r2/e0, but it is not so. As a matter of fact, the “surface”
occupied by the charges is not a geometrical one of zero thickness, but has a finite
thickness smaller than the atomic diameters. The electric force acting on the most
external layer of charges is, indeed, r2/e0, but it is zero on the innermost layer, with
intermediate values in between. Consequently, we take a mean value, namely one
half of the external field. The pressure on the surface charges is then

P ¼ r2

2e0
: ð2:3Þ

Note that the pressure might be large enough to pull the charges out. The
pressure is higher where the surface curvature is larger, as we shall now see.

Let us start by considering the simple system in Fig. 2.5, consisting of two metal
spheres, one larger (radius R) and one smaller (radius r), joined by a metal wire. The
system is a single conductor.

Let the system be charged and, at equilibrium, let Q and q be the charges on the
large and small spheres, respectively. We want to find the relative values of the two
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charges. If the spheres are far enough apart from one another, we can think of the
field, or the potential, near one of them as not being affected by the field, or the
potential, near the other one. The potential on each surface is then the potential of a
charged sphere, which is equal to the potential of a point charge in its center. On the
other hand, the two spheres are electrically connected and their potentials must be
equal. We can the write Q= 4pe0Rð Þ ¼ q= 4pe0rð Þ, or

Q
R
¼ q

r
: ð2:4Þ

The charge on each sphere is proportional to its radius. The field is proportional
to the charge density, which is the charge divided by the surface area, that is
proportional to the radius squared. Consequently, the charge densities are inversely
proportional to the radiuses, or, we can say, proportional to the curvatures. Calling
R and r the charge densities on the large and small spheres, respectively, we have

R
r
¼ r

R
: ð2:5Þ

Consider now a conductor having regions of different curvature, such as the one
shown in Fig. 2.6. In a first approximation, we can consider it similar to the two
spheres system and take Eq. (2.5) to be valid near its extremes. The field near the
surface, being proportional to the charge density, is proportional to the curvature as
well, while the pressure of Eq. (2.3) is proportional to the square of the curvature.
Both can be very intense near a tip.

We can verify how the charge is distributed as follows. We use a “spoon” made
of an insulating arm finishing in a small conducting sphere. When we touch a point
of the conductor with the “spoon”, we take out a charge proportional to the density
at that point. We bring this charge to an electroscope and see how much the leaves
open. We repeat the operation, taking charges from points of different curvature and
verifying that they are larger where the curvature is higher.

Notice that surface curvature may be null or even negative. It is negative in any
part of a body folded inward. Where the curvature is negative, the charge density is
very small. Consider, for example, a metal conductor having the form of a cone, as
in Fig. 2.7. With the method we have just described, it is found that almost no

R
r

Fig. 2.5 Two spherical
conductors joined by a
conductive wire
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charge is present on the surface inside the cone. We shall see in the next section that
the charge density is rigorously zero on the internal surface of a cavity completely
enclosed in a conductor.

The above conclusions have relevant practical implications. In several instances,
conductors, typically metals, are surrounded by air. If a large potential is given to
the conductor, namely if it hosts a large electric charge, and there are points of high
curvature (tips) on its surface, the charge density might be extremely high at these
points, and so would the electric field just outside the tips. In air, a small number of
ions is always present. The ions near the tip are accelerated by the electric field. If
the field is high enough, the energy gained by an ion between two collisions with

R
r

Fig. 2.6 Conductor with different curvatures and lines of field

Fig. 2.7 Demonstration
metal cone. The curvature is
positive outside, negative
inside. Reproduced with
permission of the Physics and
Astronomy Department of the
Padua university
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gas molecules may be so large that, in the next collision, the molecule that is hit
gets broken. The two parts of the broken molecule have a charge. Each of them will
suffer the same fate as the first ion. An avalanche free charge multiplication process
is triggered, air becomes a good conductor and an electric spark suddenly develops.
The spark can be very dangerous, both for people nearby and for the equipment.
When working with high voltages, any tip must be avoided, and all surfaces must
have small curvatures and be smoothed.

A lightning strike is triggered by a similar mechanism. An electric field is always
present in the atmosphere; its intensity somewhat varies in time at the ground level,
being around 100 V/m on a clear day. During a thunderstorm, the field, between the
lower parts of the clouds and the ground, grows to 104 V/m, two orders of mag-
nitude larger, over flat surfaces. The field is much higher near high curvature points,
like bell towers, trees or even the body of a person, when standing on the flat
surface of a beach or on a boat. Field intensity may grow enough so as to trigger an
avalanche multiplication process of ions present in the atmosphere. Air becomes a
good conductor and an extremely intense current develops between the clouds and
the ground, for a short duration. This is the lightning strike. During a thunderstorm,
it is imprudent to stay near a tree or other pointed objects, to stand on a beach, or,
even more so, to hold pointed conductors in one’s hand.

The lightning rod, also called a lightning conductor, was invented in 1749 by
Benjamin Franklin (USA, 1706–1790), to protect buildings, ships, etc., in the event
of a lightning strike. It is a metal rod mounted on top of a structure for protection,
connected to the ground (or sea) by thick copper conductors, capable of “attracting”
the spark and discharging the high current into the ground, instead of allowing it to
pass through the structure.

2.4 Hollow Conductors

Consider a hollow conductor containing an empty closed cavity. We shall now
show that the charge surface density in the cavity is zero. The demonstration has
two steps, which should not be inverted. In the first step, we use the Gauss law, in
the second, the fact that the electrostatic field is conservative.

It is always possible to find a closed surface enclosing the cavity and entirely
inside the conductor, as R in Fig. 2.8a. If any charge is present inside R, it must be
on the surface of the cavity. The flux outgoing from R is zero because the field is
zero at all of its points. Hence, the total charge on the surface of the cavity is zero.
This does not mean that there is no charge but that, if there are charges, there should
be as many that are positive as are negative. If there were charges on the surface of
the cavity, there would be an electric field, like in the example shown in Fig. 2.8b,
in which we have drawn a field line. If this were true, we could always find a closed
line like C in the figure that follows a field line in the cavity and closes back inside
the conductor. The line integral of the field around C would certainly be positive,
because the field has the direction of the line along the entire part inside the cavity
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and is null in the other part. The hypothesis has thus been reduced ad absurdum and
must be wrong. In conclusion, no charge can be present on the surface of an empty
cavity completely enclosed in a conductor in equilibrium. Consequently, the field in
the cavity is also zero.

Let us now consider the situation outside the hollow conductor. There, we might
have charges of any value in any position outside the conductor and on the con-
ductor itself. The field outside can be anything, while being static. Well, as difficult
as it may be to believe, the charges on the external surface of the charged conductor
arrange themselves in such a way that no net charge and no field exist, not only in
the body of the conductor but even inside the cavity and on its surface. Also, if we
put more charge on the conductor of one sign or the other, its potential will rise or
fall, but it will never happen, at equilibrium, that any charge or field will appear in
the cavity or on its surface. The internal space is completely separated from the
external space, for the electrostatic phenomena. This is the electrostatic shielding
action. We shall discuss it for cavities that are not empty in Sect. 2.10.

Let us now consider in general terms how one can build an electrostatic field of a
desired shape in a given region of space. As we have already mentioned, one can do
that by properly shaping a certain number of conductors, metal in general, and
giving to each of them a proper potential. Namely, we control the shapes of the
equipotential surfaces that are the surfaces of our conductors and their potentials.
The charge surface densities, namely how the superficial charges arrange them-
selves, come about as a consequence. The problem is hence the following: given the
surfaces of the conductors and their potentials, find the field and the surface den-
sities. The two quantities are linked. The surface densities are linked to the field
intensity on the surface by r ¼ e0E. Notice that the problem is different from the
problem we discussed in the first chapter of finding the field of a given charge
configuration. Now, the charge distribution is not given, as the charges are free to
move outside our control, always arranging in such a way as to have a zero field
inside the conductors.
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Fig. 2.8 A cavity in a hollow conductor. a A surface containing the cavity, b a closed path
partially in the cavity, partially in the conductor
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Let us analyze the case of n conductors with charges Q1, Q2,… Qn, respectively,
enclosed in the cavity of another conductor, which might be charged too, as shown
in Fig. 2.9. Notice that this is the situation usually met in practice, when we conduct
experiments in a room in a building. Indeed, walls, ceiling and floor behave, in
practice, as conductors for static or electric phenomena not too quickly varying in
time. Usually their potential is taken as zero (ground).

We start by observing that a charge must exist on the internal surface of the
hollow conductor. This charge, which we call Q0, is exactly equal and opposite to
the sum of the charges of the bodies inside the cavity, namely

Q0 ¼ �Q1 � Q2 � . . .� Qn:

To show that, let us consider a surface R enclosing the cavity completely inside
the conductor. The field is zero at all its points, and consequently the outgoing flux
is zero. For the Gauss law, the net charge inside R must be zero.

Note that Q0 is, as we said, the charge on the internal surface of the hollow
conductor. It is not its total charge. More charge might be present on the external
surface. However, whatever that charge, the charge on the internal surface is always
Q0.

QUESTION Q 2.1. Two charges Q1 and Q2 are at rest at a certain distance. Let F12

be the force exerted by Q1 on Q2. You now enclose Q1 in the center of a spherical
metal shell, letting Q2 be outside. How does F12 vary? h

Let us now analyze the problem more formally. Under the given conditions, the
conductors inside have known potentials /1, /2, … /n, with the hollow one being
/0. We are interested in the internal space, in which the Laplace equation holds

r2/ ¼ 0 ð2:6Þ

with the boundary conditions / (x, y, z) = /1 at the points of the surface R1 of
conductor 1, / (x, y, z) = /2 at the points of the surface R2 of conductor 2,… / (x,
y, z) = /0 at the points of the surface R0 of the hollow conductor. The problem is
now precisely posed and we can ask the questions: does a solution exist? If it exists,
is it unique? How can we find it? From a physical point of view, it is obvious that
the system will reach a unique equilibrium configuration, in which the potential
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Fig. 2.9 Conductor in a
closed cavity of a surrounding
conductor
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energy is a minimum. The potentials of the conductors in this configuration are the
solution to the problem. This is clearly not a mathematical demonstration. The
rigorous demonstration can be found in calculus books. We shall not give it here.
Rather, we shall assume that a solution exists and show that it is unique, once the
boundary conditions are given.

Let us show a few useful properties of the harmonic functions, as the solution of
the Laplace equation are called.

Let V be the space between the conductors and R the surface limiting this space,
namely the set of the surfaces R0, R1, Rn. Let us show that if the function / is
harmonic in the volume V and is zero at the points of R, then / is identically zero in
V. We start from the identity valid for every scalar function /

r � /r/ð Þ ¼ r/:r/þ/r2/; ð2:7Þ

which is immediately shown by direct calculation (it is mainly the derivative of a
product). If / is now harmonic, the second term on the right-hand side is identically
zero and we have

r � /r/ð Þ ¼ r/j j2: ð2:8Þ

Let us now integrate r � /r/ð Þ over the volume V and apply the Gauss
divergence theorem, namely

Z
V

r � /r/ð ÞdV ¼
Z
R

/r/ð Þ � ndR:

The right-hand side of this equation is zero because / is zero at the points of R,
by assumption. Hence, using Eq. (2.8), we have

Z
V

r/j j2dV ¼ 0:

The integrand on the left-hand side cannot be negative. Hence, the equation
implies that

r/ ¼ 0

in the entire V. This means that / is uniform in the entire volume, the surface
included. Being zero on the surface, / is zero in the entire volume.

In conclusion, if the electrostatic potentials of the hollow conductor and of all the
internal conductors are zero, or equal (considering that the potential is defined
modulo an additive constant), then the entire internal region is equipotential and the
field is zero. The case of the empty cavity is a particular case. We have retrieved the
result discussed at the beginning of the section.
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We are now ready to show that the solution of the Laplace equation with given
boundary conditions is unique. Let us assume knowing a solution / of the Laplace
equation and that another solution, say w, exists with the same boundary conditions.
Namely, the following conditions are satisfied

/ x; y; zð Þ ¼ w x; y; zð Þ ¼ /1 on the points of R1

/ x; y; zð Þ ¼ w x; y; zð Þ ¼ /2 on the points of R2

. . .. . .. . .

/ x; y; zð Þ ¼ w x; y; zð Þ ¼ /0 on the points of R0:

Now, the Laplace equation being linear, /-w is a solution as well, with boundary
conditions

/ x; y; zð Þ � w x; y; zð Þ ¼ 0 on the points of any Ri:

Hence, for the just demonstrated theorem, /-w is identically zero in the entire
V. / and w are the same function.

The fact that the solution is uniquely defined by fixing the electrostatic potentials
of the conductors has important practical consequences. One of these is the
already-mentioned electrostatic shielding. An electrostatic shield, which is a hollow
conductor, divides the space, from what concerns the electrostatic phenomena, into
two completely separate and independent regions: the internal and the external.

Finally, we notice that the uniqueness theorem also holds when the surface of the
enclosing conductor goes to infinity. More precisely, the theorem is also valid when
one of the boundary conditions is at infinity.

2.5 Equilibrium in an Electrostatic Field

One might wonder whether is it possible to find any static arrangement of electric
charges such as to produce a stable equilibrium position. If it was possible, we
could put a charge in that position and have it remain there at rest. As we shall now
show, the answer is negative. No stable equilibrium position exists in an electro-
static field. Note that this is a consequence of the inverse square dependence of the
electrostatic force. As such, the conclusion is also valid for the gravitational force.
There is no stable equilibrium position in the gravitational field either. We cannot
put a spacecraft at some point and have it standing there in equilibrium.

A stable equilibrium position for a positive or negative charge should be in a
minimum or a maximum, respectively, of the potential. We shall now show that
such points do not exist for a harmonic function. Saddle points do exist, such as, for
example, the point halfway between two equal point charges of the same sign that
we noticed with reference to Fig. 1.11b. Indeed, this is an equilibrium position, but

76 2 Conductors in Equilibrium

www.ebook3000.com

http://dx.doi.org/10.1007/978-3-319-40871-2_1
http://www.ebook3000.org


the equilibrium is not stable. The potential there has a minimum moving in one
direction, and a maximum moving in a direction 90° from it.

Let us assume, in a reductio ad absurdum argument, the harmonic function / to
have a maximum at the point A. Let r be the position vector drawn from A. If the
assumption is true, we can always find a sphere centered at A such that, at all the
points on its surface, which we call S, @/=@r\0. Thus, it will also be

Z
S

@/
@r

dS\0:

Let n be the unit vector normal to the sphere pointing outside. This is also the
direction of r on the surface, and hence, we have @/=@r ¼ r/ � n. Applying the
divergence theorem, we obtain

Z
S

@/
@r

dS ¼
Z
S

r/ � ndS ¼
Z
V

r � r/dV ¼
Z
V

r2/dV ¼ 0

where, in the last step, we took into account that / is harmonic in V. Hence, the
opening statement must be false.

2.6 Electrostatic Capacitance

A conductor, think of a metal to be concrete, is considered isolated if it is far
enough from any other conductor and any other charged body (even if it is not a
conductor). This condition is very rarely met in practice, but is easy to analyze, and
we shall do that as a starting point.

Let R be the surface of the conductor and n the unit vector of the outside normal,
as shown in Fig. 2.10. Let us put the charge Q on the conductor and let /0 be the
potential it takes and /(x, y, z) the potential in the space outside the conductor. The
function /(x, y, z) is harmonic with the boundary conditions

/ x; y; zð Þ ¼ /0 on R; / x; y; zð Þ ¼ 0 at infinity: ð2:9Þ

Once /(x, y, z) is known, the field on the surface is known too, being given by

E ¼ � @/
@n

n: ð2:10Þ

We also know the charge density, namely

r ¼ e0E ð2:11Þ
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and the total charge of the conductor

Q ¼
Z
R

r dR ð2:12Þ

The Laplace equation being a linear equation, if / is the solution to a problem
with certain boundary conditions, namely certain values of / on the surfaces of the
boundary (the surface of our conductor and infinity), a solution is also / multiplied
by any constant k, with boundary values k times the previous ones. In the new
solution, the field will be k times larger in every point and, and so will the charge
density on the surface of the conductor and, finally, so will its charge. Inverting the
argument, if we change the charge of the isolated conductor by a factor, its potential
will change by the same factor, namely

Q ¼ C/0 ð2:13Þ

The proportionality constant C is the electrostatic capacitance or simply
capacitance and also capacity of the conductor. The name comes from the era in
which electric charge was thought to be a sort of fluid and the fact that the higher
the capacitance, the higher the “capacity” of the conductor to store charge at a given
voltage. To be precise, the higher the capacitance, the lower the potential reached
by the conductor for a given charge. The measurement unit for capacitance is the
farad (F), after Michael Faraday (UK, 1791–1867), who made enormous contri-
butions to all sectors of electromagnetism. The physical dimensions are coulomb
per volt, namely C/V. An isolated conductor has a capacitance of one farad if, when
charged with one coulomb, it reaches the potential of one volt.

One farad is a very large capacitance. To see that, let us consider a spherical
conductor and let us calculate the value of its radius, say R, to have the capacitance
of one farad.
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Fig. 2.10 A charged isolated
conductor

78 2 Conductors in Equilibrium

www.ebook3000.com

http://www.ebook3000.org


Let Q be the charge on the sphere. The potential at a point immediately outside
the surface, and, by continuity, on the surface as well, is the potential of a point
charge at the center, namely

/0 Rð Þ ¼ 1
4pe0

Q
R
:

The capacitance is then

C ¼ 4pe0R ð2:14Þ

To have C = 1 F, the radius of the sphere must be R = 9 � 109 m, namely nine
million kilometers. In practice, the submultiples are used (lF, nF, pF, etc.).

QUESTION Q 2.2. Find the capacitance of earth (radius-6400 km). How much
does its potential vary if its charge increases by 1 C. h

The concept of capacitance for an isolated conductor has a very limited practical
utility, because other conductors are always present, like the walls and the floor of
the room and the bodies of the people around. Under these conditions, electrostatic
induction takes place. The manner in which charges distribute along the surfaces of
the conductors and the potentials the conductors assume influence one another.

The simplest case consists of two conductors near one another. Even in this case,
however, the presence of a third conductor, floor and walls, which we collectively
call ground, cannot be ignored, as shown in Fig. 2.11. Let us assume the two
conductors initially not to have a charge and to charge up them by transferring the
charge Q from the conductor we shall call 2 to conductor 1. The charge of 1 and 2
will be Q and −Q, respectively. Let /1 and /2 be the two potentials relative to
ground, whose potential we define as /0 = 0.

Under these conditions, we have electrostatic induction between the two con-
ductors and between each of them and ground. As opposed to the isolated con-
ductor, there is no proportionality between the potentials of either of the two
conductors, or their potential difference, and their charge. Electrostatic induction is

φ
2

0φ

φ
1

Fig. 2.11 Two conductors
near one another
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visualized by the behavior of the field lines, as in Fig. 2.11. In particular, not all the
field lines leaving conductor 1 reach conductor 2. We say that the induction
between them is not complete. The induction between two conductors is complete
when all the field lines that exit from one enter the other. The necessary condition
for that is that the charges of the two conductors are equal and opposite. The
condition is not sufficient, as we have just discussed.

Looking at Fig. 2.11, it is clear that we might have complete induction by
moving the pair of conductors very far from the ground. This is, however,
impossible in practice, as it was for the isolated conductor. With two conductors,
however, we have the possibility, which we did not have with just one. The solution
is to have one of the conductors, say 1, be hollow and to lodge the second one in its
cavity, as in Fig. 2.12. In this configuration, the Gauss law requires that all the field
lines leaving conductor 2 terminate on the internal surface of conductor 2, because
the charges on the two surfaces must be equal and opposite. The induction between
1 and 2 is complete. Note that this conclusion is independent of the charge on the
external surface of conductor 1 and of the presence of conductors in the external
surroundings. All of that is irrelevant for the field and the charges inside the cavity.

A capacitor is defined as a system of two conductors between which the elec-
trostatic induction is complete. The two conductors are called the plates of the
capacitor. While the word condenser is often used as being synonymous with
capacitor, we shall use the latter terminology.

Let us now “charge up the capacitor”, meaning that we move a certain charge,
say Q, from conductor 2 to conductor 1. Their charges will be Q1 = Q and
Q2 = −Q and their potentials, say, /1 and /2. We now show that the potential
difference /2–/1 is proportional to Q.

The argument is similar to that which we made for an isolated conductor. Let R1

and R2 be the surfaces of the two conductors. The potential /(x, y, z) in the space
between them is given by the solution of the Laplace equation with the boundary
conditions /(x, y, z) = /1 on R1 and /(x, y, z) = /2 on R2. Once /(x, y, z) is
known, we get the electric field, which is its gradient and the charge densities on the
surfaces, say r1 and r2. The charges on the conductors are then

Q1 ¼ Q ¼
Z
R1

r1 dR; Q2 ¼ �Q ¼
Z
R2

r2 dR ð2:15Þ

Σφ Σ φ1 21 2

Fig. 2.12 A capacitor,
namely two conductors with
complete induction
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Again, if / is the solution to a problem with the above boundary conditions, k/
is the solution with boundary conditions k/1 on R1 and k/2 on R2. The field near
the surfaces is k times larger and so are the surface charge densities, and so, finally,
are the charges on the plates, and we can write

Q ¼ C /2 � /1ð Þ ð2:16Þ

where the constant C is the capacitance of the capacitor (or capacity of the con-
denser). The measurement unit of the capacitance of a capacitor is obviously the
farad.

Capacitors are important elements of electric and electronic circuits. In practice,
they are built joining two conductors separated by an insulating sheet (which also
has the effect of increasing the capacitance, as we shall see in Chap. 4). The
geometric dimensions of the surfaces of the two conductors facing one another are
very large compared to their distance, in order to minimize the effects of the lack of
complete closure at the borders. Indeed, in these regions, a few field lines might
“escape” and end up on another conductor nearby, making the induction incom-
plete. In practice, however, capacitors can be produced in which these effects are
negligible.

Figure 2.13 shows the capacitor of the simplest geometry, namely the
parallel-plate capacitor. It is made of two equal metallic plane plates of surface
S separated by a small gap of height h, which is much smaller than the diameter of
S. We shall make the approximate assumptions that the field is uniform between the
plates, with magnitude r/e0, and zero outside, as in Fig. 2.14a.

The potential difference V is the line integral of the field from one plate to the
other, which is simply Eh. If Q is the charge (on the positive plate), the charge
density is r = Q/S. Hence, we have

V ¼ /2 � /1 ¼
r
e0
h ¼ Q

Se0
h: ð2:17Þ

S

h

Fig. 2.13 Parallel-plate capacitor
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In conclusion, the capacity of the parallel plate capacitor is

C ¼ Se0
h

: ð2:18Þ

We see that the capacitance is greater the larger the area and the smaller the
distance between the plates. To get an idea of the orders of magnitude, let us
consider a parallel-plate capacitor of 1 F capacity with the distance between the
plates being h = 0.1 mm. We immediately see that the surface needed for that is
S = 11 � 106 m2, namely a square with more than 3 km sides.

Equation (2.18) tells us that, as we anticipated in Sect. 1.2, we can measure the
vacuum permittivity in farads per meter. In round figures, its value is, as in Eq. (1.9),

e0 ¼ 8:8 pF/m: ð2:19Þ

To fix the orders of magnitude, it is good to remember that 1pF is about the
capacitance of a parallel-plate capacitor of 1 cm2 area and 1 mm plate separation.

Let us inquire into the validity of our assumptions. Contrary to them, the actual
field does not terminate abruptly at the rim of the plates, but rather extends into the
region surrounding the capacitor, as shown in Fig. 2.14b. In addition, the actual
field is not uniform between the plates near the rim. Therefore, the solution we have
found is not completely correct. We say that there are “fringing effects” at the edge
of the capacitor. The smaller the separation h of the plates relative to their area S,
the smaller the fringe effects. However, our solution can be approximated very well
by the simple modification devised by William Thomson (UK, 1824–1907). We
divide both plates into a central part, where the field is uniform, and in an external
“guard ring” separated by a very narrow gap. The ring is in the same plane and has
the same potential as the nearby plate, as shown in Fig. 2.14c. Our capacitor is now
the central part of the system, from which the edge effects are removed.
Equation (2.18) holds with a very good approximation.

V

+Q

–Q

h

S

(a) (b) (c)

Fig. 2.14 The field of a parallel plate capacitor. a Ideal case, b as in real life, c with the Thomson
guard-ring
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2.7 Calculating Capacitances

In this section, we shall calculate the capacitances of capacitors of two symmetric
geometries, spherical and cylindrical.

Spherical capacitor.
Figure 2.15 shows a cross-section through the center of a spherical capacitor, which
consists of two concentric spherical conducting shells, one inside the other. A small
hole is made in the outer sphere to allow an electric connection with the inner one
going through. Let R1 and R2 be the radiuses of the inner and outer conductors,
respectively, and Q the charge of the capacitor.

The field between the two surfaces is the field of a point charge Q in the center,
namely

E ¼ 1
4pe0

Q
r2
ur

The potential difference is obtained by integrating the field on a line between the
plates, which we chose to be along a radius. We then have

/2 � /1 ¼ �
ZR2

R1

E � dr ¼ � Q
4pe0

ZR2

R1

dr
r2

¼ Q
4pe0

1
R2

� 1
R1

� �
;

which gives the capacitance

C ¼ 4pe0
R1R2

R2 � R1
: ð2:20Þ

We observe that if the plates are very near, namely if R1 � R2, and we call
h = R2–R1 the distance between the conductors, then we have C ¼
e04pR2=h ¼ e0S=h, which is the capacitance of the parallel plate capacitor.

R
2

R
1

Fig. 2.15 Equatorial
cross-section of a spherical
capacitor
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In order to compare this with the spherical isolated conductor, let us calculate the
radius of a spherical capacitor of 1 F with 0.1 mm spacing between the plates. We
find R = 300 m, which is quite big, but not really enormous.

Cylindrical capacitor.
The cylindrical capacitor is made of two coaxial conducting shells, one inside the
other. Let R1 and R2 be the radiuses of the inner and outer conductors, respectively,
l their height and Q the charge of the capacitor. Figure 2.16 shows the geometry.

The field between the electrodes is the field of a linear charge distribution on the
axis with linear density k = Q/l. Its magnitude at the distance r′ from the axis is

E ¼ k
2pe0

1
r0
ur0 : ð2:21Þ

By integration, we obtain the potential difference

/2 � /1 ¼ �
ZR2

R1

E � dr0 ¼ � k
2pe0

ln
R2

R1
¼ � Q

2pe0l
ln
R2

R1
:

The capacitance is then

C ¼ 2pe0l=ln R2=R1ð Þ: ð2:22Þ

We leave as an exercise to show that if R1 � R2, this expression reduces to the
one valid for the parallel plate capacitor with h = R2–R1. Use the approximation
ln R2=R1ð Þ ¼ ln R1 þ hð Þ=R1½ � ¼ ln 1þ h=R1ð Þ � h=R1.

R
1

R
2

l

Fig. 2.16 Geometry of a
cylindrical capacitor
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In practice, a cylindrical capacitor is build by overlapping two rectangular
flexible metal strips separated by an insulating layer. To have a handy device, one
side of the rectangle is short, 1–2 cm, the other very long. The sandwich is then
wrapped in a helix to form a cylinder.

In practice, as in the just-considered example, capacitors have an insulator rather
than a vacuum between the conductors. Electric insulators are also called dielec-
trics. We shall study their properties in Chap. 4. We shall see there that the
expressions we have found for the capacitances need to be modified, simply
changing the vacuum permittivity e0 into a constant e characteristic of the medium,
called the permittivity of the material. A connected term is the relative permittivity,
also called the dielectric constant that is the ratio j = e/e0. The dielectric constant is,
in any case, larger than one, having values ranging, for different media, from a few
units to hundreds of thousands.

Another important feature of the dielectric used to separate and insulate the
plates is its dielectric strength. This is the maximum field that the material can
withstand without breaking down. Breakdown results in the formation of an elec-
trically conductive path and a discharge through the material. For a solid material, a
breakdown generally destroys its insulating capability. Good insulators have
dielectric strengths up to tens of MV/m.

2.8 Combining Capacitors

As we already mentioned, capacitors are commonly used in electronic circuits,
sometimes in quite complicated combinations. It is thus useful to have a set of rules
for finding the equivalent capacitance of the different combinations of capacitors. It
turns out that we can always find the equivalent capacitance by repeated application
of two simple rules. These rules are for the two basic connection types: in series and
in parallel.

Figure 2.17 shows n capacitors connected in series. The arrangement forms a
line in which the positive plate of a capacitor is connected to the negative plate of
the next one. The two plates become a unique conductor. Now, let us charge the
line by taking a charge Q from the last plate on the right (which will then have the
charge −Q) and putting it on the first plate on the left (which will then have the
charge +Q). The charge on the other plate of the first capacitor is, by induction,
−Q. No net charge has gone on the conductor made of the right plate of the first
capacitor and the left plate of the second. Its net charge is zero. Consequently, the
left plate of the second capacitor has the charge +Q. The process repeats itself to the
end of the line.

The potential difference on the i-th capacitor is D/i = Q/Ci. The total potential
difference between the extremes of the line is then
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D/ ¼
XN
i¼1

D/i ¼ Q
XN
i¼1

1
Ci
;

which we see to be proportional to the charge. This means that a series of capacitors
behaves like a single capacitor with the equivalence capacitance

C ¼ 1=
XN
i¼1

1
Ci
: ð2:23Þ

Figure 2.18 shows n capacitors connected in parallel. In this arrangement, all the
positive plates are connected together, thus forming a unique conductor, and the
negative plates are similarly connected.

Consequently, the potential difference is the same for all capacitors. Let it be D/
and let Q be the total charge on the connected plates. This charge distributes on the
capacitors depending on their capacitance. Indeed, the charge on the ith capacitor is
Qi = D/ � Ci. Adding them up, we have

Q ¼ D/
XN
i¼1

Ci:

Even now, the charge is proportional to the potential difference and we can state
that a system of capacitors connected in parallel is equivalent to a single capacitor
of equivalent capacitance

C ¼
XN
i¼1

Ci: ð2:24Þ
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Fig. 2.17 Capacitors connected in series
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Fig. 2.18 Capacitors connected in parallel
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To deal with complicated arrangements of capacitors, one starts by considering
subsets in which the capacitors are connected in series or in parallel. To each subset,
one substitutes a single equivalent capacitor using the above rules. The arrangement
is now simpler and we can apply the same procedure over and over again, since we
are left with a single equivalent capacitor.

2.9 Electrostatic Induction Coefficients

In Sect. 2.6, we considered a system consisting of a hollow conductor containing in
its cavity a second conductor. We have seen that the electrostatic induction between
them is complete and introduced the concept of capacitance. In this section, we
shall consider a more general situation in which the hollow conductor contains any
number of conductors in its cavity.

To be concrete, we shall consider a system of three conductors in the cavity,
without affecting the generality of the argument. Let Q1, Q2 and Q3 be the charges
of the three internal conductors and /1, /2 and /3 their potentials. Let Q0 be the
charge on the internal surface of the hollow conductor (the charge on its external
surface is irrelevant for the field in the cavity) and /0 its potential. As we know,
Q0 = −Q1−Q2−Q3. Let us search for the relation between charges and potentials.
We shall use the superposition principle and the uniqueness of the solution of the
Laplace equation.

We start by considering, one after the other, the three particular arrangements
shown in Fig. 2.19. One case is when /2 = /3 = /0 and /1 is arbitrary. We can
consider connecting conductors 1 and 2 to the hollow one with two conductive
wires. We call this configuration state 1 of the system. Let Q1

1, Q
1
2 and Q1

3 be the
charges of the three internal conductors (the superscript indicates the state we are
considering). One can easily see that the three charges are proportional to /1–/0.
The argument is the same one we have already used a few times. If, for example,
/1–/0 were to double, the field would double too, and the charges Q1

1, Q
1
2 and Q

1
3 as

well. We can then write

Q1
1 ¼ C11 /1 � /0ð Þ; Q1

2 ¼ C21 /1 � /0ð Þ; Q1
3 ¼ C31 /1 � /0ð Þ:

φ0

φ1

φ2

φ3
φ0

φ0
φ0

φ0 φ0
φ0

φ0φ0

State 3State 2State 1

Fig. 2.19 Three states of the system of three conductors in a cavity
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Let us now consider State 2, in which /1 = /3 = /0 and /2 is arbitrary. The
charges, which we call Q2

1, Q
2
2 and Q2

3, are proportional to /2–/0, namely

Q2
1 ¼ C12 /2 � /0ð Þ; Q2

2 ¼ C22 /2 � /0ð Þ; Q2
3 ¼ C32 /2 � /0ð Þ:

Finally, State 3 is when /1 = /2 = /0 and /3 is arbitrary. The charges, Q3
1, Q

3
2

and Q3
3, are proportional to /3–/0, namely

Q3
1 ¼ C13 /3 � /0ð Þ; Q3

2 ¼ C23 /3 � /0ð Þ; Q3
3 ¼ C33 /3 � /0ð Þ:

The proportion coefficients Cij are called electrostatic induction coefficients and
have the physical dimensions of a capacitance. If there is only one conductor, say i,
we are back to the case in Sect. 2.6. The system is a capacitor and Cii is its
capacitance.

The general case in which the potentials are arbitrary is immediately obtained
considering the superposition of States 1, 2 and 3. The Laplace equation being
linear, the potential difference between any internal point and the hollow conductor
is the sum of the corresponding potential differences in the three cases, the field is
the sum of the fields and the charge on each surface the sum of the charges. Adding
up the three equations and calling Qi ¼ Q1

i þQ2
i þQ3

i , we have

Q1 ¼ C11 /1 � /0ð ÞþC12 /2 � /0ð ÞþC13 /3 � /0ð Þ
Q2 ¼ C21 /1 � /0ð ÞþC22 /2 � /0ð ÞþC23 /3 � /0ð Þ
Q3 ¼ C31 /1 � /0ð ÞþC32 /2 � /0ð ÞþC33 /3 � /0ð Þ

: ð2:25Þ

In conclusion, the charges of each conductor depend linearly on the potential
differences between them and the external conductor. If we fix the arbitrary constant
of the potentials, taking the potential of the hollow conductor as zero, then the
charge of each internal conductor is proportional to its potential.

2.10 Electrostatic Shield

Let us again consider a system of n conductors enclosed in the cavity of an external
conductor, as shown in Fig. 2.20.

We already know that, once the potentials /0, /1, /2 … /n are fixed, the field in
the cavity and the charges on the conductors are defined. As we shall now see, this
implies that regardless of any change that can be made in the field and in the
charges outside the external conductor, no observable change can happen inside the
cavity (under static conditions). We might move the charged external bodies, such
as the one in the figure, change their charges, or even put the charge from the
outside on the external surface of the external conductor. In the latter case, its
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potential will vary, but the potential differences with the internal conductors will
remain exactly the same. We shall now prove the latter sentence.

We start by observing that whatever we can do outside the charge on the surface
of the cavity cannot change because it is equal to the opposite of the charges of the
internal conductors.

Let us next consider the simplest situation in which there is only one internal
conductor. This is the case already studied in Sect. 2.6. The system is a capacitor
and the potential difference between internal and external conductors, say /1–/0, is
proportional to the charge of the internal one. No external action, in statics, can
change /1–/0. We can change from outside the charge of the external conductor
and its potential as a consequence, but the potential of the internal conductor will
change by the same amount.

We can extend the same argument to the case of a number of conductors in the
cavity. Indeed, as we have shown in Sect. 2.9, their charges, which cannot vary for
an external action, are linked by linear relations to the potential differences with the
external conductor. Hence, any external electrostatic action can only change the
potentials of all the conductors, /0, /1, /2 … /n, by the same quantity.

In the volume of the cavity, the potential /(r) is the solution of the Laplace
equation with the boundary conditions given by the potentials /0, /1, /2 … /n of
the conductors, which form the surface of that volume. As we just saw, a change in
the external conditions can change the potential, but all by the same quantity, say
D/. On the other hand, /(r) + D/ is also a solution of the Laplace equation. More
precisely, this solution satisfies the new boundary conditions and consequently, the
solution being unique, it is the solution. In conclusion, a change in the external
electrostatic conditions can change the potential at all the points of the cavity by the
same additive amount. But any observable effect is due to the field, not to the
potential, and the field does not vary if the potential varies at every point by the same
additive quantity. This is the action of electrostatic shielding already mentioned.

Notice that the shielding action works in both direction. Namely, whatever we
may do inside (electrostatically), like moving charges from one conductor to the
other, surface of the cavity included, no effect can be observed outside. In elec-
trostatics, internal and external spaces are completely separate and independent.

0
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3

2

φ

φ
φ

φ

Qx

Fig. 2.20 Electrostatic shielding
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We can also express our conclusions by stating that, under static conditions, an
observer inside the cavity of a conductor cannot determine with any measurement
the potential of the conductor that encloses him/her, which we can call the potential
of his/her laboratory. In other words, the laws of the electrostatic phenomena are
invariant under a change of the potential of the laboratory, namely they have the
same form for whatever that potential is. This is the particular form met in elec-
trostatics of a general property of electromagnetism called gauge invariance.

Electrostatic shielding has several practical applications. Delicate experiments
often employ very sensitive equipment that is affected by the presence of con-
ductors in the surroundings, especially when measuring very small charges or
potential differences. To protect them, one encloses the instruments in a metallic,
grounded structure, often in the shape of a cage, called a Faraday cage, having been
invented in 1836 by Michael Faraday (UK, 1791–1867). The walls of the structure
can be made of a continuous metal foil but also of a wire mesh. The latter solution
works because it can be shown that the influence of the openings between the wires
of the mesh only extends over distances comparable with their diameters. Faraday
cages are capable of providing a partial shield for fields variable in time as well.

Note that the properties discussed in this chapter ultimately stem from the
inverse square dependence of the electrostatic force. If the field of a point charge
varied with a power of distance different from −2, even of a very small amount, the
Gauss law would not be valid and, in particular, the shielding action would not be
complete. This feature provides an extremely sensitive way to measure the differ-
ence from −2 of the r exponent.

Suppose that the dependence on the distance of the force is 1=r�2þ e. We build a
hollow conductor, for example, a spherical shell. We charge it from outside, raising
its potential as much as we can, to obtain the maximum effect, if any. We measure
the charge on the internal surface with a sensitive electrometer. If we do not find
any charge, as is the case, we can say that if any charge is present, it must be smaller
than the sensitivity of our instrument (we can never say that it is exactly zero). In
parallel, we calculate how much charge we would expect to find as a function of e.
The upper limit found on the charge will then translate into an upper limit of e.
Notice that, while, in principle, any shape of hollow conductor will do, having a
symmetric shape, namely a sphere, makes the calculation possible in practice.
Notice also that we shall never be able to make a perfect sphere, and that, conse-
quently, we need to take that into account in evaluating the experimental
uncertainties.

The invention of the method is credited to Joseph Priestley (UK, 1773–1804) in
1767. In that year, which, it should be noted, was 18 years before the Coulomb
experiment, the idea already existed that the electrostatic force might have inverse
square law dependence in analogy to the gravitational force. Priestley knew the
Newton theorem showing that the gravitational field inside a spherical shell is zero
(see Vol. 1, Sect. 4.6). He measured the charge inside a spherical shell, finding none,
within a limited sensitivity. This was the first historical hint at the inverse square law,
which was later established by Coulomb with a direct measurement (Sect. 1.2).
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The first precise measurement with Priestley’s method was done by Henry
Cavendish (UK, 1731–1810), who, in 1773, established the limit |e| � 0.02. One
century later, in 1873, James Clerk Maxwell (UK, 1831–1879) improved the limit
to |e| � 5 � 10−5. The limit constantly improved over time until it reached the
present value of |e| � 6 � 10−17. Here, we mention that, in quantum mechanics,
the electromagnetic interaction is described as being due to the exchange of pho-
tons, which are the quanta of the electromagnetic field. The mass of the photon is
rigorously zero if the exponent is exactly −2. Consequently, the upper limit on |e|
provides an upper limit to the photon mass. Taking the electron mass me for
comparison, |e| < 6 � 10−17 corresponds to the photon mass mc, being such that
mc/me < 10−21.

2.11 The Method of Images

The solution of the Laplace equation is unique not only if the boundary conditions
are on surfaces at finite distances, but also if they are at infinity. It can be shown,
although we shall not do that, that this is true if both potential and field go to zero
fast enough when the distance goes to infinity.

The problem in finding the solution is usually much more difficult, depending on
the boundary conditions. As a matter of fact, the only general methods are
numerical, using powerful computer codes. In a few particularly simple cases,
however, the solution can be found with certain “tricks”. One of these is the method
of images that we shall now see.

Let us start with an electric field generated by a charge arrangement that we are
able to calculate. For example, Fig. 2.21 represents the field of two equal and
opposite point charges. Let us now take a metal sheet and give it the form of one of
the equipotential surfaces, placing it exactly on that surface and giving it the
potential of the surface. The sheet divides the space into two regions, separated
from one another by the electrostatic shielding of the sheet. In each of them, the
field is exactly the same as before the introduction of the sheet, because the
boundary conditions in each of them have not changed. We can now fill one of the
two regions with a conducting medium without inducing any change in the other
one. We have thus found a solution to the Laplace equation for a system consisting
of a point charge near a solid conductor with a certain surface shape (the shape of
the equipotential we have chosen) and a certain potential. Considering a number of
cases like this, we end up with a collection of solutions to possible problems. If we
should encounter one of these problems, we can pick the solution from our
collection.

The simplest of such problems is shown in Fig. 2.22. The challenge is to find the
field of a point charge q at the distance zq from a grounded plane conductor.
Looking at Fig. 2.21, we see that one of the equipotential surfaces, having null
potential, is the middle plane between the two charges. We then place a plane
conductor at zero potential (grounded) on that plane. The field in the semispace on
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the left of this conductor is equal to the field that there would be without the plane,
but with a charge −q at −zq. This is the specular distance relative to the real charge
q and is called an image charge of q. As a matter of fact, the real charge sources of

+ –

Fig. 2.21 Electric field lines and equipotential surfaces of two equal and opposite charges

+

–

–

–

–
–
–
–
–

–

–

–

Fig. 2.22 Electric field lines
for a positive charge and a
conductive plane
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the field are q and the negative charges that move inside the conductor to its surface
and arrange themselves to make the field inside null. As we know the field at every
point on the surface, we also know the charge density r, which is the field mag-
nitude divided by e0.

Let us take a reference frame with the origin O at the point of the conductor
plane below the charge, the z-axis normal to the surface through q, and the x and
y axes on the surface. The electric field on the surface has the direction equal and
opposite to the z-axis. Let q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
be the distance from O of a generic point

(x, y) of the surface. The field at that point due to q and its image is

Ez ¼ � 1
4pe0

2zqq

z2q þ q2
� �3=2

:

The charge density is then

r ¼ � 1
2p

zqq

z2q þ q2
� �3=2

: ð2:26Þ

We leave as an exercise the verification that the integral of the surface density on
the plane is just −q.

We finally observe that a charge q facing a conductor is acted upon by an
attractive force due to the negative charges it induces on the surface of the con-
ductor. In the case just discussed, the force can be evaluated as the attractive force
of the image charge, namely

Fz ¼ � 1
4pe0

q2

2zq
� �2

In similar, more complicated cases, image charges are always present, but in
general, their values and their distances from the surface are not equal and opposite
to those of the real charge. These quantities must evaluated case by case.

QUESTION Q 2.3. A nucleus of Fe (Z = 26) is at rest at 1 µm from a plane
grounded conductor. Is there any force on the nucleus? If yes, what is its value? h

Summary

In this chapter, we have learned the following principal concepts:

1. The concept of the electric conductor.
2. The properties of a conductor under static conditions; electric field and charge

density inside the conductor and on its surface.
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3. The force on the surface of a charged conductor.
4. The properties of hollow conductors; electrostatic shielding.
5. How to calculate the potential, and the field, in a space region between con-

ductors at fixed potentials, when the charges that produce the field are not given.
6. That no stable equilibrium for a charge exists in an electrostatic field.
7. The concept of electrostatic capacitance.
8. Capacitances and their different arrangements in electronic circuits.
9. The method of images.

Problems

2:1. How does the electrostatic field vary doubling the distance from its sources if
they are: (a) a point charge, (b) a linear uniform charge distribution, (c) a
planar uniform charge distribution?

2:2. Two metal spheres of radiuses R1 and R2 at a distance much larger than the
radiuses are connected by a conducting wire. The system is charged with the
charge Q. Find the charges Q1 and Q2 on the two spheres.

2:3. The capacitance of a metallic conductor depends or does not depend on
(choose): the metal, the shape, the temperature, the presence and the position
of other conductors.

2:4. Does any charge exist inside a conductor? Which is the charge density in a
conductor under static conditions?

2:5. You are inside a Faraday cage that is on insulating supports. You know that
the cage is connected outside to a constant voltage generator of 100 kV, but
you do not know if the generator is on or off. Would you touch the wall of
the cage?

2:6. Fig. 2.23 is a cartoon showing hypothetic lines of an electric field in the
presence of three conductors, A having a positive charge, B having a negative
charge and C having no charge. The figure has 7 different mistakes. Find
them and explain.

2:7. The capacitance of a cylindrical capacitance depends or does not depend on
(choose): the radiuses of its surfaces, their heights, the metal of which it is
composed, its charge, the presence of other conductors.

2:8. Four spherical drops of water are connected to the positive pole of a battery
having the potential / and then disconnected. They then merge into a single
drop. What is its potential?

2:9. Four plane square conductors form four faces of a cube and have potentials
as in Fig. 2.24. Draw the electric field lines.

2:10. Two plane-conducting surfaces are charged with equal surface density. How
does the repulsive force between them vary with their distance?
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2:11. The point charge Q = 50 nC is at rest at a distance of 1 mm from a grounded
plane metal sheet. There are no other materials. What is the force on the
charge? What is the charge density on the sheet as a function of the distance
of the foot of the normal to the sheet from the charge? What is the induced
charge?

2:12. We have two capacitances C1 = 10 µF and C = 35 µF. We connect them in
series and apply to the series the potential difference D/ = 100 V. What are
the potential differences at each capacitor? (Fig. 2.25).

+
–

A B

C

Fig. 2.23 Conductors and
field lines

+φ

+φ

−φ −φ

Fig. 2.24 Four plane
conductors and their
potentials

Fig. 2.25 Solution to
Problem 2.7
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Chapter 3
Electrostatic Energy

Abstract In this chapter, we find the expression of the potential energy of point
charges, of continuous charge distributions and of charged conductors in a vacuum.
We shall see how energy can be thought of as continuously distributed in space
with a density proportional to the square of the field intensity. We shall find that the
energy of the field of a point charge is infinite.

We have learned that the electrostatic force and the electrostatic field are conser-
vative. In this chapter, we shall find the expression of the potential energy of
relevant electrostatic systems, both of charges in a vacuum and of conductors. We
shall start in Sect. 3.1 with the simplest case, which is a system of point charges in
fixed and known positions in a vacuum. In Sect. 3.2, we shall deal with a con-
tinuous charge distribution. Sections. 3.3 and 3.4 deal with the energy of charged
conductors.

In Sect. 3.5, we shall see how energy can be thought of as continuously dis-
tributed in space with a density proportional to the square of the field intensity. In
Sect. 3.6, we address the energy of the field of point charges. We shall see that this
energy is infinite, because the work required to “assemble” a finite quantity of
charge at a point, namely a space region of null diameter, is infinite. Point charges
do exist in nature. Such is the case, for example, with electrons, as far as we know.
The problem of the energy of their field being infinite, however, has no practical
consequences, because electrons are given; we have not assembled them and we
cannot destroy them.

The energy of charges immersed in a dielectric will be addressed in the next
chapter.

© Springer International Publishing Switzerland 2016
A. Bettini, A Course in Classical Physics 3 — Electromagnetism,
Undergraduate Lecture Notes in Physics, DOI 10.1007/978-3-319-40871-2_3
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3.1 Energy of a System of Point Charges

Consider a system of three point charges q1, q2 and q3 at rest in a vacuum in the
positions r1, r2 and r3. Let us express the energy of the system. As always, the
energy of the system is the work to be done to build it, starting from the config-
uration in which energy is zero by definition. We define the energy to be zero in the
state in which the charges do not interact, namely when their distances are infinite.
Notice that the charges, each by itself, are considered as given, namely we do not
include the work needed to build each point charge.

Let us start by moving the charge q1 from infinite (very large in practice)
distance to its final position r1. There is no force yet acting on the charge and the
work is zero. Let us now move the charge q2 from infinity to r2. In doing that, we
must block q1, already in position, but no work is needed for that. To move q2, we
must do a work against the force F12 exerted by q1 on q2. This is just q2 times the
potential of the field of q1 at r2, say /1(r2). Hence, the work is

W2 ¼ q2/1ðr2Þ ¼
1

4pe0

q1q2
r12

where r12 = | r2 − r1|.
To now bring the charge q3 into position, we must work against the force F13

exerted by q1 and the force F23 exerted by q2. This work is q3 times the potential of
the fields of q1 and q2 at r3, namely

W3 ¼ q2 /1 r3ð Þþ/2 r3ð Þ½ � ¼ 1
4pe0

q1q3
r13

þ q2q3
r23

� �

The total work, which is the energy of the system, is then

UE ¼ 1
4pe0

q1q2
r12

þ q1q3
r13

þ q2q3
r23

� �
: ð3:1Þ

Notice that this expression is symmetrical under the exchange of any pair of
charges, namely it is independent of the order in which we bring the charges in, as it
should be. Notice also that UE may be both positive and negative. It is positive
when, for example, all the charges have the same sign. In this case, the work to
build the system is positive. The acting forces are repulsive; they tend to destroy the
system, diminishing its energy. For example, all the charges in an atomic nucleus
are positive (they are protons). They do not destroy the nucleus because they are
balanced by the nuclear force that is attractive. It is possible in some circumstances
to unlock the nuclear force. The nucleus then breaks into pieces, whose kinetic
energy is equal to the initial electric potential energy. As a matter of fact, that which
is usually called nuclear energy is indeed electrostatic energy.

If the potential energy is negative, at least part of the forces are attractive and
tend to approach the charges and, as always, to decrease the energy. For example,
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an ionic crystal, such as the common NaCl, is composed of positive (Na+) and,
alternative to them, negative ions (Cl−). They attract each other. To destroy the
system, we must give energy, for example, by heating and transforming the crystal
into a gas.

We finally notice that Eq. (3.1) is a sum over the contributions of pairs of
charges. Each term is the interaction energy of a pair.

Equation (3.1) is immediately extended to the general case of N point charges at
rest in a vacuum as

UE ¼ 1
2

XN
i¼1

XN
j¼1;j6¼i

qiqj
4pe0rij

: ð3:2Þ

Notice that in this expression: (a) we have specified j 6¼ i in the sum, because the
interactions are between different charges, not of one charge with itself; and (b) we
have multiplied by ½, because in the sum, each pair is counted twice, once as ij and
once as ji.

We can write Eq. (3.2) in the equivalent form as

UE ¼ 1
2

XN
i¼1

qi �
XN

j¼1;j6¼i

qj
4pe0rij

 !
: ð3:3Þ

Here, we recognize the term in parenthesis as the potential in the position ri of qi
due to all the other charges of the system. Calling it /i, we have

UE ¼ 1
2

XN
i¼1

qi � /i: ð3:4Þ

QUESTION Q 3.1. Nuclear fission can be induced in a 235U by having it absorb a
neutron. The resulting 236U breaks in 92Kr, 141Ba and 3 neutrons. Give an evalu-
ation of the energy released in the process. h

QUESTION Q 3.2. Calculate the electrostatic interaction energy of a proton and an
electron at the mean distance in a hydrogen atom, which is 80 pm. How much is the
corresponding energy of one mole of hydrogen (H2). h

3.2 Energy of a Continuous Charge Distribution

Let us now express the energy of a continuous system of charges, at rest in a
vacuum. Let V be the volume of the distribution and q(r) its (constant in time)
charge density. As shown in Fig. 3.1, let us consider two infinitesimal volumes dV1

and dV2 in the positions r1 and r2, respectively.
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The interaction energy of the charges in the two volumes is clearly

dUE ¼ q r1ð ÞdV1q r2ð ÞdV2

4pe0r12

The energy of the system is the double volume integral in dV1 and dV2 over the
total volume, which should be divided by 2, for the same reason as for the discrete
distribution. We then have

UE ¼ 1
2

Z Z
V

q r1ð ÞdV1q r2ð ÞdV2

4pe0r12
: ð3:5Þ

Similarly to the discrete case, we can write

UE ¼ 1
2

Z
V

q r2ð Þ
Z
V

q r1ð ÞdV1

4pe0r12

� �
dV2 ¼ 1

2

Z
V

q r2ð Þ/ r2ð ÞdV2; ð3:6Þ

because

/ r2ð Þ ¼
Z
V

q r1ð ÞdV1

4pe0r12

is the potential in r2 of all the charge distribution. This time, we did not specify
“due to all the charges but those in r2” because the latter is infinitesimal and so is its
contribution. Note also that the integral diverges at the points for which r1 = r2.
This is no problem, as long as q is a regular function, because the region r1 = r2 is a
measure zero set. However, if there are point charges, the function q diverges in
their position. Consequently, the expressions of this section do not hold in the
presence of point charges.

z

y

x

V

dV

r

dV

r

r

1

2

1

2

12

O

Fig. 3.1 A continuous
charge distribution
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In conclusion, we have found that the energy of a continuous charge distribution
with charge density q(r) is given by

UE ¼ 1
2

Z
V

q rð Þ/ rð ÞdV ð3:7Þ

where /(r) is the potential at the point r generated by the charge distribution itself
and V is the volume of the distribution.

3.3 Energy of a System of Conductors

Consider a system of n conductors with charges Q1, Q2, etc., as shown in Fig. 3.2.
We define the state of zero energy as the state in which the conductors are
uncharged in their positions. Let us calculate the work to be done on the system to
charge the conductors.

Let /i be the final potential and ri(r) the surface charge density of the i-th
conductor. The charges Qi are obviously

Qi ¼
Z
Si

ri rð ÞdS: ð3:8Þ

Let us express the energy, taking into account that charges are only on the
surfaces Si, as

UE ¼ 1
2

Z
V

q rð Þ/ rð ÞdV ¼ 1
2

X
i

/i

Z
Si

ri rð ÞdS;

where, on the right-hand side, we have taken /i out of the integral, because it does
not depend on the point of the surface Si. Considering that the integral on the
right-hand side are the charges of the conductors, we finally have

Q
2

Q
4Q

3

Q
1

φ
1

φ
3

φ
2

φ
4

Fig. 3.2 Four conductors,
their charges and potentials
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UE ¼ 1
2

XN
i¼1

Qi � /i: ð3:9Þ

This expression is formally equal to Eq. (3.4) holding for point charges, but it
has a very different meaning. In the case of point charges, /i is the potential of all
the other charges at the point were the i-th charge is located, while in the case of
conductors, /i is the potential due to all the charges of the system, those of the i-th
conductor included. As a matter of fact, we can reach the same result differently.
We start with the conductors that are very far from one another and charge each of
them to Qi. We then take the conductors in their final positions. Both operations
require work on the system. In the case of the point charges, only the second
operation is needed. In the case of conductors, the work for charging each of them
is additionally necessary.

3.4 Energy Stored in a Capacitor

We now calculate the energy stored in a capacitor with a given charge. The system
being made of two charged conductors, we can start from the result of the last
section. Let Q1 and Q2 be the charges, /1 and /2 the potentials of the two plates and
C the capacitance. The charges are linked to the potential difference as Q1 ¼
C /1 � /2ð Þ and Q2 ¼ �Q1 ¼ �C /1 � /2ð Þ.

Equation (3.9) then gives us UE ¼ /1Q1 þ/2Q2ð Þ=2 ¼ C /1 � /2ð Þ2=2.
Calling V = /1 − /2, we have

UE ¼ 1
2
CV2 ¼ 1

2
Q2

C
: ð3:10Þ

We can obtain this expression differently, namely by computing the electric
work needed to charge the capacitor. Initially, the charges on each plate are zero.
We proceed by moving charges from one plate to the other. Let q and −q be the
charges in a generic step of the operation and V(q) the corresponding potential
difference. The work to move a further dq from the negative to the positive plate is
dW = V(q)dq, where V(q) = q/C. The total work required to charge the capacitor,
namely the energy stored in the capacitor, is

W ¼ UE ¼
ZQ
0

V qð Þdq ¼ 1
C

ZQ
0

qdq ¼ 1
2
Q2

C

The plates of a capacitor are always subject to an attractive force due to the
electric field between them. Let us calculate this force in the simplest case of a
parallel plate capacitor. Let A be the area of the plates, h their distance, and C the
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capacitance. The charge of the capacitor is Q. Let us calculate the force F on one
plate using the virtual works principle. The virtual work for a virtual change dh of
the distance between the plates is equal to the energy variation, namely

dW ¼ �Fdh ¼ dUE: ð3:11Þ

We must pay attention here to the fact that the virtual work is the total work to
be done on the system from outside for the virtual variation. Does Eq. (3.11)
contain all the work? The answer is yes, if we operate at constant charge, and no if
we operate at constant potential difference. Indeed, in the second case, in addition to
the work made by the force, work is needed to keep the potential difference con-
stant. For that to happen, the charges on the plates must vary, and this requires
electric work by the voltage source to which the plates are connected. When
working at constant potential difference, we must include this electric work in the
left-hand side of the equation. The final result is obviously the same in both cases.
We proceed at constant charge and express the energy as a function of the charge,
namely

UE ¼ 1
2
Q2

C
¼ Q2h

2e0A
: ð3:12Þ

The force F ¼ �dUE=dh is then

F ¼ � Q2

2e0A
ð3:13Þ

where the minus sign indicates that the force is attractive. The corresponding
pressure, namely force per unit area, is

F
A
¼ r2

2e0
: ð3:14Þ

which is an expression we already know.
QUESTION Q 3.3. How much is the energy stored in a 20 µF capacitor charged to

220 V? h

3.5 Energy in the Electrostatic Field

Let us go back to Eq. (3.7) and find an equivalent expression of the energy of a
continuous charge distribution in terms of the electric field, rather than the potential
and charge density. We start by eliminating the charge density from Eq. (3.7) using
the Poisson equation q ¼ �e0r2/; namely
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UE ¼ 1
2

Z
V

q/dV ¼ � e0
2

Z
all space

/r2/dV

where, for reasons that will become immediately clear, we have extended the
integral to all the space profiting off the fact that q = 0 outside V. We can now have
the field E ¼ �r/ using the identity /r2/ ¼ r � /r/ð Þ � r/ð Þ2; Substituting,
we get

UE ¼ e0
2

Z
all space

r � /Eð ÞdV þ e0
2

Z
all space

E2dV

We evaluate the first integral by integrating on a spherical volume, say VR, of
finite radius R and then taking its limit for R ! 1. Let RR be the surface of the
sphere and n the unit vector outside normal to the surface. We use the Gauss
divergence theorem and get

lim
R!1

Z
VR

r � /Eð ÞdV ¼ lim
R!1

Z
RR

/Eð Þ � ndR

We assume the volume V to be limited in that in which q 6¼ 0, namely not to
have charges at infinite distances, as is always the case in practice. Then,
for R increasing at large distances outside V, the potential / decreases (at least) as
1/R and E (at least) as 1/R2, while the surface RR on which we integrate increases as
R2. Consequently, the integral decreases as 1/R and its limit is zero. We are left with
the second integral only and we finally have

UE ¼ e0
2

Z
all space

E2 rð Þ dV : ð3:15Þ

This very important equation suggests that the electrostatic field energy is pre-
sent everywhere in space where there is an electrostatic field, with an energy
density, namely an energy per unit volume

wE rð Þ ¼ e0
2
E2 rð Þ: ð3:16Þ

We are induced to think that any infinitesimal space volume dV contains the
energy wdV = (e0/2)E

2dV. The field energy pervades the entire space, even where
there is no charge, namely q is null but E is not. The energy density is larger where
the field is larger, being proportional to its square. Note that energy is invariant
under the rotations of the reference frame, namely it is a scalar. The simplest
expression of a scalar in terms of a vector, like E is, is just E2.
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QUESTION Q 3.4. At a distance of 1 cm from a uniformly charged straight
wire, the field energy density is w = 1 J/m3. How much is the charge density of the
wire? h

Equations (3.7) and (3.15) are completely equivalent in electrostatics.
Consequently, the existence of an energy density suggested by Eq. (3.15) cannot be
verified through experiment. However, as we shall see in the subsequent chapters,
under dynamical conditions, when charges and fields vary in time, Eq. (3.15) still
holds, while Eq. (3.7) does not. Under dynamical conditions, Eq. (3.16) gets its
complete physical meaning. Think, for example, of electromagnetic waves.
A receiving device, like a cell phone or a TV set, detects the energy of an electric
field that has been emitted by a source that is far away, where (moving) charges
have generated that field. The field has, so to speak, detached itself from the sources
and propagated carrying energy with it. When we talk of a vacuum, we mean space
empty of matter. But such a vacuum it is not really empty; it contains energy (and
linear and angular momentum too) of the field. We shall discuss these phenomena
in Chap. 10.

Looking at Eqs. (3.7) and (3.15), one sees that the latter implies that energy of an
electrostatic system is always positive, while for the former, it may be positive or
negative. How can the two equations be equivalent? When we talk of energy, we
always talk of an energy difference between the state under consideration and the
state whose energy we have chosen to be of zero. The energy of a state is always the
work to be done on the system to assemble that state starting from the zero-energy
state. In the zero-energy state for Eq. (3.7), the point charges already exist, but do
not interact because they are infinitely distant from one another. Equation (3.15)
also includes the work that would be necessary to assemble the charges themselves.
As we shall see in Sect. 3.6, this work is infinite in the case of the point charges.

As we already discussed in Chap. 2, when dealing with the field inside matter,
we must distinguish the macroscopic field from the microscopic field. The micro-
scopic electric fields are the fields existing inside the molecules and the atoms
between electrons and nuclei, inside the nuclei between protons, and inside protons
and neutrons between quarks. These fields are never static but vary rapidly in time.
They are correctly described by quantum physics. They vary in space over distances
that are very small compared to the macroscopic ones. The macroscopic field is an
average of the microscopic field over distances and durations much larger and
longer than the molecular sizes and variation times. The microscopic fields existing
inside unperturbed microscopic objects, such as the nucleons, the nuclei, the atoms
and the molecules, are already null at short distances outside them, at least as long
as they are not perturbed. As a consequence, their contributions average to zero
when considering the macroscopic field.

The situation is different when we consider the energies. Energy is proportional
to the square of the field and the average of the square is not equal to the square of
the average. The superposition principle does not hold. The squares of the micro-
scopic fields do not average to zero. The corresponding energy is stored in matter as
internal energy and mass. In our description of the macroscopic phenomena, when
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considering the energy of a system, we shall always consider the work done to
assemble it starting from molecules and atoms as given.

Let us give an example. Consider the conduction electrons in a metal. They
move freely inside the metal like a gas. There are no walls on the surfaces but
electrons are bound inside the metal by their interaction with the ions of the crystal.
To extract an electron, we need to give it a certain energy, called work function.
Inside the metal the macroscopic field is zero everywhere and so are the volume and
surface charge densities. What is the mechanism keeping the conduction electrons
inside? As a matter of fact, in the immediate neighboring of the surface, a fraction of
the electrons does exit a bit, to extremely short distances from the surface. As a
consequence, a positive charge layer forms at the surface and a negative one
immediately outside it. The net surface charge density is zero, but between the two
layers, an electric field exists. This is the field against which one must work to
extract electrons from the metal. It is a microscopic field. The corresponding
energy, namely the work function, is not included in the macroscopic energy.

We profit from the above description in noting that it suggests that the work
function is a characteristics of the surface, not of the bulk of the metal (or of the
conductor in general). It depends in particular on how the surface has been worked,
on the presence of contaminants, water or oxides, etc.

We shall now discuss the energy of two configurations of capacitors as examples.

Energy of a parallel-plate capacitor.
Let A be the area of the plates of a parallel-plate capacitor, h their distance and Q its
charge. We take the approximation that the field is uniform between the plates and
zero immediately outside them (Fig. 3.3). In other words, we neglect the edge
effects. In this approximation, the capacitance is C = e0A/h and the energy is

UE ¼ 1
2
Q2

C
¼ Q2h

2e0A
:

Let us check what Eq. (3.15) gives us. Recalling that E = r/e0 and that r = Q/A,
we have

UE ¼ e0
2

Z
E2dV ¼ e0

2

Z
all space

Q2

e20A
2
dV ¼ Q2

2e0A2 Ah ¼ Q2h
2e0A

;

which is equal to the above expression.

Fig. 3.3 The field of a
parallel plate capacitor
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Energy of a spherical capacitor.
Let R1 and R2 be the radiuses of the two spherical surfaces (R1 < R2), and let the
capacitor be charged with the charge Q.

Recalling Eq. (2.20) for the capacitance, the energy of the capacitor is

UE ¼ 1
2
Q2

C
¼ 1

4pe0

1
R1

� 1
R2

� �
Q2:

On the other hand, the magnitude of the electric field in the capacitor at the
distance r from the center is

E rð Þ ¼ Q
4pe0r2

To calculate the integral in Eq. (3.15), we take as dV the spherical shell between
r and r + dr, as in Fig. 3.4. This volume is dV = 4pr2dr, and so we write

UE ¼ e0
2

ZR2

R1

Q
4pe0

� �24pr2

r4
dr ¼ 1

2
Q2

4pe0

ZR2

R1

dr
r2

¼ 1
2

Q2

4pe0

1
R1

� 1
R2

� �

giving us back the above equation.

3.6 The Energy of a Point Charge

In Sect. 3.1, we discussed the energy of a system of point charges and highlighted
that the energy is purely interaction energy. We then analyzed continuous charge
distributions and expressed their energy as energy of the electrostatic field. Let us
now try to extend the latter point of view to point charges. Let q1 and q2 be two

R

r
dr R1

2

Fig. 3.4 Geometry of a
spherical capacitor
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point charges at the positions r1 and r2, respectively, and let us calculate the energy
of their field. If E1 and E2 are the fields of the two charges, the energy of the total
field is

UE ¼ e0
2

Z
E2dV ¼ e0

2

Z
E2
1dV þ e0

2

Z
E2
2dþ e0

Z
E1 � E2dV :

One immediately sees that the first two terms on the right-hand side do not
depend on the relative positions of the two charges. They also exist when the
charges are infinitely distant and consequently do not interact. If there was only one
charge, say q1, the energy of the field would be

UE ¼ e0
2

Z
E2
1dV

and similarly for q2. These are not interaction energies but proper energies of each
charge. In Sect. 3.1, we did not include these terms, but only the interaction energy,
which is the third term in the above expression.

The proper energies we have now found are a direct consequence of having
associated the energy with the field, including the field of a single charge. Let us
calculate the proper energy of the field E of a point charge q. Let the charge be in
the origin and let r be the distance from it. The energy in the infinitesimal spherical
shell between r and r + dr, whose volume is dV = 4pr2dr, is

dUE ¼ e0
2
E24pr2dr ¼ e0

2
q

4pe0r2

� �2

4pr2dr ¼ q2

8pe0

dr
r2

:

The total energy in the field is obtained by integrating up to infinity and down to
zero, namely

UE ¼ q2

8pe0

Z1
0

dr
r2

¼ q2

8pe0
lim
r!1 � 1

r

� �
� lim

r!0
� 1
r

� �� �

The first limit is zero. The second limit, namely for the distance going down to
zero is infinite. Hence, the energy of the electrostatic field of a point charge is
infinite:

UE ¼ q2

8pe0
lim
r!0

1
r

� �
: ð3:17Þ

Let us try to understand the reason for that. This energy is the work needed to
assemble a point charge. We shall start building a spherical shell of radius a by
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bringing the charges from infinity (where they don’t interact), and then squeezing
the sphere, reducing its radius to zero. Let us calculate the necessary work.

To evaluate the work required to build the spherical surface, consider that we
have already brought the charge q′ onto the surface and express the work required
to bring in an additional dq′. This is simply dq′ times the potential at a of the
existing charge, namely

dW ¼ dUE ¼ q0

4pe0

1
a
dq0;

The total work is obtained by integrating from the initial value of the charge,
namely 0, to the final one, which is q. We have

W ¼ 1
2

q2

4pe0

1
a
;

which is finite. To have a point charge we now need to squeeze down our spherical
shell, reducing a to zero. The necessary work is

UE ¼ 1
2

q2

4pe0
lim
r!0

1
a

� �
; ð3:18Þ

which is just Eq. (3.17). The work, and consequently the energy in the field, is
infinite because, as the charges approach one another, the repulsive forces between
them increase without limit.

As a matter of fact, the same result is reached for any shape of the initial charge
distribution. As another example, let us start from a solid sphere instead of from a
spherical shell. Let us calculate the work required to build a sphere of charge q,
radius a and uniform charge density q, bringing in charges from infinity. We build
the sphere by bringing in infinitesimal spherical shells of charge. At the current step
in the process, we have already built a sphere of radius r. The work to add the
charge dq = q4pr2dr from infinity is given by this charge times the potential of the
already existing charge. This charge is q rð Þ ¼ q 4=3ð Þpr3. The work is then

dW ¼ / rð Þdq ¼ q rð Þ
4pe0r

q4pr2dr:

The total work to be done is

W ¼ q2
4p
3e0

Za
0

r4dr ¼ q2
4p
15e0

a5:
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Or, in terms of the final charge q = (4/3)pa3q

W ¼ 3
5

q2

4pe0

1
a
:

The work to squeeze the sphere to zero radius, namely the energy of the field, is

UE ¼ 3
5

q2

4pe0
lim
a!0

1
a

� �
: ð3:19Þ

The limit is again infinite. The only difference with Eq. (3.18) is the factor of 3/5
instead of 1/2. The difference is relevant for finite radiuses, but irrelevant for a ! 0.
The divergence is the same. The same conclusion is reached for any shape of the
charge distribution with which one might start. The work required to squeeze it to
zero diameter is, in any case, infinite.

The infinite energy of the field of the point charges has no practical consequence,
because the point charges, such as, for example, electrons, are given. We can
neither build them nor destroy them. A serious theoretical difficulty exists, however.
The concept of energy of the field, which is essential in the development of elec-
tromagnetism, is incompatible with point charges.

Summary

In this chapter, we have studied the energy of systems of charges at rest in a vacuum
and on conductors. We have learned the following important concepts:

1. The expression for the energy of a system of charges at rest in given positions.
2. The expression for the energy of a system of conductors at rest in given

positions.
3. The energy of a capacitor.
4. The energy and energy density of the electrostatic field.
5. The infinite energy of the field of a point charge.

Problems

3:1. Five conductors with charges Q1 > Q2 > Q3 > Q4 > Q5 are located far from
one another. We move one at a time until they are all near to one another. We
can proceed in the order 1, 2, 3, 4, 5, or 5, 4, 3, 2, 1. How do the total
necessary works compare?
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3:2. A point charge q = 1 pC is in a position in an electrostatic field generated by
fixed charges of unknown positions and values. We, however, know that the
potential of that point relative to infinity is 1000 V. How much work should be
done to move the charge to infinity?

3:3. We charge a parallel plate capacitor by connecting its plates to the poles of a
battery, and then disconnect the plates. Is any work needed to double the
distance between the plates? If so, where does that work go?

3:4. We have five identical capacitors. We connect two of them in parallel and two
in series. Then, we separately connect to the poles of a battery (a) the unique
capacitor, (b) the pair in parallel, and c) the pair in series. In which case is the
energy delivered by the battery the largest?

3:5. A proton and an alpha particle (Z = 2) move from the negative to the positive
plate of a parallel plate capacitor starting from rest. What is the ratio of their
final kinetic energies?

3:6. We want to increase the distance between the plates of a parallel plate
capacitor of area A = 50 cm2 by 0.1 mm. The charge is Q = 20 nC.
Neglecting the edge effects, how much work is necessary, working at constant
charge?

3:7. A charge Q = 10 nC is uniformly distributed along the surface of a sphere of
radius R = 1 cm. How much is the energy of the electrostatic field? How
much is the energy of the field if the same charge is uniformly distributed in
the volume of the sphere? In the latter situation, what is the fraction of the field
energy outside the sphere?

3:8. Consider a spherical metal shell of radius R. There is a small hole in the shell.
If there is no charge on the shell, how much work is needed to bring a charge
q from infinity through the hole to the center of the sphere? How much if the
sphere has a charge Q?
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Chapter 4
Dielectrics

Abstract In this chapter we discuss the electric properties of the insulators, or
dielectrics, as these materials are also called. There are no free charge carriers in
dielectrics, which consequently do not conduct electricity. However, dielectrics react
in response to an electricfield.We introduce the concept of the dielectric constant,find
the differential equations of the electric field for normal dielectrics, and solve those
equations. We give a microscopic interpretation of the described phenomena. We
discuss the electrostatic energy in the presence of a dielectric medium.

In this chapter, we describe the properties of the static electric field in the presence
of non-conducting media, namely insulators. These materials also began to be
referred to as dielectrics when it was discovered that they are penetrated by the
electric field. Dielectrics differ from conductors because they do not contain free
charge carriers. However, something happens when they are in an electric field,
namely the atomic charges rearrange and reorient under its action. These dis-
placements are extremely small, even on the atomic scale, but they have relevant
and macroscopically observable consequences. We are talking about dielectric
polarization, a phenomenon in which every elementary volume of the medium
acquires a non-zero electric dipole moment.

After having introduced the concept of the dielectric constant in Sect. 4.1, we
start by describing and interpreting polarization in the simplest case of a uniform
electric field in Sect. 4.2. We then go to the general case in the subsequent sections.
In Sect. 4.6, we find the differential equations of the electric field valid for a large
class of dielectric media, the so-called normal dielectrics, and we solve those
equations. We introduce the “electric displacement” field, which is a useful aux-
iliary field, with a misleading name of historical origin. As a matter of fact, it does
not displace anything. Its use simplifies the solution of the field equations.

In Sect. 4.7, we try to give a microscopic interpretation of the just-described phe-
nomena. The interpretation will necessarily be quite approximate because, at this
dimensions, we should give a quantum description. However, it will suffice to
understand the essence of the mechanisms. We shall see that two types of dielectric
materials exist, depending on their molecules. Themolecules of polar dielectrics have
a non-zero intrinsic dipole moment, namely also existing in the absence of an electric
field,while themolecules of thenonpolardielectrics havenull intrinsicdipolemoment.

© Springer International Publishing Switzerland 2016
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The action of an applied electric field on the polar molecules is a tendency to orient
them in its direction. The resulting effect is statistical equilibrium with the contrasting
action of thermal agitation. The action of the appliedfield on the nonpolarmolecules is
to deform their charge distribution with the effect of inducing a non-zero dipole
moment. The effects of the electric field on the polar materials are, in general, larger
than those on the nonpolar ones. Particularly large is the dielectric constant of water,
whosemolecule, aswe have seen inChap. 1, has quite a large dipolemoment. This fact
is the cause of the hydrolysis of salts, a phenomenon on which life itself depends.

In Sect. 4.8, we analyze the electric field and the electric displacement in cavities
inside a dielectric and see how they are different for different shapes of the cavity.
We shall also see that the electric field acting on the generic molecule in a medium
is not exactly the applied field. This is because the former also receives the con-
tributions of the dipole moments induced in the other molecules.

In Sect. 4.9, we study the energy of a system of free charges on conductors
immersed in a fluid dielectric medium and how it can be thought of, in this case too,
as field energy.

4.1 Dielectric Constant

In the previous chapter, we discussed the properties of conductors. Here, we discuss
the electric properties of another class of materials, namely insulators, or dielectrics,
as they are also called. There are no free charge carriers in dielectrics, which
consequently do not conduct electricity. However, dielectrics react in response to an
electric field. Even if their charges cannot move over large distances, they do so on
the sub-molecular scale. The local rearrangement of molecules or atoms in response
to an electric field produces observable and important effects.

Historically, the question of possible electric effects in materials that were used,
at the time, for insulating purposes was raised for the first time by Michael Faraday.
In 1837, he performed a series of experiments with two equal spherical condensers,
one with air and one with different insulators in turn filling the gap between the
metallic surfaces. He discovered the capacities to be larger in the presence than in
the absence of insulators, by factors depending on the material. After the discovery,
insulators were also called dielectrics, from the Greek dia (=through)-electricity.

We shall describe the relevant observations in a simplified form. Let us consider
a parallel plate capacitor made of two metallic plane plates of a few dozen cen-
timeters in diameter at a few centimeters distance. In principle, there should be a
vacuum between the plates, but in practice, we can work in air, which differs from a
vacuum by one half of a percentage for what we are going to discuss (see
Table 4.4). Let A be the area of the plates and d their distance. Its capacitance is

C0 ¼ e0A=d ð4:1Þ
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where the subscript 0 stands for it being in a vacuum. Let us connect the capacitance
to a battery of potential difference V0 and then disconnect it. The charge of the
capacitor is Q = V0 /C0. Let us now introduce between the plates a dielectric slab,
made, for example, of PVC, of thickness d filling the space between the plates of
the capacitor. If we now measure the potential difference, we find a value V, which
is less than V0. If we repeat the process several times, starting from different initial
potential differences V0 in air, we find values of V which are always proportional to
V0, namely that V = V0/j. The constant j is a characteristic of the medium and is
called the dielectric constant of the material.

The observations we just made tell us that the system is still a capacitor, namely
there is complete induction between the plates and the potential difference is pro-
portional to the charge of the plates. The capacitance is, however, now larger, being

C ¼ jC0 ¼ je0A=d ¼ eA=d ð4:2Þ

where we introduced the new constant

e ¼ je0; ð4:3Þ

which is called the permittivity of the material (indeed, e0 is the vacuum
permittivity).

Let us now see the physical reasons for these observations. The fact that the
potential difference is diminished by the presence of the dielectric, while the dis-
tance between plates does not vary, implies that the electric field diminishes by the
same ratio, namely that

E ¼ E0=j: ð4:4Þ

Let us consider the system as represented in Fig. 4.1 and apply the Gauss law to
the surface S, which is a small cylinder with one face inside the metal plate and the
other face inside the dielectric. The figure shows an enlarged version of the very
thin air layers between the plates and the dielectric, where the field has its value in
vacuum E0. In the dielectric, the field is E.

+ + + + + + + + + + + + + + +

+

– – – – – – – – – – – – – – –

– – – – – – – –

+ + + + + + +

S

E

E0

E0

σ
σ

σ
σ

l

l

p

p

conductor

dielectric

conductor

Fig. 4.1 A parallel plate capacitor with a dielectric filling its gap. The thickness of the layers
between the plates and the dielectric is exaggerated
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The flux of the field outgoing from S is E � S. Indeed, the field is null in the
conductor and parallel to the lateral surface of the cylinder. Consequently, only the
face of the cylinder in the dielectric contributes to the flux. Let us call the charge on
the surface of the conductor “free”, it being free of movement, and let us indicate its
density with rf. This charge did not change when we introduced the dielectric slab.
On the other hand, the flux E � S is equal to the charge inside S divided by e0,
namely it is less than it is in absence of the dielectric. We must conclude that there
are charges on the surface of the dielectric. We call these polarization charges (for
reasons that will become clear soon) and indicate their surface density with rP.
Expressed in a formula, these conclusions are

S � E ¼ rf
�� ��� rPj j

e0
S

namely

E ¼ rf
�� ��� rPj j

e0
; ð4:5Þ

while obviously the field in the vacuum is

E0 ¼
rf
�� ��
e0

: ð4:6Þ

4.2 Polarization of a Dielectric

To progress in our analysis, we need to think, at least in a first approximation, as to
what happens inside a dielectric. We shall give more details in Sect. 4.7, where we
shall see that two situations exist, depending on the molecules having or not having
a permanent dipole moment. For the moment, it is enough to consider monoatomic
molecules without a permanent dipole moment. We can think of the atoms as being
spherical distributions of negative charge (the electrons) with a positive equal and
opposite point charge in the center. The centers of the negative and positive charges
coincide and the dipole moment is zero. This is true as long as there is no external
field. If we now switch on the field (namely we move the dielectric in the capac-
itance), the electron cloud and the nucleus become subject to opposite forces, which
tend to separate the two centers. The atom reacts with a force proportional to the
deformation. Let d be the position vector at equilibrium taken from the negative to
the positive charge centers. If q is the charge of the nucleus (and the opposite charge
of the electrons), the deformed atom has acquired a dipole moment
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p ¼ qd: ð4:7Þ

If the medium is isotropic, p has the same direction and sense as the field. If the
electric field is not extremely strong, as is usually the case, the deformation d is very
small and is proportional to the field. Hence, the induced dipole moment is propor-
tional to the field as well. We speak of linear conditions and also of a linear dielectric.
If a dielectric is linear, isotropic and homogeneous, it is said to be a normal dielectric.
We now introduce the constant a, called the atomic polarizability constant. We have

p ¼ aE ð4:8Þ

The dimensions of a are C2 m/N. The process we have described is called
electrostatic polarization. The constant a is characteristic of the material. If it is
larger, the material is “easier” to polarize.

The corresponding macroscopic quantity is the electric dipole moment per unit
volume, which we indicate with P and which is called the polarization density or
simply the polarization. If np is the number of atoms per unit volume, we have

P ¼ npp ¼ npqd ð4:9Þ

ThepolarizationvectorP is ofmain importance in the study of dielectrics, aswe shall
see in this chapter and in the subsequent ones. It is a vectorfield,which canbeuniformor
not. Under the conditions we are considering, P is proportional to the field, namely

P ¼ anpE: ð4:10Þ

This relation is often expressed in terms of still another constant, the electric
susceptibility ve, as

P ¼ e0veE: ð4:11Þ

The electric susceptibility is characteristic of the material, and, in the case we are
discussing, is obviously ve ¼ npa=e0.

The measurement unit of P, which is a distance times a charge divided by a
volume, is C m−2. Recalling the dimensions of ɛ0, we see that a=e0 has the
dimensions of a volume and that ve is dimensionless. As we shall see, a=e0 has the
order of magnitude of the atomic volumes.

4.3 Uniform Polarization

Consider again a dielectric medium between the plates of a parallel plate capacitor,
neglecting the edge effects. This is the simplest situation to analyze, the electric
field E being uniform on the entire dielectric. Let us think of the unperturbed
medium, namely in the absence of an electric field, as the overlap of two uniform,
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equal and opposite, charge distributions. The resulting charge density is zero
everywhere. If we now turn on the field, the charge distributions shift, the positive
one moving in the direction of the field, the negative in the opposite direction.

Let d be the relative shift, as shown in Fig. 4.2. The total charge density is still
zero inside the medium, but it is not so in two layers of thickness d near the two
faces. This is the surface polarization density rP. The “surface” is not a geometrical
but a physical one. Its thickness is very small, smaller than the picometers. rP is the
charge per unit surface, meaning the charge in a volume of 1 � d. If np is the
number per unit volume of charges and q their value, then we have |rP| = npqd.
Recalling Eq. (4.9), we conclude that

Pj j ¼ rPj j ð4:12Þ

In conclusion, if the polarization is uniform and normal to the surface, the
surface polarization density is equal to the magnitude of polarization in the medium.
We can now write Eq. (4.5) as E ¼ rf

�� ��=e0 � P=e0, and also

EþP=e0 ¼ rf
�� ��=e0

This equation can be solved if we know the relation between E, which is the
cause, and P, which is the effect. Under linear conditions Eq. (4.11), we have

Ej j 1þ veð Þ ¼ rf
�� ��=e0:

Notice that the right-hand side of this equation is just the electric field in a vacuum,
showing that E is proportional to E0. Considering that jE = E0, the equation estab-
lishes a relation between susceptivity and the dielectric constant, namely

j ¼ 1þ ve: ð4:13Þ

Note that susceptivity, as defined by Eq. (4.11), is a positive quantity, because
P has the same sense as E. Consequently, the dielectric constant is j > 1, corre-
sponding to the observation that the electric field in a dielectric is smaller than that
in a vacuum.
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Fig. 4.2 Polarization of a dielectric in a uniform field
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4.4 Non-uniform Polarization

If the electric field E and the polarization P are uniform, as we have just seen,
polarization charges appear on the dielectric surfaces, but its volume remains
globally neutral. Let us analyze the reason for that.

Let us consider a thin layer in the dielectric of thickness d between two surfaces,
say S1 and S2, parallel to the external faces of the dielectric. In absence of a field, the
net charge in the layer is zero. The relevant consequence of turning on the field is
the displacement of the charges of one sign relative to the other. We can think, for
example, of the negative charges remaining in place and the positive ones moving.
Let d1 and d2 be their displacements, at S1 and S2, respectively, where we have
considered that the two displacements might be different. As shown in Fig. 4.3, this
means that all the positive charges that are located at a distance smaller or equal to
d1 above S1 enter (contributing to an increase in its charge), while the positive
charges within a distance d2 above S2 exit the layer (diminishing its charge). If the
two displacements are equal, namely if d1 = d2, the net charge density in the layer
remains zero. The displacement being proportional to the electric field, this is the
case if E1 = E2. This is why the polarization volume charge density is zero in a
uniform electric field.

However, when the field is not uniform, namely if E1 6¼ E2, then it is also
d1 6¼ d2, and a volume charge density may appear.

Before analyzing this case, we consider the case of a uniform field whose
direction is not perpendicular to the surfaces of the dielectric. Let h be the angle
between the electric field and normal to the surfaces, as in Fig. 4.4. The only
difference between this and the situation in the last section is that now the shift d is
at an angle with the surfaces. Consequently, the thickness of the polarization charge
“surface” is d cos h, rather than d.

E
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2

+
+

S
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S
1

Fig. 4.3 A dielectric layer
and the charge displacements
induced by an electric field
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Fig. 4.4 Polarization of a
dielectric in a uniform electric
field at an angle with the
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Now, we have rPj j ¼ npq cos h ¼ P cos h, and, indicating the unit vector of the
outgoing normal with n,

rP ¼ P � n: ð4:14Þ

This is the generalization of Eq. (4.12) to a uniform electric field of arbitrary
direction with the dielectric surface.

Let us now give a slightly different interpretation of Eq. (4.14). As a matter of
fact, any unitary surface, even if inside the dielectric, when the electric field goes on
is crossed by a charge equal to P � n, where n is its unit normal vector. As we have
seen, this does not give rise to a volume charge density if P is uniform, but it does
when P is a function of position.

Let V be an arbitrary volume inside a dielectric and R its surface. Let n be the
outgoing normal unit vector ofR (see Fig. 4.5). The total charge inV is zero in absence
of a field. When the field is turned on, the dielectric polarizes, with a polarization
generally different at different points. The displacements of the positive charges
(always relative to the negative ones) may bring them in or out of the volume through
the R. The elementary surface dR is crossed, in the sense of n, by the charge
dQ = P � ndR (which obviouslymay have either sign). The process gives origin to the
appearance in V of a net charge DQ equal and opposite to the net charge that went out
from R, namely

DQ ¼ �
Z
R

P � ndR:

This charge is distributed in V with a certain volume charge density, which we
call qP, and write as

DQ ¼
Z
V

qPdV :

Using the Gauss divergence theorem, we have

DQ ¼ �
Z
R

P � ndR ¼ �
Z
V

r � P � ndV ¼
Z
V

qPdV :

dielectricP

n
Σ

d Σ

Fig. 4.5 A surface inside a
dielectric, and the polarization
and outside normal in a
surface element
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The last equality holds for an arbitrary volume. Hence, the integrands must be
equal, and we have

qP ¼ �r � P: ð4:15Þ

We notice the following in regard to this important equation. First, what we
called qP is physically just a charge density like any other one; the subscript is
simply there to recall the physical process that gives it its origin. Secondly, note that
when P is uniform, its divergence is zero everywhere and we again find back that
the volume polarization charge density is zero. However, we now see that this is a
sufficient, but not necessary condition for having qP = 0. For that, it is enough that
P is solenoidal, namely if its divergence is everywhere zero.

We shall now confirm that our results agree with what we found in Sect. 4.4.
Consider a uniformly polarized dielectric with the surfaces perpendicular to the
field, as in Sect. 4.4, in a region near to its surface. Let z be an axis parallel to the
electric field. As we said, the surface charge density rP occupies a volume of a very
small, but not zero, thickness d, which is shown magnified in Fig. 4.6. We can think

δ
ρ

z

z

zz

z

z

Fig. 4.6 Relation between
surface and volume density
for uniform polarization

4.4 Non-uniform Polarization 121



in an equivalent manner to a volume charge density, say qP, which is everywhere
zero, but in the layer between z1 and z2 at the surface (z2 − z1 = d). In this layer, qP
is very large, because d is very small. We find the relation between qP and rP,
thinking that

rP ¼
Zz2
z1

qP zð Þdz ¼ qPh id:

The polarization vector P has its uniform internal value up to z1 and is zero at z2.
Taking into account that the only component not identically zero is Pz, Eq. (4.15)
tells us

qP ¼ �r � P ¼ � @Pz

@z
¼ P z1ð Þ � P z2ð Þ

d
¼ P

d
¼ rP

d
:

We see that the two descriptions agree.

4.5 Electrostatic Equations in a Dielectric

The differential equations for the electric field are

r � E ¼ q=e0 ð4:16Þ

and

r� E ¼ 0: ð4:17Þ

The equations hold, under static conditions, both in a vacuum and inside matter,
and inside a dielectric in particular. The important difference is that, in a dielectric,
the charge density in Eq. (4.16) that gives origin to the field does not only consist of
the charges that, so to speak, are under our control, but also of those induced in the
dielectric through the polarization phenomenon, which is unknown. We shall now
look for expressions of the field solely as a function of the charges we know,
polarization charges excluded.

Let us consider a region of space full of a fluid dielectric, for example, an oil,
and let us arrange in this region a number of metallic conductors, the shapes and
positions of which we have chosen. Let us give to each conductor a certain charge
that we know. We shall call them free charges, because each charge is free to move
on its conductor, and indicate its density with qf. In the absence of the dielectric, we
could find the electric field by solving Eqs. (4.16) and (4.17), which are equivalent
to the Laplace equation for the potential, with the boundary conditions we have
defined with our conductors. In the presence of the dielectric, the polarization
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charges contribute to the field too. Let qP be the polarization charge density.
Equation (4.16) holds that r � E ¼ qf =e0 þ qP=e0. The second term on the
right-hand side is unknown. Let us eliminate it using Eq. (4.15) and move it to the
left-hand side, obtaining

r � EþP=e0ð Þ ¼ qf =e0: ð4:18Þ

This expression suggests that we define the auxiliary field as

D ¼ e0EþP: ð4:19Þ

For historical reasons, we did not choose D ¼ EþP=e0, which looks more
natural.D is called the electric displacement field, another misleading name, because
it does not measure any displacement, that came about for historical reasons. The
field has the same physical dimensions as the polarization density and is conse-
quently measured in C m−2. The vector field D satisfies the differential equation

r � D ¼ qf : ð4:20Þ

This means that the sources of D are the free charges alone (under static con-
ditions). The field lines of D exit from and enter into points at which free charges
are located. The lines of D cross the polarization charges, for example, the charges
on the surface of the dielectric plate considered in Sect. 4.1, as if they did not exist.

Up to now, we have not solved our problem at all. We have just hidden an
unknown in the left-hand side of the equation. We need further information, namely
the relation between D and E, or, equivalently, between P and E. This relation
describes a situation that, in principle, is very complex, namely how matter reacts to
the field, producing the polarization, a phenomenon that implies an enormous
number of charges. In practice, in the vast majority of situations, we can consider
the dielectric to be normal and Eq. (4.11) to hold. We have

D ¼ e0 1þ veð ÞE ¼ e0jE ¼ eE ð4:21Þ

and for the electric field

r � jEð Þ ¼ qf =e0: ð4:22Þ

The curl of the electric field obeys the same equation in a dielectric as it does in a
vacuum, namely r� E ¼ 0. We now have the divergence of jE and the curl of E,
which are two different fields. Things become simple for a normal dielectric, where
j is uniform and we can move it into the curl, obtaining

r� jEð Þ ¼ 0: ð4:23Þ
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We see that the same charge distribution in a vacuum produces the electric field
E0, satisfying the equations r � E0 ¼ qf =e0 and r� E0 ¼ 0, which are the same
equations. If the boundary conditions are also the same, in particular, if the
dielectric is infinitely extended, or more realistically, if its surfaces extend far
enough, the solution must be the same as well, namely

jE ¼ E0: ð4:24Þ

In a normal and infinite dielectric medium, the electric field generated by a
certain distribution of free charges is equal to the field generated in a vacuum by the
same distribution with the difference that its magnitude is smaller everywhere by
the same factor j. The complex actions of the polarization charges end up in a very
simple result.

Suppose now that we repeat the Coulomb experiment in an infinitely extended
fluid that is a normal dielectric of constant j. Let q1 and q2 be the free charges,
namely the charges on the two small spheres of the experiment. In the presence of
the dielectric, the field everywhere is j times smaller than in vacuum, and, is
consequently, so is the force between the free charges. We can conclude that the
force between two point charges at rest in a dielectric of the mentioned charac-
teristics is

F ¼ 1
4pe

q1q2
r2

: ð4:25Þ

where e ¼ je0. As a matter of fact, this is the usual situation when we do our
experiments in air, which is a dielectric. The effects are extremely small because the
dielectric constant of air at STP is j = 1.0005.

Equation (4.25) is known as the Coulomb law in a dielectric. As opposed to the
Coulomb law in vacuum, it is not a universal law, being valid only under the
assumptions we have made for the dielectric.

QUESTION Q 4.1. Two point charges at rest at 50 cm distance interact with a
certain force in a vacuum. By which factor should their distance be changed if they
are immerged in oil with dielectric constant j = 5 to have the same force? h

We now show that the polarization volume charge density inside a normal
dielectric is zero. We start by finding the relation between P and D using
Eqs. (4.11) and (4.21), namely

P ¼ j� 1
j

D: ð4:26Þ

The dielectric being normal, j is independent of position and we can write

qP ¼ �r � P ¼ �r � j� 1
j

D
� �

¼ � j� 1
j

r � D:
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But the divergence of D is zero where there are no free charges, hence, inside a
normal dielectric, qP ¼ 0, which does not exclude polarization charges on the
surfaces of the dielectric.

QUESTION Q 4.2. The magnitude of the electric displacement in a parallel plate
capacitor is D = 10 µC/m2. What is the charge density on the plates? h

Let us consider an example useful for understanding why the electric field in a
dielectric is reduced by the factor j. Consider a small conducting sphere with radius
R and charge +Qf immersed in a normal fluid dielectric of very large extension, as
shown in Fig. 4.7.

As we have just seen, there are no polarization charges in the volume. However,
there is a negative surface density on the surface of the dielectric touching the
sphere. Let QP be this charge. The corresponding positive charges are far away, on
the free surface of the dielectric. We can neglect their effects.

The field at an arbitrary point P of the dielectric is equal to the field of a point
charge Qf + QP in the center of the sphere. The charge “seen” by P is then smaller
(QP is negative) than in vacuum under the same conditions. We say that polar-
ization partially shields the free charge.

Let us see how the situation changes as a function of the radius of the sphere.
When R decreases, the field of Qf on the spherical surface of the dielectric increases
by R−2. The surface density increases by the same factor. However, QP does not
vary because the surface area decreases by R−2.

Before concluding, let us look at a simple device, called the electric pendulum,
used to show the presence of an electric field. It consists of a small piece of a light
dielectric, cork, for example, attached to a wire, as shown in Fig. 4.8. It is attracted,
for example, by a piece of plastic or a comb that we have rubbed. Notice that the
attraction force is not only due to the presence of an electric field but also to the fact
that the field is not uniform.

The electric field induces in the pendulum body a polarization P parallel and in
the sense of the field. The pendulum becomes an electric dipole. The resultant force
on it is proportional to the induced dipole moment, which is proportional to the

+Q
f

Q
P

P–

–
–
–
–

– – – –
–
–
–
–

–
––

–
–

Fig. 4.7 A positive charged
sphere in a normal dielectric
medium
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field, and in addition to the gradient of the field. Note that the force is always an
attraction toward the region of higher field. This is because the induced P has the
same direction and sense as E.

4.6 Linear and Isotropic Dielectrics

In this section, we discuss the limits within which Eq. (4.11) holds. The equation
gives a relation between the effect, which is the polarization P, and its cause, which
is the field E. It contains two pieces of information: (a) the magnitude of the effect is
proportional to the magnitude of the cause, and (b) the direction of P is equal to the
direction of E. Let us consider the two points separately.

Point (a) is logically an approximation, which, in practice, is almost always very
good. Indeed, we can say that, under time independent conditions, a certain func-
tional relation between the magnitudes of the two vectors should exist, say P = P
(E). We do not know this function, but we can expand it in a Taylor series and, for
values of E not too large, stop at the first term, namely

P Eð Þ ¼ P 0ð Þþ dP
dE

� �
0
Eþ � � � ¼ dP

dE

� �
0
Eþ � � �

where we took into account that there is no polarization in the absence of an applied
electric field, namely that P(0) = 0. This is the proportionality relation. Clearly,
only experiments can tell us what “values of E not too large” means. However, in
practice, the macroscopic electric field we are able to produce is always much
smaller than the field inside the atoms. We shall see an example of that in Sect. 4.7.
Consequently, the atomic deformations we are able to induce are always very small
and the linear approximation is good.

Let us now consider point (b), namely the vector nature of the problem. In order
for P to be parallel to E, the medium must be isotropic, namely its reaction to the

++++++++ + +
+ –

Fig. 4.8 Electric pendulum
in an inhomogeneous field
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field should not depend on the direction. As a counterexample, consider a crystal
lattice. We can schematically think of the structure in Fig. 4.9, which is composed
of a lattice of square rigid frames. Four springs attached to the four sides of each
mesh hold a sphere in the center. Let x and y be the directions of the sides. The two
springs in one direction are equal, but different from the other pair. Let K1 and K2 be
the spring constants of the x and y pairs, respectively.

Let all the spheres have the same charge Q and let us apply an electric field E. If
E is in the x direction, the displacement dx of each sphere will be (for small
displacements) in the x direction too, and given by the relation 2K1dx ¼ QE, where
the factor 2 is the result of there being two springs. Similarly, if E is in the
y direction, the displacements dy are given by 2K2dy ¼ QE. When the direction of
E is arbitrary, with components Ex and Ey, the components of the displacement are

dx ¼ QEx

2K1
; dy ¼ QEy

2K2
:

Hence, if K1 6¼ K2, the direction of the displacement d ¼ dx; dy
� �

is different
from the direction of E. The angles of E and d with the x-axis are, respectively,
a = arctan(Ey/Ex) and b = arctan(K1Ey/K2Ex). As an example, shown in Fig. 4.10,
suppose that a = 45°, namely that Ey = Ex and K2 = 2K1. Then, b = arctan
(1/2) = 26.6°.

Notice that the structure in Fig. 4.9 is anisotropic, both at the microscopic level,
namely at the level of the cell, and at the macroscopic one, namely at the level of
the array. A solid body can be thought to be made of a very large number of cells. If

1K
K2

y

x

Fig. 4.9 A lattice of springs
and spheres representing a
crystal

4.6 Linear and Isotropic Dielectrics 127



the body is a single macroscopic crystal, all the displacements are in the same
direction and consequently the direction of P may not be parallel to E. In the case of
the polycrystalline media, such as metals, the cells are arranged in the same
direction in each microcrystal, but the relative orientations between microcrystals
are random. The components of P perpendicular to E are different in the different
microcrystals and average to zero. Consequently, in a polycrystalline medium,
P and E are parallel. The medium is macroscopically isotropic.

Macroscopically anisotropic media are not only represented by macroscopic
crystals, but also glasses or plastic materials if they are produced in a soft state and
then hardened under stress in a privileged direction, as is often the case.

4.7 Electronic and Orientation Polarization

In this section, we shall try to understand the dielectric polarization phenomena
from the microscopic point of view, extending the hints already given in Sect. 4.2.
We immediately state that the correct description of the atomic phenomena is a
quantum description. The classic arguments that we shall expose can, however, be
considered a reasonably correct first approximation.

There are two main classes of dielectric: the polar and the nonpolar. The non-
polar dielectrics are those we have discussed so far. Their molecules do not have a
permanent dipole moment but develop a moment as a reaction to an electric field.
The molecules of the polar dielectrics do have a permanent dipole moment. These
moments have completely chaotic directions in absence of an applied field and get
partially oriented in the presence of a field. Let us start with the first class.

E

δ

Fig. 4.10 A cell, field E at
45° and displacement d at
26.6°
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Nonpolar dielectrics
As we have seen, the dipole moment developed by a molecule in the presence of an
external field is given by

p ¼ aEa: ð4:27Þ

Compared with Eq. (4.8), we have now been more precise. The field inducing
the dipole moment in the molecule, which we call an acting field and indicate with
Ea, is conceptually different from the electric field E that we apply. Let us fix our
attention on one particular molecule. It is surrounded by an enormous number of
sister molecules. When we apply the field, each of them becomes a dipole and each
dipole produces its own small electric field. The fields of all these dipoles, small but
very numerous, act upon our molecule together with the applied field. The differ-
ence between an externally applied and an acting field is important in condensed
media. For the moment, we limit the discussion to the simpler case of a gas, in
which the distances between the molecules are large enough that we can neglect
their contributions to the acting field. As a further simplification, we shall consider a
monoatomic gas. We shall come back to condensed media in the next section.

In the absence of an external field, the atoms of the medium can be considered as
a spherical “cloud” of negative charge −Zqe (–qe is the electron charge and Z is their
number) with an equal and opposite point charge +Zqe in the center (the nucleus).
To make things simple, we assume the negative charge density to be uniform inside
the atom. The dipole moment is zero. As a reaction to an external field, the centers
of the negative and positive charges displace one another by a distance d, as shown
in Fig. 4.11.

Let us assume the effect of the electric field E to be simply a rigid shift by d of
the positive charge. The nucleus is no longer in the center of the negative charge.
Let Qint be the (negative) charge in the central negative sphere of radius d, and F the
force it exerts on the nucleus. The direction of F is opposite to that of the acting
field. The magnitude of F is calculated considering Qint concentrated in the center,
obtaining

F ¼ ZqeQint

4pe0d
2 :

δ
E

+

–
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Fig. 4.11 Cartoon
representing an atom in an
electric field. The dot is the
center of the negative charges
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Let us express Qint as a function of d. If R is the radius of the atom, we have the
proportion Qint= Zqeð Þ ¼ 4pd3=3

� �
= 4pR3=3ð Þ, and hence, Qint ¼ Zqed

3=R3. The
equilibrium is reached when d is such that F is equal to the force due to the acting
field ZqeEa, namely

ZqeEa ¼ Zqeð Þ2d
4pe0R3 ;

from which we immediately have

Ea ¼ Zqed
4pe0R3 ¼

p
4pe0R3 : ð4:28Þ

where p is the induced dipole moment, namely the distance between the centers of
the charges times the charge Zqe.

As we expected, the dipole moment is proportional to the electric field and has
its direction and sense. As we noticed in Sect. 4.2, the ratio a=e0 has the dimensions
of a volume. The correlated quantity

aV ¼ a
4pe0

ð4:29Þ

is considered in its place for historical reasons. This is called the polarizability
volume. Our very rough model provides the estimate

aV ¼ R3:

The atomic radiuses being on the order of 0.1 nm, aV should be on the order of
10−30 m3. Table 4.1 reports the aV for a number of atoms.

The macroscopic quantity related to aV is the electric susceptibility

ve ¼ j� 1 ¼ np4paV :

Let us recall that the molecular number density at STP of a gas is
np = 2.69 � 1025 m−3. For He gas, we calculate j� 1 ¼ 2:69� 1025 � 0:21�
10�30 � 4p ffi 7� 10�5. This is small compared to unity, providing an a posteriori
justification for having considered the acting and applied fields equal. The exper-
imental value is j� 1 ¼ 6:8� 10�5 (see Table 4.4).

Table 4.1 Polarizability volumes of several elements in 10−30 m3

H He Li N Ne Na Al Ar K Cs

0.68 0.21 24.6 1.14 0.4 24.2 6.9 1.65 43.8 60.2

Adapted from Peter Schwerdtfeger; Massey University Aukland http://ctcp.massey.ac.nz/
Tablepol2015.pdf
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As another exercise, let us evaluate the deformation of a helium atom, relative to
its radius, for an intense applied electric field, for example, Ea = 106 V/m. From
Eq. (4.28) with Z = 2, with a typical atomic radius R = 0.1 nm, we have

d
R
¼ 4pe0R2Ea

2qe
¼ 10�10ð Þ2�106

2� 9� 109 � 1:6� 10�19 ¼ 3:5� 10�6. The deformation is a

very small fraction of the radius indeed. Atoms are really very stiff. This is because
even a field as considerably intense as 106 V/m is still very small when compared to
the fields inside atoms that are in the range of 1011 V/m. As a matter of fact, we
cannot produce macroscopic fields on the order of the atomic ones, simply because,
to produce a field, we need electrodes, and electrodes are made of atoms, and the
latter would be destroyed if subject to an external field similar to their internal ones.
Practical limits are, however, reached at much smaller values. We can conclude that
the linearity hypothesis is almost always verified.

Polar dielectrics
Very often, even in some of the simplest molecules, the centers of the positive

and negative charges are different. The molecule then has an intrinsic dipole
moment, which we shall indicate with p0. An example is the water molecule, which,
as we saw in Sect. 1.15, has a large permanent dipole moment. We shall now
consider a fluid of polar molecules. In the absence of an applied electric field, the
orientations of the molecular dipoles are chaotic with the consequence that, in any
volume, even if macroscopically infinitesimal but still containing an enormous
number of molecules, the net dipole moment is zero. The effects of an applied
electric field are twofold. The first effect is exactly the same as for the nonpolar
dielectrics; the applied field induces a deformation and, consequently, a dipole
moment, now in addition to the permanent one. The second effect, which is
quantitatively larger, is to produce a statistical preference of the permanent dipoles
toward directions close or equal to that of the field. This can happen freely in a fluid
where the molecules can slide on one another, but not in a solid.

The energy of a dipole p0 in the field Ea, as given by Eq. (1.95), is

UE ¼ �p0 � Ea ¼ �p0Ea cos h ð4:30Þ

where h is the angle of the dipole moment with the field. The statistical equilibrium
condition is given by the Boltzmann factor (see Vol. 2, Chap. 5), named after
Ludwig Boltzmann (Austria, 1844–1906). Namely, the number of molecules per
unit volume and per unit solid angle with energy UE is given by

n hð Þ ¼ n0e
�UE

kBT ¼ n0e
þ p0Ea cos h

kBT ð4:31Þ

where kB is the Boltzmann constant, T is the absolute temperature of the fluid and n0
is a normalization constant that we shall determine. We now observe that, for
temperatures not too close to the absolute zero, the exponent in the last equation is
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very small. Consequently, we can expand in series and stop at the first term,
obtaining

n hð Þ ¼ n0 1þ p0Ea cos h
kBT

� �
ð4:32Þ

We now determine the normalization constant by imposing that the number of
molecules per unit volume having a dipole moment in the entire solid angle must be
of a numerical density np. This number is

Z4p

0

n hð ÞdX ¼ n0

Z2p

0

d/
Zp

0

1þ p0Ea cos h
kBT

� �
sin h dh ¼ 4pn0;

which must be equal to np. Hence, the normalization constant is n0 ¼ np=4p.
The next step is calculating the dipole moment per unit volume P. Knowing that

P has the direction of the field, we can only consider the components of the
molecular moments in that direction. Each of the dn molecules in the solid angle dX
around h gives a contribution p0 cos h, and all the dn together a contribution
p0 cos hdn ¼ p0 cos hn hð ÞdX. Integrating all the solid angles, we have

P ¼
Z4p

0

p0n hð Þ cos h dX ¼ npp0
4p

Z2p

0

d/
Zp

0

1þ p0Ea cos h
kBT

� �
cos h sin h dh

¼ � npp0
2

Z�1

þ 1

1þ p0Ea cos h
kBT

� �
cos hd cos hð Þ:

The last integral is immediately calculated, providing

P ¼ npp20Ea

3kBT
ð4:33Þ

The measurable quantity is the dielectric constant, for which we obtain the
expression

j� 1 ¼ P
e0Ea

¼ npp20
3e0kBT

ð4:34Þ

This law is well verified by experiment. Notice that the dielectric constant of the
polar dielectrics depends on the temperature, as opposed to the nonpolar ones.

Another difference appears under dynamic conditions. As a matter of fact, the
main arguments of this section continue to hold even if the field varies in time.
However, the time necessary for the deformation of an atomic cloud is much shorter
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than the typical time needed to reach the statistical equilibrium of the dipole ori-
entations in a polar dielectric. If we apply a periodically varying field, when its
frequency is low, the dipoles have time enough to orient themselves following the
field and the polar dielectric behaves almost as if under static conditions. However,
if the frequency increases above a certain value, the dipoles cannot reorient any
more. Above these frequencies, which are typically on the order of the GHz, only
the deformation effect remains. If we measure the dielectric constant as a function
of frequency of the applied field, we observe a transition from values close to those
under a static condition to much lower values typical of a nonpolar dielectric.

Tables 4.2, 4.3 and 4.4 report several examples of dielectric constants under
static conditions for solids and plastics, liquids and gases, respectively. Notice that,
at STP, the dielectric constants of gases differ from one another only by a few parts
in 10,000. The reported values are for j − 1 in 10−4 units.

4.8 Electric Field in Cavities in Dielectrics

We shall now consider the problem of the dielectric constant in a dense medium. As
already mentioned, the problem is complex, because the polarization of each
molecule is a consequence not only of the applied field, but also of the fields of the
polarizations of all the other molecules. To evaluate this acting field, let us consider
one of the molecules, namely the molecule on which we want to find Ea. Let us
imagine taking the molecule out of the medium, and doing that without changing
the state of the medium, leaving, so to speak, its polarization frozen. The acting
field is the field in the cavity we have opened. The problem is not simple, because

Table 4.2 Static dielectric constants j of several solids and plastics at T = 25 °C

Si NaCl CsCl PVC Neoprene Polyethylene Teflon AF

11.9 5.90 7.20 7.0 9.8 2.3–2.7 2.1

Table 4.3 Static dielectric constants j of several liquids at T = 25 °C

BR2 C6 H6 CCl4 CH4O H2O NH3 C6 H6

3.09 2.27 2.23 32.63 78.54 16.9 2.27

Table 4.4 Static dielectric constants (j − 1) in 10−4 units of several gases at atmospheric
pressure (101.3 kPa) and T = 20 °C

He Ne Ar H2 N2 O2 Air CO2 N2O

0.68 1.3 5.16 2.54 5.47 4.94 5.36 9.88 11.0
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the field in a cavity in a dielectric depends on the shape of the cavity. Let us analyze
this issue, which is interesting from other points of view as well.

Let us start with a narrow cylindrical cavity with axis parallel to P and E. We
take its height to be much longer than the diameter of its base, as in Fig. 4.12. The
question is: if E is the field in the dielectric, what is the field E0 in the cavity? Now,
E0 is different from E if, in opening the cavity, we have altered the divergence or
the curl of the field. We did not alter the curl, which under static conditions is
always zero. A few polarization charges have appeared on the faces of the cylinder
with a possible effect on the divergence. However, these charges are very few,
because we made the faces very small, and they are far from the center of the
cylinder, because we made it long. In conclusion, the electric fields in the cavity and
in the dielectric are equal, namely

E0 ¼ E ð4:35Þ

Consider now a flat cylindrical cavity with a height much shorter than the
diameter of the base, again with the axis parallel to P and E, as in Fig. 4.13. The
contribution of the polarization charges appearing on the faces are now important,
because the faces are large and near to the center. If rP is the polarization charge
density, its contribution to the electric field is rP/e0 or, better yet, in vector form,
P/e0, which has the same direction of E.

The field in the cavity is

E0 ¼ EþP=e0: ð4:36Þ

++

--

E E  = E0

Fig. 4.12 The field in a
narrow cavity in a dielectric

+ + + + + + + +

– – – – – – – –E

E  =E
0
+P/ ε

0

Fig. 4.13 The fields in a flat
cavity in a dielectric
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We can reach the same result comparing the field D in the dielectric with the
same field, which we call D0, in the cavity. As we know, the divergence of D is due
only to the free charge, and consequently

D0 ¼ D; ð4:37Þ

which is equivalent to Eq. (4.36).
We can now go back to the field acting on a molecule. We make the approxi-

mation that the acting field, at least for liquid dielectrics with molecules that are not
too structurally complex, is the field in the center of a spherical cavity.

Consider a dielectric in a uniform field. Let us start by ideally cutting a sphere in
the dielectric, but not yet removing it. The field E in the sphere is obviously equal to
the field at any other point of the dielectric. We use the superposition principle, as in
Fig. 4.14, by saying that E in the sphere is equal to the sum of the field of the
polarized sphere taken alone (call it ES) and the field of the remaining dielectric
with a spherical hole in its center. The latter is the field Ea that we are searching for.
We have then Ea ¼ E� ES.

We will postpone to the end of the section the calculation of the field of a
polarized sphere, so as not to interrupt the discussion. The result is

ES ¼ � P
3e0

: ð4:38Þ

Hence, we have

ES ¼ Eþ P
3e0

; ð4:39Þ

As we see, this is an intermediate value between the long and flat cavities.
Considering that P ¼ npae0Ea and using the just found ES for Ea, we get
P ¼ npae0 EþP=3e0ð Þ, namely

P ¼ npa
1� npa=3

e0E: ð4:40Þ

P

P

P

= +

Fig. 4.14 Combining the contributions to the field in a spherical cavity
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Finally, for the dielectric constant, we get

j ¼ 1þ ve ¼ 1þ npa
1� npa=3

: ð4:41Þ

This equation expresses a macroscopic quantity, the dielectric constant in terms
of atomic quantities. It was explicitly written for the first time by Rudolf Clausius
(Germany, 1822–1888) in 1879 after having been found, in a different form, by
Ottaviano Mossotti (Italy, 1791–1863) back in 1850, and is thus known as the
Clausius-Mossotti formula.

Notice that, for low-density media, such as a gas at STP, namely for small values
of np, Eq. (4.41) gives back ve = npa, which we already met. On the other hand,
Eq. (4.41) shows that, for dense media, namely for large values of np, the dielectric
constant can be significantly larger than the unit.

Let us now compare Eq. (4.41) with a few experimental data. Consider, for
example, CS2. In the gas phase at STP, the dielectric constant is measured to be
j = 1.0029. With this value, we calculate from Eq. (4.41) npa = 0.0029. Consider
now the liquid phase. a does not vary, but np is larger, like the ratio between liquid and
gas densities, which, for CS2, is 381. We then have np,liqa = 0.0029 � 381 = 1.1.
With this value, Eq. (4.41) predicts the value of the dielectric constant to be j = 2.75
(which is significantly larger than 1), while the measured value is j = 2.64. The
agreement is even better than that which onemight expect from our very roughmodel.
In general, the Clausius-Mossotti formula gives values within 10–20 % of the
experimental values, as long as nonpolar dielectrics are considered. Contrastingly, its
predictions are completely wrong for polar dielectrics, as expected, because the
underlying model completely ignores the presence of molecular dipoles.

Let us now calculate the electric field of a uniformly polarized dielectric sphere.
We choose the origin of the reference frame to be in the center of the sphere and the
z-axis in the positive direction of the polarization P. Let h be the polar angle and
n the outgoing unit vector normal to the surface of the sphere. Notice that n has the
direction of the radius and that h is also the angle between n and P. Since the
polarization is uniform, the only polarization charges are on the surface, as shown
in Fig. 4.15, with density

rp ¼ P � n ¼ P cos h: ð4:42Þ

Let us now consider having two spheres equal to the one being considered,
charged with uniform volume charges of opposite sign. Let Q be the positive
charge. Let the two spheres initially overlap perfectly and let us shift the positive
sphere in the z direction by a small distance d, as shown in Fig. 4.16. We obtain two
crescents in which the charges no longer overlap and which are both charged, one
positively and one negatively. The charge under the unit surface (namely the sur-
face charge density) is proportional to the thickness of the crescent at that point,
which is, in turn, proportional to cos h. We conclude that the system of our two
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spheres is equivalent to the surface density of Eq. (4.42), provided we properly
chose Q and d.

The field of the two spheres at the external points is equal to the field of two
point charges +Q and −Q in the centers of the spheres. This last system is a dipole
with a dipole moment of magnitude Qd and the direction of z-axis.

To be equivalent to polarized sphere, this moment should be equal to the dipole
moment of the polarized sphere, namely Qd = (4/3)pR3P. In conclusion, the
electric field of the polarized sphere outside the sphere is equal to the field of an
electric dipole at the origin having the moment p = (4/3)pR3P. It is convenient here
to use the potential, in place of the field, and polar coordinates (r, h). The potential
outside the sphere is

++++ ++
+ +

––––
––

– –
E

z

O

Fig. 4.15 The electric field
of a uniformly polarized
sphere
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– ––– – –– –

+ ++
+
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Fig. 4.16 Two oppositely
charged, slightly displaced
spheres
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/ r; hð Þ ¼ 1
4pe0

p cos h
r2

¼ P
3e0

R3

r2
cos h: ð4:43Þ

In particular, the surface of the sphere (recalling that R cos h ¼ z) is

/ r; hð Þ ¼ P
3e0

R cos h ¼ P
3e0

z: ð4:44Þ

We see that it depends only on z, namely the equipotentials on the surface are the
geographic parallels on the sphere. From this consideration, we can immediately
obtain the potential inside the sphere. Indeed, as no charge is present in the volume,
the potential must be the solution to the Laplace equation with the boundary
conditions on the surface given by Eq. (4.44). But, as immediately verified,
Eq. (4.44) is indeed a solution to the Laplace equation inside the sphere with those
boundary conditions. The solution being unique, this is also the searched-for
solution inside the sphere. The electric field only has a non-zero component, namely
the z-component, which is

Ez ¼ � P
3e0

; ð4:45Þ

which is Eq. (4.38); in particular, P is uniform inside the sphere.

4.9 Electrostatic Energy in a Dielectric

In Chap. 3, we discussed the energy of systems of charges in fixed positions in a
vacuum and of systems of conductors also in a vacuum. We now discuss the energy
when the space between conductors is filled, at least partially, with a dielectric,
which we shall assume to be normal.

Consider a systemof conductors ingivenfixedpositions, eachwitha certain charge.
As is always the case, the energy of the system is equal to the work we must spend to
build it. Let us start with no charges on the conductors. We charge each conductor in
turn by bringing in charges from infinity to its surface until they have reached the
desired values. We shall call these free charges, as usual. To bring in the charges, we
must providework against thefield of the free charges that are already in place, exactly
as if there were a vacuum. However, as opposed to when there was a vacuum, now the
dielectric polarizes aswe bring charges in. In the process, themolecules of themedium
deform and reorient in a process taking additional external work.

Let us start by considering a parallel plate capacitor with plates of surface S and
distance d. We start with a vacuum between the plates. We connect the plates to a
battery, charging them with +Q and −Q, respectively, then we disconnect the
battery. The work done on the system, which is the electric work done by the
battery, is
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U0
E ¼ 1

2
Q2

C0
¼ 1

2
Q2 h

e0S
ð4:46Þ

where we used the superscript and subscript 0 to indicate that we are in a vacuum.
Let us now have a normal dielectric of dielectric constant j between the plates.
The capacitance is now larger by a factor j. As a consequence, to charge the

capacitor with the same Q as before, we shall connect it to a battery of a lower
potential difference. The work done on the system is

UE ¼ 1
2
Q2

C
¼ 1

2
Q2 h

je0S
: ð4:47Þ

Being that UE\U0
E, the extra work done to polarize the dielectric is negative. Let

us understand the reason for that by thinking of building the system in a different
way. Suppose the dielectric to be a plastic plate. We start by charging the capacitor in
a vacuum. The work done by the battery is given by Eq. (4.46). We disconnect the
battery, to work at constant free charge, and then we introduce the dielectric plate.
This requires mechanical work. Here, the edge effects, which we have neglected in
other instances, are crucial. Figure 4.17 shows the electric field lines when the
dielectric plate is partially inserted. Notice that the field lines are different on the
right-hand side, where they are in a vacuum, than on the left-hand side, where they
penetrate the dielectric. Notice also that the lines change direction when crossing the
dielectric surface, due to the presence of polarization surface charges.

Entering into the electric field, the dielectric becomes polarized, namely every
infinitesimal volume dV becomes a dipole of moment PdV, where P is the polar-
ization density (which is a function of the point). The force exerted by an electric
field on a dipole is non-zero only if the field is not uniform. But this is just the case in
the fringe field of the capacitor. The force on the dipole in dV is given by Eq. (1.97),
namely

dF ¼ PdV � rð ÞE; ð4:48Þ

which we can write, using Eq. (4.11), as

dF ¼ e0ve E � rð ÞEdV : ð4:49Þ

F

+Q

–Q

x

yFig. 4.17 Force on a
dielectric plate being
introduced in a capacitor
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We now use the vector identity rE2 ¼ 2 E � rð ÞE and write Eq. (4.49) as

dF ¼ 1
2
e0verE2dV : ð4:50Þ

The force on the dielectric is obtained by integration on its volume V as

F ¼ 1
2
e0ve

Z
V

rE2dV : ð4:51Þ

Looking at Fig. (4.17), we see that the force component Fz is zero, because Ez is
identically zero, and that the component Fy is zero as well, because the contribu-
tions of the volume elements located symmetrically relative to the median plane
cancel each other out. Hence, the only non-zero component is

Fx ¼ 1
2
e0ve

Z
V

@E2

@x
dV : ð4:52Þ

Unfortunately, we cannot calculate further, because we do not know E(x, y),
which is a quite complicated function. We can, however, see that Fx > 0, namely
that the force is directed inside (similarly to an electrostatic pendulum). Indeed,
@E2=@x[ 0 everywhere in the region of the non-uniform field and, of course,
@E2=@x ¼ 0 well inside where the electric field is uniform. Consequently, Fx > 0.
The integral Eq. (4.52), namely the work to be done against this force to bring the
dielectric into position, is negative.

Let us now express energy as energy of the fields. We continue with a parallel
plate capacitor, letting rf be the free charge surface density, S the area of the plates
and h their distance. Neglecting the edge effect, the field is uniform in the volume
V = Sh and zero outside. We can write Eq. (4.47) in the equivalent form as

UE ¼ 1
2
Q2

C
¼ 1

2
rf
e0

rf
j
Sh ¼ 1

2
E � DV :

We interpret this expression by saying that there is energy in the field with
density

wE ¼ 1
2
D � E: ð4:53Þ

The field energy is then

UE ¼ 1
2

Z
D � EdV ; ð4:54Þ
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which takes the place of

UE ¼ e0
2

Z
E2dV : ð4:55Þ

Notice that in a vacuum, D ¼ e0E and the two expressions coincide.
We now show that the Eqs. (4.53) and (4.54) that we have found in a particular

case hold for any linear dielectric. For simplicity’s sake, we shall assume that it is
also isotropic. Then, the relation between D and E is simply D = eE.

Let us consider a region of space in which a dielectric and a number of free
charges are present. To calculate the energy, we start from the state in which there
are no free charges on the conductors and evaluate the work necessary to bring the
charges from the infinite. Let qf rð Þ be the free charge density at the point r in the
generic step of the charging operation. Under these conditions, the dielectric is
already (partially) polarized, hence we have to deal with polarization charges. Let
/ rð Þ then be the potential due to all the charges, both the free and the polarization
ones. Let us now vary the free charge density already in place by dqf rð Þ, by
bringing the charge dqf ðrÞdV from infinite in the elementary volume dV. The work
to be done by the external agent on the system is

dW ¼
Z

all space

dqf rð Þ/ rð ÞdV ;

where we have extended the integral to the entire space, not only to the volume of
the charge distribution, because the integral is zero outside that volume and because
this form will be immediately useful. Recall now that r � D ¼ qf . Hence, if qf
varies by dqf , then D varies by dD such that r � dD ¼ dqf . Substituting this into
the above equation, we get

dW ¼
Z

all space

/r � DdV :

We now use the identity /r � D ¼ �r/ � dDþr � /dDð Þ and recall that
E ¼ �r/, obtaining

dW ¼
Z

all space

E � dDdV þ
Z

all space

r � /r � Dð ÞdV :

Exactly as we did in Sect. 3.5 in the case of a vacuum, we transform the second
integral on the right-hand side into a surface integral with the Gauss divergence
theorem and recognize that it vanishes when the surface goes to infinity. In this
way, we are left with
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dW ¼
Z

all space

E � dDdV : ð4:56Þ

We obtain the energy of the system, namely the total work needed to build it, by
integrating this expression for D, changing it from zero to its final value. Up to now,
we have not made any hypothesis on the dielectric. We now need a relation
between D and E and need to assume it to be D = eE, namely to deal with a normal
dielectric. By differentiation, we then obtain d D � Eð Þ ¼ ed E � Eð Þ ¼ eE � dD. In the
last term, we have the integrand of Eq. (4.56). We can then write for the total
energy

UE ¼
ZD

0

dW ¼ 1
2

Z
all space

dV
ZD

0

d D � Eð Þ ¼ 1
2

Z
all space

D � EdV ;

which demonstrates the thesis.
Let us recall that, in Sect. 3.5, we had found Eq. (4.55) starting from the

equation

UE ¼ 1
2

Z
q/dV : ð4:57Þ

With the same argument from Sect. 3.5, only reversed, it is shown that the
energy of the free charges immersed in a normal dielectric can be expressed as

UE ¼ 1
2

Z
qf/dV : ð4:58Þ

Equations (4.54) and (4.58) are equivalent in electrostatics. In the former, the
energy appears to be distributed in space, and in the latter, to be localized on the
free charges. In practice, depending on the problem, one or the other equation may
be more useful.

Equation (4.54) is the total work done to assemble the system. The external
agent acts directly on the free charges alone. However, the force the agent needs to
exert on the free charges depends on the arrangement of the polarization charges,
which changes during the assembly process. Albeit indirectly, part of the work goes
into stretching and re-orienting the molecules. As we have already noticed,
Eq. (4.58) looks very similar to Eq. (4.57), but the similarity is misleading. In
Eq. (4.57), in a vacuum, / is the potential of the free charges in their own field. The
1/2 factor is there to correct for the double counting. Contrastingly, in Eq. (4.58), /
is the potential of all the charges, both the free and the polarization ones. In
addition, the origin of the 1/2 factor is completely different. Let /f and /P be the
potentials generated by the free and polarization charges, respectively, and let us
split the two contributions in Eq. (4.58), writing
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UE ¼ 1
2

Z
qf/f dV þ 1

2

Z
qf/PdV ¼ Uf þUX : ð4:59Þ

The first term on the right-hand side is the energy of the free charges in their own
field. The factor 1/2 is to cancel the double counting. However, the second term,
namely what we called UX, is 1/2 of the energy of the free charges in the field of the
polarization charges. Why one half only? In addition, in Eq. (4.59), the energy of
the polarization charges in their own field does not explicitly appear. To try to make
a complicated situation clear, let us start with bookkeeping. The energies to be
considered are the following.

The energy of the free charges in their own field is, as we already noticed,

Uf ¼ 1
2

Z
qf/f dV : ð4:60Þ

Similarly, the energy of the polarization charges in their own field is

UP ¼ 1
2

Z
qP/PdV : ð4:61Þ

The third and last term is the interaction energy between free and polarization
charges. This can be written in two equivalent forms. In one form, the free charges
are seen as the sources of the field and the polarization charges as the receptors of
the field force; in the other way, the roles are inverted, but the energy is the same.
Namely the term is

Uint ¼
Z

qf/PdV ¼
Z

qP/f dV ; ð4:62Þ

which is twice UX in Eq. (4.59).
Let us now build the system with a different procedure, in two steps, as we

already did in the particular case of the parallel plate capacitor. The first step is to
charge the conductors in a vacuum, bringing the (free) charges from infinity on
them. The work needed for that, and the corresponding energy, is Uf. The second
step is to introduce the dielectric medium in position, bringing it in from infinity.
The charges on the conductors are kept fixed and no work is done on them. To
calculate the work needed to bring in the dielectric, we must consider the electric
field before and after this process. Let E0 be the electric field in a vacuum, namely
without the dielectric, and E and D the electric and electric displacement fields in
the final state. The work we are considering is equal to the difference between the
energy of the system before and after having brought the dielectric in, namely

W ¼ 1
2

Z
E � D� e0E2

0

� �
dV :
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We now want to have E0 only on the right-hand side. From Eq. (4.54), we have
E ¼ E0=j, and from Eqs. (4.11) and (4.13), P ¼ e0 j� 1ð ÞE ¼ e0 j�1

j E0.
Substituting in the above expression, we get

W ¼ � 1
2

Z
E0 � e0

j� 1
j

� �
E0dV ¼ � 1

2

Z
P � E0dV ¼ 1

2

Z
P � r/f dV

We now use the vector identity r � /fP
� � ¼ P � r/f þ/fr � P, obtaining

W ¼ 1
2

Z
all space

r � /fP
� �

dV � 1
2

Z
all space

/fr � PdV

Similarly to what we have already done several times, we can express the first
term on the right-hand side using the Gauss divergence theorem as a surface
integral on the surface surrounding the volume and sending the surface to infinity.
The limit is zero. In the second term, we notice that �r � P ¼ qP, and finally obtain

W ¼ 1
2

Z
qP/f dV : ð4:63Þ

This is the work to be spent to polarize the dielectric. As we have already
noticed, the total electrostatic energy UE in Eq. (4.58) is equal to the total work
done on the system from outside, which is on the free charges alone. The work
W needed to polarize the dielectric is done by the free charges at the expense of the
interaction energy between the free and polarization charges. The interaction energy
decreases by the same amount, namely by −W, reducing to UX in Eq. (4.59). This
energy equal to W is hidden in the microscopic field, namely in the molecules that
have been stretched and/or re-oriented in the polarization process.

We finally warn the reader that, for the non linear dielectrics, the energy of the
final configuration must be calculated from Eq. (4.56) knowing the dependence of
D from E, which is, in general, very complex.

QUESTION Q 4.3. A capacitor is immersed in oil, connected to a battery and, when
charged, disconnected. Its energy is 30 µJ. The oil is then extracted, spending work
of 80 µJ. Find the dielectric constant of the oil. Where has the work gone? h

QUESTION Q 4.4. Find the energy density in a fluid normal dielectric of constant
j = 3 at 1 m distance from: (a) a 1 pC point charge, (b) a uniform straight charge
distribution of 1 pC/m, (c) a uniform plane charge distribution of 1 pC/m2. h

Summary

In this chapter, we have studied electrostatics in the presence of dielectric media.
We have learned the following principal concepts:
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1. The polarization of the medium and its dielectric constant.
2. The relation between the vector polarization density and the electric field.
3. The relation between the surface and volume charge densities on one side and

the polarization vector on the other.
4. The electric displacement vector and its sources.
5. The differential equations for the electrostatic field in a dielectric.
6. The Coulomb force between two point charges at rest in a normal fluid

dielectric.
7. The microscopic interpretation of electronic and orientation polarization

phenomena.
8. The electric fields in a cavity in a dielectric and how they depend on the shape of

the cavity.
9. The charges and field energy in a dielectric.

Problems

4:1. Fig. 4.1 shows polarization charges on the surfaces of the plates inside the
capacitor and a discontinuity of the electric field. Is the D field continuous or
discontinuous?

4:2. With reference to Fig. 4.1, what is the charge density inside the dielectric?
4:3. Can the electric conductivity be negative? Why?
4:4. What is the order of magnitude of the thickness of the surface polarization

charge density?
4:5. Why is the dielectric constant of water large?
4:6. Does the dielectric constant of water depend on temperature? And that of

helium?
4:7. Consider a cylindrical cavity in a dielectric with axis parallel to the electric

field. Is the electric field larger in a long narrow cavity or in a flat wide one?
And the electric displacement?

4:8. Two plane parallel surfaces in a vacuum are charged with equal and opposite
surface densities. We fill the space between them with a normal dielectric of
constant j. How do the electric field E, the electric displacement D and the
potential difference change?

4:9. Consider two plane surfaces at a distance d in a dielectric. Let n be the unit
vector normal to them. The polarization on one of the surfaces is P1 in the
direction and sense of n, while on the second, it is P2 in the direction and
sense of n as well.

4:10. A dielectric slab is immersed in an electric field perpendicular to its faces.
Consider a closed surface, partially inside and partially outside the slab. The
flux of E outgoing from this surface is positive, while the flux of D is zero.
What can you tell about the charges on the face crossed by that surface?
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4:11. Evaluate the dielectric constant of liquid Ar, jliq, knowing that the dielectric
constant of Ar gas at STP is jgas = 1.000545 and that the ratio of the liquid
to gas (STP) densities is 810. (Compare with the measured value
jliq = 1.54.)

4:12. In a point inside a dielectric, the dielectric constant is j and the electric
displacement D. What is the polarization P?

4:13. What is the charge density at 1 m distance from a small conductive sphere
with charge Q = 1 pC immersed in a fluid normal dielectric with dielectric
constant j = 2? Consider the medium to be infinite.

4:14. The closed surface S in a dielectric does not contain free charges. The flux of
the polarization vector outgoing S is 5 pC. What can you say about the
polarization charge contained in S?

4:15. In a certain dielectric medium, the polarization as a function of position is
P = x2i + 3yxj − 5xz3k. Find the expression of the polarization charge
density.
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Chapter 5
Electric Currents

Abstract In this chapter, we study the direct electric currents in conductors. We
define the current intensity, which is a scalar quantity, and the current density, which
is a vector quantity. We shall learn the universal law of electric charge conservation,
which holds in the strong form of local conservation. The concepts of electric
resistance, resistivity and electromotive force (emf, for short) will be introduced. We
shall describe, as an historical example, how the British Association standard of
resistance was developed. The Ohm laws and the Kirchhoff rules will be discussed.

In this chapter we study the electric currents in the conductors. We shall see how
electric current is due to the motion of the charge carriers, electrons or ions for
example. We shall define the current intensity, which is a scalar quantity, and the
current density, which is a vector quantity. The charge carriers inside a conductor
are permanently in motion. In the absence of a macroscopic electric field, the
motion is chaotic. A conduction current exists if, in addition, an ordered component
of the motion exists. As an analogy, think of to the air molecules in a room. When
the room is closed, the molecule’s motion is chaotic, but, if we open two windows
on two different walls, a draft may develop. The motion of the molecules have now
has an ordered component.

In Sect. 5.2, we learn that the electric charge is always conserved. This is a very
important, and universal, law of physics. In addition, charge conservation is a local
property. This means that charges can vary in a given volume only as a result of
charges entering into or coming out of the volume. Charge conservation should not
be confused with charge invariance, namely with the property of a charge having
the same value in every reference frame, which we studied in Sect. 1.9.

In Sect. 5.3, we introduce the concept of electric resistance, which measures how
strongly, so to speak, a conductor opposes the passage of current. As a matter of
fact, resistance is due to dissipative phenomena that develop the motion of the
carriers tending toward disorder. To maintain the current at a steady value, a
potential difference must be applied to the ends of the conductor. The law gov-
erning the phenomenon is Ohm’s law.
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Section 5.4 is a historical interlude that briefly describes how a prototype resistor
and the connected measuring procedures were developed in the mid-19th century
and their practical and purely scientific importance.

In Sect. 5.5, we deal with Ohm’s law for a current running on a surface, rather
than in a volume. In Sect. 5.6, we study the energy balance for the passage of a
current in a circuit. In the subsequent section, we consider the generators of con-
tinuous electromotive force (or simply of voltage) and see how they act on the
carriers with non-electrostatic forces.

In Sect. 5.8, we analyze the example of a circuit containing a capacitor, a resistor
and a generator, and the processes of charging and discharging the capacitor. In
Sect. 5.9, we give the rules for calculating the potential differences and the current
intensities in resistive networks in a steady regime (the Kirchhoff rules).

We shall close the chapter with a few hints on superconductivity, which is the
property of certain materials having zero resistance at temperatures below one
well-defined, called the transition temperature of the material. This is a purely
quantum phenomenon, of which we can only give a few ideas here.

5.1 Current Intensity and Current Density

Up to now, we have studied electric phenomena under static conditions, namely
ones in which electric charges are at rest and the electric field is constant in time.
Under these conditions, in particular, the electric field and the charge density are
zero inside homgeneous conductors. We shall now study phenomena in which
electric charges move over macroscopic distances, producing an electric current.

Let us start by considering two metallic conductors initially isolated and without
charge. We move a negative charge from conductor 2 to conductor 1. Let /1 and /2

with /1 < /2 be the potentials of the two conductors. We now connect the two
conductors with a silk wire soaked in salt water. Initially, there is a potential
difference between the ends of the conducting wire /2 – /1, as shown in Fig. 5.1.
As a consequence, an electric field E exists inside the wire (in general, it is position
dependent). This is a not static situation; the system is not in equilibrium. The
electric field will push the negative charges from conductor 1 to conductor 2 until
the field itself, and with it, the potential difference, is zero. During this phe-
nomenon, which is very short in practice, an electric current flows through the wire.

Consider an arbitrary section S of the wire. The current intensity through S is
defined as being the electric charge going through S in a second. To be more
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Fig. 5.1 Two metallic
conductors connected by a
conductive wire
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precise, let us choose a positive direction of the wire, for example, from left to right.
Let DQ be the charge through S in the time Dt. In any conductor, the charge is
carried by the corpuscles that we classified as free charges in electrostatics, namely
electrons, ions or holes. These are the charge carriers, or simply carriers. If the
carriers carry positive charges, DQ will be positive if they move in the direction we
have chosen as positive, and negative if they move in the opposite direction. If the
carriers have a negative charge, as electrons do, DQ will be positive if they move in
the negative direction and vice versa. Obviously, if both types of carriers are present
(as in a semiconductor), we must consider the algebraic sum of both contributions.
We then define the current intensity (with reference to the section S under con-
sideration), the quantity I, as

I ¼ lim
Dt!0

DQ
Dt

¼ dQ
dt

: ð5:1Þ

Note that a measurement of the current intensity cannot determine the sign of the
charge of the carriers, because we do not know the direction of their motion. Note
also that DQ is the sum of an enormous number of quantized charges of the carriers.
Consequently, the limit in Eq. (5.1) must be understood in the sense that the time
interval Dt should become very small compared to the macroscopic times, while
remaining large enough to continue to have a large number of carriers passing
through in that interval.

In the SI, current intensity is chosen as one of the base units. The unit is the
ampere (symbol A). Its definition is based on the magnetic effects of the currents
and will be given in Sect. 6.12. We recall that the unit of charge is the coulomb,
which is the charge carried by a current of 1 A intensity in 1 s.

In the above example, the potential difference between the conductors /2 − /1

vanishes in a very short time, and the current with it. If we want a steady regime,
namely the current intensity to be constant in time, we must keep the potential
difference between the ends of the wire constant as well. A current of intensity
constant in time is called a direct current. The electric field inside a conductor
carrying a current cannot be zero.

Any device capable of continuously restoring the potential difference /2 − /1,
which the current tends to nullify, must bring the charges arriving from conductor 1
back to conductor 2. Such devices are called generators. As generators necessarily
act against the electric field forces, they must employ non-electrostatic forces. This
is the case that we already mentioned in Sect. 1.6 of the Volta pile and of the
common batteries, in which chemical processes are used. A generator employing a
mechanical force was developed by Robert Van de Graaf (USA, 1901–1967) in
1929 to generate high voltages for the purpose of accelerating ions in physics
laboratories. The device is not suitable for use in electric circuits, but is useful for
explaining the functioning principles.

The Van de Graaf generator contains a flexible dielectric belt running on two
rollers moved by a motor (Fig. 5.2). A comb of pointed electrodes faces the belt
near the lower roller in the figure. These electrodes have a small positive potential,
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generated, for example, by a battery. The high electric field present near the tips
extracts charges from the electrodes, which then flow onto the nearby running belt.
The belt transports the charges to the higher roller inside a hollow metal sphere.
Here, a second conducting comb is located, connected to an inner point of the
sphere. The comb extracts the charges from the belt and brings them onto the
sphere. The potential of the sphere grows as a consequence. Note that the charge
density on the internal surface remains zero. New charges are free to join.

Clearly, the charges on the sphere generate an electric field between the sphere
itself and ground. The charges on the belt move against the force of this field. The
motor moving the belt produces the necessary work. We see that a force of
non-electrostatic nature is employed.

Let us now go back to the electric current. The definition of current intensity we
gave is suitable for conducting wires, which have a well-defined section. However,
the current can flow in an extended conductor of any shape, as, for example, water
does in an irregular river or lake. Consequently, we define the current density, a
vector quantity that we call j. Its magnitude is the current intensity per unit area
perpendicular to the current flow. Its direction is the direction of the motion of the
charges, if they are positive, and the opposite if they are negative.

Consider then a small surface DS normal to the motion of the carriers. If DI is the
current intensity through DS, then DI = j DS. If, more generally, the surface DS has
an arbitrary orientation, we must consider its projection perpendicular to the flow. If
n is the unit vector normal to DS, we have
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generator
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DI ¼ j � nDS: ð5:2Þ

To obtain the current intensity through any extended surface S, taking into
account that, in general, j is a function of the point, we integrate Eq. (5.2) on the
surface, giving us

I ¼
Z
S
j � n dS: ð5:3Þ

Themeasurement unit of the current density is the ampere per squaremeter, Am−2.
An instrument for measuring the current intensity, the galvanometer, will be

studied in Sect. 6.5.
We shall now establish the relations between the motion of the carriers and

current intensity and density. To fix the ideas, let us assume the carriers to have a
positive charge. Consider a small surface DS inside the conductor and choose a
positive orientation for this surface. Let n be the positive normal unit vector. Let DI
be the current intensity through DS in its positive direction. The surface DS is
crossed at any moment by charge carriers. In absence of an electric field, the
numbers of carriers crossing DS in any time interval in both directions, in their
chaotic motion, are equal. The current DI is zero. In the presence of an electric field,
more carriers cross DS in one of the directions than in the opposite, and DI is
different from zero.

To evaluate DI, we should consider that the carriers have different velocities.
However, as a first step, let us start by assuming all the velocities to be equal. We
shall then move to considering the actual situation.

Let np be the number of carriers per unit volume, q the charge of each of them (in
practice, the elementary charge or a small multiple) and v their velocity. In general,
v will be at an angle, which we indicate with h, with the unit vector n normal to DS
(see Fig. 5.3). The current intensity through DS is the product of q times the number
of carriers crossing DS in a second, which we call Δnp. In a second, a carrier moves
across a distance equal to the magnitude of its velocity, t. Hence, the carriers
crossing DS in a second are those contained in the oblique cylinder of height t in
the direction of v, as shown in Fig. 5.3. Hence, we have Δnp = nptDScos h and
DI ¼ qnptDScos h ¼ qnpv � nDS.

Comparing this with Eq. (5.2), we see that

j ¼ qnpv.

θ
ΔS

v

n
υ

Fig. 5.3 A section of a
conductor and the velocity of
a carrier
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The current density is equal to the carrier velocity times their charge times their
number density.

Let us now consider the real case in which every carrier has a different velocity.
Let dnp be the number of carriers per unit volume with (vector) velocity between
v and v + dv. These dnp carriers have approximately the same velocity in magni-
tude and direction. Let dI be their contribution to the current. This is clearly
dI ¼ qdnpv � nDS. We now find the total current DI by integrating the contributions
of the carriers of different velocities. We have

DI ¼
Z

dI ¼ qDSn �
Z

vdnp;

where, on the right-hand side, we have taken the constants out of the integral. Let us
now recall that, by definition, the mean velocity is

vh i ¼ 1
np

Z
vdnp:

We conclude that

DI ¼ qnp vh i � nDS; ð5:4Þ

from which we have the relation between the mean carrier velocity and the current
density:

j ¼ qnp vh i: ð5:5Þ

Equation (5.5) holds for both signs of the carriers. If q is positive, the current
density and mean velocity have the same sense; if q is negative, they have the
opposite sense. As we already noticed, a measurement of current intensity does not
distinguish between negative carriers moving in one direction and positive carriers
moving in the opposite one. In Sect. 6.3, we shall see how the Hall effect in a
magnetic field is capable of determining the sign of the carrier. If both positive and
negative carriers are present, as is the case with semiconductors and electrolytes, the
current density is

j ¼ qþj jnþ vþh i � q�j jn� v�h i ¼ qþ nþ vþh iþ q�n� v�h i; ð5:6Þ

with an obvious meaning for the symbols. Under the action of the field, the positive
carriers move in the direction of the field, and the negative ones in the opposite
direction, carrying opposite sign charge. Hence, the two contributions add on.

As in a gas, the mean kinetic energy of the thermal motion is proportional to the
absolute temperature. More precisely, the mean kinetic energy per degree of free-
dom is equal to 1/2 kB T, where kB is the Boltzmann constant and T is the absolute
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temperature. In the usual situations, the carriers can be considered as point-like. The
root mean square (r.m.s.) value of the velocity is

trms ¼
ffiffiffiffiffiffiffiffi
t2h i

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 EKh i=m

p
Let us look at the orders of magnitude, remembering that, at room temperature,

kBT is about 1/40 eV. Let us evaluate the rms velocity of monoatomic ions in an
electrolyte. Considering them to be point-like, their mean kinetic energy is
EKh i ¼ 3kBT=2. When dealing with microscopic particles, it is often useful to
consider their rest energy mc2 (where c is the speed of light) in place of the mass
m and measure all energies in electronvolt. The rest energy of a nucleon being, in
round figures, 1 GeV, the rest energy of a nucleus of atomic number A is about
A GeV. In a sufficient approximation, the rest energy of an atom, or of an ion, is
equal to the rest energy of its nucleus. For example, the rest energy of a sodium ion
is about 23 GeV. Hence, we have

trms ¼ c

ffiffiffiffiffiffiffiffiffiffi
3kBT
mc2

r
¼ 3� 108

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3=40

23� 109

r
ffi 540 ms�1:

We cannot use the same argument for electrons in a metal, because their velocity
distribution obeys quantum physics and is different from the Boltzmann distribu-
tion. In any case, electrons’ velocities are two orders of magnitude larger than that
which we have just found for ions.

In the presence of an electric field, the mean velocity of the carriers is different
from zero. It is called the drift velocity. Let us evaluate its order of magnitude.
Consider, for example, a current of intensity I = 1 A in a wire having the section
S = 1 mm2. Hence, the current density is j = 106 A/m2. We still need the number
density of the conduction electrons. In general, the conduction electrons are one or
two per metal ion. Let x be this number. If d is the density of the metal, A its atomic
number, and NA the Avogadro number, we have np ¼ xNAd103=A (the 103 factor is
because A is given in grams rather than in kilograms). Take, for example, copper.
The values are x = 1, d ≅ 9� 103 kg/m3, A = 63.5, and hence, np = 0.85� 1029/m3.
We have then

th i ¼ j
qnp

¼ 106

1:6� 10�19 � 0:85� 1029
ffi 7:4� 10�5 ms�1:

We see that the drift velocity of the conduction electrons in a metal, namely the
ordered component of their motion, is very small, much smaller than their thermal
velocity. The situation in semiconductors is somewhat different. The number
density of the carriers (which can be positive or negative) depends strongly on
temperature and on the composition of the material, on its “doping” as we say.
Usually, however, np is much smaller than in metals. If, for example, np = 1019

m−3, which is not an unusual value, the drift velocity in the above considered
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conditions is on the order of 105 m/s. In practice, however, while a metal like
copper can easily “hold” a current density of 106 A/m2 without getting too hot, this
is not possible in a semiconductor. Semiconductors have a resistivity (to be defined
in Sect. 5.3) much larger than that of metals and would burn out at these current
densities. Reasonable values are on the order of 10 A/m2 (or dozens of µA/mm2).
The corresponding carrier drift velocities are on the order of a few m/s.

QUESTION Q 5.1. Consider a current of 10 A flowing in a copper wire of 3 mm
diameter. In copper there is one conduction electron for each atom. What is the
average speed of the conduction electrons? h

Let us make clear, however, that the ordered motion velocities we just consid-
ered are NOT the velocities with which the changes of the current propagate in a
conductor. Let us go back to the two conductors in Fig. 5.1 at the potentials /1 and
/2 and consider what happens immediately after we have connected them with a
wire. In the neighbor of the point at which we establish the contact, conduction
electrons acquire an ordered component of motion in the direction opposite to the
field. The electric field they produce immediately acts on the electrons that are
located a bit farther on, which acquire a drift velocity as well. Their field, in turn,
acts on still farther electrons, and so on. The development of an ordered motion
propagates with a speed that is much faster than the speed of the carriers. The
propagation speed is the speed of the electromagnetic waves in the medium. The
following analogy is useful for understanding the mechanism. Consider a series of
equal pendulums, each consisting of a metal sphere hanging on a wire. Each sphere
is in contact with the one adjacent to it. If we now take the first in the row somewhat
out of equilibrium and let it go, we see that, almost immediately after its collision
with the second sphere, the last sphere in the row jumps up. The disturbance is
propagated along the system with a much larger velocity than that of the sphere. It
is the sound propagation speed in the metal of the spheres. Similarly, imagine
connecting a light bulb to a battery at 1 km distance with a wire and a switch. When
we close the switch, the bulb lights up immediately, after an imperceptible delay. If
the bulb were to light up when the electrons coming from the generator reached it
through the wire with the above-evaluated velocity, it would take about 10 years.

5.2 Electric Charge Conservation

Electric charge conservation is one of the fundamental laws of physics. It has been
tested under a very large number of different conditions and has always been found
to hold. While it is possible to create or destroy electric charges, their total variation
must be zero. We can create a positive charge if we create an equal and opposite
negative charge. For example, a photon, which is a neutral particle, can “materi-
alize”, as we say, into an electron positron pair, or a neutron can decay into a final
state consisting of a proton, an electron and a neutrino, but a neutron cannot decay
into a proton and two neutrinos. Similarly, an electron and a positron can “anni-
hilate”, producing a photon, but two electrons cannot do the same.

154 5 Electric Currents

www.ebook3000.com

http://www.ebook3000.org


We can express charge conservation in formulas with the following argument.
Let V be a volume enclosed by the surface S, containing the total electric charge
Q. Charge conservation implies that the total charge in V can vary only by going
through the surface S. Namely, the total current flowing out (in an algebraic sense)
from S must be equal to the rate of decrease of the charge inside –dQ/dt, namely
calling n the normal outgoing unit vector on S:

� dQ
dt

¼
Z
S
j � n dS: ð5:7Þ

We can express charge conservation in a differential form, transforming the
surface integral on the right-hand side into a volume integral with the Gauss
divergence theorem, obtaining

� d
dt

Z
V
qdV ¼

Z
V

@q
@t

dV ¼
Z
V
r � jdV :

Being that this equation is true for any volume V, it must also be true between
integrands, namely

� @q
@t

¼ r � j. ð5:8Þ

This is the continuity equation for an electric charge in differential form. We are
stating that not only is the charge conserved, but that it is conserved locally. A local
conservation is stronger than a global conservation. If, for example, the charge
decreases by 1 C in London and contemporarily increases by 1 C in Paris, the
charge is conserved globally but not locally.

A consequence of electric charge conservation is that the current intensity at any
section of a circuit in a steady regime is the same. This property also holds for
non-stationary regimes if the intensity variations with time are slow enough, as is
often the case in practice. We shall now talk about a quasi-stationary regime under
these conditions.

Let us consider a segment of a circuit, between the section S1 upstream and S2
downstream. Let I1 and I2 be the current intensities at the two sections. The currents
are constant in time by assumption (steady regime). Now consider that I1 is the
charge entering the segment in a second through S1 and I2 is the charge flowing out
of the segment in a second from S2. The regime being steady, the charge in the
segment cannot vary. Being that the charge is conserved, it can neither be destroyed
nor created. The necessary conclusion is that I1 = I2.

Similarly, the water flow through different sections of a canal is equal in a steady
regime, as a consequence of the (local) conservation of mass. Contrastingly, if a
dam is opened upstream and a flood wave is running through the canal, the flow in a
section upstream is larger than that downstream of the wave. We can produce
a similar situation in a circuit by connecting a conductive wire to the plates of a
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charged capacitor. A flood wave equivalent does exist, but its velocity is enormous,
on the order of the speed of light, which is 3 ns/m. The time taken to cross a circuit
is consequently extremely small; it is so small that the transient can usually be
considered instantaneous.

5.3 Ohm’s Law

Let us connect the ends of a conducting wire to the poles of a battery providing the
potential difference V = /2 – /1. Let I be the current intensity flowing through the
wire. What is the relation between the applied voltage V and I? The answer was
given in 1826 by Georg Ohm (Germany, 1789–1854), who used a Volta pile in a
series of experiments and established that I is proportional to V, namely that

V ¼ RI: ð5:9Þ

This is Ohm’s law, which is valid for a large class of conductors (but not all of
them), which, for this reason, are called ohmic.

The proportionality constant R is the electric resistance. Its measurement unit is
the ohm (X), which is defined as follows. A conductor has one ohm resistance if it
carries a current of one ampere when it is under the potential difference of one volt.
The resistance depends on the geometry of the conductor, the material of which it is
made and its temperature. For wires, the resistance is directly proportional to the
length l and inversely to the section S. The proportionality constant q depends on
the material and temperature and is called resistivity. We have

R ¼ ql=S: ð5:10Þ

The resistivity of a material is defined as the resistance of a piece of that material
1 m long with a 1 m2 section. Its unit is the ohm times meter (X m). In general,
resistivity depends on temperature. The dependence is not strong for metals, namely
of a few per mille per degree of temperature variation. We shall come back to that at
the end of the section.

Illustratively, we give examples of resistivity values at 20 °C in Table 5.1.
As one can see, values of resistivity vary over the huge range of 25 orders of

magnitude. There is no sharp separation between materials that can be considered
good or very good conductors (like silver and copper) and good or very good
insulators. Pure semiconductors are in between and get their name from that fact.
Their resistivity can be increased by orders of magnitude by doping them with the
proper elements. The resistivity of solutions strongly depends on their “strength”,
namely the amount of solute per unit volume of solution.

As we stated, Eqs. (5.9) and (5.10) hold for wires that are ohmic conductors. If
the conductor is ohmic but is not a wire, the Ohm law has a more general
expression. To find it, let us consider an extended conductor, such as the one shown
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in Fig. 5.4, which is a metal sheet with two points maintained to different potentials
/1 and /2. The lines in the figure are both electric field and current density lines.
Indeed, the two vectors, E and j, are parallel everywhere. The field lines coincide
with the current lines.

Consider an infinitesimal surface dS normal to j. The set of current lines crossing
dS make an infinitesimal flow tube. The lateral surface of the tube is geometrical
rather than physical, but still no charge exits through them because they are parallel
to the velocity by construction. The flow tube behaves as a wire conductor, for
which Eqs. (5.9) and (5.10) hold, with the warning that the section may vary along
the tube. In order to deal with a definite section, let us consider a segment of the
tube of infinitesimal length dl. Let dR be the resistance of the segment, dI = jdS the
current intensity through dS, and d/ the potential difference between its ends.
Ohm’s law gives us d/ = dR dI. On the other hand, the magnitude of the electric
field in the segment is E = d//dl. In addition, Eq. (5.10) gives us dR = q dl/dS and

we can write Edl ¼ q
dl
dS

jdS, namely E = qj. The latter relation holds for vectors

too, given that they are parallel. We finally have

E ¼ qj. ð5:11Þ

Table 5.1 Resistivity in X m
of pure substances and a
solution

Substance Resistivity (X m)

Silver 1.6 � 10−8

Copper 1.7 � 10−8

Iron 10 � 10−8

Graphite � 10−5

KCl in H2O (normal solutiona) 10−1

Germanium 4.6 � 10−1

Silicon 2.3 � 103

Boron 1.8 � 104

Iodine 1.3 � 107

Sulfur (yellow) 2 � 1015

Quartz (fused) 1016–1017

aNormal is a solution of 1 mole of solute in 1 kg of solution
(71 g/kg for KCl)

dS
dl

φ1
φ2

j

Fig. 5.4 Field lines in an
extended conductor
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This is Ohm’s law for a conductor of arbitrary shape. It includes both Eqs. (5.9)
and (5.10) and, as opposed to them, is local. Equation (5.11) is often written in an
equivalent form introducing the electric conductivity, which is simply the inverse of
the resistivity, namely

g ¼ 1=q: ð5:12Þ

Equation (5.11) becomes

j ¼ gE. ð5:13Þ

The units for conductivity are the X−1 m−1. The unit for an inverse resistance,
namely 1 X−1, is called 1 siemens (S), and the conductivity is given in siemens per
meter (S/m). To have an idea of the orders of magnitude, let us consider a copper
wire (g = 5.9 � 107 X−1 m−1) having the section S = 1 mm2 carrying a current of
I = 1 mA. The current density is j = 103 A/m2 and the field is E = j/g = 1.7 � 10−5

V/m. As we can see, this is quite a small value. As a matter of fact, this field is, for
comparison, on the same order as the field produced by one electron at r = 1 cm
distance. Let us check:

qe= 4pe0r2
� � ¼ 1:6� 10�19= 4p� 8:8� 10�12 � 10�4� � ¼ 1:45� 10�5 V/m:

Ohm’s law is extremely important in practice, but is not fundamental in its
character. It is a phenomenological description at the macroscopic level of micro-
scopic phenomena. At first sight, it looks strange. Indeed, the current density is
proportional to the velocity of the carriers and the electric field is proportional to the
force acting on them. Namely, Eq. (5.13) states that the velocity, not the acceler-
ation, is proportional to the force. The reason for the apparent contradiction is the
disordered motion of the carriers. In their motion, the carriers are subject to
extremely frequent collisions, both with one another and with impurities present in
the conductor. Just after a collision, the motion of a carrier is, indeed, accelerated,
but only until the next collision. If s is the mean time between collisions and F the
applied force, the mean velocity gained between two collisions is

vh i ¼ sF=m: ð5:14Þ

This is also the mean velocity in the direction of the field if, as we assume for the
moment, no statistical correlation exists between the directions before and after a
collision. We say that the collision randomizes the motion completely. In this case,
the mean value of the velocity after a collision is zero. We conclude that the mean
velocity, also called the drift velocity, is proportional to the applied force. In
practice, a single collision randomizes the motion only partially. Namely, there is
some correlation between incident and outgoing directions. However, any corre-
lation disappears after a certain small number, say x, of collisions. This does not
change the above conclusion if s in Eq. (5.14) is the randomization time, which is
x times the average time between collisions.
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For the ohmic conductors, the carrier number density np is independent of the
applied field and we can write j ¼ npq vh i ¼ npqsF=m. Being that F = qE, we have
j ¼ npq2sE=m. Looking at Eq. (5.13), we have for the conductivity

g ¼ npq
2s=m: ð5:15Þ

Let us discuss this equation. Firstly, it states that the conductivity is proportional
to the square of the charge of the carrier. Our previous observation that current is
independent of the sign of the carrier is confirmed. Secondly, we see that con-
ductivity is larger if the randomization time is longer. Conductivity is also larger if
the mass of the carrier is smaller (as for electrons compared with ions).

We can also understand why Ohm’s law is not universally true. Consider, for
example, an electric discharge in a gas. The carriers are some electrons and ionized
molecules of the gas. If the electric field is large enough, a carrier may acquire a
velocity after a collision, and a kinetic energy, large enough to break up the target
molecule at its next collision. A new ionized molecule and a free electron are
produced, namely two additional carriers. The process repeats itself and a chain
reaction develops, producing a large number of carriers and, eventually, an electric
discharge (lightning, for example). The phenomenon develops particularly in gases,
in which the time between collisions is longer. In these cases, the number density np
of carriers depends on the field and, consequently, Ohm’s law does not hold.

Let us go back to the conduction in a metal. What are the targets of the electrons’
collisions? One immediately thinks of the ions of the crystal. These are, however,
very densely packed. The mean free path, say l, between collisions should be on the
order of the size of the cell of the crystal lattice, a, which is on the order of 0.1 nm.
A simple calculation leads to conductivity values two orders of magnitude smaller
than those observed. Our model based on classical physics is wrong.

Let us consider the additional experimental information on the temperature
dependence of the metal resistivity. This is shown in Fig. 5.5 for pure copper. The
resistivity decreases with decreasing temperature, tending for T ! 0 to definite
values that are different from zero, called the residual resistance. The curves in
Fig. 5.5 are for two different metallurgic treatments. The resistivity of pure copper
at the ambient temperature is qCu = 1.71 � 10−8 X m. The residual resistance,
measured at T = 4 K, is 50–500 times smaller, depending on the treatment of the
conductor. This behavior cannot be explained assuming the ions of the crystal to be
the target of electron collisions. Indeed, the size of the crystal cell varies just a little
and decreases, if at all, with temperature. The consequence should be a modest
increase of resistance with decreasing temperature, contrary to observations. The
explanation is given by quantum mechanics, which shows that electrons move in a
perfect lattice, like in a vacuum. They never collide with the ions. Contrastingly, the
collisions are on defects of the lattice and on impurities, namely atoms different
from the crystal ones, which are always present in small amounts. This accounts for
the residual resistance. When the temperature increases, the thermal motion of the
ions increases. The ions oscillate about their equilibrium positions, which are the
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vertices of the lattice, with increasing amplitude. The probability of an electron
finding an ion “out of position” increases. This explains the increase in resistivity
with temperature.

5.4 The British Association Ohm

This section is a historical interlude, which can be skipped without compromising the
understanding of that which follows it. It is dedicated to showing, along with an
example, the importance of the standardization of measurement units. Today, stan-
dard resistance boxes are so easily commercially available as to be taken for granted.
However, the labor necessary to secure the initial reliable standards was huge,
requiring organization and close collaboration between engineers and physicists.

In the 1840s, a network of telegraph lines was already operational across Britain,
consisting partially of underground cables, partially of cables strung between poles.
No particular precision resistance measurements had been needed for such instal-
lations. The situation changed when the plans for laying the first Atlantic tele-
graphic cable were begun. This would be the first step of an immense commercial
undertaking, ultimately leading to a world-wide telecommunications cable network.
The commercial, political, cultural and military consequences were enormous. The
success of the enterprise would not have been possible without the ingenious
scientific input of William Thomson (UK, 1824–1907).

Thomson was appointed as the leading science consultant by the Atlantic cable
company in the 1850s. Initially, however, he had been given insufficient scientific
control of the process, as became evident with the failure of the first cable-laying
expedition in 1858. The following year, the British government and the Atlantic
Telegraph Company set up a joint committee to investigate the causes of the failure.
In its final report, delivered in 1861, the committee advanced a number of
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recommendations, including, on Thomson’s suggestion, a call for standard resis-
tances to be used in all future contract specifications. The next cable-laying expedition
took place with the Great Eastern in 1866. Thomson, having gained the full confi-
dence of the Company, had the authority to oversee all the phases of the process on
board, leading to a spectacular success. But let us look at what happened in between.

Much of the merit must be credited to the development of the “British
Association ohm”, lead by W. Thomson, and to its official recognition in the UK as
the standard of electric resistance. Accurate and reliable resistance measurements in
long distance cable technology telecommunication are crucial for several reasons.
Firstly, the telegraphic signal in the Atlantic cable must propagate over distances of
thousands of kilometers without deterioration. In the first decennia of the 19th
century, it had become clear that high transmission rates could be achieved only by
keeping the copper resistance along the cable as low as possible. Even more
dangerous were any changes in resistance between sections of the cable. As a matter
of fact, Thomson, testing supposedly equal “pure” copper wires, had found their
resistance sometimes to differ by a factor of nearly two. Further investigations
showed that this was due to the presence of small quantities of impurities,
depending on the metallurgic process used to produce the wire. Secondly, the
contracts with the companies for industrial cable production must rely on officially
recognized and legally binding standards, both for measurement and quality con-
trol. Such standards are crucial in settling possible disputes. Thirdly, resistance
measurements of the cable on board of the cable-laying ship are mandatory. The
cable is quite delicate and the maneuvers necessary to prepare it for deploying can
produce faults in the wire or leaks in the insulating cladding, which must be
detected before deploying. Accurate and standardized procedures for resistance
measurement allow for detecting an anomaly and precisely localizing the fault.

In 1861, the British Association for the Advancement of Science appointed a
committee for the establishment of electrical standards, including engineers and
physicists, lead by W. Thomson. The Committee gave priority to resistance mea-
surements. The task included both the design and construction of the physical
prototype and the definition of procedures to measure its resistance. The standard
prototype resistor must be stable over time within a specified maximum variability
and be accurately reproducible in secondary standards. The measurement must be
feasible within a specified accuracy and, very importantly, must be absolute.
Namely, the measurements should not be done by comparison with other electrical
standards, like those for voltage or current intensity, but by experiments leading to a
comparison with the base units of mass, length and time alone. The absolute
definition of the unit is necessary to make it reproducible, a necessary requirement
for its establishment by law. To appreciate the importance of the absolute, rather
than relative, method, suppose that, after some time, doubts might arise about the
stability of the certified standard resistor. The absolute measurement would then be
repeated and the result referred to the mass, length and time standards. Any possible
intervening changes would be detected and measured. Note also that the resistance
of the standard does not need to be exactly 1 X, once we know exactly how to
measure it absolutely.
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The measurements on the prototype standard may be quite complex, requiring a
dedicated laboratory and a high level of skill. The procedure for producing, and
calibrating, sufficiently accurate replicas and performing measurements even in
hostile environments, like on a transatlantic ship, had to be defined. After 2 years of
difficult analysis and measurements, the committee finally issued its official ohm
standard in February 1865.

The method for the construction of the absolute ohm is the spinning coil method.
It was proposed by W. Thomson (who was knighted in 1866 and made Baron of
Kelvin in 1892 for his merits) and adopted by the committee. It is a masterpiece of
experimental art, which, unfortunately, we will not describe here in detail, because
it is based on the electromagnetic induction phenomena that we shall study in
Chap. 7. We simply mention that the current induced by the spinning of the coil in
the earth magnetic field generates, in turn, a magnetic field. This field was deter-
mined by measuring the mechanical torque with a torsion balance, whose arm was a
suspended permanent magnet. Only mechanical measurements were needed. The
ingenious design was such that the final effect was independent of the magnitude of
the local earth magnetic field. Well-known physics laws and accurate calculations
allowed for the expression of the result of these measurements as a relation between
the value of the resistance of the standard and the units of mass, length and time.

Once the “British association ohm” was established as the primary standard, a
number of replicas for research and industrial use were produced. These secondary
standards are calibrated through relativemeasurements against the primary standard.

The afore-mentioned successful completion of the Great Eastern expedition in
1866 was soon followed by others to deploy cables to India, China, Japan and
Australia, with great geopolitical consequences. The work on the British
Association ohm had considerable impact on basic science as well. In 1862, James
Clerk Maxwell (UK, 1831–1879) was appointed to serve on the Committee on
Electrical Standards. His experimental and conceptual contributions to the program
were fundamental for the development of his experiment for the absolute mea-
surement of the ratio of the electric and magnetic constants, the final step in his
development of his electromagnetic theory of light. We shall describe the experi-
ment in Chap. 10.

5.5 Surface Currents

Consider a conductive layer of negligible thickness carrying a steady current. The
current intensity I is also, in this case, the charge passing through a section of the
conductor in a second. However, the section is now a line, as L in Fig. 5.6. It is
sometimes called a surface current to indicate its geometry, but it is just a current
measured in amperes.

The definition of the (surface) current density ks is a bit different from the case of
volume currents. Let DL be a small, arbitrarily oriented section of the surface and
n its unit normal vector. The current DI through DL is
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DI ¼ kS � nDL: ð5:16Þ

The vector kS is obviously tangential to the current surface. Its physical
dimensions are A/m (rather than A/m2, as in the case of the volume current density)
because the section of the conductors has the dimensions of a length (rather than an
area).

Surface currents may be present, not only on thin metal sheets, but also on the
surface of solid conductors. We shall encounter these in the following sections. An
example is shown in Fig. 5.7, where the current flows along the surface of a
cylindrical conductor.

Ohm’s law also holds for the surface Ohmic conductors. Consider the
two-dimensional equivalent of a constant section wire, namely a constant width
conductive ribbon, as shown in Fig. 5.8.

Let V be the potential between its ends and I the current intensity. It is found that
I is proportional to V,

V ¼ RI; ð5:17Þ

which is Ohm’s law. Also, in this case, R is directly proportional to the length of the
conductor l and inversely to its section L

R ¼ qSl=L; ð5:18Þ
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Fig. 5.6 A conductive thin
layer and a surface current
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Fig. 5.8 A segment of
constant section surface
conductor
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Fig. 5.7 A cylindrical
current
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The only difference is that now the section has the dimension of a length.
Consequently, the dimensions of the surface resistivity qS are equal to the
dimensions of R. The surface resistivity is the resistance of a square of that surface.
We do not need to specify the size of the side of the square (1 m2, for example)
because every square of the surface has the same resistance. Indeed, if, starting from
a given conducting square, we double its side, its resistance does not vary, because
the length of the conductor doubles (which would double the resistance) but its
section doubles as well (which would halve the resistance). Consequently, the
surface density measurement unit is usually called ohm per square (X/⧠), which is
just the ohm.

5.6 Energy Balance

Ohm’s law states that in order to have a steady current of intensity I in a resistor of
resistance R, we must apply a voltage V = RI to its extremes. This implies that
energy is dissipated in the resistor. This energy is delivered by the generator pro-
ducing the voltage V. As we have seen, the generator does work against the electric
field to carry back the charges. If dq is the charge crossing the resistor in the time
interval dt, the work of the generator is Vdq. The work per unit time, namely the
power delivered by the generator, is

w ¼ V
dq
dt

¼ VI ¼ RI2 ¼ V2

R
: ð5:19Þ

This is the energy dissipated in the resistor per second. The dissipated energy
remains internal, i.e., the thermal energy of the conductor, increasing its tempera-
ture. In the same time, the conductor emits energy to the environment, soon
reaching an equilibrium temperature at which the input electric power is equal to the
power delivered to the environment. This is the case with electric heaters, electric
light bulbs, etc. The effect was discovered with a series of careful experiments
between 1840 and 1843 by James Prescott Joule (UK, 1818–1889) and is called
Joule’s law of heating or simply the Joule effect.

Equation (5.19) is expressed as a global law, regarding the entire resistor. The
law can be expressed in a local form too. Let us consider an extended conductor, as
we did in Sect. 5.3, carrying a steady current. Let j(r) be the current density at the
point of position vector r. To simplify the argument, suppose that all the carriers
have the same charge q. Let np be the carrier number density, vi the velocity of the
i–th carrier and E(r) the electric field in the conductor. The work done by the field
on the i–th carrier in a second is Fi � vi ¼ qvi � E. Recalling that j = np q〈v〉, we
write that the work done by the field per unit time in the unit volume is
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Xnp
i¼1

Fi � vi ¼ q
Xnp
i¼1

vi

 !
E ¼ qnp vh i � E ¼ j rð Þ � E rð Þ: ð5:20Þ

We can then state that the power dw dissipated in the elementary volume dV is

dw ¼ j rð Þ � E rð ÞdV ;

which is the local equation we have been looking for. To know the power dissipated
at a point of the conductor, we just have to know the electric field and current
density at that point.

5.7 Generators

We shall now consider continuous voltage generators and their characteristics as
circuit elements. We start with the simplest configuration, consisting of a resistor
connected to a generator, for example, a battery. Let us consider a closed line
completely inside the circuit and having the direction of the current density at each
point. By construction, the integral over that line of the current density is positive,
namely

H
j � ds[ 0. Let us assume Ohm’s law, namely j = gE, to hold everywhere

in the circuit. Being that g is positive, we also have
H
E � ds[ 0. But this cannot be

under static conditions in which the field E is conservative. We must conclude that
the equation j = gE does not hold, at least in part of the circuit. At least in a
segment of the circuit, the current must be opposite to the electric field. As we
know, this happens inside the generator. For example, in the Van de Graaf gen-
erator, it is the belt that exerts a force on the charges, pushing them against the field
force. In the Volta pile, the forces opposite to the electrostatic field have a chemical
origin.

We now define a quantity that should not be confused with the potential dif-
ference, even if it has the same physical dimensions and is measured in volt. This
quantity is called the electromotive force (emf, for short), for historical reasons, but
is clearly not a force. An emf refers to a segment of a circuit, say between points
A and B. The electromotive force is the line integral on the circuit element from A to
B of the acting force per unit charge.

emf ¼
ZB
A

F
q
� ds: ð5:21Þ

The electromotive force is the main characteristic of a generator, as a component
of an electric circuit. It is the work done by the generator on the unit charge to move
it inside from the negative to the positive pole.
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Let us see how to measure the emf of a generator. We connect a resistor, of
resistance R, to its poles , as shown in Fig. 5.9. The generator is represented by the
gray area. The two lines, one longer and thinner, one shorter and thicker, are the
standard symbol for an emf generator. The generator is characterized not only by its
emf E0, but also by its resistance. It is called internal resistance and is denoted by
Ri. We assume Ohm’s law to be valid for the generator as well.

Consider the unit charge moving along the entire circuit. As energy is conserved,
the work done by the generator on the charge must be equal to the energy dissipated
on the resistances. There are two of them, the resistor and the internal resistance of
the generator. We then have E0 ¼ IRþ IRi and hence,

I ¼ E0

RþRi
: ð5:22Þ

The potential difference across the external resistor R is

V ¼ RI ¼ E0

1þRi=R
; ð5:23Þ

which is smaller than the emf of the generator. V is the voltage we measure with a
voltmeter between the poles under these conditions. We see that V ! E0 for
R ! ∞. Now, an infinite resistance exists when the circuit is open. This means that
the emf of the generator is the potential difference between its poles measured at
open circuit. When we close the circuit, the potential difference between the poles
decreases, the more so the smaller R is relative to Ri. This implies that part of the
energy delivered by the generator is lost inside the generator and is not externally
available for R. The latter is called a load and might be, for example, an electric
heater. An ideal emf generator should have zero internal resistance, but does not
exist.

In the above case, we discussed the emf being localized between the poles of the
generator. We shall see that, under dynamic conditions, the emf can be distributed
along the entire circuit.

A

R

B

R
i

–
+

0

Fig. 5.9 A emf generator
closed on a resistor
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5.8 Slow Capacitor Discharge

In this section, we consider examples of non-stationary conditions. The circuit in
Fig. 5.10 consists of a capacitor, a resistor and a switch. Initially, the switch is open
and the capacitor is charged with the charge Q0. At time t = 0, we close the switch.
The capacitor’s charge Q(t) and voltage V(t) will vary in time. We want to find
these functions, which are linked by the relation V tð Þ ¼ Q tð Þ=C.

In circuits of usual sizes, the current intensity can be safely considered to be the
same in every section, because its variations propagate at speeds close to the speed
of light. For example, in round numbers, for a circuit of 10 cm diameter, the
propagation time of the current variations is about one nanosecond. For Ohm’s law,
the current intensity at time t is then I tð Þ ¼ �dQ tð Þ=dt ¼ V tð Þ=R. Notice the minus
sign, which is there because a positive current corresponds to a decreasing charge of
the capacitor. Putting things together, we find that the function Q(t) obeys the
differential equation

dQ
dt

þ 1
RC

Q ¼ 0; ð5:24Þ

which is solved by separating variables, obtaining

Q tð Þ ¼ Q0e
�t=RC; ð5:25Þ

where we have imposed the initial condition Q 0ð Þ ¼ Q0. The charge of the
capacitor (and consequently, its potential difference) decreases exponentially with
time. It is easy to see that the quantity s = RC has the dimensions of time. It is
called the time constant of the circuit. The time constant is the time in which the
charge of the capacitor diminishes by a factor 1/e. The potential difference is

V tð Þ ¼ V0e
�t=RC; ð5:26Þ

where, obviously, V0 = V(0) = Q0/C.
Let us now calculate the energy dissipated on the resistor. In the elementary time

interval dt, it is

dW ¼ V2

R
dt ¼ V2

0

R
e�2t=RCdt:

RC
Q

–Q
0

0

Fig. 5.10 Discharging a
capacitor on a resistor
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The total dissipated energy is then

W ¼ V2
0

R

Z1
0

e�2t=RCdt ¼ CV2
0

2
;

which is, as it should be, the initial energy of the capacitor.
Let us now look at the charging process of a capacitor. Figure 5.11 represents a

circuit containing a generator of emf E0, a resistor, a capacitor and a switch. The
charge and the potential difference of the capacitor are initially zero. At time t = 0,
we close the switch. Let V(t) be the voltage of the capacitor in the generic instant, Q
(t) its charge and I(t) the current intensity in the circuit.

The potential difference on the resistor is E0 – V(t). Hence, for Ohm’s law, we
have E0 � V tð Þ ¼ RI ¼ R dQ

dt ; which can be written as R dQ
dt þ Q

C � E0 ¼ 0:
Clearly, at the end of the transient, the current intensity will be zero and the

voltage across the capacitor will be E0. Calling Q0 the final charge of the capacitor,
Q0 = E0 C, we can re-write the equation as dQ

dt þ 1
RC Q� Q0ð Þ ¼ 0, and finally,

being that Q0 is a constant, as

d Q� Q0ð Þ
dt

þ 1
RC

Q� Q0ð Þ ¼ 0; ð5:27Þ

which is solved by separating variables, obtaining

Q ¼ Q0 1� e�t=RC
� �

; ð5:28Þ

where we have imposed the initial condition Q(0) = 0. We see that the charging is
also an exponential process, with the same time constant RC as the discharge.

QUESTION Q 5.2. A 10 µF capacitor is charged at 220 V and then connected to a
10 kX resistor. How long would it take to the capacitor to “fully discharge” itself, if
we define that as five time constants? How much will be voltage, charge and energy
at that moment? h

QUESTION Q 5.3. A 10 µF capacitor discharges through a 10 kX resistor. How
much are the voltage across the capacitor and the current intensity after 50 ms? h

C

R

V(t)
Q(t)

0

Fig. 5.11 Charging a
capacitor

168 5 Electric Currents

www.ebook3000.com

http://www.ebook3000.org


5.9 Circuits in a Steady Regime

We shall now consider electric circuits made of a number of resistors and generators
in a steady regime. Two are the basic connections of circuit elements, resistors in
this case, in series and in parallel.

If two or more resistors are connected in series, they carry the same current, as
shown in Fig. 5.12.

Let us consider, for simplicity, two resistors (although the argument is valid for
any number). Calling VA, VB, and VC the potentials in the corresponding points in the
figure, I the current intensity and R1 and R2 the two resistances, Ohm’s law gives
VB � VA ¼ R1I and VC � VB ¼ R2I. Adding the two equations, we have
VC � VA ¼ R1 þR2ð ÞI. Namely, two (or any number of) resistors in series behave
the same as a single resistor with resistance equal to the sum of the resistors in series.

Rseries ¼
X

Ri ð5:29Þ

Two resistors are connected in parallel when the potential difference at their ends
is the same. Let us consider the case of two resistors, again with a generally valid
argument, as shown in Fig. 5.13.

The current intensities in the two resistors are I1 ¼ VB � VAð Þ=R1 and
I2 ¼ VB � VAð Þ=R2. Hence, the total intensity is I ¼ I1 þ I2 ¼ VB � VAð Þ
R�1
1 þR�1

2

� �
. Two resistors in parallel are equivalent to a single resistorwith resistance

Rparallel ¼ R�1
1 þR�1

2

� ��1¼ R1R2

R1 þR2
ð5:30Þ

or, for any number,

Rparallel ¼
X

R�1
i

� ��1
: ð5:31Þ

The rules set out in Eqs. (5.29) and (5.30) can be used to reduce more com-
plicated networks, for example, the one shown in Fig. 5.14.

R R CBA 1 2
Fig. 5.12 Resistors in series

R
1

I
1

I
2

R
2

I

Fig. 5.13 Two resistors
connected in parallel
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However, networks exist, such as the one in Fig. 5.15, which cannot be solved
with these simple rules. With reference to Fig. 5.15, the problem is finding the
current intensities I1, I2, … In in each of the sides of the network, knowing the
values of the emfs and of the resistances. These problems are solved using two
rules, introduced in 1845 by Gustav Kirkhhoff (Germany, 1824–1887) and called
the Kirkhhoff rules. The analysis of the circuit starts (arbitrarily) with the choice of
a positive sign for each branch of the circuit. We then identify a number of nodes
and a number of loops or meshes. A node is a point at which two or more prongs
join, for example, points A and B in the figure. A mesh, or loop, is a set of prongs
making a closed circuit, such as ABCDA, ABCA, or BDA in the figure.

The nodes rule, or the first Kirkhhoff law, says that the algebraic sum of the
current intensities converging in a node, say I1, I2, taken with a positive sign if they
enter the node, negative if they exit, must be zero. This is just charge conservation.
Namely,

X
k

Ik ¼ 0: ð5:32Þ

There is one such equation for every node.
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Fig. 5.14 Reducing a
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single equivalent one
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The second Kirkhhoff law applies to the loops. Consider, for example, the loop
ABCA and choose one of the two orientations as positive, for example, the
clockwise one. We give the positive sign to the currents running in the positive
orientation of the loop and the negative to the others. We give the positive sign to
the emfs generating currents in the positive orientation and vice versa to the other.
Then, we apply Ohm’s law. In this way, we obtain, for example, for the loop ABCA,
which has three prongs, the three equations

R1I1 ¼VA � VB � E1

R2I2 ¼VB � VC þE2

R3I3 ¼VC � VA � E5:

Adding these equations, the potential differences cancel each other out, and we get

R1I1 þR2I2 þR3I3 ¼ �E1 þE2 � E5:

The conclusion is general, being a consequence of energy conservation. The rule
is that the algebraic sum of all the emfs of the generators in the loop (namely the
energy they deliver on the unit charge going around the loop) is equal to the sum of
the voltage drops RI in all the branches of the loop, namely

Xn
i¼1

RiIi ¼
Xn
i¼1

E1i: ð5:33Þ

where n is the number of prongs of the loop.
The number of equations obtained applying the two Kirkhhoff rules to all the

nodes and all the loops of the network is larger than the number of unknown, so that
not all are needed. Some experience is enough to learn the most convenient choices.

5.10 Superconductivity

Superconductivity is the phenomenon of zero electrical resistance characteristic of a
number of substances below a characteristic transition temperature. In 1908, Heike
Kamerlingh Onnes (The Netherlands, 1853–1926), working in the cryogenic lab-
oratory he had established in Leiden, succeeded in liquefying helium at 4 K, a
temperature that nobody had reached before. Kamerlingh Onnes dedicated the
following few years to developing, with the help of his technician Gerrit Flim, an
advanced cryostat designed for conducting experiments using liquid helium as a
refrigerator (after having transferred the liquid from the liquefaction dewar). The
temperature was measured with a gas thermometer and could be lowered below 4 K
by reducing the vapor pressure of the helium.
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The cryostat was ready in April 1911. Already in the first experiment, on April 8,
Onnes had gold and mercury resistors (liquid mercury solidifies at 234 K) in the
cryostat. After having accurately measured the gold and mercury resistance at
4.3 K, the team started to decrease the helium vapor pressure in the cryostat. Gold
and mercury resistance were measured again when the temperature was 3 K. The
latter was “practically zero”, as Onnes wrote in the logbook. The mercury resistance
remained immeasurably small down to the minimum temperature of 2.2 K reached
that day. Figure 5.16 is the historic plot, obtained a few months later in October
1911, of the resistance of the mercury resistor (in ohm) as a function of temperature
(in kelvin). Measurements were done by slowly increasing temperature, a procedure
allowing for a better control of temperature then when decreasing it. The plot shows
the superconducting transition at the transition temperature Tc = 4.20 K. Within
0.01 K, the resistance jumps from immeasurably small values (<10−6 X, the sen-
sitivity limit) to 0.13 X.

A few months later, the Leiden team discovered that lead and tin were also
superconductors, with transition temperatures of 7.2 and 3.7 K, respectively. A far
greater number of superconductors with cryogenic transition temperatures, namely
below 10 K, are known today.

Fig. 5.16 Onnes’
measurement of the resistance
of a mercury (Hg) resistor (in
ohm) versus absolute
temperature (in kelvin),
showing the transition to the
superconducting phase, for
which the upper limit of
resistance is reported
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More than half a century later, in 1986, Johannes Georg Bednorz (Germany,
born 1950) and Karl Alexander Müller (Switzerland, born 1925), discovered that a
lanthanum-based compound, a cuprate peroxide to be precise, had a surprisingly
high transition temperature at Tc = 35 K. It was soon found that replacing lan-
thanum with yttrium raised the transition temperature to Tc = 92 K. This was
already higher than the liquid nitrogen temperature at atmospheric pressure, which
is 77 K. Liquid nitrogen being cheap and easily available, this makes “high tem-
perature” superconductivity much easier to study. Compounds with even higher
transition temperatures were found in the subsequent years.

Superconductivity is a genuine quantum phenomenon. We shall, however, give
some hints to provide an intuitive idea as to how the phenomenon works, limited to
low temperature superconductivity. Its theoretical interpretation was given by John
Bardeen (USA, 1908–1991), Leon Cooper (USA, born 1930) and John Robert
Schrieffer (USA, born 1931) in 1957.

Below the transition temperature, the carriers in a superconductor are not single
electrons, but correlated pairs of electrons, called Cooper pairs. The pair is linked
by a tiny force, of quantum origin. The binding energy of the pair is only of a few
meV. If the temperature is low enough, the available thermal energy is insufficient
for breaking the pair.

This attractive force is due to the crystal lattice. The electric field of one of the
two electrons slightly modifies the crystal (attracting the positive ions closer to it)
and the second electron is attracted towards the resulting region in which there is a
small excess of positive charge. Note that the ions need some time to go back to
their unperturbed position, due to their inertia. Consequently, the second electron
may be located at a sizeable distance from the first one. The mean distance between
the two electrons of the pair, called the correlation distance, is on the order of
100 nm. This is very large compared to the cell sides, which are on the order of
100 pm.

The quantum laws governing the system are such that when the current is zero,
the electrons of the pair have equal and opposite linear momenta. Consequently, the
velocity of their center of mass is zero. When a field is present, the pair moves in
the direction opposite to that of the field. Let us see what happens when a member
of the pair approaches a defect in the crystal. As we know, under the usual con-
ditions, resistivity is due to the scattering of electrons off the impurities. In a
superconductor, when one member of the pair is close to the defect, its partner is
quite far from it. This is shown schematically in Fig. 5.17.

The center of mass, C in the figure, moves with velocity (v1 + v2)/2. In the
center of mass reference, the two electrons have equal and opposite velocities. In
order to scatter, the electron close to the defect should change its velocity. But this

2 1
C

defect

v
2 v

1
Fig. 5.17 A cooper pair and
a crystal defect near to one
partner. Point C is the center
of mass of the pair
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velocity is correlated with that of the partner, which is far. Namely, a scattering
would imply breaking the pair. But this cannot happen, because the energy is not
available. In conclusion, there is no scattering, the motion does not get disordered,
and there is no resistivity.

When temperature increases, a growing fraction of the pairs breaks down,
absorbing thermal energy. Then, both the Cooper pairs contributing to supercon-
ductivity and the unpaired electrons contributing to normal conduction are present. At
the critical temperature, no Cooper pair is left, and the conductor becomes normal.

Superconductors have important practical applications. Even though, by 1914,
Onnes had already discovered that superconductivity is destroyed by the presence
of a magnetic field of intensity above a material dependent critical value, techniques
were later developed, and are still being developed, to produce superconducting
electromagnets generating high magnetic fields. The high intensity currents, which
are necessary to produce those fields, flow through the superconductor under zero
emfs and without any Joule energy loss. In practice, the superconductive circuit is
in a liquid helium bath. Nowadays, the 8.3 T bending magnets of the Large Hadron
Collider at CERN use cables of a niobium-titanium alloy, whose critical magnetic
field is large enough. The entire magnetic structure is immersed in a 27 km liquid
helium circuit. Superconductive magnets are used in high resolution NMR for
medical diagnostic purposes, in mass spectrometers, etc.

Summary

In this chapter, we have learned the following principal concepts:

1. The current intensity (a scalar quantity) and the current density (a vector
quantity) and their relations with the motion of carriers

2. The local conservation of electric charge
3. Ohm’s law, holding for a large class of materials, and its microscopic

interpretation
4. The energy balance in electric current transport
5. The electromotive force and its generators
6. The analysis in direct current of circuits composed of loops of resistors and

generators.

Problems

5:1. Can the field lines of j be closed in a steady regime? Can they radiate from a
point? Can that happen in an arbitrary regime?

5:2. First, connect a voltmeter to a battery, then disconnect it and connect it to
another battery. The readings are different. Why?
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5:3. At the point of coordinates x, y, z of a conducting medium, the current
density is j = 3 x2y ux – 3xy2 uy + xy uz (where ux, uy, uz are the unit vectors
of the axes). Is the charge density at that point constant or variable in time?

5:4. We have five equal resistors. We connect two of them in series and two of
them in parallel. We then separately connect to the poles of a generator: (a) the
resistor alone, (b) the pair in series, (c) the pair in parallel. In which case is the
power absorbed at a maximum? (The internal resistance is negligible.)

5:5. State whether the resistivity of an ohmic material does or does not depend
on: the geometrical dimensions, the temperature, the material, and the current
intensity.

5:6. When a bolt of lightning discharges an intense current between a cloud and
the earth (or between two clouds), the current exists through the atmosphere.
Does Ohm’s law hold with the atmosphere resistivity?

5:7. A string of Christmas lights is made up of 50 bulbs in series. One of them
burns out. You take it out and restore the connection of the remaining 49. In
what case is the total light of the bulbs higher, if you connect the string to the
same battery in both cases?

5:8. Figure 5.18 shows a section of a circuit (between points A and B) carrying
the continuous current of intensity I in the shown direction. The upper part of
the figure shows the voltage drops along the first elements of the section. The
segment drawn inside the generator is schematic. Complete the diagram.
Why does the first generator give a voltage drop, rather than a voltage
increase? Is the same true for the other ones?
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Fig. 5.18 A circuit section and the voltage across it
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5:9. A 12 V battery is connected to a 10 mX resistor. What is the current
intensity (before you damage the battery)? Or are the data insufficient to
answer?

5:10. Two batteries with the same emf E and different internal resistance R1 and R2

are connected to the same resistance R. Can the value of R be chosen in order
that the voltage difference between the poles of the first battery be zero?

5:11. Five identical batteries have the same emf E = 1.5 V and internal resistance
Ri = 0.2 X. We connect them first in series, second in parallel. What are the
equivalent emfs and internal resistances in the two cases?

5:12. We have a Ni–Cr wire (resistivity equal to10−6 X m) of 1 mm2 section. With
it, we want to build a cooker dissipating 100 W. How long should the wire be?

5:13. A battery with emf E = 1.5 V and internal resistance Ri = 1 X is connected
to a resistor of variable resistance R from 1 to 10 X. Draw the diagram of the
potential difference across the resistor as a function of its resistance.

5:14. A parallel plate capacitor has square plates with sides of l = 250 mm sepa-
rated by a distance h = 3 mm. The plates are vertically arranged and con-
nected to a battery of emf V = 200 V. Initially, the capacitor is surrounded
by air, then we lower it into an oil bath (j = 5) with a speed of t = 2 mm/s.
What is the current intensity delivered by the battery (neglecting the internal
resistance)?
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Chapter 6
Magnetostatics

Abstract In this chapter, we study magnetic phenomena under time-independent
conditions. We define the magnetic field B on the basis of the force acting on an
exploring charge and see how B can be measured exploiting the Hall effect. We
discuss examples of motion of charged particles in magnetic fields. We then show
how electric currents generate magnetic fields, find the corresponding differential
equations and solve them. We give the definition of the ampere. The concept of
vector potential is introduced and discussed. We then deal with the properties of the
magnetic dipole. We finally discuss the transformation properties of charge and
current densities between inertial frames in relative motion.

In this chapter, we study magnetic phenomena under time-independent conditions.
Ancient civilizations long ago knew the property of certain ferrous minerals to attract
pieces of iron. Lodestone, the most common one, was called magnetite, namely the
stone from Magnesia, the city in Asia Minor where the stones were found. It was
later observed, first in China and later in Europe, that a magnetic needle floating on
water supported by a piece of wood, or revolving around a vertical pivot, turns
toward a definite direction relative to earth. We can say that both magnets and the
earth generate a magnetic field. The systematic study of magnetic phenomena started
in the XVII century, but only in 1820 did Hans Christian Ørsted discover the
fundamental fact that electric currents produce a magnetic field, similar to what
magnets do. A few years later, André-Marie Ampère, based on a series of experi-
ments, introduced the hypothesis that the only sources of magnetism are electric
currents. According to this hypothesis, which was successfully tested through further
experiments, a magnetic quantity analogous to the electric charge does not exist in
nature. There is no magnetic charge. The magnetism of magnetic materials is due to
microscopic currents inside them, at the molecular level.

We shall start by defining the magnetic field B, with a procedure similar to that
which we used for the electric field, on the basis of the force acting on an exploring
charge. We shall see that the magnetic force is more complicated than the electric
one. Indeed, the magnetic force is found to be proportional to the velocity of the
exploring charge and perpendicular to it. In particular, the magnetic force does not
act on a charge at rest. We shall see that, as a consequence, every element of a
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circuit immersed in a magnetic field is subject to a force. In Sect. 6.3, we shall study
the Hall effect, which is a direct consequence of the magnetic force, and which can
be exploited to build instruments to measure the magnetic field.

In Sect. 6.4, we shall consider a few examples of motion of charged particles in
magnetic fields. We shall see that the magnetic force acting on a point charge
changes the direction of its momentum, but, being perpendicular to the motion,
cannot change its kinetic energy. In Sect. 6.5, we shall study another important
instrument, the galvanometer, used to measure current intensity. It is based on the
magnetic force acting on segments of a circuit in a magnetic field.

In the second part of the chapter, starting with Sect. 6.6, we shall study how
steady macroscopic currents produce the magnetic field. We shall see that Ampère’s
law states that the circulation integral of the magnetic field about any closed curve
is equal to the total current linked to the curve times a constant, called a vacuum
permeability, which is the fundamental constant of magnetism. This property,
together with the non-existence of magnetic charges, can be used to specify the curl
and the divergence of a magnetic field (under stationary conditions).

In Sect. 6.7, we shall see how to calculate the magnetic field in particularly
simple current configurations using the Ampère circulation law alone, profiting
from the symmetry of the problem. We shall study the discontinuities of the vector
field B crossing a current sheet. We shall see that its normal component is con-
tinuous, the tangent one discontinuous.

Differently from the electrostatic field, the magnetic field is not irrotational,
namely it is not conservative. Consequently, the equivalent of the electrostatic
potential does not exist. We shall define, in this case, a vector potential, which is
such that its curl is equal to the magnetic field. In Sect. 6.8, we shall find the
differential equation of the vector potential and see this equation to be exactly the
same as the equation of the electrostatic potential in electrostatics, provided we
substitute the current density in place of the charge density. This property will allow
us to find the vector potential for a few distributions of currents. Once the vector
potential is known, we can calculate the magnetic field. In Sect. 6.9, we give some
examples of calculation of the vector potential. In Sect. 6.10, we shall give the
expression of the magnetic field produced by a given set of currents, the
Ampère-Laplace law, and in Sect. 6.11, some examples of direct calculations of
magnetic field.

In Sect. 6.12, we shall find the expression of the force between two straight
parallel wires carrying steady currents. The definition of the unit of the base
quantity in the SI, namely the ampere, is based on the measurement of this force.

In Sect. 6.13, we study the magnetic effects of an important circuit, which is the
magnetic dipole. The behavior of the magnetic dipole is similar in several aspects to
that of the electric dipole, while it is different in others. In particular, the shapes of
the magnetic field of the former and the electric field of the latter are equal at
distances from the dipoles that are large compared to their dimensions, while they
are very different near the dipoles.

In the last two sections, we discuss the transformation properties of magnetic
quantities under changes from one inertial frame to another, namely under rotation

178 6 Magnetostatics

www.ebook3000.com

http://www.ebook3000.org


and inversion of the axes in Sect. 6.14, and between two reference frames in relative
uniform motion in Sect. 6.15. Going into more detail, in Sect. 6.14, we see that
there are quantities that remain invariant under rotations and inversions, called
scalars, and those that do not change under rotations but change sign under
inversion, called pseudoscalars. Other quantities, for example, the electric field,
have three components that change both under rotations and inversions with the
same transformation properties as the coordinates. These are the vectors (or proper
vectors, if we must be more precise). Still other quantities, such as the magnetic
field, behave like the coordinates under rotations but with the opposite sign under
inversions. They are called pseudovectors or axial vectors. We shall then discuss
the right-hand rule, which seems to indicate an asymmetry under inversion of the
axes, and see that this is not the case. In other words, the electromagnetic interaction
is invariant not only under rotations but also under inversion of the axes. We state
here that the former invariance is a universal law of Nature, while the latter is not.
Of the four fundamental interactions, the electromagnetic, the gravitational and the
nuclear strong interactions are invariant under inversions, while the weak nuclear
interaction is not.

In Sect. 6.16, we shall deal with the following issue. The magnetic force acting
on a charged particle at a point in which there is a magnetic field and no electric
field depends on the velocity of the particle. In the rest frame of the particle, the
magnetic force is zero. However, there is no violation of the relativity principle,
because in the latter frame, an electric field exists and the force acting on the
particle is electric. The relativity principle is satisfied provided the transformations
between frames are Lorentz transformations. We shall see, in particular, that the
current density and the charge density, taken together and multiplied by suitable
constants, make up a four-vector.

6.1 Preliminary Observations

Ancient civilizations, in particular, the Greeks and the Chinese, long ago noticed
the property of certain ferrous minerals to attract pieces of iron. Lodestone, the most
common one, which we now know to be an iron oxide (FeO ∙ Fe2O3), was called
magnetite, namely magnetes lithos, in Greek, meaning stone from Magnesia, the
city in Asia Minor where the stones were found. The first written description of the
magnetic properties of lodestone is by Thales of Miletus (circa 624–circa 526 BC).
The Chinese written reports are from two centuries later. The origins of the compass
are unknown. The first written descriptions date to the XIIth century.

The scientific study of magnetism started in the XVIth century, in particular,
with the work of William Gilbert (UK, 1544–1603), who published “De magnete,
magneticisque corporibus, et de magno magnete tellure” (On the magnet, magnetic
bodies, and on the great magnet of the earth) in 1600.

It was observed that the magnetic effects of magnets of elongated shapes, in
particular of needles, were localized at the two extremes. We can easily observe this
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property by dipping a small magnetic bar in iron filings. When we take it out, we
see that the filings are attached to the extremes, forming two tufts there, while the
central part is clean. The extremes of the magnets are called magnetic poles. If we
arrange a magnetic bar on a floating support and lay it on water, we observe it
spontaneously orienting in the South-North direction. These observations were at
the origin of the compass. The original contribution of Gilbert was the hypothesis of
earth being a big spherical magnet, for which the needle points to the North pole,
rather then to the Polar star, as was previously believed (hence, stars had nothing to
do with the effect). The pole of the magnet aiming geographically North is called
the north pole (N), the other one, south pole (S).

It was very soon found that two equal poles (N and N or S and S) repel, while
two different ones (S and N) attract one another. Charles Augustin de Coulomb
quantitatively studied the force between the magnetic poles of two different long
magnetic bars between 1785 and 1791. He used the same method as in his mea-
surement of the electrostatic force that we saw in Sect. 1.2. He found the force to be
similar to the electrostatic one, in particular being inversely proportional to the
square distance between the two “magnetic charges”. A theory of magnetostatic
phenomena was developed in analogy to the electrostatic theory.

It took almost a century before it was discovered that the theory was wrong.
Analogy and symmetry between different situations in physics are often useful guides
to our discovering of the physics laws, but theymay be sometimesmisleading as well.
As a matter of fact, no magnetic charge exists in nature, as far as we know. The north
and south poles are always coupled, it being impossible to separate one from the
other. This can be verified with the simple broken magnet experiment, which was
historically first reported in 1269 by Pierre Pelerin de Maricourt (France, XIIIth
century). You dip a magnetized bar, which should be quite long and narrow, in iron
filings and extract it. The two tufts appear at the extremes. You now cut the bar in the
middle and dip both parts in the filings. The observation is that both of them have two
filing tufts at the extremes. Checking with another magnet, one can verify that both
pieces have a north and a south pole. If you cut each piece in two, you obtain four bars,
each with a north and south pole. All the poles have the same strength.

This is a very simple experiment. Much more refined and sensitive experiments
have been performed up to the present time, searching for single magnetic poles,
called magnetic monopoles, in different types of rocks, including the stones brought
from the moon by astronauts, in cosmic rays or as possibly produced by collisions
of high energy particle beams from accelerators. All these searches systematically
failed. Magnetic monopoles do not exist, as far as we know. The simplest object is
the dipole, namely a north and a south pole of the same strength at a certain distance
between them. We note here that the word ‘dipole’ in this case is misleading,
because the magnetic dipole is not made of two magnetic charges. As we shall soon
learn, a magnetic dipole is a loop of current.

In 1820, Hans Christian Ørsted (Denmark, 1777–1851) discovered that an
electric current generates a magnetic field. The experiment is shown schematically
in Fig. 6.1. He placed a compass on a table. The needle turned with its north pole
(black in the figure) toward the geographic North. He placed a wire connected to a

180 6 Magnetostatics

www.ebook3000.com

http://dx.doi.org/10.1007/978-3-319-40871-2_1
http://www.ebook3000.org


battery parallel to the needle at a few centimeters above it. When he closed the
switch to have the current in the wire, he observed the needle turning to a new
equilibrium position. The direction of the deflection is given by the right hand rule.
If one puts the right hand near the wire with the palm facing the wire and the
direction and sense of the current being parallel with the portion of the arm from
wrist to fingers, the thumb points in the direction of the deflection of the north pole
of the needle.

At this point, it was clear that not only do magnets and earth produce a magnetic
field, but electrical currents do as well. The magnetic effects of currents and the
magnetic interactions between currents were accurately studied in the subsequent
years, in particular by André-Marie Ampère. We shall come back to his discoveries
later in this chapter. We only mention here the fundamental intuition of Ampère,
who advanced the hypothesis that electric current is the unique source of a magnetic
field. He imagined that microscopic currents should exist inside the magnets. These
molecular currents should be invisible, but able to produce the field of the per-
manent magnets according to the same laws as the macroscopic currents that we can
control. The magnetic monopole notion started to appear to be a mathematical
artifact, deprived of physical meaning. We shall now abandon the historical per-
spective and start with the study of the magnetic field produced in a vacuum by
macroscopic currents. As a matter of fact, these are the simplest phenomena to
describe. We shall come back to the more complex study of the magnetism in
matter, permanent magnets included, in Chap. 8.

6.2 Magnetic Field

In Sect. 1.3, we operationally defined the electric field under static conditions. The
measurement operation consists of measuring the force acting on an electric charge,
small enough not to perturb the field, and dividing the result by the charge value.
Measuring a magnetic field is more complicated, because the force due to the field
is only different from zero on charges in motion, being null for charges at rest. We
can measure the magnetic field at a point by studying the trajectories of charged
particles of known velocities passing at the point.

I
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+
–

Fig. 6.1 The Ørsted
experiment
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Let us consider the charge q going through the considered point several times,
with velocities differing in magnitude and direction, and let us measure its accel-
eration each time. We observe that the directions of the accelerations are, in any
case, perpendicular to the velocity, which is different in the different cases, and to a
fixed direction in space, which is always the same. We also observe that, for a fixed
direction, the force is proportional to the velocity. All the observed properties of the
magnetic force can be summarized by defining a vector field B(x, y, z), which does
not depend on time (under the stationary conditions we are considering) and is such
that the force acting on the charge q passing at the point (x, y, z) with velocity v is

F x; y; zð Þ ¼ qv x; y; zð Þ � B x; y; zð Þ: ð6:1Þ

B is the magnetic field. Its physical dimensions are those of a force divided by a
charge and a velocity, namely B½ � ¼ FQ�1V�1

� � ¼ MT�1Q�1
� �

. The measurement
unit is called a tesla (T), named after Nikola Tesla (Serbia, 1853–1943). The non-SI
unit gauss = 10−4 T is often encountered in the literature.

We immediately observe that, being that the magnetic field is always perpen-
dicular to the velocity, its work on a charged body is always zero. Indeed, we have

DEK ¼ W ¼
Z2
1

F � dl ¼
Z2
1

qv� B � vdt ¼ 0: ð6:2Þ

Namely, the magnetic force does not produce changes in the kinetic energy of
the charge on which it is acting, or in the magnitude of its velocity, or in the
magnitude of its momentum. The force does produce changes in the direction of the
velocity and in the direction of momentum. It deflects the charged particles in
motion.

Experiments have shown that the superposition principle holds for the magnetic
field. This means that if a system of currents 1 produces the magnetic field B1 at the
point P and another system of currents 2 separately produces the field B2 at that
point, when the two current systems 1 and 2 are contemporarily present, the field in
P is B1 + B2.

In addition, if a charge q moves in a region of space in which both a magnetic
field B and an electric field E are present, the total force on the charge is the sum of
the magnetic and the electric forces, according, once more, to the superposition
principle. The force on the point-like charge q is

F ¼ q Eþ v� Bð Þ: ð6:3Þ

This expression is completely general. It holds not only under the stationary
conditions we are considering but also when the fields E and B depend not only on
the coordinates but on time as well. The force is called the Lorentz force, named
after Hendrik Antoon Lorentz (The Netherland, 1853–1928).
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One might observe that, as the Lorentz force is zero when the velocity is zero, it
looks as if it contradicts the relativity principle, being different in two inertial
frames in relative uniform motion. This is not the case, however. In Sect. 6.16, we
shall see how both the electrical and the magnetic terms transform under a Lorentz
transformation in such a way that the result is relativistically covariant.

Electrical currents consist of charges in motion. Consequently, a current carrying
wire in a magnetic field is subject to magnetic forces. Let us find the expression. We
start by recalling that the current density is j ¼ npq vh i, where q is the charge of the
carriers, vh i is their average velocity and np their numeric density. If we consider a
wire, of section S small enough to have the same current density at all its points, the
current intensity is I = jS. Let us consider an infinitesimal element of length ds of such
a wire immersed in the magnetic field B and find the force acting on the element. The
magnetic force acting on each carrier, of charge q and velocity vq, is Fq ¼ qvq � B.
The total force is obtained by adding all the charges in the volume S dl, namely

dF ¼
X
Sdl

qvq � B ¼ q
X
Sdl

vq

 !
� B:

The sum over the velocities on the right-hand side is just the average veloc-
ity vh i of the carriers times their number, which is npSds. Hence, we have

dF ¼ npS ds q vh i � B ¼ jS� Bds ¼ Ids� B

where we have profited off the fact that j and ds have the same positive direction. In
conclusion, the force on the circuit element ds is

dF ¼ Ids� B: ð6:4Þ

Clearly, we cannot observe the force on an element of infinitesimal length. We
can only do that on a short element of the circuit. We hang a current-carrying wire,
free to move near an electromagnet. When we switch on the magnet, we see the
wire moving perpendicularly, both to its own direction and to that of the magnetic
field. Performing suitable measurements, we can check that Eq. (6.4) indeed cor-
responds to the Lorentz force acting on the charges moving through the wire.
Historically, Eq. (6.4) was discovered before the Lorentz force and is sometimes
called the 2nd Laplace law, from Pierre-Simon Laplace (France, 1749–1827).

The total force acting on a finite segment C between, say, sections A and B of a
circuit carrying the current I immersed in the magnetic field B is obtained by
integration

F ¼ I
ZB
C;A

ds� B: ð6:5Þ
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6.3 Hall Effect

The method for measuring a magnetic field that we have described in the previous
section is conceptual, but cannot obviously be used in practice. A conceptually
simple but also practical method is based on a physical effect discovered in 1879 by
Edwin Hall (USA, 1855–1938) and is called the Hall effect.

Consider a conductor shaped like a parallelepiped with a rectangular base of
sides a and b and a small height c. It is immersed in the magnetic field
B perpendicular to its base and practically uniform in the size of the conductor, as
shown in Fig. 6.2. We have soldered two wires (not shown in the figure) to the
central points of the two opposite faces ac and have injected the constant current
I. We have soldered another couple of wires to the centers of the faces bc and
connected them to a voltmeter to measure the potential difference between those
points. We do observe a potential difference, called the Hall voltage, which we
indicate with VH. This is the Hall effect. It is found that VH is proportional both to
the current intensity I and to the magnetic field B.

Figure 6.2a explains the effect in the case of positive carriers, Fig. 6.2b in the
case of negative carriers. One sees that the magnetic force Fm ¼ qv� B has the
same direction in both cases. Its intensity, being that the field and velocity are
mutually perpendicular by construction, is Fm = qtB.

Initially, the carriers under the action of the magnetic force move to the left in
the figure (in both cases). This causes the development of a charge profile
decreasing from left to right, which soon repels newly arriving carriers. At equi-
librium, the corresponding electric force Fe is equal and the opposite of the mag-
netic force, namely it is Fe = Fm. Calling E = Fe/q the corresponding electric field,
we have E ¼ vh ij jB.

This is the electric field which appears as a potential difference between the two
sides of the conductor, namely as VH ¼ aE ¼ vh ij jaB.
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F+ F–
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Fig. 6.2 Hall effect. a Positive carriers, b negative carriers
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We can express vh i in terms of the current density, and then of the current
intensity. We shall limit ourselves to the cases in which carriers of only one sign are
present. Thus, we have I ¼ jac ¼ npq vh ij jac, where np is the carrier number den-
sity. Hence, finally,

VH ¼ IB
npqc

: ð6:6Þ

Let us now comment on the result. Firstly, Eq. (6.6) explains the observation of
the Hall voltage as being proportional both to the current intensity and to the
magnetic field magnitude. Secondly, the Hall voltage is inversely proportional to
the charge of the carrier. Consequently, the voltage sign depends on the sign of the
charge of the carrier, which can so be determined.

We can enhance the effect by decreasing the thickness c of the conductor and by
working with lower carrier densities. This is why the effect is easier to detect in
semiconductors than it is in metals. Consider, for example, copper, in which, as we
have seen in Sect. 5.1, np = 1.7 � 1029 m−3, and let us use a quite thin conductor
with c = 0.1 mm. Equation (6.6) shows that the Hall voltage, even for an intense
field on the order of one tesla and current intensities on the order of one ampere, is
only of a few microvolts. In a semiconductor, the carrier density may easily be 10−10

times smaller than in a metal. If we use current intensities of a few milliampere,
which are small enough not to damage the semiconductor, we obtain easily mea-
surable Hall voltages in the millivolt range, even with magnetic fields of 10−4 T.

QUESTION Q 6.1. A current of 1.0 A flows in a rectangular slab of silver has a
thickness of 1 mm. The Hall voltage measured in a magnetic field of 1 T per-
pendicular to the slab is 0.1 µA. What is the carrier density? h

Hall probes based on these principles are cheap, commercially available, and
easy to use. Note, however, that the proportionality constant npqc in Eq. (6.6) is, in
general, not accurately known. Consequently, the Hall probes give relative mea-
sures of the field. To have an absolute measurement, they must be calibrated in a
known magnetic field. Note also that the carrier number density of a semiconductor
is a strong function of temperature. Consequently, the calibration must be done at
the same temperature as the subsequent use.

6.4 Motion of Charges in a Magnetic Field

In this section, we study the motion of a point charge in a stationary magnetic field
B. Let us start with the simplest situation, in which the field is uniform and the
initial velocity v0 is in a plane perpendicular to B, as in Fig. 6.3. Let q be the charge
and m the mass of the particle.
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The magnetic force on the particle at the initial instant is

F ¼ qv0 � B: ð6:7Þ

The direction of the force belongs to the plane normal to B containing v0. Being
that the force is always perpendicular to the motion, the velocity is constant in
magnitude. The motion is circular and uniform. Let r be the position vector taken
from the center of the orbit. The known relation between linear and angular velocity
is v ¼ x� r. Being that x is constant, the (centripetal) acceleration is a ¼ x� v.
The acceleration is equal to the force, which is the magnetic one, divided by the
mass, namely x� v ¼ q=mð Þv� B, which finally gives us

x ¼ � q=mð ÞB: ð6:8Þ

Note that the angular velocity is independent of the initial velocity. This is true
for the period T and the frequency m = 1/T as well. These quantities are

T ¼ 2p
x

¼ 2p
B
m
q
; m ¼ B

2p
q
m

The orbit radius depends on the velocity. Being that r = t0/x = t/x, we have

r ¼ mt0= qBð Þ ¼ mt= qBð Þ: ð6:9Þ

Let us now look at a few interesting examples of this motion.
The cyclotron is a charged particle accelerator invented by Ernest Orlando

Lawrence (USA, 1901–1958) in 1932. Figure 6.4a is a reproduction of the scheme
submitted with the patent request, which was granted in 1934. Accelerators
employing high voltages, like the van der Graaf accelerator, are linear structures,
whose dimensions increase with the accelerating voltage. The cyclotron works
without high voltage and using a circular structure. This allows for reaching much
higher energies in compact configurations. The first cyclotron was made out of
brass and was only 4 in. (10 cm) in diameter. It could literally be held in one hand.

v
0

B

q r

Fig. 6.3 The trajectory of a
point charge moving in a
plane perpendicular to a
uniform magnetic field
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In the following years, cyclotrons of increasing size were built, which were able to
accelerate ions to increasing energies. A 152 cm diameter cyclotron built in 1939
could accelerate ions to 16 MeV.

Figure 6.4b helps us to understand the working principle, which is based on the
independence of the angular velocity of the orbit radius, a property that we have just
seen. An important component of the device is the electromagnet, which has two
planar poles facing one another. The magnet produces a uniform magnetic field in
the space between the poles, where the cyclotron is installed. The cyclotron itself,
which is under a vacuum, contains two hollow electrodes called Dees, for their
shape, in the plane perpendicular to the field. The source of ions, S in the figure, is
located in the gap between the Dees near the center. Between the electrodes, an emf
is applied that produces an electric field, which accelerates the ions initially to the
left in the figure. The ions enter the Dee and become shielded from the electric field,
having only the magnetic force acting on them. Consequently, they move along a
semicircle.

If the emf were constant in time, the ions, when returning to the gap between the
Dees in the opposite direction, would meet a decelerating electric field. The trick is
to have an emf periodically varying in time with half a period exactly equal to the
time taken by the ions to describe half a circle. In such a way, when the ions exit the
gap and feel the electric field, they find it inverted and are accelerated again. The
process repeats itself in the Dee on the right, and then on the left, and so on. If ΔV is
the value of the emf and q is the charge of the ion, the kinetic energy gained at each
passage in the accelerating gap is DUK ¼ qDV . As the velocity increases, the orbit
radius increases as well, according to Eq. (6.9), but the time taken to move along
half a circle remains constant. Hence, a emf generator of fixed frequency can be
used. Otherwise, it would be impractical.

B

S

B
(a) (b)

Fig. 6.4 The cyclotron. a Original scheme in the Lawrence patent request; b scheme of the
working principle
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The maximum energy is reached when the orbit radius R is equal to the radius of
the cyclotron. This radius is limited by the diameter of the poles of the magnet,
which is the most expensive part of the system. The maximum energy is

UK ¼ 1
2
mt2 ¼ q2B2R2

2m
: ð6:10Þ

A theoretical limit to the achievable acceleration with a cyclotron originates
through the fact that the equations of motion we wrote are non-relativistic, namely
they hold for velocities that are small compared to the speed of light. At higher
velocities, the period is no longer independent of velocity and the cyclotron, in this
simple configuration, ceases to work.

Note the different functions of electric and magnetic fields. The electric field
accelerates the ions, the magnetic field changes the direction of their momentum,
guiding them on the trajectory. The particle accelerators at relativistic energies, up
to the highest ones, employ a number of different technologies, but the functions of
the electric and magnetic fields are those we have just mentioned in any case.

Crossed electric and magnetic fields are used to build velocity selectors for
charged particles. The charged particle sources, like a hot metal wire for electrons
or an ampule containing a gas in which an electric discharge takes place for ions,
produce particles over a range of velocities. If we want to select a beam of particles
in a narrow velocity range, we can use the selector shown in Fig. 6.5.

A parallel plate capacitor is used to produce a uniform electric field E, and an
electromagnet to produce a uniform magnetic field B perpendicular to E. The
electric force qE and magnetic force are parallel and, choosing the senses of the
fields properly, opposite. Two slits F1 and F2 select the electrons traveling along a
straight trajectory. The electron velocity must be such that the resultant force is
zero, namely that qE = qtB. The selected velocity, within an interval dependent on
the diameters of the slits and their distance, is

t ¼ E=B: ð6:11Þ

The velocity can be chosen adjusting one of the two fields.
QUESTION Q 6.2. We adjust the velocity selector to have electrons of a certain

velocity throughout. If we now input protons with the same velocity, will they go
through? h

B
E

F
1 F

2

Fig. 6.5 Charged particles
velocity selector. The
symbol ⊗, representing the
fletching of a vector arrow
seen from the back, means
that B is directed inside the
drawing
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A mass spectrograph is an instrument capable of separating different isotopes.
The name is analogous with optics. An optical spectrograph, for example, a prism,
separates a beam of white light into its components of different colors, which have
different frequencies. A light spectrum is a diagram of the intensity as a function of
frequency. Similarly, an isotope mass spectrum is a diagram showing the isotopic
abundance as a function of mass, or, to be more precise, of the ratio m/q.
A high-resolution mass spectrometer was invented by Arthur Dempster (Canada-
USA, 1886–1950) in 1818. The device is shown schematically in Fig. 6.6.

The entire apparatus is under a vacuum. A source S, located in a small chamber,
produces the ions of the element to be studied. Ions of different charge, q, and mass,
m, are present. Two electrically insulated slits F1 and F2 select a beam of ions
that are accelerated by a potential difference, typically of V = 50–100 V,
applied between the slits. The kinetic energy of an ion, which is negligible at the
source, is

1
2
mt2 ¼ qV ð6:12Þ

when it crosses F2. After F2, the ions enter a larger chamber (typically 10–15 cm
across) that is immersed in a uniform magnetic field B, directed inside the drawing
in Fig. 6.6. The trajectories of the ions in the main chamber are semi-circles of
radius R ¼ mt=ðqBÞ, which, with t given by Eq. (6.12), is

R ¼ 1
B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 m=qð ÞV

p
: ð6:13Þ

We see that ions of different mass to charge ratio m/q travel along orbits of
different radiuses. In practice, all the ions are singly ionized and have the same
charge. Figure 6.6 gives us an example with three different masses. A third slit F3 is
located on the right-hand side of the chamber, in order to select only those ions
whose orbit diameter is equal to the distance D between F2 and F3. The ions getting
through F3 enter a third chamber in which their current is measured by a sensitive
electrometer. The distance D is fixed, and we obtain a mass spectrum by varying the
magnetic field and measuring the ion current as a function of the field. We obtain a

S VF
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1
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3

+ _

Fig. 6.6 The Dempster mass
spectrograph
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number of peaks, each corresponding to a different mass of height proportional to
the abundance.

An important property of every spectrograph, the Dempster mass spectrograph
included, is its resolving power. Consider having two ion species in the beam with
masses m and m + Dm. If Dm is too small, both components may be able to enter
F3, for the same values of V and B. We say that the components are not resolved. As
a matter of fact, in order to enter F3, the orbit diameter does not need to be exactly
equal to the distance D between the centers of F2 and F3, because the slits have a
certain width. Assuming, for simplicity, that both have the same width DD, the
condition is D� DD� 2R�DþDD. Differentiating Eq. (6.13), we obtain

Dm
m

¼ �2
DD
D

; ð6:14Þ

where the factor 2 on the right-hand side comes from m being proportional to R2

and consequently to D2. Clearly, we can increase the resolving power (within
certain limits) by decreasing the widths of the slits. Let us look at the orders of
magnitude. Let D = 60 mm be the distance between the slits and DD = 0.3 mm
their width. Equation (6.14) gives a resolving power of 1 %. This means that we
can separate two isotopes differing in mass by 1 u (unified atomic mass unit, which
is approximately one nucleon mass), which is the smallest mass difference between
ions, up to 100 u.

However, reducing the width of the slits, while increasing the resolving power,
reduces the useful ion flux as well. As a matter of fact, no spectrometer can work if
it is not capable of focusing. Indeed, having a small source S is not enough; we must
also be able to produce an image of S, as small as possible in the location of the
detector. This is at F3, in our case. An important property of the Dempster spec-
trograph is its focusing power after a 180° deflection.

Figure 6.7 shows the trajectories of three ions of the same mass and the same
charge entering F2 at different angles, one along the ideal trajectory, one at the angle
+h and one at –h to it. Initially, the trajectories diverge, but after 90°, they converge
back to become very close to one another at 180°. At this point, we have a focus
and we can locate the detector. In this way, it will detect ions within a certain
angular acceptance. A spectrograph of zero acceptance cannot work, because the
flux it accepts is null. Let us look at the problem quantitatively.

An ion entering along the ideal trajectory, namely at h = 0, hits the wall at the
distance D from its entering point, as we have seen. An ion entering at the angle h
hits the wall at the distance equal to the chord c = d cos h. The distance between
these points is DD ¼ D 1� cos hð Þ ffi Dh2=2, where we have approximated the
cosine as cos h ffi 1� h2=2. We then define as focusing power of the instrument

DD
D

¼ h2

2
:
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With the data of the above considered example, DD/D = 5 � 10−3, and hence
the acceptance is h = 0.1 rad. Namely, F2 accepts ions in an angular range
of ±0.1 rad equal to ±5.7° to the ideal direction. This is quite a reasonable value to
work with. We have just mentioned that Dempster used his spectrograph to separate
and measure the relative isotopic abundance of several elements, including Li, Na,
K, Mg, Ca and Zn.

One quarter of a century after its discovery, arrays of the Dempster spectrograph
on an enormous scale were used by the Manhattan project at Oak Ridge to enrich in
235U natural uranium to the grade necessary for the bomb. As the reader has
noticed, the Dempster spectrometer is quite similar to one half of a cyclotron. And it
was just Lawrence who modified the Dempster arrangement to increase the ion
current while still retaining adequate resolution in mass separation. As part of the
necessary R&D program, the 37-in. cyclotron at Berkeley was dismantled on
November 24, 1941, and its magnet used to create the first calutron. Its name came
from a mash-up of “California University” and “cyclotron”. Research led to a
“racetrack” configuration of the basic unit. This unit, or building, consisted of two
magnets with forty-eight gaps, each gap containing two vacuum tanks, resulting in
96 source and collector pairs. Ten such buildings, with a total of about 2,000
sources and collectors, were necessary to separate 100 g of 235U daily, as requested
by the project. The Y-12 plant, as it was called, started production in 1943 at Oak
Ridge (Tennessee).

Let us now consider the motion of a point charge still in a uniform magnetic
field, but not in a plane perpendicular to the field, as shown in Fig. 6.8. Let us
decompose the velocity in two components, one perpendicular and one parallel to
B. We indicate them with vn and vp, respectively, and we have v ¼ vn þ vp. Let h
be the angle between v and B. The motion in the plane normal to B is a uniform
circular motion with velocity magnitude tn ¼ t sin h. The motion in the direction
of the field is uniform with velocity tp ¼ t cos h, because the magnetic force
component is zero.

θ
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Fig. 6.7 Focusing property
of the Dempster
spectrographic
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Hence, the trajectory is a cylindrical helix. The period of the circular projection
is T ¼ 2pm= qBð Þ. The pitch d of the helix is the distance traveled in the motion
parallel to the field in a period, namely

d ¼ tpT ¼ 2p
m
q
t cos h
B

: ð6:15Þ

We see that the pitch is independent of the radius. This property is exploited for
a second method, different from that of the Dempster, of magnetic focalization of
charged particle beams, electrons, for example. Figure 6.9 shows the scheme of the
device, which is under a vacuum. A metallic wire heated by an electric current
emits electrons. An applied potential difference V accelerates the electrons towards
a positive electrode in which there is a small hole S.

Let x be the direction of the beam axis. Initially, the electrons have quite small
velocities with different directions. All the electrons that exit the hole have the
x-component of their velocity accelerated by the electric field to tx ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2qV=m

p
,

which is large compared to the initial velocity. In addition, each electron has small
components of its velocity perpendicular to the x-direction. Due to these transversal
components, the electron beam widens as it moves away from the hole. Let us try to
focalize the beam, namely to have an image of the effective source S at a certain
distance. We can do that with uniform magnetic field B in the x-direction. All the
electrons in their helical trajectories will converge back at the point F of the axis at
a distance equal to the pitch of the helix, namely

d

B

v
vp

vn

Fig. 6.8 Motion of a charge
in a uniform magnetic field

x
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V

Fig. 6.9 Magnetic
focalization with parallel field
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d ¼ tpT ¼
ffiffiffiffiffiffiffiffiffi
2qV
m

r
2pm
qB

¼ 2
ffiffiffi
2

p
p

B

ffiffiffiffiffiffiffi
mV
q

s

An image of the source S is formed in the focus F at the distance d given by this
equation.

Consider now the motion of a point charge in a non-uniform magnetic field. In
regions in which the field does not vary too much, the trajectory is still similar to a
helix. However, when the particle moves towards regions of higher field, the radius
of the helix gets smaller, as suggested by Eq. (6.9). In addition, the pitch of the
helix decreases as well. Indeed, Fig. 6.10a shows that where the field lines are not
parallel (namely the field is not uniform), the Lorentz force is not in the plane of the
particle orbit. Let us consider its two components, one in the plane of the orbit and
one perpendicular to the plane. The former gives the centripetal acceleration of the
circular motion, the latter is, in any case, directed toward the regions of lower field.
This component slows down, so to speak, the translation velocity of the circular
orbit if the particle is moving toward a higher intensity field, and accelerates it if
moving towards a weaker field.

As a matter of fact, the orbit tends to include the same bunch of field lines as it
moves. If the field varies enough, the limit can be reached at which the orbit slows
down and stops, as shown in Fig. 6.10b, and after that, moves back towards weaker
field regions. This phenomenon is called a magnetic mirror. It can also be shown
that when the “motion of the orbit” slows down, the motion of the particle on the
orbit is accelerated, in such a way that the sum of the kinetic energies of the two
components of the motion remains unaltered. Kinetic energy is conserved under
these conditions, because the acting force is the magnetic force, whose work is null.
Non-uniform magnetic field structures are used to confine the plasmas in research
programs aimed at nuclear fusion for energy production.

A naturally-occurring charged particle confinement phenomenon happens in the
Van Allen radiation belts in the ionosphere. Regions of intense radiation sur-
rounding the earth were discovered in 1958 by James Van Allen (USA, 1914–2006)
with Geiger-Müller counters on board the NASA satellites Explorer 1 and Explorer
3. The belts contain a plasma of charged particles, electrons and ions, emitted by the
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Fig. 6.10 Trajectories in a non-uniform magnetic field
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sun, that get trapped in the earth’s magnetic field, as shown schematically in
Fig. 6.11. The inner belt extends in height typically between 1000 and 6000 km
and in celestial latitude between about +65° and –65° from the celestial equator.

The earth’s magnetic field is, in a first approximation, a dipole field (which we
shall study in Sect. 6.13). This is the field represented in the figure, but we shall
come back to a better approximation soon. Note that the North and South poles are
inverted relative to a “normal” dipole. This is due to the fact that the north pole of a
magnetic dipole, like the compass needle, points to the North pole of earth.
Figure 6.11 shows examples of trajectories of charged particles of a certain energy.
The pitch of the helix that is large at the equator becomes smaller and smaller
towards the poles. With that energy, the charged particle cannot reach the poles,
because the magnetic field is too high and the trajectory bunches back. In this way,
charged particles get trapped in a belt.

As a matter of fact the magnetic field near earth has two main components, one
due to the earth itself, which is mainly a dipole, and one due to the solar wind,
which is the flux of charged nuclei coming from the sun. The resulting field is
shown in Fig. 6.12.

The field is flatter on the side of the sun, namely the field lines are closer to earth
then they would have been if there were no solar wind, and has a long tail on the
opposite side. On the other hand, the charged particles, when meeting the relatively
higher field zones near earth, are deflected by the Lorentz force and do not reach the
earth’s surface. The magnetic field protects the surface from the intense particle
radiation coming from sun. As a matter of fact, the radiation penetrates deeper into
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Fig. 6.11 Scheme of a
particle trajectory in the Van
Allen radiation belts

solar wind

N

S

Fig. 6.12 The solar wind and
the magnetosphere
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the atmosphere at high latitudes, where the velocities of the charges are almost
parallel to the field and consequently the Lorentz force is small.

The solar wind and the magnetic field it originates are not constant in time at all,
but vary with solar activity. The number of solar spots, which are a mark of solar
activity, varies over a period of 11 years. Particularly violent phenomena of mass
emission in the solar corona may happen at any time, but their frequency is cor-
related with the solar spot period. When the particle shower reaches and interacts
with the earth’s magnetic field, it can perturb it considerably. During such magnetic
storms, the phenomenon of the aurorae, taking place at high latitudes, is particularly
spectacular. The most intense magnetic storms can severely perturb radio com-
munications, navigation systems and even the electric power distribution grids.

6.5 Galvanometer

Galvanometers are sensitive instruments for measuring current intensity. The
instrument is named after Luigi Galvani (Italy, 1737–1798), who discovered in
1791 that electric current would make the legs of a dead frog jerk, but did not
develop the instrument.

In Sect. 6.2, we saw that a section of a circuit AB carrying the current of intensity
I immersed in a magnetic field B is subject to the force

F ¼ I
ZB
C;A

ds� B: ð6:16Þ

The galvanometer exploits this property to measure I.
Figure 6.13 shows schematically a moving coil galvanometer seen from above.

The poles of a small permanent magnet are shaped with concave cylindrical sur-
faces, as shown in the figure. A cylindrical iron core is located on the axis of the
gap. This configuration guarantees a radial magnetic field in the remaining air gaps
on the two sides of the core. The intensity of the field is independent of the angle.
A rectangular wire coil carrying the current to measure is fixed to a light mechanical
support, which is the arm of a sensitive torsion balance suspended to a thin metal
wire. The figure shows the suspension point as a black dot. The area of the coil is
S and its vertical sides that are immersed in the magnetic field have length a. When
the coil rotates about it suspension wire its vertical sides move in the gaps between
the poles and the core, in which they find a field always perpendicular to them.

If a is one of the vertical sides, considered as a vector in the direction of the
current, the magnetic force on it is F1 ¼ Ia� B. Its magnitude is F1 ¼ IaB and its
direction is perpendicular to the side. The force F2 on the other vertical side –a is
equal and opposite. Hence, the two forces are a couple, with moment of magnitude
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sI ¼ IBab ¼ IBS. In order to increase the sensitivity, the coil has a number of turns.
If this is N the total moment on the coil is

sI ¼ NIBS: ð6:17Þ

The torsion moment sM of the suspension wire is proportional to the rotation
angle a, namely

sM ¼ �Ka; ð6:18Þ

where K is the torsional elastic constant. The equilibrium is reached at the angle,
call it a*, at which sI + sM = 0, namely for

a	 ¼ IBSN=K: ð6:19Þ

Measuring a*, we obtain I once we know the other quantities. In practice, to
obtain accurate current measurements, one needs to calibrate the instrument by
measuring known current intensities.

QUESTION Q 6.3. The rectangular coil of a galvanometer similar to that of
Fig. 6.13 has an area S = 10−4 m2 and N = 80 turns. The magnetic field is B = 10−2

T independently of the orientation of the coil. What is the torsional elastic constant
K of the suspension wire if a current of 0.2 mA produces an angular deflection
of 10°? h

6.6 The Magnetic Field of Steady Currents

We shall now start to study the relation between electric currents and the magnetic
field they produce, in time independent conditions. In general, a vector field, such
as the magnetic field, is known once its sources and its curls are known. We must
find two expressions, one for r � B and one for r� B.

F2

F1

N
S

N S

Fig. 6.13 Schematic view of
a moving coil galvanometer
seen from above
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As we already stated, magnetic charges do not exist in nature. The simplest
sources of a field are point-like, such as the electric charges for the electric field,
which are points from which lines of force of the field originate (sources), or in
which they enter (sinks). The magnetic field does not have any source or sink. We
can express this property in terms of the flux of a magnetic field through an arbitrary
oriented surface R, namely in terms of

UB ¼
Z
R

B � ndR;

where n is the positive unit vector normal to R. The physical dimensions of UB are
of a magnetic field times an area. Its unit is called a weber, 1 Wb = 1 T � 1 m2,
after Wilhelm Weber (Germany, 1804–1891). Now, the flux of B through a closed
surface R is proportional to the field lines crossing R, which is zero. Namely, the
flux of B through any closed surface is zero:I

R

B � ndR ¼ 0: ð6:20Þ

The same property can be expressed in differential form, exactly as we did for
the electric field, using the Gauss divergence theorem. If V is the volume enclosed
by R, we have Z

V

r � BdV ¼
I
R

B � ndR ¼ 0:

But, as V is arbitrary, we also have

r � B ¼ 0: ð6:21Þ

This equation is analogous to r � E ¼ q=e0 and expresses the non-existence of
the magnetic analog of the charge density. The fields having identically zero
divergence are said to be solenoidal.

We have seen in Sect. 6.1 how Hans Christian Ørsted discovered that electric
currents give origin to magnetic fields. The magnetic actions of electric currents were
then studied in a series of experiments by Jean-Baptiste Biot (France, 1777–1862),
Félix Savart (France, 1791–1841) and, above all, André-Marie Ampère (France,
1775–1836).

Consider a rectilinear wire and dispose it vertically, going through the hole in a
horizontal plastic plate. If we pour iron filings on the plate and send a current
through the wire, we shall see how the filings form circles with their center on the
wire. The tiny iron needles orient in the direction of the magnetic field in their
position. In such a way, they materialize, so to speak, the magnetic field lines.
The pattern is sometimes called a magnetic spectrum.
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The accurate measurements done by Biot and Savart have shown that the
magnetic field at a given point is in the plane normal to the field through that point
and is normal to the wire. The field lines are circles with centers on the wire. The
direction of the field is given by the right hand rule. This can be expressed by
saying that an observer lying along the current with the positive direction entering
through his feet and coming out of his head sees the field lines as having a
counter-clockwise direction. This is equivalent to the right-hand rule.

The Biot-Savart law states, in addition, that the magnitude of the field of a steady
rectilinear current is inversely proportional to the distance r from the current and is
proportional to the current intensity I. To find the equation, let us consider one of
the oriented circles made by the field lines. Let us call it C and let us calculate the
circulation integral of B about C. Taking into account that B has the same value at
all the points of the line and is always tangent to the line in the positive direction,
we have

I
C

B � ds ¼ B2pr

As B is inversely proportional to r, the integral is independent of r. Being that B is
proportional to the current intensity I, the circulation integral is proportional to I as
well. The proportionality constant is the fundamental constant of magnetism, called
vacuum permeability or permeability of the free space, and is indicated with µ0.
We then have I

C

B � ds ¼ l0I: ð6:22Þ

The value of µ0 in SI is fixed, as we shall see, by the definition of the ampere to

l0 ¼ 4p10�7 N A�2: ð6:23Þ

We can now conclude that the magnitude of the magnetic field generated by a
continuous rectilinear current is

B ¼ l0I
2pr

: ð6:24Þ

An experiment credited to James Clerk Maxwell (UK, 1831–1879) for
demonstrating the 1/r dependence of the magnetic field of a rectilinear current is
shown in Fig. 6.14. The experiment is designed following the “null” method, which
was a mark of Maxwell. In this method, if the law being checked is exactly as
expected, two effects balance one another out and nothing happens.

In the arrangement shown in the figure, two torques are present, one on the north
poles and one on the south poles of the two magnets, which are equal to one

198 6 Magnetostatics

www.ebook3000.com

http://www.ebook3000.org


another. The moments of the torques are the products of the forces times the arms.
The arm lengths are in the ratio of the distances of the north and south poles from
the current, respectively. Only if the forces are in the same ratio inversely do the
two effects balance. The force on a magnetic pole being proportional to the mag-
netic field, the observed effect is null only if the field is proportional to 1/r as well.

We shall now prove that Eq. (6.22) holds not only for a circle, but also for every
closed curve C linked with the current. The positive direction of C must be chosen
in order for an observer laying on the current with the positive direction of the
current entering through his feet and flowing out of his head to see the direction of
C counter-clockwise. Let us show that first, assuming C to be planar and in a plane
normal to the current. This is the plane in Fig. 6.15.

Let us think of the infinitesimal segment ds of C as being the vector sum of two
components, an infinitesimal circular arc and an infinitesimal radial segment.
The contribution of the latter to the integral is zero, because it is perpendicular to B.
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I
Fig. 6.14 The Maxwell
demonstration of the
Biot-Savart law
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Fig. 6.15 Calculating the
circulation integral of
B around a planar curve
linked with the current
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We take the origin O of the reference frame at a point at which the current crosses
the plane of C. Let r be the position vector of ds and d/ the angle under which ds is
seen from O. The circumference arc we are considering has length rd/ and the
orientation of B. Hence, we have B � ds ¼ Brd/ ¼ l0I

2pr rd/ ¼ l0I
2p d/. We see that

this quantity is independent of r. Its integral around C is the integral in / over the
entire 2p angle, namely

I
C

B � ds ¼ l0I
2p

Z2p
0

d/ ¼ l0I:

Let us consider now a non-planar curve. Every infinitesimal segment ds of the curve
can be considered as being the vector sum of three components, one parallel to the
current, one radial and one on a circular arc. The contributions of the first two com-
ponents are zero, because both are normal to B, and we are back at the previous case.

Let us now calculate the circulation of B around a closed curve that does not link
the current. We shall limit the discussion, for the sake of simplicity, to a planar
curve C in a plane normal to the current. We leave to the reader the obvious
generalization.

Let O again be the point at which the current cuts the plane of C. As one sees in
Fig. 6.16, every infinitesimal angle d/ cuts two infinitesimal segments on C (or an
even number of such segments). The integrand B ∙ ds has, on the two segments,
equal and opposite values and the two contributions cancel one another out. It
follows that the circulation integral is zero.

In conclusion, we can state that
H
C B � ds ¼ l0I if I is linked to C,

H
C B � ds ¼ 0

if I is not linked to C.
If several stationary currents exist, like I1, I2, I3 in Fig. 6.17, the superposition

principle allows us to conclude that

I
C

B � ds ¼ l0I link: ð6:25Þ

φd

B

B

Γ

I

B

Fig. 6.16 Calculating the
circulation integral of
B around a planar curve not
linked with the current
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where Ilink is the sum of the currents linked to the curve. In the example of
Fig. 6.17, it is Ilink = I1 – I2. Note that I2 has the minus sign because it sees the
curve in a clockwise direction and that I3 does not contribute because it is not
linked.

Let us specify the meaning of the “linked” adjective. As a matter of fact, the
current carrying wires cannot be infinitely long lines such as those we have drawn.
In any case, the circuit must be closed by a return wire. The linked currents are
those linked with C, like the links of a chain.

In 1826, André-Marie Ampère (France, 1775–1836) discovered, through a series
of fundamental experiments, that Eq. (6.25) has a completely general validity for
any shape of the current carrying circuits, as long as the currents are steady. This is
called the Ampère circuital law. We assume it to be the fundamental law of
magnetostatics.

In conclusion, every system of steady currents is the origin of a magnetic field.
The field lines do not have origins (sources) or ends (sinks), but rather they form
closed loops, which link with the current lines. Figure 6.18 shows an example for a
single current in a wire. More complicated situations arise in the presence of several
currents. Note that, in some cases, lines coming from and going to infinite may
exist.

If the currents are not carried by wires, and are consequently localized in them,
we must describe the situation in terms of the current density j. Let us generalize
Eq. (6.19) for this case. Given the oriented curve C, we choose a surface R having
C as its boundary curve. We orient R in such a way that the positive direction of its
unit normal vector n sees the positive direction of C as being counter-clockwise.
Ilink, the total current through R, is then

I link ¼
Z
R

j � ndR:

Γ

I3

I2

I1
Fig. 6.17 A closed oriented
curve and three currents
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This equation makes sense only if the integral on the right-hand side does not
depend on the choice of R. Let us show that to be true, considering two surfaces R
and R′ of boundary C, as in Fig. 6.19. We want to show thatZ

R

j � ndR ¼
Z
R0

j � n0dR0

or that

Z
R

j � ndR�
Z
R0

j � n0dR0 ¼ 0:

We notice that R and R′ taken together make a closed surface. If we call nout
the outgoing unit vector of this surface, we see that it coincides with n on R and

I

B

Fig. 6.18 A generic
stationary current and the
magnetic field lines it
generates

n'

n

Σ

Σ '

Γ

Fig. 6.19 Two surfaces with
the same boundary
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with –n′ on R′. Hence, the left-hand side of the last equation is just the flux of
j flowing out from R + R′. Being that j is a solenoidal field under steady conditions,
its flux flowing out any closed surface is zero. Let us look at this. Indeed, the charge
conservation equation r � j ¼ �@q=@t under stationary conditions, q = cost,
becomes r � j ¼ 0. Calling V the volume enclosed by R +R′ and integrating on
V the divergence ∇ ∙ j, we have 0 ¼ RV r � jdV ¼ RRþR0 j � nout.

We can understand the situation visually, by considering that the lines of current
are closed curves. Consequently, the numbers of lines entering into and coming out
of a closed surface are equal. The flux is zero. Note, however, that this is true only
under stationary conditions, in which j and q do not depend on time. Under
dynamical conditions, contrastingly, the Ampère circuital law cannot hold, as we
shall see in Chap. 10.

Summarizing, we can write the Ampère circuital law in the formI
C

B � ds ¼ l0

Z
R

j � noutdR: ð6:26Þ

where C is an oriented closed curve and R is any surface having C as its boundary
oriented with its positive normal vector seeing the positive direction of C as
counter-clockwise.

The law can be expressed in a differential form as well. To do that, we use the
Stokes theorem

I
C

B � ds ¼
Z
R

r� Bð Þ � ndR

and, considering that R is arbitrary, we have

r� B ¼ l0j: ð6:27Þ

Equations (6.20) and (6.22) in integral form, or the equivalent Eqs. (6.21) and
(6.27) in differential form, are the fundamental equations of magnetostatics. They
allow us, in principle, to calculate the magnetic field produced by any stationary
currents distribution. We anticipate that Eqs. (6.20) and (6.21) are also valid under
dynamic conditions, while Eqs. (6.22) and (6.27) are not, needing to be generalized.

6.7 Applications of Ampère’s Law

The calculation of the magnetic field generated by a given system of currents
generally requires using both Eqs. (6.20) and (6.22). However, in particularly
symmetric cases, the problem can be solved using the Ampère circuital law alone.
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The approach is similar to that of Sect. 1.13, in which the symmetry of the problem
allowed us to find the electric field only using only the Gauss law.

The first example is a toroidal solenoid. A solenoid is a coil wound into a tightly
packed helix. The two most interesting geometries are the cylinder and the torus
(Fig. 6.20). The axes of the solenoid are, respectively, a straight line and a circle.
Let us start by considering a torus with a square cross section.

Let R1 and R2 be the radiuses of the torus (R1 < R2), N the number of loops and
I the current intensity. The loops of a solenoid are densely packed, namely the pitch
of the helix is small compared with the length of a loop. The symmetry of the
problem and the fact that the lines of B are closed suggest that they should be
circles concentric with and, in planes, parallel to the torus. Symmetry also requires
the magnitude B to depend only on the distance r from the center.

It is easy to see that the field is zero outside the solenoid.
To see that, we apply the Ampère law to a circle as C1 in Fig. 6.20, of radius r1

smaller than R1. Being that Ilink = 0, we have
H
C1
B � ds ¼ 2pr1B ¼ 0, and conse-

quently B = 0. The linked current Ilink = 0, also for C3 in Fig. 6.20, of radius
r3 > R3 because the enclosed circle is crossed by N currents in one direction and
N equal currents in the opposite one. Hence, B = 0 here as well.

To obtain the field B(r) inside the solenoid, we apply the Ampère law to the
circle C2 of radius r, with R1 < r < R2. We obtain

H
C2
B � ds ¼ 2prB ¼ l0NI.

Hence, we have

B rð Þ ¼ l0
NI
2pr

: ð6:28Þ

We see that the field intensity decreases for r increasing from R1 to R2 as 1/r. In
addition, the strength is higher for larger numbers of coils and larger current
intensities. We also observe that if R2–R2 
 R1, then 2pr is the length of the
solenoid. If n is the number of loops per unit length, namely n = N/(2p r), we have

Γ3

Γ1

Γ2

Fig. 6.20 A toroidal solenoid
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B rð Þ ffi l0nI: ð6:29Þ

The loops being very tight, we can think of the torus as a continuous current
carrying surface with surface current density that we call k. This is the current
intensity per unit length of the solenoid, namely k = nI. We can then also write

B rð Þ ffi l0k: ð6:30Þ

We note that, crossing the surface current, moving from inside to outside the
solenoid, the tangential component of the field (the unique non-zero, in this case)
has a discontinuity equal to l0k. As we shall soon see, this discontinuity exists, in
general, when crossing a current sheet.

Let us consider now a rectilinear cylindrical solenoid. We shall assume it to be
infinitely long, which is obviously an unrealistic case. We shall not make any
assumption as to the shape of the section. Hence, our result will be independent of
that. Let n be the number of loops per unit length along the axis (the total number of
loops is infinite). We shall again assume the loops to be very dense and the current
lines to be circles normal to the axis. We can think about opening the toroidal
solenoid we have just considered and extending it to infinite length. We can then
conclude that the field should be zero outside the rectilinear solenoid as well. The
lines of the field should be straight lines inside the solenoid, parallel to the axis and
extending to infinite.

Let us apply the Ampère law to the curve C, as shown in Fig. 6.21. The curve is
made of two segments of length L parallel to the axis, one inside and one outside
the solenoid and two segments normal to the axis. The unique contribution to the
circulation integral of B is on the internal segment L. nL being the number of loops
crossing the curve, the Ampère law gives us BL ¼ l0nIL. The field is then

B rð Þ ¼ l0nI ¼ l0k ð6:31Þ

where k = nI is the surface current density.
We observe that the field inside the solenoid does not depend on the distance

from the axis, namely it is uniform.

L

Γ

Fig. 6.21 A linear solenoid
and a curve on which to apply
the Ampère law
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Also, in this case, the discontinuity of the tangential component of B crossing the
current sheet of current density k is l0k.

In practice, the cylindrical solenoids have finite lengths. Equation (6.31) is a
reasonable approximation for the field inside a long solenoid, having a length much
larger than the base diameter, at points not too close to the extremes. The field
outside it is weak but not zero. The field lines are shown in Fig. 6.22.

Let us now consider the unrealistic but logically relevant case of an infinite
current-carrying plane, with uniform surface current density k. Let us choose a
reference frame with the z-axis in the direction of k, the x-axis on the current plane
as well, and the y-axis perpendicular to the plane. In this frame, the surface current
density has the components k = (0, 0, k). Considering that the lines of B should run
about the current in a counter-clockwise direction and the symmetry of the problem,
we understand that the lines of B are straight lines in the x direction. More precisely,
B is in the positive x direction on the side of negative y, and in the opposite
direction on the side of positive y.

Symmetry requires that the magnitude of B depend only on the distance from the
plane, if any exists. We apply the Ampère law to the line C shown in Fig. 6.23. The
curve is a rectangle with two sides parallel to x at distances –y and +y from the
plane. The Ampère law gives

H
C B � ds ¼ 2BL ¼ l0kL. The magnitude of the field

is then

B ¼ l0
2
k ð6:32Þ

Fig. 6.22 Field lines of a
cylindrical solenoid
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The Cartesian components of the field are

B ¼ � l0
2
k; 0; 0

� �
for y[ 0; ¼ þ l0

2
k; 0; 0

� �
for y\0 ð6:33Þ

We observe that the field does not depend on the distance from the current plane.
We already encountered a similar circumstance for the electric field generated by an
infinite charged plane. The reasons are similar. Now, the substantial contributions to
the magnetic field at the distance y come from the current density in a circle of radius
on the order of y. When the distance increases, the contribution of each unit surface
decreases (inversely to the distance), but the number of contributing surface units
increases (proportionally to the distance). The two effects balance one another out.

We finally observe that, once more, the tangential component of B has a dis-
continuity in crossing the current sheet, of magnitude l0k.

Let us now see that this property is general, namely let us consider the dis-
continuities of parallel and perpendicular components of the magnetic field crossing
a current-carrying surface.

Let R be an arbitrary surface carrying a current of surface density k. We consider
the vector k as being given as a function of the point on the surface. Note that k is,
at every point, tangent to R at that point.

Figure 6.24 represents the current surface R cut by the plane of the drawing. The
current exits normally from the page. Let P1 and P2 be two points infinitely close to
R on the two faces. We analyze the behavior of the tangent component by applying
the Ampère law to the curve C in Fig. 6.24. The curve is made of two segments of
infinitesimal length dL parallel to the surface through P1 and P2, and two per-
pendicular to the surface. The latter are taken as infinitesimal of an order superior
to that of dL in order to give a negligible contribution to the circulation integral.

x

z

y

k

Γ

L

Fig. 6.23 A uniform
current-carrying plane surface
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Let BT be the projection of the field on the current plane. The Ampère law gives usH
C B � ds ¼ BT P2ð Þ � BT P1ð Þ½ �dL ¼ l0kdL. The discontinuity of the tangential
component is then

DBT ¼ l0k: ð6:34Þ

Let us now consider the behavior of the component of the field B normal to the
surface R, which we call BN. Figure 6.25 again represents a section of R, but the
small rectangle through P1 and P2 is now the section of a closed surface to which
we apply the Gauss law. The argument is the same one we made for electrostatics.

The closed surface is a box with two infinitesimal faces parallel to R of surface
dA and a lateral surface normal to R taken to be infinitesimal of an order superior to
that of dA, in order to give a negligible contribution to the outgoing flux. The
outgoing flux of B is zero, namely BN P2ð ÞdA� BN P1ð ÞdA ¼ 0. Then, we have

DBN ¼ 0: ð6:35Þ

The component of the B field normal to the surface is continuous.

Σ
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Γ
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Fig. 6.24 A current carrying
surface and a closed line to
which the Ampère law is
applied
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Fig. 6.25 A current-carrying
surface and a box to which the
Gauss law is applied
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6.8 The Vector Potential

As we have seen, under stationary conditions, the magnetic field is originated by
electric currents according the two equations

r � B ¼ 0 ð6:36Þ

and

r� B ¼ l0j: ð6:37Þ

This is somewhat similar to electrostatics, in which the electric field generated by
stationary charges obeys the two equations

r � E ¼ q=e0 ð6:38Þ

and

r� E ¼ 0: ð6:39Þ

In electrostatics, being that the curl of the field is zero, we can introduce a scalar
field /, namely the potential, such as E = –∇/. We cannot define a similar potential
for the magnetic field, because its curl is not zero. However, the field has zero
divergence. Considering that the divergence of the curl of any vector field is zero,
we can introduce a vector field A, the curl of which is B, namely

B ¼ r� A: ð6:40Þ

A is called the vector potential. The physical dimensions of A are those of a
magnetic field times a length (because the gradient has the dimension of an inverse
length). Consequently, the vector potential is measured in tesla times meters, T m.
In addition, considering that the dimensions of B are a force divided by a velocity
and a charge, we can write the dimensional equation as

A½ � = BL½ � ¼ FTL�1Q�1L
� � ¼ FTQ�1� � ¼ pQ�1� �

;

where, on the right-hand side, we have recalled that the linear momentum, p, has
the dimensions of a force times a time. In conclusion, the vector potential is
dimensionally a momentum per unit charge. From this point of view, A is analo-
gous to the scalar potential, which is energy per unit charge. In Sect. 10.11, we shall
see that the analogy is not only formal but has a deep physical meaning.

All the effects measured in a field are due to forces. In electrostatics, the force is
due to the electric field. A consequence is that the scalar potential is defined only up
to an additive constant. Similarly, the magnetic forces that we measure are due to B.
Hence, if instead of A, we take an A′ that is such so as to give the same B, A′ is also
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a valid vector potential for the given B. This happens if r� A0 ¼ r � A, or
r� A0 � Að Þ ¼ 0. Namely, the curl of the vector A′–A is identically zero. As
such, we can express it as the gradient of an arbitrary scalar function, namely

A0 � A ¼ rw: ð6:41Þ

In conclusion, the vector potential A is defined up to the gradient of an arbitrary
scalar function. This quite large arbitrariness of choice corresponds to the fact that
Eq. (6.40) only fixes the curl, while the sources of A, namely its divergence, are
arbitrary. We can then choose any value for ∇ ∙ A without changing B. We shall
exploit this arbitrariness to make the equations as simple as possible. This operation
is called ‘choosing a gauge’ and also ‘gauge fixing’. The convenient choice in
magnetostatics is called the Coulomb gauge, which is taking the divergence of the
vector potential equal to zero, namely

r � A ¼ 0 ð6:42Þ

Note that choosing the gauge does not yet completely determine the vector
potential. Some arbitrariness remains. We can, for example, add a uniform vector
field to A.

As with B, the vector potential A is generated by the currents. To see its relation
with the current density, we just substitute Eq. (6.40) in Eq. (6.37), obtaining
r� r� Að Þ ¼ l0j. Recalling the vector identity r� r� Að Þ ¼ r r � Að Þ �
r2A and using Eq. (6.42) (we made that choice on purpose), we get

r2A ¼ �l0j ð6:43Þ

These are three equations, one for each component of the vectors, namely
r2Ax ¼ �l0jx and two similar ones for the x and y components. Contents apart,
they are the same equation that holds for the electrostatic potential, namely

r2/ ¼ � q
e0
:

We know its solution, namely

/ r1ð Þ ¼ 1
4pe0

Z
q r2ð Þ
r12

dV2:

As equal equations have equal solutions, we also know the solution to
Eq. (6.43). We just have to change q/e0 in l0jx etc., obtaining

Ax r1ð Þ ¼ l0
4p

Z
jx r2ð Þ
r12

dV2:
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or, in vector form

A r1ð Þ ¼ l0
4p

Z
j r2ð Þ
r12

dV2 ð6:44Þ

An important case is one in which the current is in a wire circuit. Let R be a
normal section of the circuit and I the current intensity. Let C be the geometrical
curve of the circuit, oriented as the current. As shown in Fig. 6.26, let O be the
origin of the axes and ds a generic element of C, at the position vector r2. Let P be
the point at r1 where we want to express the vector potential.

The current density j is different from zero only inside the wire. We take an
infinitesimal volume dV2 inside the wire of length ds in the wire direction and base
dR normal to the wire. We perform the integral in Eq. (6.44), first integrating on dR
along the entire section R and then on ds along the complete circuit. We now
suppose the wire to be thin and P not very close to the wire, in order that r12 ¼
r2 � r1j j is much larger than the diameter of the wire. In this hypothesis, r12 is
practically a constant when we integrate on R. In addition, we take into account that
j and ds have the same direction. We can then write

A r1ð Þ ¼ l0
4p

I
C

ds
Z
R

j r2ð Þ
r12

dR ¼ l0
4p

I
C

ds
r12

Z
R

j r2ð ÞdR:

The integral on R on the right-hand side is just the current intensity I, and finally,
we have

A r1ð Þ ¼ l0
4p

I
I
C

ds
r12

ð6:45Þ

r

r r2 1

12
P

+

_
Γ

O

dV
2

= ds d

d

ds

I

ds

Fig. 6.26 Calculating the vector potential for a current-carrying wire
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In conclusion, to get the vector potential of a current-carrying wire, at distances
that are large compared with the diameter of the wire, we have to calculate three
line integrals, one for each component, of Eq. (6.45). Clearly, once we have A, we
obtain the magnetic field by taking its curl.

Equation (6.40), which is the definition of the vector potential, and the choice of
the gauge (6.42) are local relations. They can be expressed in integral form as well.
The integral expressions are useful in certain circumstances.

Let C be an arbitrary closed oriented curve and R a surface bound by C and
coherently oriented. Let us calculate the flux of B through R and apply the Stokes
theorem: Z

R

B � ndR ¼
Z
R

r� A � ndR ¼
I
C

A � ds;

or I
C

A � ds ¼
Z
R

B � ndR ¼ UB: ð6:46Þ

Namely, the circulation of A around any closed curve is equal to the flux of
B linked to it.

The gauge condition Eq. (6.42) can similarly be cast in integral form, by cal-
culating the flux of A coming out of an arbitrary closed surface, which we call R,
and applying the Gauss theorem. We get

I
R

A � ndR ¼ 0: ð6:47Þ

Namely, the flux of the vector potential coming out of any closed surface is zero.
In conclusion, the vector field A is solenoidal; its lines are closed curves, or

curves coming from and going to infinite. There are no sources of A, namely points
from which the curves of A exit or into which they enter. The lines of A are
analogous to the lines of B, with UB in place of the currents; they tend to embrace
the lines of B.

QUESTION Q 6.4. With the Coulomb gauge, can closed lines exist for the vector
potential? Can lines coming out of a point? h

6.9 The Vector Potential in Simple Cases

Equation (6.45) allows us to calculate the vector potential A generated by any given
system of currents. Once we have A, we obtain the magnetic field B by finding
its curl. The difficulty of the actual calculations depends on the shape of the circuit.
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We shall consider a few simple cases, taking advantage, as much as possible, from
the analogy with electrostatic charge distributions q(r2), of which we already know
the / (r1). As a matter of fact, each of these cases provides us with a ready solution
to a magnetostatic problem. We obtain the expression of a component of the vector
potential, say Ax(r1), for example, generated by a current density of x-component
jx(r2) from the known expression of /(r1) of the analogous q(r2), with the
substitution

q=e0 ! l0jx: ð6:48Þ

Consider, as a first example, a current-carrying straight wire. Let I be the current
intensity. We choose the reference system shown in Fig. 6.27, with the z-axis
laying on the current in its positive direction. The current density j has only one
non-zero component, namely jz. Consequently, the only non-zero component of the
vector potential is Az.

The electrostatic analogy is a uniformly-charged straight wire. Let k be its linear
charge density. Its potential at the distance r′ from the z-axis is / r0ð Þ ¼
�k= 2pe0ð Þ ln r0. The charge DQ in a segment on length Dl of the wire is, in terms of
the volumetric density q, equal to qSDl, and, in terms of the linear density, equal to
kDl. Then, it is q = k/S. We see that the substitution of Eq. (6.48) becomes for
linear charge distributions k=e0 ! l0I. We obtain

Az r
0ð Þ ¼ � l0I

2p
ln r0; Ax r0ð Þ ¼ 0; Ay r0ð Þ ¼ 0: ð6:49Þ

The vector potential lines are straight lines parallel to the current. The magnitude
of A grows with the distance from the current, slowly but without limit. The reason
for this strange behavior is exactly the same as that for the analogous electrostatic
potential. The unrealistic situation is a consequence of considering a current that
extends to infinity.

We can now obtain the known result for B by calculating the r� A. We
immediately see that Bz = 0. For the other components, we have

I

x

z

y
r'

A

Fig. 6.27 A current-carrying
straight wire and its vector
potential
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Bx ¼ @Az

@y
� 0 ¼ � l0I

2p
@ ln r0

@y
¼ � l0I

2p
y
r02

By ¼ 0� @Az

@x
¼ l0I

2p
@ ln r0

@x
¼ l0I

2p
x
r02

We see that Bx is proportional to –y and By is proportional to x with the same
proportionality constant. Hence,B � r0 ¼ 0, namely the direction ofB is perpendicular
to r′ at any point. We earlier found that the lines of B are circles normal to the current.
Its absolute value decreases at an increasing distance from the wire as B r0ð Þ ¼ l0I

2p
1
r0.

Let us now consider a current-carrying plane with constant and uniform surface
density k. We choose the reference frame, as in Fig. 6.28, with the z-axis in the
plane in the positive direction of the current and the x-axis in the plane as well.
Being that kx and ky are identically zero, the only non-zero component of A is Az.

The electrostatic analogy is a uniformly charged plane with surface density r.
We know that its potential depends only on the absolute distance |y| from the plane
and that the potential is / yð Þ ¼ �r yj j= 2e0ð Þ. To use the substitution of Eq. (6.48),
we need a volume charge density q. We must think of the surface as having a small
thickness s. Then, the charge DQ in an area DS of the surface is qsDS when thought
of as a volume density and rDS when thought of as a surface density. Similarly, the
current intensity DI crossing a section sDx is jzsDx if thought of as a volume current
and kDx if thought of as a surface current. Hence, we have jzs = k.

In conclusion, the substitution of Eq. (6.48) becomes, for two-dimensional
charge distributions,

r=e0 ! l0k:

x

z

y

k

A

B

B

A

Fig. 6.28 A current-carrying
plane and its vector potential
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The vector potential components are then

Ax x; y; zð Þ ¼ 0; Ay x; y; zð Þ ¼ 0; Az x; y; zð Þ ¼ � l0k
2

yj j: ð6:49Þ

Also, in this case, the vector potential has the same direction as the current. As
for the magnetic field, we immediately see that By = Bz = 0 and that
Bx ¼ �l0k=2 for y[ 0; Bx ¼ þ l0k=2 for y\0, which is the result we know.

Consider now an infinite cylindrical solenoid. We consider it to be a cylindrical
surface of radius R carrying a surface current density k on its lateral surface. The
lines of current are circles normal to the axis. In practice, the solenoid is made of
loops of wire, n per unit length in number, and carrying the current intensity I, such
that nI = k.

We choose the reference frame of Fig. 6.29 with the z-axis on the axis of the
cylinder positively oriented to see the current circulating counter-clockwise.

We know that the magnetic field is zero outside the cylinder. The lines of the
vector potential A revolve around the cylinder in a manner similar to the lines of the
field B produced by a cylindrical current. Symmetry suggests to us that the lines of
A are circumferences normal to the cylinder with centers on the axis and that the
magnitude of A depends only on the distance, which we call r′, from the axis.

Consider one of these circles, such as C1 in Fig. 6.29b, external to the cylinder,
namely having radius r′ > R, and apply to it Eq. (6.46). The circulation integral of
A is 2pr′A(r′), because A is everywhere tangent to the curve and with the same
magnitude. We then have 2pr0A r0ð Þ ¼ UB ¼ pR2l0k, where we have considered
that B is uniform in the cylinder with magnitude B = l0k. We obtain

A r0ð Þ ¼ l0R
2k

2r0
for r0 [R: ð6:50Þ

It is a simple exercise to show that, outside the solenoid, both the divergence and
the curl of the vector A are zero.
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Fig. 6.29 A cylindrical solenoid and its vector potential
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To find A inside the solenoid, we now apply Eq. (6.46) to the circle C2 in
Fig. 6.29b internal to the cylinder, namely having radius r′ < R. We obtain
2pr0A r0ð Þ ¼ UB ¼ pr02l0k, which gives us

A r0ð Þ ¼ l0k
2

r0 for r0\R: ð6:51Þ

We see that A is zero on the axis, increases linearly with the distance from the
axis inside the solenoid and decreases as the inverse of that distance outside, as
shown in Fig. 6.29c.

6.10 The Ampère-Laplace Law

We have discussed how to calculate the vector potential A for a given system of
currents and then how to obtain B by taking the curl of A. We shall now see how to
express B directly in terms of the currents that generate it.

Let us consider a generic circuit carrying the steady current I, as in Fig. 6.30.
The magnetic field B at the generic point P1 � (x1, y1, z1) is obtained by

integration on the volume of the circuit:

B P1ð Þ ¼ r1 � A P1ð Þ ¼ r1 �
Z

j P2ð ÞdV2

r21

where P2 � (x2, y2, z2) is the point running on the integration domain and
dV2 = dx2dy2dz2. The footer in ∇1 is to indicate that the partial derivatives are in
x1, y1, z1 rather than in x2, y2, z2.

Let us start with the x-component of B. We take the operator ∇1x inside the
integral and remember that the components of j do not depend on P1. We have

Bx P1ð Þ ¼ @Az

@y1
� @Ay

@z1
¼ l0

4p

Z
jz P2ð Þ @ 1=r21ð Þ

@y1
� jy P2ð Þ @ 1=r21ð Þ

@z1

� �
dV2:

I
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r

s

21
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Fig. 6.30 A generic steady
current circuit

216 6 Magnetostatics

www.ebook3000.com

http://www.ebook3000.org


Recalling that 1=r21 ¼ x1 � x2ð Þ2 þ y1 � y2ð Þ2 þ z1 � z2ð Þ2
h i�1=2

and differen-

tiating, we get

Bx P1ð Þ ¼ l0
4p

Z
�jz P2ð Þ y1 � y2

r321
þ jy P2ð Þ z1 � z2

r321

� �
dV2 ¼ l0

4p

Z
j P2ð Þ � r21

r321

� �
x

dV2

and similar expressions for the other two components. Finally, calling u21 the unit
vector of r21, we can write

B P1ð Þ ¼ l0
4p

Z
j P2ð Þ � r21

r321
dV2 ¼ l0

4p

Z
j P2ð Þ � u21

r221
dV2: ð6:52Þ

If the currents are confined in wire circuits and we are interested in the field that
is not very close to any wire, we can operate as we did in Sect. 6.7. In the case of a
single circuit C carrying the current I, we integrate first on the section of the wire
and pose

R
jdR ¼ I. We note that the integration element ds2 has the same direction

as j(P2) and write

B P1ð Þ ¼ l0
4p

I
Z

ds2 � u21
r221

¼� l0
4p

I
Z

u21 � ds2
r221

: ð6:53Þ

This expression is called the Ampère-Laplace law. The law can also be stated by
saying that each element ds2 of the circuit produces an elementary magnetic field

dB P1ð Þ ¼ � l0
4p

I
u21 � ds2

r221
: ð6:54Þ

This equation is called, by some authors, the 1st Laplace law.
The extension of Eq. (6.53) to more than one circuit is obvious. One only needs

to add the integrals relative to each circuit.

6.11 Examples of Magnetic Field Calculations

In this section, we give a few examples of magnetic field calculations, using the
Ampère-Laplace law. We remind the reader that the results will be valid at distances
from the current-carrying wire much larger than its diameter. The first example is,
once more, a straight current.

We choose a reference frame with the z-axis in the wire oriented as the current and
a x-axis normal to it, as in Fig. 6.31. Symmetry requires that the field intensity should
depend only on the distance from the wire, which we shall call r′. We can then
calculate the field at a point of the x-axis, as P1 in the figure, without losing generality.
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Let u21 = (sin h, 0, cos h) be the unit vector and ds2 = (0, 0, dz2) the line element of
the wire. Equation (6.54) gives, for the magnitude of the field,

dB ¼ l0
4p

Idz2sin h
r221

¼ l0
4p

Idz2cos a
r221

:

We now express the geometrical quantities r21 and dz2 as functions of a, on which
we shall integrate. We have r21 ¼ r0=cos a and dz2 ¼ r0=cos2að Þda, and we write

dB ¼ l0
4p

I cos a
r0

da:

Integrating on the wire from –∞ to +∞means integrating on a from –p/2 to +p/2.
We have

B ¼ l0
4p

I
r0

Zþp=2

�p=2

cos ada ¼ l0
4p

I
r0
;

which is the result we know.
A circular current loop is a symmetric and geometrically simple configuration.

Contrary to intuition, the calculation of its magnetic field at a generic point is very
difficult, involving the so-called elliptic integrals. However, things are easy on the
axis of the loop.

We choose a reference frame with the origin in the center of the loop, the z-axis
perpendicular to the loop oriented to see the direction of the current as
counter-clockwise, as in Fig. 6.32. Let R be the radius of the loop. We calculate the
field at a generic point P1 of the z-axis, where symmetry requires the field to have
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Fig. 6.31 Calculating the
magnetic field of a straight
steady current
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the direction of the axis. We can then consider only the contribution to the z-
component of the field for each loop element ds, namely

dB ¼ l0
4p

Ids
r221

cos h ¼ l0
4p

IRd/
R2 þ z2

Rffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ z2

p ¼ l0
4p

I
R2

R2 þ z2ð Þ3=2
d/:

By integration, we now obtain the z-component of the field, which is the only
non-zero one

Bz ¼ l0
2
I

R2

R2 þ z2ð Þ3=2
: ð6:55Þ

6.12 Force Between Two Straight Steady Currents
and the Ampere

If we lay down two straight wires carrying the steady currents of intensities I1 and I2
parallel to one another, we observe that they attract each other if the currents have
the same direction, and repel if the directions are opposed. Figure 6.32 shows the
situation. This fact was first observed by Ampère in 1825 during one of his fun-
damental experiments.

The forces acting on the wires are equal and opposite, proportional directly to the
product of the current intensities and inversely to the distance, which we call r,
between the wires. We explain these observations as follows. The current in the first
wire generates a magnetic field, whose lines are circles normal to and centered on
the wire. The magnitude of the field is B1 ¼ l0

4p
I1
r . The positive direction of B1 is

such that an observer laying on the current with the positive direction entering
through his feet and flowing out of his head sees the field lines circulate in a
counter-clockwise direction, as in Fig. 6.33.

As a consequence, the generic segment ds of the second wire is acted upon by a
force dF ¼ I2ds� B1, as given by the 2nd Laplace law [Eq. (6.4)]. As B1 and ds are
perpendicular, we have dF = I2dsB1. The force per unit length on wire 2 is then

O
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r

21
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d
Fig. 6.32 Calculating the
magnetic field on the axis of a
steady circular current loop

6.11 Examples of Magnetic Field Calculations 219



F12

l
¼ I2B1 ¼ l0

2p
I1I2
r

: ð6:56Þ

As we said, the force is attractive in the case of parallel currents, as shown in
Fig. 6.33a, and repulsive in the case of antiparallel currents, as shown in Fig. 6.33b.

Equation (6.56) is also important, because it is used for the definition of the
electromagnetic base unit in the SI, which is the ampere. The ampere is defined by
stating by definition the value of the constant l0/2p, namely

l0
2p

¼ 2� 10�7: ð6:57Þ

The official definition of the ampere in the SI is:

The ampere is that constant current which, if maintained in two straight parallel conductors
of infinite length, of negligible circular cross-section, and placed 1 m apart in vacuum,
would produce between these conductors a force equal to 2 � 10−7 N per meter of length.

As we already mentioned, the unit of electric charge, the coulomb, is a derived
unit, it is the charge going through a section of a wire carrying a current of one
ampere (1 A) in one second (1 s).

QUESTION Q 6.5. Two straight parallel wires 0.5 m long placed at 10 cm distance
carry a current of 1 A in opposite directions. What is the magnetic force between
them and how is it directed? h

6.13 The Magnetic Dipole

The term ‘magnetic dipole’ originated historically, when it was believed that
magnetic charges existed, to mean a pair equal and opposite of those charges, or
poles, at a certain distance, in analogy with the electric dipole. We know that
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Fig. 6.33 Forces between
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magnetic charges do not exist, but we still use the name to mean a planar loop
carrying a steady current of small dimensions. “Small” means that we are interested
in the magnetic field it produces at distances large compared to the geometric
dimensions of the loop. In addition, when we consider the dipole in an external
magnetic field, we shall assume that field to vary only a little, if any, on the
dimensions of the dipole. The name “dipole” is due to the fact that, as we shall now
see, its magnetic field B is similar to the electric field E of an electric dipole. More
generally, the behavior of a magnetic dipole is similar to that of an electric dipole.

Let us consider a rectangular loop of sides a and b carrying the steady current
I. Let us choose the origin of the reference frame at its center, the z-axis normal to
the plane of the loop and oriented to see the positive direction of the current as
counter-clockwise, and the x and y axes parallel to the sides of the loop, as in
Fig. 6.34a. We start by calculating the vector potential A, at a point P of coordi-
nates (x, y, z) at a distance from the loop that is large compared to a and b.

We begin with the Ax component, corresponding to the jx component of the
current density. We start from the scalar potential of a charge distribution geo-
metrically similar to jx, as in Fig. 6.34b and apply the substitution
q x; y; zð Þ=e0 ! l0jx x; y; zð Þ. The current intensity I is the current density jx times the
section of the wire. Hence, the equivalent charge distributions are the two sides
a thought to be charged with linear density k such that k/e0 = µ0I, one positive and
one negative (corresponding to the sign of jx). Considering that the distance of P is
large, we can assume the two charges to be point-like. The potential is then the
electric potential of a dipole of moment p of magnitude p = k ab and direction
opposite to the y-axis (from the negative to the positive charge). We have

/ Pð Þ ¼ 1
4pe0

p � r
r3

¼ � kab
4pe0

y
r3
:

We obtain the x-component of the vector potential with the substitution
k ! e0l0I. We have
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Fig. 6.34 a A magnetic dipole, b its electric equivalent for the x-component of the potential
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Ax Pð Þ ¼ � l0
4p

Iab
y
r3
: ð6:58Þ

A completely analogous calculation for the y-component gives us

Ay Pð Þ ¼ l0
4p

Iab
x
r3
: ð6:59Þ

The z-component of the vector potential is obviously zero, because there are no
currents in the z-direction.

In conclusion, the lines of the vector potential A are planar curves on the plane
of the dipole. The component Ax being proportional to –y and the component Ay

proportional to x with the same proportionality constant, these curves are circles
with centers in the center of the dipole. A has the same direction as the current. The
magnitude of A is Iab, namely the product of the current intensity and the area of
the loop. As we shall soon see, this statement holds independently of the shape of
the loop. We define as the magnetic moment of the dipole the axial vector µ having
the direction normal to the loop, oriented to see the current circulating in a
counter-clockwise direction and having a magnitude equal to the current intensity
times the area of the loop. With this definition and the components we found, the
vector potential of the dipole is

A ¼ l0
4p

l� r
r3

: ð6:60Þ

To be precise, note that the magnetic moment is an axial vector, rather than a
vector, namely its Cartesian components do not change sign under inversion of the
reference frame axes. This property is a consequence of the “anticlockwise”
specification in its definition. We reach the same conclusion by looking at
Eq. (6.60), knowing that A and r are proper vectors and that the vector product of a
vector and an axial vector is a proper vector.

Let us now find the magnetic field of the dipole. We just need to take the curl ofA,
namely

Bx ¼ @Az

@y
� @Ay

@z
¼ 0� l0

4p
l
@

@z
x
r3

¼ l0
4p

l
3xz
r5

By ¼ @Ax

@z
¼ l0

4p
l
@

@z
� y
r3

� �
¼ l0

4p
l
3yz
r5

Bz ¼ @Ay

@x
� @Ax

@y
¼ � l0

4p
l

1
r3

� 3z2

r5

	 
 ð6:61Þ

Comparing these equations with Eqs. (1.92) and (1.93), we see that the B field of
the magnetic dipole has exactly the same dependence on the coordinates as the
E field of the electric dipole, but, remember, at large distances from the dipole.
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At first sight, it appears very surprising that two sources as different as a small
loop and two point charges governed by equations as different as r � E ¼ q=e0 and
r� B ¼ l0j give origin to fields of equal shape. However, this is true only at a
distance from the sources, namely in the empty space, where both E and B have
curl and divergence equal to zero. Contrastingly, near the sources, where the right
hand sides of the above expressions are relevant, the fields are completely different,
as shown in Fig. 6.35.

We now demonstrate the statement we made that the magnetic field of a planar
current loop of any shape is equal to the field of a rectangular loop at a large
distance.

Consider a planar loop of arbitrary shape carrying a steady current of intensity I,
as shown in Fig. 6.36. We can divide it into a network of small rectangular loops,
carrying the same current I. The system is equivalent to the given loop, because all
the internal segments we have added carry two equal and opposite currents, which
cancel one another out. Each of the rectangular loops gives origin to a vector
potential proportional to its dipole moment. Let µi be the moment of the i-th
loop. All these vectors have the same direction, and magnitude equal to the product
of the current intensity (which is the same for all) times the area, say ΔSi. The vector
potential is then

A ¼
X
i

Ai ¼ l0
4p

P
i li � ri
r3

¼ l0
4p

P
i li

� �� r
r3

where, on the right-hand side, we have considered all the position vectors ri from a
loop to the point P in which we evaluate the vector potential to be equal (to r),
considering that the distance of P is large. Now, we have, for the magnitude,P

i li ¼ I
P

i DSi ¼ IS, where S is the total area of the loop. Hence, in vector
form,

P
i li ¼ l, where l is the magnetic moment of the loop.

+

–

(a) (b)

Fig. 6.35 a Electric field of an electric dipole, b magnetic field of a magnetic dipole
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Let us go back for a moment to the circular loop we considered in Sect. 6.11,
where we expressed the magnetic field at the points of the axis. We found B to be
directed the same as the axis and given by Eq. (6.55). There, the distance from the
center is called z. Let us indicate it with r so as to have the same symbol as in the
present discussion. If the distance is large, namely if r � R, we can approximate

the denominator as R2 þ r2ð Þ3=2
 r3. We also notice that the magnetic moment of
the loop is l = pR2I, and Eq. (6.55) becomes

Bz ¼ l0
2p

I
R2

r3
¼ l0

2p
l
r3
;

which coincides with Eq. (6.61) evaluated on the axis, namely for x = y = 0 and
z = r.

Let us consider now the actions on a magnetic dipole of an external magnetic
field B, which we shall consider, for the sake of simplicity, uniform over the
dimensions of the dipole. We consider a rectangular loop and choose the reference
frame, as shown in Fig. 6.37, with the z-axis in the direction of B and the x-axis in
the plane defined by B and µ. Let h be the angle between B and µ.

IFig. 6.36 A planar current
loop of arbitrary shape
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Fig. 6.37 The forces on a
magnetic dipole in a uniform
magnetic field
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Let us find the torque acting on the dipole. As shown in the figure, four forces act
on the loop, one on each of its sides. Two of these, F3 and F4, make a couple of zero
arms and consequently with zero torque. The other two, F1 and F2, have the same
magnitude F1 = F2 = IBb and the opposite direction. They make a couple of arms
asenh, having its torque in the negative y direction. The components of the torque
are sx ¼ sz ¼ 0 and sy ¼ �IBba sin h ¼ �lB sin h. In vector form, this is

s ¼ l� B: ð6:62Þ

It can be that this result found for a rectangular loop is valid for any shape,
provided the loop is small enough to have negligible variations of the field on its
dimensions. The analogy with the electric dipole is very close. With the same
argument we made in that case, one finds that the energy of the magnetic dipole in
an external field B is

Umec ¼ �l � B: ð6:63Þ

However, there is an important difference. Equation (6.63) takes into account
only the mechanical work needed to put the dipole in position. This is the reason for
the subscript. Equation (6.63) does not include the electrical work that might be
necessary to maintain the current as constant. We shall come back to this issue in
Sect. 8.3.

QUESTION Q 6.6. A square loop of 5 mm side, carrying a steady current of 5 A is
in a uniform magnetic field B = 0.5 T. Its normal is at 30° with the field direction.
What is the mechanical energy of the loop? What is the torque on the loop? h

6.14 Charge Densities in a Current-Carrying Wire

As we know, the charge density and the electric field inside a conductor, say a
metal, in electrostatic equilibrium are zero. Contrastingly, both volume and surface
charges are usually present on a current-carrying conductor, a metal wire, for
example. In addition, both an electric and a magnetic field exist. We shall consider
here steady currents and look at a few examples as to how charge distributions and
fields depend on the geometry of the problem. Let us work in the reference frame in
which the wire is at rest, which we call the laboratory frame. We can think of the
metal as being a crystalline structure of ions. We shall assume the ions to be singly
charged, at rest in fixed positions. The wire also contains an equal number of free
electrons, which are the charge carriers. Let vd be their drift velocity and np their
numerical density. The current density is then

j ¼ �npqevd; ð6:64Þ
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where −qe is the electron charge. In the laboratory frame, the wire is globally
neutral, namely its net charge per unit length is zero. However, both volume and
surface charge densities exist, as we shall now discuss.

Let us start from the simplest case of a straight wire. To produce a steady current
density, as in Eq. (6.64), we need, for Ohm’s law, to have the electric field E inside
the wire:

E ¼ qrej; ð6:65Þ

where we have called the resistivity qre to avoid any confusion with the charge
density. Equation (6.65) tells us that, under steady conditions, the lines of electric
field inside the conductor are parallel to the current lines, which, in turn, are parallel
to the wire itself, because there is no current through the lateral surface. Let us see
how the field is established. When we connect the wire to the emf source, for
example, to the poles of a battery, the field initially extends well beyond the surface
of the wire with a number of field lines crossing the surface. The field configuration
is “corrected” by a (small) fraction of the conduction electrons that immediately
move on the surface. The resulting net surface charge density guides the field lines
to be parallel to the wire, preventing current flow in directions different from the
wire axis.

This happens for any shape of the wire, including when it is straight. If the wire
is bent, as in Fig. 6.38, additional surface charges are necessary. Indeed, the field
must be uniform in magnitude and have a direction following that of the wire,
because the current density is such. As the electrons move from A to B, they should
turn near C in the direction CD, namely to their right. They are forced to do so by a
negative surface charge present on their left, which repels them, and a positive
charge on their right, which attracts them, as shown qualitatively in Fig. 6.38.
Similarly, near D, they must turn to the left, and the surface charges are as shown in
Fig. 6.38.

The surface charge densities are necessary, but quantitatively very small. To
appreciate the point, let us consider the extreme situation of a sharp 90° bend, as
shown in Fig. 6.39, where we have chosen the x and y axes parallel to the two
segments of the wire. The figure shows separately the lines of the x and y compo-
nents of the electric field, namely Ex and Ey (clearly, the lines of the total field E do
not cross one another, but curve following the bend).
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Fig. 6.38 Surface charges on
a bent current-carrying metal
wire
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Let R be the cross-section of the wire and E the magnitude of the electric field.
The Ex lines from the left must end at the extreme of the straight segment on the
right at A. For the Gauss theorem, a charge Q– must be present in A equal to e0 times
the flux of E, which is RE, namely

Q� ¼ �e0RE ¼ �e0Rjqre ¼ �e0Iqre; ð6:66Þ

where we have used Ohm’s law [Eq. (6.65)]. Similarly, a surface charge Q+= –Q–

should be present at B to give origin to the Ey field component in the perpendicular
segment of the wire. Considering the example of a copper wire, with qre ¼
1:56� 10�8 Xm, we have Qþ ¼ �Q� ¼ 1:38� 10�19I [C]. We see that the
charge of just about one electron is enough to turn the current of one ampere by 90°.
Note that we are talking here of a macroscopic charge, meaning a charge averaged
on macroscopic dimensions. This average charge is not quantized and can have any
value, even one smaller than the elementary charge. For example, the just made
conclusion shows that Q+ is about one thousandth of the elementary charge for a
1 mA current.

We now go back to the straight metal wire and consider a further effect. The
electric current generates a magnetic field B not only outside the wire but inside it
as well. The lines of B are circles normal to the wire, centered on its axis.
The symmetry of the problem imposes that the magnitude of B, the magnitude j of
the current density and the volume charge density q can be functions only of the
distance from the axis, which we call r, and not of the azimuth about the axis. The
magnitude of the magnetic field B(r) inside the wire, namely for r < R, where R is
the radius of the wire, is given by the Ampère circulation law. It is

B rð Þ ¼ l0
2pr

Zr
0

j rð Þ2prdr: ð6:67Þ
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Fig. 6.39 Surface charges on
a 90° bend of a
current-carrying metal wire.
The lines of the Ex and Ey

components of the electric
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A consequence of this field is that the conduction electrons are subject to the
Lorentz force – qevd � B, which is directed radially towards the axis. Knowing that
the electrons move parallel to the axis, we conclude that an electric field Er ¼
�vd � B must exist to balance the Lorentz force. The effect is similar to the Hall
effect. This field is generated by the following mechanism. Initially, the electrons
are pushed towards the axis. In moving in that direction, they leave a thin layer near
the surface in which an excess of positive charge density appears. This is a charge
of the ion ladder. This charge produces an electric field directed radially towards the
axis that pushes the free electrons radially outside. The process terminates when the
equilibrium between the two forces is reached. The result is the presence of both a
surface positive charge density and a volume charge density. The latter is given by
the Gauss law,

q rð Þ ¼ e0r � Er ¼ �e0r � vd � Bð Þ;

which can be simplified using a vector identity as

q rð Þ ¼ �e0B � r � vdð Þþ e0vd � r � B:

But vd is uniform, and consequently,r� vd ¼ 0. Substitutingr� B ¼ l0j, we
have

q rð Þ ¼ l0e0vd � j ð6:68Þ

Here, we meet for the first time the product e0l0 of the basic constants of
electrostatics and magnetostatics. A dimensional analysis shows that its physical
dimensions are those of an inverse velocity squared. We shall see in Chap. 10 how
James Clerk Maxwell discovered that velocity should be the speed of light, c. Also
taking into account Eq. (6.64) and recalling that the current density j is parallel and
opposite to the electron drift velocity vd, we can eliminate the current density from
Eq. (6.68) and write

q rð Þ ¼ �npqe
t2d
c2

¼ �npqeb
2
d ð6:69Þ

where bd ¼ td=c is the ratio between drift velocity and speed of light. We see that the
volume charge density does not depend on the distance from the axis r. Let us consider
as an example of a copper wire of R = 1 mm2 cross-section carrying a current of
intensity I = 1 A, corresponding to a current density j = 106 A m−2. In a copper
crystal, the ions are singly ionized. Consequently, the numerical densities of ions and
conduction electrons are equal. Their value is np = 8.47 � 1028 m−3. The drift
velocity is td ¼ j= npqe

� � ¼ 7:4� 10�5 m s�1, corresponding to bd = 2.47 � 10−13.
The charge density is then
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q ¼ �npb
2
dqe ¼ �qe8:47� 1028 � 2:47� 10�13� �2¼ �qe5:17� 103 m�3

¼ �3:23� 10�16 Cm�3;

namely an average charge of 5.000 electrons per cubic meter. This is a very small
charge indeed.

The (negative) charge density Eq. (6.69) is due, as we discussed, to the con-
traction of the conduction electrons toward the axis of the wire, under the action of
the magnetic force. In doing so, the electrons leave a very thin layer of positive ion
net charge. This surface positive charge density, which we call r, makes the total
charge per unit length of the wire equal to zero. If R is the radius of the wire, this
condition is 2pRr ¼ �pR2q, which gives us

r ¼ �qR=2 ¼ �qenpb
2
dR=2: ð6:70Þ

This is an extremely small density, even on the atomic scale. Indeed, in the above
example, with a wire cross-section R = 1 mm2, namely a radius R ¼ ffiffiffiffiffiffiffiffiffi

R=p
p ¼

0:56mm, and q = –3.23 � 10−16 Cm−3, we have r ffi 0:56 qej j m�2. Let us consider
for comparison just one layer of ions. The average numerical surface ion density is
equal to their volume number density quoted above, np = 8.47 � 1028 m−3, times the
size of the crystal cell, which is a = 0.361 nm, namely about 3 � 1019 m−2. The total
surface charge density of a single ionic layer is then rion ¼ 3� 1019 qej j m�2. This is
about 5 � 1019 times larger than r, implying that the ion sheet whose charge is not
compensated by electrons is 2 � 10−20 thinner than an atomic layer. Indeed, cases
exist in nature in which very small numbers are sufficient to reach a scope.

6.15 Properties of the Laws Under Rotations
and Inversions of the Axes

In this section, we shall discuss an important property of the mathematical
expressions of the physical laws, namely how they transform under a change of
reference frame. We shall repeat and extend to electromagnetism concepts already
discussed in the 1st volume in Sects. 1.3 and 5.1. We shall first consider the
transformations between two frames at rest relative to one another. The translations
are not very interesting, because they merely correspond to a change of the origin.
The interesting transformations are the rotations and the inversions of the axes. All
the experiments have shown that the laws of physics are covariant under the
rotations of the axes. “Covariance” means that the two sides of an equation, if they
vary, should vary in the same way. This means that if the left-hand side is, for
example, a vector, the right-hand side must be a vector too; if it is a scalar, the
right-hand side must also be a scalar.
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We recall that a quantity is a scalar if it does not vary when we change reference
frame. A vector is an ordered triplet of real numbers, which transform under
rotations of the axes as the position vector (namely as the coordinates, which are the
components of the position vector).

Consider, for example, the relation between two scalar quantities:

a ¼ b: ð6:71Þ

If it holds in a reference frame, it also holds in another frame linked to the first by
a rotation, because neither the left-hand side nor the right-hand side vary (a′ = a,
b′ = b). Contrastingly, the relation

a ¼ ux ð6:72Þ

where a is a scalar and ux is the x-component of a vector, is not covariant, namely
a′ = a and u0x 6¼ ux. Hence, if the relation holds in the first reference, it does not
hold in the second. Note that in order for a relation to be valid in both frames, it is
not necessary that its members do not vary, rather they should vary in the same
way. This is the case, for example, in the relations between analogous components
of vectors like

vx ¼ ux; vy ¼ uy; vz ¼ uz ð6:73Þ

This is the reason for the word covariance, meaning to vary together. We state
that the invariance of the physical laws under rotations implies the covariance of the
equations expressing those laws.

Let us now consider the inversions of the axes. We can invert one, two or three
axes. However, it is immediately seen that the inversion of two axes is equivalent to
a rotation by 180° about the third axis. In addition, the inversion of one axis and
that of three axes are linked by a rotation. However, the inversion of one axis (and
of three) cannot be obtained with rotations.

By definition, a proper scalar quantity is invariant both under rotations and under
inversion of the axes. A pseudoscalar quantity is invariant under rotations and
changes sign under inversion of the axes. A proper vector quantity has three
components that change in the same way as the position vector, both under rotations
and under inversion. Namely, under inversion of the axes, the components of a
vector change sign. A psuedovector, also called an axial vector, transforms in the
same way as the position vector under rotations but its components do not change
sign under inversion. Examples of vectors are the velocity, the acceleration, the
linear momentum and the force. As a consequence, the electric field is a vector,
being a force divided by a charge, which is a scalar.

The cross-product of two vectors is an axial vector, because when the axes are
inverted, both factors change sign and the sign of the product does not. Examples of
axial vectors are the angular velocity, the moment of a force, the angular
momentum and the magnetic dipole moment.
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The axial vector nature of a quantity becomes evident considering that its def-
inition always includes terms such as “clockwise” or “right-hand”. The right hand
becomes left hand and the clockwise direction becomes counter-clockwise,
inverting one axis.

The cross-product of two axial vectors is a (proper) vector. The scalar product of
two vectors and of two axial vectors is a scalar. The scalar product of a vector and
an axial vector is a pseudoscalar. In particular, the scalar triple product of three
vectors is a pseudoscalar.

The laws of electromagnetism are invariant not only under rotations but also
under inversion of the axes. Let us analyze the behavior under inversions of the
magnetic field. The definition of the direction of the magnetic field includes the
right hand rule or terms like ‘counter-clockwise direction’. This is implicit in
expressions such as the 1st Laplace law

dB r2ð Þ ¼ l0
4p

I
ds� u12

r212
: ð6:74Þ

and of the definition of the cross-product in a right-handed reference frame. At first
sight, this might suggest that electromagnetic phenomena distinguish between left
and right, or, in other words, are not invariant under inversion of the axes (parity
operation). This is not true, however, because all the physical observables result
from applying the right-hand rule twice, and inverting axes twice is like doing
nothing. Indeed, the magnetic field is observable only through the force it exerts on
moving charges, which is the Lorentz force that involves a (second) cross-product.

Two parallel currents attract one another if they have the same direction, and
repel if their directions are opposite, whatever hand-rule we choose.

As another example, the electric dipole moment p is a vector, while the magnetic
dipole moment µ is an axial vector. The energy of the electric dipole p � E and of
the (mechanic) energy of the magnetic dipole l � B are both scalar, the former as the
dot product of two vectors, the latter as the dot product of two axial vectors.

In complete generality, we can state that all electromagnetic phenomena are
independent of the handiness of the reference frame. This basic symmetry is a
characteristic of both electromagnetic and gravitational interactions. At the
microscopic level, it is a characteristic of the strong nuclear interaction (which
keeps protons and neutrons linked in the nuclei) as well, but not of the weak
interaction (responsible for the beta decay). The invariance under inversion of the
axes is not a universal law of Nature.

6.16 Relativity of Electric and Magnetic Forces

The relativity principle established by Galileo Galilei (Italy, 1564–1642) states that
physical laws are invariant under transformations between two inertial reference
frames in relative motion of uniform translation. As discussed in the 1st volume,

6.15 Properties of the Laws Under Rotations and Inversions of the Axes 231



only two sets of transformations of the space and time coordinates between such
frames exist (under very general assumptions): the Galilei transformations and the
Lorentz transformations. The former are the limit of the latter for velocities much
smaller than the speed of light. In the Galilei transformations, time intervals and
distances between two points are invariant under the transformation, namely they
are the same for two observers in relative motion. Contrastingly, they are not the
same under Lorentz transformations, which mix time and space. As we shall see in
Chap. 10, the relativity principle holds for the laws of electromagnetism, provided
that space and time coordinates transform according to the Lorentz transformations.
Let us analyze the behavior of the electric and magnetic force now.

The force acting on a point charge q moving with velocity v is

F ¼ q Eþ v� Bð Þ: ð6:75Þ

Clearly, the magnetic force qv� B is different in two frames in relative motion,
because the velocity of the particle is different. In particular, the magnetic force is
zero in the frame in which the charge is instantaneously at rest. However, if the
relativity principle has to be satisfied, the total force, electric plus magnetic, should
transform, as required by the Lorentz transformations. This implies that electric and
magnetic fields can exchange their roles when the velocity of the reference frame
changes. In other words, the relativity principle imposes that electric and magnetic
fields be part of a unique entity. Let us discuss the issue.

We first recall that the electric charge is invariant under Lorentz transformations.
We shall now see that the current density j, which is a three-vector (namely a vector
in the three-dimensional space), and the charge density q, which is a three-scalar
(namely a scalar in the three-dimensional space), when multiplied by suitable
constants, form a four-vector (namely a vector in the four-dimensional space-time).
The four-vector is (j, iqc). We shall prove this statement using the analogy with the
energy-momentum four vector (p, iU/c) of a point-like particle. We recall that the
momentum of a particle of mass m is p = mcv and the energy is U = mcc2, where

c ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

q
and b ¼ t=c, as we learned in Chap. 6 of the 1st volume.

Let j and q be, respectively, the current and charge density in the inertial reference
frame S. Let us assume for simplicity that all the charge carriers have the same (drift)
velocity vd. The current density is then j = q vd. Let S0 be the reference frame in
which the charge carriers are at rest. S0 translates relative to S with velocity vd. Being
that vd is constant, S0 is inertial too. We take the x-axis of S and x′-axis of S0, both
parallel to vd. We indicate with the suffix “0” the quantities in S0. Consider a certain
charge DQ of the current, which is at rest in S0 (no suffix on it, because the charge is
invariant). If ΔV0 is the volume taken by ΔQ, the charge density (at rest) is
q0 ¼ DQ=DV0. The current density is clearly j0 ¼ 0. Going now to S, the charge
does not vary, but the volume does. The dimensions perpendicular to the translation,
namely to vd, do not vary, but the longitudinal dimension contracts by the factor 1/cd,
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where cd ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2d

q
and bd ¼ td=c. The volume in S is DV ¼ DV0=cd and the

charge density is consequently q ¼ cdq0. We then have

j ¼ q0cdvd; q¼q0cd : ð6:76Þ

These quantities can be expressed in terms of the components of the
four-momentum of a particle of velocity vd, which we call (pd, iUd/c), as

j ¼ q0
m

pd; qc¼ q0
m

Ud

c
: ð6:77Þ

Hence, the components of (j, iqc) are proportional to those of (pd, iUd/c) with the
proportionality constant q0/m that is independent of the frame. As a consequence,
(j, iqc) is a four-vector that transforms between two inertial reference frames S and
S′ moving with relative velocity v as

j0x ¼ c jx � bqcð Þ; j0y ¼ jy; j
0
z ¼ jz; q

0c ¼ c qc� bjxð Þ ð6:78Þ

where c ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

q
is the Lorentz factor and b ¼ t=c.

We now go back to the Lorentz force. We consider a straight wire of section R
carrying a steady current of intensity I in an inertial frame S that we shall call the
laboratory frame. We take the x-axis of S parallel to the wire in the direction
opposite to the current. Consider a point charge q moving with constant velocity
v parallel and opposite to the current at the distance r from the wire, as in
Fig. 6.40a. The current generates in the position of the charge the magnetic field of
magnitude

B ¼ l0
4p

2I
r

v

F

B

r

q

=0λ

S

r

q

F'

B'S'

–v

E'

λ'

Ix I’x

x x’

(a) (b)

Fig. 6.40 A point charge near a current-carrying wire element, a in the frame S in which the wire
is at rest; b in the frame S′ in which the charge is at rest
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perpendicular to the wire and consequently to v. The force on q is purely magnetic,
because the wire contains equal numbers of positive and negative charges. The
force is directed normal away from the wire. Its magnitude is

F ¼ qBt ¼ l0
4p

2Iqt
r

:

We do not specify, for the moment, the physical nature of the conductor, namely
the nature of the charge carriers, which may be only negative, as in a metal, or both
negative and positive, as in a semiconductor or an electrolyte. Let q–(r) and q+(r) be
the charge densities of the negative and positive charges in the conductor,
respectively. Both densities can be functions of the distance r from the axis of the
wire only. They cannot depend on the azimuth around the axis, due to the symmetry
of the problem. They are independent of x, because the current is steady. We
discussed the case of the metal conductor in Sect. 6.14, but we do not really have
any need to know these functions, which depend on the nature of the conductor,
because the relevant quantities are the linear charge densities, k– for the negative
and k+ for the positive charges. The linear densities are obtained integrating the
volume densities on the section of the wire, namely

k� ¼
Z
R

q� rð ÞdR; kþ ¼
Z
R

qþ rð ÞdR: ð6:79Þ

Being that any segment of our straight wire is globally neutral, the positive and
negative linear charge densities are equal and opposite, namely

k� ¼ �kþ : ð6:80Þ

Let us also consider the current densities, which are in the x-direction. Let j�x rð Þ
and jþx rð Þ be the current densities due to the negative and positive carriers,
respectively. The current densities are functions of the distance from the axis only
for the same reasons as the charge densities. By integrating on the section of the
wire, we obtain the current intensities due to the positive and negative carriers,
namely

I� ¼
Z
R

j�x rð ÞdR; I þ ¼
Z
R

jþx rð ÞdR: ð6:81Þ

Consider now a frame S′ translating relative to S with velocity v. For an observer
in this frame, the charge is at rest and the Lorentz force does not act. Does an
electric force exist? Let us now consider the conductor to be metallic. In the
laboratory frame, the positive charges, which are the ions, are at rest, while the
conduction electrons are free to move. They are the charge carriers, and we assume
them, for simplicity, all to have the same velocity vd, which is directed in the
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positive x direction. The wire is globally neutral and Eq. (6.80) holds. The positive
and negative current intensities are, in this case,

I� ¼ k�td; I þ ¼ 0: ð6:82Þ

The force on the charge q, which is purely magnetic, is

F ¼ qBt ¼ l0q
2p

kþ tdt
r

: ð6:83Þ

Let us now consider the situation in S′, as shown in Fig. 6.40b. An observer in
this frame sees the point charge q at rest and the wire moving with velocity –t. We
need to transform the current intensities and the linear charge densities from the
laboratory frame S to S′. These quantities have been obtained integrating the
x-component of the current density and the volume charge density on the section of
the wire, namely on the coordinates normal to the relative velocities of the two
frames. Being that these coordinates are equal in the two frames, the transformation
equations are not changed by the integration, and from Eq. (6.78), we have

I 0x ¼ c Ix � bkcð Þ; k0c ¼ c kc� bIxð Þ: ð6:84Þ

In S, the positive and negative linear charge densities are related by Eq. (6.80)
and the current intensities given by Eq. (6.82). Using the second Eq. (6.84), in S′,
the linear charge densities are k0� ¼ �ckþ 1� btd=cð Þ and k0 þ ¼ ckþ , which are
now different. The total linear charge density in S′ is

k0 ¼ k0� þ k0 þ ¼ ckþ tdt
c2

: ð6:85Þ

To the observer S′, the wire appears to be charged as a consequence of the
Lorentz contraction of the lengths. The consequence is the presence in S′ of an
electric field. This is the field of a uniformly charged straight wire of section R and
linear charge density, as in Eq. (6.85). The magnitude of the electric field is

E0 ¼ k0

2pe0r
¼ ckþ

2pe0r
tdt
c2

:

The currents produce a magnetic field in S′ as well. We do not need its
expression, because it does not generate any force on the charge, which is at rest. In
conclusion, in S′, the charge q is subject to a force, which is purely electric, is
directed normally away from the wire, and has the magnitude

F0 ¼ qE0 ¼ c
q

2pe0

kþ

r
tdt
c2

: ð6:86Þ
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Let us now compare the force in S′ and in S, given by Eq. (6.83). We see that
several factors are equal. However, in Eq. (6.83), we have the characteristic con-
stant of magnetism µ0, in Eq. (6.86), the constant of electricity e0 and the speed of
light c. As we have anticipated in Sect. 6.14 and as we shall see in Chap. 10, the
light itself is an electromagnetic phenomenon, as discovered by James Clerk
Maxwell. His theory, which has been experimentally verified (see Chap. 10),
foresees a well-defined value for the speed of light in terms of µ0 and e0, namely

c ¼ 1=
ffiffiffiffiffiffiffiffiffi
e0l0

p
: ð6:87Þ

Taking that into account, the relation between the forces in the two frames is

F0 ¼ cF; ð6:88Þ

which is just the correct relativistic relation between the components of the force
normal to the relative velocity of the two frames. We can understand this with the
following argument.

In the frame S′, the charge q is at rest. The force F (which is perpendicular to v),
acting on the charge q for a time dt, changes its momentum by dpn = Fdt (the footer
n recalls that the change of momentum is normal to velocity). From the point of
view of S′, the force F′, acting in the corresponding time interval dt′, changes the
momentum of the charge by dp0n ¼ F0dt0. Now, dpn and dpn′ are components of a
four-vector that are normal to the velocity of the transformation. Consequently, they
are equal. The relation between dt and dt′ is immediately found, considering that dt′
is a proper time interval (namely the time interval between two events happening at
the same point). Hence, the relation is dt = c dt′. This leads to Eq. (6.88).

We have verified that the force given by Eq. (6.75) obeys the relativity principle
if the Lorentz transformations are used. As a matter of fact, observer S and S′
observe the same physical process, with the difference that the former interprets the
force as being due to the magnetic field, while the latter as being due to the electric
field. In a third reference frame, we would find different contributions to the force of
both fields. This means that electric and magnetic forces are two aspects of the very
same phenomenon. The separation of the electromagnetic interaction in electric and
magnetic components depends on the reference frame. The complete description,
namely the electromagnetic one, is frame independent.

Before concluding this section, we make one further observation. The force
acting on the charge, as seen by S′ in Eq. (6.86), is proportional to the total charge
density, which is, in turn, proportional to the ratio of the product of two velocities,
td and t, and the square of the velocity of light. The two velocities are extremely
small compared to the speed of light. For an evaluation of the orders of magnitude,
let us consider what we found in Sect. 6.14 to be the typical value of the drift
velocity, namely bd = td/c = 2.47 � 10−13 m s−1. Let t be equal and, say, be
3 m/s, namely b = 10−8. The force is proportional to their product, which, in order
of magnitude, is 10−21. Terms proportional to b2, called relativistic effects, are
usually completely negligible in everyday phenomena. Looking at the magnetism
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from this point of view, we see that it is a relativistic effect proportional to b2. For
what reason, then, does the magnetism also appear so evident at speeds much
smaller than the speed of light? The magnetic “relativistic correction” is a correction
of the electric force, which is due to the ions and the electrons. Both contributions
are enormous in absolute value and of opposite sign, but the charges of the electron
and the proton are exactly equal and opposite, and in matter, there is exactly the
same number of protons and electrons. The two huge forces exactly cancel one
another out in S, exactly relativistic correction apart in S′. Magnetism is, indeed, a
relativistic correction, a correction to a term that is zero due to the perfect balance
between positive and negative charges in matter.

Another “relativistic correction” that also appears at everyday velocities is the
phenomenon considered in Sect. 6.14, where we found the charge density in a metal
current-carrying wire to be proportional to b2d .

Summary

This chapters has two parts. In the first part, we have studied the motion of charged
particles in a given stationary magnetic field. We learned the following principal
concepts:

1. The magnetic force acting on a charge and how it depends on the motion of the
charge.

2. That the force changes the direction of the moment of the charge, but not its
energy.

3. How the magnetic field can be measured (Hall effect).
4. The invariance of the electric charge.
5. The exact equality of the elementary positive and negative charges.
6. The motion of point charges in a magnetic field.
7. How to measure current intensities (galvanometer).

In the second part of the chapter, we studied the relations between a magnetic
field and its sources, which are the electric currents, limited to the case of steady
currents. We learned the following principal concepts:

1. The non-existence of magnetic charges. The property of field B to be a sole-
noidal field.

2. The relation between currents and the magnetic field they produce.
3. The local relation between spatial derivatives of the magnetic field and current

density.
4. The discontinuity of the magnetic field across a current sheet.
5. The vector potential.
6. How to calculate the vector potential produced by a given system of currents.
7. How to calculate the magnetic field produced by a given system of currents.
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8. The magnetic dipole. The magnetic moment. Analogies and differences
between magnetic and electric dipoles.

9. The current density and charge density as the component of a four-vector.
10. The transformation of magnetic and electric forces one into the other when

changing from one reference frame to another in relative motion.

Problems

6:1. Can closed lines exist in a stationary magnetic field? And lines coming out of
a point?

6:2. A He nucleus has the charge q = 3.2 � 10−19 C in its rest frame. What is this
charge in a reference frame in which it moves at 90 % of the speed of light?

6:3. A point-charge in a vacuum is at 1 mm from the north pole of a permanent
magnet. What is the force on the charge?

6:4. A straight wire carries a steady current of intensity I. At a distance of 0.5 m
from the wire, the magnetic field has the magnitude B = 3 mT. What is the
value of I?

6:5. With a copper wire, we form two equal circles geometrically overlapped
electrically in series and having a steady current throughout. Consider two
cases. (a) the current direction is the same in both loops; (b) it is opposite. In
which cases is the field in the points of the axis higher?

6:6 A straight cylindrical wire of radius R carries a steady current of uniform
density j in the direction of the axis. Determine the magnetic field as a
function of the distance from the axis of the wire (inside and outside).

6:7. A proton moves with a velocity 50 % the speed of light on the axis of a
rectilinear solenoid that generates a field of 1 T. What is the force on the
proton?

6:8. What is the physical reason for B to be solenoidal?
6:9. Consider a point charge moving from A to B once on one path, once on the

other of Fig. 6.41, in a magnetic field. Are the works of the magnetic force
equal or different?

6:10. In a Dempster mass spectrometer, a proton and a positron (that is equal to an
electron but with a positive charge) are accelerated with the same potential
difference and then enter the magnetic field. What is the ratio of the radiuses
of their orbits?

A

BFig. 6.41 Two paths from
A to B in a magnetic field
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6:11. The Li nucleus has 3 protons and exists in two isotopes of masses 6 and 7. In
a Dempster spectrometer, singly charged Li ions are accelerated with a
potential difference of 300 V. The magnetic field is 0.5 T. What are the
radiuses of the orbits?

6:12. Do conservative non-solenoidal fields exist? Do non-conservative solenoidal
fields exist?

6:13. An Al foil (density = 2.6 � 103 kg/m3, atomic number = 27), has thickness
c = 0.2 mm, width a and length b. It carries a steady current of intensity
I = 5 A through the section ac. The foil is in a magnetic field normal to the
face ab of intensity B = 0.5 T. Calculate the Hall voltage. (There is one
conduction electron per atom.)

6:14. A cyclotron has the magnetic field B = 1.2 T, radius of the Ds R = 0.5 m and
accelerating emf V = 50 kV. Find the maximum reachable kinetic energy of
the protons and the corresponding velocity. How many times do the protons
go through the gap between the Ds before reaching the maximum energy?
How much time do the protons spend in the cyclotron?

6:15. A Fe nucleus of cosmic rays enters the earth’s magnetic field with 10 nJ
energy. After having been deflected by the field, it exits with 12 nJ energy. Is
this possible?

6:16. The magnetic flux in a rectilinear solenoid of length l = 25 cm is UB = 50
µWb. Neglecting the edge effects, what is the magnetic moment of the
solenoid?

6:17. A square loop of 5 cm side is in a uniform magnetic field B = 1.2 T with its
normal forming an angle of 30° with the field. What is the magnetic flux
through the loop?

6:18. A straight wire carries a steady current of intensity I = 3 A. What are the
direction and the magnitude of the magnetic field at 1 cm from the wire? And
at 2 cm?

6:19. A coil, of which we do not know the shape but we know its dimensions to be
on the order of centimeters, carries a steady current. The field on the axis at
1 m distance from the center is 20 mT. How much is the field on axis at 10
m?

6:20. Two identical circular coils are located parallel to one another on the same
axis at a distance of 2 m. Their radius is R = 1 cm. The current intensity is
I = 100 A. How much is the interaction energy? How much is the exchanged
force?

6:21. A source of electrons S emits electrons having velocities equal in magnitude
t = 3 � 106 m/s and directions slightly divergent around the x-axis.
A magnetic field of intensity B = 10 mT is directed along the x-axis. Find the
distance of the first focus from S.

6:22. How can you produce a circular line of B? And one of A?
6:23. An infinite plane current sheet produces a vector potential of 10−3 T m. What

are the magnitude and the direction of A at 2 m?
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6:24. A rectilinear solenoid carries a steady current. Outside the solenoid, at a
distance of 1 m from the axis, the vector potential magnitude is A. How
much is it at 10 m from the axis?

6:25. An electron moving with t = 2 � 106 m/s enters a solenoid normally to its
axis. The solenoid is made of n = 5000 loops/m and carries a current of
intensity I = 20 A. What is the curvature radius of the electron’s trajectory?

6:26. We build a cube by assembling six identical copper wires (its dihedral
angles). We send a current through two opposite corners. What is the
magnetic field in the center? (Hint: think of the symmetry of the problem.)
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Chapter 7
Electromagnetic Induction

Abstract In this chapter, we discuss the electromagnetic induction phenomenon,
starting from the discovery by Michael Faraday that when the magnetic flux linked
to a circuit varies with time, an electromotive force, and its consequent current,
appears in the circuit. We learn the differential equation ruling the phenomenon,
namely that the curl of the electric field is equal to the opposite of the time
derivative of the magnetic field. We discuss Faraday’s law under various circum-
stances and introduce the concepts of mutual inductance and self-inductance.
Finally, we deal with the alternate current circuits and the impedances of their
different passive components, resistors, capacitors and inductors.

Up to now, we have discussed the electric and magnetic phenomena in time
independent situations. Under such conditions, the electric charge density q is a
function of the space coordinates but not of time, and originates a constant electric
field. Similarly, the current density j does not vary with time, and originates a
stationary magnetic field. The differential equations ruling the electric field contain,
as a source, the charge density, while those for the magnetic field only the current
density. Time independent electric and magnetic fields appear to be two indepen-
dent quantities. All of this is not true under dynamic conditions, namely when the
charge density, the current density and the fields are functions of time. We shall
now begin to explore the fact that electric and magnetic fields are not at all separate
entities, but rather are so intimately connected so as to be components of a single
quantity, the electromagnetic field.

In this chapter, we discuss the electromagnetic induction phenomenon, discov-
ered in the first half of the XIXth century by Michael Faraday (and others). When
the magnetic flux linked to a circuit varies with time, an electromotive force, and its
consequent current, appears in the circuit. The phenomena are summarized in the
flux rule. This rule is, in fact, a double rule. From one side, it is a consequence of
the Lorentz force, which we did already know; from another, it is a consequence of
a new general law. This is Faraday’s law stating how the electric field is produced
by a magnetic field varying with time. More precisely, we shall see that the curl of
the electric field is equal to the opposite of the time derivative of the magnetic field.

© Springer International Publishing Switzerland 2016
A. Bettini, A Course in Classical Physics 3 — Electromagnetism,
Undergraduate Lecture Notes in Physics, DOI 10.1007/978-3-319-40871-2_7

241



Faraday’s law for electromagnetic induction is at the basis of electro technics, a
vital component of our civilization. In the second part of the chapter, we discuss a
number of (non-technical) applications of Faraday’s law. We introduce the concepts
of mutual inductance between two circuits and self-inductance of a single circuit on
itself.

In the last three sections, we study alternate current circuits and the impedances
of their different passive components, resistors, capacitors and inductors.

7.1 The Flux Rule

In this chapter, we shall start our study of the electric and magnetic fields under
dynamic, namely time-dependent, conditions. Soon after the discovery by Hans
Christian Ørsted in 1820 that an electric current, namely moving electric charges,
produce a magnetic field, scientists started to suspect that some connection had to
exist between electricity and magnetism. The discovery of the relationship was not
easy at all. It took more than 10 years and the careful work of several researchers,
above all the genius of Michael Faraday (UK, 1791–1867), but also of Joseph
Henry (USA, 1797–1878), Franz Neumann (Germany, 1798–1895) and even more
in the subsequent years. The main question was whether a magnetic field produced,
for example, by a current in a circuit was able to generate, or to “induce”, an electric
current in a second circuit. Following this idea, Faraday took an insulating cylinder
and wrapped an insulated metal wire about it in the form of a densely packed helix
(primary circuit). He wrapped a second insulated wire above the first (secondary
circuit). He connected the ends of the secondary to a sensitive galvanometer and
then those of the primary to the poles of a pile. Note that he was aiming to work
with a continuous current, namely constant in time. In his first experiments, he
could not detect any current in the secondary. He developed galvanometers capable
of the greatest sensitivity he could obtain; but he still did not observe any effect.
However, it happened that he did observe short current pulses just after having
closed the switch connecting the primary to the battery, and just after having
opened it as well. He thought that perhaps a variable current was necessary.

We observe that Faraday, starting from a failed experiment, had reached an
outstanding discovery, taking advantage, with his genius and intuition, of a fortu-
nate observation. This is a historical example of how the progress of our knowledge
often follows a tortuous path. Only after the experiments have clarified a phe-
nomenon in all its aspects, through a trial and error process, can the issue be
theoretically arranged into a picture that appears simple and elegant.

Starting from his preliminary conclusion, Faraday developed a series of exper-
iments to understand completely the electromagnetic induction phenomenon, as it is
called. He found three basic different ways to induce a current in a circuit. Consider
a secondary circuit consisting of many loops of a metal wire wrapped around an
insulating cylindrical tube and connected in series to a sensitive galvanometer.
We can classify the current induction cases in the following categories.
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(a) Moving the circuit in a non-uniform steady magnetic field.

Let us take, for example, a cylindrical permanent magnet having a diameter smaller
than that of the tube supporting the secondary circuit. If we keep the magnet still
with one hand and move the circuit with the other one so as to have the magnet
penetrating the tube, we observe an induced current, as long as we move the circuit.
The current disappears as soon as we stop moving. We also observe that the
induced current intensity is larger when we move the circuit faster. If we move the
circuit in the opposite direction, the induced current flows in the opposite direction.
As a variant, we observe that moving just a segment of a circuit in a magnetic field
is enough to induce a current. We can use a magnet and a secondary circuit that
includes a movable segment. When we move the segment into the field region, we
observe an induced current. When we stop the motion, the current vanishes. When
we take the segment out of the field, the induced current has the opposite direction.

(b) Moving a magnet near to the circuit.

Using the same secondary circuit as before, we also observe an induced current
when, keeping the circuit still, we insert the magnet or extract it. Indeed, the effect
depends on the relative motion of the two objects. Observe, however, that the two
situations are radically different. In case (a), the circuit moves and the magnetic
field is independent of time. In case (b), the circuit is at rest and the magnetic field
varies in time at its points. Indeed, moving the magnet closer or farther away is just
a way to create a time-dependent magnetic field.

(c) Having a variable current intensity in another (primary) circuit close by.

The Faraday experiment from which we started this section falls into this category.
We can still use our cylindrical secondary circuit to detect an induced current. We
build another circuit, the primary, by wrapping another helix of metal wire around
another hollow cylinder having a diameter large enough to allow our secondary
circuit to enter. The primary circuit is connected to a battery. Moving the secondary
in or out of the primary at rest, we observe an induced current. This is a variant of
category (a). We can also induce a current by keeping the secondary still and
moving the primary. This is a variant of category (b). But now, we can induce
current in the secondary in yet another way, namely by having a variable current in
the primary. We can do that by opening or closing the switch or, for example, by
including a variable resistor in the primary and changing its resistance quickly.
Analyzing the case, we see that, in this way, the induction is also due to being the
induced circuit in a magnetic field varying with time.

We can then conclude that the three above categories are really only two. In both
cases, there is a circuit in a magnetic field. The electromagnetic induction phe-
nomenon happens when the field is steady and the circuit moves or when the circuit
is at rest and the magnetic field varies with time (what matters is the field variation;
whether this is due to the motion of its sources or to a variation of the current that
produces it is irrelevant, provided the variation is the same). We observe here that
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the directly induced quantity is not the current, but rather an electromotive force
(emf) along the circuit. As the reader remembers, the emf is the integral about the
circuit (or a segment of the circuit) of the tangent component of the force on the unit
charge. Let C be the oriented geometrical curve representing the circuit and F the
force on the charge q (which is, in general, a function both of the point and of time).
The emf is, by definition,

E ¼
Z
C

F
q
� ds: ð7:1Þ

To observe what we just stated, we must change the experimental setup a bit. We
remove the galvanometer from the circuit and observe the phenomenon with an
open circuit. In addition, we take the two ends of the circuit in a region in which
there is no field varying in time. Under such conditions, the electrostatic potential
difference is defined and we measure it with a voltmeter. Repeating the
above-mentioned experiments with this setup, we observe that the observed
potential difference is equal to the emf induced in the circuit. When the circuit was
closed, the current intensity was given, for Ohm’s law, by the ratio of the emf and
the resistance of the circuit. Faraday established that, in all the cases, the following
flux rule holds. The rule states that the emf induced about the circuit C is equal to
the opposite of the rate of change of the magnetic flux linked to C,

E ¼ � dU
dt

; ð7:2Þ

where U is the flux of the magnetic field through any surface R bounded by C
namely

U ¼
Z
R

B � n dR: ð7:3Þ

Note that, in order to define the emf completely, we need to (arbitrarily) choose a
positive direction on C. Similarly, the definition of the flux requires us to have
chosen a positive face of R, namely the positive direction of the unit normal vector
n. The second choice is not arbitrary. Rather, the positive direction of n is such that
one observer with his feet on R having that direction entering through his feet and
flowing out of his head sees the positive direction of C as counter-clockwise. We
further notice that the flux of B is the same through any oriented surface R bounded
by C. This is a consequence of B being a solenoidal vector, namely having iden-
tically null divergence. This demonstration is identical to that which we made in
Sect. 6.6 for the flux of the current density j under steady conditions, in which j is
solenoidal. The flux U, hence, depends only on C and is said to be linked to C.
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It is important to understand that the direct effect of the magnetic flux variations
is the induced emf. The electric current is, in turn, an effect of the induced emf,
provided the circuit is closed. If, contrastingly, the circuit is open, the emf exists,
but there is no current. Concerning the circuit, the emf depends only on its
geometry, while the current intensity also depends on its physical characteristics, in
particular, its resistance R. Indeed, we have

I ¼ E
R
¼ � 1

R
dU
dt

: ð7:4Þ

Another important observation is that the induced emf is not localized at a point
of the circuit, as is the case with a battery, but is distributed along the entire length
of the circuit, or at least of one segment, in a case in which this is the only part
moving, such as the one we shall now consider in detail (Fig. 7.1).

7.2 Induced Electric Field. Faraday’s Law

We shall now see how the two fundamental cases of the flux rule have completely
different theoretical interpretations. In case 1, namely when the flux varies due to
the motion of the parts of the circuit in the magnetic field, the rule is a consequence
of the Lorentz force, namely of physics we already know. Contrastingly, case 2
shall require new physics, namely the modification of a law that we know to hold
under static conditions. Let us start with case 1.

Let us consider the simple circuit in Fig. 7.1. It is made of two parallel metallic
rails separated by a distance a. On the left side, the rails are almost, but not
completely, joined by two conductors perpendicularly. We measure the potential
difference between the extremes of these two conductors with a voltmeter, at open
circuit. A metal bar lies on the rails and moves, remaining perpendicular to the rails
with constant velocity v. We take the x-axis parallel to the rails in the direction of
v with origin at the left end point of the rail. A uniform and constant magnetic field
B is present between the rails, but not at the voltmeter. Its direction is perpendicular

BV
a

x

v

+

–– ––

+
+
+

P

RO

Fig. 7.1 Circuit with a
segment in motion in uniform
and a steady magnetic field,
directed perpendicularly to
the figure above. The arrow
marks the positive orientation
of the circuit (not necessarily
the direction of the current
flow)
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to the plane of the rails, outward in the drawing. We choose the positive direction
along the circuit to have the linked flux of B positive, as shown in Fig. 7.1.

Consider a generic charge carrier in the moving bar (an electron, in this case).
Let q be its charge. The Lorentz force acts upon the carrier, which moves with the
bar at velocity v:

F ¼ qv� B: ð7:5Þ

v and B being orthogonal to one another, and both perpendicular to the bar, the
force has magnitude qtB and the direction of the bar. Note that the force is present
at all the points of the moving bar and at no other point of the circuit. The force per
unit charge of magnitude tB is directed toward the extreme P in the figure, inde-
pendently of the charge of the carrier. For Eq. (7.1), the induced emf is then

E ¼ �tBa:

The physical process is such that the free electrons are pushed by the Lorentz
force toward the extreme P in the figure, originating an accumulation of negative
charge near P and one of positive charge near the other extreme R. These two
charge accumulations generate an electric field E directed along the bar from R to P,
which repels further arrivals. The equilibrium is reached when the electric and
magnetic forces on the carriers are equal and opposite at all the points of the bar,
namely for

E ¼ �tB:

The electrostatic potential difference between the extremes of the bars is then

DV ¼ Ea ¼ �tBa; ð7:6Þ

which is equal to the induced emf.
Let us now calculate the linked flux. When the bar is at x, the flux is U ¼ Bax.

Hence, its rate of change, taking into account Eq. (7.6), is

dU
dt

¼ Ba
dx
dt

¼ Bat ¼ �E

We have obtained the flux rule.
As we have seen, the direct effect is the emf. When we work with a closed

circuit, this emf, in turn, originates a current, whose intensity depends on the
resistance of the circuit R, according to Ohm’s law, namely

I ¼ � tBa
R

: ð7:7Þ
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Notice the minus sign. It indicates that the current circulates in a direction
opposite to that which we have chosen as positive. The current is due to the emf at
the extremes of the moving bar. Consequently, its direction along the fixed part of
the circuit is from the positive end of the bar, which is R, to the negative end,
namely P. The current direction is then counter-clockwise. Notice that the direction
of the current in the moving bar is from the negative end to the positive end. This
behavior is analogous to that of an electrostatic generator or a common battery. In
this case, the non-electrostatic force inside the emf generator, namely the moving
bar, is clearly the Lorentz force.

The induced current generates its own magnetic field. This field is directed
perpendicularly to the page of the drawing toward the inside, namely parallel and
opposite to the applied field. The field of the induced current contributes in this way
to the total magnetic flux linked to the circuit, with a negative contribution, namely
diminishing the flux of the applied field. The net effect is that of diminishing the
flux grow rate due to the bar motion. If we now consider the bar moving to the left,
namely reducing the linked flux, we find that the magnetic field produced by the
induced current has the same positive direction as the applied field. The contri-
bution of the induced current is then to increase the linked flux, or, we can say, to
oppose the diminishment of the total flux. These observations hold, in general,
every time the flux law holds, both in case 1 and in case 2. This property is known
as the Lenz law, from Heinrich Lenz (Russian empire, 1804–1865), who formulated
it in 1834, stating that the direction of the induced current is always such so as to
oppose the cause from which it has been generated.

In conclusion, we can state that, in the case we considered, the flux rule is a
consequence of the Lorentz force. It can be shown that the conclusion is valid
whenever the emf is induced in a moving circuit.

Let us now analyze case 2. Consider a circuit, C, at rest. The charge carriers are
at rest as well. The flux of the magnetic field B linked to the circuit varies with time
(The vector B is a function of the coordinates and time.). No magnetic force acts on
the carriers, because they are at rest. The observed effect must then be due to an
electric field E, producing action on the carriers. We are induced to think that the
variations in time of the magnetic field give origin to an electric field and, conse-
quently, to an emf, such as

E ¼
I
C

F
q
� ds ¼

I
C

E � ds ¼ � dU
dt

: ð7:8Þ

We immediately see that the electric field is not conservative under these con-
ditions. Indeed, its line integral about a closed line (namely the work done by the
field on the unit charge moving on that loop) is not zero, but

I
C

E � ds ¼ � d
dt

Z
R

B � n dR; ð7:9Þ
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where R is an arbitrary surface bounded by C. The same conclusion can be
expressed in differential form, applying the Stokes theorem to the left-hand side of
Eq. (7.9) to transform it into a surface integral over R, namely

I
C

E � ds ¼ � d
dt

Z
R

r� E � n dR ¼ �
Z
R

@B
@t

� n dR;

where, on the right-hand side, we could bring the time derivative under the integral,
because the integration limits (namely R) do not depend on time.

Being that the equation is valid for any R, the equality must hold for the
integrands, and we have

r� E ¼ � @B
@t

; ð7:10Þ

which is a fundamental equation that we call the Faraday law. The law is uni-
versally valid and expresses the properties of the electric field together with the
equation for the divergence:

r � E ¼ q
e0
; ð7:11Þ

which is also universally valid.
The Faraday law extends the equation r� E ¼ 0 valid in electrostatics to

dynamics, and to that it reduces when B is constant in time. We see that there are
two causes of an electric field, namely the electric charges, which determine its
divergence, and the time variations of the magnetic field, which determine its curl.
Equations (7.10) and (7.11) are local expressions. Namely, to know the divergence
and curl of the electric field at a point in a certain instant, we just need to know the
charge density and the rate of change of the magnetic field at that point and in that
instant.

As we have noted, the electric field under non-static conditions is not conser-
vative. Consequently, we cannot define a potential as we did with electrostatics.
The emf takes the place of the potential difference under dynamic situations.
However, as opposed to the potential difference, the emf is not a function of state.
Indeed, the work done by the forces of the field on the unit charge to go from state
A to state B does not depend on A and B alone, but also on the path followed. This
fact, however, does not imply that the electromagnetic forces are dissipative. As a
matter of fact, we shall subsequently see that not only matter but also the fields
contain energy. Neither the matter nor the field energy is separately conserved, but
their sum is, in any case, constant.

We now make an important observation on the Faraday law in integral form
(Eq. 7.9). This equation holds for any oriented curve C, even if it is purely geo-
metric and not materialized in a physical circuit. An electric field exists at the points
of the curve, which is such that the integral about C of its tangent component is
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equal and opposite to the rate of change of the flux of the magnetic field linked to C.
We shall see an example of that in Sect. 7.4.

Let go back, in conclusion, to the flux rule. As we have seen, the induced emf in
the two cases, the case of the moving circuit and the case of the variable magnetic
field, is due to two completely different causes. One is in the magnetic and one in
the electric term in the force

F ¼ q Eþ v� Bð Þ: ð7:12Þ

The flux law is a single physics law resulting from two different physical phe-
nomena. In similar cases, as purposely Feynman stated, “such a beautiful gener-
alization is found to stem from a single deep underlying principle. Nevertheless, in
this case there does not appear to be any such profound implication”.

7.3 Exceptions to the Flux Rule

In the previous sections, we started from the experimentally determined flux rule to
infer the Faraday law (Eq. 7.10). However, the universally valid laws are
Eqs. (7.10) and (7.11) for the fields and Eq. (7.12) for the force. The flux rule is a
consequence of them. Let us make the point clear by considering a few examples in
which the flux rule cannot be applied. These exceptions happen when one deals
with an extended conductor (namely not a wire) or when the path of the current in a
conductor varies with time.

Barlow’s wheel is a demonstration device invented in 1822 by Peter Barlow
(UK, 1776–1862), shown in Fig. 7.2. The wheel is a vertical metal disk turning
about a horizontal metal hub. Two wires are connected to the moving part with
sliding contacts. One contact touches the hub, while the other is a mercury contact at
the lowest point of the rim, which touches the surface of liquid mercury in a
container not shown in the figure. The emf between the two wires is measured by a
voltmeter. When we rotate the wheel with a certain angular velocity x, we observe
the presence of an emf. However, there is no magnetic flux variation. The expla-
nation is as follows. The free electrons in the disk travel along the radius from the
lowest point to the center with a speed that, at the distance r from the axis, is t = xr.

B

B

VΔ

Fig. 7.2 Barlow’s wheel
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As a consequence, they are acted upon by a magnetic force of intensity F = qtB =
qxrB (considering that v is perpendicular to B) in the direction of the radius. The
emf between the hub and the rim is

E ¼
ZP

0

xrB dr ¼ 1
2
xBP2; ð7:13Þ

where P is the wheel’s radius. We see that the flux rule does not hold, because the
circuit, if meant to be the geometric path of the current, does not vary, and con-
sequently there is no change in the linked flux. Contrastingly, when considered as
the physical support to the current, the circuit does vary, because the
current-carrying instantaneous radius varies, and consequently varies the part on
which the magnetic force is acting.

Figure 7.3 shows an opposite example. The device in this case is made of two
conducting parallel rails joined by a third one. We also have a conductor made by
joining three conducting bars in the shape of an H. A constant and uniform mag-
netic field is present normal to the plane of the rails. If we touch the two rails with
an arm of the H, we close the circuit. We then raise that arm and join the rails with
the second arm, as in the figure. In the process, the area of the circuit varies
considerably, and so does the linked magnetic flux, but no induced emf is observed.

The reason for this is that, when we move the H, the free electrons inside it
move, but their velocities are substantially parallel to the magnetic field, and
consequently the Lorentz force is null.

In conclusion, we must pay attention when using the flux rule under any cir-
cumstance in which the matter through which the current flows changes. We can be
sure, on the other hand, both of the Faraday law (Eq. 7.10) and of the expression of
the force (Eq. 7.12).

7.4 Betatron

We shall now discuss an example of electromagnetic induction in which a material
circuit does not exist at all, the betatron. As we already stated, Eq. (7.9) also holds
if C is a purely geometric curve. Donald Kerst (USA, 1911–1993) built the first
magnetic induction particle accelerator at the University of Illinois in 1940, which

B B B

Fig. 7.3 Demonstration in
which the flux varies without
inducing an emf
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was called a betatron. Betatrons accelerate charged particles, typically electrons
(hence the name), up to quite high energies. We are mainly interested here in the
working principles, and we shall consequently ignore all technical details.

The main component of the betatron is an electromagnet that generates a mag-
netic field with cylindrical symmetry, as shown in Fig. 7.4a. The field varies in time,
as needed. A pipe having the shape of a donut is located coaxially in the middle
plane, showed cut in Fig. 7.4a. The donut is under vacuum to let the electrons
circulate freely. During the acceleration process, the magnetic field intensity
increases. The increasing flux linked to the donut induces the accelerating electric
field. The electric filed lines are circles centered on the axis, as symmetry requires.

The orbit of the electrons is one of these circles (we shall soon see which of them
it is). Let it be C and let r be its radius. The flux linked with C can be written as the
mean value of the magnetic field inside the circle of radius r, say hBðr; tÞi, times the
area of the circle. Namely, the flux is U ¼ pr2 B r; tð Þh i. Equation (7.9) then gives us

2prE r; tð Þ ¼ �pr2
d B r; tð Þh i

dt
;

or, in absolute values,

E r; tð Þj j ¼ r
2
d B r; tð Þh i

dt

����
����: ð7:14Þ

The force acting on one electron is qeE, where qe is the electron charge, and is
proportional to the rate of change of the (mean) magnetic field. The force is tangent
to the orbit, and consequently makes the magnitude of the momentum p vary at the
rate of

dp
dt

¼ qeE ¼ qer
2

d Bh i
dt

����
����: ð7:15Þ

B

E

E

r

(a) (b)Fig. 7.4 Scheme of a
betatron. a Vertical
cross-section on axis, b the
electric field line, which is the
trajectory of a particle
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If the electron is initially (t = 0) at rest and the field is initially zero, the
momentum of the electron at the generic time t is

p tð Þ ¼ qer
2

Z t

0

d Bh i
dt

dt ¼ qer
2

B r; tð Þh i: ð7:16Þ

In this way, we can increase the momentum, and consequently the kinetic
energy, of the electrons by increasing the magnetic field. We still need to see how
we can keep the electrons moving in a circular orbit. Indeed, for that, we need a
centripetal force with the right value in every moment. As a matter of fact, a
centripetal force does exist. It is the Lorentz force qev � B. We know from
mechanics that the centripetal force is equal to the product of the p and the angular
velocity x = t/r. Namely, we have the condition qtB r; tð Þ ¼ pt=r, which is

B r; tð Þ ¼ 1
2

B r; tð Þh i: ð7:17Þ

The condition means that, at any time, the field on the orbit must be equal to one
half of its mean value inside the same orbit. This condition is obtained by properly
shaping the poles of the electromagnet.

Notice that the mass of the electron does not appear in any of the expressions we
have used. As a matter of fact, the betatron can accelerate electrons up to hundreds
of MeV, namely at highly relativistic energies, much larger than the electron rest
energy, which is about half a MeV. The upper limit comes from the fact that
accelerated charged particles (centripetal acceleration, in this case) radiate elec-
tromagnetic energy. This phenomenon is called synchrotron radiation, because it
happens in synchrotrons as well. The radiated power increases as the fourth power
of the energy of the particles. While synchrotron radiation is an undesired effect for
an accelerating particle, it too may be very useful. Being that the radiation is mainly
in the X-ray range, betatrons of about 10 MeV energy are designed as “hard” X-ray
sources for industrial and medical radiography.

We shall now express the same concepts in terms of the vector potential. Note
that, even if we have defined the vector potential in magnetostatics, the definition
holds under dynamic conditions as well. This is because it is based on r � B ¼ 0,
which continues to hold in dynamics, as we shall see in Chap. 10.

Let us express Eq. (7.9) on the trajectory C of the electrons. We notice that this
circle is a line of the vector potential as well. On the other hand, the flux of
B through the circle bounded by C is equal to the circulation of A about C (see
Eq. 6.46) and this is 2prA(r, t). We then have

2prE r; tð Þ ¼ � dUB

dt
¼ �2pr

@A r; tð Þ
@t

;
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namely also

E r; tð Þ ¼ � @A r; tð Þ
@t

:

The rate of change of the electron momentum is

dp
dt

¼ qeE r; tð Þ ¼ �qe
@A r; tð Þ

@t
:

We now integrate over time, taking into account that at t = 0, both p and A are
zero, obtaining

p tð Þ ¼ �qeA r; tð Þ; ð7:18Þ

which can be also written as

p tð Þþ qeA r; tð Þ ¼ constant: ð7:19Þ

This simple relation holds in every instant. It tells us that the sum of the
momentum of the electron and the product of its charge times the vector potential is
a constant of the motion. We shall come back to this issue in Chap. 10.

7.5 Felici’s Law

Felici’s law allows for calculating the net charge through a circuit due to a current
induced by a variable magnetic field knowing just the initial and final magnetic flux
and the resistance of the circuit. The law was discovered by Riccardo Felici (Italy
1819–1902) in his systematic experimental work on electromagnetic induction
carried on between 1851 and 1859. Today, we can obtain the law as a consequence
of the flux law by integrating Eq. (7.4) over a given time interval, say from t1 to t2.
Taking onto account that the integral of the current intensity over a time interval is
the net charge through the conductor in that interval, which we call Q, we imme-
diately have

Q ¼ U1 � U2

R
; ð7:20Þ

where R is the resistance of the circuit and U1 and U2 are the magnetic fluxes linked
to the circuit at t1 and t2, respectively. This is Felici’s law.

The interesting point is that the net charge does not depend on the specific
evolution in time of the magnetic flux, but only on its total change. This observation
suggests a way to measure the flux, and consequently the magnetic field. It is called
the flip-coil method. We wind a copper wire producing a coil of n overlapped loops.
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We make its area, which we call S, small enough to be able to consider the magnetic
field to be measured as uniform on that area. We connect the coil to an instrument
suitable for measuring the total electric charge, namely to integrate the current. An
example of such a device is the ballistic galvanometer, which we shall describe.

Suppose we know the direction of the magnetic field. (We shall later address
what to do if we do not.) We insert the coil at the point of interest with its surface
perpendicular to the field. The initial flux is U1 ¼ nSB. We now quickly flip the coil
by 180˚, changing the flux to U2 ¼ �nSB. For Felici’s law, the magnetic field is

B ¼ QR
2nS

: ð7:21Þ

If we do not know the direction of the field, we can proceed by trial and error,
repeating the procedure but starting with the coil in different directions and finding
the one for which the induced charge Q is at a maximum.

Let us now see how to measure the total charge with a ballistic galvanometer.
This instrument is just a galvanometer, as described in Sect. 6.5, whose mobile coil
inertia moment, J, is quite large. Consequently, its oscillation period is long
compared to the total time in which the current flows. We recall that the coil
carrying the current I is subject to a torque

sI ¼ IBcScNc: ð7:22Þ

where Bc is the magnetic field on the coil, Sc the area of the coil and Nc the number
of its loops. This torque produces an angular acceleration of the coil given by

sI ¼ J
dx
dt

; ð7:23Þ

where x is its angular velocity. In the generic infinitesimal time interval dt, the
angular impulse is

Jdx ¼ sIdt ¼ IBcScNcdt: ð7:24Þ

We can talk of an angular pulse because the duration of the current is small
compared to the period. Integrating from the initial instant (t = 0) to the final one tc,
when the entire current has flowed, we have

Zx0

0

Jdx ¼ BcScNc

Ztc
0

Idt ¼ BcScNcQ: ð7:25Þ

This means that the final angular velocity of the coil, xo, is proportional to the
total charge carried by the current, with a proportionality constant K that we do not
need to express
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x0 ¼ KQ: ð7:26Þ

After the current has ceased, namely for t > tc, the galvanometer coil freely
oscillates under the action of its spring, only with initial angular velocity xo. The
mechanical energy of the coil is initially purely kinetic and equal to Jx2

0=2. The coil
then turns, reaching a maximum angle, say am, where it momentarily stops. Here,
all the initial kinetic energy becomes potential energy. The latter being proportional
to a2m, we can conclude that the maximum coil elongation am is proportional to xo,
and hence to Q, namely that

am ¼ K 0Q: ð7:27Þ

Measuring am, we shall know Q, once we know the constant K′. We might easily
express it in terms of the characteristics of the coil and the spring. In practice, this
method does not provide a sufficient precision, and one prefers to calibrate the
galvanometer by measuring a number of maximum elongations am for charges of
known values.

The ballistic galvanometer is similar to the ballistic pendulum discussed in
Sect. 7.18 of the 1st volume of this course.

QUESTION Q 7.1. A coil of area A = 1 cm2 and resistance R = 100 mX is located
in a field B = 1.2 T directed perpendicularly to it. We quickly turn the coil upside
down (by 180°). What is the charge crossing the coil? h

7.6 Energy Balance

Let us go back to the example of the mobile side circuit we considered in Sect. 7.2.
Suppose the friction of the motion of the mobile bar to be negligible. Suppose the
circuit to be open and the bar initially to be moving at a speed t. Under these
conditions, a magnetic force is present on the bar. Being parallel to the bar, it
generates an emf but does not have an effect on the velocity, to which it is per-
pendicular. If we now close the circuit on a resistance R, the current of intensity
given by Eq. (7.7) flows into the circuit, mobile segment included. Each element
ds of the mobile side is acted upon by the force

dF ¼ Ids� B:

This force is parallel and opposed to the bar velocity (remember Lenz’s law).
The total force on the bar is

F ¼ IBa ¼ �B2a2

R
t; ð7:28Þ
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where a is the length of the bar and the minus sign indicates that the force is
opposite to t. We see that, when the circuit is closed, the force acting on the mobile
side has characteristics similar to the viscous drag, namely it is proportional and
opposite to the velocity. The force slows down the bar until it stops. Where has the
initial mechanical energy of the bar gone? It has been dissipated by the Joule effect
on the resistance R of the circuit. Indeed, the dissipated electric power is

wel ¼ RI2 ¼ B2a2t2=R: ð7:29Þ

If we want the bar moving at a constant speed, we must apply a force equal and
opposite to F. The force provides a mechanical power equal to

wmec ¼ Ft ¼ B2a2t2=R; ð7:30Þ

which, as we see, compensates the electrical power. Such a device is an elementary
prototype of an electromagnetic generator, in which mechanical work is spent to
produce an electric current when the circuit is closed on a load R (it might be the
resistance of a lamp, for example). The mechanic work spent is equal to the electric
work obtained, when dissipative losses can be neglected.

Similar considerations hold for Barlow’s wheel, as described in Sect. 7.3. In that
case as well, when the circuit is open, there are no mechanical moments on the
wheel, if we can neglect friction. If initially rotating, the wheel will continue to turn
at a constant angular velocity. When the circuit is closed on a total resistance R, a
current flows on the radius of the wheel between the hub to the mercury contact. Its
intensity is

I ¼ E
R
¼ xBP2

4R
; ð7:31Þ

where P is the radius of the wheel. Under these conditions, a force dF ¼ IBdr acts
on the generic element dr of the radius, directed perpendicularly to the radius. Its
moment about the axis is ds ¼ IBrdr. We obtain the total moment by integration on
the radius, namely

s ¼ IBP2

2
¼ �B2P4

2R
x; ð7:32Þ

where the minus sign indicates that its direction is opposed to the angular velocity
(again, Lenz’s law). In this case too, the acting moment is similar to a viscous
moment. Consequently, there is a loss of mechanical energy per unit time

wmec ¼ sx ¼ B2P4x2

4R
: ð7:33Þ
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Once more, the mechanical power is equal to the electrical one. Indeed, it is

wel ¼ RI2 ¼ B2P4x2

4R
: ð7:34Þ

If we want to keep the angular velocity constant, we must provide a mechanical
moment equal and opposite to that of Eq. (7.32), and consequently spend
mechanical power equal to the electrical power (or larger in the presence of
friction).

Barlow’s wheel can be considered to be another example (even without practical
interest) of an electromagnetic generator, namely a device transforming mechanical
work into electric work. It is interesting to note that the device can also be used as
an electric motor, namely to transform electric work into mechanical work. To
obtain that, we just have to include a source of emf, which will provide the elec-
trical work, in the circuit. When the circuit is closed, the emf generates a current,
whose intensity we call I. Consequently, a force dF ¼ �Idr� B acts on every
segment dr of the radius. Its moment about the axis is ds ¼ r� dF ¼
�Ir� B� drð Þ. Taking into account that B is perpendicular to r, its magnitude is
ds ¼ IBRdr. The total mechanical moment about the axis is obtained by integration
from 0 to P, the radius of the wheel, obtaining s ¼ IBP2=2. We can use this
moment for mechanical work.

7.7 Eddy Currents

Consider the experimental demonstration shown in Fig. 7.5. A pendulum is made
of a small metal bar joined to a metal disk, which moves between the poles of an
electromagnet around the equilibrium position. When the magnet is off, the pen-
dulum oscillates as usual. When we excite the magnet, namely produce a strong

(a) (b)Fig. 7.5 Metal pendulum
swimming between the poles
of a magnet. Eddy currents
are strong in (a), small in (b)

7.6 Energy Balance 257



magnetic field between its poles, the damping of the oscillation increases sub-
stantially, as if the viscous drag would have enormously increased.

The greater the speed of the pendulum is, the more striking the effect. To
understand this phenomenon, think of the moments in which the pendulum disk
penetrates the field region from outside. As it goes in, the flux linked to possible
circuits on its surface increases. The linked flux increase generates electromotive
forces that, in turn, produce eddies of current on the disk. The presence of these
eddy currents, as they are called, explains, similarly to what we discussed in the last
section, the drag resistance proportional and opposite to the velocity. The eddy
currents and the corresponding forces may be quite large due to the very low
electric resistance of the “circuits” on the metal disk. If the disk were a perfect
conductor, the currents would be so intense that they would push the disk back out.

We can check that this interpretation is correct by repeating the experiment with
a pendulum equal to the first one, but having a series of cuts perpendicular to the
direction of motion, as in Fig. 7.5b. We observe that the dragging force practically
disappears. Independently of the field being on or not, the behavior of the oscil-
lations is similar. Indeed, the cuts forbid the formation of current eddies.

The case discussed is just an example of a rather common phenomenon. In the
presence of magnetic flux variations, eddy currents, also called Foucault currents,
always develop. Their consequence is energy dissipation. Consequently, measures
must be taken to reduce the losses to a minimum. Consider, for example, the
transformers used in electric technology to “transform” an alternate current from
one voltage to another. In a transformer, two circuits made of a different number of
loops are wound around the same cylindrical iron structure, called the core. The
alternate current in one of the circuits, the primary, induces another alternate current
in the secondary. Consequently, a magnetic field varying in time is present in the
core. To minimize the energy losses, the core is made of laminated sheets packets,
arranged in the direction perpendicular to the eddy currents.

Let us consider two other examples.
Figure 7.6 shows the Thomson jumping ring experiment conducted by Elihu

Thomson (UK-USA, 1853–1937) in the 1880s. The device is made of a metal ring
inserted into a vertical insulating bar on the axis of an electromagnet, for example,
on the face of a solenoid. Initially, the magnet is off and the ring rests on its face.
When we switch the magnet on, we see the ring jumping up (independently of the
direction of the current). This phenomenon is due to the eddy currents that develop
in the ring when the magnetic field increases. These currents generate a magnetic
field, which, for Lenz’s law, opposes the causes that generated it. Hence, its
direction is opposite to that of the original field, and the ring is pushed up. When the
field has reached its steady value, the currents soon disappear due to the resistance
of the ring, and the ring falls back into its original position. If we now switch the
magnet off, we see the ring pressed onto the magnet’s face. It is trying to keep
linked to as much magnetic flux as possible, to obey Lenz’s law. We can check our
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interpretation by repeating the experiment with a cut ring. We do not observe any
effect.

Figure 7.7 shows an earlier experiment done by François Arago (France, 1786–
1853) in 1826. This was probably the first historic observation of an electromag-
netic induction phenomenon, but was correctly interpreted only after Faraday’s
discoveries. In the experiment, a magnetic needle is enclosed in a transparent box,
closed tightly to avoid any effect linked to movements of air. The needle is free to
turn on a vertical hub. A coaxial copper disk, parallel to the box at a short distance
below it, can be put in rapid rotation. When we do so, we observe the needle turning
as well, as if the disk is dragging it, even if there is no mechanical interaction
between them. This effect is due to the eddy currents. Initially, when the copper
disk moves and the needle is still at rest, there is a relative motion between them.
The magnetic field of the needle appears to an observer of the disk to be varying in
time. This generates eddy currents in the copper. The action of the currents is to
oppose the cause that generated them, which is ultimately the relative motion.
Consequently, the needle rotates.

ω

N S

Fig. 7.7 The Arago disk

Fig. 7.6 The Thomson
jumping ring
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7.8 Mutual Induction

Let C1 and C2 be two circuits at rest and let us orient them arbitrarily. Let I1 be the
current carried by the first circuit and B1 the magnetic field generated by that
current. Let U12 be the flux of B1 linked to the second circuit, namely C2. Any
variation in time of I1 will generate an emf in C2. Clearly, we can also consider that
a current I2 in C2 generates a magnetic field B2 and a flux U21 of B2 linked to C1.
Any variation in time of I2 will generate an emf in C1. This is the phenomenon of
mutual induction, which we shall now study.

Figure 7.8 defines the geometrical quantities. In addition, let R1 and R2 be
surfaces bounded by C1 and C2, respectively oriented according to the orientation
of the corresponding curve, and n the positive unit vector. The flux U12 is given by

U12 ¼
Z
R2

B1 r2ð Þ � n dR: ð7:35Þ

Knowing that B1 ¼ r� A1 and using the Stokes theorem, we have

U12 ¼
Z
R2

B1 r2ð Þ � n dR ¼
I
C2

A1 r2ð Þ � ds2: ð7:36Þ

Let us now assume both circuits to have such narrow cross-sections that their
thickness can be neglected compared to all the other lengths of the problem. Under
this assumption, we can write the vector potential of the first circuit as

s
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Fig. 7.8 Mutual induction
between two circuits
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A1 r2ð Þ ¼ I1
l0
4p

I
C1

ds1
r12

: ð7:37Þ

We see that the vector potential, and consequently the magnetic field B1 and the
linked flux U12, are proportional to the current intensity I1 producing them. Indeed,
putting the two equations together, we find

U12 ¼ I1
l0
4p

I
C1

I
C2

ds1 � ds2
r12

¼ I1M12; ð7:38Þ

where we have defined the quantity M12 as the proportionality constant between the
current intensity in circuit 1 and the magnetic flux linked to 2, namely

M12 ¼ l0
4p

I
C1

I
C2

ds1 � ds2
r12

: ð7:39Þ

Let us now suppose that circuit 2 carries the current I2, producing a magnetic
flux U21 linked to circuit 1, which, by the same arguments, is proportional to I2. We
can write

U21 ¼ M21I2: ð7:40Þ

Calculating M21 with the same argument as before, we shall find an expression
equal to Eq. (7.39) with indices 1 and 2 inverted. But that expression is symmetric
under this inversion and we conclude that

M12 ¼ M21 ¼ M: ð7:41Þ

This is called the mutual induction coefficient or mutual inductance and is a
property of the pair of circuits, independent of which one of them induces and
which is induced. Consequently, we have indicated it simply with M without
subscripts. The measurement unit of the mutual inductance is the henry (H), in
honor of Joseph Henry (USA, 1798–1878) and in recognition of his outstanding
contributions to the discovery of electromagnetic induction. By definition, the
mutual induction between two circuits is equal to one henry (1 H) when a current of
1 A in one of them produces a linked flux of 1 Wb in the other one. We notice that
the mutual induction coefficient may be both positive and negative, depending on
the choice, which is arbitrary, of the positive orientations of the circuits.

While the mutual induction coefficient is defined in regard to steady currents, as
we have just done, the mutual induction phenomenon appears when the current
intensities vary in time. Suppose, for example, that the current I1 is variable. It will
produce a varying magnetic flux linked to the circuit 2 and consequently an emf
about it, namely
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E2 ¼ �M
dI1
dt

: ð7:42Þ

Similarly, a current I2 variable in circuit 2 produces, in circuit 1, the emf

E1 ¼ �M
dI2
dt

: ð7:43Þ

7.9 Self-induction

A current-carrying circuit generates, in any case, a magnetic field, and consequently
a magnetic flux linked with the circuit itself, which is sometimes called a self-flux.
The self-flux U is proportional to the current intensity I, and we write

U ¼ LI; ð7:44Þ

where the proportionality constant L is called the coefficient of self-induction or self-
inductance, or simply inductance.

The measurement unit for the self-inductance in the SI is the henry, as it is for
mutual inductance.

Let C be the oriented curve representing the circuit (the current I shall be positive
if flowing in the positive direction, negative if in the opposite). Let R be any surface
bounded by C oriented with the usual convention relative to C (See Fig. 7.9). The
magnetic flux is

U ¼
Z
R

B � n dR: ð7:45Þ

We see that the self-inductance depends only on the geometry of the circuit. For
a given current intensity, the self-flux, and hence the self-inductance, is that much
larger the greater the size of the circuit it wraps. It is large for a solenoid with many

B

Γ

Fig. 7.9 A current-carrying
circuit and the self-flux of its
magnetic field
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loops, small, for example, for a circuit consisting of two parallel wires close to one
another. Note that the self-inductance is always positive, independent of the choice
of a positive orientation of the circuit.

Note that an expression for the self-inductance similar to Eq. (7.39) for mutual
inductance does not exist. Indeed, we found Eq. (7.39) assuming the points of both
circuits always to be at distances large compared to the thickness of the circuits
themselves. In this assumption we could use Eq. (7.37) to express the vector
potential. Clearly, the assumption cannot be made in calculating the
self-inductance. Rather, we must perform the integral in Eq. (7.45), as we shall do
on a few examples.

The self-induction phenomenon appears when the current in the circuit varies
with time. In this case, an emf appears about the circuit, which is

E ¼ �L
dI
dt

: ð7:46Þ

The emf, as we see, is proportional to the self-inductance and to the rate of
change of the current. Notice that the induced emf contributes itself to the current in
the circuit.

Let us calculate the self-inductance in a few geometrically simple examples.
A long solenoid. In Chap. 6, we calculated the magnetic field of a very long

solenoid. Let N be the total number of loops, S the area of a loop, and l the length of
the solenoid. The magnitude of the field is

B ¼ l0NI=l: ð7:47Þ

The linked flux is N times the flux linked to a single loop, namely

U ¼ l0N
2 S=lð ÞI: ð7:48Þ

As expected, it is proportional to the current intensity, and we have

L ¼ l0N
2 S=lð Þ: ð7:49Þ

Let us look at the orders of magnitude. Consider, for example, a solenoid
l = 1 m long made of N = 104 loops of 10 cm diameter. We can produce a mag-
netic field of 1 T inside it with a current I = 80 A. The inductance of the solenoid is
L = 0.99 H, which is quite a large value, much larger than that of the circuit
elements commonly used in electronic circuits.

Toroidal solenoid. In Chap. 6, we found that the magnetic field at the distance
r from the axis of a torus of a square cross-section, radiuses R1 and R2 and N loops is

B rð Þ ¼ l0
NI
2pr

: ð7:50Þ
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The total linked flux is N times the flux linked to a single loop. Let us calculate
this flux, taking into account that the field is a function of r. The infinitesimal flux
through an area element between r e r + dr and having the height of the loop,
namely R2–R1, is

dU ¼ B rð Þ R2 � R1ð Þdr ¼ l0
NI
2p

R2 � R1ð Þ dr
r
:

Integrating over r, we obtain the flux linked to one loop, namely

U ¼ l0
NI
2p

R2 � R1ð ÞlnR2

R1
:

The self-inductance (remembering to multiply by N so as to have the total flux)
is then

L ¼ l0
N2

2p
R2 � R1ð ÞlnR2

R1
: ð7:51Þ

To get an idea of the orders of magnitude, consider a small toroidal solenoid
(that we might use in a circuit) of N = 500 loops and radiuses of 5 and 10 mm.
Calculating the inductance, we find L = 173 lH.

Bifilar line. Circuits, or parts of circuits, made of two conducting and insulated
wires running parallel to one another, carrying currents flowing in opposite direc-
tions, are quite common. Schematically, we can consider the two wires to be
straight, indefinitely extended at a distance w. Let a be the diameter of the wires and
I the current intensity, as shown in Fig. 7.10. Each of the wires produces a magnetic
field at a distance r from its own axis equal to

B ¼ l0
I

2pr
: ð7:52Þ

The self-inductance of an infinitely long line is obviously infinite. Let us cal-
culate the inductance per unit length Lu (measured in H/m).

Let us calculate the flux of the magnetic field produced by one of the wires, the
one on the left, for example, as shown in Fig. 7.10, through the area between the
wires of 1 m length. This will be the contribution of one wire. The contribution of
the other being equal, we shall simply multiply it by two at the end. The flux of the
field of the wire on the left-side in the area between r and r + dr 1 m long is

dU ¼ Bdr ¼ l0
2p

I
dr
r
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We must integrate this between a / 2 and w–a / 2. We obtain

U ¼ l0
2p

I
Zw�a=2

a=2

dr
r
¼ l0

2p
I ln

w� a=2
a=2

Remembering to multiply by two, we finally have

Lu ¼ l0
p
ln
w� a=2
a=2

: ð7:53Þ

Let us look at the orders of magnitude. Consider wires of a = 1 mm diameter at
a distance w = 2 mm. We find that the inductance per unit length is
Lu ¼ 0:44 lH/m.

QUESTION Q 7.2. A circuit consists of two parallel (insulated) wires carrying
current in opposite directions. Consider two cases: (a) the wires are near and
parallel, (b) the wires are twisted one about the other (as in a telephone line). In
which case is the inductance larger? h

Coaxial cable. A common configuration used, in practice, to transmit electric
signals is the coaxial cable. It is made of two cylindrical coaxial metal conductors
separated by an insulator, as shown in Fig. 7.11, carrying the same current in
opposite directions. Let r1 and r2 be the radiuses of the two conductors.

The Ampère law tells us that the field in the region between the conductors is
equal to the field of a straight current of the given intensity on the axis. For the same
law, the field is zero outside the cable, because the two currents are equal and
opposite. Let us express the self-inductance per unit length.

w

a

r

I -I

dr

Fig. 7.10 A section of bifilar
line
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The flux through the area between r e r + dr and 1 m long is

dU ¼ Bdr ¼ l0
2p

I
dr
r
:

Integrating between r1 and r2, we have

U ¼ l0
2p

I
Zr2
r1

dr
r
¼ l0

2p
I ln

r2
r1
;

which gives the self-inductance per unit length

Lu ¼ l0
2p

ln
r2
r1
: ð7:54Þ

For example, the inductance of a 1 m long coaxial cable of radiuses 2 and
2.5 mm is Lu = 0.45 µH/m.

7.10 Inductive Phenomena in Electric Circuits

As we have seen, every time the current intensity varies in a circuit, an electro-
motive force appears in it, given by

r dr

r
r

1

2

Fig. 7.11 A section of a
coaxial cable
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E ¼ �L
dI
dt

: ð7:55Þ

We recall that the minus sign on the right-hand side expresses Lenz’s law. It tells
us that when the current intensity diminishes, the induced emf is such that the
current it produces flows in the same direction as the original current. In this way, it
opposes the cause that has generated it. Similarly, if the current intensity increases,
the current produced by the induced emf flows in the direction opposed to the
original one. For this reason, the effect is called a counter-electromotive force
(cemf, for short) or back electromotive force.

Induced emfs are always present in alternate current circuits, as we shall sub-
sequently see, and also in circuits with constant emf generators alone, when the
circuit is closed or open.

Let us consider the circuit shown in Fig. 7.12. It includes a constant emf gen-
erator (a battery, for example) E0 having negligible internal resistance, a resistor R,
an inductor L (for example, a solenoid we want to use to produce a magnetic field)
that has its own resistor r (drawn as a separate element in the figure, but physically a
property of the inductance itself) and a switch. We first put the switch into position
1 to excite the magnetic field. The current intensity grows and a cemf develops
according to Eq. (7.55). Ohm’s law gives us

E0 � L
dI
dt

¼ rI: ð7:56Þ

This is a homogeneous differential equation with constant coefficients in the
unknown function I(t). We write the equation in the standard form

dI
dt

þ r
L
I ¼ E0

L
: ð7:57Þ

Its general solution is the sum of a particular solution and the general solution of
the associated homogenous differential equation. It is easy to find the former,
considering that, in the steady state, namely after the initial transient is finished, the
current intensity is constant and the cemf is zero. In the steady regime, we have

1

2

r L

R

0

Fig. 7.12 A simple circuit
with a constant emf generator
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I ¼ E0

r
: ð7:58Þ

We find the solution to the associated homogeneous equation by separation of
variables, writing it in the form of

dI
I
¼ � r

L
dt:

Integrating, we get

I tð Þ ¼ Ae� r=Lð Þt;

where A is the integration constant. The solution to Eq. (7.57) is then

I tð Þ ¼ Ae� r=Lð Þt þE0=r:

We now determine the constant A by imposing the current as being zero at t = 0,
and have the complete solution

I tð Þ ¼ E0

r
1� e� r=Lð Þt

� �
: ð7:59Þ

We see that, starting from 0, the current intensity exponentially grows toward the
value of the steady regime. Rigorously speaking, the time to reach the steady state
would be infinite. In practice, it is enough to wait a few times for the constant in the
exponent, namely s = L/r, which is called the time constant of the circuit. For
example, if the circuit includes an electromagnet, L is quite large and r quite small,
corresponding to a several-seconds-long time constant. The time constant is much
shorter in a common electronic circuit.

Let us now shut down the current in the inductor, by moving the switch into
position 2. The current intensity decreases and a cemf appears. Once more, Ohm’s
law gives us

�L
dI
dt

¼ rþRð ÞI:

The equation is now homogeneous. Let us take t = 0 in the moment we move the
switch to position 2. The current intensity then has the steady state value, namely
I 0ð Þ ¼ E0=r: We solve the equation by separation of variables, obtaining

I tð Þ ¼ E0
r
e�

rþR
L t: ð7:60Þ

We see that the current intensity exponentially decreases to zero with a time
constant that is now s′ = L/(r + R), which is shorter than s, much shorter if we take
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R � r. Let us now suppose ourselves to be willing, starting from the steady regime
with the switch in position 1, to take the current to zero by directly opening the
switch. We might think the subsequent evolution to be similar to what we have just
discussed with R = ∞ and that the current would decrease immediately. NEVER
do that! Indeed, the current intensity would initially decrease very quickly. A very
large induced emf would appear as a potential difference between the two sides of
the switch. In practice, the circuit does not open because a spark develops through
the switch. This phenomenon is momentous, especially if the inductance is large
and can damage both the apparatus and the operator. To avoid that, configurations
such as that in Fig. 7.12 or similar are used to supply a magnet. As we shall see in
Chap. 8, energy is stored in a current-carrying coil, which is the energy of the
magnetic field it creates. When the current is switched off, the field energy must be
transferred somewhere else or, as in the case we considered, dissipated (meaning
transferred to the microscopic level) on a resistor.

QUESTION Q 7.3. We connect an inductor of L = 0.1 H to a resistor with R = 10 X
to a battery of negligible internal resistance. How much time after having closed the
circuit will it take for the current intensity to reach ½ of the steady value? h

7.11 Alternating Current Circuits

Electromotive forces and the electric currents they produce may vary with time
periodically or non-periodically or be constant. In Sect. 5.9, we studied electric
circuits composed of resistors and constant emf generators. In Sects. 5.8 and 7.10,
we studied currents and emfs that initially varied non-periodically to reach a sta-
tionary regime. We shall now discuss circuits in an alternating current regime. Let
us start with a few definitions. Direct current (DC, for short) means a current that
maintains a constant direction over time. The current intensity, however, may or
may not vary. The corresponding emf maintains a constant polarity. Figure 7.13a
shows an example of a direct, but not constant, current. Constant current means that
both the direction and intensity of the current are constant over time, as shown in
Fig. 7.13b. Alternating current (AC, for short), rigorously speaking, means a
current, or voltage, that changes direction or polarity, respectively, over time.
Figure 7.13c shows an example. The most common dependence on time of an AC
is through a circular function, a sine or a cosine (which differ only by a p/2 phase
difference), as in Fig. 7.13d. This is the case, for example, for the power distri-
bution networks and the case that we shall now discuss. We shall follow the
common use and talk simply of an alternating current, omitting the word sinusoidal.

The following discussion is completely analogous to the description we made in
the third chapter of the 1st volume of the motions of the mechanical oscillators. We
shall repeat the concepts here.

7.10 Inductive Phenomena in Electric Circuits 269

http://dx.doi.org/10.1007/978-3-319-40871-2_8
http://dx.doi.org/10.1007/978-3-319-40871-2_5
http://dx.doi.org/10.1007/978-3-319-40871-2_5


We shall deal with electromotive forces with the following time dependence:

E ¼ E0 cos xtþ/ð Þ: ð7:61Þ

E0 is called the amplitude, the argument of the cosine, namely xt + /, is called
the instantaneous phase, and x the angular frequency or, sometimes, the pulsation.
We see that the phase increases linearly with time starting from its initial value
(namely at t = 0) /, which is consequently called the initial phase. The angular
frequency is linked to the frequency m and the period T by the well-known relations

x ¼ 2pm ¼ 2p=T: ð7:62Þ

Let us start with some general properties of the circular functions. Let x be any
physical quantity varying with time as

x ¼ A0 cos xtþ/ð Þ: ð7:63Þ

It is often more convenient to work with exponential functions rather than
circular ones. This is achieved by considering the x in Eq. (7.63) to be the real part
of the complex quantity z, namely

z ¼ A0cos xtþ/ð Þþ iA0sin xtþ/ð Þ: ð7:64Þ

This expression can be written as follows:

z tð Þ ¼ A0e
i xtþ/ð Þ ¼ A0e

i/eixt ¼ z0e
ixt; ð7:65Þ

where, on the right-hand side, we have collected in z0

z0 ¼ A0ei/: ð7:66Þ

the time independent factors. The constant z0 is called the complex amplitude. Its
modulus is the oscillation amplitude, and its argument is the initial phase. The
function z(t) is the product of the (constant) complex amplitude and the factor exp
(ix t), which gives the time dependence. The latter is a complex quantity of unitary

t

I

t

I

t

I

t

I

(a) (b) (c) (d)

Fig. 7.13 Examples of a direct current, b constant current, c alternating current, d alternating
sinusoidal current
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modulus and argument, varying linearly with time starting from a null initial value.
Its rate of change is x. Figure 7.14 represents graphically the function z(t) in the
complex plane, in which x and y are the real and the imaginary parts, respectively.

In Fig. 7.14, we have drawn a vector from the origin to the point z(t). This vector
represents our complex quantity. The vector rotates with time at a constant angular
velocity equal to x, starting from an angle / with the x-axis. In the rotation, the
vector keeps its magnitude constant, equal to the amplitude A0. We shall use this
representation for several calculations. At the end, we shall get the physical quantity
by taking the real part, namely

x tð Þ ¼ Re z tð Þð Þ ¼ Re A0e
i/eixt

� � ¼ A0cos xtþ/ð Þ: ð7:67Þ

Geometrically, real part is the projection of the rotating vector on the x-axis
The complex notation of the harmonic oscillations is convenient for two main

reasons: because exponentials are easier to handle than circular functions and
because the derivative of an exponential is still an exponential. Note, however, that
we can operate with a complex function and take the real part at the end if we
perform only linear operations (sums, products by constants, differentiations and
integrations), because they commute with the operation of taking the real part. We
cannot follow the procedure when non-linear operations are involved, like taking
the square of a circular function or the product of two of them.

Moving forward, we shall need the derivative of z(t), which is

dz tð Þ
dt

¼ ixz0e
ixt ¼ ixz tð Þ: ð7:68Þ

We see that the derivative is equal to the original function multiplied by ix.
Obviously, the physical dimensions of the derivative of z are the dimensions of
z divided by a time. We can, however, represent z(t) and dz(t)/dt graphically in the
same plane. In doing that, we recall that the imaginary unit can be expressed as
i ¼ eip=2. We can then write Eq. (7.68) in the form

dz tð Þ
dt

¼ ixz0e
ixt ¼ xz0e

ip=2eixt ¼ xA0e
i xtþ/þp=2ð Þ: ð7:69Þ

O x

y

ω     φt+

z

Fig. 7.14 Rotating vector
representation
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We see that we can represent the derivative multiplying the function to differ-
entiate by x and adding p/2 to its phase. That is, the derivative is advanced in phase
by a quarter of a period relative to the function, as shown in Fig. 7.15.

When we take the real part, we obtain

x tð Þ ¼ Re
dz tð Þ
dt

¼ xA0cos xtþ/þ p=2ð Þ ¼ �xA0sin xtþ/ð Þ; ð7:70Þ

as we expected.
Let us now look at the primitive of z (t). We easily find that

Z
z tð Þ ¼ z tð Þ

ix
¼ �i

z tð Þ
x

: ð7:71Þ

We see that the primitive is obtained simply by dividing the function by x and
subtracting p/2 from its phase. The primitive is delayed in phase by a quarter of a
period relative to the function, as shown in Fig. 7.15.

We now go back to the physical problem. We shall consider electric circuits,
including the following elements: alternate (sinusoidal) electromotive force gen-
erators (angular frequency x), resistors, capacitors and inductances. These are
called passive components, while the emf generators are active.

In Fig. 7.16, all the elements are in series with their symbols. The elements are
an alternate emf generator, a resistor of resistance R, an inductor of inductance

O x

y

ω    φt+

z(t)

z(t)iω

z(t)/(iω)

Fig. 7.15 The function, its
derivative and its primitive

RLC

I
Fig. 7.16 An RLC circuit in
series
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L and a capacitor (or condenser) of capacitance C. To find the equation governing
this circuit, let us consider having a unit charge going about the full circuit. Its final
energy is equal to the initial one. We shall then express in a formula the fact that the
sum of the work done on the charge is zero.

The unit charge gains the energy E crossing the generator. It loses the energy RI
(t) crossing the resistor. When crossing the inductor, the charge sees the induced
emf –LdI/dt. Consequently, the lost energy is +LdI/dt. The charge does not cross the
capacitor physically, but things proceed as if it did, because if Q (t) is the charge on
one plate, the charge of the other one is –Q (t). Now, Q(t) varies with time, because
the current brings charges on the first plate. The current intensity is the arriving
charge per unit time, namely

I tð Þ ¼ dQ tð Þ
dt

: ð7:72Þ

For what we just stated, the current intensity arriving at the second electrode is
always –I. But this current has a direction opposed to the positive orientation of the
circuit. Consequently, the current leaving the second plate is, again, I. Things
proceed as if our unitary charge would go from one electrode to the other. In doing
that, the unit charge loses an energy equal to Q(t)/C.

We can now write the energy balance equation as

E tð Þ ¼ RIðtÞþ L
dI tð Þ
dt

þ Q tð Þ
C

: ð7:73Þ

Notice that the three terms on the right-hand side are the electromotive forces
through the three elements of the circuit, or, as is often improperly stated, the
potential drops. As such, Eq. (7.73) is very similar to Ohm’s law. Equation (7.73)
is a differential equation in the unknown function I(t). In order to see that explicitly,
we differentiate the equation, finding

L
d2I tð Þ
dt2

þR
dIðtÞ
dt

þ I tð Þ
C

¼ dE tð Þ
dt

: ð7:74Þ

This is a non-homogeneous differential equation of the second order with con-
stant coefficients. We shall find its solution in the next section.

7.12 Complex Impedance

Let us find the solution to Eq. (7.74). We can always choose the origin of time in
order to have the initial phase of the electromotive force be equal to zero, namely
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E ¼ E0cosxt: ð7:75Þ

We write it in a complex notation as

E ¼ E0e
ixt: ð7:76Þ

We search for a solution to Eq. (7.74) in the form

I ¼ I0e
i xtþ/ð Þ ð7:77Þ

with amplitude and initial phase to be determined. Differentiating as we did in
Eq. (7.74), we immediately have

ixE0e
ixt ¼ ixR� x2Lþ 1=C

� �
I0e

i xtþ/ð Þ:

We see that all the terms have the same time dependence, which consequently
can be simplified out, obtaining

ixE0 ¼ ixR� x2Lþ 1=C
� �

I0ei/:

This is now an algebraic equation in the unknowns I0 and /. In order to obtain
an expression similar to Ohm’s law, let us divide all the terms by ix and multiply
them back by exp(ix t). We obtain

E ¼ Rþ ixL� i= xCð Þð ÞI: ð7:78Þ

We can say the emf provided by the generator is equal to the sum of the drops
across each of the elements in series. The drop on each element is equal to the
current intensity times a coefficient characteristic of the element, called the impe-
dance of the element. The impedance of a resistor is equal to its resistance, and is
called the “ohmic impedance”, and is expressed as

ZR ¼ R: ð7:79Þ

The impedance of an inductor, called the inductive impedance, is the imaginary
quantity

ZL ¼ ixL: ð7:80Þ

The impedance of a capacitance, called the capacitive impedance, is the imag-
inary quantity

ZC ¼ �i
1
xC

; ð7:81Þ
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All these quantities are dimensionally homogeneous and are measured in ohm
(X). In this notation, Eq. (7.78) becomes

E ¼ ZR þ ZL þ ZCð ÞI: ð7:82Þ

Figure 7.17 summarizes these results graphically. It gives, for each element, its
impedance, namely the ratio between voltage drop between its terminals and the
current intensity crossing the element.

As opposed to the resistance, both the inductive and capacitive impedances
depend on angular frequency. The inductive impedance grows proportionally to the
angular frequency. Indeed, the larger the rate of change of the magnetic flux linked
to the inductor, the larger the induced cemf. The capacitive impedance decreases in
inverse proportion to the angular frequency. Indeed, the impedance of a capacitor is
infinite in the limit of constant current. The mechanism we have described allows
for an equivalent passage of current through the capacitor, but only for currents
variable with time.

To get an idea of the orders of magnitude, consider the network frequency of
50 Hz (namely x = 314 Hz). The impedance of an inductor, for example, of 10
mH, is about 3 X. It becomes about 300 kX at 5 MHz frequency. The impedance of
a 1 µF capacitor is about 3 kX at the network frequency and only 30 mX at 5 MHz.

The inductive and capacitive impedances are imaginary numbers. What does this
mean? Remember that the impedance of a circuit element is, by definition, the ratio
between the voltage drop across it and the current intensity through it. Both these
quantities are complex in the notation we are using. As we have already seen,
multiplying by the imaginary unit i means advancing the phase by p/2, while
dividing by i means retarding the phase by p/2. Physically, the emf between the
terminals of a resistor is in phase with the current, the emf between the terminals of
an inductor is in phase advance of p/2 to the current, and the emf between the plates
of a capacitor is in phase delay of p/2 to the current.

Equation (7.78) can be written in an even more compact form as

E ¼ ZI: ð7:83Þ

where the complex quantity Z is called the total impedance of the circuit. As with
any complex quantity, we can write Z in two ways. The first is as sum of a real and
an imaginary part (the latter is sometimes called reactance), namely

I

Z = /I R1/iωC iωL

Fig. 7.17 The basic AC
circuit elements
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Z ¼ Rþ i xL� 1= xCð Þ½ � � Rþ iX: ð7:84Þ

The second is in terms of its modulus and its argument. Let us call them Z0 and
–/, respectively (we shall soon see the reason for the minus sign). We can write

Z ¼ Z0e
�i/: ð7:85Þ

Multiplying the complex quantity I by Z, as in Eq. (7.83), means multiplying the
modulus of I by Z0 and diminishing its argument by /.

Figure 7.18 shows the different terms of Eq. (7.84) and their sum. We imme-
diately find the values of I0 and / by adding the vectors. We have

I0 ¼ E0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ xL� 1= xCð Þ½ �2

q ¼ E0

Z0
; ð7:86Þ

where

Z0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ xL� 1= xCð Þ½ �2

q
: ð7:87Þ

is the modulus of the total complex impedance of the circuit, and

tan/ ¼ 1= xCð Þ � xL
R

: ð7:88Þ

where / is the opposite of the complex impedance argument.
We notice that the impedance of our circuit is very small for a particular value of

the angular frequency, namely when x L = 1/(x C), that is for x ¼ LCð Þ�1=2. If the
resistance R is small, the total impedance may be close to zero. Under these con-
ditions, the inductive and capacitive impedances, which are always in phase

O x

y

φ

iωLI
0

Z
0
I
0
e–iφ

I
0
/iωC

RI
0

Fig. 7.18 Rotating vector
representation of the
electromotive forces in a RCL
circuit
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opposition to one another, have the same modulus and cancel one another out. This
is the resonance phenomenon, completely similar to the mechanical one we studied
in Sect. 3.9 of the 1st volume. Resonance is a common phenomenon in nature. We
shall discuss it completely in Volume 4.

QUESTION Q 7.4. An AC circuit includes a resistor, an inductor and a capacitor.
What are the phase differences (value and sign) between the emf and current
intensity in each element? h

QUESTION Q 7.5. By what factor does the impedance of a resistor vary when the
frequency changes from 50 to 100 Hz? And that of an inductor? And that of a
capacitor? h

Let us now discuss a few assumptions we have made in our analysis. We first
notice that we have assumed the current intensity in a given instant of time to be
exactly the same in all the sections of the circuit. In practice, the intensity variations
propagate with a very high, but not infinite, velocity. The propagation velocity
depends on the circuit materials, but is always on the order of the speed of light. For
a typical geometrical dimension of a circuit, say 10 cm, the time for a current
variation to cross is on the order of 1 ns. The hypothesis of independence of the
current intensity of the position along the circuit is then valid if the oscillation
period is much larger than that. We can say that the oscillation frequency should not
exceed 100 MHz or so.

The circuit elements are physical objects, rather than the ideal elements
appearing in the equations. Let us take a closer look at them.

An inductor is made by wrapping a long wire in many loops, often around a
nucleus (think of a small torus, for example) of ferromagnetic material, to increase
the self-inductance, as we shall see in Sect. 9.8. The wire always has a resistance,
which is not always negligible. In addition, each pair of adjacent loops acts as a
small capacitor with an electric field between the two loops. Consequently, the
circuit element that we call an inductor has a capacitance as well. In order to
provide a more precise picture of a physical inductor, we can represent each pair of
loops as an inductor and a resistor in series, in parallel with a capacitor, as shown in
Fig. 7.19.

The relative importance of the sub-elements depends on the frequency. If the
frequency is very low, the inductor behaves very similarly to a resistor, exactly like
a resistor in the continuous current limit. When the frequency is sufficiently high,
the impedance of the inductor element is much larger than that of the resistor and
much smaller than that of the capacitor in parallel. Consequently, the element tends
to behave as an ideal inductor. At even higher frequencies, the impedance of the
capacitor becomes much smaller than that of the inductor and the current “prefers”

Fig. 7.19 Detailed diagram of a real inductor
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going through the capacitors, jumping from one loop to the next, rather than
flowing all through the loop.

The real capacitors behave quite similarly to the ideal ones at low frequencies
and when they have a vacuum between the plates, a situation that rarely happens in
practice. In practical cases, a dielectric is always present. Dielectric materials are
very good insulators, but not perfect. Even if small, some current gets through them.
We can represent the capacitor including a high resistance resistor in parallel. In
addition, in the ideal capacitor, the electric field is enclosed between the plates and
there is no magnetic field. Contrastingly, as we shall see in Chap. 10, any electric
field variable with time generates a magnetic field, whose lines are around the
capacitor in this case. The effect is that much larger the higher the change rate of
the electric field, namely the frequency of the AC current. We must be aware that
the behavior at very high frequencies of all real capacitors is very different from the
ideal ones.

The resistance of an ideal resistor is independent of frequency. This is not true
for the real ones. In practice, the current flowing in the resistor produces a magnetic
field, which varies with time because so does the current. The electric field induced
by the variable magnetic field produces a decrease in the current density near the
axis of the resistor. The current tends to flow in a layer close to the surface, the
thickness of which decreases with increasing frequency. This is called the skin
effect. The consequence is that the resistance of the resistor decreases with
increasing frequency. If, as is often the case, the resistor is made of a long wire, it
also has an inductance (in series) and a capacitance (in parallel).

In Sect. 5.9, we studied how to analyze circuits composed of several loops of
resistors and DC voltage generators, using Ohm’s law and the Kirchhoff rules that
are consequences of energy and charge conservations. Now, in the AC regime, we
have found Eq. (7.82), which is formally identical to Ohm’s law. Consequently, to
analyze complex circuits, we can use the same rules, the rule of the nodes and the
rule of the loops, with the only differences being that we are now working with
complex quantities and the relative phases matter. The loops rule is

Xn
i¼1

ZiIi ¼
Xn
i¼1

Ei: ð7:89Þ

As we have assumed a steady regime and the current intensity to be independent
of the position along the circuit, it is still true that the algebraic sum of the currents
entering a node is zero. The nodes rule is

Xn
k¼1

Ik ¼ 0: ð7:90Þ
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7.13 Energy Balance in a Circuit

We continue to consider the circuit in Fig. 7.16. The power delivered by the
generator, namely the electric work per unit time, is

W ¼ EI ¼ E0 cos xtð ÞI0 cos xtþ/ð Þ; ð7:91Þ

which obviously varies with time. Let us start by considering the capacitor. We
know that the stored energy is Q2(t)/(2C). This energy varies periodically in time
from a minimum, which is zero, to a maximum. The variation does not correspond
to losses or gains of energy, but rather to transfers of energy in other components of
the circuit. The situation of the inductor is similar. As we shall learn in the next
chapter, the stored energy is I2(t)L/2, which varies periodically as well, transferred
back and forth between other parts of the circuit. As a matter of fact, the generator
must at any time provide the electric work to charge and discharge the capacitor and
the inductor. This work is sometimes positive and sometimes negative, averaging to
zero in every period. Contrastingly, the electric work delivered by the generator on
the resistor is dissipated. This is given by Eq. (7.91), which can be written as

W ¼ E0I0 cos/ cos2xt � E0I0 sin/ cosxt sinxt: ð7:92Þ

Let us calculate the mean value over a period, recalling that the average on a
period of a circular function squared (cos2xt) is ½. We define the effective values of
the electromotive force and the current intensity as the square roots of the mean
values over a period of their squares. The effective values are equal to the maximum
values divided by

ffiffiffi
2

p
, namely

Ee ¼ E0=
ffiffiffi
2

p
; Ie ¼ I0=

ffiffiffi
2

p
: ð7:93Þ

We obtain

Wh i ¼ E0I0
2

cos/ ¼ EeIe cos/: ð7:94Þ

This expression is similar to that which we found for constant currents.
However, not only do we now have the product of the effective values of the emf
and current intensity, but that of the cosine of the relative phase as well. From
Eq. (7.86), we have E0 ¼ Z0I0, and from Eqs. (7.84) and (7.85), we get

R ¼ Z0 cos/: ð7:95Þ
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We can conclude that

Wh i ¼ Z0I20
2

cos/ ¼ 1
2
RI20 ¼ RI2e ; ð7:96Þ

which directly shows that the mean power delivered by the generator is steadily
dissipated on the resistor. From Eq. (7.95), we learn that cos/ cannot be negative
and that, consequently, −p/2 � / � + p/2.

Let us finally notice that, in this section, we did not use the complex notation. We
could not use it, because we performed non-linear operations, like the product of two
circular functions or their square, which do not commute with the real part taking.

Summary

In this chapter, we began the study of time-dependent electromagnetic phenomena.
We discussed electromagnetic induction, learning the following principal concepts:

1. The flux rule, its two different origins and its exceptions
2. That the electric field is not conservative (and not dissipative) under dynamic

conditions
3. Faraday’s law
4. The exceptions to the flux rule
5. The eddy currents
6. The mutual induction and the self-induction
7. The behavior of relevant circuits in a transient regime
8. The behavior of relevant circuits in a stationary sinusoidal regime
9. The complex impedance of the different circuit elements.

Problems

7:1. Can the electric field lines be closed? Can they radiate from a point?
7:2. A circular circuit is immersed in a uniform magnetic field B directed nor-

mally to the circuit towards the observer. What is the direction of the current
if (a) the field increases with time, (b) it decreases, (c) the circuit is expanded,
or (d) it is contracted?

7:3. Does the inductance of a circuit depend or not on: the electric resistance of
the circuit, the current intensity in the circuit, the intensity of the magnetic
field in which it might be immersed, the form and the dimensions of the
circuit, the material of the circuit, the possible presence of other circuits?

7:4. A wire of length l = 5 cm moves in a uniform and constant magnetic field
B = 1.6 T with speed t = 10 m/s. What is the emf at the ends of the wire in
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the following cases: (a) the velocity is parallel to the wire and normal to the
field, (b) the velocity is normal to the wire and parallel to the field, (c) ve-
locity, wire and field are perpendicular to one another.

7:5. Consider Fig. 7.20. The bar moves to the right at constant speed t. If Q is the
heat dissipated by the induced current per unit time, what is the force
F acting on the moving bar?

7:6. An electric charge crosses a space point at a certain instant with a certain
kinetic energy. Under the action of electromagnetic forces, it later passes
again through the same point with twice as much kinetic energy. Is this
possible?

7:7. Does the mutual inductance coefficient depend or not on: the electric resis-
tance of the circuits, the current intensities they carry, the magnetic field
intensity in which they are located, the shapes and sizes of the circuits, the
materials they are made of, the presence of other circuits, the relative posi-
tions of the two circuits?

7:8. We want to insert an aluminum plate between the poles of a powerful
electromagnet producing a field of 3 T. Is it better to make that slowly or
quickly?

7:9. A coil is in a magnetic field. The field is normal to the coil and its magnitude
varies with time, as shown in Fig. 7.21. Make a diagram showing the evo-
lution of the induced current.

BR

x

v

Fig. 7.20 Bar moving with
constant velocity in a
magnetic field

t

B
Fig. 7.21 Magentic field
intensity versus time through
the coil of problem 7.9
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7:10. A circuit has the form of a closed plane curve carrying a current of known
intensity. We try to determine its self-inductance by measuring the magnetic
field intensity at a number of points of a plane bounded by the curve. Are
these measurements sufficient?

7:11. Two equal inductors can be connected in series or in parallel. In which case
is the total inductance larger?

7:12. The mean field <B> of a betatron of radius R = 0.3 m increases linearly in
time in 1 ms from zero to 0.3 T. How many turns must the electrons do
before reaching the kinetic energy of 10 MeV? What is the distance they
travel?

7:13. Can a circuit of null reactance be created? If yes, how?
7:14. A circuit is made of a resistor R = 1 kX, an inductor L = 280 mH and a

capacitor C = 8 µF in series fed with an alternate current at 50 Hz frequency
and 220 V effective voltage. Find: (a) the effective value of the current,
(b) the phase difference between the emf between the extremes of the series
and the current, (c) the effective values of the emf at each of the elements.

7:15. An electric oven, whose heating elements have both a resistance and an
inductance, is powered from the power network at a voltage of effective
value of 220 V. The effective value of the current is 5 A. With these data, can
we state that the oven absorbs 1.1 kW?

7:16. How could you make a circular electric field line?
7:17. An airplane flies horizontally at 900 km/h in a region in which the vertical

component of the earth’s field is 20 µT. Find the emf between the tips of the
wings if their distance is 25 m.
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Chapter 8
Magnetic Energy

Abstract In this chapter, we study the energy of systems of steady currents, namely
under conditions independent of time. The current-carrying circuits store energy,
which is proportional to the square of the current intensity and is greater the larger
the inductances. Currents generate magnetic fields, and we can think of the energy of
the system as energy stored in that field as well. Energy is distributed throughout the
entire space with a density proportional to the square of the magnetic field.

In this chapter, we study the energy of system of steady currents, namely under
conditions independent of time. In Chap. 3, we made a similar study in electro-
statics. The current-carrying circuits store energy, which increases as the square of
the current intensity and is greater the larger the inductances. A circuit of large
self-inductance carrying an intense current, such as, typically, those of the big
electromagnets, may store a very remarkable quantity of energy. This can be
dangerous if not properly managed.

We shall start in Sect. 8.1 with the study of a single circuit carrying a steady
current and continue in the subsequent section by studying the case of more than
one circuit. We shall see that the total energy is the sum of the energies proper of
each circuit, separately considered, and of interaction terms, one for each pair of
circuits. In Sect. 8.3, we consider a particular pair of circuits, namely an elementary
loop, which is a magnetic dipole, and the circuit producing a steady magnetic field
in which the dipole is immersed. We further develop the concepts already discussed
in Sect. 6.14.

Finally, in Sect. 8.4, we shall see that, similarly to the case of the electric field,
magnetic energy can be thought to be stored in the magnetic field. It is distributed
throughout the entire space with a density proportional to the square of the magnetic
field. We shall show that the expressions of energy as a property of the currents or
as stored in the magnetic field are equivalent under time-independent conditions.
We shall finally anticipate that, under dynamic conditions, only the expression of
the magnetic field energy remains valid.
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8.1 Energy of a Steady Current

Let us consider a circuit at rest in a vacuum carrying a steady current of intensity I,
and let us ask ourselves what the energy of the system is. The energy is equal to the
(electric) work required to “switch on” the current, bringing its intensity from zero
to I (an amount we get back returning the current to zero).

Every circuit has a non-zero inductance, because there is always a magnetic flux
linked to the circuit. Let us call it L and schematize it as a lumped element, namely
an inductor, as shown in Fig. 8.1. To obtain the current, we need an emf generator.
Let us assume it to be a battery of constant emf E0 . Let R be the total resistance of
the circuit and let us schematize it again as a lumped element, namely a resistor.
When the switch Sw is closed and the steady regime has been reached, the current
intensity is I ¼ E0=R. Under these conditions, the current intensity does not vary
with time and the inductor does not act.

Let us start from the initial state in which the switch is open and the current is
zero. We close the switch and calculate the work done by the generator to bring the
current to its steady value. We can always assume that the current varies slowly
enough for its intensity to be equal in all the sections of the circuit. Let us call i the
instantaneous current intensity during the process. As i increases, a back electro-
motive force EL ¼ �Ldi=dt develops. The generator must spend work per unit time
equal to �ELi ¼ Lidi=dt against it. This corresponds to the work in the time interval
dt equal to dw = Lidi. The total work to change i from zero to I is then

W ¼
Z I

0

Lidi ¼ 1
2
LI2; ð8:1Þ

which is the energy of the system. We can call it the energy stored in the inductor
and also the energy of the current. As we shall see, this is the energy of the
magnetic field generated by the current I.

Notice that the only role of the resistor R in our argument is to limit the steady
current at the value I ¼ E0=R. Obviously, due to the presence of R, the generator
must spend the electric power Ri, which is dissipated via the Joule effect. This fact,

R

L

Sw

0

Fig. 8.1 The simplest circuit
including an inductor
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however, has nothing to do with the energy of the circuit. The dissipated electrical
power cannot be taken back. Contrastingly, we can get back the energy ½LI2, as
mechanical or electrical work.

8.2 Energy of a System of Steady Currents

Let us now consider a system of n circuits at rest in a vacuum having inductances
L1, L2, … Ln, carrying the steady currents of intensities I1, I2, … In, and let us
calculate the energy of the system. As always, this energy is the work to be spent to
build the system, namely to bring the current intensities from zero to their regime
values. This is also the work we can get back extinguishing the currents. Figure 8.2
shows the case of four currents.

Initially, all the currents are zero. Let us switch on the current in circuit 1. This is
the case considered in the previous section. The electric work to be spent is L1I21=2.
Next, we switch on the current in circuit 2. Again, to bring it to its steady value I2,
the generator of circuit 2 must spend the electrical work L2I22=2. However, there is
something else now. Indeed, when the current in circuit 2, which we call i2,
increases, the magnetic flux it generates linked to circuit 1 varies in time, producing
an emf E21 ¼ �M21di2=dt in that circuit. M21 is the mutual inductance coefficient
between the two circuits (which we have oriented). The work spent by the generator
in circuit 1 in dt is �E21I1dt ¼ þM21I1di2. The total work is found integrating on
i2 from 0 to I2. We have

ZI2

0

M21I1di2 ¼ M21I1I2:

Summing up, the energy of circuits 1 and 2 is

U21 ¼ 1
2
L1I

2
1 þ

1
2
L2I

2
2 þM21I1I2:

I1
I2

I3

I4

Fig. 8.2 A system of steady
currents
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Going directly to n circuits, the total energy of the system is

U ¼ 1
2

Xn
k¼1

LkI
2
k þ

1
2

Xn
h¼1

Xb
k¼1;k 6¼h

MhkIhIk: ð8:2Þ

The first sum is the sum of the proper energies of each circuit; the second sum is
the sum of the interaction energies of each pair of circuits. The factor ½ for the
second sum is there to cancel out the double counting resulting from having
counted the same pair in the double sum as h, k and k, h.

Note that, while the proper energies are always positive, the interaction energies
may be positive or negative.

8.3 Energy of a Dipole

In this section, we shall discuss the energy of a magnetic dipole in a steady mag-
netic field B. As a matter of fact, the problem is the same as that which we discussed
in the last section, seen from a somewhat different point of view. Indeed, the dipole
is just a loop carrying a steady current I1, and we can think of the field B as having
been produced by a second circuit. To fix the ideas, let us consider it to be a coil and
let us call it circuit 2. Let I2 be the steady current it carries. To be precise, what we
are looking for is the interaction energy between dipole and field, namely between
dipole and coil. This energy can be thought of as the work to be done starting from
an initial state in which the two circuits already carry their currents but do not
interact. We can consider initially having the loop very far from the coil, where the
field of the coil is practically zero. The interaction energy is the work needed to
bring the loop to its final position, while the currents in the loop and the coil keep
their values constant. As a matter of fact, we already know the answer. If M is the
mutual inductance between loop and coil, their interaction energy is

Uint ¼ MI1I2: ð8:3Þ

Note that if we call U21 the flux generated by the coil (circuit 2) linked to the
dipole (circuit 1), then U21 ¼ MI2, and we can write Eq. (8.3) as

Uint ¼ U21I1: ð8:4Þ

On the other hand, the loop carrying the current I1 generates a magnetic field as
well. The flux of this field linked to the coil is U12 ¼ MI1 with the same M. We can
then write Eq. (8.3) in yet another form, namely

Uint ¼ U12I2: ð8:5Þ

The three equations express the same quantity, the interaction energy.
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It is instructive to calculate the interaction energy in still another way, by
evaluating the mechanical work in the process we mentioned above, namely the
work needed to move the dipole from outside to inside the field. We shall find an
expression of Uint in terms of the dipole moment l and of the field B. Let us
simplify the issue, assuming the field B everywhere to have the same direction
parallel to and in the same sense as l and to depend on x alone (independent of
y and of z). Let us assume the loop to be rectangular, with side lengths Δx and
Δy along the two corresponding directions.

The loop is initially far away, on the side of the negative x, where the field is
zero. Let us calculate the mechanical work against the field forces required to move
the coil into its final position, which we call xF. Figure 8.3 shows the relevant
quantities. Four forces resulting from the magnetic field act on the loop, one on
each of its sides. The forces are in the xy plane and perpendicular to the length of
each side. Two forces, F3 and F4, are normal to the displacement and do not
produce any work. The work done for the infinitesimal displacement dx by the other
two forces, F1 and F2, is

dW ¼ � F2 � F1ð Þdx ¼ � I1DyB xþDxð Þ � I1DyB xð Þ½ �dx
¼ �I1Dy B xþDxð Þ � B xð Þ½ �dx:

Now, if, as we assume, the geometrical dimensions of the dipole are small
compared to the distance on which B varies appreciably, we can write the above
expression as

dW ¼ �I1DyDx
dB
dx

dx ¼ �l
dB
dx

dx

x

y

B(x)
B(x+Δx)

z

F
1

F
2

F
3

F
4

x

I
1

1 2

4

3

μ

x+Δx

Δy

Fig. 8.3 A magnetic dipole
during its translation inside
the field
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The mechanical work needed to bring the dipole into its final position is then

Wmec ¼ �l
ZxF

�1

dB
dx

dx ¼ �l
ZB xFð Þ

B �1ð Þ

dB ¼ �lB xFð Þ

In other words, the mechanical energy we have put into the system is

Umec ¼ �l � B: ð8:6Þ

We have written the right-hand side as the dot product of two (axial) vectors in
order to have an expression independent of the reference frame. This result, which
we obtained considering a particular field shape, is, in fact, valid in general. Let us
recall that we already found the dipole mechanical energy in Eq. (6.63).

In the case we are considering, as one sees in Fig. 8.3, the vectors l and B have
the same direction and sense, and Uint is negative. Indeed, while we move the
dipole toward regions of higher field, namely with F1 > F2, the field forces attract
the loop inside. In other words, the work done against the field forces is negative.
The statement is true, however, as we shall see immediately, if both magnetic
moment and field intensity are kept constant during the operation. This is not
something that one can just assume, because during the translation, both current
intensities, in the coil and in the loop, tend to vary. To keep both constant, two
electric works are necessary, which we now calculate.

When the loop moves toward the higher field regions, the linked flux U21 grows,
inducing an emf that tends to vary the current I1 in the coil. The emf is

E1 ¼ � dU21

dt
: ð8:7Þ

If tt is the velocity, the loop moves by dx = ttdt in the time interval dt.
Correspondingly, the linked flux grows by B(x + Dx)dxDy on side 2, and dimin-
ishes by B(x)dxDy on side 1. In total, the flux variation is

dU21 ¼ B xþDxð ÞdxDy� B xð ÞdxDy ¼ B xþDxð Þ � B xð Þ½ �dxDy ¼ dB
dx

DxDydx

To maintain the current I1 as constant, it is necessary to have a generator in the
loop delivering the electric power �E1I1, hence the (electric) work in the time
interval dt

dWel-loop ¼ �E1I1dt ¼ I1dU21: ð8:8Þ

288 8 Magnetic Energy

www.ebook3000.com

http://dx.doi.org/10.1007/978-3-319-40871-2_6
http://www.ebook3000.org


Using the above-found result, this can be written as

dWel-loop ¼ I1DxDyð Þ dB
dx

dx ¼ ldB: ð8:9Þ

Remembering that field and magnetic moment have the same positive direction,
and using Eq. (8.8), the total electric work of the generator in the loop is then

Uel-loop ¼ þ l � B ¼ I1U21: ð8:10Þ

We have reached an apparently surprising result. The total work on the loop, the
sum of the mechanical and the electrical, is zero. Looking more closely, however,
the result could have been foreseen from the start. Let us consider a charge carrier.
Its velocity is just one, the vector sum of its drift velocity in the wire and the
(macroscopic) velocity of the wire itself. The work of the magnetic force is zero,
because it is normal to the carrier velocity. We have calculated the mechanical and
electrical works considering the two parts of the carrier velocity separately and
found two equal and opposite quantities, adding up to zero. Let us look at the issue
in detail.

To be concrete, suppose the carriers have positive charge q. Let us consider side 1.
The carriers move through the wire with an average speed, the drift velocity vd, which
is parallel to the wire. The corresponding magnetic force is fd ¼ qvd � B (see
Fig. 8.4a). The force F1 acting on side 1, which we considered in calculating the
mechanical work, is the resultant of these forces on all the carriers.

We have calculated the electric work considering the motion of the wire that
carries all the carriers with velocity vt. The corresponding magnetic force on the
single carrier is fe ¼ qvt � B, which is parallel to the wire (see Fig. 8.4b). The
resultant of these forces on all the carriers is the origin of the electromotive force.

Indeed, the carrier has a single velocity, which is v ¼ vd þ vt. The total magnetic
force f ¼ qv� B, being normal to v, does notmake anywork (see Fig. 8.4c). The sum
of the mechanical and electrical works on the loop is just the sum of these null works.

We have still to calculate the electrical work that is needed to maintain the
magnetic field B as constant during the motion of the loop. This work is done by the

IB
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d

q
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vd
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vt

totf
v

(a) (b) (c)Fig. 8.4 Forces on a positive
carrier in a translating wire,
corresponding to a drift
velocity, b translation
velocity, c total velocity
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generator that produces the current I2 in the coil. The loop produces a magnetic
field, whose flux linked to the coil is U12. The flux varies when the loop moves,
inducing in the coil the emf E2 ¼ �dU12=dt. To keep I2 constant, the generator in
circuit 2 must deliver the electric power �I2E2, namely the (electrical) work in the
time interval dt

dWel�coil ¼ �E2I2dt ¼ I2dU12: ð8:11Þ

The total electrical work on the coil for its complete displacement, using
Eqs. (8.3), (8.4) and (8.10), is then

Uel-coil ¼ I2U12 ¼ þ l � B: ð8:12Þ

We see that Uel-coil is identical to Uel-loop, namely the electrical work made by
each of the generators in the two circuits is identical. This result is not surprising.
Indeed, the motion of the loop is a relative motion of the two circuits. An observer
in a reference frame linked to the loop sees the loop at rest and the coil moving. The
roles of the two circuits are inverted, but obviously, the work done by each of them
does not change.

In conclusion, the total interaction energy is given by the sum of the three terms
we have found, the mechanical energy and the two electric energies. The interaction
energy is

Utot ¼ þ l � B: ð8:13Þ

This is equal to the opposite of Umec. As we have already noticed, the two
circuits attract one another in the situation we are discussing in which l and B have
the same direction and sense, provided that the current intensities in the two circuits
are kept constant. The system tends to evolve toward the state of minimum
mechanical energy. Similarly, if we consider a dipole, namely our elementary loop,
free to turn in a magnetic field, its stable equilibrium position is the position of
minimum mechanical energy, namely in which l and B have the same direction and
sense only if the system develops at constant l and B.

8.4 Energy of the Magnetic Field

In Sect. 3.5, we saw that an electric field contains energy, which is distributed in
space with a density proportional to the square of the field. We shall now see that
the energy associated with the electric currents that we just discussed can similarly
be thought of as energy in the magnetic field, with a density proportional to the
square of its magnitude. The two situations are similar, but there are differences as
well. Indeed, in the case of the electric field, the energy of the system of charges is
equal to the work to be done from outside to assemble the system against the
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electric forces exerted by the charges we are moving, which are the forces of their
electric field. In the magnetic case, the work of magnetic forces is zero.

Consider a system of steady electric currents in a finite space region of volumeV, as
shown in Fig. 8.5. Let j(r) be the current density in the position r. Being that the regime
is stationary, the current lines are closed. The current density is j(r) = 0 outside V.

As usual, the energy of the system is equal to the work spent to build it, starting
from the state in which we define the energy to be zero. Let the null energy state be
the state in which j(r) = 0 everywhere. Let us now have the current density increase
to reach the final value. During this process, the magnetic field generated by the
currents varies with time. The variation produces an electric field according to
Faraday’s law. In this phase of the process, in which the current density increases,
generators are needed to work against the induced electric field, injecting energy
into the system. We have already discussed similar situations in this chapter.

Let us calculate this work. We can consider having the current intensities vary
slowly enough that the current lines are always closed, namely, in a formula, to
have r � j ¼ 0 everywhere. The electric field induced by the current variations is
given by Faraday’s law:

r� E ¼ � @B
@t

: ð8:14Þ

As we know, and as can be seen in Eq. (5.20), the work per unit time and unit
volume done by the electric field E on the current density j is E � j. Hence, the
electric work of the generators in the infinitesimal time interval dt against the
induced field is

dW ¼ �dt
Z

V

E � jdV ¼ �dt
Z

all space

E � jdV :

On the right-hand side, we could extend the integral to the entire space, not to
V alone, because the integrand is zero outside V. We did that for reasons that will
become clear immediately.

x
y

z

O

r

j V

Fig. 8.5 A region of volume
V containing a system of
steady electric currents
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We now substitute j using the expression

r� B ¼ l0j; ð8:15Þ

obtaining

dW ¼ � dt
l0

Z

all space

r� Bð Þ � EdV :

We now use the vector identity

r� Bð Þ � E ¼ �r � E� Bð Þþ r � Eð Þ � B;

obtaining

dW ¼ þ dt
l0

Z

all space

r � E� Bð ÞdV � dt
l0

Z

all space

r� Eð Þ � BdV :

We see that the current system we are considering is spatially limited, namely
that no current extends to infinity. Under this hypothesis, the first integral on the
right-hand side, which is the integral of the divergence of a product of two fields, is
zero. This statement can be proven with the same arguments we used in Sect. 3.5,
which we shall not repeat here. In the second term, we use Eq. (8.14) and get

dW ¼ þ dt
l0

Z

all space

B � @B
@t

dV ¼ 1
l0

Z

all space

B � @B
@t

dtdV

But @B@t dt is nothing more than the variation of B in the time interval dt, which we
call dB. In addition, the work dW is just the variation in dt of the energy of the
system, namely dUm, and we can write

dW ¼ dUm ¼ 1
l0

Z

all space

B � dBdV ð8:16Þ

and also, obviously,

dUm ¼ 1
2l0

Z

all space

dB2dV ; ð8:17Þ

where dB2 is the variation of B2 in the time interval dt.
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We finally find the energy of the system by integrating on time from the initial
instant in which the field is zero to the one in which the field has reached the final
value, obtaining

Um ¼ 1
2l0

Z

all space

B2dV : ð8:18Þ

This important equation expresses the energy of the currents as the energy of the
field created by those currents in the entire space. Note that field energy exists
everywhere where B 6¼ 0, namely also in regions in which there are no currents.
The quantity B2=2l0ð ÞdV is the energy stored in the space volume dV. Hence, the
energy is distributed in the space with the density

wm ¼ B2

2l0
: ð8:19Þ

The different expressions for magnetic energy we have found in this chapter are
equivalent to one another, as long as we are under time-independent conditions.
They are no longer so when the quantities vary with time. Under these dynamic
conditions, only Eq. (8.18) [and obviously Eq. (8.19)] holds, as we shall see in
Sect. 10.3.

Consider, as an example, a cylindrical solenoid of circular section of radius r, length
l � r and n loops per unit length, carrying the steady current of intensity I. Neglecting
the fringe effects, the magnetic field is zero outside the solenoid and uniform inside with
magnitude B ¼ l0nI.

Recalling that the inductance of the solenoid is L ¼ l0n
2lpr2, the energy of the

current generating the field is

Um ¼ 1
2
LI2 ¼ 1

2
l0n

2I2lpr2: ð8:20Þ

On the other hand, the energy stored in the field, neglecting the fringe effects, is
simply the product of B2=2l0, which is uniform inside, times the volume of the
solenoid, namely

Um ¼ B2

2l0
lpr2 ¼ 1

2
l0n

2I2lpr2; ð8:21Þ

which is equal to Eq. (8.20).
QUESTION Q 8.1. Do the analogous calculation for a toroidal solenoid. h

QUESTION Q 8.2. The highest energy particle physics collider is the Large Hadron
Collider (LHC) at CERN. The charged particles, protons or nuclei, circulate in two
opposite directions in a ring 27 km long, thanks to a ladder of 1232 supercon-
ducting electromagnets producing a vertical magnetic field of intensity B = 8.3 T
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generated with a current of intensity I ≅ 11.8 kA. Each magnet is l = 14.3 m long,
producing the field in a section we can assume to be A = 180 cm2. What is the
amount of energy stored in a magnet? How much in the full ring? How much is the
inductance of a magnet? (answers: 7 MJ, 9 GJ, 0.1 H). h

Summary

In this chapter, we have learned the following principal concepts:

1. The energy of a current.
2. The energy of a system of currents.
3. The energy of a magnetic dipole (a loop) in a magnetic field.
4. The energy and the energy density stored in a magnetic field.

Problems

8:1. The real resistors have non-zero inductance. As a consequence, when one
connects a resistor to the poles of a battery, the current intensity does not reach
the steady value immediately. The process takes some time, during which the
battery spends work against the back emf (in addition to what is dissipated by
the Joule effect). Where does this work go?

8:2. Inside a straight solenoid of small diameter, l = 25 cm long, carrying a steady
current, the energy density is 2 J/m3. How many amper-turns (namely, number
of loops times current intensity) are needed?

8:3. An electromagnet of inductance L = 2 H is connected in series to a constant
emf generator and a switch. The magnet is excited with a current I = 10 A.
Would you dare to open the switch under these conditions?

8:4. A small metal bar can slide along two parallel metal rails in a magnetic field
perpendicular to the plane of the rails. The bar is kept moving at a constant
speed. Consider two cases: a the circuit is closed on a resistor, b the circuit is
closed on the same resistor in series with an inductor. In which case is the
mechanical power we must spend larger? Why?

8:5. A coil with area A = 1 cm2 is made of N = 10 overlapped loops and carries a
steady current of intensity I = 100 nA. We introduce the coil into a solenoid
producing the field B = 0.8 T. What is the total work needed if the operation is
done with the magnetic moment of the coil in the same direction and sense as
B? What is it if the senses are opposite? What are the agents of the works?

8:6. A loop of 1 cm2 area carries a current of 1 A. It is located in a magnetic field
B generated by a steady current of 100 A in a nearby circuit. B is directed
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normally to the loop in the same sense as its magnetic moment. We measure
the mutual inductance coefficient M between the two circuits. What is the
value of B? And its energy?

8:7. In an experimental ultra-high-field NMR apparatus, the superconducting
magnet produces a field of intensity B = 17.6 T with a current intensity
I = 200 A. The stored energy is 5 MJ. How much is the volume of the field?
What is the inductance of the magnet coil?
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Chapter 9
Magnetic Properties of Matter

Abstract This chapter deals with the magnetic properties of matter. We consider
three classes of material: diamagnetic, paramagnetic and ferromagnetic. Two new
vector fields are introduced, needed to describe magnetism in matter: magnetiza-
tion, which is the magnetic moment per unit volume, and the auxiliary H-field. The
latter is somewhat similar to the D-field in electricity but its role is much more
relevant. The magnetic phenomena in matter are due to the behavior of the atomic
and molecular constituents. Even if the correct laws are those of quantum physics,
we try to give an approximate classical description. We conclude with a discussion
of ferromagnetic materials and their uses.

In this chapter, we study the principal magnetic properties of matter. We start with a
few simple experimental observations, which distinguish three classes of materials,
called diamagnetic, paramagnetic and ferromagnetic. To be precise, more classes
exist, but we shall limit our discussion to these three principal ones. The ferro-
magnetic materials (for example, Fe, Co, Ni, Gd and several alloys) can be mag-
netized even in the absence of an applied magnetic field, namely they can be made
permanent magnets. Both paramagnetic and diamagnetic materials magnetize under
the action of an applied magnetic field (even if in a much weaker manner than the
ferromagnetics) in the positive and negative directions of the field, respectively.

We introduce two new vector fields. The first one is “magnetization”, which is
the magnetic moment per unit volume M. We shall see how magnetization is
produced by microscopic currents inside atoms and molecules, called equivalent
magnetization currents. The situation is similar to that of the dielectrics, for which
we established the relation between polarization, namely the electric dipole moment
per unit volume, and the polarization charges.

We start in Sect. 9.2 with the simplest case of uniform M, in which the
microscopic current density is on the surfaces only, and continue in Sect. 9.3 with
the case of non-uniform M, in which the microscopic current density is also in the
volume. A separation of the roles of the macroscopic and microscopic currents
leads to the definition of the second vector field, H. We study its properties and
learn, in particular, that the “magnetic charge” observed since ancient times on the
poles of the permanent magnets is not a real physical charge, but simply the
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opposite of the divergence of the magnetization vector M. This feature gives a clear
interpretation of the broken magnet experiment described in Chap. 6.

The macroscopic magnetic properties of matter are due to phenomena at the
molecular and atomic levels. As such, they are ruled by quantum mechanical laws,
which cannot be discussed at the level of this course. We shall, however, try to give
a description based on classical concepts in Sect. 9.6, warning the reader that it can
only be approximated and therefore logically unsatisfactory. Still, it is useful for
grasping the physics of the phenomena.

In Sects. 9.7, 9.8 and 9.10, we come back to ferromagnets, study the important
phenomenon of the magnetic hysteresis and see how electromagnets produce strong
magnetic fields. In Sect. 9.9, we give the microscopic interpretation of
ferromagnetism.

Finally, in Sect. 9.10, we find the expressions of macroscopic energy, both in
terms of the conduction currents and as stored in the field.

9.1 Elementary Observations

We start with a few simple observations, similar to those we did in Sect. 4.5 with
the electric pendulum. We build a magnetic pendulum, attaching a sample of the
material under study to a thin wire. We introduce the pendulum in the gap between
the North and South poles of a powerful electromagnet. If the polar faces are plane
and parallel, as in Fig. 9.1a, producing a uniform field in the location of the sample,
we do not observe any effect, even if the field is very high. The effect is seen if one
of the poles is shaped like the one in Fig. 9.2b. The magnetic field is not uniform
now, being much stronger near the tip of the S pole. Up to now, the behavior is
similar to that in the electric case, but there are important differences as well.

In the electric case, the pendulum is attracted toward higher electric field regions;
in the magnetic case, we observe a mild attraction for some materials, called
paramagnetic, and an even milder repulsion for others, called diamagnetic. A third
class of materials exists, for which the attraction towards higher field regions is very
intense, namely the ferromagnetic materials. From the analogy with the electric
case, we can conclude that the magnetic field in any case magnetizes the sample,
namely induces in the sample a magnetic dipole in the direction of the field.

N S N S

(a) (b)

Fig. 9.1 Magnetic pendulum in a uniform, b non-uniform magnetic field
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As opposed to the electric case, the induced magnetic moment has the same sense
of the field for para- and ferro-magnetics, and the opposite for diamagnetics.

The arrangements in Fig. 9.1 are suitable only for semi-quantitative observa-
tions. Quantitative measurements can be done as shown schematically in Fig. 9.2.
One employs a cylindrical solenoid producing a magnetic field of the requested
intensity. The relatively simple geometry allows one to calculate the field and its
gradient near the upper opening, where the sample to be measured is positioned.
The sample is connected to a dynamometer to measure the force as a function of the
field and of its gradient. To get an idea of the orders of magnitude, consider a field
of 1 T intensity with a 15 T/m gradient, and samples of 1 g (whose weight, for
comparison, is about 10−2 N). The intensities of the forces on a gram of diamag-
netic substances (such as, for example, water, copper, bismuth, sodium chloride…)
are on the order of 10−5–10−4 N, while on paramagnetic substances (such as
sodium, aluminum, copper chloride,…), the forces are on the order of 10−4–10−2 N.
Particularly strong is the force on liquid O2 (at 90 K), which is 0.37 N under the
above conditions, namely almost four times its weight.

As we shall see more clearly below, the molecules of a paramagnetic material
have an intrinsic magnetic dipole moment. In the absence of an applied magnetic
field, the elementary dipoles are randomly oriented. Consequently, the dipole
moment of a piece of material containing a large number of molecules is zero. An
applied magnetic field tends to give some orientation to the molecular dipoles, in
contrast with thermic agitation. Everything is analogous to the polar dielectrics. In
particular, paramagnetism depends considerably on temperature.

0Fig. 9.2 Measuring the
magnetic force on different
samples
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Contrastingly, the molecules of a diamagnetic material do not have a magnetic
moment in the absence of an applied field, similarly to the non-polar dielectrics. An
acting magnetic field, modifying the motion of the atomic electrons, induces a
magnetic moment parallel to and in the opposite direction of the field. As we shall
see, the opposite direction is a consequence of the Lenz law.

In a further analogy with dielectrics (positive direction apart), the induced
polarization per unit volume at ordinary temperatures is usually larger by orienta-
tion (paramagnetic) than by deformation (diamagnetic).

The ferromagnetic materials are in a class of their own. In a non-uniform field,
they are attracted toward higher field regions, much like the paramagnetics, but the
force on ferromagnetic samples of the same mass is three to four orders of mag-
nitude stronger, violently attracting the specimen inside the solenoid in the setup of
Fig. 9.2. Under the conditions in the above-mentioned example (B = 1 T,
dB/dz = 15 T/m), the attractive force on 1 g of Fe is about 2 N, namely about 200
times its weight, and on 1 g of magnetite (Fe3O4), 0.6 N.

Only ferromagnetic materials can be permanently magnetized. As we already
mentioned, permanent magnets, such as magnetite, exist in nature, namely they
were magnetized spontaneously. We can produce permanent magnets artificially by
introducing a ferromagnetic sample into a magnetic field, inducing a magnetic
moment. When we switch off the field, the magnetic moment decreases but does not
disappear completely. We shall come back to ferromagnetism in Sects. 9.7–9.9.

9.2 Uniform Magnetization

We have mentioned that microscopic dipole moments, namely magnetically
polarized molecules, are present in a magnetized medium. It is easy to understand
that the magnetic field varies very rapidly in space over distances on the order of
molecular dimensions. However, as in the case of dielectrics, we are interested here
in the macroscopic field, namely in an average of the magnetic field over distances
much larger compared to molecular dimensions (namely �0.1 nm) and for times
much longer than molecular times (namely �1 fs). All the fields we shall consider
are macroscopic fields.

The macroscopic magnetic field inside a material can be measured as follows.
We use a beam of charged particles (think of electrons or protons) of energy high
enough to be able to pass through the sample we are analyzing. We measure the
direction of the beam before entering the material and at its exit, and consequently
the defection angle. The beam has been deflected by the Lorentz force qv� B due
to the field inside the material. Knowing the velocity and the charge of the particles
of the beam, we can extract the average value B.
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We now define the (axial) vector magnetization density, or simply magnetiza-
tion, M as

M ¼ dl
dV

; ð9:1Þ

where dl is the magnetic moment of the volume dV (dV is extremely small from the
macroscopic point of view, but still large enough to contain an enormous number of
molecules). M is the resultant magnetic moment per unit volume. In general, M is a
function of the coordinates and of time. However, we shall deal here only with
time-independent conditions and we shall start with a uniform field.

Consider a cylindrical bar uniformly magnetized in the direction of the axis. On
purpose, we can use a permanent magnet or magnetize an iron bar by introducing it
into a solenoid carrying a steady current and producing a uniform field.

Let z be a coordinate axis parallel in the direction and sense of M. Let us ideally
cut a slice of thickness dz perpendicular to the axis, as shown in Fig. 9.3. Let us
further divide the slice into square elements of infinitesimal area dR. Each of them
has the magnetic moment dl ¼ MdRdz.

Each of these elements creates a magnetic field in the surrounding space. This is
equal to the field of a current loop having the shape of the lateral surface of the
element and carrying a current with the right intensity to produce the same magnetic
field (see Fig. 9.3). We call this an equivalent circuit. Its current intensity must be
such that dIdR ¼ dl ¼ MdRdz, namely, simplifying, that dI ¼ Mdz. The equiva-
lent circuit is a square ribbon of height dz. Properly speaking then, the current is a
surface current, of surface intensity (measured in A/m)

km ¼ dI
dz

¼ M: ð9:2Þ

M

M

dz

z

dI = M dz

dz dz

dμ

dΣ

Fig. 9.3 A uniformly magnetized cylinder, a slice of the cylinder, an infinitesimal element of the
slice and its equivalent circuit
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If we substitute this into each element of the slice in Fig. 9.3, the equivalent loop
we obtain will be like that shown in Fig. 9.4. We see that on each internal side,
there are two equal and opposite currents, the effects of which cancel one another
out. Note that this is the case because M is uniform.

We conclude that the circuit equivalent of the magnetized slice is a circular
ribbon equal to its lateral surface carrying the current dI = Mdz, as shown in
Fig. 9.5.

Similarly, the circuit equivalent to the complete magnetized bar is a cylinder of
the shape of its lateral surface. The generic element of height dz of the lateral
surface carries a current dI = Mdz.

From this relation, we see, in particular, that the measurement units of magne-
tization are the ampere per meter (A/m).

We now notice that the equivalences we have established, between magnetized
volumes and surface current densities on their lateral surface, holds only in the limit
in which the equivalent current can be approximated with a magnetic dipole,
namely far enough from the current itself.

However, we can also extend the equivalence inside the body. Let us continue to
consider our cylindrical bar of uniform magnetization M and the equivalent current
of surface density km = M. We know that the magnetic fields of the two are equal
outside. Let us consider, in both cases, a closed surface S enclosing one face of the
cylinder, as shown in Fig. 9.6. Let Se be its part outside the cylinder and Si its part
inside. The flux of B outgoing from S is zero in both cases. The flux of B through Se
being equal in both cases, we must conclude that the flux through Si is equal in both
cases as well. But the flux of B through Si is the average value of B inside times the
area of Si. Consequently, the averages of B are also equal inside the cylinders.

Fig. 9.4 The infinitesimal
circuits equivalent to the
elements of the slice

M

dz

dI = M dz

dz

Fig. 9.5 The slice and its
equivalent circuit
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Consider a cylindrical permanent magnet. Its magnetic field is equal to the field
of a solenoid (namely a surface current) of the same geometry, with a current per
unit length (namely the product of the current intensity times the number of turns
per unit length) equal to the magnetization density of the permanent magnet.

9.3 Non-uniform Magnetization

Consider now a case in which the magnetization M does not depend on time but
depends on position. We shall see that the equivalent currents, which are only the
surfaces in the uniform case, are also present in the bulk in the non-uniform case.

Let us start by dividing the volume V of the body into infinitesimal cubic
elements dV = dxdydz. Let us consider two such contiguous elements along the
y-axis, at y and y + dy, respectively, as represented in Fig. 9.7a, and the z-com-
ponents of their magnetization, namely Mz(y) and Mz(y + dy). As we already know,

S
Se

iS

M

km

Fig. 9.6 Comparing the magnetic field of the magnetized bar and the equivalent current

x

z

y

dx

dz

dy
x

y

Mz(y) Mz(y+dy)

dI(y+dy)dI(y)

(a) (b)

Fig. 9.7 a Two contiguous magnetized elements along the y-axis, the z-components of their
magnetization; b the equivalent circuits
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the two blocks are equivalent to two current ribbons having the shape of their lateral
surfaces (of height dz) carrying the currents dI(y) = Mz(y)dz and dI(y + dy) =
Mz(y + dy)dz.

As shown in Fig. 9.7b, the two opposite currents running on the common face of
the two circuits, as opposed to the uniform case, now have different intensities and
do not cancel one another out. A net current in the x-direction remains (to which we
give a positive sign if it has the positive x direction). This current intensity is
infinitesimal of the second order and is given by

d2I ¼ Mz yþ dyð Þ �Mz yð Þ½ �dz ¼ @Mz

@y
dydz:

We must consider that, in the y-direction, there is a contribution analogous to the
one just considered every dy, and in the z-direction every dz. In other words, there is
a contribution d2I every infinitesimal square dy dz. Hence, we can speak of a current
density whose x-component is

jx ¼ d2I
dydz

¼ @Mz

@y
:

There is, however, another contribution to jx. It comes from the currents
equivalent to the y-components of the magnetization on the common faces of two
contiguous blocks in the z-direction, as shown in Fig. 9.8.

Looking at the figure, we see (paying attention to the sign) that the contribution
of the common surface of two blocks to the current in the positive x-direction is

d2I ¼ My zð Þ �My zþ dzð Þ� �
dy ¼ � @My

@z
dzdy:

My (z+dz)

My (z)

z

x

y

Fig. 9.8 Two contiguous
magnetized elements along
the z-axis, the y-components
of their magnetization
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This current corresponds to the square surface of area dzdy. Consequently,
its contribution to the current in the x-direction is

jx ¼ d2I
dydz

¼ � @My

@z
:

In conclusion, adding the two contributions, the x-component of the magneti-
zation current density jm is

jmx ¼ @Mz

@y
� @My

@z
;

which we immediately recognize as the x-component of r�M. Obviously, similar
results hold for the components on the y and z axes, and we can say that the
magnetization current density jm corresponding to the magnetization M is

jm ¼ r�M: ð9:3Þ

Let us now look at how the previously considered case of uniform magnetization
is a special case of what we have just discussed. Let us consider again the cylindrical
bar uniformly magnetized in the direction of its axis, which we take to be the z-axis.
The curl ofM is zero inside, whereM is uniform, and jm is zero as well. Crossing the
surfaces, M, or better yet, its only non-zero component Mz, varies abruptly from the
value it has inside to zero. The non-zero partial derivative crossing the two faces is
@Mz=@z, which does not contribute to the curl. Consequently, the current density is
zero on the faces. The curl of the magnetization is different from zero only on the
lateral surface. In Sect. 9.2, we established that the current equivalent to the mag-
netization in this case is just a surface current on the lateral surface of the cylinder of
density km = M. We can now see that the two points of view are equivalent thinking
that every physical surface has a thickness that may be small, but is never null. Let d
be the thickness of the current-carrying surface. Then, the relation between volume
and surface current densities is jm ¼ km=d.

Figure 9.9 represents a section of the bar and two points, one, P2, immediately
inside, the other, P1, immediately outside. The two points have the same y and
coordinates x1 and x2 separated by the distance d. At both points, jm and the
corresponding km are directed along the y-axis. As km = Mz, the arguments of
Sect. 9.2 lead us to expect that jmy ¼ Mz=d.

On the other hand, Eq. (9.3), which we want to show to be equivalent, says that

jmy ¼ r�Mð Þy¼ � @Mz

@x
¼ Mz x1ð Þ �Mz x2ð Þ

d
¼ M

d
¼ km

d
;

which coincides with the above expression.
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9.4 Magnetic Field Equations in Matter

In this section, we write down all the equations describing the magnetic field in
matter under time-independent conditions, namely when the charge density and the
current density are constant in time. In the next chapter, we shall see how the
equations are generalized under dynamic conditions. We already know the two
differential equations of the magnetic field, namely

r� B ¼ l0j ð9:4Þ

and

r � B ¼ 0: ð9:5Þ

These equations hold both in a vacuum and in the presence of matter. In the
latter case, however, beyond the conduction currents, which are macroscopic,
microscopic currents also exist, in the volume and on the surfaces, which are not
under our direct control. It is consequently convenient to separate the current
density j into two parts. One part, jC, is the conduction current, which is under our
control; the other is the magnetization current jm. Namely, we write

j ¼ jc þ jm ¼ jc þr�M ð9:6Þ

Note that the electric polarization charges that may be present are steady,
because we are in a time-independent situation and consequently do not contribute
to the microscopic current. This would not be so under dynamic conditions, as we
shall see in the next chapter. We now insert this expression into Eq. (9.4) and find

r� B ¼ l0jC þ l0r�M

and, moving M to the left-hand side and dividing by µ0, we obtain

r� B=l0 �Mð Þ ¼ jC: ð9:7Þ

P
1

y

xx
1

P2

x
2

Fig. 9.9 A cross-section of
the magnetized bar and two
points on the sides of its
lateral surface
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It is then useful to introduce the auxiliary field H defined as

H ¼ B=l0 �M: ð9:8Þ

The measurements units of H are the same as ofM, namely the ampere per meter
(A/m). The two magnetostatic field equations become

r�H ¼ jC ð9:9Þ

and

r � B ¼ 0: ð9:10Þ

In this form, which is obviously equivalent to the previous one, the right-hand
sides of the equations are known. Obviously, the complications due to matter still
exist; they have been moved to the left-hand side of Eq. (9.9) and hidden in the
definition of H. Note that the H field depends on the macroscopic currents only.
The situation is similar to that of electrostatics, where we introduced the field D, the
sources of which are the free charges alone. However, while D is not very helpful in
practice, H is quite useful. Indeed, in electrostatic situations, we usually control the
potentials of the conductors, rather then their free charges. The electric field E is, in
any case, the opposite of the gradient of the potential, both in the presence and
absence of dielectrics. Consequently, we directly control E, not D. For example, the
electric field between the plates of a parallel plate capacitor is the potential dif-
ference divided by the distance between the plates, both with a vacuum and with a
dielectric. Contrastingly, in the magnetic case, we control the conduction currents,
hence H rather than B.

Equation (9.9) is in a differential form. It can be written in an integral form as
well, stating that the circulation of H about any oriented curve C is equal to the
macroscopic current IC linked to that curve (with the usual convention for the sign),
namely

I
C

H � ds ¼ IC ð9:11Þ

The equations we have found are useless as long as we do not establish a relation
between B (the cause) and the magnetization M (the effect). This relation is, in
principle, a difficult one, because it must describe the behavior of the microscopic
matter constituents under the action of an external magnetic field. Consequently, the
relation can only be an approximation. Fortunately, however, a linear approxima-
tion is extremely good for the dia- and para-magnetic materials. Unfortunately, for
historical reasons, this relation is always written in terms of H rather than of B,
namely as
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M ¼ vmH: ð9:12Þ

The dimensionless constant vm is called the magnetic susceptibility. We repeat
that this relation holds for dia- and para-magnetics, but not, in general, for ferro-
magnetic materials. This is a consequence of the fact that the magnetic suscepti-
bility of the former materials is always very small in absolute value, namely
vmj j � 1. Recalling that M has the direction of B and its sense in paramagnetics,
the opposite of its sense in diamagnetics, we see that vm [ 0 for the former, vm\0
for the latter ones.

We can now write Eq. (9.8) as

B ¼ l0 HþMð Þ ¼ l0 1þ vmð ÞH ¼ jl0H ¼ lH; ð9:13Þ

where we have defined two constants characteristic of the medium, namely

j ¼ 1þ vm; ð9:14Þ

which is dimensionless and is called the magnetic permeability of the medium
relative to the vacuum, and

l ¼ jl0 ¼ l0 1þ vmð Þ; ð9:15Þ

called the absolute magnetic permeability. The measurement units of l are the same
as of l0, namely the newton per ampere square, N A−2.

The linear relation Eq. (9.12) between M and H impels a linear relation between
M and B as well, namely

M ¼ vm
l0 1þ vmð ÞB: ð9:16Þ

As a matter of fact, this relation, rather than Eq. (9.12), should have been the
starting point of the above arguments, because the fundamental field is B and H is
an auxiliary field. Indeed, as we have already mentioned, a high energy charged
particle beam crossing a magnetized material senses B through the Lorentz force,
and not H. It would have been more logical to start from the definition

M ¼ v0m
l0

B: ð9:17Þ

The reason for why it is done as we did it is historical. Indeed, up to the middle
of the previous century, H was believed to be a fundamental field. In practice,
however, in the non-ferromagnetic materials we are considering, the complication is
immaterial. Indeed, being that vmj j � 1, it follows that
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v0m ¼ vm
1þ vm

ffi vm: ð9:18Þ

In these cases, the two constants are almost identical. This is not true for the
ferromagnets.

Tables 9.1 and 9.2 report the measured magnetic susceptibilities for a number of
diamagnetic and paramagnetic substances, respectively. When mentally comparing
the values, keep in mind that what is proportional to the inducing magnetic field
through vm is the induced magnetic moment per unit volume and that the number of
molecules in a cubic meter at STP (standard temperature and pressure) is typically
three orders of magnitude smaller in gases (such as oxygen and air) than in con-
densed media.

9.5 B and H Fields in Matter

Let us consider once more a cylindrical bar uniformly magnetized in the direction
of its axis. This means that every volume element dV of the medium has a magnetic
dipole dl ¼ MdV . The magnetizationM is uniform inside the bar and equal to zero
outside.

Let us discuss the three fields B, M and H. Suppose we are not dealing with a
permanent magnet. We insert the cylinder into the uniform field B of a solenoid.
The induced M is uniform and proportional to the field B, in its own sense for the
paramagnetic materials, in the opposite sense for the diamagnetics. In both cases,
the magnetization is quite small, l0M � B. Let us consider the different types of
material.

Paramagnetic materials.
Figure 9.10a represents the empty solenoid, producing the field B in a vacuum.
When we introduce the sample with vm > 0, the induced magnetic moment is in the
direction and sense of B. From this point of view, the behavior is similar to that of
dielectrics in which P has the direction and sense of E. The difference is that, while
in a dielectric, the magnitude of E is reduced inside the medium, in the param-
agnetics, B is larger in the presence than in the absence of the material. Indeed, the

Table 9.1 Magnetic susceptibility of diamagnetic substances in 10−5 units at STP

Substance H2O Bi C (diamond) Cu Ag NaCl

vm –0.9 –17 –2.2 –1.0 –2.6 –1.4

Table 9.2 Magnetic susceptibility of paramagnetic substances in 10−5 units at STP (liquid O2 at
73 K)

Substance Al Cs Na CuCl2 Liquid O2 O2 Air

vm +2.2 +5.1 +0.72 +34 +390 +0.19 +0.036
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magnetization is equivalent to a surface current, which has the same direction as the
macroscopic current in the solenoid. Consequently, the field lines are denser inside
the bar than outside it. The bar looks to be more “permeable” to the field compared
to the vacuum, hence the name “magnetic permeability”. In practice, the effect is
always small and we have exaggerated it in the figure to make it more visible.

There is not too much to be said on H, because this field is proportional to B [see
Eq. (9.13)].

Diamagnetic materials.
In this case, the sense of the induced magnetic field is opposed to that of the
inducing field B, because vm < 0. From this point of view, the behavior is different
compared to the dielectrics. However, as in the dielectrics, B is now weaker when
the medium is present. Indeed, inside the medium, B is the result of the macro-
scopic current and the equivalent magnetic current on the surface of the bar, which
run in opposite directions. The field lines “prefer” running in a vacuum as much as
possible. The medium is less “permeable” to them than the vacuum. In this case as
well, we have exaggerated the effect in Fig. 9.11.

The effects are once again small, even smaller than in paramagnetics, and again,
a discussion of H is not relevant.

B

M

B(a) (b)Fig. 9.10 a A solenoid
creating a uniform magnetic
field in a vacuum; b same
with inserted paramagnetic
material

M

BFig. 9.11 A diamagnetic bar
in a uniform field
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Ferromagnetic materials.
A ferromagnetic bar behaves like a paramagnetic one, as far as the direction of the
induced sense of M relative to the inducing field B is concerned. However, this is
the only analogy between the two cases.

Firstly, for the same B, the magnitudes ofM are much larger but also, even more
importantly, if we switch off B by decreasing the current in the solenoid to zero, we
observe that M decreases somewhat, but reaches a value, which is different from
zero and possibly quite large (see Sect. 9.7). This is the already-mentioned phe-
nomenon of permanent magnetization.

We have already seen that the magnetic field B generated by our cylindrical
magnetized bar is equal to the field of a solenoid of the same shape, carrying the
surface current density km = nI (where n is the number of turns per unit length and
I the current intensity) equal to the bar magnetization M.

Figure 9.12 shows the B field of our solenoid. It has the same shape as that of
the bar in Fig. 9.14a. Note that B is discontinuous crossing the lateral surface.
Indeed, we know that, through a current sheet of density k, the normal component
of B is continuous, while the tangential one, say Bt, has the discontinuity

DBt ¼ l0k: ð9:19Þ

Consider now the H field. In this case, the simple proportionality relations
Eq. (9.13) do not hold. However, M is now given. It is uniform inside and zero
outside the bar. The field H is given by

H ¼ B=l0 �M: ð9:20Þ

Fig. 9.12 The B field of a
cylindrical solenoid
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In the case of the solenoid, being that it is a vacuum, H is proportional to
B everywhere, namely it is H = B/l 0. H is not very useful under these conditions.

Let us consider the cylindrical magnet. Outside the relation, H = B/l 0 is still
true, and consequently, H has the same shape as B. Contrastingly, inside the
magnet, we must also take into account the contribution of M, which may be
extremely important. Figure 9.13 shows an example of the two vector terms on the
right-hand side of Eq. (9.20) and of the resulting left-hand side. Note, in particular,
that the direction of H may be very different from that of B, as in this example.

Figure 9.14a, b represent the B and H fields of the cylindrical magnet, respec-
tively. Outside, the shapes of the two fields are equal, while inside, they are
completely different, so much so as to have opposite directions, on average. The
field H is discontinuous on the faces of the cylinder, which are the poles of the
magnet. The H field lines exit from the North pole and enter into the South pole.
This behavior is very similar to that of the electrostatic field, whose lines exit the

B/μ
0

H

M

Fig. 9.13 The vectors B, M and H inside a ferromagnet

M
B

M

H

(a) (b)

Fig. 9.14 Fields of a permanent magnet a B, b H
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positive and enter into the negative charges (think of a positive charge density on
the N pole and an opposite negative one on the S pole surfaces).

The analogy is very close, but purely formal. To see that, let us take the
divergence of both sides of Eq. (9.20), recalling that r � B ¼ 0. We have

r �H ¼ �r �M:

If we now define a magnetic charge density

qm 	 �r �M; ð9:21Þ

the equation becomes

r �H ¼ qm; ð9:22Þ

which is identical, a constant apart, to the electrostatic field equation

r � E ¼ q=e0

As for the curl, in the case we are considering of a permanent magnet in the
absence of conduction currents, Eq. (9.9) becomes

r�H ¼ 0; ð9:23Þ

namely, the H field is conservative, as is the electrostatic field. These properties of
the H field of permanent magnets historically led physicists to assign an importance
to the H field much larger than it really deserves. Clearly, Eq. (9.22) is a purely
formal definition of a magnetic charge. No physical magnetic charge exists. The
magnetic charge density is just the opposite of the divergence of magnetization.
Looking back at the example of the uniformly-magnetized bar, it is clear that
r �M ¼ @Mz=@z is different from zero only on the polar faces of the cylinder,
where Mz changes suddenly from its internal value to zero. Consequently, the
“magnetic charges” are concentrated at the poles. We can verify that easily by
dropping the bar into a pot of iron filings. We see them attaching to the poles.
Obviously, the values of @Mz=@z are equal and opposite on the two faces, and
consequently, the “magnetic charges” are equal and opposite as well.

The same argument also explains the broken magnet experiment, which we
mentioned in Sect. 6.1. If we cut a magnetized stick in the middle, we produce two
new faces, one for each of the parts. On them, M has sudden variations and a
sizeable divergence. We have created two new “magnetic charges”, one on each
side equal and opposite in sign.

In closing this section, we observe that the discontinuities of the H field are
similar to those of the E field, because both fields have the same divergence and the
same curl. Crossing a magnetic charge surface, the tangent component of H is
continuous, while its normal component is discontinuous.
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9.6 Dia- and Para-magnetism. Microscopic Interpretation

The magnetic properties of matter have their physical origin in its microscopic
constituents, namely molecules, atoms, electrons and nuclei. At this level, physics
follows quantum laws, of which the classical ones are a good approximation only at
scales substantially larger than the atomic ones. Consequently, only quantum
physics can properly explain paramagnetism, diamagnetism and ferromagnetism.
Historically, the development of quantum mechanics took a few decennia and the
work of several scientists. One of the major contributors was Niels Bohr (Denmark,
1885–1962), who proposed, in 1913, an atomic model, in which the atom is similar
to a planetary system, with the nucleus at the center and the electrons moving about
it in closed orbits. The centripetal force is the electric attraction of the positive
nucleus for the negative electron. As opposed the solar system, the electron orbits
are in different planes, in all directions. This is the usual, but not physically correct,
image of the atom. The model was, and still is, capable of explaining a number of
observed phenomena, but gives incorrect predictions as well. The main reason for
its failure is that, in quantum mechanics, the trajectory of a particle can be defined
only within a well-defined uncertainty, which is that much larger the larger the
momentum of the particle. The Bohr model was a historically important step for-
ward in the construction of quantum mechanics, similar to the scaffolding used to
build a cathedral. Once the cathedral is built, the scaffolding is removed.

We shall, however, use the Bohr model to give a semi-quantitative microscopic
interpretation of the magnetic phenomena. We shall clearly state when the pre-
dictions of the model are somewhat justified by their agreement with the quantum
predictions and when this is not the case.

Two important quantities, closely linked to one another in both quantum and
classical physics, are the angular momentum and the magnetic dipole moment. We
can distinguish two types of angular momenta of an atomic electron: the orbital
angular momentum and, as it is called, the spin. The former, which we call L, has a
classical analogy; the latter does not. If the electron was a small charged sphere
quickly spinning about its axis, it would classically have an angular momentum and
a magnetic moment due to that spinning. However, electrons are point-like. The
spin, which we shall call S, is an intrinsic, purely quantum property of the particles.

Using the Bohr model, we now consider an electron moving along a circular
orbit of radius r with velocity v (which is much smaller than the speed of light). The
orbital angular momentum of the electron is the angular momentum resulting from
this motion. It is normal to the plane of the orbit, in the direction that sees the
electron moving counterclockwise, and has the magnitude L = metr, where me is
the mass of the electron (see Fig. 9.15).

Moving along its orbit, the electron produces a current, which is running along
the orbit itself. Its intensity is the electron charge qe times the number of times the
electron crosses any given point in a second, which is t/(2pr). Hence, the current
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intensity of one electron is I ¼ qet= 2prð Þ. Being that the electron charge is nega-
tive, the direction of the current is opposed to the velocity of the electron. The orbit
is a small current loop, namely a magnetic dipole with a magnetic moment parallel
and opposite to the angular momentum, with magnitude

l ¼ qet
2pr

pr2 ¼ qe
2me

metr ¼ qe
2me

L:

We conclude that the orbital angular momentum and the magnetic moment are
two parallel and opposite (axial) vectors, proportional to one another according to
the relation

lL ¼ � qe
2me

L: ð9:24Þ

This result is very important. Note that the proportionality constant between the
orbital angular momentum and the magnetic moment –qe/(2me) depends only on the
properties of the electron. As such, it is universal, independent, in particular, of the
shape of the orbit. The latter might not even be completely defined. As a matter of
fact, our result, even if obtained with arguments of classical physics, is a posteriori
justified by the fact that it is also foreseen by quantum mechanics.

As anticipated, this is not the case for the intrinsic angular momentum, namely
the spin, of the electron, which is a purely quantum phenomenon. A magnetic
moment, which we call lS, is associated with the spin as well. The two (axial)
vectors are parallel and in opposite direction. Their magnitudes are proportional, but
the proportionality factor is twice as large as for the orbital case, namely it is

lS ¼ � qe
me

S. ð9:25Þ

Let us now consider an atom with a number of electrons. Each of them has its
orbital and spin angular momenta and the associated magnetic moments. Their
directions are different. The total angular momentum of the electron system, which
we call J, and its total magnetic moment, lJ , are the vector sums of the contri-
butions of all the electrons. The vector sum rules obey quantum, not classical,
mechanics. The result, which has no classical explanation, is that J and lJ are still
parallel and opposed, linked by the relation

L

μ
L

r

Fig. 9.15 Orbital angular
momentum and dipole
magnetic moment of an
atomic electron
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lJ ¼ �g
qe
me

J, ð9:26Þ

where the dimensionless constant g is called the Landé factor, after Alfred Landé
(Germany, 1888–1976), who first discussed it. Each atomic species has its Landé
factor, whose calculation is a task of quantum mechanics. The Landé factors are on
the order of the unit. For completeness, it should be mentioned that the atomic
nucleus has an angular momentum and a magnetic moment too, but these do not
contribute to the phenomena we are discussing.

We are now ready to discuss diamagnetic and paramagnetic phenomena.

Diamagnetism
In the atoms and molecules of diamagnetic substances, the orbital and spin electron
angular momenta add up to zero. This fact is quite ordinary, because electrons tend
to form couples with total angular momentum equal to zero. In these cases, the total
angular momentum and the total magnetic moment are zero, as long as the system is
not perturbed.

When the atom is in an external magnetic field, its state is different from that of
the unperturbed one. To understand the issue, let us now assume that we have the
field B, gradually growing from zero to its final value. Our argument will, again, be
classical. Let us consider an orbit, which is also our circuit, normal to the field, as in
Fig. 9.16, of radius r. As the magnetic flux linked to the orbit varies, an electric
field E is induced (Faraday’s law) at all the points of the orbit (in particular). The
circulation of E about the orbit is equal to the opposite of the rate of change of the
linked flux of B. We can certainly consider B to be uniform on the extremely small
size of the orbit and write that E2pr ¼ �d Bpr2ð Þ=dt. Considering r to be constant,
the induced electric field is then

E ¼ � r
2
dB
dt

The force exerted by the field on the electron (–qeE) is tangential to the orbit. Its
moment about the center is –qeEr, is directed normal to the orbit, and gives the rate
of change of the electron angular momentum

dL
dt

¼ �qeEr ¼ qer2

2
dB
dt

qe

B

E

r

Fig. 9.16 An electron “orbit”
normal to B, the linked
magnetic flux and the induced
electric field acting on the
electron
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The total change in the electron orbital angular momentum, ΔL, when the
magnetic field has reached the final value B is immediately obtained by integration
of this equation, obtaining DL ¼ qer2=2ð ÞB. Correspondingly, the electron has
gained, relative to the unperturbed state in the absence of a magnetic field, an extra
corresponding magnetic moment Dl. As we are considering the orbital momenta,
the proportionality constant is –qe/(2me), and we have

Dl ¼ � qe
2me

DL ¼ � q2er
2

4me
B, ð9:27Þ

Notice that the minus sign is substantially a consequence of the Lenz law.
Namely, the extra magnetic moment Dl, resulting from the change in the orbital
motion, tends to oppose the cause that generated the effect, which is the growth of
B, and consequently, Dl is opposite to B. Again, this result is validated by being in
accord with quantum mechanics. This substantially explains diamagnetism; namely,
the induced magnetic moment is proportional to the magnetic field and in the same
direction and opposite sense.

Consider now orbits that are not normal to the field. The argument is the same if
we take, in the place of B, its component perpendicular to the orbit. Let us consider
a frame with its origin in the center and the z-axis in the direction of B. In
Eq. (9.27), we must write, in place of the square of the orbit radius r2 = x2 +
y2 + z2, the square of its projection normal to B, namely r′2 = x2 + y2. In calcu-
lating the macroscopic effects, we must consider an average on all the orbit ori-
entations. Clearly, the directions being randomly distributed, we have
x2
� � ¼ y2

� � ¼ z2
� �

, and consequently, r02
� � ¼ x2

� �þ y2
� � ¼ 2 r2

� �
=3. We then

write in place of Eq. (9.27)

Dl ¼ � q2e r2
� �
6me

B; ð9:28Þ

where r2
� �

is the mean value of the orbit square radius. The induced magnetic
moment per unit volume is immediately obtained by multiplying this average value
times the number of molecules per unit volume np, namely

M ¼ � q2enp r2
� �

6me
B: ð9:29Þ

We have found that M is proportional to and opposite of B. Diamagnetism is a
property of substances whose atoms have all their electronic shells filled with
electrons, because all the electrons are then paired. Such are He and the noble gases.
The singly ionized monovalent metals (Li, Na, Cs, etc.) are diamagnetic for the
same reasons. In the vast majority of cases, the susceptibility is quite small, typi-
cally on the order of 10−5, as one can see in the examples in Table 9.1.
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Paramagnetism
The pairing of atomic electrons in couples of equal and opposite angular momenta
is clearly not possible if the number of electrons is odd. More cases exist in which
some of the electrons are un-paired. In all these cases, the atom (or the molecule)
has a non-zero intrinsic magnetic moment, namely a moment existing even in the
absence of an acting field. These are the paramagnetic substances.

However, in the absence of an external field in any (macroscopically)
infinitesimal volume (very small but still containing a large number of molecules),
the net magnetic moment is zero. The reason is the same as that for the polar
dielectrics. In their thermic statistical equilibrium, the molecular magnetic moments
lJ are casually oriented, with the same probability in all directions. In the presence
of a field B, the magnetic moments tend to orient in the direction and sense of B (in
the same sense, because both lJ and B are constant). The thermic motion opposes
this ordering process. This situation is identical to that of the polar dielectrics. The
probability of finding a molecular dipole l at the angle h with the field B is given by
the Boltzmann factor (see Volume 2, Chap. 5) as a function of the temperature and
the energy of the dipole at that angle, namely

P hð Þ ¼ Ae�
U

kBT ¼ Ae
lJB cos h

kBT ; ð9:30Þ

where kB is the Boltzmann constant. In this case as well, as for the polar dielectrics,
the exponent is generally quite small, and we can expand the exponential in series
stopping at the first term. The argument continues exactly as that in Sect. 4.7 for the
polar dielectrics, and we will not repeat it. The conclusion is that

M ¼ np lh i ¼ npl2J
3kBT

B: ð9:31Þ

where lJ is the intrinsic magnetic moment and np is the number of molecules per
unit volume.

We have found that the induced magnetization is in the direction and sense of
the inducing field and is proportional to it. The simple proportionality is a conse-
quence of the smallness of the exponent on Eq. (9.30), a feature that has allowed us
to replace the exponential with the first term of its development in series.
Equation (9.31) is called Curie’s law, from Pierre Curie (France, 1859–1906), who
established it in 1895. The law also tells us that M is inversely proportional to the
absolute temperature. Contrastingly, diamagnetism is independent of temperature.

In our model, the magnetic susceptibility is

v0 
 v ¼ npl2l0
3kBT

; ð9:32Þ

which is a positive quantity. Susceptibilities of paramagnetics are usually small, but
somewhat larger than for diamagnetics. Some examples are in Table 9.2. The
elements with one unpaired electron, namely the alkalines (Na, K, Rb, Cs), and Mg,
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Al and Mn, are paramagnetic. Oxygen is a particularly strong paramagnet. Note that
the magnetic moment induced by deformation of the atoms is present in the
paramagnetic substances too, but is usually subdominant compared to the orien-
tation effect.

QUESTION Q 9.1. Using the information found in this chapter, what is the mag-
netic susceptibility of aluminum at 200 K? h

9.7 Ferromagnetism

As we have already stated, in a ferromagnet, the relations between the B, H and
M fields are not linear. We shall see now that they are not even single-valued. Let
us consider the following experiment. Begin with the setup shown in Fig. 9.17,
consisting of an iron torus around which we have tightly wound N turns of a
conductive wire, a battery, a variable resistor and an amperometer. The battery will
produce a current of constant intensity I that we can regulate acting on the variable
resistor and measure with the amperometer.

The H field can be simply calculated using the Ampère law. Symmetry tells us
that the lines of H are circles concentric with the torus. We then choose, as a closed
curve of the Ampère law, one of these circles, say, C inside the solenoid, and we
write

I
C

H � ds ¼ Ilinked: ð9:33Þ

Equation (9.33) immediately gives us Hh = NI, where h is the length of C and

H ¼ NI=h: ð9:34Þ

We see that H is inversely proportional to the total length of the magnetic circuit.
In addition, H is directly proportional to the product of the current intensity times
the number of turns. This quantity is called the magnetomotive force and is

Γ

Fig. 9.17 The set-up for
measuring the B field as a
function of the H field
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measured in ampere-turns. This conclusion is quite general, as we shall discuss in
Sect. 9.8, and consequently, the measurement unit for H is often called ampere-turn
per meter. Obviously, this is nothing more than an ampere per meter (A/m.), given
that the number of loops is dimensionless. In general, we can directly control the
field H by controlling the currents.

If we now want to know B, we would need a relation between B and H, or a
relation between B and M. As a matter of fact, such single-valued relations do not
exist, because the magnetization M does not simply depend on the actual value of
B, but also on its precedent values, or, as it is said, on the magnetic history of the
material.

Let us use our setup and start measuring. We have taken care to demagnetize the
iron by heating it to a very high temperature, where the ferromagnetic properties are
lost (as we shall soon see). This process cancels the magnetic history. We now want
to measure H and B at different values of the current. The former is immediately
given by Eq. (9.34) measuring I. As for B, symmetry tells us that its lines are circles
concentric to the torus as well. We also know that it is zero outside the solenoid. We
can measure B in the iron by opening a small slot on the torus perpendicular to its
axis. B being continuous across a surface to which it is normal, B in the gap is equal
to B in the iron.

In Sect. 7.5, we saw how to measure B with the flip-coil method, taking
advantage of Felici’s law. We can use a similar method introducing a small coil into
the gap, made of winding n loops (to enhance any effect) of area S. We cannot flip it
by 180° but we can extract it quickly and measure the total charge Q. We lose a
factor of 2 compared to Eq. (7.21). The flux variation is equal to the flux inside,
which we call Uin, because the flux outside is zero. Equation (7.21) without the
factor 2, if R is the resistance of the measuring circuit, gives us

Q ¼ Uin=R ¼ nSB=R; ð9:35Þ

from which we know B, the quantities n, S and R being known by construction (or,
even better, by calibration).

Finally, by measuring the fields B and H and varying the current intensity, we
obtain the diagram in Fig. 9.18, which is called the magnetization curve. Let us
discuss it.

The diagram in Fig. 9.18 has the magnitude B on the ordinate axis and
l0H rather that H on the abscissa, in order to have homogeneous quantities on the
two axes. Notice that the l0H scale is about four orders of magnitude wider than the
B scale.

Curve 1 shows the performed measurements starting, as we have said, after
having canceled the magnetic history. One sees that when H increases, B increases
much more, initially almost linearly, but very soon non-linearly. Already, at quite
small values of l0H, the values of B are very large. Notice that l0H is what the
value of B would have been if the solenoid had contained air instead of iron. Hence,
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it is the iron that produces such a high field. The fact is that even modest values of
H induce a very large magnetization M. The latter is equivalent to a huge current
density on the surface of the torus. As we know, B is due to both conduction and
magnetization currents.

If we further increase H, the curve tends to level, or, as it is said, to saturate, as
shown in Fig. 9.18. In the scale of the diagram, it looks like B would become a
constant. This is not really true. Rather, B continues to rise for increasing l0H, even
if slowly. The slope of this part of the magnetization curve is equal to one. The
saturation value for iron (depending on the alloy) is around 2 T. To be precise, the
saturation is not of B, but of M, which cannot be larger in practice than a certain
value.

Let us now suppose that, once we have reached saturation, we begin gradually
decreasing the current, and hence H, always measuring B. We find out that our
measurements do not follow, in the opposite direction, the initial curve, but rather
we are now on branch 2 in the figure. As anticipated, B is not a single-valued
function of H.

Notice, in particular, that at zero current, namely when H = 0, B is not zero but
may have a sizeable value. This is due to a residual magnetization, which we call
Mr. The torus is now permanently magnetized. Let us, however, continue, sending a
current of the opposite sign. We are now increasing H along the negative axis of the
diagram. We are still on branch 2. When H reaches the value marked as Hc, called
coercivity and also the coercive field, the B field is zero. Notice that the magneti-
zation is not zero at this point, but rather, according to Eq. (9.8), is equal to –Hc. If
we continue to increase the negative value of H along prong 2 of the curve, we
reach saturation again, with inverted signs.

If we now invert the process once more, namely we gradually take the current to
zero, invert it and increase over positive values, we find branch 3 in Fig. 9.18. The
set of curves 2 and 3 together is called a hysteresis cycle.
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Fig. 9.18 Magnetization curves
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We can still learn more. Suppose, for example, we move along branch 3
increasing the current, but we do not go as far as saturation. Rather, we stop at point
A in the figure, and then decrease the current, and H. We find that we now move
along a new branch, the initial part of which is shown dotted in the figure. With
similar actions, we can reach every point inside the two extreme curves 2 and 3.

In conclusion, for every value of H, the magnetic field B, and the magnetization
as well, can take an entire interval of different values. The actual value of that
interval depends, as we anticipated, on the magnetic history, namely what has
happened before.

We have not yet seen how to demagnetize the metal, namely to reach the point
H = B = 0 in the diagram. There are two ways. We can, as already mentioned, heat
it above the transition to non-ferromagnetic temperature, or we can go through a
series of hysteresis cycles of decreasing amplitude.

Notice that the shape of the magnetization curves, of which Fig. 9.18 is an
example, strongly depends on the material, in particular, on the alloy.

Hysteresis is a dissipative phenomenon, corresponding to a loss of macroscopic
energy (which transforms into thermal energy). Indeed, let us suppose gradually
changing the current, similarly to what we did above, going through a cycle in the
(H, B) plane. As B varies with time, so does its flux linked to the solenoid.
Consequently, the emf E ¼ �ANdB=dt appears at the ends of the solenoid (A is the
area of a loop and N is the number of loops). Neglecting the passive resistances, in
order to have the current intensity I, the battery must spend a power, namely energy
per unit time, equal to dU=dt ¼ �EI ¼ HhAdB=dt; where we have used Eq. (9.34)
to express I as a function of H.

The total energy spent is obtained by integration over the cycle, namely

U ¼ hA
I

HdB; ð9:36Þ

which is the area of the cycle in the (H, B) plane times the volume of the torus.
From what we have discussed, it is clear that alloys with the narrowest possible

cycles (namely with the smallest area) must be used in the transformers nucleuses,
while alloys with the widest cycles (namely with the largest residual magnetization)
must be used for permanent magnets.

QUESTION Q 9.2. You use the method mentioned above to measure a
field intensity B = 0.2 T moving a coil of 1 cm2 area made of 50 turns. The
internal resistance of your ballistic galvanometer is 100 X. What is the charge you
measure? h

QUESTION Q 9.3. Consider a magnetic circuit 40 cm long, with a section of
10 cm2, having the hysteresis loop in Fig. 9.18. Approximate the loop with a
parallelogram and evaluate the energy dissipated in 100 loops. h
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9.8 Uses of Ferromagnetism

As we have seen, in ferromagnetic materials, relative modest conduction currents
are sufficient to produce high values of B. This property makes ferromagnetics very
useful in the construction of transformers, electrical motors, electromagnets, etc.
Note that periodic variations with time of the conduction currents in the coils drive
the material through cycles of hysteresis. This implies losses of macroscopic
energy, proportional to the area of the cycle.

As a first example, we consider the use of ferromagnetism to build inductors of
high inductance. Inductors are made by winding a wire in a (large) number of loops.
To increase its inductance, we can do that around a small ferromagnetic ring. The
geometry is like that in Fig. 9.17, but on a smaller scale. If we remember that the
inductance is the ratio between the flux of B and the current intensity that is its cause,
we see that an iron core, as it is called, may increase the inductance by large factors.
Let us look more closely at the issue, considering that the inductors are used in
electronic circuits in which the current intensities are generally quite small. Take, for
example, the first segment of curve 1 in Fig. 9.18, where we can consider the
dependence of B onH to be linear, at least in a first approximation. We can then write

B ¼ lH ¼ l0jH ¼ l0jNI=h: ð9:37Þ

The values of the magnetic permeability relative to vacuum j, in the limits in
which it can be defined, are very high for ferromagnetics, ranging from several
thousands to millions. j tells us how many times B is larger than l0H, which is the
value it would have in a vacuum.

We calculate the inductance L of our torus starting from the flux of B linked to
the current, which is UB ¼ NBA ¼ l0jIAN

2=h, where A is the area of the loops
(namely the cross section of the torus) and h is the length of the torus. The
inductance is then

L ¼ jl0N
2A=h: ð9:38Þ

As expected, the inductance is proportional to j, which, as mentioned, can easily
be 103–104. By the same token, the usefulness of iron nuclei in transformers and
electrical motors should be clear.

QUESTION Q 9.4. The alloys commonly used to manufacture inductors are the
ferrites. You have a small torus of a ferrite with j = 640, which is 1 cm long and
has a 4 mm2 section and a sufficiently long copper wire. If you want an inductor of
L = 1 mH, how many turns do you have to wrap? h

As a second example, let us consider electromagnets. Several cases exist in
which an object must be introduced into a strong magnetic field. Think, for
example, of NMR apparatuses, into the field of which parts (or all) of the human
body must be introduced for medical analysis, to the magnets used to deflect or
guide particles or nuclear beams, to a cyclotron, or to a mass spectrometer.
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Electromagnets are used to produce the magnetic field of requisite intensity in the
useful space region, as we already did on several examples. We can start again from
Fig. 9.17 (the torus must now be thought of as being much larger and heavier than
for an inductor). The core must be interrupted to make the useful space available.
Let us cut a short gap, of thickness d, as in Fig. 9.19, creating two magnetic poles, a
North one and a South one. Such systems are called dipole magnets.

If d is sufficiently small and in a first approximation, the B and H fields in the
torus have not changed. As for the fields in the gap, consider that the surfaces of the
cut are normal to the lines of B. Being that the normal component of B continuous,
B in the gap is not very different from B in the iron. To be precise, its lines open a
bit at the borders, similarly to the lines of E at the borders of a parallel plate
capacitor, but the effect is small. As matter of fact, the magnetic flux UB is equal
through all the sections, both in the iron and in the gap. For this reason, we talk of a
magnetic circuit.

The behavior of H is different. Indeed, when we cut the torus, we produced two
surfaces, namely the poles, on which �r �M, i.e., the magnetic charge density,
which we call qm, has opposite signs and is large. We know that the circulation of
H about a closed line is equal to the linked conduction current. Let us choose a circle,
C, inside the ring. Symmetry tells us that the field ofH is always tangent to C and has
two different values, HF in iron and HG in the gap. The Ampère law gives us

HFhþHGd ¼ NI;

where we have considered the length of the curve inside the iron to be h, rather than
h–d, given that d � h. Now, in the gap HG = B/l0, where B is the magnetic field,
both in the iron and in the gap. We can then write the last equation as

B
I

d
N
S

Fig. 9.19 Schematic view of
an electromagnet

324 9 Magnetic Properties of Matter



l0HFð ÞhþBd ¼ l0NI; ð9:39Þ

The equation contains two unknowns, HF and B. To solve it, we need a relation
between HF and B. However, as we know, there is no single-valued relation
between these two quantities. In other words, for a given current intensity, B, and
hence H in the gap, are not uniquely defined, but rather depend on the magnetic
history. We discussed this issue in Sect. 9.7, where we also saw how experimentally
to determine the relation between HF and B.

Suppose that we have obtained the hysteresis cycle in Fig. 9.20 with that pro-
cedure. Once we have it, we can solve the problem graphically. We notice that in
the plane (l0HF, B), Eq. (9.40) represents a straight line, having slope –h/d, and
intercepts l0NI/h and l0NI/d on the horizontal and vertical axes, respectively. Note
that the slope is independent of the current intensity. When I varies, the line moves
parallel to itself.

Consider the line (a) in Fig. 9.20 relative to a generic value I of the current
intensity. The solution is given by the point at which the line cuts the curve inside
the hysteresis cycle we are moving on. It can be any between points 1 and 2.

Particularly interesting is line b, which is for I = 0. The points where it cuts the
magnetization curve give the values of HF (inside the iron) and B (both inside the
iron and in the gap). As we see, the field HF is not necessarily zero.

What is zero is the circulation of H, and now, in contrast to when the iron torus is
complete, the values of H are different in the iron and in the gap. Indeed, they have
opposite signs.

If the hysteresis cycle is sufficiently narrow and we are looking for an approx-
imate solution for small values of B, we can solve the problem analytically
assuming that B ’ lHF. Graphically, this means approximating the cycle with a
straight line. In this case, we can substitute HF = B/l in Eq. (9.39), obtaining

a

b

B

1

2

μ
0
NI/d

μ
0
NI/h

μ
0
H

F

Fig. 9.20 The hysteresis
cycle and Eq. (9.40) for a
generic current intensity
(a) and null current (b)
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B ¼ NI
h=lþ d=l0

: ð9:40Þ

As we have noted above, the flux of B, UB, is constant along the entire magnetic
circuit. To obtain its expression, we multiply Eq. (9.40) by the section area
A (which is also constant in this case), obtaining

UB ¼ NI
R : ð9:41Þ

with

R ¼ h
Al

þ d
Al0

: ð9:42Þ

Hence, the magnetic flux is equal to the ratio between the magnetomotive force,
namely the number of ampere-turns NI, and the magnetic reluctance R. The latter
is the sum of the reluctances of the parts in series of the magnetic circuit, one in iron
and one in air. The reluctance of each segment is directly proportional to its length
inversely to its section and to the magnetic permeability of the medium.

Equations (9.41) and (9.42) are very similar to Ohm’s laws. They are called
Hopkinson’s laws, after John Hopkinson (UK, 1849–1998), but also Ohm’s laws
for magnetic circuits. Hopkinson’s laws hold only in a first approximation, but are
often very useful in practice in the design of magnetic circuits for a preliminary
evaluation of the orders of magnitude of the problem.

QUESTION Q 9.5. Consider a ferromagnetic torus with a gap, as in Fig. 9.19. It is
2 m long, has a section that is A = 800 cm2 and the gap is 2 cm wide. The iron has
the initial magnetization curve shown in Fig. 9.18. Find the reluctances of the core
and of the gap. Repeat with a 5 cm wide gap. h

The configuration of Fig. 9.19 has been useful in its simple geometry for our
discussion of the working principles of electromagnets. The design of electro-
magnets for practical uses is a full branch of applied physics. Electromagnets come
in very different shapes. However, in any case, the major part of the magnetic
circuit is in iron, called the iron core. The useful part is the gap in air, whose
reluctance is l � l0. Consequently, the reluctance of the gap is much larger than
that of the part in iron. The length of the non-iron parts should be reduced to a
minimum, but the gap should still be wide enough to serve its purpose. Once the
geometry has been defined, the magnetic flux is proportional to the ampere-turns.
Given this, the coils can be located where it is most practical, not necessarily
distributed all around the torus, as in Fig. 9.19. In addition, the iron core does not
need to be a torus, but can have any practical shape, provided its cross-section is
always large enough so as not to increase the reluctance [see Eq. (9.42)].
Figure 9.21 shows two examples of common geometries.
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9.9 Microscopic Interpretation of Ferromagnetism

As we have already mentioned, atomic electrons are usually paired into couples in
which the two spins are in opposite directions. The total spin of the pair is zero.
Ferromagnetic materials, like paramagnetic ones, have atoms with one or two
unpaired electrons. Consequently, their magnetic spin moments may contribute to
the macroscopic magnetization M. The characteristic property of ferromagnetics is
that the unpaired electrons of different atoms (and of the same atom if they are more
than one) have a strong tendency to align parallel with one another. This tendency is
not limited to distances of the atomic scale (which, remember, are tenths of a
nanometer), but extends over many micrometers or more, which are enormous
distances on the atomic scale. The interaction responsible for the alignment cannot
be due to the magnetic interaction between magnetic moments, because its intensity
is by far too large. Once more, the nature of this interaction is purely quantistic. Its
consequence is that, in ferromagnetic materials, the magnetic moments of the
unpaired electrons spontaneously align in the same direction in the absence of an
external field B.

Many ferromagnetic materials exist. Some of them are pure elements (Ni, Fe,
Co, Gd), many more are alloys. The ferromagnetic substances are in the solid phase,
namely they are crystals. Their ions have equilibrium positions at the vertices of a
regular lattice. For example, the unit cell is a cube for iron, a face-centered cube for
nickel, and a hexagonal prism for cobalt. Usually, the regular structure is not seen
by the naked eye, because the material is polycrystalline, namely made by
micro-crystals, whose dimensions are typically between 1 and 100 µm.

The anisotropic structure tends to align the magnetization in a small number of
preferred directions (along the sides and/or the diagonals of the unit cell). These
directions are called easy magnetization axes. For example, iron has six easy
directions, nickel has eight of them, and uniaxial crystals have only one easy
direction. The spontaneous magnetization process leads, in any case, to the con-
figuration of minimum energy. Consider, for simplicity, a uniaxial crystal. Even in
this simplest case, energy can be minimized with a partition of the ferromagnet into
a number of sub-divisions. Indeed, if the whole crystal is magnetized in the easy

Fig. 9.21 Two common
geometries of an
electromagnet
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direction in the same sense, as in Fig. 9.22a, the magnetic field outside the crystal
extends over a considerably large volume, and correspondingly, the magnetic
energy stored in its volume is large. If the magnetization in the two halves of the
crystal has the same direction but opposite senses, as in Fig. 9.22b, the energy of
the external magnetic field is smaller. If the regions of magnetization opposite to
one another are four, as in Fig. 9.22c, the field energy is even smaller.

However, the field energy does not represent all the energy in the game.
Consider the separation surface, called the magnetic walls, between two regions, or
domains, of opposite magnetization. The spins on the two sides of the wall have
opposite senses. The interaction responsible for the alignment would tend to align
them. This means that the energy of parallel spins is smaller than the energy of
anti-parallel spins. Hence, introducing a wall increases the energy of the system by
a boundary energy, which is proportional to the surface of the wall. When the
number of domains in the crystal increases, the boundary energy, which is a surface
energy, increases, while the field energy, which is a volume energy, decreases.
Consequently, a configuration exists in which the sum of the two is a minimum.
This is the equilibrium configuration in the absence of external agents. Each crystal
contains a number of regions of uniform magnetization, called Weiss domains, after
Pierre-Ernest Weiss (France, 1865–1940), who developed the domain theory in
1907.

Consider now the polycrystalline structure. The easy orientations of the
microcrystals are distributed at random, as shown schematically in Fig. 9.23. This
explains why the magnetization does not usually appear in a macroscopically-sized
ferromagnet, such as a common piece of iron, even if it is present at the microscopic
level. Notice, however, for the sake of precision, that the cold rolling process used
to produce iron strips, of wide commercial application, tend to align the
micro-crystals, which consequently have an easy direction parallel or near to the
rolling direction.

N S

S N S N S N

N S N S

S

N

(a) (b) (c)

Fig. 9.22 Schematic representation of a ferromagnetic microcrystal with the magnetic field
produced by magnetization in the surrounding space. The longer sides are parallel to the easy axis.
a A single domain, b two domains, c four domains
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Let us now take a demagnetized piece of iron through the magnetization curve,
introducing it into a current-carrying solenoid. Let us first think of the microcrystals
with an easy axis parallel (or almost so) to field B in the solenoid. The energy of
one of these crystals will diminish if the domains with magnetizationM in the sense
of B grow at the expense of those with opposite M. In fact, a domain grows with a
movement of its walls toward the outside. For small values of H, the displacement
is small and the process is reversible. Namely, if we diminish the applied field
rather than increase it, each wall inverts its motion. This corresponds to part (a) of
the curve in Fig. 9.24.

For higher values (part b of the curve), the motion of the walls becomes irre-
versible. When a wall reaches a crystal defect, it sticks to it, so to speak, and
stops up to when the field has grown enough to tear it off. Once free of the obstacle,
the wall suddenly jumps to the new equilibrium position, corresponding to that
value of the field. These are called Barkhausen jumps, after Heinrich Barkhausen
(Germany, 1881–1956), who discovered the process in 1919. Energy is lost in a

10 μmFig. 9.23 Sketch of the
crystallites and Weiss
domains in a ferromagnet.
Note that the easy
magnetization direction does
not always belong to the plane
of the figure

B

μ
0
H

a

b

c

Fig. 9.24 An initial
magnetization curve
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jump, because the rapid local variations of the magnetic field produce eddy
currents, whose energy is lost through the Joule effect. The insert in Fig. 9.24
shows an enlarged segment of the resulting magnetization curve. If we proceed with
a decreasing applied field, the “jumping motion” does not follow the exact same
path in the inverted direction. The process is irreversible.

Several techniques exist to visualize the magnetic domains. One of them consists
of illuminating the sample with polarized light and observing it in reflection through
a polarization filter (see Volume 4). The initial state of light polarization is altered
by the magnetic field on the surface in opposite ways for opposite senses of the
magnetization. Consequently, the images of adjacent domains of oppositeM appear
to be of contrasting intensity. Without entering into any detail, we simply show, in
Fig. 9.25, a sequence of pictures of the face of a single crystal of a Si–Fe alloy. The
crystal was quite large, namely a slab of 17 � 14 � 3 mm3, cut to have an easy
axis on the face. Picture (a) was taken after demagnetization of the sample, and the
subsequent ones, from (b) to (g), for increasing H-field applied parallel to the easy
axis, up to complete saturation (in g). One sees how the “black” domains become
larger and larger, at the expense of the “white” ones, until, when saturation is
reached, the whole crystal has become a unique Weiss domain.

Let us now go back to our polycrystalline structure. What about the micro-
crystals whose easy axes are not parallel to the applied field? Well, they do the best
they can, namely as the domain at the smaller angle to the field grows, the other
becomes smaller.

For very high fields, we reach the segment c of the curve. Here, the whole
crystallites are single Weiss domains. Increasing the applied field, we do, in fact,
still increase somewhat the magnetization M. This is done by turning in the crystals
whose easy axes are at angles with the applied field. This is a very hard process,
however, and consequently, the slope of the curve c is very small.

Fig. 9.25 The opposite sign
domains on the face of a SiFe
crystal (see text) for growing
applied field. Reprinted with
permission from C.H. Fowler
and E.M. Fryer; Physical
Review 94 (1953) 52.
Copyright (1953) by the
American Physical Society
(http://journals.aps.org/pr/
abstract/10.1103/PhysRev.94.
52)
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A simple and spectacular demonstration of the domain orientation process in the
central (b) part of the magnetization curve was made by Heinrich Barkhausen in
1919. It is called the Barkhausen effect and is shown in Fig. 9.26.

You should prepare several iron sticks (you can use the iron used for transformer
cores, for example) and introduce them into a solenoid of a few thousand loops.
Any electromotive force induced in the solenoid is amplified by an electronic
amplifier, whose output is sent to a loudspeaker. We now move a permanent
magnet near to the sticks. The field of the magnet causes the orientation of a certain
number of domains, namely the movement of a number of walls. The corre-
sponding flip of atomic magnetic moments produces a small variation of the flux
B linked to the circuit, which generates an emf. After amplification, we hear the emf
as a “crick”. When we move the magnet along the direction of the sticks, we hear a
sequence of such cricks. We are listening to the moving atomic magnetic moments!

When we have reached the end of the sticks, we move the magnet a short
distance away, bring it back to the end from which we started, and repeat the
previous movement. The noise is now much fainter. Repeating the process again,
the noise soon disappears completely. All the domains have been oriented. If we
now move the magnet back in the opposite direction (or in the same direction with
the other pole of the magnet near to the sticks), the noise is strong again, because
we are orienting the domains in the direction opposite to that which they have.

As a final observation, we can check the reversibility of the process for small
disturbances. We put the pole of our magnet near a point of the sticks and then
move it back and forth by a small distance. The noise we hear is very faint; the
process is locally reversible.

We conclude with an important observation. Ferromagnetism is a particular
phase of the ferromagnetic materials, which exists only below a well-defined critical
temperature, a characteristic of the substance, or alloy. It is called the Curie tem-
perature, Tc, after Pierre Curie. Above its Curie temperature, the material is
paramagnetic.

Curie temperatures for the most common, ferromagnetic pure elements are 770 °C
for Fe, 1131 °C for Co, and 358 °C for Ni. The ferromagnetic-to-paramagnetic transition
can be easily verified. For example, a wire of nickel (whose Curie temperature is
relatively low) is attracted by a magnet at room temperature. If we heat it on a flame
above Tc, the magnet does not attract it anymore. If we wait a bit, we see the wire
jumping to the magnet pole when its temperature has sufficiently decreased.

N
S

Amplifier

Loudspeaker

Fig. 9.26 Demonstration of
the Barkhausen effect
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Gadolinium has an even lower Curie temperature, namely Tc = 16 °C. It is
usually paramagnetic at room temperature, but you can induce the transition to
ferromagnetic by simply dropping it into a glass of water with some ice in it. This
allows for performing amusing experiments and tricks (think of them yourself and
have a look on the web).

9.10 Energy of Steady Currents in the Presence
of Magnetic Materials

In Sect. 8.4, we discussed the energy of a system of steady (macroscopic) con-
duction currents in a vacuum. The system is defined when the current density
jC(r) is known for every r in space. We have also seen that the energy is stored in
the magnetic field B generated by jC(r) as

U0
m ¼ 1

2l0

Z
all space

B2dV : ð9:43Þ

When materials are present, the current density is the sum of two terms: the
conduction current jc and the microscopic magnetization currents. We want here to
express energy in terms of the macroscopic currents only. Under certain aspects, the
situation is similar to that considered in Sect. 4.9, where we discussed the analogous
problem in electrostatics, considering the free charges energy. However, the two
cases also have important differences. We recall that we are considering the
macroscopic magnetic field, namely the field mediated on distances and times
substantially larger than the atomic ones. We also recall that, being that the energy
is proportional to the square of the field, the macroscopic field energy is different
from that of the microscopic field.

Let us start from a geometrically simple case. We consider a straight solenoid,
whose length l is much larger than the diameter of its section S. Let I be the current
intensity and n the number of turns per unit length. The solenoid is completely full
of the material under analysis. Suppose that the H field is proportional to B, namely
that B = jloH. Here, j is the magnetic permittivity, which we shall assume to be
constant. The material may be paramagnetic (or ferromagnetic at very small
magnetization), and then j > 1, or diamagnetic, and then j < 1. Let L be the
inductance of the solenoid and U0

m its magnetic energy in absence of the core
(namely in a vacuum). The energy of the system with the core is

Um ¼ 1
2
LI2 ¼ 1

2
jn2I2l0lS ¼ jU0

m: ð9:44Þ

Notice that Um [U0
m if the material is paramagnetic or ferromagnetic, Um\U0

m
if it is diamagnetic.
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The real solenoids always have a finite length, and consequently, their magnetic
field is different from zero outside, especially near the faces. This fringe effect is
important in the subsequent arguments. We made the hypothesis of a very long
solenoid just to find, in a easy way, that Um ¼ jU0

m, an expression that we shall see
will hold, in general.

As always, the energy of a state is the work to be done to bring the system into
that state from the state of zero energy. We take as a zero energy state the state in
which the solenoid is empty and the current is zero. To reach the desired state, we
can proceed as follows. We switch on the current up to the desired value, reaching
the state shown in Fig. 9.27a. The (electric) work done on the system, by the battery,
is U0

m. We now introduce the core. When the core is in the non-homogeneous field
region, it is under the action of a force, which is attractive toward the inside in the
paramagnetic case, (j > 1), repulsive toward the outside in the diamagnetic case
(j < 1). Let us discuss the paramagnetic case (the diamagnetic case is completely
analogous), shown in Fig. 9.27b. The (mechanical) work to be done on the system is
the work toward the magnetic force Fm shown in the figure. This work is negative.
One might think, at this point, that the final energy would be smaller than U0

m.
However, we have just seen that Um [U0

m. What did we do wrong?
We did nothing wrong; rather, we have not finished yet. Indeed, in the process of

introducing the core, the current intensity must remain constant, and this does not
happen without spending work. Indeed, during the movement of the core toward the
inside, the field B increases and its flux linked to the solenoid increases as well. This
generates an emf that, for the Lenz law, opposes the cause that has generated it,
namely it tends to diminish the existing current. Consequently, we must keep the
battery connected while moving the core in. The battery will spend a positive electric
work on the system. We shall not develop the calculation here, but only state that the
result is that the sum of the mentioned mechanical work (negative) and electric work
of the battery (positive) is indeed positive and equal exactly to Um � U0

m.
The case of the diamagnetic core is completely analogous, once the signs are

properly changed.
Let us now go back to the magnetic energy given by Eq. (9.44). We see that we

can write it as

Fm

(a) (b) (c)

Fig. 9.27 a A solenoid in a vacuum, b introducing the magnetic material core, c the core is
completely inside

9.10 Energy of Steady Currents in the Presence of Magnetic Materials 333

www.ebook3000.com

http://www.ebook3000.org


Um ¼ 1
2

nIð Þ jl0nIð Þ lSð Þ ¼ 1
2
H � BV : ð9:45Þ

In this particular case, at least, energy appears to be distributed in space with
density

wm ¼ 1
2
H � B ð9:46Þ

and total value

Um ¼ 1
2

Z
all space

H � BdV : ð9:47Þ

We shall now show that these equations hold, in general, for linear magnetic
materials, namely when B = jl0H, under time-independent conditions.

Our arguments will be quite similar to those of Sect. 8.4. As in that discussion,
we consider a system of steady conduction currents jC(r) in the volume V, but now
in the presence of magnetic materials. We start from the state in which all the
conduction currents are zero. The magnetization currents are zero as well (as we are
not considering permanent magnets). We now gradually increase the conduction
currents. The materials magnetize, namely they acquire magnetic dipole moments
or, in other words, magnetization currents are produced, which grow with time. The
time variation of the magnetic field B of both currents generates an electric field
E according to

r� E ¼ � @B
@t

: ð9:48Þ

The (electrical) work to be done on the charges of the conduction currents
against the induced field in the infinitesimal time interval dt is �E � jCdt per unit
volume. Integrating on the total volume of the system of currents V, we have

dW ¼ �dt
Z
V

E � jCdV ¼ �dt
Z

all space

E � jCdV ;

where, on the right-hand side, we extended the integral to the entire space. This is
allowed, the integrand being zero outside V, and will turn out to be useful, as we
shall soon see.

We now eliminate jC using the equation r�H ¼ jC, obtaining

dW ¼ �dt
Z

allspace

r�Hð Þ � EdV :
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We proceed with the same arguments as in Sect. 8.4, obtaining in place of
Eq. (8.16)

dW ¼ dUm ¼
Z

allspace

B � dHdV : ð9:49Þ

To go further, we need a relation between H and B. We shall restrict ourselves to
the linear materials, in which the two field magnitudes are proportional to one
another. Then, and only then, we have B � dH ¼ d B �Hð Þ=2, and we can write

dUm ¼ 1
2

Z
allspace

d B �Hð ÞdV :

The total work to be done on the system is the integral of dUm from the state in
which B and H are zero to the state in which they have their final values. The result
is Eq. (9.47), as we wanted to prove.

Summarizing, Eqs. (9.46) and (9.47) express the magnetic energy of a system of
steady currents in the presence of linear magnetic materials. In other words, these
equations hold for para- and dia-magnetic materials. They also approximately hold
for ferromagnetic materials at very low values of the fields starting from
demagnetization.

We note that, in any case, the magnetization process implies rearrangement and
reorientation of the molecules. We are dealing with a very complex process. The
linearity hypothesis leads to simple expressions, as in the electrostatic case. When
the hypothesis does not hold, the energy of the system must be calculated by
integrating Eq. (9.49). This may be very difficult, as one might understand,
remembering that the result may depend on the history of the material, namely in
the presence of hysteresis.

Summary

In this chapter, we learned the following principal concepts:

1. Magnetic materials: dia-, para, and ferro-magnetic
2. The magnetization vector field
3. The relation between magnetization and the magnetization (microscopic)

current.
4. The vector field H and its causes
5. The equations ruling the time-independent magnetic field in the presence of

materials.
6. Magnetic permeability and susceptibility
7. The properties of the B and H fields
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8. The field H in absence of macroscopic currents
9. The non-existence of a magnetic charge

10. Microscopic interpretation of dia- and para-magnetism
11. The magnetic hysteresis
12. Microscopic interpretation of ferromagnetism
13. The macroscopic currents’ energy in the presence of magnetic materials.

Problems

9:1. A small piece of iron is suspended by a wire between the poles of a magnet
in a region of uniform field. Is it attracted by the North pole? Or by the South
pole? Or by neither of them?

9:2. A cube is uniformly magnetized. What is the magnetization at its center?
9:3. A small solid cylinder is introduced into a magnetic field, directed along its

axis. At a point of the axis, the magnetic field is now smaller than in a
vacuum. Is the material of the cylinder para-, dia- or ferro-magnetic?

9:4. In which of the following cases does the magnetic susceptibility depend on
temperature: diamagnetic, paramagnetic, ferromagnetic?

9:5. Can the lines of the H field be closed under time-independent conditions?
Can they radiate from a singular point?

9:6. Does the inductance of an iron core solenoid depend on: the number of
loops, the iron permeability, the temperature, the current intensity, the sec-
tion of the core?

9:7. A cylindrical iron bar is magnetized perpendicular to the axis. If we cut it
down the middle, do we obtain a South and a North pole on the new faces?

9:8. The poles of a powerful electromagnet have the shape of truncated cones
separated by an air gap in which B = 1.5 T. Very imprudently, you get close
with a wrench in your hand (never do that!). Suddenly, the wrench is pulled
out of your hand by the forces of the field (and might hit you). Where does it
stick? On the center of a pole, where the field intensity is greatest, or on the
rim, where its gradient is at a maximum?

9:9. A plate of parallel faces of a homogeneous material of permeability µ is
introduced into a magnetic field B0 directed normally to its faces. Determine
B and H in the plate.

9:10. A long and thin iron stick has a magnetization M parallel to its axis. Express
the H and B fields inside the stick.

9:11. Figure 9.28 represents an iron core (with a gap) around which a number of
turns are wound, carrying a steady current. Its section is A, its magnetic
permeability is µ. What are the fluxes of B and H through the surface
S shown in the figure?

9:12. A solenoid in air has inductance L. How much does the inductance change if
one fills the solenoid with a nucleus of permeability equal to 500?
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9:13. The poles of an iron core electromagnet have a surface of a few square
decimeters and a gap width of 1 cm. How much does the B field in the gap
change if we double the width of the gap, while keeping the current intensity
constant?

9:14. Figure 9.29 shows the magnetization curve for a certain type of iron. How
would you determine it experimentally? Starting from the diagram in
Fig. 9.28, draw the dependence of the permeability on H. Find the maximum
value of the permeability and the corresponding value of H.

SFig. 9.28 The system of
problem 9.13

500 1000 5150 2000

0.5

1.0

1.5

H(A/m)

B(T)Fig. 9.29 The magnetization
curve for problem 9.14
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Chapter 10
Maxwell Equations

Abstract In this chapter, we discuss the Maxwell equations that completely
describe all electric and magnetic phenomena. Maxwell found, in particular, that the
equation of the curl of the magnetic field valid under time-independent conditions
cannot hold in dynamics, being incompatible with electric charge conservation.
Maxwell solved the problem by introducing a new term. This term not only predicts
the existence of electromagnetic waves, the waves we use for our radio, television
and cellular phones, but also that light is an electromagnetic wave. Electricity,
magnetism and optics became unified under a single theory.

In this chapter, we study the Maxwell equations that completely describe all electric
and magnetic phenomena and that we have been gradually learning over the course
of these lectures. These four partial differential equations give the divergence and
the curl of the electric and magnetic field at every point in space and in each time
instant. The two equations for the divergences we learnt under time-independent
conditions and the Faraday equation for the curl of the electric field are valid
without any modification, in general. Contrastingly, we shall find that the equation
for the curl of the magnetic field valid under time-independent conditions cannot
hold in dynamics. Indeed, it would be incompatible with electric charge conser-
vation, which is a well-established universal law of physics. The problem was
solved by Maxwell, who introduced a new term, to which he gave the name of
displacement current. The term (which does not correspond to any physical current)
has enormous importance. It completely links electric and magnetic fields, which
become tightly connected in a unique physical entity, the electromagnetic field.
New physical phenomena are foreseen, in particular, the propagation of the fields in
an empty space with the speed of light. These are electromagnetic waves, which we
use for our radio, television and cellular phones. The Maxwell theory showed, in
addition, that light is just a type of electromagnetic wave. Electricity, magnetism
and optics became unified under a single theory.

In Sect. 10.2, we shall start with the example of an LC circuit driven by an
alternate emf at high frequency and see that it radiates an electromagnetic field
propagating throughout the surrounding space. While at low frequencies, electric
and magnetic fields are spatially separated and confined, one inside the capacitor,
one inside the inductor, at high frequencies, the fields invade the surrounding space,
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generating one another. We shall then show how Maxwell equations predicted the
existence of electromagnetic waves, which have their speed in a vacuum equal to
1=

ffiffiffiffiffiffiffiffiffi
e0l0

p
. As such, Maxwell could calculate this value from the known values of the

two constants, which had been measured in electrostatic and magnetostatic phe-
nomena, respectively. He found a value quite close to the speed of light. However,
the experimental uncertainties in those constants were still sizeable. Maxwell
needed a more precise control for his theory. To this aim, he designed an elegant
experiment to measure 1=

ffiffiffiffiffiffiffiffiffi
e0l0

p
directly, which we describe in Sect. 10.3.

In Sect. 10.4, we find the general expressions of the electromagnetic field energy
density and flux. We shall see, in particular, how the field energy flows not only
under dynamic conditions but also when nothing depends on time. We discuss
some simple examples of that in Sect. 10.5. Similarly, in Sect. 10.6, we see that the
electromagnetic field also stores linear momentum and that the linear momentum
density is proportional to the energy flux. As a consequence, the energy, linear and
angular momentum conservation laws for an isolated system of charged particles do
not hold if we only include the mechanical (namely that of the particles) energy,
linear and angular momentum, respectively. This is because each of these quantities
can be exchanged between matter (particles) and field during the evolution of the
system. However, the conservation laws rigorously hold when we consider the total
energy, namely the sum of the particles and field energy, the total linear momentum
of the particles and field, and the total angular momentum of the particles and field.

In Sect. 10.7, we re-express the Maxwell equations in a form that is useful in the
presence of matter, in terms of the macroscopic charge and current densities and of
the auxiliary fields D and H. In Sect. 10.8, we study the discontinuities of the
electric and magnetic fields in crossing a charged surface and a current-carrying
surface, respectively.

In Sect. 10.9, we find the general expressions of the scalar and vector potentials
and the differential equations ruling them. We shall find, once more, how the
equations for the potentials, which are equivalent to the Maxwell equation for the
fields, predict electromagnetic waves propagating in a vacuum with the speed of
light. In Sect. 10.10, we discuss the physical meaning of the potentials and find that
they are, respectively, the potential interaction energy and the potential interaction
momentum of the unit charge.

The relativity principle holds for the Maxwell equations in the form originally
established by Galilei only if the transformations of space coordinates and time
between two inertial frames are the Lorentz rather than the Galilei transformations.
Indeed, this was the historical reason that led H. Lorentz to his fundamental dis-
covery. As a matter of fact, the equations describing electromagnetic phenomena
were historically developed in a form already valid at high velocities and had no
need to be modified by relativity, as opposed to the case of the mechanical laws (see
1st volume of the course). We shall show the Lorentz covariance properties of
electromagnetism on the equations for potentials, rather than on those for fields,
because the former is more immediate and easier.
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10.1 Displacement Current

In this chapter, we shall complete the set of equations that describe the electro-
magnetic field in full generality. These partial differential equations ruling the
electric and magnetic fields are the famous Maxwell equations. James Clerk
Maxwell (Scotland UK, 1831–1879) worked on their development for 10 years
between 1855 and 1865, when he published the complete theory in the paper “On
the dynamical theory of electromagnetic field”.

As a matter of fact, we already know the Maxwell equations almost completely,
but a fundamental piece of them is still missing. We learnt two equations for the
divergence and the curl of the electric field, namely

r � E ¼ q
e0

ð10:1Þ

and

r� E ¼ � @B
@t

ð10:2Þ

and two equations for the divergence and the curl of the magnetic field, namely

r � B ¼ 0: ð10:3Þ

and

r� B ¼ l0j: ð10:4Þ

We have established, in particular, Eq. (10.4) under time-independent condi-
tions. If valid under dynamic conditions as well, the equation would imply that the
electric charge is not conserved, in contradiction to the experimental evidence. It
was not easy to show that in Maxwell’s time, but we can do it now very simply. Let
us take the divergence of the two sides of Eq. (10.4) and let us remember that the
divergence of a curl is identically zero. We immediately obtain that r � j ¼ 0. This
means that the current density is solenoidal everywhere, or, in other words, that the
current lines are always and only closed lines. But this is in contradiction with the
(local) charge conservation, which is expressed by the continuity equation, namely

r � j ¼ � @q
@t

: ð10:5Þ

Hence, the divergence of j is zero only under steady conditions. Maxwell dis-
covered the problem and proposed the solution. The logical process he followed to
this fundamental discovery was not, however, as simple as it looks today. It is
worthwhile analyzing it briefly. Note that, at the time, “understanding” a physical
phenomenon meant having a mechanical model capable of explaining it. Maxwell
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developed a mechanical model in which the electromagnetic field was similar to a
complex elastic medium, composed of substructures capable of polarizing under the
action of an E field. These substructures are not the molecules we know. The
polarization is a consequence of a displacement of the positive charges relative to
the negative ones. For this reason, D is called electric displacement. If E varies with
time, this relative displacement of the charges varies in time as well. The motion of
the charges is a microscopic current, which Maxwell called the displacement
current. Once the theory was fully developed, the mechanical model was aban-
doned in the same way as scaffoldings are dismantled once the cathedral has been
built. The names “electric displacement” and “displacement current” remained,
even if we know that these quantities have nothing to do with physical displace-
ments or with physical currents.

For us, it is now easy to see that the difficulty disappears by adding the term
l0e0@E=@t to the right hand side of Eq. (10.4). We obtain

r� B ¼ l0jþ l0e0
@E
@t

: ð10:6Þ

Let us check by again taking the divergence of both sides of the equation. We
get

0 ¼ r � jþ e0r � @E
@t

:

We invert the time derivative with the divergence in the last term and use
Eq. (10.1), obtaining

0 ¼ r � jþ e0
@r � E
@t

¼ r � jþ @q
@t

;

which is just the charge conservation of Eq. (10.5). The introduction of the new
term, which was originally based on theoretical arguments, has enormous conse-
quences. It implies the existence of new classes of phenomena, which were later
experimentally observed, confirming the correctness of the theory. We shall see
several of them below.

Equations (10.1), (10.2), (10.3) and (10.6), namely the Maxwell equations,
describe in complete generality the electric and magnetic fields. They are the
fundamental equations of electromagnetic interaction. The equations are, in prin-
ciple, capable of quantitatively describing all electromagnetic phenomena at the
classical level, electric charge conservation included.

We already know the integral form of the first three Maxwell equations. The
fourth one has an integral expression as well. Let Γ be an arbitrarily oriented closed
curve and Σ a surface bound by Γ, oriented with the positive direction in agreement
with that of Γ. Let us calculate the flux through Σ of both sides of Eq. (10.6).
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As usual, let us transform the flux of the curl of B through Σ in the circulation of
B about Γ. We obtain

I
C

B � ds ¼ l0Ilinked þ l0e0
@UE

@t
; ð10:7Þ

which we read as: the circulation of B about any closed curve Γ is equal to μ0 times
the current intensity linked to Γ plus ε0μ0 times the rate of change of the flux of
E through Γ . The law generalizes the Ampère law in dynamic situations. The term
ε0dΦE/dt clearly has the physical dimensions of a current intensity. It is called the
displacement current, even if it has nothing to do with either currents or
displacements.

Let us now look at an example as to how the displacement current is able to get rid
of a problem that would be present without it. Consider a parallel plate capacitor of
circular plates. The capacitor is being charged by a current, whose intensity I(t) varies
with time. The current is carried by straight wires perpendicular to the plates, as in
Fig. 10.1.

Let us start by assuming the Ampère law to hold without the displacement
current term. Let us apply the law to the curve Γ, which is an oriented circle
perpendicular to and centered on the wire, as shown in the figure. The law must be
valid for any surface having Γ as a boundary. Let us first calculate the fluxes of both
sides of Eq. (10.4), choosing the circle Σ1 in the plane of Γ. It is crossed by the
current I. We obtain

Z
R1

r� B � ndR ¼
I
C

B � ds ¼ l0I:

Let us now try the same with the surface Σ2, which has Γ as a boundary as well,
but does not intercept the current, going through the gap between the plates. We
now obviously have

r

I(t)

Q(t)

E(t)

1

2

Σ

Σ

Γ

Fig. 10.1 The circle Γ cuts
the page at the two dots. Σ1

and Σ2 are two surface circled
by Γ
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Z
R2

r� B � ndR ¼
I
C

B � ds ¼ 0:

The contradictory result stems from the fact that j is not solenoidal. Indeed, its
lines end on and originate from the plates of the capacitor. Let us now also consider
the new term, as put forth in Eq. (10.6). Nothing changes with Σ1, because on that
surface, the field E and the rate of change of its flux are zero. Through Σ2, the
current is still zero, but the rate of change of the flux of the electric field E is not so
inside the gap. Let us calculate it, neglecting the fringe effects. The field intensity
between the plates is E = σ/ε0, where the surface charge density on the plates is
σ = Q/A, where A is the area of the plates and Q the charge. The flux of the electric
field is then ΦE = EA = (σ/ε0) A = Q/ε0 and we obtain

Z
R2

r� B � ndR ¼
I
C

B � ds ¼ l0e0
dUE

dt
¼ l0

dQ
dt

¼ l0I:

Note that in the final step, we have assumed charge conservation, which states
that the rate of change of the charge of the plate is equal to the charge reaching the
plate in a second, which is the current intensity, namely that dQ/dt = I.

In conclusion, the displacement current inside the capacitor takes the place of the
conduction current in the wires, solving the problem we started with. We note that
the lines of B above and below the capacitor are circles normal to and centered on
the conduction current. The lines in the plane of the capacitor are of the same type,
encircling the rate of change of the flux of E in place of the conduction current.

QUESTION Q 10.1. The voltage between the plates of a parallel plate capacitor in a
vacuum varies at a rate of 100 V/s. The area of the plates is 10 cm2 and their
distance is 1 mm. How much is the displacement current inside the capacitor? h

Figure 10.2 shows a schematic idea for a possible experiment to verify
Eq. (10.6). A toroidal solenoid is in the middle plane between the circular plates of
a parallel plate capacitor (position 1 in the figure). The capacitor is connected to an
alternate (sinusoidal) emf source. Consequently, the electric field between the plates
varies with time, producing a magnetic field according to Eq. (10.6). The lines of
the magnetic field are circles around the axis of the system, as just discussed. Some
of them are inside the solenoid. The corresponding flux of B linked to the solenoid
varies with time as well, inducing an emf, according to the Faraday law.

B

dE/dt
1

2

Fig. 10.2 Schematic idea for detecting displacement current
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We measure the induced emf under these conditions. We then move the solenoid
upward out of the capacitor (position 2 in the figure) and measure the emf induced
by the variable current. The electromotive forces are found to be equal to one
another.

Note that the effect to be measured increases with the frequency of the alternate
current. In practice, the effect is important only at quite high frequency and is
usually negligible at network frequency.

QUESTION Q 10.2. Do you expect to measure any effect if you apply an emf
increasing with time at a constant rate in place of an alternate one to the capacitor
shown in Fig. 10.2? Why? h

10.2 Electromagnetic Waves

The enormous consequences of the new term appear when one considers the
complete set of the Maxwell equations. Let us start by looking closely at the two
universal constants they contain, the vacuum permittivity ε0 and the vacuum per-
meability μ0. We encountered the former in electrostatics. The force between two
point-charges in a vacuum is inversely proportional to ε0 (or directly proportional to
1/4πε0). We encountered the latter in magnetostatics. The force between two par-
allel straight current-carrying wires is directly proportional to μ0. Electric and
magnetic fields that were independent entities under steady conditions become a
unique physical system linked by Eqs. (10.2) and (10.6) under dynamic conditions.

The new term, the displacement current, is proportional to ε0μ0, namely to both
the electric and the magnetic constants. Let us analyze the physical dimensions of
this product. From Eq. (1.8), we see that ε0 has the dimensions of the inverse of a
force times an inverse square length times a square charge. We can then write the
dimensional equation in terms of the SI base units (mass, length, time and current
intensity) as

e0½ � ¼ M�1L�3T4I2
� �

: ð10:8Þ

From Eq. (6.23), we see that μ0 has the dimensions of a force divided by a
current intensity squared. We can then write

l0½ � ¼ MLT�2I�2� �
: ð10:9Þ

The dimensions of the product of the two constants is then

e0l0½ � ¼ L�2T2� �
: ð10:10Þ

The electric units have disappeared into the product. The product is dimen-
sionally an inverse square velocity. Calculating this velocity with the values of
Eqs. (1.9) and (6.23), we obtain
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c ¼ 1=
ffiffiffiffiffiffiffiffiffi
e0l0

p ¼ 2:998� 108 ms�1: ð10:11Þ

Indeed, this is an extremely important velocity, one of the fundamental constants
of physics, the velocity of light. We shall come back to that shortly.

Let us now analyze the other possible combination of the two constants, which is
their ratio. This ratio is, in fact, proportional to the product of the constants in front
of the Coulomb force between charges and the Ampère law between currents. We
have

l0=e0½ � ¼ M2L4T�6I�4� �
: ð10:12Þ

The combination on the right-hand side looks quite complicated, but, in fact, it is
not. These are the physical dimensions of an electric resistance square. Indeed, the
resistance is an electric potential, namely an electric field times a distance, divided
by a current intensity. The electric field is a force divided by a charge, and we can
write

R½ � ¼ FQ�1LI�1
� � ¼ MLT�2I�1T�1LI�1

� � ¼ ML2T�3I�2
� �

: ð10:13Þ

Let us calculate the resistance of which Eq. (10.11) is the square. We find

Z0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
l0=e0

p
¼ 376:73 kX: ð10:14Þ

This constant is called the impedance of the free space or vacuum impedance. As
we shall study in the 4th volume of the course, this quantity relates the magnitudes
of the electric and magnetic fields of electromagnetic waves propagating in a
vacuum. In the next section, we shall see how Maxwell experimentally confirmed
his theory of electromagnetic waves by measuring the vacuum impedance under
purely static conditions.

Let us now go back to the Maxwell equations and start our discussion of the
consequences of the new term. Let us consider a point-charge q at rest in the origin
of the reference system. The electric field E in the entire space is the well-known
electric field of a point-charge, while the magnetic field B is zero everywhere.
Suppose that the charge starts moving at a certain moment. In the regions close to
the charge, the electric field now varies with time. Its rate of change generates a curl
of magnetic field according to the Faraday law (Eq. 10.2), and hence a non-zero
magnetic field B. In general, B will vary with time as well, giving origin with its
rate of change by Eq. (10.6) to a new electric field E. Notice that this contribution
to the electric field does not have the charge as a source. This electric field is not
constant, but varies with time, giving origin to a B, which varies with time as well,
giving origin to an E, and so on and so on. This chain of processes produces an
electromagnetic field (namely an electric and a magnetic field that are intimately
linked), which varies with time and propagates in space over greater and greater
distances from the point-charge that gave origin to the phenomenon. This is
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analogous to when you toss a stone into the water of a lake. Soon, a few circular
waves appear around the point at which the stone hit the water. The waves then
move out, increasing their radiuses, with circles that spread out along the surface of
the lake. The propagation continues well beyond the point at which the stone has
ceased to move, until the borders of the lake absorb the energy transported by the
waves. As we shall see at the end of this section, the electromagnetic waves in a
vacuum have a well-defined velocity, given by Eq. (10.11).

Let us analyze an example useful for understanding the process qualitatively.
Consider the circuit in Fig. 10.3 consisting of a solenoid (inductance L), a capacitor
(capacitance C) and an alternate (sinusoidal) emf (E) regenerator at the angular
frequency ω.

Note that inductance and capacitance are physical quantities, which are well
defined when the regime is quasi-steady, namely when the rate of change of E, and
consequently of the current intensity I, are small enough to be equal, at any given
instant, in all the sections of the circuit. Let us then assume ω to be small. The
electric field under these conditions is not very different from the electrostatic field
of the capacitor charged with the instantaneous value of the charge on its plates.
The field is substantially contained inside the capacitor. Similarly, the magnetic
field is substantially the field of a steady current and is contained inside the
solenoid.

If we now increase the frequency ω, namely if we increase the rate of change of
the emf, the charge on the plates of the capacitor, and the field E they produce, will
vary more quickly, as will the rate of change of the current in the solenoid and the
field B (Fig. 10.4).

The electric field in the capacitor varying in time produces lines of B, running
about the capacitor and invading the external space. The varying magnetic field B in
the solenoid produces lines of E wrapping the solenoid in the external space. In this
way, the fields start to invade the space external to the circuit elements. The circuit
radiates electromagnetic waves.

One can increase the radiation by opening the capacitor, moving its plates away
from one another. In doing so, the electric field will occupy a larger region of space.
Similarly, one can substitute the solenoid with a straight conductor, which produces
a less localized magnetic field. This is shown in Fig. 10.5.

Even better, one can eliminate the capacitor completely and connect directly to
the poles of the generator with metallic bars, as in Fig. 10.6.

C

L 0cosωt

Fig. 10.3 A LC circuit in
alternated current
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Notice that, at the moment in which the bar on the left of the generator is
positively charged, the one on the right is negative, and vice versa. We have made
an electromagnetic aerial. Maxwell equations tell us that electric fields are gener-
ated by electric charges and magnetic fields varying with time, and that magnetic
fields are generated by currents and electric fields varying in time. At a low enough
frequency, the electric and magnetic fields are due mainly to the charges and the
currents. At higher frequencies, the fields near the aerial are still dominated by
charges and currents, but in the far away space, the electric field is dominated by
∂B/∂t and the magnetic field by ∂E/∂t. The fields born in this way invade wider and
wider regions of space over time, being generated by one another. Once it has been
produced by its source, the electromagnetic field takes on, if we can put it this way,
a life of its own, and will continue to propagate infinitely even if the generator is
shut off or the aerial is destroyed.

Fig. 10.5 Opening up the
capacitor

Fig. 10.6 An
electromagnetic aerial

B

E

B

E

Fig. 10.4 Magnetic field lines around the capacitor and magnetic field lines around the solenoid
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Let us now analyze how the Maxwell equations quantitatively describe the sort
of interplay between electric and magnetic fields of which we just gave an example.
This is the case in which the two fields generate each other, even in a space where
charges and currents are absent, namely in a vacuum. Under these conditions, the
Maxwell equations (10.1), (10.2), (10.3) and (10.6) become

r � E ¼ 0; ð10:15Þ

r � E ¼ � @B
@t

; ð10:16Þ

r � B ¼ 0; ð10:17Þ

and

r� B ¼ l0e0
@E
@t

: ð10:18Þ

Let us take the curl of both sides of Eq. (10.16), obtaining

r�r� E ¼ � @ r� Bð Þ
@t

:

We now use the vector identity

r�r� E ¼ r r � Eð Þ � r2E

and express r� B on the right-hand side with Eq. (10.18). We also use
Eq. (10.15) for r � E, obtaining

@2E
@t2

� 1
l0e0

r2E ¼ 0: ð10:19Þ

A similar argument, starting from Eq. (10.18), leads to the same equation for the
magnetic field, namely to

@2B
@t2

� 1
l0e0

r2B ¼ 0; ð10:20Þ

which is the same equation. This partial differential equation is famous, known as
wave equation. We cannot discuss its solution here without a deeper knowledge of
the physics of waves, which is the subject of the 4th volume of this course. Here,
we will simply state that the equation foresees the existence of electromagnetic
waves, propagating in a vacuum with speed
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c ¼ 1ffiffiffiffiffiffiffiffiffi
l0e0

p : ð10:21Þ

The two constants on the right-hand side are measured with electrostatic and
magnetostatic experiments, respectively. Knowing these values, Maxwell not only
predicted electromagnetic waves, but also found that their velocity should have been
exactly equal, within experimental errors, to the speed of light. Maxwell concluded
that light must be an electromagnetic phenomenon, unifying electromagnetism and
optics, two branches of physics that had been completely separate before him.

However, in 1865, the experimental values of both sides of Eq. (10.21) were
known with rather limited accuracy. Maxwell was not only one of the greatest
theoretical geniuses, but a ingenious experimenter as well. We have already men-
tioned, in Sect. 5.4, that Maxwell had been appointed to the British Committee for
electrical standards in 1862 and had been working under William Thomson on the
British Association Ohm standard for electric resistance. Having developed his
theory, Maxwell turned to trying to improve its experimental check. We shall
discuss his work in the next section.

10.3 The Maxwell Ratio of Units Experiment

This section, which has a historical charter, will deal with the experimental control
by Maxwell of Eq. (10.21).

The left-hand side of Eq. (10.21) is the velocity of light in a vacuum. In the
1860s, two laboratory measurements had been done. In 1849, Hippolyte Fizeau
(France, 1819–1996), as we shall describe in the 4th volume, had measured the value
c = 3.15 × 108 m/s. In 1862, in a more accurate experiment, Léon Foucault (France,
1819–1868) had obtained c = 2.98 × 108 m/s. The two results differ by about 5 %.

The quantity on the right-hand side had been determined by Rudolf Kohlrausch
(Germany, 1809–1858) and Wilhelm Weber (Germany, 1804–1891) in 1856. Those
authors had measured the potential difference of a capacitor of known capacitance,
thereby establishing the charge electrostatically. The capacitor was then discharged
through a ballistic galvanometer, measuring the same charge as current intensity
integrated over time. The result was (ε0μ0)

−1/2 = 3.11 × 108 m/s. As Maxwell puts
it, “the only use made of light in the experiment was to see the instruments”.

While the values were not in disagreement, their experimental uncertainties were
large, and Maxwell thought he had to improve the situation. The result was an
ingenious and elegant experiment. The outcome was presented to the Royal Society
of London in 1868 under the title, “On a direct comparison of electrostatic with
electromagnetic force”.

Maxwell’s style in designing experiments was defined by the use of a null
method. We saw an example of that in Sect. 6.6. In the null method, the effects of
two processes counterbalance one another, leading to a null result if they are exactly
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equal. The method can be very sensitive, because the smallest difference between
the two effects shows up as an unbalance. In this experiment, the null method is
employed in two different ways.

Let us read and explain the relevant parts of the paper.
The basic idea of the apparatus was the following.

The experiments consisted in observing the equilibrium of two forces, one of which was the
attraction between two disks, kept at a certain difference of potential, and the other was the
repulsion between two circular coils, through which a certain current passed in opposite
directions.

A basic design principle was to avoid absolute measurements and to rely only on
relative ones. Let us be more precise. The electrostatic force, including the force
between the two charged disks, is proportional to 1/ε0. The magnetostatic force
between two steady currents, including the repulsion between the coils of the
experiment, is proportional to μ0. Equation (10.11) told us that the ratio of the two
proportionality constants, namely 1/(ε0 μ0), the quantity wewant to determine, has the
dimension of the square of a velocity, while Eq. (10.14) tells us that their product,
namely μ0/ε0, has the dimension of a resistance square. The Maxwell experiment
measures the value of this resistance relative to a standard, theBritish association ohm.

We mention here that in the period of development of electromagnetism, when
electricity and magnetism were still two separate branches, two different units for
the electric charge had been defined. The “electrostatic unit” (esu) had been defined
on the basis of the Coulomb law, the “electromagnetic unit” (emu) on the basis of
the Ampère law on the force between two current-carrying wires. The ratio between
those units resulted in being just 1/(ε0 μ0)

1/2. Consequently, the Maxwell experi-
ment we are describing and similar ones are called ratio of units experiments.

Let us read what Maxwell writes:

In the experiments here described no absolute measurements were made, either of length,
time, or mass, the ratios only of these quantities being involved; and the velocity deter-
mined is expressed in terms of the British Association Unit of resistance, so that whatever
corrections may be discovered to be applicable to the absolute value of that unit must be
also applied to the velocity here determined.

Let us see how that can be done. The electrostatic force in the Maxwell
experiment is the attractive force between the plates of a parallel plate capacitor. Let
Q be its charge, V the corresponding potential difference, C the capacitance, r the
radius of the plates, and h their distance. To be precise, Maxwell used the trick of
the guard ring, in order to avoid any appreciable fringe effect. Consequently, the
area to be considered is the area of the plate inside the ring. Equation (3.13) gives
the (electric) force on that plate as Fe ¼ Q2= 2e0pr2ð Þ, and Eq. (2.18) the capaci-
tance C ¼ e0pr2=h. The force is then

Fe ¼ p
2
r2

h2
e0V

2 ¼ k1e0V
2; ð10:22Þ
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where we have defined the constant k1 ¼ p=2ð Þ r2=h2ð Þ, which is a dimensionless
quantity. It depends on the ratio of two lengths, the radius of the plates over their
distance.

The magnetic force is the repulsive force between two circular coils carrying the
same current in opposite directions. Let l be the total length of the coils, d their
distance and I the current intensity. We know the force between two steady currents
for a different geometry, namely two straight parallel currents. Equation (6.56) tells
us that the force on a length l of the wires is Fm ¼ l

2pd l0I
2. Once again, the constant

l/(2πd) is dimensionless. The magnetic force between two circular coils is similar.
The difference is in the geometrical factor, which is not l/(2πd), but a different
dimensionless function of l/d. The calculation of this function involves a quite
difficult integral. This is an elliptic integral (as it is called), which cannot be
evaluated analytically. Maxwell calculated numerically up to the required accuracy.
Let us call k2 this dimensionless constant and write

Fm ¼ k2l0I
2: ð10:23Þ

Herein lies Maxwell’s first brilliant idea, namely to have the potential difference
V between the plates of the capacitor in Eq. (10.22) generated by the voltage drop
equal to the current I feeding the coils in Eq. (10.23) through a standard resistor R,
calibrated in terms of the British Association ohm. We can then substitute V = RI in
Eq. (10.22), which becomes

Fe ¼ k1e0I
2R2: ð10:24Þ

The “null” experiment is designed to have the two forces balancing one another.
When this condition is reached, it is k2l0I

2 ¼ k1e0I2R2. The current intensity can be
simplified off. Calling k3 = k1/k2, which is another dimensionless constant, we
finally have

l0=e0 ¼ k3R
2: ð10:25Þ

Let us look at the apparatus now. The plates of the capacitor were two circular
disks, one fixed to a standing support, one to an arm of a torsion-balance. The two
coils were just behind the two disks (electrically insulated from them), one on the
fixed support, one on the arm of the torsion-balance. The equilibrium between the
two forces could be obtained establishing the right distance between the fixed plate
and the plate on the balance arm. This delicate operation (there was a potential
difference of more than a kilovolt between the plates) was done with a calibrated
micrometer. The micrometer reading at equilibrium was one of the two pieces of
data resulting from each experiment. The distances between the plates and the coils
were calculated from this datum and the fixed dimensions known by construction.
As already mentioned, the capacitor had a guard ring. This “trick” was used by
Thomson to build his electrometers, a fact that Maxwell quotes.

352 10 Maxwell Equations

www.ebook3000.com

http://dx.doi.org/10.1007/978-3-319-40871-2_6
http://www.ebook3000.org


But there is another effect to cancel. When the coil carries current, it is a
magnetic dipole. The earth’s magnetic field, in which it is immersed, exerts a torque
on the coil, which must be canceled. To do that, Maxwell suspended an identical
coil from the other extreme of the bar of the torsion-balance, at the same distance
from the suspension wire. He fed it with the same current in the right direction so as
to have an equal and opposite torque. A mechanical counterweight was also
included. Let us read what he wrote about this.

For this purpose, one of the disks, with one of the coils attached to his hinder surface, was
suspended on one arm of a torsion-balance, while the other disk, with the other coil behind
it, was placed at a certain distance, which was measured with a micrometer-screw. The
suspended disk, which was smaller than the fixed disk, was adjusted so that in its position
of equilibrium its surface was in the same plane with that of a ‘guard-ring’, as
Sir. W. Thomson’s electrometers, and its position was observed by means of a microscope
directed on a graduate glass scale attached to the disk. In this way its position could be
adjusted to thousandths of an inch, while a motion of much smaller extent was easily
detected.

An exactly similar coil was placed at the other end of the torsion-balance, so as to get rid of
the effects of the terrestrial magnetism.

A sketch of the mechanical components of the apparatus is shown in Fig. 10.7

Fig. 10.7 The mechanics of
the apparatus of the Maxwell
experiment. The cylindrical
structure on the left end fixed
to the floor includes the fixed
plate and coil. The mobile
plate attached to the
torsion-bar is visible with its
guard ring. The coil
compensating for the earth
field effect and the
counterweight are on the right
end of the torsion-balance
frame. The case in which the
apparatus was closed is
shown cut away
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The main electric components of the apparatus were two batteries, a large one to
provide the high voltage between the disks and a small one to provide the current to
the coils, a calibrated resistor R and a galvanometer.

The galvanometer was based on the same principle we discussed in Chap. 6,
shown in Fig. 6.13, but with the important difference that it had two, rather than
one, coils carrying two different currents. Maxwell was again using the null method.
The two coils of the galvanometer are mechanically joined to one another and their
currents generate two opposite torques, which cancel one another out when the two
intensities are in a ratio defined by the ratio between the (known) number of turns of
the two coils. Figure 10.8 schematically shows how the galvanometer (G) is
operated. The two currents, say IA and IB, are injected through the terminals AA and
BB, respectively. RA and RB are the resistances of the two galvanometer coils, which
were much smaller than R and had been accurately measured. The variable resistor
RS, called a shunt, is connected, in parallel to RA, to the AA terminals.
Consequently, IA is divided between an internal part, which produces the torque,
and an external part that is mechanically inactive. The smaller battery produces the
current IB that feeds the big coils determining the repulsive force. The equilibrium
between IB and the internal fraction of IA is reached by adjusting RS. The value of
the shunt resistance at equilibrium is the second datum of each experiment.

Figure 10.8 shows the two circuits. Maxwell used two batteries. Particularly
demanding, for the time, was the generation of the voltage of a few kilovolts needed
to produce a force of sufficient strength between the disks. The biggest battery in
England was owned by John Peter Gassiot, a London wine merchant, who dedi-
cated time and resources to science. Mr. Gassiot was happy to host the experiment
in his private laboratory, furnishing Maxwell with a big battery of 2600 voltaic cells
of bichloride of mercury, giving up to 3 kV. A smaller battery (9 cells) was used to
produce the current for the coils. The calibrated reference resistor (a coil of wire)
was provided by Mr. Willoughby Smith. The currents of the two circuits entered the
two inputs of the galvanometer.

R

A

A B

B

G

I
A

R
B

R
A

R
S

IB

Fig. 10.8 The electrical
arrangement of the Maxwell
ratio of units apparatus. The
disks of the condenser, the
three coils and the scheme of
the galvanometer G are shown
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J. Clerk Maxwell writes

The electrical arrangement was the following.

One electrode of Mr. Gassiot’s great battery was connected with a key (meaning switch).
When the key was pressed connection was made to the fixed disk, and thence, through
Mr. Willoughby Smith’s resistance-coils, to a point where the current was divided between
the principal coil of the galvanometer and a shunt, S, consisting of Mr. Jenkin’s resistance
coils (the calibrated resistor). These partial currents reunited at a point where they were put
in connection with the other electrode of the battery,…, and with earth.

Another battery was employed to send a current through the coils (the two big ones). One
electrode of the battery was connected with a second contact piece of the key, so that, when
the key was pressed, the current went first through the secondary coil of the galvanometer,
consisting of thirty windings of thick wire, then through the fixed coil,…and so through the
two suspended coils to the case, to earth, and to the other electrode of the battery.

When these arrangements had been made, the observer at the microscope, when the sus-
pended disk was stationary at zero, made simultaneous contact with both batteries by means
of the key. If the disk was attracted, the great battery was the more powerful, and the
micrometer was worked so as to increase the distance of the disk. If the disk was repelled,
the fixed disk had to be moved nearer to the suspended disk, till a distance was found at
which, when the scale was at rest and at zero, no effect was produced by simultaneous
action of the batteries. ….

In the meantime the other observer at the galvanometer was taking advantage of these
contacts to alter the shunt S, till the effect of the two currents on the galvanometer-needle
balanced each other.

When a satisfactory case of equilibrium has been observed simultaneously at the gal-
vanometer and at the torsion-balance, the micrometer-reading and the resistance of the
shunt were set down as the result of the experiment.

Maxwell then discusses both the difficulties he had and the experimental controls
and calibrations done. The calculation of the dimensionless constant that we called
k3 follows, based on the distance measured with the micrometer, the geometrical
dimensions known by construction and the resistances of the circuit, different from
R, which had been measured.

In this expression the only quantities which must be determined in absolute measure are the
resistances. The other quantities which must be measured are the ratios of the radius of the
disk to its distance from the fixed disk, and the ratio of the radius of the coils to the distance
between them.

Maxwell made 10 experiments under satisfactory conditions. The average of the
experimental values of the ratio of units was

1
4p

ffiffiffiffiffi
l0
e0

r
¼ 28:798 X; or B:A: units: ð10:26Þ
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corresponding to

ffiffiffiffiffiffiffiffiffi
1

l0e0

s
¼ 2:88� 108 m/s: ð10:27Þ

In conclusion, Maxwell observed that the result is

decidedly less than any estimate of the velocity of light, of which the lowest, that of
M. Foucault, is 298,000,000 m/s.

Indeed, precise measurements of both the ratio of units and the speed of light are
quite difficult. After the publication of the Maxwell theory, work to increase the
accuracy of both started worldwide. In 1878, in the third edition of his “A treatise
on electricity and magnetism”, James Clerk Maxwell wrote

It is manifest that the velocity of light and the ratio of the units are quantities of the same
order of magnitude. Neither of them can be said to be determined as yet with such degree of
accuracy as to enable us to assert that the one is greater than the other. It is to be hoped that,
by further experiments, the relation between the magnitudes of the two quantities may be
more accurately determined.

In the mean time our theory, which asserts that these two quantities are equal, and assigns a
physical reason for this equality, is not contradicted by the comparison of these results such
as they are.

By the next year, the year of theMaxwell’s death, the equality of the two quantities
had been established with 1 % accuracy. William Ayrton (UK, 1847–1908) and John
Perry (UK, 1850–1920) hadmeasured the ratio of units as 1=

ffiffiffiffiffiffiffiffiffi
l0e0

p ¼ 2:96� 0:03�
108 m/s and Albert Michelson (USA, 1852–1931) the velocity of light (in air) as
c = 2.998 64 ± 0.000 51.

QUESTION Q 10.3. In the Maxwell experiment, the diameter of the plate inside the
guard ring was 105 mm and the distance between the fixed and mobile
plates 1.65 mm. How much was the force when a voltage of 3 kV was applied? h

A note on the measurement units. Let us briefly come back to the measurements
units that we have been using. In principle, the measurement units of the physical
quantities are arbitrary. In practice, they are far from being so. For every practical
purpose, it is mandatory to have internationally agreed-upon choices. As we
mentioned in the 1st volume of this course, international organizations were created
to foster international standardization worldwide. The International Conference of
Weights and Measures, CGPM, for short, is the body responsible for the definition
of the units. As we know, the unit system is called the Sistème International in
French, or SI, for short.

We repeat here what we have already stated. In the SI, the values of two basic
constants are given by definition. These are the vacuum permeability, which is
defined as
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l0 ¼ 4p� 10�7 NA�2; ð10:28Þ

which is, in fact, the definition of the ampere, and the light velocity in a vacuum,
defined as

c ¼ 299;792;458ms�1: ð10:29Þ

The value of the vacuum permittivity stems from these two definitions as

e0 ¼ 4p� 10�7 � 299;792; 458ð Þ2
h i�1

¼ 8:845187817 . . . pFm�1: ð10:30Þ

The values of three constants are “exact”, namely they have no experimental
uncertainty (to be pedantic, ε0 has the uncertainty stemming from the finite number
of figures for which π is known). As a matter of fact, the experimental uncertainties,
which are extremely small today, but do still exist, are the uncertainties concerning
the definitions of the units.

10.4 Energy Density in the Electromagnetic Field

In Sect. 3.5, we discussed a number of different expressions of the energy of an
electrostatic system.All of them are equivalent in electrostatics. Similarly, in Sect. 8.4,
we discussed a number of expressions of the energy of a system of steady currents,
equivalent under time-independent conditions. Under dynamical conditions, only the
expressions of energy as the energy of the fields remain valid, namely

UE ¼ e0
2

Z
all space

E2dV ; UM ¼ 1
2l0

Z
all space

B2dV ;

as we shall now prove. We shall prove that the energy per unit volume in an
electromagnetic field under any set of conditions is

w ¼ e0
2
E2 þ 1

2l0
B2:

Let us start with an electromagnetic field in vacuum, namely in the absence of
matter. We assume local energy conservation to hold, namely that energy is not
only conserved, but that it is conserved locally. This means that if the energy
contained in a generic (small) volume ΔV diminishes in a second by a certain
quantity, namely
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� d
dt

Z
DV

wdV ¼ �
Z
DV

@w
@t

dV;

the same quantity of energy must exit in a second through the surface Σ that bounds
ΔV. Let S be the vector having a magnitude equal to the energy flux through the
unit’s surface normal to the flow direction per unit time and the direction and sense
of the flux. The energy flowing through Σ in a second is then

Z
R

S � ndR ð10:31Þ

and we can express in a formula what we have just stated in words as

�
Z
DV

@w
@t

dV ¼
Z
R

S � ndR; ð10:32Þ

where n is the outgoing normal unit vector. We now use the divergence theorem to
transform the surface integral on the right-hand side into a volume integral on
ΔV. Being that the volume is arbitrary, the equality must hold for the integral,
namely

r � S ¼ � @w
@t

: ð10:33Þ

We already encountered this equation expressing the local conservation of the
electric charge. We now have the continuity equation for energy. Equation (10.33)
holds in a vacuum, when the electromagnetic field does not exchange energy with
matter. In the presence of matter, namely if charged particles are present, we must
take this energy exchange into account.

We now state that the energy decrease in ΔV in a second is equal to the energy
flowing out in a second plus the work done by the field on the charges in that
second.

Let j be the current density, q the charge of the particles (assumed to be uni-
formly equal, for simplicity), np the number of charges per unit volume and vi the
velocity of the i-th charge. Equation (5.20) gives the work done as being the electric
field per unit time in the volume dV. Note that we demonstrated this equation when
discussing a time-independent electric field. However, we did not use this
hypothesis in the demonstration, which is consequently valid under time-dependent
conditions as well. We now also have a magnetic field, but its work on the charges
is zero, because the Lorentz force is always perpendicular to the velocity of the
charge. We can then say that the work done by the electromagnetic field in a second
on the charges in dV is E�j dV.
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The energy balance is given by

�
Z
DV

@w
@t

dV ¼
Z
R

S � ndRþ
Z
DV

E�jdV : ð10:34Þ

As we did above, we use the divergence theorem to transform the surface
integral into a volume integral and extend the resulting equality to the integrands,
given that the integration volume is arbitrary. The resulting continuity equation is

E � j ¼ � @w
@t

�r � S: ð10:35Þ

We now need to find the expressions of the electromagnetic energy density
w and energy flux S. To that aim, we search for two functions of the fields, only one
scalar and one vector that satisfy Eq. (10.35). Let us start from the fourth Maxwell
equation

r� B ¼ l0jþ l0e0
@E
@t

:

We solve it for j and take the scalar product with E of both sides, obtaining

j � E ¼ 1
l0

E � r � B� e0E � @E
@t

:

We now use the vector identity

E � r � B ¼ B � r � Eð Þþr � B� Eð Þ

obtaining

j � E ¼ 1
l0

B � r � Eð Þþr � B� Eð Þ½ � � @ e0E2=2
� �

@t
:

Using the Faraday law r� E ¼ �@B=@t, and inverting the factors in the cross
product of the fields, we write

j � E ¼ �r � 1
l0

E� B
� �

� @

@t
e0
2
E2 þ 1

2l0
B2

� �
;

which has the form we have been searching for, with energy density

w ¼ e0
2
E2 þ 1

2l0
B2 ð10:36Þ
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and energy flux

S ¼ 1
l0

E� B: ð10:37Þ

The just-demonstrated theorem is credited to John Henry Poynting (UK, 1852–
1914), who published his result in 1864, and is called the Poynting theorem. The
vector S is called the Poynting vector. We here notice that the Poynting theorem
shows that the above equations are possible expressions of the electromagnetic field
energy density and energy flux, but it does not demonstrate them to be the unique
solutions. As a matter of fact, other solutions do exist, namely other functions of the
electric and magnetic fields alone, one scalar and one vector satisfying Eq. (10.34).
All of them, however, are more complex then Eqs. (10.36) and (10.37) and contain
derivatives of the fields. The choice universally made of Eqs. (10.36) and (10.37) is
uniquely based on a simplicity criterion.

We now give the expressions of the energy density and energy flux in the
presence of material media, both dielectric and magnetic. We shall assume the
materials to be linear, namely D to be proportional to E and H to be proportional to
B. We found the energy density of the fields in electrostatics in Eq. (4.53), which
we now generalize to dynamic conditions. The demonstration is quite similar to that
we gave for a vacuum and we shall not give it here, for the sake of brevity. The
results are the equations

w ¼ 1
2
E � Dþ 1

2
B �H ð10:38Þ

and

S ¼ E�H: ð10:39Þ

10.5 Energy Flux

In this section, we shall consider a few examples of energy flux to familiarize
ourselves with the concept. These examples show that a non-zero energy flux, in
addition to the energy density, also exists when the fields do not depend on time.
Under dynamic conditions, the Poynting vector is even more important. We shall
treat that in the 4th volume of the course, after having studied the relevant prop-
erties of wave phenomena.

In the first example, we consider a simple cylindrical resistor R carrying a
continuous current I, as shown in Fig. 10.9a. A battery is used to apply the potential
difference V = RI between the ends of the resistor. For simplicity, we assume the
battery to be cylindrical, as is the resistor.
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An electric field E is present inside the resistor and in the immediate neighboring
vicinity, which is directed substantially parallel to the resistor. The current produces
a magnetic field B, whose lines are circles normal to the resistor and centered on its
axis. Hence, the Poynting vector S is radially directed towards the axis. As we
know, the resistor dissipates energy through the Joule effect. This energy is pro-
vided by the battery and one might think that it moves from the battery to the
resistor together with the current, flowing through the connecting wires. But this is
not so. As we have seen, energy enters the resistor from the space outside through
the lateral surface.

Let us now consider the battery, shown in Fig. 10.9b. In the battery, the current
runs in the opposite direction relative to the electric field E. Compared to the
previously-analyzed situation, the directions of E and B are the same and opposite,
respectively. Consequently, S is now directed normally outside the battery axis. The
energy produced by the battery flows out through its lateral surface, advances in the
empty space, reaches the resistor and enters it through its lateral surface. The energy
in any space volume between battery and resistor is constant in time, because the
fields are constant. But the volume is continuously crossed by energy, which flows
in from one side and out the other in the same amount.

In order to understand the process better, let us think of the effect of the battery
as acting on pairs of a positive and negative charge, taking them apart and pushing
them in opposite directions through the wires connecting the ends of the battery
with the ends of the resistor. The pair of charges finally comes back together in the
resistor. Initially, the two charges are close to one another inside the battery. Their
field is mainly between them, in a small region of space. Consequently, the field
energy is localized inside the battery as well. When the charges separate, the lines
of their field open up, invading greater and greater regions of space outside the
battery (moving mainly through the lateral surface). Contemporarily, the field
energy becomes distributed through increasingly large regions of empty space,
clearly with diminishing energy density. Then, when the two charges once again
approach one another inside the resistor, their fields condense as well and so does
the energy, which finally degrades into thermal energy.

The Maxwell theory leads to unexpected conclusions concerning the energy
flux. Conductors appear to be such for an electric current, but not for energy. On the

j

S

E

B

E j

S

E

BE

(b)(a)Fig. 10.9 Current density,
electric and magnetic field
and Poynting vector in a a
resistor, b a battery
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contrary, conductors destroy macroscopic energy, transforming it into thermal
energy. Vacuum and dielectrics, which are charge insulators, are energy conductors.

Let us now consider a second example, which is a quasi-static one. Let us
consider a parallel plate capacitor, as shown in Fig. 10.10, while it is being charged
by a current produced by a battery. The process is time-dependent, but we assume
the current intensity to vary very slowly, namely slow enough to be practically
equal in all the sections of the circuit at any given instant. In the process, energy is
transferred from the battery to the capacitor, namely to its electric field.

Let r0 be the radius of the circular plates and h their distance. Neglecting the
fringe effects, the energy of the capacitor at the generic instant is U ¼ e0

2 E
2pr20h. Its

rate of change is

dU
dt

¼ e0E
dE
dt

pr20h:

The time variation of the electric field gives origin to a magnetic field B, whose
lines are circles centered on the axis, as shown in Fig. 10.10. We apply the Ampère
law, generalized to include the displacement current, to the circle at the rim of the
plates, as in the figure, obtaining.

2pr0B ¼ l0e0
dE
dt

pr20 ;

from which we have the magnitude of the field

B ¼ l0e0
2

r0
dE
dt

The Poynting vector is directed radially. Its sense, in the case we are considering
in which E is growing, is toward the inside. In this case too, energy enters the
capacitor through its lateral surface.

Let us check that the total flux entering in a second is equal to the rate of change
of the capacitor’s energy. The energy flux is the Poynting vector magnitude times
the surface area, which is 2πr0h, and we write

B
ES

Fig. 10.10 Electric and
magnetic fields and Poynting
vector in a parallel plate
capacitor during charging
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S2pr0h ¼ EB
l0

2pr0h ¼ e0E
dE
dt

pr20h;

which is equal to the above-found expression of dU/dt.
QUESTION Q 10.4. Consider a cylindrical solenoid having length l, radius r and

n turns per unit length carrying a current varying with time of intensity I(t). Neglect
the fringe effects. Calculate the magnetic field, the electric field and the Poynting
vector, in magnitude and direction, immediately inside the solenoid. Calculate the
energy stored in the solenoid and its rate of change and compare with the energy
flux through the lateral surface. h

10.6 Momentum Density in the Electromagnetic Field

In the study of physics, one quite often encounters situations in which the energy of
an isolated system appears not to be conserved. However, in every case, the energy
non-conservation is only apparent. A closer analysis always shows that energy has
not been lost, but rather has transformed into another type, which we had not taken
into account. In mechanics, for example, we observe that the kinetic energy of a
body moving along a horizontal plane decreases with time. However, if we measure
its temperature, we find it increased. The (macroscopic) kinetic energy has trans-
formed into (microscopic) thermal energy. The sole mechanical energy is not
conserved, but the total energy is constant. The mechanical energy of a system of
charged bodies is not constant, because they exchange energy with the electro-
magnetic field. What is constant is the sum of the field and the mechanical energies.
In conclusion, energy conservation is a universal law without exceptions. When
energy appears not to be conserved, it is because it has changed into a “hidden”
form that we forgot to account for.

The conservation laws of the linear and angular momenta of an isolated system
are completely general as well. As for the energy, however, it happens that linear
momentum and angular momentum may change to other forms, of which we might
not have known in advance. Having neglected to include these forms in the balance,
those quantities appear not to be conserved. In the study of mechanics and ther-
modynamics, we encounter cases of apparent non-conservation of energy, but never
cases of apparent non-conservation of linear and angular momenta. As opposed to
energy, the latter are vector quantities, a characteristic that makes them more dif-
ficult to hide. They “succeed” in doing so in systems of electrically-charged bodies
in motion. In other words, neither the total mechanical linear momentum nor the
total mechanical angular momentum of an isolated system of charges are conserved.

Consider, for example, the simple system consisting of two point-like charged
particles in motion. Each of them acts on the other with a force (which, we notice, is
not the Coulomb force if the charges are moving). Obviously, the two forces are an
action and reaction pair and are the only forces acting on the system. We would
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consequently expect the two forces to be equal and opposite (resultant force equals
zero) acting on the same line (resulting moment equals zero) or, in an equivalent
manner, that the total linear and angular momenta are conserved. Well, neither the
first expectation nor the second are confirmed by experiments.

These non-conservations are, however, only apparent and are due to our not
having included in the balance the field linear momentum in one case and the field
angular momentum in the other. Indeed, the electromagnetic field not only contains
energy, but linear and angular momenta as well. These quantities, as is the case for
energy, are distributed throughout the entire space. We talk of linear momentum
density and angular momentum density, which are the quantities per unit volume.
In the evolution of a system of charged bodies, linear and angular momenta are
continuously exchanged between the bodies and the field.

Let us start with an example of linear momentum. Let us recall that any volume dV
in the field stores an energy wdV, where w is the function of the fields given by
Eq. (10.36). As we have already discussed, matter and field exchange energy. The
total energy, the sum of the two forms, is not only conserved, but is locally conserved.
If we want linear momentum to be conserved as well, wemust admit that the field also
has linear momentum. More specifically, any infinitesimal volume dV should have a
linear momentum proportional to dV, say g(x, y, z, t)dV, where g(x, y, z, t) is a vector
quantity, a function of the coordinates and time, which is the linear momentum
density. Matter and field can exchange linear momentum and we shall assume that
their sum is locally conserved. We shall also assume, as we did for energy, that g can
be expressed in terms of the fields alone. To find this expression, one proceeds in a
manner similar to what we did for the energy density and the energy flux in Sect. 10.3.
An additional complication comes from the fact that g is a vector, rather than a scalar
like w. One separately considers each of its components, for example gx. One then
imposes that the variation in the time interval dt of gx in an arbitrary infinitesimal dV,
namely gxdV, should be equal to the x-component of linear momentum that flows out
in dt through the surface surrounding dV, decreased by the x-component of linear
momentum transferred from the field to matter. To write this equation, we must
introduce a physical quantity expressing the flux of the x-component of the field linear
momentum. This quantity has three components. Clearly, there are two other
three-components quantities for the fluxes of the y and z components of the field
momentum. This nine-component object is mathematically a tensor (you can think of
it as a 3 × 3 matrix). This complication apart, the argument proceeds exactly as it did
for energy and its flux.We look for two expressions in terms of the fields, a vector (the
linear momentum density) and a tensor (the linear momentum flux) satisfying the
continuity equation (namely the local momentum conservation). We shall not go
through the details but will give only the result for the momentum density. However,
we observe that the very fact that a result is obtained shows that the Maxwell theory
foresees linear momentum conservation. Only experiments can prove, however,
whether this is true. And indeed, experiments have shown that linear momentum is
conserved.

The result is that the field momentum density is simply the Poynting vector
divided by the square of the light velocity in vacuum, namely
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g ¼ S=c2 ¼ e0l0S ¼ e0E� B: ð10:40Þ

Let us consider the simple example of two point charges q1 and q2 in motion
with velocities v1 and v2, respectively. The charges being in motion, the forces F12

exerted by q1 on q2 and F21 exerted by q2 on q1 are not the Coulomb force. We do
not know the expression of the force, which is quite complicated for a general
motion. The two forces are not necessarily equal and opposite. As we have just
seen, the linear momentum of the charges is not always conserved. Consequently,
the action and reaction law may not hold for electromagnetic forces.

If we remember that no information can propagate in space at a speed greater
than the velocity of light, we understand that the action and reaction law not only
may, but must be violated. Indeed, in an interval dt at a certain instant of time, the
momentum of, say, q1 varies under the action of the force F21. The action and
reaction law would require that the momentum of q2 should vary under the action of
F21 contemporarily in dt, by an equal and opposite quantity in order to guarantee
the conservation of linear momentum in every instant. But this cannot be true,
because the information that v1 has changed must reach q2 moving at the speed of
light. This velocity is very large, but finite, and the propagation requires a non-zero
time. During this time interval, the momentum change is, so to speak, traveling
between the charges, and the total linear momentum of the two charges has varied.
Clearly, if the two charges were at rest and had been so for a long enough time, the
field would have been constant during this time and the information on the relative
position of the charges would have had time to propagate from one to the other. The
Coulomb law and the action and reaction law hold.

In conclusion, the action and reaction law is not a universal law of physics. It
does not hold in every case. The fundamental laws are the linear and angular
momenta conservations. The action and reaction law is a consequence of these two
laws and is valid only when the momentum and angular momentum of the field are
constant.

We shall now discuss an example of the non-conservation of matter linear
momentum and one of the non-conservation of matter angular momentum.

Violation of the action and reaction law.
Let us consider two point charges q1 and q2 in motion with velocities v1 and v2,
respectively, perpendicular to one another. Let us consider the instant in which the
second particle crosses the road in front of the first one, as shown in Fig. 10.11. The
system is isolated, namely no external forces act on the particles. The internal forces
between the charges are due to the electric and magnetic fields each of them produces
in the position of the other. We have not studied the electric and magnetic fields
produced by charges in motion. To find them, one starts from the fields of a point
charge at rest, which we know, and applies the Lorentz transformations to them.

We shall not deal with that but only give the result. The electric field of a point
charge in rectilinear uniform motion is directed away from or toward the charge, if
it is positive or negative, respectively, as would a charge at rest. However, as
opposed to a charge at rest, the field intensity depends not only on the distance
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r (still 1/r2), but also on the angle between the position vector r from the charge to
the considered point with the velocity of the charge. At the same r, the field
intensity is largest in the plane perpendicular to velocity, the smallest in the
direction of velocity (both forward and backward). For the arguments we are
considering here, it is sufficient to know that the field is central.

A charge in rectilinear uniform motion produces a magnetic field too. Indeed, a
straight continuous electric current is only made of charges moving in such a motion.
We can then use what we know to find the field of a charge of velocity v. Recalling
that the speeds of the charge carriers are much smaller than the speed of light, we
shall find an expression valid under these conditions. Equation (6.52) gives the
magnetic field produced by a current density j in the generic point P2. We reproduce
it here for convenience:

B P1ð Þ ¼ l0
4p

Z
j P2ð Þ � r21

r321
dV2;

where r21 is the vector from the integration point P2 to the point at which we
evaluate the field, P1. The expression holds for constant current intensity, corre-
sponding to constant velocity of the carriers. We can interpret this expression by
saying that the generic volume ΔV contributes to the field with

DB P1ð Þ ¼ l0
4p

j P2ð Þ � r21
r321

dV2:

On the other hand, jΔV is the sum of the contributions of the single carriers in
ΔV. If np is the number of carriers per unit volume and vi are their velocities, we
have

jDV ¼ qnpDV vh i ¼ q
X
DV

vi:

F
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Fig. 10.11 Fields and mutual
forces of two point charges in
motion
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The contribution ΔB of the volume ΔV is then

DB P1ð Þ ¼
X
DV

Bi Pið Þ ¼ l0q
4p

X
DV

vi � r21
r321

We recognize in this expression that the magnetic field produced in P1 by the
point charge q passing in P2 with velocity v is

B P1ð Þ ¼ l0q
4p

v� r21
r321

: ð10:41Þ

This is the expression we need. We repeat that it is valid for velocity much
smaller than the speed of light.

The lines of the magnetic field of Eq. (10.41) are, as expected, circles normal to
the velocity centered on the trajectory of the charge. The field intensity is larger for
higher velocities.

We can now analyze the forces exchanged by the two charges in our example.
The force F12 exerted by q1 on q2 is purely electric, because the magnetic field of q1
is zero along the straight line of its trajectory (both in front and behind q1), because
v and r21 are parallel at these points. Consequently, F12 is directed as the line
joining the charges, as shown in Fig. 10.11.

Contrastingly, the force F21 exerted by q2 on q1 has electric and magnetic
components. The electric component is q1E21, where E21 is the electric field of q2 in
the position of q1. It has the direction of the line joining the charges. The magnetic
field B21 of q2 in the position of q1 has the direction normal to the drawing to inside
the page. The corresponding force on q1 is perpendicular to its velocity to the left.

We see that F12 and F21 are not equal and opposite with the same application
line. In other words, the total mechanic linear momentum of the system of two
charges is not constant in time, even if no external force is acting on the system.
However, the field linear momentum is also changing in such a way, as we might
calculate, that the total (matter plus field) linear momentum remains constant. The
linear momentum conservation holds only if we take into account both
contributions.

The Feynman paradox.
Richard Feynman (US, 1918–1988) gave a beautiful example of electromagnetic
field angular momentum in his Lectures on Physics in 1963. We shall discuss it in
detail now.

The device in Fig. 10.12 is a plastic disk free to turn about its vertical axis
through the center. N metal spheres of electric charges Q are equally spaced and
rigidly fixed about its rim on a circle Γ of radius R. A solenoid on the symmetry axis
initially carries the steady current I. At the beginning, the system is at rest. The
current produces a magnetic field B. The flux of B is largely linked to Γ. At a given
instant, we open the circuit (we imagine doing that with an internal action). The
current and the magnetic field decrease to zero.
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If Σ is the circle inside Γ, the initial flux of B through the circle Σ is

UB ¼
Z
R

B � ndR: ð10:42Þ

During the shutdown, the flux of B decreases with time and an induced emf
appears about Γ. This is similar to the betatron case we analyzed in Sect. 7.4.
Repeating the argument, we can say that the electric field E induced at the points of
Γ is such that

dUB

dt
¼ �

I
C

E � ds ¼ �2pRE: ð10:43Þ

The (variable with time) force QE is now acting on each sphere. Its direction is
tangent to Γ. Consequently, the disk starts a rotation about the axis, with increasing
angular velocity, which reaches its final value when the current, and the magnetic
field, have vanished. The angular momentum of the mechanical system, which was
initially zero, is now something other than zero. This happened under the action of
internal forces alone. The moment of external forces has been zero. It looks like the
angular momentum conservation law has been violated. This, however, is true only
if we consider the mechanic angular momentum by itself. It is the sum of the
angular momentum of the disk and the electromagnetic field that remains constant,
as we shall now see.

Let us go back to the initial state of the system. The fields at large distances from
the disk are easier to calculate. At such distances, the magnetic field B is the field of
a magnetic dipole, and the electric field E can be approximated with a monopole,
considering all the charges to be a point charge NQ in the center of the disk.

Fig. 10.12 A rigid disk free
to turn on its vertical central
axis. The black dots on its rim
are equal electric charges
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The lines of the Poynting vector S are consequently circumference centered on the
axis. One of these is shown in Fig. 10.13. The lines of S are the lines along which
the energy of the field flows in the initial state of the system. When everything is
steady, every infinitesimal space volume contains a constant amount of energy and
is continually crossed by a constant flux of energy. This situation, which looks
absurd at first sight, is far from being so if carefully analyzed. Indeed, Eq. (10.40)
tells us that the energy flux is proportional to the linear momentum density of the
field. And a circular flow of linear momentum corresponds to an angular
momentum about the axis. The experiment we have described shows that the
angular momentum can be conserved only if the angular momentum acquired by
the mechanical system was initially present in the field. The energy flux in the
stationary field, rather than being an absurdity, is absolutely necessary.

Summarizing, we can say that the described experiment shows that the disk,
which initially has no angular momentum, acquires angular momentum when the
current is shut down. No force external to the disk plus the field system is present.
The angular momentum conservation is satisfied by the angular momentum initially
stored in the field, in the closed lines of the linear momentum density g.

Let us now quantitatively analyze the problem. We start by calculating the
magnetic flux ΦB in Eq. (10.42) linked to the circumference Γ (radius R) through
the spheres. Let us consider the plane of the spheres. Given that the lines of B are
closed, the flux of B through Γ is equal and opposite to the flux of B through the
part of the plane external to Γ (which we call Σext) can be more easily calculated
because its points are at distances large compared to the dimensions of the solenoid.
We can say that B is the field of a magnetic dipole of magnetic moment μ (pro-
portional to the current intensity). Its expression in the equatorial plane is partic-
ularly simple, given by the third of Eq. (6.61) for z = 0. At the distance r from the
axis, B is

B ¼ � l0
4p

l
r3
: ð10:44Þ

NQ

S
E

B

E

B

Fig. 10.13 The fields during
the decrease of the solenoid
current
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We now calculate its flux, taking as surface elements the annuluses of radii r and
r + dr, obtaining

UB ¼ �
Z
Rext

B � ndR ¼ l0
4p

Z1

R

l
r3
2prdr:

We then obtain by integration

UB ¼ l0
2
l
R
: ð10:45Þ

The magnitude of the induced electric field E acting on the spheres is then (by
the flux rule)

E ¼ � 1
2pR

dUB

dt
¼ � l0

4p
1
R2

dl
dt

:

The torque on the disk is then

M ¼ ENQR ¼ � l0
4p

NQ
R

dl
dt

:

Let L be the mechanical angular momentum. Its rate of change is M ¼ dL=dt,
and we obtain the final value of L after the current has vanished by calculating its
variation from the initial value, which is zero, to the final value, by integration,
namely

L ¼
Z1

0

dL
dt

dt ¼ � l0
4p

NQ
R

Z1

0

dl
dt

dt:

Now, considering that the magnetic moment varies from the initial value μ to
zero, we obtain

L ¼ l0
4p

NQ
R

l: ð10:46Þ

Let us now analyze the angular momentum stored in the initial electromagnetic
field. The easiest way to calculate this quantity is to think of assembling the system
starting from a state in which the current is present but the charges are at infinite
distances and do not interact with it. Let us bring a small fraction δQ of each of the
charges from infinity. We proceed by respecting the symmetry of the problem,
moving each charge element radially into its final position along straight lines in the
equatorial plane. The force on each δQ is the Lorentz force
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dF ¼ dQ Eþ v� Bð Þ; ð10:47Þ

where the charge velocity v is directed radially toward the axis. The field E is
directed radially outward and has an intensity dependent on how much charge is
already in place. The magnetic field B is due to the solenoid and, on the equatorial
plane, is given by Eq. (10.44). The torque about the center on δQ is

dM ¼ dQr� v� Bð Þ: ð10:48Þ

Note that the electric part of the Lorentz force does not contribute to the moment,
because the displacements, hence the velocities, of the charges δQ are parallel to r.
To move each δQ, we must apply a torque equal and opposite to δM. The appli-
cation of –δM in a time interval dt produces a change of the (mechanical) angular
momentum of the N spheres system of d dLð Þ ¼ �NdMdt ¼ �NdQrtB rð Þdt, where
we have taken into account that the vectors r, v and B are mutually perpendicular. B
(r) is the magnitude of the field given by Eq. (10.44). Notice now that υdt is equal
to the displacement dr of the charge δQ in dt. Integrating on the complete dis-
placements of the N charges, we get the angular momentum variation corre-
sponding to the translation of δQ from infinity, namely

dL ¼
Z

d dLð Þ ¼ �NdQ
ZR

1
rBdr ¼ �NdQ

l0
4p

l
ZR

1
r�2dr ¼ l0

4p
l
R
NdQ:

Adding up the contributions of all the charge elements δQ, we finally obtain

L ¼ l0
4p

NQ
R

l;

which is equal to Eq. (10.46).

10.7 Maxwell Equations in Matter

The theoretical and experimental work of James Clerk Maxwell that we have
described in this chapter resulted in the unification of electricity, magnetism and
optics, which are all ruled by the Maxwell equations. We write the four equations
again, both in the differential and integral forms:

r � E ¼ q
e0
;

Z
R

E � ndR ¼ Qint

e0
; ð10:49Þ
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r� E ¼ � @B
@t

;

I
C

E � ds ¼ � dUB

dt
; ð10:50Þ

r � B ¼ 0;
Z
R

B � ndR ¼ 0; ð10:51Þ

r � B ¼ l0jþ l0e0
@E
@t

;

I
C

E � ds ¼ l0Ilink þ l0e0
dUE

dt
: ð10:52Þ

Maxwell equations include the local electric charge conservation.
The Maxwell equations are read as follows.
The first equation states that the sources and the sinks of the electric field are the

electric charges or, in integral terms, that the flux of the electric field flowing out
from any closed surface is equal to the total charge inside the surface divided by ε0.

The second equation states that a magnetic field variable with time gives origin
to an electric field. In integral terms, the electric field circulation about any closed
line is equal to the opposite of the rate of change of the magnetic field flux linked to
that line.

The third equation states that sources and sinks of the magnetic field do not exist,
or, in integral terms, that the flux of the magnetic field flowing out from any closed
surface is zero.

The fourth equation states that the magnetic field has two origins: charge cur-
rents and an electric field variable with time. In integral terms, the magnetic field
circulation about any closed line is equal to μ0 times the linked to the line current
intensity plus ε0μ0 times the rate of change of the electric field linked flux.

We recall that the charge and current densities in Eqs. (10.49) and (10.50)
include, respectively, all the charges and currents, both of macroscopic and
microscopic nature. As we learned, however, we directly control only the macro-
scopic quantities. In the presence of materials, it is, consequently, convenient to
rewrite the Maxwell equations in terms of the free charges density ρf and the
conduction current density jc. We did that under time-independent conditions in
Chaps. 4 and 9, respectively. Let us proceed now under general conditions.

The first part of the argument for the first equation is exactly the same as that for
electrostatics. We summarize it for convenience. We start by expressing the charge
density as the sum of two terms, one the result of the free charges, the other the
result of the polarization charges, namely q ¼ qf þ qp. We then observe that the
polarization charge is linked to the polarization density by the equation
qp ¼ �r � P, and we introduce the electric displacement auxiliary field

D ¼ e0EþP ð10:53Þ
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and re-write Eq. (10.46) as

r � D ¼ qf ;
Z
R

D � ndR ¼ Qf ;int; ð10:54Þ

As for the fourth equation, in magnetostatics, we considered two contributions to
the current density j, namely the macroscopic conduction current density jC and the
microscopic magnetization current density jm. The latter, also under dynamic
conditions, is linked to the magnetization density M by the equation

jm ¼ r�M ð10:55Þ

Under dynamic conditions, we must take into account that the polarization
charges move in time, producing a second microscopic current. To find its
expression, consider a unitary surface inside the dielectric medium. Considering
that the polarization vector P is the dipole moment per unit volume and that a dipole
moment is a charge times a distance, it is easy to understand that the charge
crossing the unitary surface in a second is equal to the rate of change of P. The
polarization current density is then

jP ¼ dP
dt

ð10:56Þ

We then re-write Eq. (10.52) as

r� B ¼ l0jc þ l0jm þ l0jp þ l0e0
@E
@t

and, using Eqs. (10.55) and (10.56),

r� B
l0

�M
� �

¼ jc þ
@ Pþ e0Eð Þ

@t
;

where we recognize the known auxiliary fields

H ¼ B
l0

�M ð10:57Þ

on the left-hand side and D on the right-hand side. We can then write the fourth
Maxwell equation as

r�H ¼ jc þ
@D
@t

;

I
C

H � ds ¼ Ilink þ dUD

dt
: ð10:58Þ
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We do not need to change anything in the second and third equations, because
they do not contain charges or currents. The Maxwell equations can be summarized
in terms of macroscopic charges and currents with the following six equations,
which we repeat for convenience, in the fields E, D, B, H, P and M

r � D ¼ qf ;
Z
R

D � ndR ¼ Qf ;int; ð10:59Þ

r � E ¼ � @B
@t

;

I
C

E � ds ¼ � dUB

dt
; ð10:60Þ

r � B ¼ 0;
Z
R

B � ndR ¼ 0; ð10:61Þ

r �H ¼ jc þ
@D
@t

;

I
C

H � ds ¼ Ilink þ dUD

dt
: ð10:62Þ

D ¼ e0EþP ð10:63Þ

H ¼ B
l0

�M ð10:64Þ

We recall here once more that the quantities in the above equations, namely
charge, charge density, current, current density and the fields E and B, are
macroscopic quantities, namely they are average values taken on volumes much
smaller than the macroscopic dimensions but still much larger than the molecular
ones (namely ≫ 0.1 nm) and on time intervals much smaller than those charac-
teristic of macroscopic phenomena but still much larger than the molecular and
atomic ones (namely ≫ femtoseconds). The fields D and H are purely macroscopic
auxiliary fields, with no counterpart at the level of the constituents of matter.

On the other hand, it is evident now, as it was under time-independent condi-
tions, that the above equations are insufficient. In addition to them, we need the
relations linking the polarization P to the electric field E and the magnetization
M to the magnetic field B. The problem is intrinsically complex, because the
searched-for relations should describe the reaction of matter to the action of electric
and magnetic fields. It was complex under static conditions; it is even more com-
plex under time-dependent ones.

Let us recall that, under static conditions, and within the limits we shall recall,
we have

P ¼ e0veE; M ¼ v0m
l0

B:
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These proportionality relations hold for linear media, namely when the response
of matter to the electric or magnetic solicitation is proportional to the solicitation.
The second expression, in particular, does not hold for ferromagnetic media. In
addition, only in isotropic media is P parallel to E and M parallel to B. Under
time-dependent conditions, we must take into account, in addition, that any reaction
of matter to an external solicitation takes some time. Consequently, we expect that
the above equations should continue to hold as long as the fields change slowly
enough, but not for faster rates of change.

Let us start by considering a dielectric medium. As we know, we can distinguish
polar dielectrics, whose molecules have an intrinsic dipole moment, and non-polar
dielectrics, whose molecules do not.

In the polar media, the intrinsic molecular dipoles that have chaotic directions in
the absence of an applied field tend to orient in the direction of an applied field. The
probability of being oriented in that direction increases with the field intensity. If
the latter varies in time, the orientation process varies as a consequence, with some
delay due to the inertia of the molecules. If the electric field varies too quickly, the
molecules do not have time enough to reorient themselves, as they would under
static or slowly varying conditions.

In the non-polar media, the polarization process is due to a rearrangement of the
atomic structure under the action of the electric field. In Fig. 4.11, we pictured the
atom as a sphere of negative charge (the electrons) with a point-like positive charge
(the nucleus) in the center. The action of the applied field is to displace the negative
charge center from the positive charge. This originates a restoring force propor-
tional to their relative displacement. Being that the electron is quite light, compared
to a molecule, they can rearrange quite rapidly, much more rapidly than the
reorientation of the molecules, but some time is still needed.

We understand from these arguments that the value of the polarization P(t) at
any given instant t does not only depend on the value of the electric field at that
instant of time, but also on the values the field had at all the previous times, because
matter is still reacting to those values. In other words, in a linear medium, P
(t) depends linearly on the values of the field in all the instants t − τ (where τ > 0 is
the generic time interval in the past). The proportionality constant between polar-
ization and field, which we call k, at the instant t shall depend on E(t − τ) for all the
τ > 0. The polarization at the instant t is the sum, better expressed as the integral, of
the contributions due to all the past instants. We can write that as

P tð Þ ¼
Z1

0

k sð ÞE t � sð Þds: ð10:65Þ

Very similar arguments hold for paramagnetic and diamagnetic materials and a
similar equation can be written for M. These relations should be substituted for
P and M in the Maxwell equations, which become quite difficult to express.
Fortunately, however, the problem simplifies a lot when the fields depend on time
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as circular functions, namely as cos ωt (or as sin ωt, which is equivalent), whatever
the angular frequency may be. Let us see how. Assume the electric field to be

E r; tð Þ ¼ E0 rð Þcosxt;

in which the space dependence given by the factor E0(r) is arbitrary. To simplify the
expressions, let us use complex formalism. The above expression is the real part of

E r; tð Þ ¼ E0 rð Þeixt:

We can write Eq. (10.65) as

P r; tð Þ ¼ E0 rð Þ
Z1

0

k sð Þeix t�sð Þds;

of which we should take the real part at the end. Now comes the magic, because we
can write that as

P r; tð Þ ¼ E0 rð Þ
Z1

0

k sð Þeixte�ixsds ¼ E0 rð Þeixt
Z1

0

k sð Þe�ixsds;

where we could take the factor eixt, which is independent of the integration variable,
out of the integral. This simplifies the issue enormously. As we see, the polarization
at the instant t, namely P(r,t), is proportional to the electric field at the same instant t.
The proportionality constant is the integral on the right-hand side, namelyR1
0 k sð Þe�ixsds, which is clearly time-independent. This “miracle” happens only if
the fields depend on time as an exponential of the imaginary argument (of which
cosine and sine are special cases, being its real and imaginary parts), because the
exponential of the difference t − τ is the product of the exponentials of t and –τ. In
conclusion, in this case, the relations between P and E and between M and B valid
under static conditions also hold for a cosωt dependence on time, with the difference
that the proportionality constants (in practice χe and χ’m) are functions of ω.

In conclusion, when the fields depend on time as

E r; tð Þ ¼ E0 rð Þcosxt; B r; tð Þ ¼ B0 rð Þcosxt: ð10:66Þ

the electric and magnetic susceptibilities are given by

P r; tð Þ ¼ e0ve xð ÞE r; tð Þ; M r; tð Þ ¼ v0m xð Þ
l0

B r; tð Þ: ð10:67Þ

376 10 Maxwell Equations

www.ebook3000.com

http://www.ebook3000.org


As already noticed, the values of both susceptibilities are equal or very close to
their values under static conditions at low frequencies, namely small values of ω,
where they can be considered to be constants. The minimum frequency at which a
susceptibility becomes different from its static value depends on the material. It
should already be clear to the reader that these values are smaller for polar
dielectrics on one side and paramagnetics on the other. For example, the electric
susceptibility of water already differs appreciably from its static value at about one
megahertz if liquid, and as low as a few hundreds kilohertz if ice. At optical
frequencies, which are on the order of hundreds of terahertz, the angular frequency
dependence of the electric susceptibility is evident for all materials. Its effect is the
dispersion of light, which originates phenomena like the rainbow. We shall see that
in the 4th volume of this course.

In that 4th volume, we shall also study how functions with any “reasonable”
dependence on time can be expressed as sums or integrals of terms of the type in
Eq. (10.66). These are the Fourier series and the Fourier integral, after Jean Baptiste
Fourier (France, 1768–1830). This property allows one to deal with arbitrary
time-dependence of the fields.

10.8 Discontinuities of E and B

In Sect. 1.14, we saw that the electric field under static conditions has a disconti-
nuity crossing a charged surface. More precisely, if Σ is such a surface and σ its
surface charge density, the components of E tangent to Σ are continuous, while the
normal component has the discontinuity σ/ε0, namely

DET ¼ 0; DEN ¼ r=e0: ð10:68Þ

Similarly, in Sect. 6.7, we saw that the magnetic field under steady conditions is
discontinuous crossing a surface Σ carrying the surface current density k. The field
component tangent to Σ perpendicular to k has the discontinuity μ0k, while the field
component normal to the surface is continuous, namely

DBT ¼ l0k; DBN ¼ 0: ð10:69Þ

We shall now prove that these relations hold in general, namely also under
time-dependent conditions.

The conclusion is immediately obvious for the normal component, both of E and
of B, because the results were obtained starting from the equations of the diver-
gence of the fields, which are the same under time-independent and time-dependent
conditions.

The behavior of the tangent components depends, contrastingly, on the curl of
the fields, which are different under static and dynamic conditions.
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Figure 10.14 is drawn for both the electric and the magnetic cases, representing
the surface Σ carrying the surface charge density σ in one case, the surface current
density k in the other. The latter vector is normal to the page. The vectors V1 and
V2 are the field, E in one case, B in the other. The curve Γ is a parallelogram. The
lengths dl of its sides parallel to Σ are infinitesimal, while those normal to Σ are
infinitesimally of the higher order, in order to be able to neglect their contributions
to the circulation integrals.

Let us start with the electric field. The circulation of E about Γ is equal to the
opposite of the rate of change of the flux of the magnetic field linked to Γ. Even if
this quantity is not rigorously zero, as in statics, the magnetic flux and, conse-
quently, its rate of change are proportional to the area inside Γ, which is
infinitesimally of higher order than dl. Consequently, the circulation of E about Γ is
infinitesimally of superior order, and we can write ET P2ð Þ � ET P1ð Þ½ �dl ¼ 0. In
conclusion, the tangent component of E is continuous, as in statics.

In the case of the circulation of B, a completely similar argument establishes that
the contribution of the displacement current, the one that is not present in statics, is
infinitesimally of superior order. Consequently, the first Eq. (10.69) also holds
under dynamic conditions.

10.9 The Electromagnetic Potentials

In electrostatics, we introduced the electrostatic potential, which is a scalar function
that we have called ϕ. Similarly, in magnetostatics, we introduced the vector
potential A. Both quantities have been defined for fields that do not depend on time.

V
1 V

2

P
1 P

2

Σ

Γ

Fig. 10.14 A charge or
current-carrying surface and
the circuit Γ on which the
Stokes theorem is applied
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We shall now generalize the definition to dynamic conditions. We shall use the term
scalar potential for ϕ and keep the name of vector potential for A.

In electrostatics, we could define ϕ to be such that the electric field is the
opposite of its gradient, because the electric field curl is identically zero. This does
not prove true under dynamic conditions, so we need to try to find an irrotational
vector. On the other hand, we defined the vector potential to be such that

r� A ¼ B: ð10:70Þ

This definition is allowed if the divergence of B is zero. But this is true also
under time-dependent conditions. We can then keep Eq. (10.70) as the definition of
A in general.

We now substitute into the Faraday law (Eq. 10.50) B given by Eq. (10.70) and
obtain

r� E ¼ � @r� A
@t

;

which can obviously be written as

r� Eþ @A
@t

� �
¼ 0:

Well, E + ∂A/∂ t on the left-hand side is an irrotaional vector that reduces to
E under time-independent conditions. We can use it to define a scalar function ϕ,
such as

r/ ¼ �E� @A
@t

: ð10:71Þ

The scalar potential defined in this way reduces to the electrostatic potential
under static conditions, as it should.

Summarizing, we define the electromagnetic potentials as two fields, one scalar
and one vector, such that

B ¼ r� A; E ¼ �r/� @A
@t

: ð10:72Þ

We saw that, under time-independent conditions, the potentials are not com-
pletely defined. The same holds under the general conditions we are now consid-
ering. Indeed, any ϕ′ and A′ that are such give the same electric and magnetic fields
E and B through Eq. (10.72), as ϕ and A are equivalent electromagnetic potentials.

A vector field A′ obtained by adding to A the gradient of any scalar field ψ,
namely A ! A0 ¼ Aþrw, gives the same magnetic field, because
r� A ¼ r� A0. This is not enough, however, because in dynamics, the electric
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field depends not only on ϕ, but on A as well, as in Eq. (10.72). It easy to show that
neither E nor B change when we contemporarily do the substitutions

A ! A0 ¼ Aþrw; / ! /0¼/� @w
@t

: ð10:73Þ

Indeed, we then have, for the electric and magnetic fields, the substitutions

B ! B0 ¼ r � A0 ¼ r � A ¼ B

E ! E0 ¼ �r/0 � @A0

@t
¼ �r/þ @

@t
rw� @A

@t
� @

@t
rw ¼ E:

The electric and magnetic fields do not change. All the observable effects depend
on the forces acting on the charges, which are due to the electric and magnetic
fields, not directly to the electromagnetic potentials. We are then free to choose any
electromagnetic potential satisfying Eq. (10.72). This is the gauge-fixing freedom
that we already exploited in magnetostatics, in Sect. 6.8. We phrase this conclusion
by stating that electromagnetism (namely the Maxwell equations) is (are) invariant
under the gauge transformations of the potentials in Eq. (10.73). This property is
called gauge invariance. We observe here that gauge invariance is, in classical
electromagnetism, just a property that turns out to be very useful for simplifying
equations, as we shall do immediately, but no more than that. In quantum elec-
trodynamics, and more generally, in the quantum theories of all the fundamental
interactions (gravity excluded), gauge invariance assumes an extremely funda-
mental role.

Coming back to electromagnetic potentials, we can say that Eq. (10.72) allows
us to calculate the electric and magnetic fields once we know the electromagnetic
potentials. Consequently, we can describe the electromagnetism in terms of the
potentials, rather than of the fields. Let us find the partial differential equations
ruling the potentials, which are obviously equivalent to the Maxwell equations.

We have already used two Maxwell equations in the definitions of the potentials,
namely the equations of the divergence of B and of the curl of E. Let us now
substitute to E in Eq. (10.49) its expression Eq. (10.72). We obtain

r � �r/� @A
@t

� �
¼ q

e0
;

which we can write as

r2/þ @r � A
@t

¼ � q
e0
: ð10:74Þ

Unfortunately, it contains both A and ϕ. We still have not used the fourth
Maxwell equation. Let us substitute in Eq. (10.52) the expressions Eq. (10.72).
We have
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r� r� Að Þ � l0e0
@

@t
�r/� @A

@t

� �
¼ l0j:

We can simplify it a bit by using the vector identity

r� r� Að Þ ¼ r r � Að Þ � r2A:

We obtain, after a few rearrangements,

r2A� l0e0
@2A
@t2

�r � r � Aþ l0e0
@/
@t

� �
¼ l0j: ð10:75Þ

This equation is still quite complicated, but we canmake it simple by exploiting the
gauge invariance with a convenient choice of the divergence of A. We made some-
thing similar in Sect. 6.8, where we simplified the equations choosing ∇ � A = 0,
which is called the Coulomb gauge. In the present case, the convenient choice is

r � A ¼ �l0e0
@/
@t

; ð10:76Þ

which is called the Lorenz gauge, from Ludwig Lorenz (Denmark, 1829–1891).
With this gauge, the terms in parenthesis on the left-hand side of Eq. (10.75) cancel
one another out, and the equation becomes

r2A� l0e0
@2A
@t2

¼ �l0j; ð10:77Þ

which is now a quite simple equation in the vector potential alone. But there is a
further benefit. Indeed, Eq. (10.74) becomes

r2/� l0e0
@2/
@t2

¼ � q
e0
: ð10:78Þ

which not only contains ϕ only, but is the same partial differential equation!
We have found four relations in total (three for the components of the vector

potential and one for the scalar potentials), which are the same non-homogeneous
partial differential equations, with, on the right-hand sides, the components of the
current density and the charge density. We can write them with the speed of light in
place of ε0μ0 as

r2A� 1
c2

@2A
@t2

¼ �l0j

r2/� 1
c2

@2/
@t2

¼ � q
e0

: ð10:79Þ
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with the gauge condition

r � Aþ 1
c2

@/
@t

¼ 0: ð10:80Þ

The simplicity (and elegance) of the potential equations immediately makes
evident two fundamental properties of electromagnetism, namely the existence of
electromagnetic waves propagating with the speed of light, as we shall immediately
see, and the covariance of the electromagnetic equation under the Lorentz trans-
formations, as we shall see in the next section.

We have already found. in Sect. 10.3. that the electric and magnetic fields in a
vacuum obey a partial differential equation, which is the wave equation. The same
is true for the potentials. Indeed, in a vacuum, where there are no charges and no
currents, Eq. (10.79) become the homogeneous equations

r2A� 1
c2

@2A
@t2

¼ 0

r2/� 1
c2

@2/
@t2

¼ 0;

ð10:82Þ

which, in both cases, are just the wave equation. The wave velocity is the inverse
square root of the constant quantity multiplying the time second partial derivative,
namely, as we well know, c. In the 4th volume of the course, we shall discuss wave
phenomena in general and electromagnetic waves in particular. The electromagnetic
waves in the wavelength, ranging between about 400 and 700 µm, can be seen by
our own eyes. They are light.

10.10 Covariance of Electromagnetism

We have already recalled, in Sect. 6.16, that the relativity principle, which was
established by Galileo Galilei in the XVIth century, states, in modern terms, that
physical laws are covariant under transformations between two inertial reference
frames in the relative motion of uniform translation. As discussed in the 1st volume,
only two sets of transformation equations of the space and time coordinates
between such frames exist: the Galilei transformations and the Lorentz transfor-
mations. The former are the limit of the latter for velocities much smaller than the
speed of light. In the Galilei transformations, time intervals and distances between
two points are invariant under the transformation, namely are the same for two
observers in relative motion, while in the Lorentz transformations, they are dif-
ferent, but the velocity of light is invariant.

Let us briefly summarize what we discussed in the 1st volume. Figure 10.15
shows two inertial reference frames. The first one, which we call S (x, y, z, t), has
the coordinates x, y, z and time t. The second frame, S′(x′, y′, z′, t′), has axes parallel
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to the first one. The relative velocity is along the x and x′ axes that overlap. The
constant velocity of S′, the velocity of its origin, is vO′, and is in the positive
direction of x. We choose the origins of the times in both frames at the instant in
which O′ and O coincide.

An event is something happening in a definite position and at a definite instant in
time, as measured in the considered frame. It is a point in the space-time, which is a
four-dimensional space. Following Henri Poincaré (France, 1854–1912), we can
call the coordinates in the space-time

x1 ¼ x; x2 ¼ y; x3 ¼ z; x4 ¼ ict ð10:83Þ

These are also the components of the basic four-vector in the space-time. Two
are the relevant parameters in the Lorentz transformations. Both are pure numbers,
which are functions of the velocity tO0 of S′ relative to S. The first one is the ratio of
this velocity and the speed of light

bO0 ¼ tO0=c ð10:84Þ

the second is

cO0 ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2O0

q
ð10:85Þ

The Lorentz transformations can be written in the form

x1
x2
x3
x4

0
BB@

1
CCA ¼

c 0 0 ibc
0 1 0 0
0 0 1 0
�ibc 0 0 c

0
BB@

1
CCA

x01
x02
x03
x04

0
BB@

1
CCA ð10:86Þ

The Lorentz transformations are rigid rotations in the space-time. Similarly to
rigid rotation in the three-dimensional space, they leave the norms of the
four-vectors invariant.

x

y

x'

y'

r r'

O O'

vO'
S S'

P

Fig. 10.15 Two inertial
frames in relative uniform
translator motion
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Maxwell equations are covariant under the Lorentz transformations, but not
under the Galilei transformations. A consequence of that fact is the invariance of
the speed of light in a vacuum. Let us consider the following two events in S. The
first one is the start of a light pulse from its origin O at the instant t = 0, the second
is the arrival of the pulse at the point (x, y, z) at time t. We express the fact that the
speed of light is c, writing

x2 þ y2 þ z2 � ctð Þ2¼
X4
j¼1

x2j ¼ 0

In S′, the norm of the four-vector has the same value, namely

X4
j¼1

x02j ¼ x02 þ y02 þ z02 � ct0ð Þ2¼ 0

The statement we have just made, that Maxwell equations are covariant under
Lorentz transformations, means that, if we transform the physical quantities present
in the Maxwell equations (E, B, j and ρ) with the Lorentz transformations, both
sides of each equation change in the same way. Consequently, each equation that is
valid in the first frame is also valid in the second.

We have seen in the 1st volume that some three-vectors (namely vectors in the
three-dimensional space), but not all of them, can be “promoted” to four-vectors by
including a fourth component. This is the case for the linear momentum p, which
forms, together with energy U, the four-momentum (p, iU/c). Similarly, we saw, in
Sect. 6.16, that the three-vector current density j can be “promoted” to four-vector
with a fourth component proportional to the charge density, namely (j, iρc). This is
called the four-current density. Consequently, we already know how these elements
of the Maxwell equation transform. We do not, however, know the transformation
equations for the electric field E and the magnetic field B. The “promotion” pro-
cedure does not work for these three-vectors, because the three components of each
of them are not the space components of a four-vector. On the contrary, the six of
them are the elements of a double antisymmetric tensor in four dimensions. Tensors
are mathematical entities. We can think here of an antisymmetric 4 × 4 matrix,
which has six independent elements. These are the electric and magnetic field
components, factors c apart. We shall not find the Lorentz transformations for this
tensor here, because there is a simpler way. Namely, we shall consider the
covariance of the equations for the potentials, Eq. (10.79), which are equivalent to
the Maxwell equations.

The right-hand side of the first Eq. (10.79) is proportional through μ0, which is
an invariant constant, to the three-vector j. The right-hand side of the second
equation is almost, but not exactly, the fourth component of the four-current (j, iρc).
In order to obtain it, we multiply the left-hand and right-hand sides by the two sides
of the identity i/c = icμ0ε0, respectively and we re-write the equations in the form
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r2 � 1
c2

@2

@t2

h i
A ¼ �l0j

r2 � 1
c2

@2

@t2

h i
i/=c ¼ �l0 iqcð Þ

: ð10:87Þ

In this form, the equations, which are, in fact, the same equation, are very similar
to the Laplace equation, which we found under time-independent conditions for the
electrostatic potential, Eq. (1.87), and for the vector potential, Eq. (6.43). The
operator on the left-hand side of the Laplace equation is the Laplacian

r2 ¼ @2

@x2
þ @2

@y2
þ @2

@z2
:

This, we recall, is the norm of the gradient, which is the three-vector operator

r ¼ @

@x
;
@

@y
;
@

@z

� �

In place of the Laplacian, we now have

@2

@x2
þ @2

@y2
þ @2

@z2
� 1
c2

@2

@t2
;

which we can write as

@2

@x2
þ @2

@y2
þ @2

@z2
þ @2

@ ictð Þ2 ¼
@2

@x21
þ @2

@x22
þ @2

@x23
þ @2

@x24
:

We immediately recognize this expression as the norm of the four-dimensional
gradient, which we write as

@l � @

@x1
;
@

@x2
;
@

@x3
;
@

@x4

� �
¼ @

@x
;
@

@y
;
@

@z
;
@

@ict

� �
: ð10:88Þ

The norm of any three-dimensional vector, such as the three-dimensional gra-
dient, is invariant under rotations of the axes, namely it is a three-scalar. In exactly
the same way, the norm of any four-dimensional vector, such as the four-
dimensional gradient, is invariant under Lorentz transformations, namely it is a
four-scalar. We write this operator, which is called the d’Alembert operator or
d’Alembertian, after Jan Baptiste d’Alembert (France, 1717–1783), as

h2 �
X4
l¼1

@2

@x2l
¼ r2 � 1

c2
@2

@t2

� �
: ð10:89Þ
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Equation (10.87) are

h2A ¼ �l0j; h2i/=c ¼ �l0ðiqcÞ: ð10:90Þ

Now, we have on the right-hand sides the components of a four-vector, on the
left-hand side a scalar operator times four quantities, which should consequently be
the components of a four-vector as well. This statement can be rigorously proven,
but we shall skip that. The four-vector is called the four-potential

Al ¼ A; i/=cð Þ: ð10:91Þ

We still have one equation to consider, namely the gauge condition (Eq. 10.80).
The relativity principle requires that this equation should be covariant as well. We
start by observing that the first term is the divergence of the vector potential. Let us
then look at the divergence in four dimensions of the four-potential. This is

X4
l¼1

@Al

@xl
¼ r � Aþ @ i/=cð Þ

@ ictð Þ ¼ r � Aþ 1
c2

@/
@t

;

which is just the left-hand side of Eq. (10.80), which can then be written as

X4
l¼1

@Al

@xl
¼ 0: ð10:92Þ

The four-divergence being a four-scalar, the equation is invariant.
We have thus shown that the electromagnetic equations obey the relativity

principle, provided the Lorentz transformations are used.

10.11 Physical Meaning of the Electromagnetic Potentials

As we have discussed, the electromagnetic field can be mathematically described
either in terms of the fields E and B, or in terms of the potentials ϕ and A. While the
two descriptions are completely mathematically equivalent, they are not necessarily
so physically. In this section, we shall discuss the following questions. Are the
potentials measurable, or, in other words, can we define them operationally? What
is the meaning of the potentials as physical (rather than mathematical) objects?

We recall the operational definitions of the fields E and B. We considered an
exploring charge q at the space point r and time instant t in which the fields had to be
defined. We measured the force acting on the charge. If the charge is at rest, we
measure the force F(r, t) = q E(r, t) and, q being known, we determine E(r, t). If the
charge moves with known velocity v, we can determineB(r, t) bymeasuring the force
F(r, t) = qE(r, t) + qv×B(r, t). Note that, themagnetic force being qv×B(r, t) in any
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case perpendicular to velocity, we must measure one component of B at a time, for
different directions of the velocity of the test charge.

We think of fields E and B as real physical quantities, mainly because we need
them to get rid of actions at a distance. Indeed, in the electric case, we may describe,
for example, the action of the point charge q1 at point r1 on point charge q2 at
another point r2 by the force exerted by the former on the latter (the Coulomb force
if the charges are at rest). In this description, we have an action at a distance. We
have logically gotten rid of that by thinking that the charge q1 produces an electric
field E in all the surrounding space independently of the presence of q2. When q2 is
present in r2, it is subject to a force given by the pre-existent field in r2 times q2.
The latter description is experimentally verified under time-dependent conditions,
when we observe that the interaction propagates with a finite velocity, which is the
velocity of light. Completely similar arguments hold for the magnetic field B.

On the other hand, we need neither the scalar potential ϕ nor the vector potential
A to avoid actions logically at distance, because all observable effects are the result
of the forces. The force on the generic charge q at the space point r in the time
instant t moving with velocity v depends on the fields at that point and in that
instant, as F r; tð Þ ¼ q E r; tð Þþ v� B r; tð Þ½ �. Consequently, in a region of space in
which the fields are zero and the potentials are different from zero, no force acts on
the charge and no effects are observable. From this point of view, the potentials
look to be useful mathematical objects deprived of a substantial physical meaning.
However, this conclusion is premature.

Let us start with the operational definition of the scalar potential, or, in other
words, with its measurability. The scalar potential ϕ can be measured (within an
additive constant, which is its gauge freedom) if the electric field is constant with
time during the measurement operation. In this case, the definition of ϕ is the
definition known in electrostatics. Namely, the potential ϕ (r) at point r is the
potential energy of the unit charge at that point. Let the charge q move under the
action of the field from r1 to r2. The sum of potential energy (qϕ) and kinetic energy
(UK) of the charge is constant. We determine the potential difference between those
points, namely ϕ (r2) – ϕ (r1), by measuring the kinetic energies of the charge UK1

when it is in r1 and UK2 when it is in r2. Note that this operation must be done
without inducing any change in the electric field. Namely, the charge q should be so
small that the positions of the charge sources of the field do not change when it
moves. Energy conservation then gives us

q/ r1ð ÞþUK1 ¼ q/ r2ð ÞþUK2;

and consequently

/ r2ð Þ � / r1ð Þ ¼ UK2 � UK1ð Þ=q: ð10:93Þ

We repeat that the equations we just wrote are true only if the electric field
remains constant during the measurement operations. Under these conditions, we
can define the scalar potential operationally, up to an additive constant.
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Beyond being measurable, the scalar potential has the following physical
meaning. If we want to know the energy of the charge q in r using only local
information, then we must use ϕ, which thus gets a physical meaning. Indeed,
ϕ (r) is the interaction energy of the unit charge in r. In other words, qϕ(r) is the
fraction of the field energy that is locally available to be transformed into kinetic
energy of the charge. Still, in other words, qϕ(r) is the work to be done against the
field forces to move the charge q from an infinite distance, where it does not interact
with the field, to the position r. Notice again that the operation must be done
without affecting the positions of the charge sources of the potential ϕ(r). When the
charge is positioned in r, the energy of the system is changed by qϕ(r). At the end
of this section, we shall prove this statement with an explicit calculation.

Let us now look at the operational definition of the vector potential A, namely at
its measurability. We must measure one of the components of A at a time, much as
we did for the measurement for the magnetic field. We have just seen that the scalar
potential can be measured under the conditions of having the electric field constant in
time. An analogous condition holds for the measurability of the components of A. In
this case, in place of energy conservation, we start from the equation of motion of the
charged particle and write it in terms of the potentials instead of the fields, using
Eq. (10.72). If p is its momentum and v the velocity of the charge, we have

dp
dt

¼ q Eþ v� Bð Þ ¼ q �r/� @A
@t

þ v�r� A
� �

; ð10:94Þ

which can be written as

@

@t
pþ qAð Þ ¼ �q r/� v�r� Að Þ:

On the right-hand side, we have the gradient of the scalar potential and the
cross-product of velocity and the curl of A. The latter can be transformed into
another gradient through some fairly tricky vector algebra, which we skip, and by
benefit of the gauge freedom choosing the Coulomb gauge, namely r � A ¼ 0. The
result is v�r� A ¼ r v � Að Þ. The above equation becomes

@

@t
pþ qAð Þ ¼ �r q /� v � Að Þ½ �; ð10:95Þ

where the gradient only acts on the potentials, not on velocity. We can measure a
component of the vector potential if the time derivative of that component on the
left-hand side is zero. To guarantee that, we operate with that component of the
gradient on the right-hand side equal to zero.

Figure 10.16 shows an infinitely long solenoid carrying a steady current of
intensity I. Outside the solenoid, the electric and magnetic fields are zero. The first
term on the right hand side of Eq. (10.95), which is proportional to the gradient of
the scalar potential, is hence zero. We profit of the geometry of the problem and use
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cylindrical polar coordinates, with z on the symmetry axis, r as the distance from
the axis and α as the azimuth angle. As we know, the lines of the vector potential
are circumferences normal to the axis with centers on it. The only non-zero com-
ponent of the vector potential is the azimuthal component Aα, which we now want
to measure. This component has constant values at all the points of one of these
circumferences, like Γ in Fig. 10.16. Correspondingly, r v � Að Þ ¼ 0 along Γ. We
then position a rigid plastic wire about Γ and pass it through the hole that we have
done a small bead. We place the charge q on the bead, which can move on the
circumference with negligible friction. In this way, we prepared the system con-
straining the charge to move at points at which the right-hand side of Eq. (10.95) is
zero, and we can do the measurement.

We now have to take the current intensity slowly down to zero. The flux of
B through Γ decreases and an emf is induced about Γ. This is exactly the effect
considered in Sect. 10.6, when we discussed the Feynman paradox. We can say, in
an equivalent manner, that an electric field E is induced at the points of Γ as a
consequence of the rate of change of Aα. E is tangent to Γ, namely its only com-
ponent is Ea ¼ �@Aa=@t, for Eq. (10.72). This field acts on q with the force qEa,
which, in every infinitesimal time interval dt, changes the pa component of the
momentum of the charge by

dpa ¼ qEadt ¼ �q
@Aa

@t
dt ¼ �qdAa;

which can be written as

d pa þ qdAað Þ ¼ 0: ð10:96Þ

q

P
α

B

A

Γ

r

Fig. 10.16 A very long
solenoid and a charge moving
in a region where B = 0 and
A ≠ 0
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This means that the quantity that we call

Pa � pa þ qAa: ð10:97Þ

is a constant of the motion of the charge.
Πα is the α-component of the vectorP, which is called the canonical momentum,

namely

P ¼ pþ qA: ð10:98Þ

Equation (10.97) shows that the α component of the canonical momentum of the
system is constant in time.

In the initial state of our experiment the charge q is at rest in a location in which
the magnetic field is zero but Aa is different from zero, and in the final state, Aa ¼ 0
and the charge has a non-zero linear momentum, which we call paf . We can find
this quantity using the canonical momentum conservation (of its α-component, to
be precise). We write

Pa;iniz ¼ 0þ qAa ¼ Pa;fin ¼ paf þ 0;

namely

paf ¼ qAa: ð10:99Þ

Hence, when the field is switched off, the charged particle acquires a linear
momentum equal to its charge q times the initial vector potential. We can say that
qA is the potential linear momentum of q in the field, namely the field linear
momentum that is locally available to be transformed into linear momentum of
matter. We can say that the potential action of A is local, while that of B is at a
distance. Still, in other words, moving the charge q from infinite distance to the
point P in Fig. 10.16, the linear momentum of the system (field plus particle)
changes by qA, which is then the interaction momentum between charge and field.
Once more, the operation must be done without affecting the system of currents
producing the magnetic field. We shall check this statement with an explicit cal-
culation at the end of the section.

Historically, the meaning of the vector potential as the potential momentum
stored in the field was already recognized by James Clerk Maxwell. He wrote in “A
treatise on electricity and magnetism” in 1873:

The vector A represents in direction and magnitude the time-integral of the electromotive
force which a particle placed at the point (x, y, z) would experience (gaining an equal
momentum) if the primary current were suddenly stopped. We shall therefore call it
Electrokinetic Momentum (term no longer used) at the point (x, y, z).

In 1903, Joseph John Thomson, in his lectures at Yale University, published in
the book “Electricity and Matter” the following year, discussed this issue through
several examples. He wrote:
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It is important to bear in mind that this momentum is not in any way different from ordinary
mechanical momentum and can be given up or taken from the momentum of moving
bodies.

and, concluding after his demonstrations:

Thus, whether the magnetic field is due to permanent magnets or to electric currents or
partly to one and partly to the other, the momentum when an electrified point is placed at
P is equivalent to a momentum qA at P where A is the vector potential at P.

Note that the scalar potential ϕ is interaction energy per unit charge, and is
linked to the electric field, which modifies the kinetic energy of the charges. On the
other hand, the vector potential A is potential linear momentum and is linked to the
magnetic field, which modifies the direction of the momentum of the charged
particles and not their energy.

Let us now analyze how the gauge invariance property appears in the experiment
we are considering. The observable, namely the change in the momentum of the
charge q, is due to the induced emf

I
C

E � ds ¼ � d
dt

I
C

A � ds ¼ � d
dt

Z
R

r� Að Þ:ndR;

where, on the right-hand side, we have used the Stokes theorem on a surface Σ
bound by Γ. The equation is obviously the Faraday law. We wrote it down to
observe that the momentum acquired by q is determined by the curl of A and is
independent of its divergence. Consequently, the experiment cannot distinguish
between two vector potentials A and A’ having identical curl and different diver-
gence. This is clearly the gauge invariance.

We conclude by stating that it is possible to define each component of the vector
potential operationally, provided we operate keeping the homologous component of
the canonical momentum, constant according to Eq. (10.95).

We observe here that, in quantum physics, the relevance of the electromagnetic
potentials is absolutely fundamental. Indeed, in quantum physics, the forces are not
very relevant, while energy and momentum become of central importance. As a
matter of fact, waves are associated with quantum systems. The frequency of the
wave is proportional to energy (to the total energy, namely interaction plus kinetic
energy) and the wavelength is inversely proportional to momentum (to the
canonical momentum, namely mechanical plus interaction momentum). The most
natural description is in terms of the potentials rather than of the electric and
magnetic fields. Observable effects exist when, for example, a beam of charged
particles crosses a region of zero electric and magnetic fields and non-zero
potentials, such as outside a current-carrying solenoid, as shown in Fig. 10.16. The
effect is known as the Aharonov-Bohm solenoid effect, after Yakir Aharonov
(Israel, 1932-) and David Bohm (USA, 1917–1992), who predicted it in 1959. The
effect was later observed experimentally. The vector potential plays crucial roles in
superconductivity and quantum field theories.
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Let us now calculate the interaction energy and the interaction momentum
between a point-like particle of charge q, at rest in r1, and a time-independent
electromagnetic field E0, B0. The total electric field is the sum of E0 and the electric
field of charge q, which we call Eq. The total magnetic field is just B0 because, the
charge being at rest, its magnetic field is zero. Its electric field at the generic point r2 is

Eq r2ð Þ ¼ q
4pe0

u12
r212

: ð10:100Þ

We obtain the energy of the total field by integrating the energy density given by
Eq. (10.36), namely

U ¼ e0
2

Z
E0 þEq
� �2

dV þ 1
2l0

Z
B2
0dV

¼ e0
2

Z
E2
0dV þ 1

2l0

Z
B2
0dV

	 

þ e0

2

Z
E2
qdV þ e0

Z
E0 � EqdV :

Let us look at the right-hand side of this equation. The first term, in brackets, is
the energy of the field E0, B0 alone, the second term is the field of the point charge
alone. These two terms also exist if the charge is outside the field. The third term is
the interaction energy between the charge and the E0, B0 field, when the charge is at
r1. Indicating with ϕq the potential of the charge, we can write

Uint ¼ e0

Z
E0 r2ð Þ � Eq r2ð ÞdV2 ¼ �e0

Z
E0 r2ð Þ � r/q r2ð ÞdV2:

We now use the identity

E � r/ ¼ r E/ð Þ � /r � E

and write

Uint ¼ �e0

Z
allspace

r � E0 r2ð Þ/q r2ð Þ� �
dV2 þ e0

Z
allspace

/q r2ð Þr � E0 r2ð ÞdV2:

The first integral on the right-hand side is the integral to the entire space of a
divergence. It can be shown to be zero in the hypothesis that the charge distribution
originating the field does not extend to infinite. The procedure is the same one that
we used when we calculated the electric field energy and the magnetic field energy.
Namely, we start with an integral of the divergence over a sphere of large radius, so
large as to contain all the charges. Then, we use the Gauss divergence theorem to
convert the integral into the integral of a flux over the surrounding surface. Then,
we send the radius R of the surface to infinity. The integrand tends to zero as 1/R3,
while the area diverges as R2. Consequently, the integral vanishes as 1/R, and we
are left with
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Uint ¼ e0

Z
allspace

/q r2ð Þr � E0 r2ð ÞdV2;

in which we substitute

/q r2ð Þ ¼ 1
4pe0

q
r12

and

r � E0 ¼ q=e0

where ρ is the charge density producing E0. We obtain

Uint ¼ q
4pe0

Z
q r2ð Þ
r12

dV2;

which we immediately recognize as

Uint ¼ q/ r1ð Þ: ð10:101Þ

That is what we wanted to show. The interaction energy between point charge
and field is simply given by the well-known expression of the potential energy of
the charge in the given static field. If the charge is in a region of zero E0 field, it
interacts with that field anyway, in the sense that there is an interaction energy
(corresponding to the work done when assembling the system). Indeed, the field of
the charge is not confined to the site of the charge, but rather it invades all space,
including where E0 is not zero. Together, they give origin to the interaction energy.

Let us now calculate the interaction momentum, by integration of the linear
momentum density given by Eq. (10.40), namely

P ¼ e0

Z
E� BdV : ð10:102Þ

We obtain

P ¼ e0

Z
E0 r2ð Þ � B0 r2ð ÞdV2 þ e0

Z
Eq r2ð Þ � B0 r2ð ÞdV2:

The first term on the right-hand side is the momentum of the given (stationary)
field. The momentum of the field of the charge, which is at rest, is zero, because the
magnetic field is zero. The second term on the right-hand side is the momentum due
to the interaction between charge and E0, B0 field, and we write
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Pint ¼ e0

Z
Eq r2ð Þ � B0 r2ð ÞdV2 ¼ �e0

Z
r/q r2ð Þ � B0 r2ð ÞdV2:

The integral on the right-hand side can be calculated by parts. Once more, the
integrated part, which is a divergence, vanishes at infinite, and we are left with

Pint ¼ e0

Z
/q r2ð Þr � B0 r2ð ÞdV2:

Now, we substitute the above expression for ϕq and r� B ¼ l0j, where j is the
(steady) current density generating B0, obtaining

Pint ¼ ql0
4p

Z
j r2ð Þ
r12

dV2;

which we recognize as

Pint ¼ qA r1ð Þ; ð10:103Þ

which is what we wanted to show. The interaction momentum is also different from
zero when the charge q is outside the solenoid, where the magnetic field is zero, but
the vector potential is not. Indeed, the electric field Eq of the charge extends to all
space, even far from the position of the charge, and penetrates inside the solenoid,
where, together with the magnetic field B0, it originates the interaction momentum.

Summary

In this chapter, we completed the equations ruling the electric and magnetic fields
under general conditions, in both their differential and integral forms. We learned
the following principal concepts:

1. The four Maxwell equations
2. The displacement current.
3. Electromagnetic radiation.
4. The existence of electromagnetic waves and their speed in vacuum. Light is an

electromagnetic wave.
5. Energy density and energy flux in an electromagnetic field.
6. Linear momentum density and flux in an electromagnetic field.
7. Matter and field linear momenta do not conserve separately but their sum does,

if the system is isolated. The same holds for angular momenta.
8. The action and reaction law does not hold for a system of moving charges.
9. The electromagnetic potentials.

10. Gauge invariance of electromagnetism.
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11. Covariance of electromagnetism under Lorentz transformations.
12. Physical meaning of the electromagnetic potentials.

Problems

10:1. Can the lines of the electric field be closed? If yes, what is the origin of the
field? Can those lines exit from a point? If yes, what is the origin of the
field? Answer the same questions for the magnetic field.

10:2. Could you measure the divergence of the vector potential?
10:3. A cylindrical wire conductor has length l and resistance per unit length

r. We apply a potential difference V to its extremes. Calculate the Poynting
vector immediately outside the surface of the conductor and the energy flux.
Compare with the heat dissipated by the Joule effect.

10:4. Consider a solenoid made of a tightly packed cylindrical helix of a resistive
wire and carrying a steady current I. Draw a sketch at a point immediately
outside the solenoid with the following vectors: electric field, magnetic
field, Poynting vector.

10:5. Are the discontinuities of the electric field components across a charged
surface different under dynamic conditions compared with static ones? And
the discontinuities of the magnetic field components across a
current-carrying surface?

10:6. The distance between the metallic circular plates of a parallel plate capacitor
is much smaller than their radius. The capacitor, which is initially charged,
is being discharging on a resistor. What are direction and sense of the
energy flow at a point between the plates close to the rim?

10:7. In a certain space region, the scalar potential is uniform and constant in
time. The space and time dependence of the vector potential is A(x, y, z,
t) = A0 + k(x, y, z)cos(ωt), where A0 is a constant vector, k(x, y, z) is a
vector function of the coordinates constant with time. What is the expres-
sion of the electric field in that region?

10:8. A coaxial cable consists of two conducting coaxial cylindrical surfaces
separated by a vacuum. The radii of the two conductors are R1 and R2, with
R1 < R2, as in Fig. 10.17. Suppose the resistivity of the conductors to be
negligible.

R
2

R1

l

V

R

Fig. 10.17 The coaxial cable
of problem 10.8
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The circuit is closed with a resistor R at one end and a battery delivering the
emf V at the other. The internal resistance of the battery is negligible. Find
the Poynting vector between the two surfaces.

10:9. A capacitor of capacitance C discharges through the resistance R. Its charge
varies with time as Q = Q0exp(–t/RC). How does the displacement current
between the plates of the capacitor vary with time?

10:10. At point (x, y, z), the current density is zero and the Poynting vector is
S = yi – xj + ak where a is constant. Is the energy density at that point
constant or variable with time?
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Superposition principle, 11, 14, 19, 47, 182
Surface charge density, 15
Surface charges, 225
Surface conductors, 163
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