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PREFACE

Throughout the decade of the 1990's, | taught a one-year course of a specialized nature to
students who entered Yale College with excellent preparation in Mathematics and the Physical
Sciences, and who expressed an interest in Physics or a closely related field. The level of the course
was that typified by the Feynman Lectures on Physics. My one-year course was necessarily more
restricted in content than the two-year Feynman Lectures. The depth of treatment of each topic was
limited by the fact that the course consisted of a total of fifty-two lectures, each lasting one-and-a-quarter
hours. The key role played by invariants in the Physical Universe was constantly emphasized. The
material that | covered each Fall is presented, almost verbatim, in this book.

The first chapter contains key mathematical ideas, including some invariants of geometry and
algebra, generalized coordinates, and the algebra and geometry of vectors. The importance of linear
operators and their matrix representations is stressed in the early lectures. These mathematical
concepts are required in the presentation of a unified treatment of both Classical and Special Relativity.
Students are encouraged to develop a “relativistic outiook” at an eary stage. The fundamental Lorentz
transformation is developed using arguments based on symmetrizing the classical Galiean
transformation. Key 4-vectors, such as the 4-velocity and 4momentum, and their invariant noms, are
shown to evolve in a natural way from their classical forms. A basic change in the subject matter
occurs at this paint in the book. It is necessary to infroduce the Newtonian concepts of mass,
momentum, and energy, and to discuss the conservation laws of linear and angular momentum, and

mechanical energy, and their associated invariants. The discovery of these laws, and their applications
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to everyday problems, represents the high point in the scientific endeavor of the 17th and 18th
centuries. An introduction to the general dynamical methods of Lagrange and Hamilton is delayed until
Chapter 9, where they are included in a discussion of the Calculus of Variations. The key subject of
Einsteinian dynamics is treated at a level not usually met in at the infroductory level. The 4momentum
invariant and its uses in relativistic collisions, both elastic and inelastic, is discussed in detail in Chapter6.
Further developments in the use of relativistic invariants are given in the discussion of the Mandelstam
variables, and their application to the study of highenergy colisions. Following an overview of
Newtonian Gravitation, the general problem of central orbits is discussed using the powerful method of
[o, 1] coordinates. Einstein’'s General Theory of Relativity is introduced using the Principle of
Equivalence and the notion of “extended inertial frames” that include those frames in free fall in a
gravitational field of small size in which there is no measurable field gradient. A heuristic argument is
given to deduce the Schwarzschild line element in the “weak field approximation”; it is used as a basis
for a discussion of the refractive index of spaceime in the presence of matter. Einstein's famous
predicted value for the bending of a beam of light grazing the surface of the Sun is calculated. The
Calculus of Variations is an important topic in Physics and Mathematics; it is infroduced in Chapter 9,
where it is shown to lead to the ideas of the Lagrange and Hamiton functions. These functions are
used to illustrate in a general way the conservation laws of momentum and angular momentum, and
the relation of these laws to the homogeneity and isotropy of space. The subject ofchaosis introduced
by considering the motion of a damped, driven pendulum. A method for solving the norHinear

equation of motion of the pendulum is outiined. Wave motion is treated from the pointof-view of
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invariance principles. The form of the general wave equation is derived, and the Lorentz invariance of
the phase of a wave is discussed in Chapter12. The final chapter deals with the problem of orthogonal
functions in general, and Fourier series, in particular. At this stage in their fraining, students are often
under-prepared in the subject of Differential Equations. Some useful methods of solving ordinary
differential equations are therefore givenin an appendix.

The students taking my course were generally required to take a parallel one-year course in
the Mathematics Department that covered Vector and Matrix Algebra and Analysis at a level suitable
for potential majors in Mathematics.

Here, | have presented my version of a firstsemester course in Physics — a version that deals
with the essentials in a no-rils way. Over the years, | demonstrated that the contents of this compact
book could be successfully taught in one semester. Textbooks are concemed with taking many
known facts and presenting them in clear and concise ways; my understanding of the facts is largely
based on the writings of a relatively small number of celebrated authors whose work | am pleased to
acknowledge in the bibliography.

Guilford, Connecticut
February, 2000
| am grateful to several readers for pointing out errors and unclear statements in my first version of this

book. The comments of Dr Andre Mirabelii were particularly useful, and were taken to heat.
March, 2003
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MATHEMATICAL PRELIMINARIES

1.1 Invariants

It is a remarkable fact that very few fundamental laws are required to describe the enormous
range of physical phenomena that take place throughout the universe. The study of these
fundamental laws is at the heart of Physics. The laws are found to have a mathematical strudure; the
interplay between Physics and Mathematics is therefore emphasized throughout this book.  For
example, Galileo found by observation, and Newton developed within a mathematical framework, the
Principle of Relativity:

the laws goveming the motions of objects have the same mathematical form in all inertial

frames of reference.

Inertial frames move at constant speed in straight lines with respect to each other— they are mutually
non-accelerating. We say that Newton's laws of motion are invariant under the Galilean transformation
(see later discussion). The discovery of key invarants of Nature has been essential for the
development of the subject.

Einstein extended the Newtonian Principle of Relativity to include the motions of bearms of light
and of objects that move at speeds close to the speed of light. This extended principle forms the basis
of Special Relativity. Later, Einstein generalized the principle to include accelerating frames of
reference. The general principle is known as the Principle of Covariance; it forms the basis of the

General Theory of Relativity (a theory of Gravitation).
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A review of the elementary properties of geometrical invariants, generalized coordinates, linear
vector spaces, and matrix operators, is given at a level suitable for a sound treatment of Classical and
Special Relativity. Other mathematical methods, including contra- and covariant 4-vectors, variational
principles, orthogonal functions, and ordinary differential equations are infroduced, asrequired.
1.2 Some geometrical invariants

In his book The Ascent of Man, Bronowski discusses the lasting importance of the discoveries
of the Greek geometers. He gives a proof of the most famous theorem of Euclidean Geometry,
namely Pythagoras’ theorem, that is based on the invariance of length and angle (and therefore of
area) under translations and rotations in space. Let a rightangled triangle with sides a, b, and ¢, be

translated and rotated into the following four positions to form a square of side ¢

<~ (b-3 -

The total area of the square = ¢ = area of four triangles + area of shaded square.

If the right-angled triangle is translated and rotated to form the rectangle:



13

then the area of four triangles = 2ab.
The area of the shaded square area is (b—a)? =b?—2ab + &2
We have postulated the invariance of length and angle under translations and rotations and therefore

c?2=2ab+(b-ap

=g +h2. (1.1)

We shall see that this key result characterizes the locally fiat space in which we live. It is the only form
that is consistent with the invariance of lengths and angles under translations and rotations .
The Scalar product is an important invariant in Mathematics and Physics. Its invariance properties can
best be seen by developing Pythagoras’ theorem in a three-dimensional coordinate form.  Consider

the square of the distance between the points P [x1, y1, zi]and Q [x2, Y2, 2] in Cartesian coordinates:
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Qx2,y2.2]
P x,y1,21]

o

X1
We have
(PQP = (o—x1f2 + (yo-y1f + (22-21P

= X2 — 2XiXo + X2 + YR — 2y1yo + Y2 + 22— 22120 + 72

= (k2 + YR +20)+ (P + Y7 + 22 )= 2xixe + Yy + Zi22)

= (OPE + (OQF  —2xx+yry2+zizo) (12
The lengths PQ, OP, OQ, and their squares, are invariants under rotations and therefore the entire
right-hand side of this equation is an invariant. The admixture of the coordinates (e + y1y2 + z1zo) is
therefore an invariant under rotations. This term has a geometric interpretation:in the triangle OPQ, we
have the generalized Pythagorean theorem

(PQ)=(OPR+(0QP-20P.0Q cosa,

therefore

OP.OQ cosoL = xixz +y1y2 + Ziz2 = the Scalar product. (1.3)
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Invariants in space-time with scalar-productike forms, such as the interval between events
(see 3.3), are of fundamental importance in the Theory of Relativity. Athough rotations in space are
part of our everyday experience, the idea of rotations in space-ime is counter-intuitive. In Chapter 3,
this idea is discussed in terms of the relative motion of inertial observers.
1.3 Elements of differential geometry

Nature does not prescibe a particular coordinate system or mesh. We are free to select the
system that is most appropriate for the problem at hand. In the familiar Cartesian system in which the
mesh lines are orthogonal, equidistant, straight lines in the plane, the key advantage stems from our
ability to calculate distances given the coordinates — we can apply Pythagoras’ theorem, directly.
Consider an arbitrary mesh:

v—direction - P[3.,4)]

Origin O Tu 2 3 u—direction
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Given the point P [3,, 4], we cannot use Pythagoras’ theorem to calculate the distance OP.

In the infinitesimal parallelogram shown, we might think it appropriate to write

ds?=du? +dv2+ 2dudvcoso. (ds?=(ds), a squared ‘length”)
This we cannot do! The differentials du and dv are not lengths — they are simply differences between
two numbers that label the mesh. We must therefore multiply each differential by a quantity that
converts each one into a length. Infroducing dimensioned coefficients, we have

ds? = gndu? + 2g12dudv + goav2 (14)

where Vgt du and Vg dv are now lengths.

The problem is therefore one of finding general expressions for the coefficients;
it was solved by Gauss, the pre-eminent mathematician of his age. We shall restrict our discussion to
the case of two variables. Before treating this problem, it will be useful to recall the idea of a total
differential associated with a function of more than one variable.
Let u = f(x, y) be a function of two variables, x and y. As x and y vary, the comesponding values of u

describe a surface. For example, if u = X2 + y2, the surface is a paraboloid of revolution. The partial

derivatives of u are defined by

of(x, y)ox = limitas h—0{(f(x + h, y)—f(x, y))/h} (treat y as a constant), (15)
and

of(x, y)loy = limitas k =0 {(f(x, y + k) —f(x, y))k} (treat x as a constant). (16)

Forexample, if u =f(x, y) = 3¢+ 28 then

oflox =6x, 04lox2=6, 9flox3=0
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and
oflay = 6y2, 0%lay2 =12y, 0%lay® = 12, and o*flay* = 0.
If u=1(x, y) then the total differential of the function is
du = (aflox)dx + (oflay)dy
corresponding to the changes: x — x + dxand y — y +dy.
(Note that du is a function of x, y, dx, and dy of the independent variables x and y)
1.4 Gaussian coordinates and the invariant line element
Consider the infinitesimal separation between two points P and Q that are described in either

Cartesian or Gaussian coordinates:

y+dy Q v+av Q

ds

y P vP
X X +dx u u+du
Cartesian Gaussian
In the Gaussian system, du and dv do not represent distances.
Let
x=f(u,v)andy=F(u, V) (1.7ab)

then, in the infinitesimal limit

dx = (ax/ou)du + (ox/ov)dv and dy = (dy/ou)du + (dy/ov)av.



18

In the Cartesian system, there is a direct comespondence between the meshnumbers and distances :

ds?=dx2+dy?. (18)
But

o = (ax/ou)Pdu? + 2(ax/ou)(ax/ov)dudv + (ax/ovav2 and

dy2 = (aylou)Pdu? + 2(aylou)(aylov)duav + (ay/ov)Pav2.
We therefore obtain

ds?= {(ax/ou)?+ (ayloupBdu? + 2{(ox/ou)(ox/av) + (ay/ou)(ay/ov)jdudv
+{(0x/ov2 + (dylov)Aav2
= g du? + 2g1odudv + gaV2 . (1.9)
fwe putu=urand v = u, then
ds?= 2 Eg jduidu; whereij=1.2, (ageneral form in n-dimensional space:i,j=1,2,3,..n)  (1.10)
;'wo important points connected with this invariant differential line element are:

1. Interpretation of the coefficients g j: consider a Euclidean mesh of equispaced parallelograms:
v

ds
dv

P du Q u
In PQR

ds?=1.du? + 1.dv2 + 2cosadudv
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= grdu? + godv2 + 2grdudv (1.11)
therefore, g11=gz=1 (the meshHines are equispaced)
and
gt = cosa. where o is the angle between the u-v axes.
We see that if the meshHines are locally orthogonal then gr2 = 0.
2. Dependence of the gj's on the coordinate system and the local values of u, v.

A specific example wil illustrate the main points of this topic: consider a point P described in
three coordinate systems — Cartesian P [, y], Polar P [r, ¢], and Gaussian P [u, v] - and the square
ds? of the line element in each system.

The transformation [x, y] — [, ¢] is
X =rcosdpand y =rsing. (1.12ab)

The transformation [r, ¢] — [u, V] is direct, namely

r=uandg=v.
Now,
oxlor=cos, aylor=sing, ox/dd=—rsing, dy/dd =rcos
therefore,
oxlou = cosv, dylou=sinv, axiov =—usinv, Ay/ov=ucosv.
The coefficients are therefore

g1 = C0sA + Sy =1, (113a<)

Oz = (-usinvR +ucosvp = 1,
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and
gr2=cos(-usinv) + sinv(ucosv) = 0 (an orthogonal mesh).
We therefore have
ds?=dx2 + dy? (114 a¢)
= du? + uldv2
= dr2 + r2dg.

In this example, the coefficient gz = f(u).

The essential point of Gaussian coordinate systems is that the coefficients g i; completely
characterize the surface — they are intrinsic features. We can, in principle, determine the nature of a
surface by measuring the local values of the coefficients as we move over the surface. We do not
need o leave a surface to study its form.

1.5 Geometry and groups

Felix Klein (1849 - 1925), infroduced his influential Edanger Program in 1872. In this program,
Geometry is developed from the viewpoint of the invariants associated with groups of transformations.
In Euclidean Geometry, the fundamental objects are taken to be rigid bodlies that remain fixed in size
and shape as they are moved from place to place. The notion of a figid body is an idealization.

Klein considered transformations of the entire plane — mappings of the set of all points in the
plane onto itself. The proper set of rigid motions in the plane consists of translations and rotations. A
reflection is an improper rigid motion in the plane; itis a physical impossibility in the plane itself. The set

of all rigid motions — both proper and improper — forms a group that has the proper rigid motions as a
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subgroup. A group G is a set of distinct elements {g} for which a law of composition “-” is given such
that the composition of any two elements of the set satisfies:

Closure: if i, gbelong to G then g« = gi-g; belongs to G for all elements g, g,
and
Associativiy. forall gi, gj, gxin G, gi-(@j-9x) = (gi°g) - g..
Furthermore, the set contains
A unique identity, e, suchthatgi-e =e-gi=giforallgiin G,
and
A unique inverse, g, for every elementgin G,
suchthatgi-gr'=gr'-gi=e.
A group that contains a finite number n of distinct elements gn is said to be a finite group of order n.
The set of integers Z is a subset of the reals R; both sets form infinite groups under the
composition of addition. Zis a “subgroup‘of R.
Pemrmutations of a set X form a group S, under composition of functions; if a: X — X and b: X
—> X are pemutations, the composite function ab: X —> X given by ab(x) = a(b(x)) is a permutation. If
the set X contains the first n positive numbers, the n! permutations form a group, the symmetric group,
Sh. Forexample, the arangements of the three numbers 123 form the group

S3={123,312,231,132,321,213}.
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If the vertices of an equilateral tiangle are labelled 123, the six possible symmetry
amrangements of the triangle are obtained by three successive rotations through 120> about its center of
gravity, and by the three refiections in the planes |, II, Il:
I

1

P

This group of ‘isometries* of the equilateral triangle (called the dihedral group, D) has the same
structure as the group of permutations of three objects. The groups & and Ds are said to be
isomorphic.

According to Klein, plane Euclidean Geometry is the study of those properties of plane rigid
figures that are unchanged by the group of isometries. (The basic invariants are length and angle). In
his development of the subject, Klein considered Similarity Geometry that involves isometries with a
change of scale, (the basic invariant is angle), Afine Geometry, in which figures can be distorted under
transformations of the form

X'=ax+by+c (1.15ab)

y =dx+ey+f,
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where [x, y] are Cartesian coordinates, and a, b, ¢, d, €, f, are real coefficients, and Projective
Geometry, in which all conic sections: circles, €llipses, parabolas, and hyperbolas can be transformed
into one another by a projective transformation.

It will be shown that the Lorentz transformations — the fundamental transformations of events in space
and time, as described by different inertial observers— forma group.
1.6 Vectors

The idea that a line with a definite length and a definite direction — a vector— can be used to
represent a physical quantity that possesses magnitude and direction is an ancient one. The
combined action of two vectors A and B is obtained by means of the parallelogram law, illustrated in

the following diagram

A
The diagonal of the parallelogram formed by A and B gives the magnitude and direction of the
resuttant vector C. Symboallically, we write
C=A+B (1.16)
in which the “=" sign has a meaning that is clearly different from its meaning in ordinary arithmetic.
Galileo used this empirically-based law o obtain the resultant force acting on a body. Although a

geometric approach to the study of vectors has an intuitive appeal, it will often be advantageous b use
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the algebraic method — particularly in the study of Einstein's Special Relativity and Maxwell’s
Electromagnetism.
1.7 Quatemions

In the decade 1830 - 1840, the renowned Hamilton introduced new kinds of
numbers that contain fourcomponents, and that do not obey the commutative property of
multiplication. He called the new numbers quatemions. A quatemion has the form

U+Xi+yj+zk (1.17)

in which the quantiies i, j, k are akin to the quantity i = \~1 in complex numbers, x + iy. The
component u forms the scalar part, and the three components X + yj + zk form the vector part of the
quatemion. The coefficients x, y, z can be considered to be the Cartesian components of a point P in
space. The quantties i, j, k are qualitative units that are directed along the coordinate axes. Two
quatemions are equal if their scalar parts are equal, and if their coefficients x, y, z of i, j, k are
respectively equal. The sum of two quatemions is a quatemion. In operations that involve quatemions,
the usual rules of multtiplication hold except in those terms in which products ofi, j, k occur — in these
terms, the commutative law does not hold. For example

jk=i, kj=—i, ki=j, ik=—j, ij=k, ji=-k, (1.18)
(these products obey a righthand rule),
and

P=j2=k2=-1. (Note the relation to P=—1). (1.19)

The product of two quatemions does not commute. For example, if
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p=1+2i+3j+4k andq=2+3i+4j+5k
then
pq=-36+6i+12j+ 12k
whereas
gp=-36+23i-2j+%.
Multiplication is associative.
Quatemions can be used as operators to rotate and scale a given vector into a new vector:
@+bi+c+dk)xi+yj+zk)=(xi+yj+zk)
If the law of composition is quatemionic multiplication then the set
Q={£1, 4, j, k}
is found to be a group of order 8. Itis a non-commutative group.
Hamitton developed the Calculus of Quatemions. He considered, for example, the properties
of the differential operator:
V =i(dlox) +j(dloy) + k(dloz). (1.20)
(He called this operator “nabla”).
Iff(x, y, z) is a scalar point function (single-valued) then

VE=i(000%) + (0dy) + k(@dz) , a vedtor,

V=i g+ vk
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is a continuous vector point function, where the Vis are functions of x, y, and z, Hamilton infroduced the
operation
WV = (idlox +joloy + kaloz)(wii + vaj + vaK) (1.21)
=— (V1o + ooy + dvyoz)
+ (OO — NAO2)i + (Ol — VY OX)j + (OVIOX — Dviloy K
=a quatemion.
The scalar partis the negative of the “divergence of v’ (a term due to Clifford), and the vector partis the
‘curl of V' (a term due to Maxwell). Maxwell used the repeated operator V2, which he called the
Laplacian.
1.8 3-vector analysis
Gibbs, in his notes for Yale students, wrtten in the period 1881 - 1884, and Heaviside, in articles
published in the Electrician in the 1880's, independently developed 3-dimensional Vector Analysis as a
subject in its own right— detached from quatemions.
In the Sciences, and in parts of Mathematics (most notably in Analytical and Differential Geometry),
their methods are widely used. Two kinds of vector multiplication were infroduced: scalar multiplication
and vector multtiplication. Consider two vecors vand v where
V=Vier+Voert+Vies

and

V=viertwertvses.
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The quantities e+, €2, and e3 are vectors of unit length pointing along mutually orthogonal axes, labeled
1,2,and 3.
i) The scalar muttiplication of v and v"is defined as
V-V =V VR VaVS (1.22)
where the unit vectors have the properties
er-e1=e-e=6ee=1 (1.23)
and
e1°€2762°1=01°€3=€3°e1=€2° €33 €2=0. (1.24)
The most important property of the scalar product of two vectors is its invariance under
rotations and translations of the coordinates. (See Chapter1).
ii) The vector product of two vectors v and v'is defined as
€1 € €3

VXV'= (Vi V2 3 (where . . . |is the determinant) (1.25)

7%
= (w3 —vav)er + (Vavi —vava)ex + (Vv —vovs)es.
The unit vectors have the properties
e1xe=exe=e3xe=0 (1.26ab)
(note that these properties differ from the quatemionic products of thei, j, K's),
and

€1X€2=63,62X€1=—€3,82X€63=€1,83xE2=—€1,63X€1=€2,81 XE3=—€
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These non-commuting vectors, or “cross products” obey the standard righthand-rule.
The vector product of two parallel vectors is zero even whenneither vector is zero.

The non-associative property of a vector product is illustrated in the following example

e1XE X8 =(B1X6)XxE2=3X 2 =—@

=e1x (&2 x &) =0.

Important operations in Vector Analysis that follow directly from those infroduced in the theory

of quatemions are:
1) the gradiient of a scalar function f{x1, X2, Xa)
V= (dfioxi)er + (fiox.)ex + (Afoxs)es,
2) the divergence of a vector function v
V V= ViloKs + Vol OXz + OVyOXs
where v has components v, Vo, 3 that are functions of x, 2, X3, and
3) the curl of a vector function v
e € €
VxV=|dox dlox doxs |.
ViV W
The physical significance of these operations is discussed later.

1.9 Linear algebra and n-vectors

(127)

(128)

(129)

A major part of Linear Algebra is concemed with the extension of the algebraic properties of

vectors in the plane (2-vectors), and in space (3~vectors), to vectors in higher dimensions (n-vectors).
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This area of study has its origin in the work of Grassmann (1809 - 77), who generalized the quatemions
(4-component hyper-complex numbers), infroduced by Hamitton.

An n-dimensional vector is defined as an ordered column of numbers

It will be convenient to write this as an ordered row in square brackets
Xn=[X1, X, ... X] . (1.31)
The transpose of the column vector is the row vector
Xal = (X1, X2, - X)- (1.32)
The numbers x4, X, ..%» are called the components of x, and the integer n is the dimension of
X. The order of the components is important, for example
[1,2,3]1#[2,3,1].
The two vectors X = [x1, X2, ..o and y = [y, 2, ...yn] are equal if
%=y (i=1ton).
The laws of Vector Algebra are
1. X+y=y+x. (1.33a€)
2. x+y]+tz=x+[y+2].
3. a)x+y]=ax+aywhereaisascalar .

4. (a+b)x=ax+bywhere ab are scalars .
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9. (ab)x = a(bx) where a,b are scalars .

lf a=1andb=-1then

X+[x]=0,
where 0=[0,0, ...0]is the zero vector.

The vectors X = [x1, %, ... and y = [y1, 2 ...yn] can be added to give their sum or resultant:

X+Y =X+, XY, Xt Vil (1.34)

The set of vectors that obeys the above rules is called the space of all n-vectors or the vector
space of dimension n.

In general, a vector v = ax + by lies in the plane of x and y. The vector v is said to depend
linearly on x and y — it is a linear combination ofx and y.

Ak-vector v is said to depend linearly on the vectors s, Wy, ...ux if there are scalars a such that

V=ailh el + ...akk . (1.35)
Forexample

[3,5,7]=[3,6,6] +[0,-1,1]=3[1, 2, 2] + 1[0,~1, 1], alinear combination of the vectors[1, 2, 2]
and[0,-1,1].

A set of vectors uy, Wy, ..Uk is called linearly dependent if one of these vectors depends linearly
onthe rest. Forexample, if

W =g+ agUs + ..+ k., (1.36)

the setuy, ...uxis linearly dependent.
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If none of the vectors us, Uy, ...k can be written linearly in terms of the remaining ones we say
that the vectors are linearly independent.

Altematively, the vectors s, U, ...uk are linearly dependent if and only if there is an equation of
the form

Cith + G + .0k =0, (1.37)
in which the scalars G are not all zero.

Consider the vectors e obtained by putting the i~component equal to 1, and all the other
components equal to zero:

er=[1,0,0,..0]

&=[0,1,0,..0]

then every vector of dimension n depends linearly on ey, €2, ...en, thus

X = [X1, X2, .. X

=X1€1+X82 t .. X, (1.38)

The e's are said to span the space of all n-vectors; they form a basis. Every basis of an n-space has
exactly n elements. The connection between a vectorx and a definite coordinate system is made by
choosing a set of basis vectors e.
1.10 The geometry of vectors

The laws of vector algebra can be interpreted geometrically for vectors of dimension 2 and 3.

Let the zero vector represent the origin of a coordinate system, and let the 2-vectors, x and vy,
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corespond to points in the plane: P [x, X and Q [y1, y2]. The vector sum x +y is represented by the
point R, as shown

A R Xy, Xty
2 component

X | Pi,x

Y2 Qv

00,0 \ \ >
X1 Y1 1t component

Risinthe plane OPQ, even ifx and y are 3-vectors.
Every vector point on the line OR represents the sum of the two comesponding vector points on the
— —> —>
lines OP and OQ. We therefore introduce the concept of the directed vector ines OP, OQ, and OR,
related by the vector equation
— > >

OP+0Q=0R. (139)

Avector V can be represented as a line of length OP pointing in the direction of the unit vectorv, thus

=v.OP
O

A vector Vis unchanged by a pure displacement:

Vi
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where the “=" sign means equality in magnitude and direction.

Two dlasses of vectors will be met n future discussions; they are
1. Polar vectors: the vector is drawn in the direction of the physical quantity being represented, for
example a velocity,
and
2. Axial vectors. the vector is drawn parallel to the axis about which the physical quantity acts, for
example an angular velocity.

The associative property of the sum of vectors can be readily demonstrated, geometrically

We see that
V=A+B+C=(A+B)+C=A+(B+C)=(A+C)+B. (1.40)
The process of vector addition can be reversed; a vector V can be decomposed into the sum of n

vectors of which (n— 1) are arbitrary, and the ni vector closes the polygon. The vectors need not be in
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the same plane. A special case of this process is the decomposition of a 3vector into its Cartesian
components.

Ageneral case A special case
v

vV
V:

=

y

V.

Vi1, Va, V3, Vy : arbitrary V, closes the polygon
Vs closes the polygon

The vector product of A and B is an axial vector, perpendicular to the plane containing A and B.

z
B y
AxB
o
aunitvector,+n A
perpendicular to the A, B plane

X

AxB=ABsnan=-BxA (141)

1.11 Linear Operators and Matrices
Transformations from a coordinate system [x, y] to another system [x’, y'], without shift of the

origin, or from a point P [x, y] to another point P [x, y ], in the same system, that have the form
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X' =ax+hby
y =cx+dy

where a, b, ¢, d are real coefficients, can be written in matrix notation, as follows

X a bl x
= : (141)
y) lcd]ly
Symbolically,
X =Nx (142)
where
X =[x, y],andx =[x, y’], both column 2-vectors,
and
ab
M= :
c d

a2 x 2 matrix operator that “changes” [x, y] into [x', y].
In general, M transforms a unit square into a parallelogram:

y Y, [atb,c+d]
bd

[0,1] 11]

[acl

[ Al |

Lo [0 X

This transformation plays a key role in Einstein’s Special Theory of Relativity (see later discussion).
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1.12 Rotation operators

Consider the rotation of an x, y coordinate system about the origin through an angle¢:

y 7
PxylorP [x,y]
y
y
B
¢
/ X,
e
0 S
00’ X - X
From the diagram, we see that
X = X008+ ysing
and
Yy’ =—Xxsind + yoos
or
X cosp Sing | | x
y| |-snd cosp ||y
Symboalically,
P =Rd{p)P (143)

where
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00sp  Sing
Rdp)= is the rotation operator.
—Sing  cosg
The subscript ¢ denotes a rotation of the coordinates through an angle +¢.ﬁ
The inverse operator, R ¢'(¢), is obtained by reversing the angle of rotation: +¢ — —¢.
We see that matrix product
R QR =RO)R ) =1 (144)

where the superscript T indicates the franspose (rows <> columns), and

10

is the identity operator. (145)
0 1

Eq.(1.44) is the defining property of an orthogonal matrix.

If we leave the axes fixed and rotate the point P[x, y] to P'[x, y], then

we have
YA
y Pyl
y Plxy]
0] X X X

From the diagram, we see that

X' =X00s¢p—Ysing, and y* = xsing + yoosp
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or
P =R(p)P (146)
where
0S¢ -Sind
Ro) = , the operator that rotates a vector through +¢.
sing  cosP

1.13 Components of a vector under coordinate rotations
Consider a vector V [vy, ], and the same vector V" with components [vy,vy], ina

coordinate system (primed), rotated through an angle +¢.
Yy ¥

O, O Vx X

We have met the fransformation [x, y] — [x’, y' ] under the operation SR {(); here, we have the
same transformation but now it operates on the components of the vector, vkand v,

Vi, W= R d)[vs, W) (147)

PROBLEMS
1-1 i) fu = 3 show that au/ox = (3*¥In3)ly and auldy = (-3 ¥ xIn3)A2.

i) If u =In{(& + y)/x& show that auox = (x - 2y)I(x(3 +y)) and auldy = 1/(E + ).
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1-2 Calculate the second partial derivatives of
fix, y) = (1Ay)exp{-{x— a)2/4y}, a = constant.

1-3 Check the answers obtained in problem 1-2 by showing that the function f(x, y) in

1-2 is a solution of the partial differential equation ¢#flox2 — dfidy = 0.
14 IFf(x,y, 2) = 1/(x@ + y2 + 22 = 1Jr, show that f(x, y, z) = 1/ris a solution of Laplace’s

equation

Hloxe + Aoy + Hlloz2 = 0.

This important equation occurs in many branches of Physics.
1-5 Atagiven instant, the radius of a cylinder is r(t) = 4cm and its height is h(t) = 10cm.

If r{t) and h(t) are both changing at a rate of 2 cm.s™, show that the instantaneous

increase in the volume of the cylinder is 192rt cmié.s™.
1-6 The transformation between Cartesian coordinates [, y, z] and spherical polar

coordinates [r, 6, ¢] is

X =rsinBcosd, y = rsinBsing, z = rcoso.
Show, by calculating all necessary partial derivatives, that the square of the line
elementis
ds?=dr2 + Psin?Bdqy + Pd62.

Obtain this result using geometrical arguments. This form of the square of the line element will be

used on several occasions in the future.

1-7 Prove that the inverse of each element of a group is unique.
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1-8 Prove that the set of positive rational numbers does not form a group under division.

1-9 A finite group of order n has r? products that may be written in an nxn array, called the group
multiplication table. For example, the 4th-roots of unity {e, a, b, ¢} = {1, +i}, where i = \-1, foms a
group under multiplication (1i=1, i) = 1,2 =-1, (HP=-1, efc. ) with a multiplication table

e=1a=ib=-1c=4

e 1 1 -1 4
a i -1 4 1
b | -1 4 1 i
c 4 1 i -~

In this case, the table is symmetric about the main diagonal; this is a characteristic feature of a group in
which all products commute (ab = ba)—itis an Abelian group.

If G is the dihedral group Ds, discussed in the text, where G = {e, a, &% b, ¢, d}, where e is the
identity, obtain the group multtiplication table. Is it an Abelian group?. Notice that the three elements {e,
a, &% fom a subgroup of G, whereas the three elements {b, ¢, d} do not; there is no identity in this
subset.

The group Ds has the same multtiplication table as the group of permutations of three objects.
This is the condition that signifies group isomorphism.
1-10 Are the sets

i) {0,1,1},[1,0,11,[1,1,0]}

and
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i) {[1,3,5,7),4,-3,2,1],[2,1,4, 5]
linearly dependent? Explain.
1-11 i) Prove that the vectors [0, 1, 1], [1, 0, 1],[1, 1, 0] form a basis for Euclidean space
RS,
i) Dothe vectors 1, ] and [, 1], (i=-1), form a basis for the complex space C2?
1-12 Interpret the linear independence of two 3-vectors geometrically.
1-13 1) FX=[1,2,3]and Y =3, 2, 1], prove that their cross product s orthogonal to the X-Y plane.
ii) [FXandY are 3-vectors, prove that XxY = 0 iff Xand Y are linearly dependent.
1-14 f
an ap ans
T= &y a as
0 0 1
represents a linear fransformation of the plane under which distance is an invariant,

show that the following relations must hold :

arttar=ar?+ax=1andanan +axax=0.
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KINEMATICS: THE GEOMETRY OF MOTION

2.1 Velocity and acceleration

The most important concepts in Kinematics — a subject in which the properties of the forces
responsible for the motion are ignored — can be introduced by studying the simplest of all motions,
namely that of a point P moving in a straight line.

Let a paint P [t, X] be at a distance x from a fixed point O at a time t, and let it be at a point
P'[t',xT=PTt+At, x+ AX]atatime Atlater. The average speed of P inthe interval Atis

<vp> = AXAL 2.1)

If the ratio AX/At is not constant in time, we define the instantaneous speed of P at ime t as the limiting
value of the ratio as At — 0:

Vo = Vp(t) = limit as At — 0 of AXIAL = dx/dt =x = v .
The instantaneous speed is the magnitude of a vector called the instantaneous velocity of P
v =dx/dt, a quantity that has both magnitude and direction. 22)

A space-ime curve is obtained by plotting the positions of P as a function of t:

XA
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The tangent of the angle made by the tangent to the curve at any point gives the value of the
instantaneous speed at the point.
The instantaneous acceleration, a , of the point P is given by the time rate-of-change of the velocity

a= dvidt= (et =Bl =x. 23
A change of variable from t o x gives

a=dv/dt = dv(dx/dt)ldx = v(av/dx). (24)
This is a useful relation when dealing with problems in which the velocity is given as a function of the

position. For example

v A %

| >
0] N Q X

The gradient is dv/dx and tana = avidx, therefore
NQ, the subnormal, = v(dv/dx) = &, the acceleration of P. (25)
The area under a curve of the speed as a function of time between the times t and b is
Atz =] iz vt = (ot =] . dx = (o—x)

= distance fraveled in the ime t,— 1. (26)
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The solution of a kinematical problem is sometimes simplified by using a graphical method, for
example:

A point A moves along an x-axis with a constant speed va. Let it be at the origin O (x = 0) at
time t=0. It continues for a distance xa, at which point it decelerates at a constant rate, finally stopping
atadistance Xfrom O attime T.

A second point B moves away from O in the +x-direction with constant acceleration. Let it
begin its motion att = 0. It continues to accelerate until it reaches a maximum speed vg™ at a time
g™ when at xg™ from O. At xg™, it begins to decelerate at a constant rate, finally stopping at X at
time T: To prove that the maximum speed of B during its motion is

V™ = Va1 — (xo/2X)}", a value that is independent of the time at which the

maximum speed is reached.
The velocity-ime curves of the points are
VA
A possible path for B
vgmex /
v, B
g Af /
0 >
t=0 fa e Tt
x=0 XA = X

The areas under the curves give X = Vata + Va(T —ta)/2 = vg™T/2, so that



Ve = Va1 + (WT)), but VaT = 2X —Xa, therefore vig™ = va{1 — (xa2X)}-" # f{ts™).
2.2 Differential equations of kinematics
If the acceleration is a known function of time then the differential equation
a(t) = dvidt
can be solved by performing the integrations (either analytically or numerically)
faftydt=Jav
If a(t) is constant then the result is simply
at+C=v, where Cis a constant thatis given by the initial conditions.
Letv=uwhent=0then C=uandwe have
attu=v.
This is the standard resutt for motion under constant acceleration.
We can continue this approach by writing:
v=dx/dt=u+at
Separating the variables,
dx=udt +atat.
Integrating gives
x=ut+(122)a+C" (forconstanta).
fx=0whent=0thenC"=0,and
X(t) = ut+ (1/2)at2

Muttiplying this equation throughout by 2a gives

45

(210)
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2ax = 2aut + (atp
=2aut+ (v—up
and therefore, rearranging, we obtain
V2= 2ax—2aut +2wu — 12
=2ax + 2u(v—at)— U2
=2ax + 2 (2.11)
In general, the acceleration is a given function of time or distance or velocity:
1) fa=f{t)then
a=dvidt=f(t), (2.12)
dv =f{t)dt,
therefore
v=[ftjdt + C(a constant).
This equation can be written
v=dxidt=F() +C,
therefore
dx = F(f)dt + Cdt.
Integrating gives
x(t) = JF(fdt + Ct+C". (2.13)
The constants of integration can be determined if the velocity and the posiion are known at a given

time.



47
2) lfa=g(x) = v(av/dx) then (2.14)
vav = g(x)ax.
Integrating gives
v2=2g(x)dx +D,
therefore
V2=G(x)+D
so that
v=(dxid) = +\(G(x) + D). (2.15)
Integrating this equation leads to
+HdX{\(GX) + D)} =t+D". (2.16)
Altematively, if
a=dxd2=g(x)
then, muttiplying throughout by 2(dx/dt)gives
2(dx/dt)(0Bx/dt?) = 2(dx/ct)g ().
Integrating then gives
(dx/dt)2 = 2[g(x)dx + D etc.
As an example of this method, consider the equation of simple hamrmonic motion (see later discussion)
/2 =—ux. (2.17)
Muttiply throughout by 2(cx/at), then

2(AKIct)cIdR = ~2ax(dict).



48
This can be integrated to give

(dx/dtp =—w2@+D.
If dx/dt = 0 when x = A then D = a?A? therefore

(Ax/dtP = wA(A2—x2) =2,
so that

dxidt =+ (A2 ).
Separating the variables, we obtain
—dX{N(A2-x2)} = wdt. (The minus sign is chosen because dx and dt have opposite signs).
Integrating, gives
cos(X/A)=wt+D",

Butx = Awhent=0, therefore D" =0, so that

X(t) = Acos(wt), where A is the amplitude. (2.18)
3) lfa=h(v), then 219
dvidt=h(v)
therefore
avi(v) = d,
and
Javh(v)=t+B. (2.20)

Some of the techniques used to solve ordinary differential equations are discussed in

Appendix A.
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2.3 Velocity in Cartesian and polar coordinates
The transformation from Cartesian to Polar Coordinates is represented by the linear equations
x=rcosdp andy =rsind, (221ab)
or
x=1r,¢) andy=g(r, $).
The differentials are
dx = (cflor)dr + (cfiap)dd and dy = (ogler)dr + (Bg/ah)de.
We are interested in the transformation of the components of the velocity vector under
X, y]—1r, ¢]. The velocity components involve the rates of change of dx and dy with respect to time:
dx/dt = (cffer)aridt + (oflop)deidt and dyldt = (Sg/or)dridt + (Oglop)daydt
or
X = (@06n)r-+ (ag)p and y = (g + Byap, 02)
But,
dflor = cosd, Ao =-rsing, aglor = sing, and Ayl = rcosg,

therefore, the velocity transformations are

>.<=oos¢r.— sinq)(r<i>) =y (2.23)
and
;/ =sing ;+ coso(r (i)) =V, (2.24)

These equations can be written
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Vi cosp —sing | | dridt

Wy sing  cosd | | rddytt

Changing ¢ — —¢, gives the inverse equations

dr/ct 00sp Sing Vi
rad/dt —Sing  0os Vo
or
Vr VX
= Rdo) : (2.25)
v, Vy

The velocity components in [r, ¢] coordinates are therefore

The quantity de/dtis called the angular velocity of P about the origin O.
24 Acceleration in Cartesian and polar coordinates

We have found that the velocity components transform from [x, y] to [r, ¢] coordinates as
follows

Vi = 0S¢ ;—sinq)(rq.)) =;(
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and
W= sinq).r +0os(r q;) = y
The acceleration components are given by
a=dw/dt and vy =dv/dt
We therefore have

&= (d/dt){cosq).r—sinq)(r (i))} (2.26)

= cosif—r %)~ SO+ 1)

and
3= tsnor +osol o) @2
= cosi{2r g+ ) +Sl—r .

These equations can be writen

a cosp Sing | | &
= . (2.28)

a, -sing cosp | | &

The acceleration components in [r, ¢] coordinates are therefore
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These expressions for the components of acceleration will be of key importance in discussions of
Newton’s Theory of Gravitation.

We note that, if ris constant, and the angular velocity o is constant then

8, =r¢=rn=0 229)

& =—r. 7 =—r1a? == rp=-v,7, (2.30)
and .

V, =T d=ro. (2.31)

These equations are true for circular motion.

PROBLEMS
2-1 A paint moves with constant acceleration, a, along the x-axis. Ifit moves distances Ax
and Axin successive intervals of time At and At, prove that the acceleration is
a=2(w—-w)T
where vi = Axi/Aty, Vo = AxJ/At,, and T= At + Ab.
2-2 A paint moves along the x-axis with an instantaneous deceleration (negative
acceleration):
a(f) o~ (t)
where v({) is the instantaneous speed at time t, and nis a positive integer. Ifthe
initial speed of the paint is u (at t = 0), show that

ket = {(un—va)(uvyiiin, where kq is a constant of proportionality,
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and that the distance travelled, x(t), by the point from its initial position is
kex(t) = {(ur" = v-)(uv-TH(n—1).
2-3 A point moves along the x-axis with an instantaneous deceleration kvi(t), where v(t) is
the speed and k is a constant. Show that
v(t) = ul(1 + kux(t))
where x(t) is the distance travelled, and u is the initial speed of the paint.
24 A point moves along the x-axis with an instantaneous acceleration
02/d2 = — /2
where w is a constant. Ifthe point starts from rest at x = a, show that the speed of
the particle is
dx/dt = - wf2(a—x)(ax)}'2
Why is the negative square root chosen?
2-5 A paint P moves with constant speed v along the x-axis of a Cartesian system, and a
point Q moves with constant speed u along the y-axis. Attimet=0, Pisatx=0,and
Q, moving towards the origin, is aty = D. Show that the minimum distance, thin,
between P and Q during their motion is
i =D{1/(1 + (UNVP)}2.
Solve this problem in two ways:1) by direct minimization of a function, and 2) by a
geometrical method that depends on the choice of a more suitable frame of reference

(forexample, the rest frame of P).
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26 Two ships are sailing with constant velocities u and v on straight courses that are
inclined atanangle 6. If, ata given instant, their distances from the point of
intersection of their courses are a and b, find their minimum distance apart.
2-7 A paint moves along the x-axis with an acceleration a(f) = k&, where tis the time the
paint has been in motion, and k is a constant. If the initial speed of the pointis u,
show that the distance travelled in tme tis
x({) = ut+ (112)kt.
2-8 A paint, moving along the x-axis, ravels a distance x(t) given by the equation
X(t) = aexpfkt} + bexp{kt}
where a, b, and k are constants. Prove that the acceleration of the point is
proportional o the distance travelled.
29 A point moves in the plane with the equations of motion
d2x/dt2 2 1 //x
dy/dt2 1 2|y
Let the following coordinate transformation be made
u=(x+y)2andv=(x-y)2.
Show that in the uv frame, the equations of motion have a simple form, and that the
time-dependence of the coordinates is given by
u=Acost + Bsint,

and
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v=Coos\3t+Dsiny3t, where A, B, C, D are constants.

This coordinate transformation has “diagonalized” the original matrix:

The matrix with zeros everywhere, except along the main diagonal, has the
interesting property that it simply scales the vectors on which it acts — it does not
rotate them. The scaling values are given by the diagonal elements, called the
eigenvalues of the diagonal matrix. The scaled vectors are called eigenvectors. A
smallindustry exists that is devoted to finding optimum ways of diagonalizing large

matrices. llustrate the motion of the system in the xy frame and in the u-v frame.
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3

CLASSICAL AND SPECIAL RELATIVITY

3.1 The Galilean transformation

Events belong to the physical world — they are not abstractions. We shall, nonetheless,
infroduce the idea of an ideal event that has neither extension nor duration. Ideal events may be
represented as points in a space-ime geometry. An event is described by a fourvector Eft, X, y, Z]
where tis the time, and x, y, z are the spatial coordinates, referred to arbitrarilychosen origins.

Let an event Et, X], recorded by an observer O at the origin of an x-axis, be recorded as the
event ETt', x] by a second observer O', moving at constant speed V along the xaxis. We suppose
that their clocks are synchronized att=t"= 0 when they coincide ata common origin, x=x"=0.

Attime t, we write the plausible equations
t'=t
and
X' =x-W,
where \tis the distance fravelled by O" ina time t. These equations can be written
E' =GE (3.1)

where

G is the operator of the Galilean transformation.
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The inverse equations are
t=t
and
X=x+W
or

E=GE (32)

where G- is the inverse Galilean operator. (It undoes the effect of G).

If we multiply t and t* by the constants k and k', respectively, where k and k'have dimensions
of velocity then all terms have dimensions of length.

In space-space, we have the Pythagorean form »2 + y2 = 2 (an invariant under rotations). We
are therefore led to ask the question: is (ktP + X2 an invariant under G in space-time? Direct calculation
gives

(kp+x2 =(KtR+x2+2VXT + VA2
=(KtP+x2 onlyifV=0!
We see, therefore, that Galilean space-ime does not leave the sum of squares invariant. We note,
however, the key role played by acceleration in Galilean-Newtonian physics:
The velocities of the events according to O and O" are obtained by differentiating
X =-Vt+x with respect o ime, giving

V==V 4y, (3.3)
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a result that agrees with everyday observations.

Differentiating v" with respect to ime gives

dvidt=a"=dvidt=a (34)

where a and a'are the accelerations in the two frames of reference. The classical acceleration is an
invariant under the Galilean transformation.  If the relationship v'=v-V s used to describe the
motion of a pulse of light, moving inemplty spaceat  v=c=3x 108 m/s, it does not fit the facts. For
example, if V is 0.5¢, we expect to obtain v* = 0.5¢, whereas, itis found that v' = ¢. Indeed, in all cases
studied, v = cfor all values of V.
3.2 Einstein’s space-time symmetry: the Lorentz transformation

It was Einstein, above all others , who advanced our understanding of the nature of space-
time and relative motion. He made use of a symmetry argument to find the changes that must be
made to the Galilean transformation if it is to account for the relative motion of rapidly moving objects
and of beams of light. Einstein recognized an inconsistency in the Galilear-Newtonian equations,
based as they are, on everyday experience. The discussion will be limited to nonraccelerating, or so
called inertial, frames

We have seen that the classical equations relating the eventsEandE'are . E"=GE, and

the inverse E=G'E" where
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These equations are connected by the substitution V <= -V; this is an algebraic statement of the
Newtonian principle of relativity. Einstein incorporated this principle in his theory. He also retained the
linearity of the classical equations in the absence of any evidence to the contrary. (Equispaced
intervals of ime and distance in one inertial frame remain equispaced in any other inertial frame). He

Symmetrized the space-time equations as follows:

= . (35)

Note, however, the inconsistency in the dimensions of the time-equation that has now been introduced:
t'=t-Vx.
The term Vix has dimensions of [LE[T], and not [T]. This can be comrected by introducing the invariant
speed of light, c — a postulate in Einstein's theory that is consistent with the result of the Michelson+
Morley experiment:
o’ =ct-Vxlc
so that all terms now have dimensions of length.

Einstein went further, and infroduced a dimensionless quantityy instead of the scaling factor of
unity that appears in the Galilean equations of spaceime. This factor must be consistent with all
observations. The equations then become

ad= yct— Pyx
X' =—fyct+ yx,where=Vic.

These can be written
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E' =LE, (36)
where
Y Py
L= ,
By v
and E=[ctX.

L is the operator of the Lorentz transformation.

The inverse equation is

E=LE (37)
where
Y By
L=
By v

This is the inverse Lorentz transformation, obtained from L by changing p ——f (V — -V);ithasthe
effect of undoing the transformation L. We can therefore write
LL-=1 (38)
Carrying out the matrix multtiplications, and equating elements gives
#-pp=1
therefore,
v =1V(1-P?) (taking the positive root). (39
AsV — 0, B — 0 and therefore y — 1; this represents the dassical limit in which the Galilean

transformation is, for all practical purposes, valid. In particular, ime and space intervals havethe same
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measured values in all Galilean frames of reference, and acceleration is the single fundamental
invariant.

3.3 The invariant interval: contravariant and covariant vectors
Previously, it was shown that the space-time of Galileo and Newton is not Pythagorean under
G. We now ask the question: is Einsteinian space-ime Pythagorean under L ? Direct calculation
leads to
(ctp+x2 =1+ ()t P+ 4pyX ot
w1+ X
= (R +x2if3>0.
Note, however, that the difference of squares is an invaniant:
(CtP—x=(ctP-x? (3.10)
because
1-p)=1.
Space-time is said to be pseudo-Euclidean. The negative sign that characterizes Lorentz invariance
can be included in the theory in a general way as follows.
We introduce two kinds of 4-vectors
X =D, X!, 2, %3], a contravariant vector, (3.11)
and
X = [Xo, X1, X2, X3], @ covariant vector, where

Xu= [XO’ _X1’ _XZ’ _X3]' (312)
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The scalar (or inner) product of the vectors is defined as

YTy =00, X, 32, X8, X1, = —x], to conform to matrix muttiplication

| |
row column
=00 — (X7 + 022+ (CP). (313)

The superscript T s usually omitted in writing the invariant; itis implied in the form X',
The event4-vectoris
Er=[ct, Xy, Z] and the covariant form is
E.=[ct -y,
so that the invariant scalar product is
ErEL = (CtR— (@ +y2+2). (3.14)

A general Lorentz 4-vector x- transforms as follows:

xh = L (3.15)
where
vy 0 0
L=y v 0 0
0 010
0 00 1

This is the operator of the Lorentz transformation if the motion of O” is along the xaxis of O's frame of
reference, and the initial imes are synchronized (t=t"=0atx=x"=0).

Two important consequences of the Lorentz transformation, discussed in 3.5, are that intervals
of ime measured in two different inertial frames are not the same; they are rebted by the equation

AY =yAL (3.16)
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where Atis an interval measured on a clock at rest in O's frame, and distances are given by
A=Al (3.17)
where Al s a length measured on aruler at restin O's frame.
3.4 The group structure of Lorentz transformations
The square of the invariant interval s, between the origin [0, 0, 0, 0] and an arbitrary event X' =
P, x1, %2, x3] s, in index notation
£=x%,=X*X,, (sumoveru=0,1,2,3). (3.18)
The lower indices can be raised using the metric tensorm,, = diag(1,-1,~-1,~1), so that
=1, XX =1, X*XV, (sumover wandv). (3.19)
The vectors now have contravariant forms.
In matrix notation, the invariant is
F=Xmx=xmx". (3.20)
(The transpose must be written explicitly).
The primed and unprimed column matrices (contravariant vectors) are related by the Lorentz matrix
operator, L
X' =Lx.
We therefore have
xmx=(Lx)m(Lx)
=X Lx.

The X's are arbitrary, therefore
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LmL=n. (321)

This is the defining property of the Lorentz transformations.

The set of all Lorentz transformations is the set L of all 4 x 4 matrices that satisfies the defining
property

L={L:LmL=n;Lall4 x4 real matrices;n = diag(1,-1,-1,-1}.

(Note that each L has 16 (independent) real matrix elements, and therefore belongs to the 16-
dimensional space, R).

Consider the result of two successive Lorentz transformations Ly and Ly that ransform a 4-

vector x as follows
KX X
where
X =Lix,
and
X" =LxX.

The resultant vectorx™ is given by
X" =LoLix)
=Lolix
=Lx
where

L= Lo (L: folowed by L) (322)



65
If the combined operation L is always a Lorentz transformation then it must satisfy
Lmle=n.
We must therefore have

(Lol)m (LeL) =m

or
Lif(lemL)li=n
so that
LmLi=n, (L,LEL
therefore

L=LLEL. (3.23)
Any number of successive Lorentz transformations may be camied out to give a resultant that is itseff a
Lorentz transformation.
If we take the determinant of the defining equation ofL,
detLmL) =detn
we obtain
(detL =1 (detl=deflT)

so that

defl=+1. (3.24)
Since the determinant of L is not zero, an inverse transformation L' exists, and the equation L-IL =1,

the identity, is always valid.
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Consider the inverse of the defining equation
Ly =n,
or
LUy =,
Usingm =m-", and rearanging, gives
L'nL"=n. (3.25)
This result shows that the inverse L' is always a member of the set L.
The Lorentz transformations L are matrices, and therefore they obey the associative property
under matrix muttiplication.
We therefore see that
1.fLiandL€L, thenLLiEL
2.ffLEL,thenL"'EL
3. The identity I = diag(1, 1,1, 1) EL
and
4. The matrix operators L obey associativity.
The set of all Lorentz transformations therefore forms agroup.
3.5 The rotation group
Spatial rotations in two and three dimensions are Lorentz transformations in which the time-
component remains unchanged. In Chapter1, the geometrical properties of the rotation operators are

discussed. In this section, we shall consider the algebraic structure of the operators.
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Let R be a real 3x3 matrix that s part of a Lorentz fransformation with a constant

time-component,
1000
0 (3.20)
L=| 0 X
0

In this case, the defining property of the Lorentz transformations leads to

1000 |[ 1000 1000 1000

0 04100 || 0 0-100

0 R | 0040 || 0O B | = 0040 (327)
0 00 0-1 0 00 0-1

so that
AR =1, the identity matrix, diag(1,1,1).
This is the defining property of a three-dimensional orthogonal matrix. (The related two -dimensional
case is freated in Chapter1).
I x = [x1, X, X3] is a three-vector that is fransformed under R to give x” then

XX =XR TR X =XTX = X2 + X2 + X3 = invariant under K. (3.28)
The action of SRt on any three-vector preserves length. The set of all 3x3 orthogonal matrices is
denoted by O(3),

0@3)=fR:R™R =I,,&Reals}.

The elements of this set satisfy the four group axioms.
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3.6 The relativity of simultaneity: time dilation and length contraction

In order to record the time and place of a sequence of events in a particular inertial reference
frame, it is necessary to infroduce an infinite set of adjacent “observers”, located throughout the entire
space. Each observer, at a known, fixed position in the reference frame, camies a clock to record the
time and the characteristic property of every event in his immediate neighborhood. The observers are
not concemed with norHocal events. The clocks canied by the observers are synchronized — they all
read the same time throughout the reference frame. The process of synchronization is discussed later.
ltis the job of the chief observer to collect the information conceming the time, place, and characteristic
feature of the events recorded by all observers, and to construct the world line (a path in space-ime),
associated with a particular characteristic feature (the type of particle, for example).

Consider two sources of light, 1 and 2, and a point M midway between them. Let E; denote
the event ‘flash of light leaves 1", and Ex denote the event “flash of light leaves 2. The events E; and
E. are simuttaneous if the flashes of light from 1 and 2 reach M at the same time. The fact that the
speed of light in free space is independent of the speed of the source means that simuftanetty is
relative.

The clocks of all the observers in a reference frame are synchronized by correcting them for
the speed of light as follows:

Consider a set of clocks located at X, X1, X, X3, ... along the x-axis of a reference frame. Let %
be the chiefs clock, and let a flash of light be sent from the clock at x when it is reading t (12 noon,

say). At the instant that the light signal reaches the clock at x, it is set to read t + (x4/c), at the instant
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that the light signal reaches the clock at x, itis set to read t + (x/c) , and so on for every clock along the
x-axis. All clocks in the reference frame then “read the same time”— they are synchronized. From the
viewpoint of all other inertial observers, in their own reference frames, the set of clocks, sychronized
using the above procedure, appears to be unsychronized. It is the lack of symmetry in the
sychronization of clocks in different reference frames that leads to two norvintuiive results namely,
length contraction and time dilation.

Length contraction: an application of the Lorentz transformation.
Consider a rigid rod at rest on the x-axis of an inertial reference frame S”. Because it is at rest, it does
not matter when its endpoints x:and xo” are measured to give the rest, or properdength of the rod, Lo’
=X =X1.
Consider the same rod observed in an inertial reference frame S that is moving with constant velocity—
V with its x-axis parallel to the x-axis. We wish to determine the length of the moving rod; we require
the length L = % — x1 according to the observers in S.  This means that the observers in S must
measure x1 and . at the same time in their reference frame. The events in the two reference frames
S,and S” are related by the spatial part of the Lorentz transformation:
X" =—yct+yx
and therefore
X' =X1"=—Bycl—t) +y(e—Xi).
where

B=Vicandy=1~(1-p.
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Since we require the length (xo—x1) in S to be measured at the same time in S, we must have b—t =
0, and therefore
Lo'=x"—x1"=y(e—X),
or
Lo (at rest) =yL (moving). (3.29)

The length of a moving rod, L, is therefore less than the length of the same rod measured at rest, Ly
becausey> 1.

Time dliation

Consider a clock at rest at the origin of an inertial frame S”, and a set of synchronized clocks at
Xo, X1, X, ... 0N the x-axis of another inertial frame S. Let S” move at constant speed V relative to S,
along the common X -, X- axis. Let the clocks at %, and %" be sychronized to read b, and o’ at the
instant that they coincide in space. A proper time interval is defined to be the time between two events
measured in an inertial frame in which the two events occur at the same place. The time part of the
Lorentz transformation can be used to relate an interval of ime measured on the single dlock in the S°
frame, and the same interval of time measured on the set of synchronized clocks at restin the S frame.
We have

ct=yct' + Byx’
or
ofo—t) =vyell ) + Byl —xr).

There is no separation between a single clock and itself, therefore " x1" = 0, so that
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clt—ti)(moving) =yoll -t )(atrest) (y>1). (3.30)
A moving clock runs more slowly than a clock at rest.
In Chapter 1, it was shown that the general 2 x2 matrix operator transforms rectangular coordinates
into oblique coordinates. The Lorentz fransformation is a special case of the 2 x 2 matrices, and
therefore its effect is to transform rectangular spacetime coordinates into oblique space-ime

coordinates:

XA X

tan'p
i

Elct, xorETct’, x]

/Ct'

\BWB

7

ct
The geometrical form of the Lorentz fransformation
The symmetry of space-ime means that the transformed axes rotate through equal angles,
tan 3. The relativity of simultaneity is clearly exhibited on this diagram: two events that occur at the
same time in the ct, x-rame necessarily occur at different imes in the oblique ct’, x“rame.
3.7 The 4-velocity
A differential ime interval, dt, cannot be used in a Lorentz-invariant way in kinematics. We

must use the proper time differential interval, drc, defined by



72
(cdtp—dx2= (cdt P —dx 2= (cd)2
The Newtonian 3-velocity is
i = [ox/dt, dy/dtt, dz/df],
and this must be replaced by the 4-velocity
M =[d(ct)lde, dx/dr, dyldr, dz/dr]
= [d(ct)ldtt, dxat, dy/d, dz/d)(dlt/ck)
=fvc, yw].-
The scalar product is then
VMV, = (ycp— (yw)? (the franspose is understood)
= frcf(1 - (wep)

=¢.

The magnitude of the 4-velocity is therefore | V| = c, the invariant speed of light.

(331)

(332)

(3.33)
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PROBLEMS
3-1 Two points A and B move in the plane with constant velocities va| = V2 m.s and jvg| = 2\2 ms.

They move from their initial (t = 0) positions, A(0)(1, 1] and B(0)[6, 2] as shown:

y m N
6
5
4
VB
3
2 .
VA -
1 ae) — R/N\
\YV) V)
>
0

o 1 2 3 4 5 6 7 8xm

Show that the closest distance between the points is Rjvin = 2.529882. meters,
and that it occurs 1.40...seconds after they leave their initial positions. (Remember
that all inertial frames are equivalent, therefore choose the most appropriate for
dealing with this problem).

32 Show that the set of all standard (motion along the common x-axis) Galilean
transformations forms a group.

3-3 Aflash of lightis sent out from a point x; on the x-axis of an inertial frame S, and itis
received ata point x. = x; +|. Consider another inertial frame, S’, moving with

constant speed V = 3¢ along the x-axis; show that, in S’:
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i) the separation between the point of emission and the point of reception of the light
s I=K(1-p)(1 +B)}
ii) the time interval between the emission and reception of the light is
At = (Ile)(1-pI(1 +B)Y=
34 The distance between two photons of light that travel along the x-axis of an inertial
frame, S, is always |. Show that, in a second inertial frame, S, moving at constant
speed V = 3¢ along the x-axis, the separation between the two photons is
AX =K1+ B)(1- B
35 Anevent|ct, X]in aninertial frame, S, is transformed under a standard Lorentz
transformation to [ct’, X ] in a standard primed frame, S’, that has a constant speed V
along the x-axis, show that the velocity components of the point x, X" are related by
the equation
Vo= (W + V(T + (w VIc?)).
36 An object called a K-meson decays when at rest into two objects called -mesons
(Te£), each with a speed of 0.8¢. [f the K™-meson has a measured speed of 0.9c when it
decays, show that the greatest speed of one of the T-mesons is (85/86)c and that its

least speed is (5/14)c.
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4

NEWTONIAN DYNAMICS

Although our discussion of the geometry of motion has led to major advances in our
understanding of measurements of space and time in different inertial systems, we have yet to come to
the crux of the matter, namely — a discussion of the effects of forces on the motion of two or more
interacting particles. This key branch of Physics is called Dynamics. It was founded by Galileo and
Newton and perfected by their followers, most notably Lagrange and Hamilton. We shall see that the
Newtonian concepts of momentum and kinetic energy require fundamental revisions in the light of the
Einstein's Special Theory of Relativity. The revised concepts come about as a result of Einstein's
recognition of the crucial rle of the Principle of Relativity in unifying the dynamics of all mechanical and
optical phenomena. In spite of the conceptual difficutties inherent in the classical concepts, (difficulties
that will be discussed later), the subject of Newtonian dynamics represents one of the great triumphs of
Natural Philosophy. The successes of the classical theory range from accurate descriptions of the
dynamics of everyday objects to a detailed understanding of the motions of galaxies.

4.1 The law of inertia

Galileo (1544-1642) was the first to develop a quantitative approach to the study of motion. He
addressed the question — what property of motion is related to force? Is it the position of the moving
object? Is it the velocity of the moving object? Is it the rate of change of its velocity? ... The answer to
the question can be obtained only from observations; this is a basic feature of Physics that sets it apart

from Philosophy proper. Galileo observed that force influences the changes in velocity (accelerations)
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of an object and that, in the absence of extemal forces (e.g: friction), no force is needed to keep an
objectin motion that is travelling in a straight line with constant speed. This observationally based law is
called the Law of Inertia. It is, perhaps, difficult for us to appreciate the impact of Galileo's new ideas
conceming motion. The fact that an object resting on a horizontal surface remains at rest unless
something we call force is applied to change its state of rest was, of course, welkknown before Galileo's
time. However, the fact that the object continues to move after the force ceases to be applied caused
considerable conceptual difficutties for the early Philosophers (see Feynman The Character of Physical
Law). The observation that, in practice, an object comes to rest due to frictional forces and air
resistance was recognized by Galileo to be a side effect, and not germane to the fundamental question
of motion. Aristotle, for example, believed that the true or natural state of motion is one of rest. It is
instructive to consider Aristotie’s conjecture from the viewpoint of the Principle of Relativity — is a
natural state of rest consistent with this general Principle? According to the general Principle of
Relativity, the laws of motion have the same form in all frames of reference that move with constant
speed in straight lines with respect to each other. An observer in a reference frame moving with
constant speed in a straight line with respect to the reference frame in which the object is at rest would
conclude that the natural state or motion of the object is one of constant speed in a straight line, and not
one of rest. All inertial observers, in an infinite number of frames of reference, would come to the same
conclusion. We see, therefore, that Aristotie’s conjecture is not consistent with this fundamental

Principle.
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4.2 Newton’s laws of motion

During his early twenties, Newton postulated three Laws of Motion that form the basis of
Classical Dynamics. He used them to solve a wide variety of problems including the dynamics of the
planets. The Laws of Motion, first published in the Principia in 1687, play a fundamental role in
Newton’s Theory of Gravitation (Chapter 7); they are:
1. In the absence of an applied force, an object will remain at rest or in its present state of constant
speed in a straight line (Galileo's Law of Inertia)
2. Inthe presence of an applied force, an object will be accelerated in the direction of the applied force
and the product of its mass multiplied by its acceleration is equal o the force.
and,
3. lfabody A exerts a force of magnitude [Fag| on a body B, then B exerts a force of equal magnitude
[Fea| on A.. The forces act in opposite directions so that

Fre=—Fga.

In law number 2, the acceleration lasts only while the applied force lasts. The applied force need not,
however, be constant in ime — the law is true at all imes during the motion. Law number 3 applies to
‘contact” interactions. If the bodies are separated, and the interaction takes a finite ime to propagate
between the bodies, the law must be modified to include the properties of the “field “ between the
bodies. This important pointis discussed in Chapter7.
4.3 Systems of many interacting particles: conservation of linear and angular

momentum
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Studies of the dynamics of two or more interacting particles form the basis of a key part of
Physics. We shall deduce two fundamental principles from the Laws of Motion; they are:

1) The Conservation of Linear Momentum which states that, if there is a direction in which the sum of
the components of the extemal forces acting on a system is zero, then the linear momentum of the
system in that direction is constant, and

2) The Conservation of Angular Momentum which states that, if the sum of the moments of the
extemal forces about any fixed axis (or origin) is zero, then the angular momertum about that axis (or
origin) is constant.

The new terms that appear in these statements will be defined later.

The first of these principles will be deduced by considering the dynamics of two interacting
particles of masses m and my wiith instantaneous coordinates [x, y1 ] and [xe, y2, respectively. In
Chapter 12, these principles will be deduced by considering the invariance of the Laws of Motion under
translations and rotations of the coordinate systems.

Let the external forces acting on the particles be F1 and F2 , and let the mutual interactions be

F2"and Fiy". The systemis as shown

YA

@) > X

Resolving the forces into their x- and y-components gives
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y
Fy
|,
e T.:Fm. F
0]
X
a) The equations of motion
The equations of motion for each particle are
1) Resolving in the x-direction
Fxt +Fet” = m (0Bxi/d) 4.)
and
Fro—Fr2' = my(dPxo/df?). 42
Adding these equations gives
Fx +Fe+ (Fet' = Fx2) = mi(0xi/d) + m(d2x/d). (4.3)
2) Resolving in the y-direction gives a similar equation, namely
Fy1+F+ (Fyt' = Fy2) = mu(0ya/d2) + mo(c?y2/d). (44)

b) The rle of Newton's 3rd Law
For instantaneous mutual interactions, Newton's 3rd Law gives 1| = |F2 |
so that the x- and y-components of the intemal forces are themselves equal and opposite, therefore he

total equations of motion are

Fa + Fro = mi(d2/dt2) + mo(d2x/dt), 4.5)
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and

Fy1 + Fyo = mi(dy4/df2) + mo(dAy2/d). (4.6)
¢) The conservation of linear momentum

If the sum of the extemal forces ading on the masses in the x-direction is zero, then

Fx+Fe=0, 4.7
in which case,

0= mi(dBxi/d) + mo(dPx/d?)
or

0= (didt)(m1via) + (i) (mavie),
which, on integration gives

constant = Mivia + Mavie. (48)
The product (mass x velocity) is the linear momentum. We therefore see that if there is no resultant
extemal force in the x-direction, the linear momentum of the two particles in the x-direction is conserved.
The above argument can be generalized so that we can state: the linear momentum of the two
particles is constant in any direction in which there is no resultant extemal force.
4.3.1 Interaction of n-particles

The analysis givenin 4.3 can be carried out for an arbitrary number of particles, n,

with masses ms, my, ...m, and with instantaneous coordinates [x, Y, Xz, Y2 ..[%, Ynl. The
mutual interactions cancel in pairs so that the equations of motion of the n-particles are, in

the x-direction
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Fa+Fe+..Fa= m1.>.<1 + mz;z +... mnxn = sum of the x-components of 49
the extemal forces acting on the masses,
and, in the y-direction
Fu+Fpt..Fn= m1;/1 + m&z + ...mn;;n = sum of the y-components of (4.10)
the extemal forces acting on the masses.

In this case, we see that if the sum of the components of the extemal forces acting on the
system in a particular direction is zero, then the linear momentum of the system in that direction is
constant. If, for example, the direction is the x-axis then

MiVx1 + Mz + ... MV = CONStant. (4.11)
4.3.2 Rotation of two interacting particles about a fixed point

We begin the discussion of the second fundamental conservation law by considering the
motion of two interacting particles that move under the influence of extemal forces F1 and Fo, and
mutual interactions (intemal forces) 21" and F12". We are interested in the motion of the two masses
about a fixed point O that is chosen to be the origin of Cartesian coordinates. The perpendiculars
drawn from the point O to the lines of action of the forces are Ry, Rz, and R'. The system is illustrated in

the following figure.
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Ri™ Ry X

a) The moment of forces about a fixed origin

The total moment I's2 of the forces about the origin O is defined as

I2=RiF1+RF2+ (RF2' -RFar) (4.12)
| |
moment of moment of

extemalforces  intemal forces
A positive moment acts in a counter-clockwise sense.
Newton's 3rd Law gives
[F2r|=[Fe],
therefore the moment of the intemal forces about O is zero. (Their lines of action are the same).
The total effective moment about O is therefore due to the extemal forces, alone. Writing the moment
in terms of the x- and y-components of F1 and F, we obtain

2= xRy + XoFp—yiFa —yoFe (4.13)
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b) The conservation of anguiar momentum
Ifthe moment of the external forces about the origin O is zero then, by integration, we have
constant = xipy1 + XPy2— y1pxt — YoPe-
where px is the x-component of the momentum of mass 1, efc..
Rearranging, gives
constant = (xipy — Y1) + (Xop2—Yoe). (4.14)
The right-hand side of this equation is called the angular momentum of the two particles aboui the fixed
orgin, O.
Altematively, we can discuss the conservation of angular momentum using vector analysis.
Consider a non+elativistic particle of mass m and momentum p, moving in the plane under the

influence of an extemal force F about a fixed origin, O:

y

O
X
The angular momentum, L, of m about O can be written in vector form
L=rxp. 4.15)
The torque, T, associated with the external force F acting about O is
I'=rxF. (4.16)

The rate of change of the angular momentum with time is
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dLidt=r x (dp/dt) + p x (dr/ct) (4.17)
= rx m(dv/dt) + mv x v
= rxF (becausevxv=0)
=T
If there is no extemal torque, I" = 0. We have, therefore
I' =dLdt=0, (4.18)
so that L is a constant of the motion.
4.3.3 Rotation of n-interacting particles about a fixed point

The analysis given in 43.2 can be extended to a system of nHnteracting particles. The
moments of the mutual interactions about the origin O cancel in pairs (Newton's 3rd Law) so that we
are left with the moment of the extemal forces about O. The equation for the total moment is therefore

[1,2..0= D et (XA(mivyi)iatt — yid(mivig ).

If the moment of the extemal forces about the fixed origin is zero then the total angular
momentum of the system about O is a constant. This result follows directly by integrating the
expression for [y 2,.,=0. (4.19)

[fthe origin moves with constant velocity, the angular momentum of the system, relative to the
new coordinate system, is constant if the extemal torque is zero.

4.4 Work and energy in Newtonian dynamics
4.4.1 The principle of work: kinetic energy and the work done by forces

Consider amass m moving along a path in the [x, ypplane under the influence of a
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resultant force F that is not necessarily constant. Let the components of the force be Fx and Fy when
the mass is at the point P[x, y]. We wish to study the motion of m in moving from a point A, ya]
where the force is Fa to a point B[xs, ys] where the force is Fs. The equations of motion are

m(cPx/d2) = (4.20)
and
m(c?yld2) = F, (4.21)
Muttiplying these equations by dx/dt and dy/dt, respectively, andadding, we obtain
m(dx/dt)(0Bx/dt?) + m(dy/dtt)(cPyld) = Fy(ax/dt) + Fy(dly/dk).
This equation now can be integrated with respect to t, so that
mi(dX/cttR + (dy/dtR)2 = (Fdx + Fydy) .
or
mv2/2 = [(Fdx + Fydy), (4.2)
where v = ((dx/dtp + (dy/atp)'2 is the speed of the particle at the point [x, y]. The term m\&2 is called the
classical kinetic energy of the mass m. Itis important to note that the kinefic energy is ascalar.
If the resuttant forces acting on m are Fa at Alxa, ya] at time t, and Fs at B[xs, yg] at time ts, then
we have
MVeZ/2 — MvaZl2 = g + i e,y (4.23)
The terms on the right-hand side of this equation represent the work done by the resuttant forces acting

on the particle in moving it from A to B. The equation is the mathematical form of the general Principle
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of Work: the change in the kinetic energy of a system in any interval of ime is equal to the work done
by the resultant forces acting on the system during that interval.
4.5 Potential energy
451 General features

Newtonian dynamics involves vector quantiies — force, momentum, angular momentum,
etc.. There is, however, another form of dynamics that involves scalarquantities; a form that originated
in the works of Huygens and Leibniz, in the 17th century. The scalar form relies upon the concept of
energy, in its broadest sense. We have met the concept of kinetic energy in the previous section. We
now meet a more abstract quantity called potential energy.

The work done, W, by a force, F, in moving a mass m from a position sa to a position sz along
apath sis, from section4.3,

W = Jag F-ds =the change in the kinetic energy during the motion,
= i g Fdsoosa, where ouis the angle between F and ds. (4.24)
If the force is constant, we can write
W =F(ss—sn),
where sz —sa s the arc length.
If the motion is along the x-axis, and F = Fyis constant then
W = Fy(xs —xa), the force multiplied by the distance moved. (4.25)

This equation can be rearranged, as follows

Mvie%2 — Fixe = mvie?2 — Fxa.. (4.20)
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This is a surprising resutt; the kinetic energy of the mass is not conserved during the motion whereas
the quantity (mwé/2 — Fx) is conserved during the motion. This means that the change in the kinetic
energy is exactly balanced by the change in the quantity Fex.
Since the quantity mv2/2 has dimensions of energy, the quantity Fx must have dimensions of energy if
the equation is to be dimensionally comect. The quantity —Fxx is called the potential energy of the mass
m, when at the position x, due to the influence of the force F.. We shall denote the potential energy by
V. The negative sign that appears in the definition of the potential energy will be discussed later when
explicit reference is made to the nature of the force (for example, gravitational or electromagnetic).
The energy equation can therefore be written
Te+Ve=Ta+Va. (4.27)
This is found to be a general resuit that holds in all cases in which a potential energy function
can be found that depends only on the position of the object (or objects).
452 Conservative forces
Let Fx and Fy be the Cartesian components of the forces acting on a moving particle with
coordinates [x, y]. The work done Wi_» by the forces while the particle moves from the position
P1[x4, y1] to another position P2 X, y2] is
Wi_2= fiasr Fidx + i Fidly (4.28)
=p1pa (Fiox + Fydy).
I the quantity Fxdx + F,dy is a perfect differential then a function U =f{x, y) exists such that

F,.=aUloxand F, = Uldy (4.29)
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Now, the total differential of the function U is
dU = (aUlox)dx + (aUloy)dy (4.30)
= Fdx + Fdy.
In this case, we can wiite
JdU = [(Fdx + Fydy) = U =fx, y).
The definite integral evaluated between P [x1, yi] and P2[x, y2] is

Ipta (Fiax + Fdy) =fe, yo) ~fxs, yr) = Up—Us . (431)
We see that in evaluating the work done by the forces during the motion, no mention is made of the
actual path taken by the particle. If the forces are such that the function  U(x, y) exists, then they are
said to be conservative. The function U(x, ) is called the force function.

The above method of analysis can be applied to a system of many particles, n. The total work
done by the resuttant forces acting on the system in moving the particles from their initial configuration, |,
to their final configuration, f, is

W= St i (Froe + Figclys), (4.32)

=U-U,
a scalar quantity that is independent of the paths taken by the individual particles. P [X«, Y] and
Pie[Xe, Yic] are the initial and final coordinates of the kih-particle.

The potential energy, V, of the system moving under the influence of conservative forces is

defined in terms of the function U: V=-U.

Examples of interactions that take place via conservative forces are:
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1) gravitational interactions

2) electromagnetic interactions
and

3) interactions between particles of a system that, for every pair of particles, act along the line
joining their centers, and that depend in some way on their distance apart. These are the socalled
central interactions.

Frictional forces are examples of non-conservative forces.

There are two other major methods of solving dynamical problems that differ in fundamental
ways from the method of Newtonian dynamics; they are Lagrangian dynamics and Hamittonian
dynamics. We shall delay a discussion of these more general methods until our study of the Calculus
of Variations in Chapter 9.

4.6 Particle interactions
4.6.1 Elastic collisions

Studies of the collisions among objects, first made in the 17th-century, led to the discovery of
two basic laws of Nature: the conservation of inear momentum, and the conservation of kinefic energy
associated with a special class of collisions called efastic collisions.

The conservation of linear momentum in an isolated system forms the basis for a quantitative
discussion of all problems that involve the interactions between particles. The present discussion will
be limited to an analysis of the elastic coliision between two particles. A typical two-body collision, in

which an object of mass ms and momentum py makes a grazing collision with another object of mass
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my and momentum p (2 < p1), is shown in the following diagram. (The coordinates are chosen so
that the vectors ps and p. have the same directions). After the collision, the two objects move in
directions characterized by the angles 6 and ¢ with momentap:”and pz’.

Before After

Me P sz—> J j |

mp\‘ P2’

If there are no extemal forces acting on the particles so that the changes in their states of
motion come about as a result of their mutual interactions alone, the total inear momentum of the
systemis conserved. We therefore have

p1tp=prtpe (4.33)
or, rearanging o give the momentum transfer,
Pi—pi =P 2.

The kinetic energy of a particle, T is related to the square of its momentum
(T = p4l2m); we therefore form the scalar product of the vector equation for the momentum transfer, to
obtain

Pr=2pr pr'+pi %= 22 -2 po+ . (4.34)

Infroducing the scattering angles 6 and ¢, we have



o1
Pr*=2p1p1 0080 + 1 * = P~ 22 008§ + P22
This equation can be written
P12(x—2xc0s0 + 1) = p2 4y 2ycosp + 1) (4.39)
where
X=pilpr andy=plpz".
If we choose a frame in which p, = 0 then y = 0 and we have
X2—2xcosB+1=(p /1 R. (4.36)
Ifthe collision is elastic, the kinetic energy of the system is conserved, so that
T1+0=Ty + T2 (T2=0because p2=0). (4.37)
Substituting T = p#2m;, and rearranging, gives
(P2 lpr = (maly)(¢—1)..
We therefore obtain a quadratic equation in x:
X2 + 2X(mil(mp — my))cosO — [(mz + mi)(mz—my)] = 0.
The valid solution of this equation is
x = (T4/T1 )2 == (my/(mp— my))cosO
+{(mu/(mp— ) Poos20 + [(my + my)(me— my)[H2 (4.38)
If 1 = my, the solution is x = 1/cosB, in which case
T1’=Ticos?0. (4.39)
In the frame in which p2 = 0, a geometrical analysis of the two-body collision is useful. We

have
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p1+ (1) =2, (4.40)
leading to
pr
p1 \ 0
¢ 0
P2 —pr

If the masses are equal then
P =p100sH.
In this case, the two particles always emerge from the elastic colision at right angles to each other
O +¢p=900).

In the early 1930's, the measured angle between two outgoing high-speed nuclear particles of
equal mass was shown to differ from 9. Such experiments clearly demonstrated the breakdown of
Newtonian dynamics in these interactions.

4.6.2 Inelastic collisions

Colisions between everyday objects are never perfectly elastic. An object that has an intemal
structure can undergo inelastic colisions involving changes in its structure. Inelasticcolisions are found
to obey two laws; they are

1) the conservation of inear momentum
and

2) anempirical law, due to Newton, that states that the relative velocity of the colliding objects,
measured along their line of centers immediately afterimpact,is  —e tmes their relative velocity

before impact.
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The quantity e is called the coefficient of restitution. ts value depends on the nature of the materials of
the colliding objects. For very hard substances such as steel, e is close to unity, whereas for very soft
materials such as putty, e approaches zero.

Consider , in the simplest case, the impact of two deformable spheres with masses my and
my. Let their velocities be vi and v2, and vi“ and v2” (along their line of centers) before and after impact,
respectively. The linear momentum is conserved, therefore

MV + MoVo = Mavy” + MoV’
and, using Newton's empirical law,
Vi =V =—e(Vi—Vo). (4.41)

Rearranging these equations, we can obtain the values v1” and v»” after impact , in terms of their values
before impact:

V1 = [Mivy + MoV —emp(vs — Vo) (my + my), (442
and

Vo' = [mivi + mpva + emi(vi = Vo) J(my + my) . (443)

If the two spheres initially move in directions that are not colinear, the above method of analysis
is still valid because the momenta can be resolved into components along and perpendicular to a
chosen axis. The perpendicular components remain unchanged by theimpact.

We shall find that the classical approach to a quantitative study of inelastic collisions must be
radically altered when we treat the subject within the framework of Special Relativity. It will be shown

that the combined mass (my + my) of the colliding objects is not conserved in an inelastic collision.



94
4.7 The motion of rigid bodies

Newton’s Laws of Motion apply to every pointiike mass in an object of finite size. The smallest
objects of practical size contain very large numbers of microscapic particles — Avogadro's number is
about 6 x 102 atoms per gram-atom. The motions of the individual microscopic particles in an
extended object can be analyzed in terms of the motion of their equivalent total mass, located at the
center of mass of the object.
4.7 The center of mass

For a system of discrete masses, m, located at the vector positions, r, the position row of the
center of mass is defined as

rov= Y imin/ Yimi= Y mir/ M, where Mis the total mass. (4.44)
The center of mass (CM) of an (idealized) continuous distribution of mass with a density p

(massivolume), can be obtained by considering an element of volume dV with an elemental mass dm.

We then have

dm=pdV. (4.45)
The position of the CM is therefore

row= (1M)Jrdm = (1M)frpdV. (446)

The Cartesian components of rov are
Yo = (1M){xpdV. (447)
In non-uniform materials, the density is a function of .

4.7.2 Kinetic energy of a rigid body in general motion
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Consider a rigid body that has both translational and rotational motion in a plane. Let the

angular velocity, w, be constant. Atan arbitrary ime t, we have

N

y y
, the velocity of m
V- lative to G
X" w=constant
<— Totalmass,M=>m
0 | > X

X
Let the coordinates of an element of mass m of the body be [x, y] in the fixed frame (origin O) and
X', yin the frame moving with the center of mass, G (origin O’), and let u and v be the components of
velocity of G, in the fixed frame. For constant angular velocity w, the instantaneous velocity of the
element of mass m, relative to G has a direction perpendicular to the radius vectorr’, and a magnitude
V'=r . (4.48)
The components of the instantaneous velocity of G, relative to the fixed frame, are
u in the x-direction, and
vin the y-direction.
The velocity components of min the [x, yHrame are therefore
U—r'ewsing” =u—y'w in the xdirection,
and

V+r'wcosd =V +Xwinthe y-direction.
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The kinetic energy of the body, Ex, of mass Mis therefore
Ex= (12> m{u-y wp+(v+xXwp (449
= (1R2M(? +V2) + (112)a2> m(x 2 +y2)

—Uw) my +vm) mx’.

Therefore
Ex=(12)Mve? + (12)le?, (4.50)
where
Ve = (U2 +V2)™2 the speed of G, relative to the fixed frame,
>my’ =>mx" =0, by definition of the center of mass,
and

ls=>m(x2+y?)=>mr?,is called the moment of imertia of M about an axis
through G, perpendicular to the plane.
We see that the total kinetic energy of the moving object of mass M is made up of two parts,
1) the kinetic energy of translation of the whole mass moving with the velocity of
the center of mass,
and

2) the kinetic energy of rotation of the whole mass abouit its center of mass.



97

4.8 Angularvelocity and the instantaneous center of rotation

The angular velocity of a body is defined as the rate of increase of the angle between any line
AB, fixed in the body, and any line fixed in the plane of the motion. If ¢ is the instantaneous angle
between AB and an axis Oy, in the plane, then the angular velocity is di/dt.

Consider a circular disc of radius a, that rolls without sliding in contact with a line Ox, and let¢
be the instantaneous angle that the fixed line AB in the disc makes with the y-axis. Att =0, the rolling
begins with the point B/Eouching the origin, O:

y

v

o) X P (comesponds top=0) X

Attime t, after the rolling begins, the coordinates of Blx, y] are

x = 0P -asin¢ = BP-asing = a¢ —asing = a($ —sing),
and

y=AP-acos¢ =a(1-cos¢).
The components of the velocity of B are therefore

Vi = dxldtt = a(dep/dt)(1 — cosa), (451)
and

vy = dy/dt = a(dfatt)sing. (4.52)

The components of the acceleration of B are
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ax = dvidt = (didt)(a(de/dt)(1 — cosy)) (4.53)
= a(dgldttpsing + a(1 — cosp)(d/at),
and
ay = dw/dt = (dldt)(a(dd/dt)sing) (4.54)
= a(dg/dtPoose + asindy(cPe/dt?).
fp=0,
dx/at = 0 and dy/dt = 0, which means that the point P has no instantaneous velocity.
The point B is therefore instantaneously rotating about P with a velocity equal to 2asing/2)(dg/at); P is
a “center of rotation”.
Also,
d/di2 = 0 and d?yldi2 = a(d¢/dty, the point of contact only has an acceleration
towards the center.
49 An application of the Newtonian method
The following example illustrates the use of some basic principles of classical dynamics, such
as the conservation of inear momentum, the conservation of energy, and instantaneous rotation about
amoving point:
Consider a perfectly smooth, straight horizontal rod with a ring of mass M that can slide along
the rod. Attached to the ring is a straight, hinged rod of length L and ofnegligible mass; it has amass m
atitsend. Attimet=0, the systemis held in a horizontal position in the constant gravitational field of the

Earth.
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Att=0:

gl (2

W
L W
X=

Oatt=0

Att=0, the mass mis released and falls under gravity. Attimet, we have

gl | ]

Ve k Lsind(ddyct)
Loosd(dd/dt) L(dd/dt) = instantaneous velocity of m
about M

There are no extemal forces acting on the system in the xdirection and therefore the horizontal
momentum remains zero:

M(cx/ctt) + my((dx/dt) — Lsing(dl/ctt)) = O. (4.56)
Integrating, we have

Mx + mx + mLcos¢ = constant. (4.57)
fx=0and$=0att=0,then

mL = constant, (4.58)

therefore

(M+m)x+mL(cosp—1)=0,
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so that
x=mL(1-cos¢)(M +m). (459
We see that the instantaneous position X(t) is obtained by integrating the momentum equation.
The equation of conservation of energy can now be used; itis
(MI2)vi2 + (m/2)(vi— Lsing(dyd))2 + (m/2)(Loos(dgydt))? = mgLsing.
(The change in kinetic energy is equal to the change in the potential energy).
Rearranging, gives
(M + m)w2—2mLsingvy(dd/dt) + (mL2(dgfdtf — 2mgLsing) = 0. (4.40)
This is a quadratic in v with a solution
(M+m)vy = mLsind(dfatt)[ 1 £ {1 - [(M + m)(mL2(d/aitp
— 2mLgsing)}[mALAdd/dtpsin?p]}2.
The left-hand side of this equation is also given by the momentum equation:
(M + m)wy = mLsind(clfct).
We therefore obtain, after subsfitution and rearrangement,
dep/dt ={2(M + m)gsing}[L(M + mcos?p)[}'2, (441)
the angular velocity of the rod of length L at ime t.
PROBLEMS
4-1 A straight uniform rod of mass m and length 21 is held at an angle 6o to the vertical.
lts lower end rests on a perfectly smooth horizontal surface. The rod is released and

falls under gravity. At time t after the motion begins, we have
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Bo
gl y
Initial position
0
.
Mass m, length 2
v mg

I the moment of inertia of the rod about an axis through its center of mass,
perpendicular to the plane of the motion, is mP/3, prove that the angular velocity of
the rod when it makes an angle 6 with the vertical, is
do/dt = {6g(cosBo— cosO)(1 + 3sin?0)} 2.
4-2 Show that the center of mass of a uniform solid hemisphere of radius R is 3R/8 above
the center of its plane surface.
4-3 Show that the moment of inertia of a uniform solid sphere of radius R and mass M
about a diameter is 2MRZ/5.
44 A uniform solid sphere of mass m and radius r can roll, under gravity, on the inner surface of a
perfectly rough spherical surface of radius R. The motion is in a vertical plane.

Attime t during the motion, we have

)

roling sphere, mass mand radius r ﬁ o
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Show that
d20/d2 + [5g/(7(R—r))}sin6 = .
As a preliminary result, show that re = (R - r)(d6/dt) for rolling motion without slipping.
45 A particle of mass m hangs on an inextensible string of length | and negligible
mass. The string is attached to a fixed point O. The mass oscillates in a vertical plane

under gravity. Attime t, we have

_

I 0 w =do/dt

Tension, T
m

mg

Show that
1) dPO/d2 + (g)sind = 0.
2) o= (29/)[cosO —cosBe), where 6o is the initial angle of the string with respect
to the vertical, so that « = 0 when 6 = 6o. This equation gives the angular velocity
in any position.
46 Letl be the natural length of an elastic string fixed at the point O. The string has a
negligible mass. Leta mass m be attached to the string, and let it strefch the string

until the equilibrium position is reached. The tension in the string is given by Hooke's
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law:

Tension, T=A(extension)/original length, where A is a constant for a given material.

The mass is displaced vertically from its equilibrium position, and oscillates under

gravity. We have
o) Equilibrium General position
gl
lo YVE
A ye)
Te
-7
mg A

g_‘q

Show that the mass oscillates about the equilibrium position with simple harmonic
motion, and that
y(t) = o+ (MglA){1 — cosft NI (starts with zero velocity at y(0) = b)

4-7 Adynamical systemis in stable equilibrium if the system tends to retum to its original
state if slightly displaced. A system s in a position of equilibrium when the height of
its center of gravity is a maximum or a minimum. Consider a rod of mass m with one
end resting on a perfectly smooth vertical wall OA and the other end on a perfectly

smooth inclined plane, OB. Show that, in the position of equilibrium
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00t = 2tang, where the angles are given in the diagram:

y(©)

gl
Center of gravity

S

¢ (fixed angle)

o)

Find y =1(8), and show, by considering derivatives, that this is a state of unstable

equilibrium.

4-8 A particle A of mass ma = 1 unit, scatters elastically from a stationary particle B of mass

me =2 units. If A scatters through an angle 6, show that the ratio of the kinetic

energies of A, before (Ta) and after (Ta") scattering is

(TWTA) = (cosB + V3 + oSO

Sketch the form of the variation of this ratio with angle in the range 0 <6 <.

(This problem is met in practice in low-energy neutron-deuteron scattering).
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)

INVARIANCE PRINCIPLES AND CONSERVATION LAWS

5.1 Invariance of the potential under translations and the conservation of
linear momentum
The equation of motion of a Newtonian particle of mass m moving along the xaxis under the
influence of a force Fxis
mcPxid = F . (1)
If Fx can be represented by a potential V(x) then
mad2x/dt2 =—dV/(x)/dx . (6.2)

In the special case in which the potential is not a function of x, the equation of motion becomes

max/d2 =0,
or

md(w)/dt=0. (9.3)
Integrating this equation gives

mvx = constant. (54)

We see that the linear momentum of the particle is constant if the potential is independent of the
position of the particle.
5.2 Invariance of the potential under rotations and the conservation of angular

momentum
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Let a Newtonian particle of mass m move in the plane about a fixed origin, O, under the

influence of a force F. The equations of motion, in the x-and y-directions, are

madx/di2 = Fx and md?y/d2 = F,. (9.5ab)
If the force can be represented by a potential \V/(x, y) then we can wiite

mdx/di2 = -aVox and md?y/diz =-oVioy . (96ab)
The total differential of the potential is

dV = (eViox)dx + (0Vioy)dy.
Let a transformation from Cartesian to polar coordinates be made using the standard linear equations
x=rcospandy=rsing.

The partial denvatives are

OXlod =—rsing =y, oxlor = cosd, dylog = rocosd= X, and dylor =sing .

We therefore have
VIa = (VIoK)(oxia) + (Viey)dylag) (57)
= (QVIoX)y) + (@VIdy))
=yFx+x(F)

=m(yax—Xay) (axand ay are the components of acceleration)
=m(d/dt)(yw—xw) (vxand vy are the components of velocity).
If the potential is independent of the angle ¢ then
Nlop=0, (5.8)

in which case



107

m(didyvx—xvy) =0

and therefore
m(yvk—Xvy) = a constant. (0.9

The quantity on the lefthand side of this equation is the angular momentum (yp« — xpy) of the mass
about the fixed origin. We therefore see that if the potentid is invariant under rotations about the origin
(independent of the angle ¢), the angular momentum of the mass about the origin is conserved.

In Chapter 9, we shall treat the subject of invariance principles and conservation laws in a
more general way, using arguments that involve the Lagrangians and Hamittonians of dynamical

systems.
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6

EINSTEINIAN DYNAMICS

6.1 4momentum and the energy-momentum invariant
In Classical Mechanics, the concept of momentum is important because of its role as an invariant in
an isolated system. We therefore introduce the concept of 4momentum in Relativistic Mechanics in
order to find possible Lorentz invariants involving this new quantity. The contravariant 4momentum is
defined as:
Py =ik 6.1)

where m is the mass of the particle. (It is a Lorentz scalar— the mass measured in the rest frame of

the particle).
The scalar productis

PHP, = (mcR. 6.2)

Now,
Py =[myc, mywy] (63)

therefore,

PPy = (myck - (mywnf
Wiriting

M =ym, the relativistic mass, we obtain
PuP, = (McP— (M) = (MR, (64)

Muttiplying throughout by ¢2 gives



Vet — MAnEC? = mec?.
The quantity Mc? has dimensions of energy; we therefore write
E=Mc
the total energy of a freely moving particle.
This leads to the fundamental invariant of dynamics
C?PHP, = E2— (pcp=E*2
where
Eo=mc?is the rest energy of the particle, and p is its refativistic +nomentum.
The total energy can be written:
E=yEo=Eo+T,
where
T=Efy-1),
the relativistic kinetic energy.
The magnitude of the 4momentum is a Lorentz invariant
|P4|=mc.
The 4- momentum transforms as follows:
Pu=LPx,
6.2 The relativistic Doppler shift

For relative motion along the x-axis, the equation P* = LP* is equivalent to the equations

E'= yE-Bycp

(6.10)

6.11)

6.12)
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and,
cp*=—3yE + yop*. (613)
Using the Planck-Einstein equations E = hv and E = pxc for photons, the energy equation becomes
V=V =Pyv
=v(1-p)
= v(1-p)(1-p)"
= v{(1-P)(1+ P12 (6.14)
This is the relativistic Doppler shift for photons of the frequency v', measured in an inertial frame
(primed) in terms of the frequency v measured in another inertial frame.
6.3 Relativistic collisions and the conservation of 4momentum
Consider the interaction between two particles, 1 and 2, to form two particles, 3 and 4. (3 and
4 are not necessariy the same as 1 and 2). The contravariant4momenta are P! :

Before After

142 — 3+4
All experiments are consistent with the fact that the 4momentum of the system is conserved.

We have, for the contravariant 4momentum vectors of the interacting particles,
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PH+P# = P#+Pg (6.15)

| T
iniial “free” state  final “free” state

and a similar equation for the covariant 4momentum vectors,
Py, +Py, = P3+Ps,. (6.16)
If we are interested in the change P+ — P5*, then we require
P~P#' =P}~ Py (6.17)
and
P1,—P3,=Ps,~Ps,. (6.18)
Forming the invariant scalar products, and using P, Pt* = (EX/c)?, we obtain
(EVfcP - 2(E1ESc>— prrpa) + (EsUCP
= (EQICP - 2(EE4— porpa) + (EXICR. (6.19)
Infroducing the scattering angles, 6 and ¢, this equation becomes
E102— 2(E1E3— pipacost) + B2 = EX2— 2(EoE4 — CPpopacose) + E422
If we choose a reference frame in which particle 2 is at rest (the LAB frame), thenp, = 0 and
Ex=E2, sothat
E102—2(E1E3— Cpipacos6) + Ex92 = EX2 - 2EL0E, + E402. (6.20)
The total energy of the system is conserved, therefore

Ei+E=Es+Es=E4+EP (6.21)
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or
Es=Ei1+E -Es
Eliminating E4 from the above “scalar product equation gives
E102—2(E1E3— cPp1pa00s0) + EP2 = EQ02 - B2 - 2EA(E1 - Es). (6.22)
This is the basic equation for all interactions in which two relativistic entities in the initial state interact to
give two relativistic entities in the final state. It applies equally well to interactions thatinvolve massive
and massless entities.
6.3.1 The Compton effect
The general method discussed in the previous section can be used to provide an exact
analysis of Compton’s famous experiment in which the scattering of a photon by a stationary, free
electron was studied. In this example, we have
E1 = Ew (the incident photon energy), E2 = E&° (the rest energy of the stationary electron, the
‘target’), Es = Ex” (the energy of the scattered photon), and B4 = E¢” (the energy of the recoiing

electron). The “rest energy” of the photon is zero:

The general equation (6.22), is now

0 2(EsEs — EEan 0080) = E2— 2E(Egn + ES— E) + E? (6.23)
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or
—2EEn (1 -c0s0) =—2E)En- Em)
so that
En—Eon’ = EnEm (1 —cosO)ES. (6.24)
Compton measured the energy-loss of the photon on scattering and its cosb-dependence.
6.4 Relativistic inelastic collisions
We shall consider an inelastic collision between a particle 1 and a particle 2 (initially at rest) to
form a composite particle 3. In such a collision, the 4momentum is conserved (as it is in an elastic
collision) however, the kinetic energy is not conserved. Part of the kinetic energy of particle 1 is
transformed into excitation energy of the composite particle 3. This excitation energy can take many
forms — heat energy, rotational energy, and the excitation of quantum states at the microscopic level.

The inelastic collision is as shown:

Before After
1 2 3
o» O D
P P2=0 P
Restenergy: E¢  EXP EP

Totalenergy:  E E=
3-momentum: p1 p2=0 ps
Kinetic energy: T T2=0 IE

In this problem, we shall use the energy-momentum invariants associated with each particle, directly:

i) E2- (p1c)2 =E02 (6.25)



114
ii) E2 =Ep?
i) E&2—(pac)? =Ex°2
The total energy is conserved, therefore
Ei+E=Es=E1+EP.
Introducing the kinetic energies of the particles, we have
(Ti+EQ) +EL=Ta+EP.

The 3-momentum is conserved, therefore

p1+0=ps.
Using
Ed2= B2~ (pach,
we obtain
Ed2=(Er + ELP - (pocf
= B2+ 2EEL + EL2— (prcf
=EQ02+2EEP +EP2
=E02+ EN2+ 2Ty +EQER
or

EP2=(EL+EMR+2THEL (EX>E(Q+ES).
USing T1 = Y1E10_ E10’ where V1= (1 — B12)—1/2 and B1 =V /C, we have
E302 = E102 + E202 + 2'Y1E10E20 )

If two identical particles make a completely inelastic collision then

(6.26)

627)

(6.28)

(6.29)

(6:30)

6:31)

(632)

(6.33)
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EL2=2(y1+ 1)E(2 (6.35)
6.5 The Mandelstam variables
In discussions of relativistic interactions it is often useful to introduce additional Lorentz
invariants that are known as Mandelstam variables. They are, for the special case
of two particles in the initial and final states (1 +2— 3 +4).
s= (P + P[Py, * Py ], the total 4-momentum invariant
= ((Es + E2)c, (p1 + p2))(E: + BV, 1 + p2)
= (E1 + B2 (p1 + p2)%, a Lorentz invariant , (6.36)

t= (P ~P3)[P1, —Ps ], the 4-momentum transfer (1—>3) invariant

= (E1— Espic2— (p1 - pal, a Lorentzinvariant, (6:37)
and

U= (Pt~ P4)[P1,—P4J, the 4-momentum transfer (1—4) invariant

= (E1— E4PIc?— (p1—pe)2, a Lorentz invariant (6.38)
Now,

s2=E2+ 2E4Ex + E2— (p2 + 2prpo + pA)c2
=E02+ EQ2+ 2E/E,— 2pr-pac?
= E02+E£2+ 2(E;, pO)E2 —pec). (6.39)

t

Lorentz invanant
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The Mandelstam variable sc2 has the same value in all inertial frames. We therefore evaluate

itin the LAB frame, defined by the vectors
[E, picland [EX = EL, ¢ =0), (6.40)
so that
2(E{Ed - piptcd) = 2E4EY, (641)
and
sc2=EQ2+EQ2+ 2E{EX. (6.42)

We can evaluate sc?in the center-of -mass (CM) frame, defined by the condition
p1M+ pM=( (the total 3momentum is zero).
S2 = (E{M+ EMR. (6.43)
This is the square of the total CM energy of the system.
6.5.1 The total CM energy and the production of new particles
The quantty c\s is the energy available for the production of new particles, or forexciting the
intemal structure of particles. We can now obtain the relation between the total CM energy and the
LAB energy of the incident particle (1) and the target (2), as follows:
SC?=E02+EQ2+ 2E{EL = (EM + EXMR = W2 say. (6.44)
Here, we have evaluated the lefthand side in the LAB frame, and the right-hand side in the CM frame.
At very high energies, cv's >> E{? and E2, the rest energies of the particles in the initial state, in
which case,

W2 =5~ 2EAES. (645)
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The total CM energy, W, available for the production of new particles therefore depends on the square
root of the incident laboratory energy. This result led to the development of colliding, or intersecting,
beams of particles (such as protons and antiprotons) in order to produce sufficient energy to generate
particles with rest masses greater than 100 times the rest mass of the proton =10°¢€V).
6.6 Positron-electron annihilation-in-flight

A discussion of the annihilatiorHin-fiight of a relativistic positron and a stationary electron
provides a topical example of the use of relativistic conservation laws. This process, in which two
photons are spontaneously generated, has been used as a source of nearly monoenergetic hight
energy photons for the study of nuclear photo-disintegration since 1960. The general resultfora 1 + 2
—> 3 +4 interaction, given in section 6. 3, provides the basis for an exact calculation of this process; we
have

E1 = Exs (the incident positron energy), E2 = E° (the rest energy of the stationary electron), Es
= Egn (the energy of the forward-going photon), and E4 = Exe (the energy of the backward-going
photon). The rest energies of the positron and the electron are equal. The general equation (6.22),
now reads

Ee% — 2{EpesE i — OppesEoni(cos0)} + 0 = 0— B2 —2E(Epes — Eqi) (6.46)
therefore,

Eent{Epos + Ee"{Epes” — B 0056} = (Epos + ES)ES,
giving
Eom = EY(1—koosH) (647)
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where
K= [(Egos — E&)/(Epos + ESO)I"
The maximum energy of the photon, Ex™* occurs when 6 = 0, comesponding to motion in
the forward direction; its energy is
Epni™ = Ece/(1-K). (6.49)
If, for example, the incident total positron energy is 30 MeV, and E2 = 0.511MeV then
Egnmec=051111-(29.489/30.511)"2 MeV
=3025MeV.

The forward-going photon has an energy equal to the kinetic energy of the incident positron
(T1=30-0.511 MeV) plus approximately three-quarters of the total rest energy of the positron-electron
pair (2B = 1.02 MeV). Using the conservation of the total energy of the system, we see that the
energy of the backward-going photon is approximately 0.25 MeV.
The method of positron-electron annihilationHin-fight provides one of the very few ways of generating
nearly monoenergetic photons at high energies.
PROBLEMS
6-1 A particle of rest energy E° has a relativistic 3momentum p and a relativistic kinetic

energy T. Show that

1) Ipl= (1) 2TEY)"A{1 + (TRED)™,

and

2) V| = {1 + [ERT(T + 2E9)[-"2, where v is the 3-velocity.



6-2 Two similar relativistic particles, A and B, each with rest energy E°, move towards
each otherin a straight line. The constant speed of each particle , measured in the
LAB frame is VV = 3c. Show that their total energy, measured in the rest frame of A, is

E9(1+ A1 —P?).

6-3 An atom of rest energy E0is initially at rest. It completely absorbs a photon of energy
Eqn, and the excited atom of rest energy E* recoils freely. If the excitation energy of
the atom s given by

Eex=EA% — EAD, show that
Eex=—En0+ EX{1 + (2EEA)}2, exactly.
If, asis often the case, Ex « El, show that the recoil energy of the atomis
Erecii = Eg2I2E.

Explain how this approximation can be deduced using a Newtoniartike analysis.

64 A completely inelastic collision occurs between particle 1 and particle 2 (initially at
rest ) to form a composite particle, 3. Show that the speed of 3 is

v3=vif{1 + (EQEq)},

where v1 and E1 are the speed and the total energy of 1, and EX is the rest energy of 2.

65 Show that the minimum energy that a-y-+ay must have to just break up a deuteron
into a neutron and a proton isy™ =2.23 MeV, given

Eneu® = 939.5656 MeV,

Eo =938.2723 MeV, and

119
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Egef= 18756134 MeV.
66 Inageneral relativistic collision:
1+2 — nparticles
—(3+4+..m)+(m+1,m+2.+..n)
where the particles 3 — m are “observed”, and the particles m+ 1 —nare
“Unobserved”. \We have

Ei+Ex=(Es+Es+..En) + (Emt + Eme +..Er), the total energy,
= [Fobs 4 [unabs

and
Pr+p2=pte+ pre,
If VWrts/c2 s the unobiserved (missing) mass of the particles m+1 to n, show that, in
the LAB frame
(Weretsp = (Ef-+ B = 3 =g P — (prC— CR=am P
This is the missing (energy? in terms of the observed quantities. Thisis the principle
behind the so-called “missing-mass spectrometers” used in Nuclear and Particle
Physics.
6.7 Ifthe contravariant 4-force is defined as F* = dP*/dc = [P, f] where t is the proper time, and P* is the
contravariant 4-momentum, show that
F*V,=0,where V, is the covariant 4-velocity. (The 4- force and the 4-velocity are orthogonal).

Obtain dE/dt in terms of y, v, and f.
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NEWTONIAN GRAVITATION

We come now to one of the highlights in the history of intellectual endeavor, namely Newton's
Theory of Gravitation. This spectacular work ranks with a handful of masterpieces in Natural
Philosophy — the Galileo-Newton Theory of Motion, the Camot-Clausius-Kelvin Theory of Heat and
Themodynamics, Maxwells Theory of Electromagnetism, the MaxwellBolzmann-Gibbs Theory of
Statistical Mechanics, Einstein’'s Theories of Special and General Relativity, Planck’ s Quantum Theory
of Radiation, and the Bohr-deBroglie-Schrodinger-Heisenberg Quantum Theory of Matter.

Newton’s most significant ideas on Gravitation were developed in his early twenties at a ime
when the University of Cambridge closed down because of the Great Plague. He reimed to his
home, a fam at Woolsthorpe-by-Colsterworth, in Lincolnshire. It is a part of England dominated by
vast, changing skies; a region buffeted by the winds from the North Sea. The thoughts of the young
Newton naturally tumed skyward — there was litle on the ground to stir his imagination except,
perhaps, the proverbial apple tree and the falling apple. Newton's work set us on a new course.

Before discussing the details of the theory, it will be useful to give an overview using the
simplest mode!, consistent with logical accuracy. In this way, we can appreciate Newton's radical
ideas, and his development of the now standard “Scientific Method “ in which a crucial interplay exists
between the results of observations and mathematical models that best acoount for the observations.

The great theories are often based upon relatively small numbers of observations. The uncovering of



122
the Laws of Nature requires deep and imaginative thoughts that go far beyond the demonstration of
mathematical prowess.

Newton's development of Differential Calculus in the late 1660's was strongly influenced by his
attempts to understand, analytically, the empirical ideas conceming motion that had been put forward
by Galileo. In particular, he investigated the analytical properties of motion in curved paths. These
properties are required in his Theory of Gravitation. We shall consider motion in 2dimensions.

7.1 Properties of motion along curved paths in the plane
The velocity of a paint in the plane is a vector, drawn at the point, such that its component in

any direction is given by the rate of change of the displacement, in that direction. Consider the following

diagram
YA B
y+Ay
PQ
y S »l Ay
A AX

0] | g X
X X+ AX
t t+ At

P and Q are the positions of a point moving along the curved path AB. The coordinates are P[x, y] at
timetand Q[x+ Ax, y + Ay] attime t+ At. The components of the velocity of the point are
lIim(At—0) AX/At = dx/dt = v,

and
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lim(At—0) Ay/At = dy/dt =v.
Axand Ay are the components of the vector PQ. The velocity is therefore
lim(At—0) chordPQ/AL .
We have
lim(Q—P) chord PQ/As =1,
where sis the length of the curve AP and As is the length of the arc PQ.
The velocity can be written
lim(At—0) (chordPQ/As)(AS/At) = ds/dt. (7.)
The direction of the instantaneous velocity at P is along the tangent to the path at P.
The x- and y-components of the acceleration of P are
lim(At—=0) Aw/At = dw/dt = d2/dt2,
and
lim(At—=0) Awy/At = dwy/dt = dAy/dt2
The resultant acceleration is not directed along thetangent at P.

Consider the motion of P along the curve APQB:

YA
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The change Av in the vector vis shown in the diagram:

V+Av -Av

v
The vector Av can be written in terms of two components, a, perpendicular to the direction of v, and b,
along the direction of v + Av: The accelerationis
lim(At—=0) AVIAL,
The componentalongais
lim(At—0) Aa/At = lim(At—0) vA/At = lim(At—0) (VAY/AS)ASIAY)
=VA(dhylds) = vilp (72)
where
p =dsldy, is the radius of curvature at P. (7.3)
The direction of this component of the acceleration is along the inward normal at P.
If the particle moves in a circle of radius R then s acceleration towards the center is V2R, a result first
given by Newton.
The component of acceleration along the tangent at P is dvidt = v(avids) = cPs/df2.
7.2 Anoverview of Newtonian gravitation
Newton considered the fundamental properties of motion, embodied in his three Laws, to be
universal in character — the natural laws apply to all motions of all particles throughout all space, at all

times. Such considerations form the basis of a Natural Philosophy. In the Principia, Newton wrote ...l
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began to think of gravity as extending to the orb of the Moon...” He reasoned that the Moon, in its
steady orbit around the Earth, is always accelerating towards the Earth. He estimated the acceleration
as follows:

If the orbit of the Moon is circular (a reasonable assumption), the dynamical problem is

Moon

The acceleration of the Moon
towards the Earth is
lar= V2R

Newton calculated v = 2rtR/T, where R =240,000 miles, and T = 27 .4 days, the period,
so that
&R =41RT2=0.007 fsec? (74)

He knew that all objects, close to the surface of the Earth, accelerate towards the Earth with a value
determined by Galileo, namely g = 32 fi/sec2. He was therefore faced with the problem of explaining
the origin of the very large difference between the value of the acceleration a, nearly a quarter of a
million miles away from Earth, and the local value, g.

He had previously formulated his 2nd Law that relates force to acceleration, and therefore he

reasoned that the difference between the accelerations, & and g, must be associated with a property
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of the force acting between the Earth and the Moon — the force must decrease in some unknown
way.

Newton then infroduced his conviction that the force of gravity between objects is a universal
force; each planet in the solar system interacts with the Sun via the same basic force, and therefore
undergoes a characteristic acceleration towards the Sun. He concluded that the answer to the
problem of the nature of the gravitational force must be contained in the three empirical Laws of
Planetary Motion announced by Kepler, a few decades before. The three Laws are

1) The planets describe ellipses about the Sun as focus,

2) The line joining the planet to the Sun sweeps out equal areas in equal intervals

of ime,
and

3) The period of a planet is proportional to the length of the semimajor axis of

the orbit, raised to the power of 3/2.

These remarkable Laws were deduced after an exhaustive study of the motion of the planets,
made over a period of about 50 years by Tycho Brahe and Kepkr.

The 3rd Law was of particular interest to Newton because it relates the square of the period to
the cube of the radius for a circular orbit:

T2 o R? (7.5)
or

T2=CR},
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where C is a constant. He replaced the specific value of (R/T?) that occurs in the expression for the
acceleration of the Moon towards the Earth with the value obtained from Kepler's 3rd Law and

obtained a value for the acceleration ax:

ar= V2R =4mR/T? (Newton) (76)
but
R/T2=1/CR2 (Kepler) (7.7)
therefore
ar=4TRM)
= (41?C)(1/R?) (Newton). (78)

The acceleration of the Moon towards the Earth varies as the inverse square of the distance between
them.
Newton was now prepared to develop a general theory of gravitation. If the acceleration of a planet
towards the Sun depends on the inverse square of their separation, then the force between them can
be written, using the 2nd Law of Motion, as follows
F = Momet @penet = Muane 4102/C)(1/R2). (79)

At this point, Newton infroduced the first symmefry argument in Physics: if the planet
experiences a force from the Sun then the Sun must experience the same force from the planet (the
3rd Law of Motion!). He therefore argued that the expression for the force between the planet and the
Sun must contain, explicitly, the masses of the planetand the Sun. The gravitational force Fe between

them therefore has the form
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Fe = GMsuMpene/R?, (7.10)
where Gis a constant.

Newton saw no reason to limit this form to the Sunplanet system, and therefore he
announced that for any two spherical masses, My and M, the gravitational force between them is
given by

Fe=GMiMR?, (7.11)
where G is a universal constant of Nature.

All evidence points to the fact that the gravitational force between two masses is always
attractive.

Retuming to the Earth-Moon system, the force on the Moon (mass Mw) in orbitis

Fr=GMeMWwWR2 = Mver (712
so that

ar = GMg/R?, which is independent of Mu. (The cancellation of the mass My in
the expressions for Frinvolves an important point that is discussed later in the section8.1).
At the surface of the Earth, the acceleration, g, of a mass M is essentially constant. It does not depend
on the value of the mass, M, thus

g=CGMg/Re?, where Re is the radius of the Earth. (7.13)
(It took Newton many years to prove that the entire mass of the Earth, M, is equivalent to a point mass,
M, located at the center of the Earth when calculating the Earth’s gravitational interaction with a mass

onits surface. This result depends on the exact 1/Re-nature of the force).
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The ratio of the accelerations, ar/g, is therefore
arlg = (GMeRY(GMeRe?) = (Re/R (7.14)
Newton knew from observations that the ratio of the radius of the Earth to the radius of the Moon’s orbit
is about 1/60, and therefore he obtained
arlg = (1/60)2 = 1/3600.
so that
ar = ¢/3600 = (32/3600)ft/sec? = 0.007...fi'sec?.
In one of the great understatements of analysis, Newton said, in comparing this resuit with the value for
ar that he had deduced using &k = VAR ..."that it agreed prefty nearly” ...The discrepancy came
largely from the errors in the observed ratio of the radii.
7.3 Gravitation: an example of a central force
Central forces, in which a particle moves under the influence of a force that acts on the particle
in such a way that it is always directed towards a single point — the center of force — form an

important class of problems . Let the center of force be chosen as the origin of coordinates:
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The description of partide motion in terms of polar coordinates (Chapter2), is welk-suited to the analysis
of the central force problem. For general motion, the acceleration of a point P|r, ¢] moving in the plane
has the following components in the - and “¢’- directions
ar = U{cr/dt2 — r(d/ct?), (7.15)
and
a, = Uy(1{dRg/dt) + 2(drct)(cipict), (7.16)
where urand u, are unit vectors in the r-and ¢-directions.
In the central force problem, the force F is always directed towards O, and therefore the
componenta,, perpendicular tor, is aways zero:
a, = u,((cPe/d?) + 2(ar/d)(dgyat) = 0, (7.17)
and therefore
r(cP/dt?) + 2(dIrldit)(dict) = O. (7.18)
This is the equation of motion of a particle moving under theinfluence of a central force, centered at O.
If we take the Sun as the (fixed) center of force, the motion of a planet moving about the Sunis
given by this equation. The differential equation can be solved by making the substitution
o = doydt, (7.19)
giving
rdo/dt + 20(dr/dt) =0, (7.20)
or

rdo =—2wdr.
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Separating the variables, we obtain
dw/o =-2dr.
Integrating, gives

loge =—2loger + C (constant),

therefore
loge(wr?) = C.
Taking antilogs gives
2o = A(dgyldtt) = eC = k, a constant. (7.21)

7.4 Motion under a central force and the conservation of angular momentum
The above solution of the equation of motion of a particle of mass m, moving under the
influence of a central force at the origin, O, can be multtiplied throughout by the mass m to give
mr(dgydtt) = mk (1.22)
or
mr(r(dg/dt)) = K, a constant for a given mass, (7.23)
We note that r(dyct) = v,, the component of velocity perpendicular tor, therefore
angular momentum of m about O = r(mv,) =K, a constant of the motion for a
central force.
1.5 Kepler's 2nd law explained
The equation (d¢/at) = constant, K, can be interpreted in terms of an element

of area swept out by the radius vectorr, as follows
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From the diagram, we see that the following inequility holds
PAG2 < AA<(r+ ArPAGR2
or
22 < ANAG < (r+ Arpl2.
When Ap — 0,r+ Ar—r, so that, in the limit,
dA/dp =r22.
The element of area is therefore
dA =rZd¢/l2.
Twice the time rate of change of this element s therefore
2dAVdt = P(dgidt). (7.24)
We recognize that this expression is equal to k, the constant that occurs in the solution of the
differential equation of motion for a central path. The radius vector r therefore sweeps out area at a
constant rate. This is Kepler's 2nd Law of Planetary Motion; it is seen to be a direct consequence of the

fact that the gravitational attraction between the Sun and a plnet is a central force problem.
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7.6 Central orbits
A central orbit must be a plane curve (there is no force out of the plane), and the moment of
the velocity (dgydtt), about the center of force, must be a constant of the motion. The moment can be

written in three equivalent ways:

rgylctt \ v vV y dy/dy v
rt
F. / Tt
0 ¢\ x C p— X X

The moment of the velocity about O is then
r{r{deict) = pv = X(dyldt)-y(dx/dt)
=aconstant, h, say. (7.25)
The result r%(dd/dt) = constant for a central force can be derived in the following altemative way:

The time derivative of (d¢/dt) is

(clidt)(r2(ddplatt)) = r(dPlc?) + (clplct)2r(cIr/ct) (7.20)
If this equation is divided throughout by r then
(1/7)(dldtt)(rX(p/ctt)) = r(dPe/c?) + 2(dIrfdlt)(clct) (7.27)
=the transverse acoeleration
=( fora central force. (7.28)
Integrating then gives

r2(dgy/dtt) = constant for a central force. (7.29)
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7.6.1 The law of force in [p, r] coordinates

There are advantages to be gained in using a new set of coordinates— [p, r] coordinates —in
which a point P in the plane is defined in terms of the radial distance r from the origin, and the
perpendicular distance p from the origin onto the tangent to the path at P. (See following diagram).

Let a particle of unit mass move along a path under the influence of a central force directed
towards a fixed point, O. Letac be the central acceleration of the unit mass at P, let the perpendicular
distance from O to the tangent at P be p, and let the instantaneous radius of curvature of the path at the

point P be p:

Central orbit

Center of Force— O
The component of the central acceleration along the inward normal at Pis
a, =asino.=V3p =adph). (7.30)
The instantaneous radius of curvature is given by
p = r(dridp). (7.31)
For all central forces,

pv=constant=h, (7.32)
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therefore
a, =V4p = (h2/p?A)(1/r)(dpldr) = ad(pr), (7.33)
so that
ac = (h2/p3)(dplar). (7.34)
This differential equation is the law of force per unit mass given the orbitin [p, r] coordinates.
(Itis left as a problem to show that given the orbit in polar coordinates, the law of force perunit mass is
a=hauqu + duld¢?), where u=1rr). (7.35)
In order to find the law of force per unit mass (acceleration), given the [p, r] equationof the orbit,
it is necessary to calculate dp/dr. For example, if the orbit is parabolic, the [p, r] equation can be

obtained as follows

TangentatP

Apex,A—* X

F , the Focus

The triangles FAQ and FQP are similar, therefore

pla=rlp, where AF =3, (7.36)
giving

1/p? = 1/ar, the pr equation of a parabola. (7.37)

Differentiating this equation, we obtain
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(1/p3)dpldr = 1/2ar2 (7.38)
The law of acceleration for the parabolic central orbit s therefore
a: = (n2/p?)dpldr = (h&/2a)(1/12) = constant/r?. (7.39)
The instantaneous speed of P is given by the equation v = hp; we therefore find
v=hAlar, (7:40)
This approach can be taken in discussing central orbits with elliptic and hyperbolic forms.

Consider the ellipse

a
The foci are F1 and F», the semi-major axis is a, the semikminor axis is b, the radius vectors to the point
P [r, ¢] are rs and r2, and the perpendiculars from F1 and F- onto the tangent at P are pr and pe.
Using standard results from analytic geometry, we have for the ellipse
1) r+r=2a, (741 a<)
2) pp2=b?and
3) angle QPF1 = angle RPF..
The triangles F1QP and F-RP are similar, and therefore

pilr1 = palt (742)
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or
(P1p2lrira) 2= bhri(2a — 1)} 12 = palry
so that
bRip2=2alr—1. (743)
Thisis the [p, r equation of an ellipse.
The [p, r] equation for the hyperbola can be obtained using a similar analysis. The standard results
from analytical geometry that apply in this case are
1) pip=k? (744 a<)
2) n—r1=2a,and
3) the tangent at P bisects the angle between the focal distances.
(b?2=a4e2—-1) where e is the eccentricity (€2> 1), and 207/ is the latus rectum).
We therefore obtain
bidlpi2 = 2alr +1. (7.45)
This is the [, ] equation of an hyperbola.
1.7 Bound and unbound orbits
For a central force, we have the equation for the acceleration in [p, r] form
(h2lp3)dpldr = ac. (7.46)
If the acceleration varies as 112, then the form of the orbit is given by separating the variables, and
integrating, thus

hedp/p3 = ka2 (747)
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so that
—h?/2p2 =—kir, where K is a constant, or
h2lp? = 2kir + C, where the value of C depends on the form of the orbit.
Comparing this form with the general form of the [p, r] equations of conic sections, we see that the orbit
is an ellipse, parabola, or hyperbola depending on the value of C. If
Cis negative, the orbitis an ellipse,
Cis zero, the orbitis a parabola,
andif
C is positive, the orbitis an hyperbola.
The speed of the particle in a central orbit is given by v = hip. If; therefore, the particle is
projected from the origin, O (comesponding to r = o) with a speed vo, then
HAlp? = v? = 2kl + C, (748)
so that the orbit is
1) an ellipse if w? < 2kiro, (749 a<)
2) a parabolaif ve? = 2K,
or
3) an hyperbola if vi? > 2k/fo.
The escape Vvelocity, the initial velocity required for the particle to go into an unbound orbit is

therefore given by
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V2escae = 2klo = 2GME/RE, for a particle launched from the surface of the Earth. This
condition is, in fact, an energy equation

(112)(M = )esepe = GME(M = 1)Re (7.50)

kinetic eﬁergy potent?al energy

7.8 The concept of the gravitational field

Newton was welFaware of the great difficulties that arise in any theory of the gravitational
interaction between two masses not in direct contact with each other. In the Principia, he assumes, in
the absence of any experimental knowledge of the speed of propagation of the gravitational interaction,
that the interaction takes place instantaneously. However, in letters to other luminaries of his day, he
postulated an intervening agent between two approaching masses — an agent that requires a finite
time to react. In the early 17th century, the problem of understanding the interaction between spatially
separated objects appeared in a new guise, this ime in discussions of the electromagnetic interaction
between charged objects. Faraday infroduced the idea of a field of force with dynamical properties. In
the Faraday model, an accelerating electric charge acts as the source of a dynamical electromagnetic
field that travels at a finite speed through space-time, and interacts with a distant charge. Energy and
momentum are thereby transferred from one charged object to another distant charged object.
Maxwell developed Faraday's idea into a mathematical theory— the electromagnetic theory of light—
in which the speed of propagation of light appears as a fundamental constant of Nature. His theory
involves the differential equations of motion of the electric and magnetic field vectors; the equations are

not invariant under the Galilean transformation but they are invariant under the Lorentz transformation.
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(The discovery of the transformation that leaves Maxwell's equations invariant for all inertial observers
was made by Lorentzin 1897). We have previously discussed the development of the Special Theory
of Relativity by Einstein, a theory in which there is but one universal constant, ¢, for the speed of
propagation of a dynamical field in a vacuum. This means that ¢ is not only the speed of light in free
space but also the speed of the gravitational field in the void between interacting masses.

We can gain some insight into the dynamical properties associated with the interaction
between distant masses by investigating the effect of a finite speed of propagation, ¢, of the gravitational
interaction on Newton’s Laws of Motion. Consider a nonorbiting mass M, at a distance R from a mass
mass Ms, simply falling from rest with an acceleration a(R) towards Ms. According to Newton's Theory

of Gravitation, the magnitude of the force on the mass Mis

[FR)I=GMsMR?=Ma(R), (751)
We therefore have
a(R) = GMs/R2. (752)

Let At be the time that it takes for the gravitational interaction to travel the distance R at the universal
speed ¢, so that
At=RL. (753)
In the ime interval At, the mass M moves a distance, AR, towards the mass M,
AR=aAT%2
= (GMsR)AB/2
= (GMs/R)(RIcH2. (7.54)
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Consider the situation in which the mass M is in a circular orbit of radius R about the mass, M.

Let v(t) be the velocity of the mass M at time t, and v(t + At) its velocity at t + At, where At is chosen o
be the interaction travel ime. Let us consider the motion of M if there were no mass Ms present, and
therefore no interaction; the mass M then would continue its motion with constant velocity v(t) in a
straight line. We are interested in the difference in the positions of M at time t + At, with and without the

mass Ms in place. We have, to a good approximation:

T """"""""""""""""""" * < “extrapolated position” (no mass M)

v(t+ A

l®|\/|s

The magnitude of the gravitational force, Fex, at the extrapolated position, with Ms in place, is

Fex= GMSMIR + AR (7.99)
= (GMsMIRY)(1 + ARR)?
=~ (GMsMIR3)(1 - 2ARR), for AR <<R (7.56)

Substituting the value of AR obtained above, we find
Fex= GMsM/R2— (GMsM/Rc?)(GMs/R?). (7.57)
Nerwton’s 3rd Law states that

Fyvsm=—Fw us (758)
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This Law is true, however, for contact interactions only. For all interactions that take place between
separated objects, there is a mis-match between the action and the reaction. It takes time for one
particle to respond to the presence of the other!
In the present example, we obtain a good estimate of the mismatch by taking the difference between
FexR + AR) and F(R), namely

Fex R+ AR)-F(R) = (GMsM/Rc)(GMs/RY). (759)
On the righthand side of this equation, we note that the term (GMs/R?) has dimensions of
“acceleration”, and therefore the term (GMsM/Rc?) must have dimensions of “mass”. We see that this
term is an estimate of the “mass” associated with the interaction, itself. The space between the
interacting masses must be endowed with this effective mass if Newton’s 3rd Law is to include non-
contact interactions. The appearance of the term ¢ in the denominator of this effective mass term has
a special significance. If we invoke Einstein’s famous relation E = M, then AE = AMc? so that the
effective mass of the gravitational interaction can be written as an effective energy:

AEerav= GMsMR. (7.60)

This is the “energy stored in the gravitational field” between the two interacting masses. Note that it has
a 1/R-dependence — the comrect form for the potential energy associated with a 1/R2 gravitational
force. We see that the notion of a dynamical field of force is a necessary consequence of the finite

propagation time of the interaction.
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7.9 The gravitational potential
The concept of a gravitational potential has its origins in the work of Leibniz. The potential
energy, V(x), asssociated with n interacting particles, of masses my, my, ...my, situated at X1, X2, ...Xq, is
related to the gravitational force on a mass M atx, due to the n particles, by the equation
F(x)=-VV(x) (761)
The exact forms of F(x) and V/(x) are
F(x) =—GM3 =1, mi{x — X)X — X, (7.62)
and
V(%) =-GM ji=1,q mi/jx— x| .
In upper-index notation, the components of the force are
F(x)=—dViox k=1,2,3. (7.63)

The gravitational field, g(x), is the force per unit mass:

and the gravitational potential is defined as
D(x) = V(X)M == =17 Cmy/jx - x|. (7.65)
The sign of the potential is chosen to be negative because the gravitational force is always attractive.
(This convention agrees with that used in Electrostatics).
If the mass consists of a continuous distribution that can be described by a mass density p(x),
then the potential is

D(x) =—J(Go(X Vx—X ) &, (7.66)
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ltis left as an exercise to show that this form of & means that the potential obeys Poisson’s equation
V2D(x) - 4ntGp(x) = 0.
We should note that the gravitational potential of a mass M has the form
V(1) =-GMir (7.67)
only around a mass distribution with spherical symmetry. For an arbitrary mass distribution, the

potential can be written as a series of multipoles.

The potential of a circular disc at a point on its axis can be found asfollows

P

dr

Let the disc be divided ino concentric circles. The potential at P, on the axis, due to the elemental ring
of radius r and width dr is 2rrdrGo/PQ, where o' is the mass per unit area of the disc. The potential at
P of the entire disc is therefore

Vp = o4 2GordiPQ, (7.68)
where a is the radius of the disc. Therefore,

Ve = 2nGo]pq (i + )12
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= 2nGof(* + ) 7na
=2nGo(R-p), (7.69)

where Ris the distance of P from any point on the circumierence.
PROBLEMS
7-1 Show that the gravitational potential of a thin spherical shell of radius R and mass M at

apointPis

1) GM/d where d is the distance from P to the center of the shell ifd >R, and

2) GMR if Pis inside or on the shell.
7-2 Ifdis the distance from the center of a solid sphere (radius R and density p) to a point

P inside the sphere, show that the gravitational potential at P is

@p = 2nGp(R2-d3).

7-3 Show that the gravitational attraction of a circular disc of radius R and mass per unit

area o, ata point P distant p from the center of the disc, and on the axis, is

2nGof[pl(p? + R -1},

74 A particle moves in an ellipse abouta center of force at a focus. Prove that the

instantaneous velocity v of the particle at any pointinits orbit can be resolved into

two components, each of constant magnitude: 1) of magnitude ah/k?, perpendicular to

the radius vector r at the point, and 2) of magnitude ahe/t? perpendicular to the major

axis of the ellipse. Here, aand b are the semimajor and semiminor axes, e is the

eccentricity, and h = pv = constant for a central orbit.
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7.5 A particle moves in an orbit under a central acceleration a = k2 where k = constant.
If the particle is projected with an initial velocity vo in a direction at right angles to
the radiius vecttor rwhen at a distance r, from the center of force (the origin ), prove

(drfct)? = {(2k/ro) — ve(1 + (ro/h)) K (rolr) - 1.

This problem involves the energy and momentum equations in rg coordinates.

76 A particle moves in a cardioidal orbit, r=a(1 + cosp), under a central force

v

a Pr, 0]
P F

@) Za

1) show that the p-r equation of the cardioid is p? = r¥2a, and

2) show that the central acceleration is 3ahé, where h = pv = constant.

7-7 A planet moves in a circular orbit of radius r aboutthe Sun as focus at the center.

If the gravitational “constant’ G changes slowly with ime— G(t), then show that the
angular velocity, o, of the planet and the radius of the orbit change in time according
to the equations

(1/o)(doo/dt) = (2/G)(dGldt) and (1/)(dr/dt) = 1/G)(dGldt).
7-8 A particle moves under a central acceleration a = k(1/8) where k is a constant.

Ifk = h2, where h = (dd¢/dt) = pv, then show that the path is

1Ir=Ad + B, a “reciprocal spiral’, where A and B are constants.
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8
EINSTEINIAN GRAVITATION:

AN INTRODUCTION TO GENERAL RELATIVITY

8.1 The principle of equivalence

The term “mass” that appears in Newton's equation for the gravitational force between two
interacting masses refers to “gravitaional mass” — that property of matter that responds to the
gravitational force . . Newton’s Law should indlicate this property of matter:

Fe = GM®mC/2, where ME and m® are the gravitational masses of the interacting
objects, separated by a distancer.

The term “mass” that appears in Newton's equation of motion, F = ma, refers to the “inertial
mass” — that property of matter that resists changes in its state of motion. Newton's equation of
motion should indicate this property of matter:

F() = mia(r), where m' is the inerial mass of the partice moving with an
acceleration a(r) in the gravitational field of the mass M.

Newton showed by experiment that the inertial mass of an object is equal fo its gravitational
mass, m'=mCto an accuracy of 1 partin 108. Recent experiments have shown this equality o be true
toanaccuracy of 1 partin 10%2. Newton therefore took the equations

F(r) = GMCmS/2= ma(r), 81)
and used the condition m® = mlto obtain

a(r) = GMef2. 8.2
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Galileo had, of course, previously shown that objects made from different materials fall with the
same acceleration in the gravitational field at the surface of the Earth, a result that implies n® o< m.,
This is the Newtonian Principle of Equivalence.
Einstein used this Principle as a basis for a new Theory of Gravitation! He extended he axioms of
Special Relativity, that apply to field-ree frames, to frames of reference in “free fall’. A freely falling
frame must be in a state of unpowered motion in a uniform gravitational field. The field region must be
sufficiently small for there to be no measurable variation in the field throughout the region.  If a field
gradient does exist in the region then so called “fidal effects” are present, and these can, in principle, be
determined (by distorting a liquid drop, for example). The results of all experiments camied out in ideal
freely falling frames are therefore fully consistent with Special Relativity. All freelyfalling observers
measure the speed of light to be ¢, its constant free-space value. It is not possible to carry out
experiments in ideal freely-falling frames that permit a distinction to be made between the acceleration
of local, freely-falling objects, and their motion in an equivalent extemal gravitational field. As an
immediate consequence of the extended Principle of Equivalence, Einstein showed that a beam of
light would be deflected from its straight path in a close encounter with a sufficiently massive object.
The observers would, themselves, be far removed from the gravitational field of the massive object
causing the deflection. Einstein’s original calculation of the defiection of light from a distant star, grazing
the Sun, as observed here on the Earth, included only those changes in time intervals that he had
predicted would occur in the near field of the Sun. His resulttumed out to be in error by exactly a factor

oftwo. He later obtained the “comect’ value for the deflection by including in the calculation the changes
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in spatial intervals caused by the gravitational field. A plausible argument is given in the secton 8.6 for
infroducing a norHintuitive concept, the refractive index of spacetime due to a gravitational field. This
concept is, perhaps, the characteristic physical feature of Einstein's revolutionary General Theory of
Relativity.

8.2 Time and length changes in a gravitational field

We have previously discussed the changes that occur in the measurement of length and time
intervals in different inertial frames. These changes have their origin in the invariant speed of light and
the necessary synchronization of clocks in a given inertial frame. Einstein showed that measurements
of length and time intervals in a given gravitational potential are changed relative to the measurements
made in a different gravitational potential. These field-dependent changes are not to be confused with
the Speciak-Relativistic changes discussed in 3.5. Although an exact freatment of this topic requires the
solution of the full Einstein gravitational field equations, we can obtain some of the key results of the
theory by making approximations that are valid in the case of our solar system. These approximations
are freated in the following sections.
8.3 The Schwarzschild line element

An observer in an ideal freely-falling frame measures an invariant infinitesimal interval of the
standard Special Relativistic form

ds?= (cdtp— (dx2 + dy? + d22). (8.3

ltis advantageous to transform this form to spherical polar coordinates, using the linear equations

X =rsinBcose, y = rsinBsing, and z = rcoso.
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We then have

ZA dr d, the diagonal of the cube

The square of the length of the diagonal of the infinitesimal cube is seen to be

dP =dr2+ (rd6)? + (rsinBdo) (84)
The invariant interval can therefore be written

ds? = (cdtp— dr2— r(d6? + sin0d¢?). 85)
The key question that now faces us is this: how do we introduce gravitation into the problem? We can
solve the problem by infroducing an energy equation into the argument.

Consider two observers O and O', passing by one another in a state of free fall in a
gravitational field due to a mass M, fixed at the origin of coordinates. Both observers measure a
standard interval of spacetime, ds according to O, and ds” according to O', so that

ds?=ds2= (cdt'R - dr2—r4do2+sin?9’dgp?) (86)

The situation is as shown
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Mass, M
(the source of the field)

Let the observer O” just begin free fall towards M at the radial distance r, and let the observer O, close
to O', be freell falling away from the mass M. The observer O is in a state of unpowered motion with
just the right amount of kinefic energy to “escape to infinity”. Since both observers are in states of free
fall, we can, according to Einstein, treat them as if they were ‘inertial observers”. This means that they
can relate their local space-ime measurements by a Lorentz transformation. In particular, they can
relate their measurements of the squared intervals, ds? and ds’, in the standard way. Since their
relative motion is along the radial direction, r, ime intervals and radial distances will be measured to be
changed:
At=yAt andyAr=Ar’, (8.7ab)

where

y=1{1—(VIcP}"2 , in which v = vo(r) because vo'(f) = 0.
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If O has just enough kinetic energy to escape to infinity, then we can equate the kinetic energy
to the potential energy, so that
VoA(r)/2 = 1-@(r) if the observer O has unit mass. 8.8)
d(r)is the gravitational potential at r due to the presence of the mass, M, at the origin.
This procedure enables us to introduce the gravitational potential into the value of y in the Lorentz
transformation. We have vo? = 2d(r) = V2 and therefore
A= ATK1 - 20(r)cA2, 89
and
Ar=Ar{1-2d()/c3"™, (8.10)

Only lengths parallel to r change, therefore

r2(d62 + sinfBdd?) = r4do2 + sinB'dg?), (8.11)
and therefore we obtain
ds? =ds? = Y1 —2(r)/cA)d2 — drf(1 — 2(r)/c?) — rA(d6? + sin?Bdg?). 8.12)

If the potential is due to a mass M at the origin then
d(r)=GM, (r>R, the radius of the mass, M)
therefore,

ds? = {1 — 2GMirc?)de— (1 — 2GMIred- a2 — (d0?+ sinPdg).
(8.13)

This is the famous Schwarzschild line element, originally obtained as an exact solution of the Einstein

field equations. The present approach fortuitously gives the exact result!
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8.4 The metric in the presence of matter
In the absence of matter, the invariant interval of space-ime is
ds?=m, dx'ax" (u,v=0,1,2,3) (8.14)
where
n,, =diag(1,-1,-1,-1) (8.15)
is the metric of Special Relativity; it ‘lowers the indices”
dx, =m,,dx" (8.16)
The form of the Schwarzschild line element, ds’, shows that the metric g, in the presence of

matter differs fromr),,. We have

0% =g, dx"dX’, (8.17)
where
o= cdt, dx' = dr, dx2 = rdB, and dx® = rsinBd¢,
and
v = diag((1 =), (1=, 1=, 1=
in which
% = 2GMIrc2.
The Schwarzschild metric lowers the indices
dx, =g,,dX’, (8.18)
so that

0%n = XX, (8.19)
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8.5 The weak field approximation
If % = 2GMirc? << 1, the coefficient, (1— ), of dr2 in the Schwarzschild line element can be
replaced by the leading term of its binomial expansion, (1 + ...) to give the “‘weak field” line element:
ds?w = (1—=)(cdtR— (1 +)dr2—r2(d6? + sinBdq?). (8.20)
At the surface of the Sun, the value of  is 4.2 x 8%, so that the weak field approximation is
valid in all gravitational phenomena in our solar system.
Consider a beam of light traveling radially in the weak field of a mass M, then
ds?v =0 (alightike interval) , and d62 + sin?Bdg¢? = 0, (8.21)
giving
0=(1-)(cdtp— (1 +y)d2. (8.22)
The “velocity” of the light v. = drfdtt, as determined by observers far from the gravitationalinfluence of M,
is therefore
vL= (=901 +yH2# cif #0. (8.23)
(Observersin free fall near M always measure the speed of light to be ).
Expanding the term {(1-)/(1 +)}*2to first order in -, we obtain
wnle=(1-x2 .)1-x2 ..)
=(1-...). (8.24)
Therefore
() =c(1-2GMirc2..), (8.25)

so that vi(r) < cin the presence of a mass M according to obsenvers far removed from M.
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8.6 The refractive index of space-time in the presence of mass
In Geometrical Optics, the refractive index, n, of a material is defined as
N = CVimedim (8.20)
where Vmegum i the speed of light in the medium. We infroduce the concept of the refractive index of
space-time, na(r), ata point rin the gravitational field of a mass, M:
N6 =CcM(r)
=1/(1-x)
=1+ tofirstorderiny.
=1+2GMirc (8.27)
The value of ne increases as r decreases . This effect can be interpreted as anincrease in the “density”
of space-time as M is approached.
8.7 The deflection of light grazing the sun
As a plane wave of light approaches a spherical mass, those parts of the wave front nearest
the mass are slowed down more than those parts farthest from the mass. The speed of the wave front
is no longer constant along its surface, and therefore the normal to the surface must be deflected:

VL=C M~=C
>

\
\L, Deflection angle

Normal to
Ly wavefront
vL.<C
Q Mass, M, the source of the field
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The deflection of a plane wave of light by a spherical mass, M, as it travels through space-ime can be

calculated in the weak field approximation. We choose coordinates as shown

y
X =vdt
- /ﬂ - X dy
Plane wave "
of light dx=vdt
y r
y="0 X
Mass, M (this includes the mass of
its field)
R

We have shown that the speed of light (moving radially) in a gravitational field, measured by an
observer far from the source of the field, depends on the distance, r, from the source

v(r) =c(1-2GMIr?) (8.28)
where cis the invariant speed of light as r — .
We wish to compare dx with dx’, the distances travelled in the x-direction by the wavefront aty and y +
dy, inthe interval dt.
We have

2=(y+Rp+x2 (8.29)
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therefore v(r) — v(x, y) so that

2r(orloy)=2(y +R),
and
orloy=(y+R)r. (8.30)

Very close to the surface of the mass M (radius R), the gradient is

ondyly_o—> R (8.31)
Now,
Moy = (lar)o(1 - 2GMirc?))(erid)
= (2GMIc)(@riéy). (832)
We therefore obtain
M(Vy}._.0= (2GMIC)RI) = 2GMRIEc, (8.33)

Let the speed of the wavefront be v aty + dy and v aty. The distances moved in the interval ot are
therefore
dx"=v'dtand dx =vdt. (8.34ab)
The first-order Taylor expansion of v'is
V' =V + (ovidy)dy,
and therefore
dx’—dx = (v + (ovidy)dy)dt— vdt = (ovioy)dyoat. (8.35)
Let the comesponding angle of deflection of the nomal to the wavefront be dot, then

do = (dx"—dx)ldy
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= (ovioy)dt = (ovioy)(dxh). (8.30)
The total deflection of the normal to the plane wavefront is therefore
A0t = i DY) N) (837)
= (1/6) e (VIBY)OX .
(v=covermost of the range of the integral).

The portion of the wavefront that grazes the surface of the mass M (y— 0) therefore undergoes a total

deflection
A0t = (1/6)]io - 2GMRIBC)X (8.38)
= 2GMR/C o X/(R2 4322
= 2GMRICXI(RA(R2 + X))o
= 2(GMRI)2IRY).
so that
Ao.=4GMRc

This is Einstein’s famous prediction; putting in the known values for G, M, R, and ¢, gives

Aa.=1.75 arcseconds. (8.39)
Measurements of this very small effect, made during fotal eclipses of the Sun at various times and
places since 1919, are fully consistent with Einstein’s prediction.
PROBLEMS
81 Ifaparticle A is launched with a velodity vea from a point P on the surface of the

Earth at the same instant that a particle B is dropped from a point Q, use the Principle
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of Equivalence to show that if A and B are to collide then voa must be directed along PQ.

Q gl

82 Asatelite is ina circular orbit above the Earth. It camies aclock thatis similartoa
clock on the Earth. There are two effects that must be taken into account in
comparing the rates of the two clocks. 1) the time shift due to their relative speeds
(Special Relativity), and 2) the time shiftdue to their different gravitational potentials
(General Relativity). Calculate the SR shift to second-order in (v/c), where vis the
orbital speed , and the GR shift to the same order. In calculating the difference in the
potentials , integrate from the surface of the Earth to the orbit radius. The two
effects differin sign. Show that the total relative change in the frequency of the
satelite clock compared with the Earth clock is

(Avive) = (gRe/cH{1 — (3Re/2rs)}, where rs is the radius of the
satellite orbit (measured from the center of the Earth). We see that if the altitude of
the satelite is > Re/2 (~ 3200 km) Av is positive since the gravitational effect then
predominates, whereas at altitudes less than ~3200 km, the Special Relativity effect

predominates. Atan altitude ~ 3200 km, the clocks remain in synchronism.
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9

AN INTRODUCTION TO THE CALCULUS OF VARIATIONS

9.1 The Euler equation
A frequent problem in Differential Calculus is to find the stationary values (maxima and
minima) of a function y(x). The necessary condition for a stationary value atx =ais
dyldxjx=a = 0.
For a minimum,
0y/dx2=a> 0,
and fora maximum,
0y/dx2=a < 0.
The Calculus of Variations is concemed with a related problem, namely that of finding a
function y(x) such that a definite integral taken over a function of this function shall be a maximum or a
minimum. This is clearly a more complicated problem than that of simply finding the stationary values
of a function, y(x).
Explicitly, we wish to find that function y(x) that will cause the definite integral
i F(x, y, dy(xyx)ax 9.1)
to have a stationary value.
The integrand F is a function of y(x) as well as of x and dy(x)/dx. The limits x and x. are assumed to be

fixed , as are the values y(x1) and y(x2). The integral has different values along different “paths” that
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connect (x1, y1)and (X, y2). Leta path be Y(x), and let this be one of a set of paths that are adjacent to

y(X). We take Y(x)—y(x) to be an infinitesimal for every value of x in the range of integration.

Let the difference be defined as
Y(X)—y(x) =dy(x) (a frstorder change’), (92)
and
F{x, Y(x), dY(x)ic) - F(x, y(x), dy(x)icx) = OF . (93)

The symbol & is called a variation; it represents the change in the quantity to which it is applied
as we go from y(x) to Y(x) at the same value of x. Note dx =0, and
d(dlyfdx) = Y (x)ldx —dy(x)/dx = (d/dx)(Y(x) - y(x)) = (d/dx)(Oy(X)).
The symbols & and (d/dx) commute:
d(d/dx)— (didx)d = 0. 94)

Graphically, we have

y P Y(x), the varied path
Y2 Z
d
y N
Y1
y(x), the ‘true” path
>
0 X1 X2 X
Using the definition of &F, we find
OF =F(x, y + 8y, dyfdx + 5(dy/dx)) — F(, y, dy/dx) 95)

1 1
Y  (ddx)Y(x)
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= (@Floy)oy + (@Fiey oy forfixedx. (Here, dyldx=y’).
Theintegral

JiaaF(x, v,y ), (96)

is stationary if its value along the path y is the same as its value along the varied path, y + 8y =Y. We

therefore require

Jiaoa OF(x,y, y)dx=0. 97)
This integral can be written

. {(OFI0y)oy + (OFIdy 1oy Yex =0, (98)

The second termiin this integral can be evaluated by parts, giving

[(6F 1y 0ha 2~ . (i) 1y Yoyclx. (99)
But dy1 = dy» = 0 at the end-points xs and x,, therefore the term [ }w2 = 0, so that the stationary
condition becomes

[ix.a {OF 10y — (d/a)OF 0y Joyax = . (9.10)
The infinitesimal quantity 8y is positive and arbitrary, therefore, the integrand is zero:

dFloy - (dldx)oFiey = 0. 9.11)
This is known as Euler's equation.
9.2 The Lagrange equations

Lagrange, one of the greatest mathematicians of the 18th century, developed Euler's equation

in order to treat the problem of particle dynamics within the framework of generalized coordinates. He

made the transformation
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F(x, y, dyfdx) — L(t, u, du/ctt) 9.12)
where u is a generalized coordinate and du/dt is a generalized velocity.
The Euler equation then becomes the Lagrange equation-of-motion:
dllou— (d/dt)(alJaij) =0, where u is the generalized velocity. (9.13)
The Lagrangian L(t; u, l.J) is defined in terms of the kinetic and potential energy of a particle, or system of

particles:
L=T-V. (9.14)

It is instructive to consider the Newtonian problem of the motion of a mass m, moving in the
plane, under the influence of an inverse-square-law force of attraction using Lagrange’s equations-of-

motion. Let the center of force be at the origin of polar coordinates. The kinetic energy of mat [r, ¢] is

T =m((dr/ct} + rAdep/ct2)/2, (9.15)
and its potential energy is
V =—kir, where kis a constant. (9.16)

The Lagrangian is therefore
L =T-V =m((drid)2 + r(dfcj2)/2 + k. (9.17)
Putr=u,and ¢ =V, the generalized coordinates. We have, for the “u-equation”
(d/dt)(alJatl) = (d/dt)(&lJér) = (dlidt)(m(dr/ct)) = mcPrict?, (9.18)
and
dliou = dlior = mr(d/dtp - kir2 (9.19)

Using Lagrange’s equation-of-motion for the u-coordinate, we have
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m(cRr/ct2) — mr(dgp/at + ki =0 (9.20)
or
m(cRr/d2— r{dgyidt?) =2, 9.21)
Thisis, as it should be, the Newtonian equation
mass x acceleration in the r-direction = force in the r-direction.

Introducing a second generalized coordinate, we have, for the “\equiation

(A ALIAv) = (dld L) = (did ) 922)
=(Pg+2),
and
aLiv=aLap=0, 923)
therefore
m(Eg+274)=0
so that
(A =0. 924)
Integrating, we oblain
= constan, 925

showing, again, that the angular momentum is conserved.
The advantages of using the Lagrangian method to solve dynamical problems stem from the

factthat L is a scalarfunction of generalized coordinates.
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9.3 The Hamilton equations
The Lagrangian L is a function of the generalized coordinates and velocities, and
the time:

L=L(u,V,..;u,V,..}). (9.20)
If the discussion is limited to two coordinates, u and v, the total differential of L is

dL = (al/au)du + (AL/ov)dv + (aual])dh + (aua})dix +(olc)dt.
Consider the simplest case of a mass m moving along the x-axis in a potential, so that u = x
and u = x =V, then
L=T-V=mvw22-V (9.27)
and
ALJovk = mvx = py, the linear momentum. (9.28)
In general, itis found that terms of the form aua] and aua& are “‘momentum’ terms;
they are called generalized momenta, and are written
aual] = Py, aIJ8;/ =py, .€fC. (929
Such forms are not limited to ‘linear” momenta.
The Lagrange equation
(didyaLIA) - ALiau=0 930)
can be fransformed, therefore, into an equation that involves the generalized momenta:

(didt)(pu) —allou =0, or
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Adu=p,
The total differential of L is therefore
dL= F;Jdu + r.xdv + pudl.J + pdv + (ol/ot)dt.
We now introduce an important function, the Hamittonian function, H, definedby
H= pul.J + p,\./— L,
therefore
dH= {p;dl; +l;dpu + pd\./ + \./dpv}—dL :
ltis not by chance that H is defined in the way given above. The definition permits the
cancellation of the terms in dH that involve dl.J and dv so that dH depends only on du, av,
dpy, and dpy (and perhaps, t). We can therefore write
H =1(u, v, pu, py; ) (imiting the discussion to the two coordinates
uandv).
The total differential of H is therefore
dH = (eHlou)du + (eHov)dv + (GH/opu)dp. + (GHGpy)dpy + (GH/K)dt
Comparing the two equations for dH, we obtain Hamilfon's equations-of-motion:
dHiou = —pu dHiov = —pv
dHiop, = u dHiop, = v
and
dHiot=-dliet.

We see that

031)

032)

(0.33)

(9:34)
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H=pu+py-(T-V) (940
If we consider a mass m moving in the (x, y)plane then
H = (mvivic + (Mvy)vy—T+V (941)
=2mvé2+mvA2)-T+V
=T+V, the total energy. (942)
In advanced treatments of Analytical Dynamics, this form of the Hamiltonian is shown to have general
validity.
PROBLEMS
91 Studies of geodesics— the shortest distance between two points on a surface —
form a natural part of the Calculus of Variations. Show that the straight line
between two points in a plane is the shortest distance between them.
92 The surface generated by revolving the y-coordinate about the x-axis has an area
2tlyds where ds = {dx2 + dy22 Use Euler’s variational method to show that
the surface of revolution is a minimum if
(dlyfdx) = {(y2/a?) - 1}"2 where a = constant.
Hence show that the equation of the minimum surface is
y =acosh{(x/a) + b} where b = constant, and y= 0.
9-3 The Principle of Least Time pre-dates the Calculus of Variations. The propagation of
aray of light in adjoining media that have different indices of refraction is found to

be govemed by this principle. A ray of light moves at constant speed v in a medium
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(1) from a point A to a point By on the x-axis. At By, its speed changes o
anew constant value \» on entering medium (2). The ray continues untilit reaches a
pointCin (2). Ifthe true path A— By — Ciss such that the total travel time of the
lightin going from A to C is @ minimum, show that

(Vi) = xefly + (A — XYy + X2 2l(d - ), (Smells law)

where the symbols are defined in the following diagram:

y Medium 1, speed v4
A
.
YA
0 B X
X0
yc
< =
C
d
Medium 2, speed v

The path A— B — C is an arbitrarily varied path.

94 Hamilton's Principle states that when a systemis moving under conservative forces
the time integral of the Lagrange function is stationary. (Itis possible to show that
this Principle holds for non-conservative forces). Apply Hamitton's Principle to the

case of a projectile of mass m moving in a constant gravitational field, in the plane.

Let the projectile be launched from the origin of Cartesian coordinates at ime t = 0.
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The Lagrangian is
L = m((ox/ditp + (dy/dt)2 — mgy
Calculate 8fp, Ldt, and obtain Newton's equations of mofion
d?y/d2 +g=0and dx/d2=0.
95 Reconsider the example discussed in section 9.2 from the point of view of the Hamiltonian of the
system. Obtain H(r, ¢, pr, p,), and solve Hamiton's equations of motion to obtain the results given in

Eqs.9.21and 9.25.
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10
CONSERVATION LAWS, AGAIN

10.1 The conservation of mechanical energy
If the Hamittonian of a system does not depend explicitly on the ime, we have
H=H(U,V, ...ps, Py, ...) (10.1)
In this case, the total differential dH is (for two generalized coordinates, u and v)
dH = (eH/au)du + (eHiev)dv + (GH/op)dpu + (GH/Gpy)dp.. (102)
If the positions and the momenta of the particles in the system change with time under their mutual
interactions, then H also changes with time, so that

dHict = (OHIau)duldt + (OHIdv)vidt + (OHIdn.)dp.ict + (OHdp)dpuct

= Cpu)+ (o) + (0p) + () (103
=0, using Hamitton's equations-of-motion. (104)

Integration then gives
H = constant. (10.5)

In any system moving under the influence of conservative forces, a potential \V exists. In such systems,
the total mechanical energy is H=T +V, and we see that itis a constant of the motion.
10.2 The conservation of linear and angular momentum

If the Hamittonian, H, does not depend explicitly on a given generalized coordinate then the

generalized momentum associated with that coordinate is conserved. For example, if H contains no
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explicit reference to an angular coordinate then the angular momentum associated with that angle is
conserved. Formally, we have

dp/dt =—0H/aq;, where pand g are the generalized momenta and
coordinates. (10.6)

Letan infinitesimal change in the jth-coordinate ¢; be made, so that

G—q+q, (10.7)
then we have

OH = (6Haq)dq; (10.8)
If the Hamittonian is invariant under the infinitesimal displacement 8¢, then the generalized momentum
piis a constant of the motion. The conservation of inear momentum is therefore a consequence of the
homogeneity of space, and the conservation of angular momentum is a consequence of the isotropy
of space.
The observed conservation laws therefore imply that the choice of a point in space for the origin of
coordinates, and the choice of an axis of orientation play no part in the formulation of the physical laws;

the Laws of Nature do not depend on an “absolute space”.
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11

CHAOS

The behavior of many norHinear dynamical systems as a function of time is found to be
chaotic. The characteristic feature of chaos is that the system never repeats its past behavior. Chaotic
systems nonetheless obey classical laws of motion which means that the equations of motion are
deterministic.

Poincaré was the first to study the effects of small changes in the initial conditions on the
evolution of chaotic systems that obey norHinear equations of motion. In a chaotic system, the erratic
behavior is due to the intemal, or intrinsic, dynamics of the system.

Leta dynamical system be described by a set of firstorder differential equations:
abxafdtt = fi(x1,X2,%3,.. %) (11.1)

axfdit= fo(X1,%0,X3,..Xn)

ax/dtE= o (x1,%0, X3, X0)
where the functions f, are functions of n-variables.
The necessary conditions for chaotic motion of the system are
1) the equations of motion must contain a norHinear term that couples several of the variables.

A typical norHinear equation, in which two of the variables are coupled, is therefore
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dxifdt= axi + bxa + Cxixe + ... %, (3, d, C, ...r are constants) (11.2)
and
2) the number of independent variables, n, must be at least three.
The second condition is discussed later.
The nondinearity often makes the solution of the equations unstable for particular choices of the
parameters. Numerical methods of solution must be adopted in all but a few standard cases.
11.1 The general motion of a damped, driven pendulum
The equation of a damped, driven pendulum is
mi(d26/d2) + kml(db/at) + mgsind = Acos(wot) (11.3)
or
(CRO/d) + k(dB/dt) + (g)sin® = (A/ml)cos(cunt), (114)
where 6 is the angular displacement of the pendulum, s its length, m is its mass, the resistance is
proportional to the velocity (constant of proportionality, k), A is the amplitude and cp is the angular
frequency of the driving force.
Baker and Gollub in Chaotic Dynamics (Cambridge, 1990) write this equation in the form
(dPO/d) + (1/q)(d6Ndt) + sinB = Ceos(cnt), (11.5)
where q is the damping factor. The low-amplitude natural angular frequency of the pendulum is unity,
and ime is dimensionless. We can therefore write
the equation in terms of three firstorder differential equations

doo/dt =—(1/q)oo —sinB + Ceos((y) where ¢ is the phase, (11.6)
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doldt=w, (11.7)
and

At = o . (118)
The three variables are (w, 6, ¢).
The onset of chaotic motion of the pendulum depends on the choice of the parameters g, C, and cp.

The phase space of the oscillations is three-dimensional:

w
N

A spiral with a pitch of 2t

The 6 - w trajectories are projections of the spiral onto the 6 - w plane.

The motion is sensitive to wp since the norHinear terms generate many new resonances that occur
when wp/mrar iS @ rational number. (Here, mraw is the angular frequency of the undamped linear
oscillator). For particular values of g and cp, the forcing term produces a damped motion that is no
longer periodic — the motion becomes chaotic. Periodic motion is characterized by closed orbits in

the (6 - w) plane. If the damping is reduced considerably, the motion can become highly chaotic.
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The system is sensitive to small changes in the initial conditions. The trajectories in phase
space diverge from each other with exponential ime-dependence. For chaotic motion, the projection
of the trajectory in (B, w, ¢) - space onto the (6 - w) plane generates trajectories that intersect.
However, in the full 3 - space, a spiraling line along the ¢-axis never intersects itself. We therefore see
that chaotic motion can exist only when the system has at least a 3 - dimensional phase space. The
path then converges towards the atfractor without self-crossing.

Small changes in the inifial conditions of a chaotic system may produce very different
trajectories in phase space. These trajectories diverge, and their divergence increases exponentially
with ime.  If the difference between trajectories as a function of ime is d(t) then it is found that logd(t) ~
Aor

dt) ~ e (11.9)
where A.> 0 - a positive quantity called the Lyapunov exponent. In a weakly chaotic systemA << 0.1
whereas, in a strongly chaotic system, A >>0.1.
11.2 The numerical solution of differential equations
A numerical method of solving linear differential equations that is suitable in the present case is
known as the Runge-Kutia method. The algorithm for solving two equations that are functions of
several variables is:
Let
dyldx =f(x, y, z) and dz/dx = g(x, y, 2). (11.10)

Ify = yoand z=zywhen x =X then, forincrements hin x, kin yo, and lin zo
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the Runge-Kutta equations are

ki = hf(xo, Yo, 20) b =hg(xo, yo, 20)

ko= hi(xo +h2, yo + k112, o + h/2) b=hg(xo+h2,yo+kil2, 0+ h/2)

ks =hf(xo +h/2, yo+ ko2, 20+ b/2) b=hg(xo+h2,yo+ki2, 20+ b2

ke =hfxo+h, Yo+ ks, 20+ ) L =hg(xo+h,yo+ks 20+h)

K = (ki + 2k + 2ks + ka)/6
and

| = (1 +2b+25+L)6. (11.11)
The initial values are incremented, and successive values of he x, y, and z are generated by iterations.
ltis often advantageous to use varying values of h to optimize the procedure.

In the present case,

fix,y,2) —=fit, 6, w)and g(x, y, 2) = g(w).
As a problem, develop an algorithm to solve the norHinear equation 11.5 using the Runge-

Kutta method for three equations (11.6, 11.7, and 11.8). Write a program to calculate the necessary
iterations. Choose increments in time that are small enough to reveal the details in the 6-w plane.

Examples of non-chaotic and chaotic behavior are shown in the following two diagrams.
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The parameters used to obtain this plot in the 6-w plane are

damping factor (1/q) = 1/5,
amplitude (C) =2,

drive frequency (wp) = 0.7, and
time increment, At=0.05.

All the initial values are zero.
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Points in the 6-w plane for a chaotic system

The parameters used to obtain this plot in the 6-w plane are:

damping factor (1/0) =112,
amplitude (C) =1.15,

drive frequency (cp) = 0.597, and
time increment, At=1.

The intial value of the time is 100.
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12

WAVE MOTION

12.1 The basic form of a wave

Wave motion in a medium is a collective phenomenon that involves local interactions among
the particles of the medium. Waves are characterized by:

1) adisturbance in space and time.

2) atransfer of energy from one place to another,
and

3) anon-ransfer of material of the medium.

(In a water wave, for example, the molecules move perpendicularty to the velocity vector of the
wave).

Consider a kink in a rope that propagates with a velocity V along the +x-axis, as shown

Displacement
/W velocity of the waveform

| X
xattmet
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Assume that the shape of the kink does not change in moving a small distance Ax in a short interval of
time At. The speed of the kink is defined to be V = AXIAL  The displacement in the y-direction is a
function of x and 1,
y=fix.).
We wish to answer the question: what basic principles determine the form of the argument of the
function, f? For water waves, acoustical waves, waves along fiexible strings, etc. the wave velocities
are much less than ¢. Since y is a function of x and t, we see that all points on the wavebrm move in
such a way that the Galilean transformation holds for all inertial observers of the waveform. Consider
two inertial observers, observer #1 at rest on the x-axis, watching the wave move along the x-axis with
constant speed, V, and a second observer #2, moving with the wave. If the observers synchronize
theirclockssothat  t=tb=t=0atxi=x=0, then
x=x-\Wt

We therefore see that the functional form of the wave is determined by the form of the Galilean
transformation, so that

y(x, t) =f(x— W), (121)
where V is the wave velocity in the particular medium. No other functional form is possible!  For
example,

y(x, t) = Asink(x— /) is permitied, whereas

y(x, 1) = AP+ VA)is not.

Ifthe wave moves to the left (in the—x direction) then
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y(x, 1) =fx + W), (122)
We shall consider waves that superimpose linearty. If, for example, two waves move along a
rope in opposite directions, we observe that they “pass through each other”.
If the wave is hamonic, the displacement measured as a function of ime at the origin,  x=0, is also
harmonic:
yo(0, t) = Acos(wf)
where A is the maximum amplitude, and o = 21tv is the angular frequency.
The general form of y(x, t), consistent with the Galilean transformation, is
y(x, t) = Acos{k(x— VA)}

where k is infroduced to make the argument dimensionless (k has dimensions of 1/length]). We then

have
yo(0, t) = Acos(k\t) = Acos(ot).

Therefore,

w =KV, the angular frequency, (12.3)
or

2mv =KV,
so that,
k=2mvV =2rt\VT where T = 1/, is the period. (124)

The general fomiis then

yix. Y = Acos{(2mVT)(x— i}
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= Acos{(2r/\)(x— 1)}, where A = VT is the wavelength,
= Acos{(2rodA— 2T},
= Acos(kx— 2rt/T), where k = 2r/A, the “‘wavenumber’,
= Acos(kx— ot),
= A cos(mt—kx), because cos(-6) = cos(0). (12.5)
For a wave moving in three dimensions, the diplacement at a point x, y, z at time t has the form
P(x, Y, Z, 1) = Acos(wt - k), (12.6)
where [k| =2m/A and r=[x,y, Z].
12.2 The general wave equation
An arbitrary waveform in one space dimension can be written as the superposition of two

waves, one fraveling to the right (+x) and the other to the left (x) of the origin. The displacement is

then
y(x, 1) =f(x—VA) + g(x + W) (12.7)
Put
u=f(x-VY)=f(p), and v=g(x+V§)=g(q),
then
y=u+v.
Now,

IO = QUldX + ANIox = (duldp)(pidx) + (Avida)(Oqdx)

= (p)(dpicx) + g a)oa/ex).
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Also,
cPylox? = (dloxK(duldp)(Gpiex) + (dvida)(ca /ox)}
=f(p)Pplox) + " (p)apioxf + g (a)(g/axd) + 9 (a)(aaoxp-
We can obtain the second derivative of y with respect to time using a similar method:
cylot =f (p)cPpiok’) + " (p)apltp + g (a)Paar) + g (a)aaerf.
Now, dplox = 1, aglox = 1, aplet = -V, and aglat = V, and all second derivatives are zero (V is a

constant). We therefore obtain

Hyioe=t"(p)+g"(),

and

Fyloe=f"(pV2+g"(q)V=
Therefore,

Pyloe =\P(Pyloxd).
or

Aylox2—(1N2)(Ayier) = 0. (128)
This is the wave equation in one-dimensional space. For a wave propagating in three-dimensional
space, we have
Vap—(1N2)(Apiar) =0, (129)
the general form of the wave equation, in which(x, y, z, t) is the general amplitude function.
12.3 The Lorentz invariant phase of a wave and the relativistic Doppler shift

A wave propagating through space and time has a “wave function”



184
P(x, Y, Z, 1) = Acos(wt- k)
where the symbols have the meanings givenin12.2.
The argument of this function can be written as follows
1 = Acos{(oic)(ct) - k). (12.10)
It was not until deBroglie developed his revolutionary idea of particle-wave duality in 1923-24 that the
Lorentz invariance of the argument of this function was fully appreciated! We have
1 = Acos{wc, K]Tct, =]}
= Acos{K'E, } = Acosd, where ¢ is the “phase’”. (12.11)
deBroglie recognized that the phase ¢ is a Lorentz invariant formed from the 4-vectors
K= [wlC, K], the “frequency-wavelength” 4-vector, (12.12)
and
E, =[ct, ], the covariant "event’ 4-vector.
deBroglie’s discovery tumed out to be of great importance in the development of Quantum Physics. It
also provides us with the basic equations for an exact derivation of the relativistic Doppler shit. The
frequency-wavelength vector is a Lorentz 4-vector, which means that it ransforms between inertial
observers in the standard way:
K =LK, (12.13)

or
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wlc vy 0 0 wlc
k< By v 0 0 k¥
k1=, 0 0 1 0 kv
ke 0 0 0 1 ke
The transformation of the first element therefore gives
w'fc=y(wlc)— Bk, (12.14)
so that
21y’ =y2mv - Byc2/A)
or
v =yv—=\(vic), (where w =2ttv, Vic=3,and c=vA)
therefore
v=yv(1-)
or v = (vi(1- )21 - )
giving
v =v{(1-B)(1+B)}2 (12.15)

This is the relativistic Doppler shift for the special case of photons — we have Loreniz invariance in
action. This result was derived in section 6.2 using the Lorentz invariance of the energy-momentum 4-
vector, and the Planck-Einstein result E = hv for the relation between the energy E and the frequency v

of a photon. The present derivation of the relativistic Doppler shift is independent of the PlanckEinstein
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resutt, and therefore provides an independent verification of their fundamental equation E = hv for a
photon.
12.4 Plane harmonic waves

The one-dimensional wave equation (12.8) has the solution

y(t, x) = Acos(kx— ot),

where w =kV and Alis independent of both x and t.
This form is readily shown to be a solution of (12.8) by direct calculation of its 2nd partial derivatives,
and their substitution in the wave equation.

The three-dimensional wave equation (12.9) has the solution

Yt .Y, 2) =yocos{(kex + ky + kez) - ol
where w = K|V, and k =k, ky, k7], the wave vector.
The solution(t, x, y, 2) is called a plane harmonic wave because constant values of the argument (kx
+kyy + kz) — oot define a set of planes in space — surfaces of constant phase:
z k, nomal to the wave surface

Equiphase surfaces of a plane wave
y

\
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It is often useful to represent a plane harmonic wave as the real part of the remarkable CotesEuler
equation
e’ =cos0 +isinf, i = V-1,
so that
ocos((k-r) — wt) = RP.1poelkr-,
The complex form is readily shown to be a solution of the three-dimensional wave equation.
12.5 Spherical waves
For given values of the radial coordinate, r, and the time, t, the functions
cos(kr— wt) and el-9 have constant values on a sphere of radius . In order for the wave functions to
represent expanding spherical waves , we must modify their forms as
follows:
(1ncos(kr— ot) and (1/)ek—9 (k along ). (12.16)
These changes are needed to ensure that the wave functions are solutions of the wave equation. To
demonstrate that the spherical wave (1/r)cos(kr — wt) is a solution of (12.9), we must transform the
Laplacian operator from Cartesian to polar coordinates,
VAKX, y,2) — VA1, 6, 0).
The transformation is
Floxe + Floy? + Flozz — (11R)[(clor)((clor)) + (1/sinb)(clab)(sinb(alo))
+ (1/sin?0)(PIo¢?)]. (12.17)

This transformation is set as a problem.
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Ifthere is spherical symmetry, there is no angulardependence, in which case,
VA1) = (1I#)(dlor)(¥(dler))
= Flor? + (2Ir)(dler). (12.18)
We can check that
P =o(1/r)cos(kr— cot)
is a solution of the radiial form of (12.9),
Differentiating twice, we find
Plon? =f(-k2rcosu + (2kR)sinu + (2/B)cosu], where u = kr— wt,
and
PYlot =—o(wAr)cosu, m =KV,
from which we obtain
(1N GAploR - [GAplor? + (2royler] = 0. (12.19)
12,6 The superposition of harmonic waves
Consider two harmonic waves with the same amplitudes, o, fraveling in the same direction,
the x-axis. Let ther angular frequencies be slightly different — w £ dw with comesponding
wavenumbers k + 8k. Their resultant, W, is given by
W =gl -0+
+geil-Hc-(0-d0g
= pe-otglo-u1 4 o]

=o12008(Okx — Scot]
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= Acosd, (12.20)
where
A= 2el=Y, the resultant amplitude,
and
¢ = Okx—dwt, the phase of the modulation envelope .
The individual waves fravel at a speed

wk=v,, the phase velociy, (12.21)
and the modulation envelope travels at a speed
da/dk = v, the group velocity. (12.22)
In the limit of a very large number of waves, each differing slightly in frequency from that of a neghbor,
dk — 0, in which case
dwfdk = ve.
For electromagnetic waves traveling through a vacuum, v = v, = ¢, the speed of light
We shall not, at this stage, deal with the problem of the superposition of an arbitrary number of
harmonic waves.
12.7 Standing waves
The superposition of two waves of the same amplitudes and frequencies but traveling in
opposite directions has the form
W =1+ = Acos(kx— ot) + Acos(kx + cf)

= 2Acos(kxjcos(ot). (12.23)
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This form describes a standling wave that pulsates with angular frequency w, associated with the time-
dependent term coswt.
In a raveling wave, the amplitudes of the waves of all particles in the medium are the same and their
phases depend on position. In a standing wave, the amplitudes depend on position and the phases
are the same.
For standing waves, the amplitudes are a maximum when kx =0, 1, 21, 3, ...
and they are a minimum when kx = 1t/2, 3102, 5102, ...(the nodes).
PROBLEMS
The main treatment of wave motion, including interference and diffraction effects, takes place

in the second semester (Part 2) in discussing Electromagnetism and Optics.
12-1 Ripples on the surface of water with wavelengths of about one centimeter are found

to have a phase velocity v, = (oK) where k is the wave numberand o is a

constant characteristic of water. Show that their group velocity is 6 = (3/2)v,,
12-2 Show that

yix,b) = explx—vi

represents a travelling wave but not a periodic wave.
12-3 Two plane waves have the same frequency and they oscillate in the zdirection; they

have the forms

P(x, 1) =4sin{20t + (tx/3) + 1, and

Y(y, 1) =2sinf{20t + (rry/d) + T},
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Show that their superposition at x =5 and y = 2 is given by
() = 248sin{20t— (05)}.

124 Express the standing wave y = Asin(ax)sin(bt), where a and b are constants as a
combination of travelling waves.

12-5 Perhaps the most important application of the relativistic Doppler shift has been, and
continues to be, the measurement of the velocities of recession of distant galaxies
relative to the Earth. The electromagnetic radiation associated with ionized calcium
atoms that escape from a galaxy in Hydra has a measured waviength of 4750 x 10-"m,

and this is to be compared with a wavelength of 3940 x 10-Om for the same process
measured for a stationary source on Earth. Show that the measuredwavelengths

indicate that the galaxy in Hydra is receding from the Earth with a speed v =0.187c.
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13

ORTHOGONAL FUNCTIONS AND FOURIER SERIES

13.1 Definitions

Two n-vectors

An=[a1, &, ..a) and By = by, by, ..
are said to be orthogonal if
Yi=tnabi=0. (13.1)

(Their scalar product is zero).

Two functions A(x) and B(x) are orthogonalin the range x =atox=b if

far AX)B(X)dx = 0. (132)
The limits must be given in order to specify the range in which the functions A(x) and B(x) are defined.

The set of real, continuous functions {1(x), ¢=(x), ...} is orthogonal in [a, b if

ety om(X)n(x)x = 0 form # . (13.3)
If, in addition,
Jes d)ax=11oraln, (134)

the setis normal, and therefore it is said to be orthonormal.
The infinite set
{cos0x, cos1x, cos2x, ... sin0x, sin1x, sin2x, ...} (135)
in the range [, t) of x is an example of an orthogonal set. For example,

Jir.ng COSX-0082xdx = D e, (136)
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and

Jin.ng COSPXAX # 0 = T, etc.

This set, which is orthogonal in any interval of x of length 2m, is of interest in Mathematics
because a large class of functions of x can be expressed as linear combinations of the members of the
setinthe interval 2. For example we can often write

d(X)= Ciin + g+ where the C's are constants
= a00s0X + a1cos1X +ac0s2X + ...
+bosinOx + brsin1x + bpsin2x + ... (13.7)
Alarge class of periodic functions ,of period 2rt, can be expressed in this way. \When a function can be
expressed as a linear combination of the orthogonal set

{1, cos1x, cos2x, ..0, sin1x, sin2x, ...},

itis said to be expanded in its Fourier series.
13.2 Some trigonometric identities and their Fourier series

Some of the familiar trigonometric identities involve Fourier series. For example,

cos2x = 1-2sinx (138)
can be written
siné = (1/2) - (1/2)cos2x
and this can be written

sin’ ={(1/2)cos0x + Ocos1x— (1/2)cos2x + Ocos3x + ...

+0fsinOx + sin1x + sin2x + ...} (139
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— the Fourier series of sinx.
The Fourier series of cosis
cos?x = (1/2) + (1/2)cos2x. (13.10)
More complicated trigonometric identies also can be expanded in their Fourier series. For example, the
identity
sin3x = 3sinx —4sin’x
can be witten
sin = (3/4)sinx — (1/4)sin3x, (13.11)
and thisis the Fourier series of sin’x.
The terms in the series represent the “hammonics of the function siréx.
In a similar fashion, we find that the identity
003X =4c0s*X — 300SX
can be rearranged to give the Fourier series of cos®
cos®x = (3/4) + (1/4)cos3x. (1312
In general, a combination of deMoivre’s theorem and the binomial theorem can be used to
write cos(nx) and sin(nx) (for n a positive integer) in terms of powersof sinx and cosx. We have
cos(nX) + isin(nx) = (cosx +isinx) (i=-1) (deMoivre) (13.13)
and
(@+bp=ar+na+b+(n(n-1)2!) ar22..+rn. (13.14)

For example, if n =4, we obtain
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cos'x = (1/8)cosAx + (1/2)cos2x + (3/8), (13.15)
and
sintx = (1/8)cos4x — (1/2)cos2x + (3/8). (13.16)
13.3 Determination of the Fourier coefficients of a function
If,in the interval [a, b], the function f(x) can be expanded in terms of the set
{¢1(x), ¢2(x), ...}, which means that
fX) = D11, Ci(X), (13.17)
where {in(x), ¢=(X), ...} is orthogonalin [a, b], then the coefficients can be evaluated as follows:
to determine the kth-coefficient, o, multiply f(x) by ¢x(x), and integrate over the interval [a, bJ;
Jan fOX)AX = fag i+ . Janopddx+ . (13.18)
= 0 + 0 + #0 + 0.
The integrals of the products ¢y in the range [, t] are all zero except for the case that involves g
We therefore obtain the kth-coefficient
o= Jan )OX)AX/ Jay X)X k=1,2,3, . (13.19)
13.4 The Fourier series of a periodic saw-tooth waveform
In standard works on Fourier analysis it is proved that every periodic continuous function f(x) of
period 21t can be expanded in terms of {1, cosx, cos2x, ...0, sinx, sin2x, ...J; this orthogonal set is said to

be complete with respect to the set of periodic continuous functions f(x) in [a, b].



196

Let f(x) be a periodic saw-tooth waveform with an amplitude of + 1:

% A
+

The function has the following forms in the three intervals
fix) = (2m)(x+m) for-m<x<-m2,
=2 for-m2<x<1l2,
and
=(2m)(x—m) form2<x<m
The periodicity means that f{x + 2rt) = (x).

The function f(x) can be represented as a linear combination of the series {1, cosx, cos2x,

..SiNX, SiN2X, ...J:
f(x) = a000s0x + a1cos1X + 3c082x + ...akCOSKX + .
+osin0x + brsin1x + bsin2x + ..sinkx + . (13.20)
The coefficients are given by

8= Ji ng Costox f{X)adx / i o0 = 0, (f(X) is 0dd, coskx is even, and

[, 1 is symmetric about 0), (13.21)
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and
b= Jer g SINKX FX)AX / Jir g SiNhoXAX # 0,
= (1] (F2AE)(x + TOSINKXAX + Jiuz iy (2XTe)sinkoxlx
+ fiup g (F2/T)(x — To)sinkxaix }
= {8/(rtkZsin(krt2). (13.22)
The Fourier series of () is therefore
f(x) = (8frt2)sinx — (1/3)sin3x + (1/2)sindx — (1/73)sin7x + ....}.
The above procedure can be generalized to include functions that are not periodic. The sum
of discrete Fourier components then becomes an integral of the amplitude of the component of angular
frequency w = 2mrv with respect to w. This is a subject covered in the more advanced treatments of

Physics.

PROBLEMS
13-1 Use deMoivre’s theorem and the binomial theorem to obtain the Fourier expansions:
1) cos* = 3/8 + (1/2)cos2x + (1/8)cos4x,
and
2) sin'x = 3/8 — (1/2)cos2x + (1/8)cos4x.
Plot these components (hamonics) and their sums for-m <0 <.

13-2 Use the method of integration of orthogonal functions to obtain the Fourier series of
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problem 13-1; you should obtain the same results as above!
13-3 Show that 1) if f(x) =—f{(x), only sine functions occur in the Fourier series for f(x),
and
2)iff(x) = f(x), only cosine functions occur in the Fourier series for (x).
134 The Fourier series of a function f{t) that is a periodic repetiion outside (T, T), of the shape inside,
with period 2 is often written in the form
ft) = (202) + 2 =1, {ancOS(nTt/T) + brsin(nretT)},
where
2= (1M ffjcos(nmt/ Tt
and
b= (1M fsin(rmt Tt
Iff(t) is a periodic square-wave:
fity=3for0<t<bus

=0for5<t< 10us, with period 2T = 10us

-10 -5 ) 5 10 t

obtain the Fourier series :

ft) = (3/2) +(3AT)2 =1, [(1 — cosnmr)njsin(nmet/s)).
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Compute this series forn =110 5 and-5 <t <5, and compare the truncated
series with the exact waveform.
135 ltis interesting to note that the series in 134 converges to the exact value fit) = 3
atthe value t=52 us, so that
3=(3/2) + (311) 1, (1 — cosnmr)/nfsin(nTe2).
Use this resutt to obtain the important Gregory-Leibniz infinite series :

(1) =1—(113) + (15) = (17) + ..
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Appendix A

Solving ordinary differential equations
Typical dynamical equations of Physics are
1) Force in the x-direction = mass x acceleration in the x-direcion with the - mathematical
fom
Fx=may = ma2x/df?,
and
2) The amplitude y(x, t) of a wave at (x, 1), fraveling at constant speed V along
the x-axis with the mathematical form
(1N)Rylor - Aylox2 = 0.
Such equations, that involve differential coefficients, are called differential equations.
An equation of the form
f(x, y(x), dy(x)/dx; &) =0 (A1)
that contains
i) a variable y that depends on a single, independent variable x,
ii) afirst derivative dy(x)/dx,
and

iily constants, a,
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is called an ordinary (a single independent variable) differential equation of the first order (a first
derivative, only).

An equation of the form
fix1, X2, ... X0, Y(X1, X2, .. Xn), OYIOX1, OYIOXo, ...0YIOX; PPyOXi2, PPYIOXZ,
. OYIOX2; BYloxr, OYIOXS, ...0YIOXT a1, @, ..a) =0 (A2)
that contains
i) avariable y that depends on nHindependent variables x4, Xz, ...,
ii) the 1st-, 2nd-, ...nth-order partial derivatives:
oyloxs, ..AYIOXE, ..OIOX, ...,
and
ii) rconstants, &, &, ...a,
is called a partial differential equation of the nthrorder.
Some of the techniques for solving ordinary linear differential equations are given in this appendi.
An ordinary differential equation is formed from a particular functional relation,  f(x, y; &, a,
..an) that involves n arbitrary constants. Successive differentiations of f with respect to x, yield n
relationships involving X, y, and the first n derivatives of y with respect to x, and some (or possibly all) of
the n constants. There are (n + 1) relationships from which the n constants can be eliminated. The
result will involve dny/dx, differential coefficients of lower orders, together with x, and y, and no arbitrary
constants.

Consider, for example, the standard equation of a parabola:
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y2—4ax.=0, where ais a constant.
Differentiating, gives
2y(dy/dx)—-4a=0
so that
y—2x(dy/dx) = 0, a differential equation that does not contain the constant a.

As another example, consider the equation

fix,y,a,b,c)=0=x+y2+ax+by+c=0.
Differentiating three times successively, with respect to x, gives

1) 2x+2y(dy/dx) +a+ b(dy/dx) =0,

2) 2+ 2{y(cPyldx?) + (dyldx) + b(dPyidx?) = 0,
and

3) 2y(dPyldxd) + (cPyldx?)(dyldx)} + 4(dy/dx)(cRy/dx?) + b(dPy/dxs) = 0.

Eliminating b from 2) and 3),

(cBylax3K1 + (dy/dx)} = (dlyfdx)(cRy/dx2)2.

The most general solution of an ordinary differential equation of the nth-order contains n
arbitrary constants. The solution that contains all the arbitrary constants is called the complete
primative. If a solution is obtained from the complete primative by giving definite values to the constants
then the (non-unique) solution is called a particular integral.

Equations of the 1st-order and degree.

The equation
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M(x, y)(dy/dx) + N(x,y) =0 (A3)
is separable if MIN can be reduced to the form fi(y)/f(x), where f; does not involve x, and £, does not
involve y. Specific cases that are met are:
i) yabsentin Mand N, so that M and N are functions of x only; Eq. (A.3) then can be written
(dy/ax) ={MN) = F(x)
therefore
y=JF(x)dx + C, where C is a constant of integration.
ii) xabsentinMand N.
Eq. (A.3) then becomes
(MN)(dy/dx) =1,
so that
F(y)(dyldx) =1, (MIN =F(y))
therefore
x=-JF(y)dy +C.
ii) xand y presentin Mand N, but the variables are separable.
Put MIN =f(y)ig(x), then Eq. (A.3) becomes
fiy)(dyfdx) +g(x) =O0.
Integrating over x,
Jty)clylexjobe + Jg(xjx =O.

or



204
Jfy)dy + Jg(xjax=0.
For example, consider the differential equation
X(dy/dx) + coty = 0.
This can be written
(siny/cosy)(ay/dx) + 1/x =0.
Integrating, and putting the constant of integration C =InD,
J(sinylcosy)dy + [(1/x)dx = InD,
so that
—In(cosy) +Inx=InD,
or
In(x/cosy) = InD.
The solution is therefore
y=00s(x/D).
Exact equations
The equation
ydx + xdy = 0 is said o be exact because it can be written as
d(xy) =0,0r
Xy = constant.
Consider the non-exact equation

(tany)dx + (fanx)dy = 0.
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We see that it can be made exact by multiplying throughout by cosxcosy, giving
sinycosxdx + sinxcosydy = 0 (exact)
so that
d(sinysinx) =0,
or
sinysinx = constant.
The term cosxcosy is called an integrating factor.
Homogeneous dlifferential equations.

A homogeneous equation of the nth degree in x and v is such that the powers of x and y in
every term of the equation is n. For example, 2y + 2xy2 + 3y is a homogeneous equation of the third
degree. If, in the differential equation M(dy/dx) + N = 0 the terms M and N are homogeneous functions
of xandy, of the same degree, then we have a homogeneous differential equation of the 1st order and
degree. The differential equation then reduces to

dyfax =—(NM) = F(y/x)
Tofind whether or not a function F(x, y) can be written F(y/x), put
Y =X
If the resuitis F(v) (all X's cancel) then F is homogeneous. For example
dyldx = (2 + y9)2¢ — dyldx = (1 + V32 = F(v), therefore the equation is

homogeneous.
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Since dyfdx — F(v) by putting y = vx on the righthand side of the equation, we make the same
substitution on the lefi-hand side to obtain
v+ x(dvidx) = (1 +2)2
therefore
2xdv = (1+2-2v)dx.
Separating the variables
2dv/(v— 1§ = dxix., and this can be integrated.
Linear Equations
The equation
dy/ax + M(x)y = N(x)
is said to be linear and of the 1st order. An example of such an equation is
dyfax + (1x)y = 2.
This equation can be solved by introducing the integrating factor, x, so that
X(dyldx) +y =X,
therefore
(dax)(xy) =X,
giving
Xy = X¥4 + constant.
In general, let R be an integrating factor, then

R(dy/dx) + RMy =RN,
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in which case, the left-hand side is the differential coefficient of some product with a first term R(dy/dx).
The product mustbe Ry! Put, therefore

R(ay/dx) + RMy = (dldx)(Ry) = R(dy/dx) + y(dR/dx).

Now,
RMy =y(dR/dx),
which leads to
M(x)dx = JdRR =InR,
or

R = exp{IM(x)alx).

We therefore have the following procedure: to solve the differential equation

(dlyfdx) + M(x)y = N(x),
multiply each side by the integrating factor exp{{M(x)dx}, and integrate. For example, let

(dy/ax) + (1ix)y =,
so that

IM@x)dx = J(1/x)dx = Inx and the integrating factor is exp{ind} = x.. We therefore obain the

equation

x(dy/dx) + (1/x)y =8,
deduced previously on infuitive grounds.
Linear Equations with Constant Coefficients.

Consider the 1st order linear differential equation
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Po(dly/dlx) + pry =0, where po, p1 are constants.
Wiiting this as
poldyly) + prdx =0,
we can integrate term-by-term, so that
palny + psx = constant,
therefore
Iny = (~p1/po)x + constant
= (prlpo)x + InA, say
therefore
y =Aexpl-p/po)x)
Linear differential equations with constant coefficients of the 2nd order occur often in Physics. They are
typified by the forms
Po(dPylx?) + p1(dy/cx) + pay = 0.
The solution of an equation of this form is obtained by following the insight gained in solving the 1st
order equation!. We try a solution of the type
y = Aexp{mx,
so that the equation is
Aexp{mx}{pom? + pim + pg) = 0.
If mis a root of

pom?+pm+p=0
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then y = Aexp{mx} is a solution of the original equation for all values of A.
Letthe roots be cvand 3. If o # (3 there are two solutions
y = Aexpfox Jand y = Bexp{3x.}.
If we put
y = Aexp{ox} + Bexp{Bx}
in the original equation then
Aexplox(pocr? + prow + po) + Bexp{Bxj(pof3 + i + p2) =0,
whichis frue as avand {3 are the roots of
pom2+ pim + pp =0, (called the auxilliary equation)
The original equation is linear, therefore the sum of the two solutions is, itself, a (third) solution. The third
solution contains two arbitrary constants (the order of the equation), and it is therefore the general
solution.
As an example of the method, consider solving the equation
2(cPyldx?) + 5(dy/dx) + 2y = 0.
Puty = Aexp{mx Jas a trial solution, then
Aexp{mx}(2m? +5m + 2) = 0, so that
m =-2 or-1/2, therefore the general solution is
y = Aexp{-=2x} + Bexp{~1/2)x}.

If the roots of the auxilliary equation are complex, then

y = Aexp{p +igix + Bexp{p—iqlx,
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where the roots are p i (p, gER).
In practice, we write
y = exp{px}{Ecosax + Fsingx]
where E and F are arbitrary constants.
For example, consider the solution of the equation

dRylcbe—Bi(dyldx) + 13y =0,

therefore
m—6m+13=0,
so that
m=3+i2
We therefore have

y = Aexp{(3 +i2)x} + Bexp{3—i2)x}

= exp{3x}(Ecos2x + Fsin2x).

The general solution of a linear differential equation with constant coefficients is the sum of a particular

integral and the complementary function (obtained by putting zero for the function of x that appears in

the original equation).
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