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PREFACE 

 Throughout the decade of the 1990’s, I taught a one-year course of a specialized nature to 

students who entered Yale College with excellent preparation in Mathematics and the Physical 

Sciences, and who expressed an interest in Physics or a closely related field.  The level of the course 

was that typified by the Feynman Lectures on Physics.  My one-year course was necessarily more 

restricted in content than the two-year Feynman Lectures.  The depth of treatment of each topic was 

limited by the fact that the course consisted of a total of fifty-two lectures, each lasting one-and-a-quarter 

hours.  The key role played by invariants in the Physical Universe was constantly emphasized.  The 

material that I covered each Fall  is presented, almost verbatim, in this book. 

 The first chapter contains key mathematical ideas, including some invariants of geometry and 

algebra, generalized coordinates, and the algebra and geometry of vectors. The importance of linear 

operators and their matrix representations is stressed in the early lectures.  These mathematical 

concepts are required in the presentation of a unified treatment of both Classical and Special Relativity.  

Students are encouraged to develop a “relativistic outlook” at an early stage.  The fundamental Lorentz 

transformation is developed using arguments based on symmetrizing the classical Galilean 

transformation. Key 4-vectors, such as the 4-velocity and 4-momentum, and their invariant norms, are 

shown to evolve in a natural way from their classical forms.  A basic change in the subject matter 

occurs at this point in the book.  It is necessary to introduce the Newtonian concepts of mass, 

momentum, and energy, and to discuss the conservation laws of linear and angular momentum, and 

mechanical energy, and their associated invariants.  The discovery of these laws, and their applications 
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to everyday problems, represents the high point in the scientific endeavor of the 17th and 18th 

centuries.  An introduction to the general dynamical methods of Lagrange and Hamilton is delayed until 

Chapter 9, where they are included in a discussion of the Calculus of Variations.  The key subject of 

Einsteinian dynamics is treated at a level not usually met in at the introductory level.  The 4-momentum 

invariant and its uses in relativistic collisions, both elastic and inelastic, is discussed in detail in Chapter 6.  

Further developments in the use of relativistic invariants are given in the discussion of the Mandelstam 

variables, and their application to the study of high-energy collisions.  Following an overview of 

Newtonian Gravitation, the general problem of central orbits is discussed using the powerful method of 

[p, r] coordinates.  Einstein’s General Theory of Relativity is introduced using the Principle of 

Equivalence and the notion of “extended inertial frames” that include those frames in free fall in a 

gravitational field of small size in which there is no measurable field gradient.  A heuristic argument is 

given to deduce the Schwarzschild line element in the “weak field approximation”; it is used as a basis 

for a discussion of the refractive index of space-time in the presence of matter.  Einstein’s famous 

predicted value for the bending of a beam of light grazing the surface of the Sun is calculated.  The 

Calculus of Variations is an important topic in Physics and Mathematics; it is introduced in Chapter 9, 

where it is shown to lead to the ideas of the Lagrange and Hamilton functions.  These functions are 

used to illustrate in a general way the conservation laws of momentum and angular momentum, and 

the relation of these laws to the homogeneity and isotropy of space.  The subject of chaos is introduced 

by considering the motion of a damped, driven pendulum.  A method for solving the non-linear 

equation of motion of the pendulum is outlined.  Wave motion is treated from the point-of-view of 
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invariance principles.  The form of the general wave equation is derived, and the Lorentz invariance of 

the phase of a wave is discussed in Chapter 12.  The final chapter deals with the problem of orthogonal 

functions in general, and Fourier series, in particular.  At this stage in their training, students are often 

under-prepared in the subject of Differential Equations.  Some useful methods of solving ordinary 

differential equations are therefore given in an appendix. 

 The students taking my course were generally required to take a parallel one-year course in 

the Mathematics Department that covered Vector and Matrix Algebra and Analysis at a level suitable 

for potential majors in Mathematics. 

 Here, I have presented my version of a first-semester course in Physics — a version that deals 

with the essentials in a no-frills way.  Over the years, I demonstrated that the contents of this compact 

book could be successfully taught in one semester.  Textbooks are concerned with taking many 

known facts and presenting them in clear and concise ways; my understanding of the facts is largely 

based on the writings of a relatively small number of celebrated authors whose work I am pleased to 

acknowledge in the bibliography. 

        Guilford, Connecticut 

        February, 2000 
I am grateful to several readers for pointing out errors and unclear statements in my first version of this 
book.  The comments of Dr Andre Mirabelli were particularly useful, and were taken to heart.  
                                                                                                                             March, 2003  
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1 

MATHEMATICAL PRELIMINARIES 

1.1  Invariants   

 It is a remarkable fact that very few fundamental laws are required to describe the enormous 

range of physical phenomena that take place throughout the universe.  The study of these 

fundamental laws is at the heart of Physics.  The laws are found to have a mathematical structure; the 

interplay between Physics and Mathematics is therefore emphasized throughout this book.  For 

example, Galileo found by observation, and Newton developed within a mathematical framework, the 

Principle of Relativity: 

 the laws governing the motions of objects have the same mathematical form in all inertial 

               frames of reference. 

Inertial frames move at constant speed in straight lines with respect to each other – they are mutually 

non-accelerating.  We say that Newton’s laws of motion are invariant under the Galilean transformation 

(see later discussion).  The discovery of key invariants of Nature has been essential for the 

development of the subject. 

 Einstein extended the Newtonian Principle of Relativity to include the motions of beams of light 

and of objects that move at speeds close to the speed of light.  This extended principle forms the basis 

of Special Relativity.  Later, Einstein generalized the principle to include accelerating frames of 

reference.  The general principle is known as the Principle of Covariance; it forms the basis of the 

General Theory of Relativity (a theory of Gravitation). 
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 A review of the elementary properties of geometrical invariants, generalized coordinates, linear 

vector spaces, and matrix operators, is given at a level suitable for a sound treatment of Classical and 

Special Relativity.  Other mathematical methods, including contra- and covariant 4-vectors, variational 

principles, orthogonal functions, and ordinary differential equations are introduced, as required. 

1.2  Some geometrical invariants 

 In his book The Ascent of Man, Bronowski discusses the lasting importance of the discoveries 

of the Greek geometers.  He gives a proof of the most famous theorem of Euclidean Geometry, 

namely Pythagoras’ theorem, that is based on the invariance of length and angle (and therefore of 

area) under translations and rotations in space. Let a right-angled triangle with sides a, b, and c, be 

translated and rotated into the following four positions to form a square of side c: 

                                                                                        c 

                                                                                                   1 
 
                                                                                                              c                4            c 

                                                                           2                                         4 

                                                                  c                                           b 
                                                                                a                     3 
                                                                                                                     c 

                                                                                   |←       (b – a)         →| 

The total area of the square = c2 = area of four triangles + area of shaded square. 

If the right-angled triangle is translated and rotated to form the rectangle: 
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                                                                                       a                  a 

 
                                                                                   1                           4 
 
                                                                     b                                                       b 

                                                                                          2               3 

 

 

then the area of four triangles = 2ab. 

The area of the shaded  square area is (b – a)2  = b2 – 2ab + a2   

We have postulated the invariance of length and angle under translations and rotations and therefore  

 c2 = 2ab + (b – a)2 

    = a2 + b2 .                                                                                                                                               (1.1) 

We shall see that this key result characterizes the locally flat space in which we live.  It is the only form 

that is consistent with the invariance of lengths and angles under translations and rotations . 

The scalar product is an important invariant in Mathematics and Physics.  Its invariance properties can 

best be seen by developing Pythagoras’ theorem in a three-dimensional coordinate form.  Consider 

the square of the distance between the points P [x1 , y1 , z1] and Q [x2 , y2 , z2]  in Cartesian coordinates: 
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                                           z     
 
 
 
                                                                                                             y 
                                                                                                                                                Q [x2 ,y2 ,z2] 
                                                             P [x1 ,y1 ,z1] 
 
                                                             α 
 
 
                                         O 
                                                                   x1 
                                                                                                x2 
                                                                                                                                      x 
We have 
 (PQ)2 = (x2 – x1)2 + (y2 – y1)2 + (z2 – z1)2  

          = x22 – 2x1x2 + x12 + y22 – 2y1y2 + y12 + z22 – 2z1z2 + z12    

          = (x12 + y12 + z12) + (x22 + y22 + z22 ) – 2(x1x2 + y1y2 + z1z2)  

          =         (OP)2       +         (OQ)2           – 2(x1x2 + y1y2 + z1z2)                         (1.2) 

The lengths PQ, OP, OQ, and their squares, are invariants under rotations and therefore the entire 

right-hand side of this equation is an invariant.  The admixture of the coordinates  (x1x2 + y1y2 + z1z2) is 

therefore an invariant under rotations.  This term has a geometric interpretation: in the triangle OPQ, we 

have the generalized Pythagorean theorem 

  (PQ)2 = (OP)2 + (OQ)2 – 2OP.OQ cosα, 

therefore 

 OP.OQ cosα = x1x2 +y1y2 + z1z2 ≡ the scalar product.                        (1.3) 
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 Invariants in space-time with scalar-product-like forms, such as the interval between events 

(see 3.3), are of fundamental importance in the Theory of Relativity. Although rotations in space are 

part of our everyday experience, the idea of rotations in space-time is counter-intuitive.  In Chapter 3, 

this idea is discussed in terms of the relative motion of inertial observers. 

1.3  Elements of differential geometry 

 Nature does not prescibe a particular coordinate system or mesh.  We are free to select the 

system that is most appropriate for the problem at hand.  In the familiar Cartesian system in which the 

mesh lines are orthogonal, equidistant, straight lines in the plane, the key advantage stems from our 

ability to calculate distances given the coordinates – we can apply Pythagoras’ theorem, directly.  

Consider an arbitrary mesh: 

 v – direction                                                                                                                                   P [3u, 4v]  

                       4v 

                                                                                                                                          ds,  a length  

                          3v                                                                              dv                     
                                                                                                                                          α 
                                                                                                                          du 

    

                               2v 

                              1v 

                            

                           Origin  O                            1u                                          2u               3u            u – direction 
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Given the point P [3u , 4v], we cannot use Pythagoras’ theorem to calculate the distance OP. 

 In the infinitesimal parallelogram shown, we might think it appropriate to write 

 ds2 = du2 + dv2 + 2dudvcosα .   (ds2 = (ds)2 , a squared “length” ) 

This we cannot do!  The differentials du and dv are not lengths – they are simply differences between 

two numbers that label the mesh.  We must therefore multiply each differential by a quantity that 

converts each one into a length.  Introducing dimensioned coefficients, we have 

       ds2 = g11du2 + 2g12dudv + g22dv2              (1.4) 

where √g11 du and √g22 dv are now lengths. 

 The problem is therefore one of finding general expressions for the coefficients; 

it was solved by Gauss, the pre-eminent mathematician of his age.  We shall restrict our discussion to 

the case of two variables.  Before treating this problem, it will be useful to recall the idea of a total 

differential associated with a function of more than one variable.   

Let u = f(x, y) be a function of two variables, x and y. As x and y vary, the corresponding values of u 

describe a surface.  For example, if u = x2 + y2, the surface is a paraboloid of revolution.  The partial 

derivatives of u are defined by 

 ∂f(x, y)/∂x = limit as h →0 {(f(x + h, y) – f(x, y))/h} (treat y as a constant),                       (1.5) 

and 

 ∂f(x, y)/∂y = limit as k →0 {(f(x, y + k) – f(x, y))/k} (treat x as a constant).                       (1.6) 

For example, if u = f(x, y) = 3x2 + 2y3 then 

 ∂f/∂x = 6x, ∂2f/∂x2 = 6, ∂3f/∂x3 = 0  
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and 

 ∂f/∂y = 6y2, ∂2f/∂y2 = 12y, ∂3f/∂y3 = 12, and ∂4f/∂y4 = 0.  

If u = f(x, y) then the total differential of the function is  

 du = (∂f/∂x)dx + (∂f/∂y)dy 

corresponding to the changes: x → x + dx and y → y + dy. 

(Note that du is a function of x, y, dx,  and dy of the independent variables x and y)  

1.4  Gaussian coordinates and the invariant line element 

 Consider the infinitesimal separation between two points P and Q that are described in either 

Cartesian or Gaussian coordinates: 

                                                                                          

 
                    y + dy                                          Q                                v + dv                                    Q 
 
                                                           ds                                                                          ds                       
 
 
                        y   P                                                                       v   P                                             
                                x                                x + dx                                  u                                        u + du   
                                          Cartesian                                                                Gaussian 

In the Gaussian system, du and dv do not represent distances. 

 Let  

 x = f(u, v) and y = F(u, v)                                 (1.7 a,b) 

then, in the infinitesimal limit 

 dx = (∂x/∂u)du + (∂x/∂v)dv and dy = (∂y/∂u)du + (∂y/∂v)dv. 
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In the Cartesian system, there is a direct correspondence between the mesh-numbers and distances : 

       ds2 = dx2 + dy2 .             (1.8) 

But 

       dx2 = (∂x/∂u)2du2 + 2(∂x/∂u)(∂x/∂v)dudv + (∂x/∂v)2dv2  and 

       dy2 = (∂y/∂u)2du2 + 2(∂y/∂u)(∂y/∂v)dudv + (∂y/∂v)2dv2. 

We therefore obtain 

 ds2 =   {(∂x/∂u)2 + (∂y/∂u)2}du2 + 2{(∂x/∂u)(∂x/∂v) + (∂y/∂u)(∂y/∂v)}dudv  

                         + {(∂x/∂v)2 + (∂y/∂v)2}dv2   

                       =  g11 du2 + 2g12dudv + g22dv2  .           (1.9) 

If we put u = u1 and v = u2, then 

ds2 = ∑ ∑g i j du i du j  where i,j = 1,2, (a general form  in n-dimensional space: i, j = 1, 2, 3, ...n)         (1.10) 
            i    j     
 Two important points connected with this invariant differential line element are: 

1. Interpretation of the coefficients g i j : consider a Euclidean mesh of equispaced parallelograms: 
                                                                v  
 
 
 
 
                                                                                       R 
 
                                                                    ds 
                                              α                            dv 
 
                                    P               du            Q                                                   u 
In PQR 

       ds2 = 1.du2 + 1.dv2 + 2cosαdudv 
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            = g11du2 + g22dv2 + 2g12dudv                        (1.11) 

therefore,    g11 = g22 = 1 (the mesh-lines are equispaced) 

and 

       g12 = cosα  where α is the angle between the u-v axes. 

We see that if the mesh-lines are locally orthogonal then g12 = 0. 

2. Dependence of the gij’s on the coordinate system and the local values of u, v.  

 A specific example will illustrate the main points of this topic: consider a point P described in 

three coordinate systems – Cartesian P [x, y], Polar P [r, φ], and Gaussian  P [u, v] – and the square 

ds2 of the line element in each system.   

The transformation [x, y] → [r, φ] is 

         x = rcosφ and y = rsinφ.                 (1.12 a,b) 

The transformation [r, φ] → [u, v] is direct, namely 

          r = u and φ = v. 

Now, 

 ∂x/∂r = cosφ,  ∂y/∂r = sinφ,  ∂x/∂φ = – rsinφ,  ∂y/∂φ = rcosφ 

therefore,  

 ∂x/∂u = cosv,  ∂y/∂u = sinv,   ∂x/∂v  =  – usinv,    ∂y/∂v = ucosv. 

The coefficients are therefore 

       g11 = cos2v + sin2v = 1,                                (1.13 a-c) 

       g22 = (–usinv)2 +(ucosv)2 = u2,  



 20 

and 

       g12 = cos(–usinv) + sinv(ucosv) = 0 (an orthogonal mesh). 

We therefore have 

       ds2 = dx2 + dy2                 (1.14 a-c) 

            = du2 + u2dv2 

            = dr2 + r2dφ2. 

In this example, the coefficient g22 = f(u). 

 The essential point of Gaussian coordinate systems is that the coefficients g i j completely 

characterize the surface – they are intrinsic features.  We can, in principle, determine the nature of a 

surface by measuring the local values of the coefficients as we move over the surface.  We do not 

need to leave a surface to study its form. 

1.5  Geometry and groups 

 Felix Klein (1849 – 1925), introduced his influential Erlanger Program in 1872.  In this program, 

Geometry is developed from the viewpoint of the invariants associated with groups of transformations.  

In Euclidean Geometry, the fundamental objects are taken to be rigid bodies that remain fixed in size 

and shape as they are moved from place to place.  The notion of a rigid body is an idealization.  

 Klein considered transformations of the entire plane – mappings of the set of all points in the 

plane onto itself.  The proper set of rigid motions in the plane consists of translations and rotations.  A 

reflection is an improper rigid motion in the plane; it is a physical impossibility in the plane itself.  The set 

of all rigid motions – both proper and improper – forms a group that has the proper rigid motions as a 



 21 

subgroup.  A group G is a set of distinct elements {gi} for which a law of composition “ o ” is given such 

that the composition of any two elements of the set satisfies: 

    Closure: if g i, g j belong to G then g k = g i o g j belongs to G for all elements g i, g j , 

and 

    Associativity: for all g i, g j, g k in G, g i o (g j o g k) = (g i o g j) o g k. . 

Furthermore, the set contains 

    A unique identity, e, such that g i o e = e o g i = g i for all g i in G, 

and 

    A unique inverse, g i–1, for every element gi in G,  

               such that g i o g i–1 = g i–1 o g i = e.  

A group that contains a finite number n of distinct elements g n is said to be a finite group of order n. 

 The set of integers Z is a subset of the reals R; both sets form infinite groups under the 

composition of addition.  Z is a “subgroup“of R. 

 Permutations of a set X form a group Sx under composition of functions; if a: X → X and b: X 

→ X are permutations, the composite function ab: X → X given by ab(x) = a(b(x)) is a permutation.  If 

the set X contains the first n positive numbers, the  n! permutations form a group, the symmetric group, 

Sn.  For example, the arrangements of the three numbers 123 form the group  

 S3 = { 123, 312, 231, 132, 321, 213 }. 
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 If the vertices of an equilateral triangle are labelled 123, the six possible symmetry 

arrangements of the triangle are obtained by three successive rotations through 120o about its center of 

gravity, and by the three reflections in the planes I, II, III: 

                                                                                                  I 

                                                                                                1            

 

 

                                                                2                                                                     3 

                                          II                                                                                                            III 

This group of “isometries“ of the equilateral triangle (called the dihedral group, D3) has the same 

structure as the group of permutations of three objects.  The groups S3 and D3 are said to be 

isomorphic. 

 According to Klein, plane Euclidean Geometry is the study of those properties of plane rigid 

figures that are unchanged by the group of isometries. (The basic invariants are length and angle).  In 

his development of the subject, Klein considered Similarity Geometry that involves isometries with a 

change of scale, (the basic invariant is angle), Affine Geometry, in which figures can be distorted under 

transformations of the form 

   x  ́= ax + by + c                                (1.15 a,b) 

   y  ́= dx + ey + f , 
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where [x, y] are Cartesian coordinates, and a, b, c, d, e, f, are real coefficients, and Projective 

Geometry, in which all conic sections: circles, ellipses, parabolas, and hyperbolas can be transformed 

into one another by a projective transformation. 

It will be shown that the Lorentz transformations – the fundamental transformations of events in space 

and time, as described by different inertial observers –  form a group. 

1.6  Vectors 

 The idea that a line with a definite length and a definite direction — a vector — can be used to 

represent a physical quantity that possesses magnitude and direction is an ancient one.  The 

combined action of two vectors A and B is obtained  by means of the parallelogram law, illustrated in 

the following diagram 

                                                                                                                                        
                                                                                                                                        
                                                                                                                                        
                                                                                                 A + B                                   
                                                      B                                                                                          
                                                                                                                                        
                                                                                  A                                                                
 
The diagonal of the parallelogram formed by A and B gives the magnitude and direction of the 

resultant vector C.  Symbollically, we write 

                                                  C = A + B                          (1.16) 

in which the “=” sign has a meaning that is clearly different from its meaning in ordinary arithmetic.  

Galileo used this empirically-based law to obtain the resultant force acting on a body.  Although a 

geometric approach to the study of vectors has an intuitive appeal, it will often be advantageous to use 
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the algebraic method – particularly in the study of Einstein’s Special Relativity and Maxwell’s 

Electromagnetism. 

1.7  Quaternions 

 In the decade 1830 - 1840, the renowned Hamilton introduced new kinds of 

numbers that contain four components, and that do not obey the commutative property of 

multiplication.  He called the new numbers quaternions.  A quaternion has the form 

                                                 u + xi + yj + zk                                        (1.17) 

in which the quantities i, j, k are akin to the quantity i = √–1 in complex numbers, x + iy.  The 

component u forms the scalar part, and the three components xi + yj + zk form the vector part of the 

quaternion.  The coefficients x, y, z can be considered to be the Cartesian components of a point P in 

space.  The quantities i, j, k are qualitative units that are directed along the coordinate axes.  Two 

quaternions are equal if their scalar parts are equal, and if their coefficients x, y, z of i, j, k are 

respectively equal.  The sum of two quaternions is a quaternion.  In operations that involve quaternions, 

the usual rules of multiplication hold except in those terms in which products of i, j, k occur — in these 

terms, the commutative law does not hold.  For example 

 j k = i,  k j = – i,  k i = j,  i k = – j,  i j = k,  j i = – k,                                      (1.18) 

(these products obey a right-hand rule), 

and 

 i2 = j2 = k2 = –1.  (Note the relation to i2 = –1).                        (1.19) 

The product of two quaternions does not commute.  For example, if 
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 p = 1 + 2i + 3j + 4k, and q = 2 + 3i + 4j + 5k 

then 

 pq = – 36 + 6i + 12j + 12k 

whereas 

 qp = – 36 + 23i – 2j + 9k. 

Multiplication is associative. 

 Quaternions can be used as operators to rotate and scale a given vector into a new vector: 

 (a + bi + cj + dk)(xi + yj + zk) = (x í + y j́ + z´k) 

 If the law of composition is quaternionic multiplication then the set 

 Q = {±1, ±i, ±j, ±k} 

is found to be a group of order 8.  It is a non-commutative group. 

 Hamilton developed the Calculus of Quaternions.  He considered, for example, the properties 

of the differential operator: 

  ∇ = i(∂/∂x) + j(∂/∂y) + k(∂/∂z).                                    (1.20) 

(He called this operator “nabla”). 

 If f(x, y, z) is a scalar point function (single-valued) then 

  ∇f = i(∂f/∂x) + j(∂f/∂y) + k(∂f/∂z) , a vector. 

 If  

  v = v1i + v2j + v3k 
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is a continuous vector point function, where the vi’s are functions of x, y, and z, Hamilton introduced the 

operation 

 ∇v = (i∂/∂x + j∂/∂y + k∂/∂z)(v1i + v2j + v3k)                                       (1.21) 

       = – (∂v1/∂x + ∂v2/∂y + ∂v3/∂z) 

                      + (∂v3/∂y – ∂v2/∂z)i + (∂v1/∂z – ∂v3/∂x)j + (∂v2/∂x – ∂v1/∂y)k 

                  = a quaternion. 

The scalar part is the negative of the “divergence of v” (a term due to Clifford), and the vector part is the 

“curl of v” (a term due to Maxwell).  Maxwell used the repeated operator ∇2, which he called the 

Laplacian.   

1.8  3 – vector analysis 

Gibbs, in his notes for Yale students, written in the period 1881 - 1884, and Heaviside, in articles 

published in the Electrician in the 1880’s, independently developed 3-dimensional Vector Analysis as a 

subject in its own right — detached from quaternions.   

In the Sciences, and in parts of Mathematics (most notably in Analytical and Differential Geometry), 

their methods are widely used.  Two kinds of vector multiplication were introduced: scalar multiplication 

and vector multiplication.  Consider two vectors v and v  ́where 

  v = v1e1 + v2e2 + v3e3 

and 

  v  ́= v1́ e1 + v2́ e2 + v3́ e3 . 
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The quantities e1, e2, and e3 are vectors of unit length pointing along mutually orthogonal axes, labeled 

1, 2, and 3. 

 i) The scalar multiplication of v and v  ́is defined as 

  v ⋅ v  ́= v1v1́  + v2v2́  + v3v3́ ,                        (1.22) 

where the unit vectors have the properties 

 e1 ⋅ e1 = e2 ⋅ e2 = e3 ⋅ e3 = 1,             (1.23) 

and 

 e1 ⋅ e2 = e2 ⋅ e1 = e1 ⋅ e3 = e3 ⋅ e1 = e2 ⋅ e3 = e3 ⋅ e2 = 0.                      (1.24) 

 The most important property of the scalar product of two vectors is its invariance under 

rotations and translations of the coordinates.  (See Chapter 1). 

 ii) The vector product of two vectors v and v  ́is defined as 

                                                   e1    e2    e3      

  v × v  ́=     v1    v2    v3                ( where |.  .  . |is the determinant)                     (1.25) 

                                                   v1́   v2́   v3́      

                                    =    (v2 v3́  – v3v2́ )e1 + (v3v1́  – v1v3́ )e2 + (v1v2́  – v2v1́ )e3 . 

The unit vectors have the properties 

 e1 × e1 = e2 × e2 = e3 × e3 = 0                                   (1.26 a,b) 

(note that these properties differ from the quaternionic products of the i, j, k’s), 

and 

     e1 × e2 = e3 , e2 × e1 = – e3 , e2 × e3 = e1 , e3 × e2 = – e1 , e3 × e1 = e2 , e1 × e3 = – e2 
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These non-commuting vectors, or “cross products” obey the standard right-hand-rule. 

The vector product of two parallel vectors is zero even when neither vector is zero. 

 The non-associative property of a vector product is illustrated in the following example 

 e1 × e2 × e2  = (e1 × e2) × e2 = e3 × e2 = – e1 

                                 = e1 × (e2 × e2) = 0. 

 Important operations in Vector Analysis that follow directly from those introduced in the theory 

of quaternions are: 

 1) the gradient of a scalar function f(x1, x2, x3) 

  ∇f = (∂f/∂x1)e1 + (∂f/∂x2)e2 + (∂f/∂x3)e3 ,                       (1.27) 

 2) the divergence of a vector function v 

  ∇ ⋅ v = ∂v1/∂x1 + ∂v2/∂x2 + ∂v3/∂x3         (1.28) 

 where v has components v1, v2, v3 that are functions of x1, x2, x3 , and 

 3) the curl of a vector function v 

                                                      e1        e2       e3           

  ∇ × v =    ∂/∂x1   ∂/∂x2   ∂/∂x3    .                        (1.29) 

                                                       v1        v2        v3          

The physical significance of these operations is discussed later. 

1.9  Linear algebra and n-vectors 

 A major part of Linear Algebra is concerned with the extension of the algebraic properties of 

vectors in the plane (2-vectors), and in space (3-vectors), to vectors in higher dimensions (n-vectors).  



 29 

This area of study has its origin in the work of Grassmann (1809 - 77), who generalized the quaternions 

(4-component hyper-complex numbers), introduced by Hamilton.  

 An n-dimensional vector is defined as an ordered column of numbers 

                                                                     x1         
                                                                     x2                 
                                                         xn =      .                                                (1.30) 
                                                                      .                 
                                                                     xn                
 

It will be convenient to write this as an ordered row in square brackets 

                                     xn = [x1, x2, ... xn] .                         (1.31) 

The transpose of the column vector is the row vector 

                                    xnT = (x1, x2, ...xn).                           (1.32) 

 The numbers x1, x2, ...xn are called the components of x, and the integer n is the dimension of 

x.  The order of the components is important, for example 

      [1, 2, 3] ≠ [2, 3, 1]. 

 The two vectors x = [x1, x2, ...xn] and y = [y1, y2, ...yn] are equal if 

     xi = yi  (i = 1 to n). 

 The laws of Vector Algebra are 

 1.  x + y = y + x  .                        (1.33 a-e) 

 2.  [x + y] + z = x + [y + z]  . 

 3.  a[x + y] = ax + ay where a is a scalar  . 

 4.  (a + b)x = ax + by where a,b are scalars  . 
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 5. (ab)x = a(bx) where a,b are scalars  . 

 If  a = 1 and b = –1 then 

 x + [–x] = 0, 

where  0 = [0, 0, ...0] is the zero vector. 

 The vectors x = [x1, x2, ...xn] and y = [y1, y2 ...yn] can be added to give their sum or resultant: 

 x + y = [x1 + y1, x2 + y2, ...,xn + yn].                         (1.34) 

 The set of vectors that obeys the above rules is called the space of all n-vectors or the vector 

space of dimension n. 

 In general, a vector v = ax + by lies in the plane of x and y.  The vector v is said to depend 

linearly on x and y — it is a linear combination of x and y. 

 A k-vector v is said to depend linearly on the vectors u1, u2, ...uk if there are scalars ai such that 

 v = a1u1 +a2u2 + ...akuk .                          (1.35) 

For example 

 [3, 5, 7] = [3, 6, 6] + [0, –1, 1] = 3[1, 2, 2] + 1[0, –1, 1], a linear combination of the vectors [1, 2, 2] 

and [0, –1, 1]. 

 A set of vectors u1, u2, ...uk is called linearly dependent if one of these vectors depends linearly 

on the rest.  For example, if 

 u1 = a2u2 + a3u3 + ...+ akuk.,          (1.36) 

the set u1, ...uk is linearly dependent. 
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 If none of the vectors u1, u2, ...uk can be written linearly in terms of the remaining ones we say 

that the vectors are linearly independent. 

 Alternatively, the vectors u1, u2, ...uk are linearly dependent if and only if there is an equation of 

the form 

 c1u1 + c2u2 + ...ckuk = 0 ,                          (1.37) 

in which the scalars ci are not all zero. 

 Consider the vectors ei obtained by putting the ith-component equal to 1, and all the other 

components equal to zero: 

 e1 = [1, 0, 0, ...0] 

 e2 = [0, 1, 0, ...0] 

 ... 

then every vector of dimension n depends linearly on e1, e2, ...en , thus 

 x = [x1, x2, ...xn] 

   = x1e1 + x2e2 + ...xnen.                          (1.38) 

The ei’s are said to span the space of all n-vectors; they form a basis.  Every basis of an  n-space has 

exactly n elements.  The connection between a vector x and a definite coordinate system is made by 

choosing a set of basis vectors ei. 

1.10  The geometry of vectors 

 The laws of vector algebra can be interpreted geometrically for vectors of dimension 2 and 3.  

Let the zero vector represent the origin of a coordinate system, and let  the 2-vectors, x and y, 
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correspond to points in the plane: P [x1, x2] and Q [y1, y2].  The vector sum x + y is represented by the 

point R, as shown 

                                                                                                                                        R [x1+y1, x2+y2]      
                             2nd component                                                                                     
                                                                                                                                     
                                                      x2            P [x1, x2]                                                                    
                                                                                                                                     
                                                       y2                                                            Q [y1, y2]                              
                                                                                                                                     
                                                                                                                                     
                                                 O [0, 0]                                                                                         
                                                                                   x1                           y1             1st  component                   
 
R is in the plane OPQ, even if x and y are 3-vectors. 

Every vector point on the line OR represents the sum of the two corresponding vector points on the 

lines OP and OQ.  We therefore introduce the concept of the directed vector lines OP, OQ, and OR, 

related by the vector equation 

  OP + OQ = OR .                          (1.39) 

A vector V can be represented as a line of length OP pointing in the direction of the unit vector v, thus 

                                                                                                                  
                                                                                          P                                              
                                                                                                                  
                                                                             V  = v.OP                                   
                                                               v                                                                        
                                           O                                                                                
                                                                                                                  
A vector V is unchanged by a pure displacement: 

                                                                                                                   
                                                                                                                   
                                                                          =               V2                                       
                                    V1                                                                                  
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where the “=” sign means equality in magnitude and direction. 

 Two classes of vectors will be met in future discussions; they are 

1.  Polar vectors: the vector is drawn in the direction of the physical quantity being represented, for 

example a velocity, 

and 

2.  Axial vectors: the vector is drawn parallel to the axis about which the physical quantity acts, for 

example an angular velocity. 

 The associative property of the sum of vectors can be readily demonstrated, geometrically 

                                                                                                                               
                                                                                                                               
                                                                                                                               
                                                                                                                                    C                          
                                                                          V                                                                    
                                                                                                                               
                                                                                                                               
                                                                                                                                      B                      
                                                                                                                               
                                                                                                                               
                                                                                  A                                                              
 
We see that  

 V = A + B + C = (A + B) + C = A + (B + C) = (A + C) + B .                                     (1.40) 

The process of vector addition can be reversed; a vector V can be decomposed into the sum of n 

vectors of which (n – 1) are arbitrary, and the nth vector closes the polygon.  The vectors need not be in 
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the same plane.  A special case of this process is the decomposition of a 3-vector into its Cartesian 

components. 

               A general case                                                                    A special case                          
                                       V                                                                                                     
                                                                  V5                                                           V                              
                                                                                                                                                          Vz        
                                                     V4                                                                                      
                    V1                                       V3                                                                              
                                                                                                                     Vx                                       
                                                                                                                                                     Vy               
                                                      V2                                                                                  
                                                                                                                                 
     V1, V2, V3, V4 : arbitrary                                                                        Vz closes the polygon 
     V5 closes the polygon 
 
The vector product of A and B is an axial vector, perpendicular to the plane containing A and B. 

                                                                      z                                                                        
                                                                                                                               
                                                                                                                               
                                                                                                                               
                                                               ̂                      B                            y                                   
                                    A × B                                                                                          
                                                                                   α                                                       
                              a unit vector , + n                                                          A                                  
 perpendicular to the A, B plane                                                                     
                                                                                                                                
                                                                                                                         x                                
 
                                          A × B = AB sinα n = – B × A                          (1.41) 

1.11  Linear Operators and Matrices 

 Transformations from a coordinate system [x, y] to another system [x ,́ y ]́, without shift of the 

origin, or from a point P [x, y] to another point P  ́[x ,́ y ]́, in the same system, that have the form 
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        x  ́= ax + by 

        y  ́= cx + dy 

where a, b, c, d are real coefficients, can be written in matrix notation, as follows 

                                     x  ́             a     b          x          
                                              =                                 ,           (1.41)   
                                     y  ́             c     d          y          
 
Symbolically, 

                                         x  ́= Mx,           (1.42) 

where  

             x = [x, y], and x  ́= [x ,́ y ]́, both column 2-vectors, 

and  

                                                      a     b          
                                         M  =                    ,   
                                                      c     d         

a 2 × 2 matrix operator that “changes” [x, y] into [x ,́ y ]́. 

 In general, M transforms a unit square into a parallelogram: 

                                y                    y  ́                                              [a+b,c+d] 
                                             [b,d]      
 
 
                           [0,1]                  [1,1] 
                                                                                                                        x  ́
                                                                               [a,c] 
                            [0,0]             [1,0]                                                                          x 
  

This transformation plays a key rôle in Einstein’s Special Theory of Relativity (see later discussion). 
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1.12  Rotation operators 

Consider the rotation of an x, y coordinate system about the origin through an angle φ: 

                           y  ́                   y  
 
                                                                                 P [x, y] or P  ́[x ,́ y ]́ 
                                                   y 
 
 
                                     y  ́
 
                                                                                                   φ 
                                                                                                                                                     x  ́
 
                                                                                                              x  ́
                                                                           +φ 
                                                 O,O  ́                                   x                                                                         x 
 
 From the diagram, we see that 

         x  ́=   xcosφ + ysinφ  

and  

         y  ́= – xsinφ + ycosφ 

or 

                         x  ́            cosφ     sinφ           x         
                                               =                                                 .  
                          y  ́         – sinφ     cosφ          y         

Symbolically, 

            P  ́= ℜc(φ)P             (1.43) 

where 
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                           cosφ      sinφ      
                                 ℜc(φ) =                                         is the rotation operator. 
                         –sinφ     cosφ        

The subscript c denotes a rotation of the coordinates through an angle +φ . 

The inverse operator, ℜc–1(φ), is obtained by reversing the angle of rotation: +φ → –φ. 

We see that matrix product 

           ℜc–1(φ)ℜc(φ) = ℜcT(φ)ℜc(φ) = I                             (1.44) 

where the superscript T indicates the transpose (rows ⇔ columns), and  
 
                                                       1     0         
                                             I =                     is the identity operator.    (1.45) 
                                                        0     1         

Eq.(1.44) is the defining property of an orthogonal matrix.  

 If we leave the axes fixed and rotate the point P[x, y] to P [́x ,́ y ]́, then 

we have 
                                               y  
 
 
                                              y  ́                                                    P  ́[x ,́ y ]́ 
 
 
 
                                             y                                                                         P [x, y]   
                                                                          φ 
 
 
                                    O                                                          x  ́               x                           x 
From the diagram, we see that 

         x  ́= xcosφ – ysinφ, and y  ́= xsinφ + ycosφ 
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or 

               P  ́= ℜv(φ)P           (1.46) 

where  
                                                          cosφ    –sinφ       
                                    ℜv(φ)  =                                     , the operator that rotates a vector through +φ. 
                                            sinφ      cosφ   

1.13  Components of a vector under coordinate rotations 

 Consider a vector V [vx, vy], and the same vector V  ́with components [vx’,vy’], in a  
 
coordinate system (primed), rotated through an angle +φ. 
                                      y  ́        y         
 
                                                  vy                                         
 
                                          vý 
                                                          V    =  V  ́
 
 
                                                                                                                                       x  ́
                                                                                                  vx́          

φ                    
                                                 O, O  ́                            vx                                            x 
 
 We have met the transformation [x, y] → [x ,́ y ]́ under the operation ℜc(φ); here, we have the 

same transformation but now it operates on the components of the vector, vx and vy, 

         [vx́, vý] = ℜc(φ)[vx, vy].      (1.47) 

 

PROBLEMS 

1-1  i) If u = 3 x/y show that ∂u/∂x = (3 x/y ln3)/y and ∂u/∂y = (–3 x/y xln3)/y2. 

      ii) If u = ln{(x3 + y)/x2} show that ∂u/∂x = (x3 – 2y)/(x(x3 +y)) and ∂u/∂y = 1/(x3 + y). 
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1-2  Calculate the second partial derivatives of  

              f(x, y) = (1/√y)exp{–(x – a)2/4y}, a = constant. 

1-3  Check the answers obtained in problem 1-2 by showing that the function f(x, y) in  

       1-2 is a solution of the partial differential equation ∂2f/∂x2 – ∂f/∂y = 0. 

1-4  If f(x, y, z) = 1/(x2 + y2 + z2)1/2 = 1/r, show that f(x, y, z) = 1/r is a solution of Laplace’s  

       equation 

             ∂2f/∂x2 + ∂2f/∂y2 + ∂2f/∂z2 = 0. 

       This important equation occurs in many branches of Physics. 

1-5  At a given instant, the radius of a cylinder is r(t) = 4cm and its height is h(t) = 10cm.  

       If r(t) and h(t) are both changing at a rate of 2 cm.s–1, show that the instantaneous  

       increase in the volume of the cylinder is 192π cm3.s–1. 

1-6  The transformation between Cartesian coordinates [x, y, z] and spherical polar  

       coordinates [r, θ, φ] is 

          x = rsinθcosφ, y = rsinθsinφ, z = rcosθ.  

       Show, by calculating all necessary partial derivatives, that the square of the line  

       element is 

                  ds2 = dr2 + r2sin2θdφ2 + r2dθ2. 

      Obtain this result using geometrical arguments.  This form of the square of the line element will be 

used on several occasions in the future. 

1-7  Prove that the inverse of each element of a group is unique. 
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1-8  Prove that the set of positive rational numbers does not form a group under division. 

1-9  A finite group of order n has n2 products that may be written in an n×n array, called the group 

multiplication table.  For example, the 4th-roots of unity {e, a, b, c} = {±1, ±i}, where i = √–1, forms a 

group under multiplication (1i = i, i(–i) = 1, i2 = –1, (–i)2 = –1, etc.  ) with a multiplication table 

    e = 1  a = i  b = –1  c = –i 

       e         1          i        –1        –i        

       a          i        –1       –i           1       

       b       –1        –i         1           i     

       c        –i          1          i        –1      

In this case, the table is symmetric about the main diagonal; this is a characteristic feature of a group in 

which all products commute (ab = ba) — it is an Abelian group. 

 If G is the dihedral group D3, discussed in the text, where G = {e, a, a2, b, c, d}, where e is the 

identity, obtain the group multiplication table. Is it an Abelian group?.  Notice that the three elements {e, 

a, a2} form a subgroup of G, whereas the three elements {b, c, d} do not; there is no identity in this 

subset. 

 The group D3 has the same multiplication table as the group of permutations of three objects.  

This is the condition that signifies group isomorphism. 

1-10  Are the sets 

 i)  {[0, 1, 1], [1, 0, 1], [1, 1, 0]} 

 and 
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 ii)  {[1, 3, 5, 7], [4, –3, 2, 1], [2, 1, 4, 5]} 

 linearly dependent?  Explain. 

1-11  i)  Prove that the vectors [0, 1, 1], [1, 0, 1], [1, 1, 0] form a basis for Euclidean space   

           R3. 

      ii)  Do the vectors [1, i] and [i, –1], (i = √–1), form a basis for the complex space C2? 

1-12  Interpret the linear independence of two 3-vectors geometrically. 

1-13  i)  If X = [1, 2, 3] and Y = [3, 2, 1], prove that their cross product is orthogonal to the X-Y plane.  

      ii)  If X and Y are 3-vectors, prove that X×Y = 0 iff X and Y are linearly dependent. 

1-14  If 
             a11    a12    a13    
               T  =      a21    a22    a23        
               0       0      1       
 
      represents a linear transformation of the plane under which distance is an invariant, 

      show that the following relations must hold : 

          a112 + a212 = a122 + a222 = 1, and a11a12 + a21a22 = 0. 
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2   

KINEMATICS: THE GEOMETRY OF MOTION 

2.1  Velocity and acceleration 

 The most important concepts in Kinematics — a subject in which the properties of the forces 

responsible for the motion are ignored — can be introduced by studying the simplest of all motions, 

namely that of a point P moving in a straight line. 

 Let a point P [t, x] be at a distance x from a fixed point O at a time t, and let it be at a point         

P  ́[t́ , x ]́ = P [́ t + Δt,  x + Δx] at a time Δt later.  The average speed of P in the interval Δt is  

 <vp> = Δx/Δt.                               (2.1) 

If the ratio Δx/Δt is not constant in time, we define the instantaneous speed of P at time t as the limiting 
value of the ratio as Δt → 0: 
                                                                                                        • 
       vp = vp(t) = limit as Δt → 0 of Δx/Δt = dx/dt = x = vx  . 

 The instantaneous speed is the magnitude of a vector called the instantaneous velocity of P:  

        v = dx/dt , a quantity that has both magnitude and direction.                          (2.2) 

 A space-time curve is obtained by plotting the positions of P as a function of t: 

                                            x                                            vṕ 

                                                                  vp                         P  ́

                                                                      P 

                                           O                                                                                                t 
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The tangent of the angle made by the tangent to the curve at any point gives the value of the 

instantaneous speed at the point. 

     The instantaneous acceleration, a , of the point P is given by the time rate-of-change of the velocity 
                                                                                    ••  
         a = dv/dt = d(dx/dt)/dt = d2x/dt2 = x .                             (2.3) 

A change of variable from t to x gives 

         a = dv/dt = dv(dx/dt)/dx = v(dv/dx).                           (2.4) 

This is a useful relation when dealing with problems in which the velocity is given as a function of the 

position.  For example 

                                           v                                           vP 

                                                                                              P 

                                                               v 

                                                                                             α 

 

                                               O                                   N                                Q                     x 

 The gradient is dv/dx and tanα = dv/dx, therefore 

 NQ, the subnormal, = v(dv/dx) = ap, the acceleration of P.                         (2.5) 

 The area under a curve of the speed as a function of time between the times t1 and t2 is 

          [A] [ t1,,t2] = ∫ [t1,tt2] v(t)dt = ∫ [t1,tt2] (dx/dt)dt = ∫ [x1,x2] dx = (x2 – x1)  

                     = distance traveled in the time t2 – t1.                           (2.6) 
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 The solution of a kinematical problem is sometimes simplified by using a graphical method, for 

example: 

 A point A moves along an x-axis with a constant speed vA.  Let it be at the origin O (x = 0) at 

time t = 0.  It continues for a distance xA, at which point it decelerates at a constant rate, finally stopping 

at a distance X from O at time T. 

 A second point B moves away from O in the +x-direction with constant acceleration.  Let it 

begin its motion at t = 0.  It continues to accelerate until it reaches a maximum speed vBmax at a time 

tBmax when at xBmax from O.  At xBmax, it begins to decelerate at a constant rate, finally stopping at X at 

time T:  To prove that the maximum speed of B during its motion is 

      vBmax = vA{1 – (xA/2X)}–1, a value that is independent of the time at which the 

maximum speed is reached. 

The velocity-time curves of the points are 

                 v       
 
                A possible path for B 
            vBmax 
 
              vA               B  
      A 
 
 
 
               O 
     t = 0                                                  tA                   tBmax         T         t 
     x = 0                                                 xA                  xBmax        X 
 
The areas under the curves give X = vAtA + vA(T – tA)/2 = vBmaxT/2, so that  
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vBmax = vA(1 + (tA/T)), but vAT = 2X – xA, therefore vBmax = vA{1 – (xA/2X)}–1 ≠ f(tBmax). 
 
2.2  Differential equations of kinematics 

 If the acceleration is a known function of time then the differential equation  

    a(t) = dv/dt               (2.7) 

can be solved by performing the integrations (either analytically or numerically) 

              ∫a(t)dt = ∫dv                 (2.8) 

If a(t) is constant then the result is simply 

             at + C = v,  where C is a constant that is given by the initial conditions. 

Let v = u when t = 0 then C = u and we have 

              at + u = v.               (2.9) 

This is the standard result for motion under constant acceleration. 

 We can continue this approach by writing: 

       v = dx/dt = u + at. 

Separating the variables, 

     dx = udt + atdt. 

Integrating gives 

       x = ut + (1/2)at2 + C  ́   (for constant a). 

If x = 0 when t = 0 then C  ́= 0, and 

   x(t) = ut + (1/2)at2.           (2.10) 

Multiplying this equation throughout by 2a gives 



 46 

                2ax = 2aut + (at)2 

         = 2aut + (v – u)2 

and therefore, rearranging, we obtain 

      v2 = 2ax – 2aut + 2vu  – u2  

                         = 2ax + 2u(v – at) – u2 

                         = 2ax + u2.                           (2.11) 

 In general, the acceleration is a given function of time or distance or velocity: 

1)  If a = f(t) then 

       a = dv/dt =f(t),                           (2.12) 

                    dv = f(t)dt, 

therefore  

       v = ∫f(t)dt + C(a constant). 

This equation can be written 

       v = dx/dt = F(t) + C, 

therefore 

                   dx = F(t)dt + Cdt. 

Integrating gives 

   x(t) = ∫F(t)dt + Ct + C .́                          (2.13) 

The constants of integration can be determined if the velocity and the position are known at a given 

time. 
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2)  If a = g(x) = v(dv/dx) then                                         (2.14) 

                vdv = g(x)dx. 

Integrating gives 

      v2 = 2∫g(x)dx + D, 

therefore 

      v2 = G(x) + D 

so that 

       v = (dx/dt) = ±√(G(x) + D).                         (2.15) 

Integrating this equation leads to 

 ±∫dx/{√(G(x) + D)} = t + D .́                         (2.16) 

Alternatively, if 

      a = d2x/dt2 = g(x) 

then, multiplying throughout by 2(dx/dt)gives  

         2(dx/dt)(d2x/dt2) = 2(dx/dt)g(x). 

Integrating then gives 

         (dx/dt) 2  = 2∫g(x)dx + D  etc. 

As an example of this method, consider the equation of simple harmonic motion (see later discussion) 

                         d2x/dt2 = –ω2x.                          (2.17) 

Multiply throughout by 2(dx/dt), then 

           2(dx/dt)d2x/dt2 = –2ω2x(dx/dt). 
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This can be integrated to give 

             (dx/dt)2 = –ω2x2 + D. 

If dx/dt = 0 when x = A then D = ω2A2, therefore 

              (dx/dt)2 = ω2(A2 – x2) = v2, 

so that 

                  dx/dt = ±ω√(A2 – x2). 

Separating the variables, we obtain 

             – dx/{√(A2 – x2)} = ωdt.    (The minus sign is chosen because dx and dt have opposite signs). 

Integrating, gives 

           cos–1(x/A) = ωt + D .́ 

But x = A when t = 0, therefore D  ́= 0, so that 

                      x(t) = Acos(ωt), where A is the amplitude.                      (2.18) 

3)  If a = h(v), then            (2.19) 

                  dv/dt = h(v) 

therefore 

                              dv/h(v) = dt, 

and 

                             ∫dv/h(v) = t + B.                          (2.20) 

 Some of the techniques used to solve ordinary differential equations are discussed in 

Appendix A. 
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2.3  Velocity in Cartesian and polar coordinates 

 The transformation from Cartesian to Polar Coordinates is represented by the linear equations 

             x = rcosφ  and y = rsinφ,                                (2.21 a,b) 

or 

             x = f(r, φ)  and y = g(r, φ). 

The differentials are 

                          dx = (∂f/∂r)dr + (∂f/∂φ)dφ  and  dy = (∂g/∂r)dr + (∂g/∂φ)dφ. 

We are interested in the transformation of the components of the velocity vector under  

[x, y] → [r, φ].  The velocity components involve the rates of change of dx and dy with respect to time: 

  dx/dt = (∂f/∂r)dr/dt + (∂f/∂φ)dφ/dt  and  dy/dt = (∂g/∂r)dr/dt + (∂g/∂φ)dφ/dt 

or 
                                       •                •                  •            •                 •                    • 
                        x = (∂f/∂r)r + (∂f/∂φ)φ  and  y = (∂g/∂r)r + (∂g/∂φ)φ.                                             (2.22) 

But, 

                 ∂f/∂r = cosφ, ∂f/∂φ = –rsinφ, ∂g/∂r = sinφ, and ∂g/∂φ = rcosφ, 

therefore, the velocity transformations are 
                                      •                •                • 
                       x = cosφ r – sinφ(r φ) = vx                        (2.23) 
and 
                                       •              •                  • 
                        y = sinφ r + cosφ(r φ) = vy.                        (2.24) 

These equations can be written 
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                            vx                 cosφ    –sinφ        dr/dt       
                                                    =                                                          .     
                            vy                  sinφ      cosφ       rdφ/dt     

Changing φ → –φ, gives the inverse equations 

 
                      dr/dt                       cosφ    sinφ             vx         
                                                     =                                         
                                    rdφ/dt                    –sinφ    cosφ            vy         

or 

                        vr                                vx 
                                                   =  ℜc(φ)               .      (2.25) 
                        vφ                                vy 

The velocity components in [r, φ] coordinates are therefore 
 
                                                                             V                               
                                          •                                                          • 
                             |vφ| = r φ = rdφ/dt                                |vr| = r =dr/dt 
 
                                                          r             P [r, φ]                      
                                                                +φ , anticlockwise                                                      
 
                                           O                                                              x  
 
The quantity dφ/dt is called the angular velocity of P about the origin O. 

2.4  Acceleration in Cartesian and polar coordinates 

 We have found that the velocity components transform from [x, y] to [r, φ] coordinates as 
follows 
                                                       •                 •      • 
                      vx = cosφ r – sinφ(r φ) = x 
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and 
                                                     •                   •       •         
                      vy = sinφ r + cosφ(r φ) = y. 
 
The acceleration components are given by 

                      ax = dvx/dt  and  vy = dvy/dt  

We therefore have 
                                                                 •                 •   
                      ax = (d/dt){cosφ r – sinφ(r φ)}                        (2.26) 
 
 
                                                     ••       •                    •  •        •• 
                         = cosφ(r – r φ2) – sinφ(2r φ + r φ) 
 
and 
                                                                •                •   •  
                      ay = (d/dt){sinφ r + cosφ(r φ)}                                                                                        (2.27) 
                                                     •   •       ••               ••       •   
                                    = cosφ(2r φ + r φ) + sinφ(r – r φ2). 
 
These equations can be written 

                                    ar                 cosφ     sinφ          ax       
                                              =                                                 .        (2.28) 
                      aφ               –sinφ    cosφ          ay          
 
The acceleration components in [r, φ] coordinates are therefore 
 
                                                                        A                                     
                                          •   •        •• 
                             |aφ| = 2r φ + r φ                              ••      • 
                                                                             |ar| = r – r φ2            
                                                      r            P [r, φ] 
                                                                φ 
 
                                     O                                                                x             
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These expressions for the components of acceleration will be of key importance in discussions of 

Newton’s Theory of Gravitation. 

 We note that, if r is constant, and the angular velocity ω is constant then 
                                                 ••       •  
                      aφ  = r φ = rω = 0,                         (2.29) 
                                                  •                       
                       ar  = – r φ2 = – rω2 = – r(vφ/r)2 = – vφ2/r,                                      (2.30) 
 
and                                          •  
                       vφ = r φ = rω.                               (2.31) 
 
These equations are true for circular motion. 
 
 

PROBLEMS 

2-1  A point moves with constant acceleration, a, along the x-axis.  If it moves distances ∆x1  

      and ∆x2 in successive intervals of time ∆t1 and ∆t2, prove that the acceleration is 

           a = 2(v2 – v1)/T 

       where v1 = ∆x1/∆t1, v2 = ∆x2/∆t2, and T = ∆t1 + ∆t2. 

2-2  A point moves along the x-axis with an instantaneous deceleration (negative    

       acceleration): 

       a(t) ∝ –vn+1(t) 

       where v(t) is the instantaneous speed at time t, and n is a positive integer.  If the  

       initial speed of the point is u (at t = 0), show that 

          knt = {(un – vn)/(uv)n}/n, where kn is a constant of proportionality, 
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      and that the distance travelled, x(t), by the point from its initial position is 

      knx(t) = {(un–1 – vn–1)/(uv)n–1}/(n – 1). 

2-3  A point moves along the x-axis with an instantaneous deceleration kv3(t), where v(t) is  

       the speed and k is a constant.  Show that  

        v(t) = u/(1 + kux(t)) 

       where x(t) is the distance travelled, and u is the initial speed of the point. 

2-4  A point moves along the x-axis with an instantaneous acceleration 

  d2x/dt2 = – ω2/x2 

       where ω is a constant.  If the point starts from rest at x = a, show that the speed of  

       the particle  is 

    dx/dt = – ω{2(a – x)/(ax)}1/2. 

       Why is the negative square root chosen? 

2-5  A point P moves with constant speed v along the x-axis of a Cartesian system, and a 

      point Q moves with constant speed u along the y-axis.  At time t = 0, P is at x = 0, and  

      Q, moving towards the origin, is at y = D.  Show that the minimum distance, dmin,  

      between P and Q during their motion is 

      dmin = D{1/(1 + (u/v)2)}1/2. 

      Solve this problem in two ways:1) by direct minimization of a function, and 2) by a  

      geometrical method that depends on the choice of a more suitable frame of reference  

      (for example, the rest frame of P). 
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2-6  Two ships are sailing with constant velocities u and v on straight courses that are  

       inclined at an angle θ.  If, at a given instant, their distances from the point of 

       intersection of their courses are a and b, find their minimum distance apart. 

2-7  A point moves along the x-axis with an acceleration a(t) = kt2, where t is the time the  

       point has been in motion, and k is a constant. If the initial speed of the point is u,  

      show that the distance travelled in time t is 

     x(t) = ut + (1/12)kt4. 

2-8  A point, moving along the x-axis, travels a distance x(t) given by the equation 

  x(t) = aexp{kt} + bexp{–kt} 

       where a, b, and k are constants.  Prove that the acceleration of the point is   

       proportional to the distance travelled. 

2-9  A point moves in the plane with the equations of motion 

  d2x/dt2                  –2       1           x       
                                                 =                                           . 
  d2y/dt2                    1     –2           y     

      Let the following coordinate transformation be made 

  u = (x + y)/2 and v = (x – y)/2. 

      Show that in the u-v frame, the equations of motion have a simple form, and that the 

      time-dependence of the coordinates is given by 

  u = Acost + Bsint, 

      and 
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  v = Ccos√3 t + Dsin√3 t, where A, B, C, D are constants. 

      This coordinate transformation has “diagonalized” the original matrix: 

 

     –2      1                     –1     0       
          →                          . 
      1    –2                        0    –3        
 

       The matrix with zeros everywhere, except along the main diagonal, has the    

       interesting property that it simply scales the vectors on which it acts — it does not  

       rotate them.  The scaling values are given by the diagonal elements, called the  

       eigenvalues of the diagonal matrix.  The scaled vectors are called eigenvectors.  A  

       small industry exists that is devoted to finding optimum ways of diagonalizing large  

       matrices.  Illustrate the motion of the system in the x-y frame and in the u-v frame. 
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3   

CLASSICAL AND SPECIAL RELATIVITY 

3.1  The Galilean transformation 

 Events belong to the physical world — they are not abstractions.  We shall, nonetheless, 

introduce the idea of an ideal event that has neither extension nor duration.  Ideal events may be 

represented as points in a space-time geometry.  An event is described by a four-vector E[t, x, y, z] 

where t is the time, and x, y, z are the spatial coordinates, referred to arbitrarily chosen origins. 

 Let an event E[t, x], recorded by an observer O at the origin of an x-axis, be recorded as the 

event E [́t́ , x ]́ by a second observer O ,́ moving at constant speed V along the x-axis.  We suppose 

that their clocks are synchronized at t = t́  = 0 when they coincide at a common origin, x = x  ́= 0.  

At time t, we write the plausible equations 

                                 t́  = t 

and 

                                x  ́= x – Vt, 

where Vt is the distance travelled by O  ́in a time t.  These equations can be written 

                               E  ́ = GE              (3.1) 

where 

                                                 1    0       
                                G  =                  . 
                                              –V    1        
 
G is the operator of the Galilean transformation. 
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 The inverse equations are 

                                  t  = t́  

and 

                                 x  = x  ́+ Vt́  

or 

                                E  = G–1E  ́                             (3.2) 

 

where G–1 is the inverse Galilean operator.  (It undoes the effect of G). 

 If we multiply t and t́  by the constants k and k ,́ respectively, where k and k´have dimensions 

of velocity then all terms have dimensions of length. 

 In space-space, we have the Pythagorean form x2 + y2 = r2 (an invariant under rotations).  We 

are therefore led to ask the question: is (kt)2 + x2 an invariant under G in space-time?  Direct calculation 

gives 

                     (kt)2 + x2  = (k t́́ )2 + x 2́ + 2Vx t́́  + V2t́ 2 

                                      = (k t́́ )2 + x 2́  only if V = 0 ! 

We see, therefore, that Galilean space-time does not leave the sum of squares invariant.  We note, 

however, the key rôle played by acceleration in Galilean-Newtonian physics: 

 The velocities of the events according to O and O  ́are obtained by differentiating  

                                 x  ́= –Vt + x with respect to time, giving 

                                  v´= –V + v,                             (3.3) 
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a result that agrees with everyday observations. 

 Differentiating v  ́with respect to time gives 

                         dv /́dt́ = a  ́= dv/dt = a                            (3.4) 

where a and a´are the accelerations in the two frames of reference. The classical acceleration is an 

invariant under the Galilean transformation.  If the relationship          v´= v – V is used to describe the 

motion of a pulse of light, moving in empty space at       v = c ≅ 3 x 108 m/s, it does not fit the facts.  For 

example, if V is 0.5c, we expect to obtain v  ́= 0.5c, whereas, it is found that v  ́= c.  Indeed, in all cases 

studied, v  ́= c for all values of V. 

3.2  Einstein’s space-time symmetry: the Lorentz transformation 

 It was Einstein, above all others , who advanced our understanding of the nature of space-

time and relative motion.  He made use of a symmetry argument to find the changes that must be 

made to the Galilean transformation if it is to account for the relative motion of rapidly moving objects 

and of beams of light.  Einstein recognized an inconsistency in the Galilean-Newtonian equations, 

based as they are, on everyday experience. The discussion will be limited to non-accelerating, or so 

called inertial, frames  

 We have seen that the classical equations relating the events E and E  ́are          E  ́= GE, and 

the inverse E = G–1E  ́where 

                                                            1    0                                       1    0        
                                           G   =                           and  G–1   =                       .   
                            –V    1                                       V    1        
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These equations are connected by the substitution V ↔ –V; this is an algebraic statement of the 

Newtonian principle of relativity.  Einstein incorporated this principle in his theory.  He also retained the 

linearity of the classical equations in the absence of any evidence to the contrary.  (Equispaced 

intervals of time and distance in one inertial frame remain equispaced in any other inertial frame).  He 

symmetrized the space-time equations as follows: 

                                        t́                  1   –V           t              
                                                 =                                    .            (3.5) 
                                        x  ́            –V     1            x               
 
Note, however, the inconsistency in the dimensions of the time-equation that has now been introduced: 

                      t́  =  t – Vx. 

The term Vx has dimensions of [L]2/[T], and not [T].  This can be corrected by introducing the invariant 

speed of light, c — a postulate in Einstein's theory that is consistent with the result of the Michelson-

Morley experiment: 

                               ct́  = ct – Vx/c 

so that all terms now have dimensions of length. 

 Einstein went further, and introduced a dimensionless quantity γ instead of the scaling factor of 

unity that appears in the Galilean equations of space-time.  This factor must be consistent with all 

observations.  The equations then become 

                                 ct́ =       γct –  βγx  

                                 x  ́= –βγct +    γx , where β=V/c. 

These can be written 
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                                           E  ́ = LE,                                 (3.6) 

where 

                                                             γ   –βγ         
                                              L =                             ,  
                           –βγ       γ          
 
and                                      E = [ct, x] . 

L is the operator of the Lorentz transformation. 

 The inverse equation is 

                                            E  =  L–1E  ́             (3.7) 

where 

                                                            γ    βγ            
                                           L–1 =                          . 
                                                          βγ      γ            
 
This is the inverse Lorentz transformation, obtained from L by changing β → –β   (V →  –V); it has the 

effect of undoing the transformation L.  We can therefore write 

                                         LL–1 = I               (3.8) 

Carrying out the matrix multiplications, and equating elements gives 

                                 γ2 – β2γ2 = 1 

therefore,  

                                               γ = 1/√(1 – β2) (taking the positive root).                            (3.9) 

As V → 0, β → 0 and therefore γ → 1; this represents the classical limit in which the Galilean 

transformation is, for all practical purposes, valid.  In particular, time and space intervals have the same 
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measured values in all Galilean frames of reference, and acceleration is the single fundamental 

invariant.  

3.3  The invariant interval: contravariant and covariant vectors 

 Previously, it was shown that the space-time of Galileo and Newton is not Pythagorean under 

G.  We now ask the question: is Einsteinian space-time Pythagorean under L ?  Direct calculation 

leads to 

                       (ct)2 + x2 = γ2(1 + β2)(ct́ )2 + 4βγ2x ćt́  

                                        +γ2(1 + β2)x 2́ 

                                       ≠ (ct́ )2 + x 2́ if β > 0. 

Note, however, that the difference of squares is an invariant: 

                        (ct)2 – x2 = (ct́ )2 – x 2́                                          (3.10) 

because 

                      γ2(1 – β2) = 1. 

Space-time is said to be pseudo-Euclidean.  The negative sign that characterizes Lorentz invariance 

can be included in the theory in a general way as follows. 

 We introduce two kinds of 4-vectors 

                                  xµ = [x0, x1, x2, x3], a contravariant vector,                                      (3.11) 

and 

                                  xµ = [x0, x1,  x2, x3], a covariant vector, where 

                                  xµ = [x0, –x1, –x2, –x3].                            (3.12) 



 62 

The scalar (or inner) product of the vectors is defined as 

                             xµTxµ =(x0, x1, x2, x3)[x0, –x1, –x2, –x3], to conform to matrix multiplication 
                                                    ↑                     ↑       
                                                  row               column 
 
                                      =(x0)2 – ((x1)2 + (x2)2 + (x3)2) .                                       (3.13) 

The superscript T is usually omitted in writing the invariant; it is implied in the form xµxµ.  

The event 4-vector is 

                                 Eµ = [ct, x, y, z] and the covariant form is 

                                 Eµ = [ct, –x, –y, –z] 

so that the invariant scalar product is 

                              EµEµ = (ct)2 – (x2 + y2 + z2).                        (3.14) 

A general Lorentz 4-vector xµ transforms as follows: 

                                x'µ = Lxµ            (3.15) 

where 

                                                              γ   –βγ     0      0            
                                             L =      –βγ        γ     0      0         
                                                               0       0      1      0         
                                                              0       0      0      1            
  
This is the operator of the Lorentz transformation if the motion of O  ́is along the x-axis of O's frame of 

reference, and the initial times are synchronized (t = t́  = 0 at x = x  ́= 0).  

 Two important consequences of the Lorentz transformation, discussed in 3.5, are that intervals 

of time measured in two different inertial frames are not the same; they are related by the equation 

                   Δt́  = γΔt                          (3.16) 
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where Δt is an interval measured on a clock at rest in O's frame, and distances are given by 

                    Δĺ  = Δl/γ                          (3.17) 

where Δl is a length measured on a ruler at rest in O's frame. 

3.4  The group structure of Lorentz transformations 

 The square of the invariant interval s,  between the origin [0, 0, 0, 0] and an arbitrary event xµ = 

[x0, x1, x2, x3] is, in index notation 

                       s2 = xµxµ = x´µx µ́ , (sum over µ = 0, 1, 2, 3).                                     (3.18) 

The lower indices can be raised using the metric tensor ηµν = diag(1, –1, –1, –1), so that 

                       s2 = ηµνx
µxν = ηµνx´µx v́ , (sum over µ and ν).                                     (3.19) 

The vectors now have contravariant forms. 

 In matrix notation, the invariant is 

                       s2 = xTηx = x T́ηx  ́.                         (3.20) 

(The transpose must be written explicitly). 

The primed and unprimed column matrices (contravariant vectors) are related by the Lorentz matrix 

operator, L 

                      x  ́= Lx . 

We therefore have 

                  xTηx = (Lx)Tη(Lx) 

                           = xTLTηLx . 

The x’s are arbitrary, therefore 
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                  LTηL = η.           (3.21) 

This is the defining property of the Lorentz transformations. 

 The set of all Lorentz transformations is the set L of all 4 x 4 matrices that satisfies the defining 

property 

                       L = {L: LTηL = η; L all 4 x 4 real matrices; η = diag(1, –1, –1, –1}. 

(Note that each L has 16 (independent) real matrix elements, and therefore belongs to the 16-

dimensional space, R16). 

 Consider the result of two successive Lorentz transformations L1 and L2 that transform a 4-

vector x as follows 

                       x → x  ́→ x´́  

where 

            x  ́= L1x , 

and 

          x´́   = L2x .́ 

The resultant vector x´́  is given by 

           x´́  = L2(L1x) 

                   = L2L1x  

                  = Lcx  

where 

              Lc = L2L1 (L1 followed by L2).                        (3.22) 
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If the combined operation Lc is always a Lorentz transformation then it must satisfy 

                LcTηLc = η . 

We must therefore have 

    (L2L1)Tη(L2L1) = η 

or 

       L1T(L2TηL2)L1 = η 

so that 

                 L1TηL1 = η,    (L1, L2 ∈ L) 

therefore  

             Lc = L2L1 ∈ L .          (3.23) 

Any number of successive Lorentz transformations may be carried out to give a resultant that is itself a 

Lorentz transformation. 

 If we take the determinant of the defining equation of L,  

          det(LTηL) = detη 

we obtain 

     (detL)2 = 1  (detL = detLT) 

so that  

         detL = ±1.                          (3.24) 

 Since the determinant of L is not zero, an inverse transformation L–1 exists, and the equation L–1L = I, 

the identity, is always valid. 
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 Consider the inverse of the defining equation 

             (LTηL)–1 = η–1 , 

or 

        L–1η–1(LT)–1 = η–1 . 

Using η = η–1, and rearranging, gives 

          L–1η(L–1)T = η .           (3.25) 

This result shows that the inverse L–1 is always a member of the set L. 

 The Lorentz transformations L are matrices, and therefore they obey the associative property 

under matrix multiplication. 

 We therefore see that  

 1. If L1 and L2 ∈ L , then L2 L1 ∈ L 

 2. If L ∈ L , then L–1 ∈ L 

 3. The identity I = diag(1, 1, 1, 1) ∈ L 

and  

 4. The matrix operators L obey associativity. 

The set of all Lorentz transformations therefore forms a group. 

3.5  The rotation group 

 Spatial rotations in two and three dimensions are Lorentz transformations in which the time-

component remains unchanged.  In Chapter 1, the geometrical properties of the rotation operators are 

discussed.  In this section, we shall consider the algebraic structure of the operators. 
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 Let ℜ be a real 3×3 matrix that is part of a Lorentz transformation with a constant  
 
time-component, 
                                                              1  0  0  0        
                                                              0                                                                                                                (3.26) 
                                              L  =         0     ℜ          .  
                                                              0                    
 

In this case, the defining property of the Lorentz transformations leads to 

                  1  0  0  0               1  0  0  0                1  0  0  0                      1  0  0  0             
                  0                            0 -1  0  0                0                                   0 -1  0  0             
                  0     ℜT                0  0 -1  0                0      ℜ             =         0  0 -1  0                                           (3.27)  
                  0                            0  0  0 -1                0                                   0  0  0 -1             
                                                                                                               
so that 

         ℜTℜ = I , the identity matrix, diag(1,1,1). 

This is the defining property of a three-dimensional orthogonal matrix.  (The related two -dimensional 

case is treated in Chapter 1). 

 If x = [x1, x2, x3] is a three-vector that is transformed under ℜ to give x  ́then 

  x T́x  ́= xTℜTℜx = xTx = x12 + x22 + x32 = invariant under ℜ.                                    (3.28) 

The action of ℜ on any three-vector preserves length.  The set of all 3×3 orthogonal matrices is 

denoted by O(3), 

  O(3) = {ℜ: ℜTℜ = I, rij ∈ Reals}. 

The elements of this set satisfy the four group axioms. 
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3.6  The relativity of simultaneity: time dilation and length contraction 

 In order to record the time and place of a sequence of events in a particular inertial reference 

frame, it is necessary to introduce an infinite set of adjacent “observers”, located throughout the entire 

space.  Each observer, at a known, fixed position in the reference frame, carries a clock to record the 

time and the characteristic property of every event in his immediate neighborhood.  The observers are 

not concerned with non-local events.  The clocks carried by the observers are synchronized — they all 

read the same time throughout the reference frame.  The process of synchronization is discussed later.  

It is the job of the chief observer to collect the information concerning the time, place, and characteristic 

feature of the events recorded by all observers, and to construct the world line (a path in space-time), 

associated with a particular characteristic feature (the type of particle, for example).   

 Consider two sources of light, 1 and 2, and a point M midway between them.  Let E1 denote 

the event “flash of light leaves 1”, and E2 denote the event “flash of light leaves 2”.  The events E1 and 

E2 are simultaneous if the flashes of light from 1 and 2 reach M at the same time.  The fact that the 

speed of light in free space is independent of the speed of the source means that simultaneity is 

relative.   

 The clocks of all the observers in a reference frame are synchronized  by correcting them for 

the speed of light as follows: 

 Consider a set of clocks located at x0, x1, x2, x3, ... along the x-axis of a reference frame.  Let x0 

be the chief’s clock, and let a flash of light be sent from the clock at x0 when it is reading t0 (12 noon, 

say).  At the instant that the light signal reaches the clock at x1, it is set to read t0 + (x1/c), at the instant 
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that the light signal reaches the clock at x2, it is set to read t0 + (x2/c) , and so on for every clock along the 

x-axis.  All clocks in the reference frame then “read the same time” — they are synchronized.  From the 

viewpoint of all other inertial observers, in their own reference frames, the set of clocks, sychronized 

using the above procedure, appears to be unsychronized.  It is the lack of symmetry in the 

sychronization of clocks in different reference frames that leads to two non-intuitive results namely,  

length contraction and time dilation.   

 Length contraction: an application of the Lorentz transformation. 

Consider a rigid rod at rest on the x-axis of an inertial reference frame S .́  Because it is at rest, it does 

not matter when its end-points x1́  and x2́  are measured to give the rest-, or proper-length of the rod, L0́  

= x2́  – x1́ .  

Consider the same rod observed in an inertial reference frame S that is moving with constant velocity –

V  with its x-axis parallel to the x -́axis.  We wish to determine the length of the moving rod;  we require 

the length L = x2 – x1 according to the observers in S.  This means that the observers in S must 

measure x1 and x2 at the same time in their reference frame.  The events in the two reference frames 

S, and S  ́are related by the spatial part of the Lorentz transformation: 

           x  ́= –βγct + γx  

and therefore  

               x2́  – x1́  = –βγc(t2 – t1) + γ(x2 – x1). 

where  

                          β = V/c and γ = 1/√(1 – β2). 
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Since we require the length (x2 – x1) in S to be measured at the same time in S, we must have t2 – t1 = 

0, and therefore 

          L0́  = x2́  – x1́  = γ(x2 – x1) , 

or 

           L0́ (at rest) = γL (moving).                         (3.29) 

The length of a moving rod, L, is therefore less than the length of the same rod measured at rest, L0 

because γ > 1. 

 Time dilation 

 Consider a clock at rest at the origin of an inertial frame S ,́ and a set of synchronized clocks at 

x0, x1, x2, ... on the x-axis of another inertial frame S.  Let S  ́move at constant speed V relative to S, 

along the common x -, x -́ axis.  Let the clocks at xo, and xó  be sychronized to read t0 , and t0́  at the 

instant that they coincide in space.  A proper time interval is defined to be the time between two events 

measured in an inertial frame in which the two events occur at the same place.  The time part of the 

Lorentz transformation can be used to relate an interval of time measured on the single clock in the S  ́

frame, and the same interval of time measured on the set of synchronized clocks at rest in the S frame.  

We have 

            ct = γct́  + βγx  ́

or 

                c(t2 – t1) = γc(t2́  – t1́ ) + βγ(x2́  – x1́ ). 

There is no separation between a single clock and itself, therefore x2́  – x1́  = 0, so that  
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 c(t2 – t1)(moving) = γc(t2́  – t1́ )(at rest)    (γ > 1).                       (3.30) 

A moving clock runs more slowly than a clock at rest. 

In Chapter 1, it was shown that the general 2 ×2 matrix operator transforms rectangular coordinates 

into oblique coordinates.  The Lorentz transformation is a special case of the   2 × 2 matrices, and 

therefore its effect is to transform rectangular space-time coordinates into oblique space-time 

coordinates: 

 
                                                  x               x  ́                                                                      
                                                                                                                                
                                                         tan–1β                                                                           
                                                                                                                                  
                                                                                        E [ct, x] or E [́ ct́ , x ]́                            
                                                                                                                                  
                                                                                                                                 ct́                          
                                                                                                                                 
                                                                                                    tan–1β                                     
                                                                                                                                 
                                                                                                                                   ct                            
 
                                          The geometrical form of the Lorentz transformation 

 The symmetry of space-time means that the transformed axes rotate through equal angles, 

tan–1β.  The relativity of simultaneity is clearly exhibited on this diagram: two events that occur at the 

same time in the ct, x -frame necessarily occur at different times in the oblique ct́ , x -́frame. 

3.7  The 4-velocity 
 
 A differential time interval, dt, cannot be used in a Lorentz-invariant way in kinematics.  We 

must use the proper time differential interval, dτ, defined by 
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                    (cdt)2 – dx2 = (cdt́ )2 – dx 2́ ≡ (cdτ)2.                        (3.31) 

 The Newtonian 3-velocity is 

                                   vN = [dx/dt, dy/dt, dz/dt], 

and this must be replaced by the 4-velocity 

                                   Vµ = [d(ct)/dτ, dx/dτ, dy/dτ, dz/dτ] 

                                       = [d(ct)/dt, dx/dt, dy/dt, dz/dt](dt/dτ) 

                                       = [γc, γvN] .                          (3.32) 

The scalar product is then 

                               VµVµ = (γc)2 – (γvN)2   (the transpose is understood)  

                                       = (γc)2(1 – (vN/c)2)  

                                       = c2.                           (3.33) 

The magnitude of the 4-velocity is therefore Vµ = c, the invariant speed of light. 
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PROBLEMS 

3-1 Two points A and B move in the plane with constant velocities |vA| = √2 m.s–1 and |vB| = 2√2 m.s–1.  

They move from their initial (t = 0) positions, A(0)[1, 1] and B(0)[6, 2] as shown: 

           y, m     
    6 
 
    5 
 
    4 
            vB 
    3 
 
    2                                                                                B(0) 
                   vA     
    1      A(0)                              R(0) 
 
    0 
         0          1          2           3          4          5          6           7         8    x, m 
 

 Show that the closest distance between the points is |R|min = 2.529882..meters,  

       and that it occurs 1.40...seconds after they leave their initial positions. (Remember   

       that all inertial frames are equivalent, therefore choose the most appropriate for  

       dealing with this problem). 

3-2  Show that the set of all standard (motion along the common x-axis) Galilean  

       transformations forms a group. 

3-3  A flash of light is sent out from a point x1 on the x-axis of an inertial frame S, and it is  

       received at a point x2 = x1 + l.  Consider another inertial frame, S ,́ moving with  

       constant speed V = βc along the x-axis; show that, in S :́ 
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      i) the separation between the point of emission and the point of reception of the light  

      is                      ĺ  = l{(1 – β)/(1 + β)}1/2    

      ii) the time interval between the emission and reception of the light is 

             ∆t́  = (l/c){(1 – β)/(1 + β)}1/2. 

3-4  The distance between two photons of light that travel along the x-axis of an inertial   

       frame, S, is always l.  Show that, in a second inertial frame, S ,́ moving at constant  

       speed V = βc along the x-axis, the separation between the two phot ons is 

             ∆x  ́= l{(1 + β)/(1 – β)}1/2. 

3-5  An event [ct, x] in an inertial frame, S, is transformed under a standard Lorentz 

       transformation to [ct́ , x ]́ in a standard primed frame, S ,́ that has a constant speed V 

      along the x-axis, show that the velocity components of the point x, x  ́are related by  

      the equation 

                 vx = (vx́  + V)/(1 + (vx́ V/c2)). 

3-6  An object called a K0-meson decays when at rest into two objects called π-mesons  

      (π±), each with a speed of 0.8c.  If the K0-meson has a measured speed of 0.9c when it  

     decays, show that the greatest speed of one of the π-mesons is (85/86)c and that its  

      least speed is (5/14)c. 
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4   

NEWTONIAN DYNAMICS  

 Although our discussion of the geometry of motion has led to major advances in our 

understanding of measurements of space and time in different inertial systems, we have yet to come to 

the crux of the matter, namely — a discussion of the effects of forces on the motion of two or more 

interacting particles.  This key branch of Physics is called Dynamics.  It was founded by Galileo and 

Newton and perfected by their followers, most notably Lagrange and Hamilton.  We shall see that the 

Newtonian concepts of momentum and kinetic energy require fundamental revisions in the light of the 

Einstein’s Special Theory of Relativity.  The revised concepts come about as a result of Einstein's 

recognition of the crucial rôle of the Principle of Relativity in unifying the dynamics of all mechanical and 

optical phenomena.  In spite of the conceptual difficulties inherent in the classical concepts, (difficulties 

that will be discussed later), the subject of Newtonian dynamics represents one of the great triumphs of 

Natural Philosophy.  The successes of the classical theory range from accurate descriptions of the 

dynamics of everyday objects to a detailed understanding of the motions of galaxies.  

4.1  The law of inertia 

Galileo (1544-1642) was the first to develop a quantitative approach to the study of  motion.  He 

addressed the question — what property of motion is related to force?  Is it the position of the moving 

object?  Is it the velocity of the moving object?  Is it the rate of change of its velocity? ...The answer to 

the question can be obtained only from observations; this is a basic feature of Physics that sets it apart 

from Philosophy proper.  Galileo observed that force influences the changes in velocity (accelerations) 
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of an object and that, in the absence of external forces (e.g: friction), no force is needed to keep an 

object in motion that is travelling in a straight line with constant speed.  This observationally based law is 

called the Law of Inertia.  It is, perhaps, difficult for us to appreciate the impact of Galileo's new ideas 

concerning motion. The fact that an object resting on a horizontal surface remains at rest unless 

something we call force is applied to change its state of rest was, of course, well-known before Galileo's 

time.  However, the fact that the object continues to move after the force ceases to be applied caused 

considerable conceptual difficulties for the early Philosophers (see Feynman The Character of Physical 

Law).  The observation that, in practice, an object comes to rest due to frictional forces and air 

resistance was recognized by Galileo to be a side effect, and not germane to the fundamental question 

of motion.  Aristotle, for example, believed that the true or natural state of motion is one of rest.  It is 

instructive to consider Aristotle's conjecture from the viewpoint of the Principle of Relativity —- is a 

natural state of rest consistent with this general Principle?  According to the general Principle of 

Relativity, the laws of motion have the same form in all frames of reference that move with constant 

speed in straight lines with respect to each other. An observer in a reference frame moving with 

constant speed in a straight line with respect to the reference frame in which the object is at rest would 

conclude that the natural state or motion of the object is one of constant speed in a straight line, and not 

one of rest. All inertial observers, in an infinite number of frames of reference, would come to the same 

conclusion.  We see, therefore, that Aristotle's conjecture is not consistent with this fundamental 

Principle. 
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4.2  Newton’s laws of motion 

 During his early twenties, Newton postulated three Laws of Motion that form the basis of 

Classical Dynamics.  He used them to solve a wide variety of problems including the dynamics of the 

planets. The Laws of Motion, first published in the Principia in 1687, play a fundamental rôle in 

Newton’s Theory of Gravitation (Chapter 7); they are:  

1.  In the absence of an applied force, an object will remain at rest or in its present state of constant 

speed in a straight line (Galileo's Law of Inertia)  

2.  In the presence of an applied force, an object will be accelerated in the direction of the applied force 

and the product of its mass multiplied by its acceleration is equal to the force.  

and,  

3.  If a body A exerts a force of magnitude |FAB| on a body B, then B exerts a force of equal magnitude 

|FBA| on A..  The forces act in opposite directions so that 

   FAB = –FBA . 

In law number 2, the acceleration lasts only while the applied force lasts.  The applied force need not, 

however, be constant in time — the law is true at all times during the motion.  Law number 3 applies to 

“contact” interactions.  If the bodies are separated, and the interaction takes a finite time to propagate 

between the bodies, the law must be modified to include the properties of the “field “ between the 

bodies.  This important point is discussed in Chapter 7.   

4.3  Systems of many interacting particles: conservation of linear and angular  

        momentum 
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 Studies of the dynamics of two or more interacting particles form the basis of a key part of 

Physics.  We shall deduce two fundamental principles from the Laws of Motion; they are: 

1)  The Conservation of Linear Momentum which states that, if there is a direction in which the sum of 

the components of the external forces acting on a system is zero, then the linear momentum of the 

system in that direction is constant, and 

2)  The Conservation of Angular Momentum which states that, if the sum of the moments of the 

external forces about any fixed axis (or origin) is zero, then the angular momentum about that axis (or 

origin) is constant.  

The new terms that appear in these statements will be defined later. 

 The first of these principles will be deduced by considering the dynamics of two interacting 

particles of masses ml and m2  wiith instantaneous coordinates [xl, y1 ] and [x2, y2], respectively.  In 

Chapter 12, these principles will be deduced by considering the invariance of the Laws of Motion under 

translations and rotations of the coordinate systems.  

 Let the external forces acting on the particles be F1 and F2 , and let the mutual interactions be 

F21́  and F12́ .  The system is as shown 

                                          y                                                                                             
                                                                                                                               
                                                                           F1                                 F2                                    
                                                                                                   m2                                              
                                                                                              F12́                                          
                                                                m1             F21́                                                             
                                                                                                                                
                                        O                                                                                        x                                
 
Resolving the forces into their x- and y-components gives 
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                                           y                                                                                              
                                                                                                          Fy2                                         
                                                                   Fy1                                                                        
                                                                                               Fx12́                                 Fx2                        
                                                                                                         Fy12́        m2                                              
                                                              Fy21́                   Fx1 
                                                    m1                     Fx21́                                                            
                                                                                                                                   
                                           O                                                                                                     
                                                                                                                             x                                     
a) The equations of motion 

 The equations of motion for each particle are 

1) Resolving in the x-direction 

          Fx1 + Fx21́  = m1 (d2x1/dt2)                            (4.1) 

and 

           Fx2 – Fx12́  = m2(d2x2/dt2).                            (4.2) 

Adding these equations gives 

  Fx1 + Fx2 + (Fx21́  – Fx12́ ) = m1(d2x1/dt2) + m2(d2x2/dt2).                                       (4.3)  

2) Resolving in the y-direction gives a similar equation, namely 

  Fy1 + Fy2 + (Fy21́  – Fy12́ ) = m1(d2y1/dt2) + m2(d2y2/dt2).                                       (4.4) 

b)  The rôle of Newton’s 3rd Law 

For instantaneous mutual interactions, Newton’s 3rd Law gives |F21́ | = |F12́ |  

so that the x- and y-components of the internal forces are themselves equal and opposite, therefore the 

total equations of motion are 

  Fx1 + Fx2 = m1(d2x1/dt2) + m2(d2x2/dt2),                          (4.5) 
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and 

  Fy1 + Fy2 = m1(d2y1/dt2) + m2(d2y2/dt2).           (4.6) 

c)  The conservation of linear momentum 

          If the sum of the external forces acting on the masses in the x-direction is zero, then 

  Fx1 + Fx2 = 0 ,              (4.7) 

in which case, 

  0 = m1(d2x1/dt2) + m2(d2x2/dt2)  

or 

  0 = (d/dt)(m1vx1) + (d/dt)(m2vx2), 

which, on integration gives  

  constant = m1vx1 + m2vx2 .                            (4.8) 

The product (mass × velocity) is the linear momentum.  We therefore see that if there is no resultant 

external force in the x-direction, the linear momentum of the two particles in the x-direction is conserved.  

The above argument can be generalized so that we can state: the linear momentum of the two 

particles is constant in any direction in which there is no resultant external force. 

4.3.1  Interaction of n-particles 

 The analysis given in 4.3 can be carried out for an arbitrary number of particles, n, 
 
with masses m1, m2, ...mn and with instantaneous coordinates [x1, y1], [x2, y2] ..[xn, yn].  The  
 
mutual interactions cancel in pairs so that the equations of motion of the n-particles are, in  
 
the x-direction 
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                                             ••                      ••                             ••   
       Fx1 + Fx2 + ... Fxn = m1x1 + m2x2 + ... mnxn = sum of the x-components of                                           (4.9) 
 
                         the external forces acting on the masses, 
 
and, in the y-direction 
                                              ••                      ••                           •• 
        Fy1 + Fy2 + ... Fyn = m1y1 + m1y2 + ...mnyn = sum of the y-components of                                         (4.10) 
 
           the external forces acting on the masses. 
 
 In this case, we see that if the sum of the components of the external forces acting on the 

system in a particular direction is zero, then the linear momentum of the system in that direction is 

constant.  If, for example, the direction is the x-axis then 

  m1vx1 + m2vx2 + ... mnvxn = constant.        (4.11) 

4.3.2  Rotation of two interacting particles about a fixed point 

 We begin the discussion of the second fundamental conservation law by considering the 

motion of two interacting particles that move under the influence of external forces F1 and F2, and 

mutual interactions (internal forces) F21́  and F12́ .  We are interested in the motion of the two masses 

about a fixed point O that is chosen to be the origin of Cartesian coordinates.  The perpendiculars 

drawn from the point O to the lines of action of the forces are R1, R2, and R’.  The system is illustrated in 

the following figure. 
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                                         y                                           F2                          
                                                                                                                             F1                                                          
                                                                                                    F12́          m2                                 
 
                                                                            m1            F21́                                                 
                                                                                                                        ̂                               
                                                                                              +  Moment            
                                                                                                                            
                                        R  ́                                                                                            
                                            O                                                                                        
                                                    R1          R2                                                       x                          
                                                                                                                                                                                                                                                        
a)  The moment of forces about a fixed origin 

 The total moment Γ1,2 of the forces about the origin O is defined as 

     Γ1,2 = R1F1 + R2F2 + (R´F12́  – R´F21́ )                         (4.12) 
                              ---------------        ------------------------ 
                                     ↑                            ↑   
                          moment of               moment of       
                       external forces         internal forces       
 
A positive moment acts in a counter-clockwise sense. 

 Newton’s 3rd Law gives 

           |F21́ | = |F12́ | , 

therefore the moment of the internal forces about O is zero.  (Their lines of action are the same). 

The total effective moment about O is therefore due to the external forces, alone.  Writing the moment 

in terms of the x- and y-components of F1 and F2, we obtain 

                Γ1,2 = x1Fy1 + x2Fy2 – y1Fx1 – y2Fx2                        (4.13) 
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b)  The conservation of angular momentum 

 If the moment of the external forces about the origin O is zero then, by integration, we have 

                       constant = x1py1 + x2py2 – y1px1 – y2px2. 

where px1 is the x-component of the momentum of mass 1, etc.. 

Rearranging, gives 

                       constant = (x1py1 – y1px1) + (x2py2 – y2px2).                       (4.14) 

The right-hand side of this equation is called the angular momentum of the two particles about the fixed 

origin, O. 

 Alternatively, we can discuss the conservation of angular momentum using vector analysis.  

Consider a non-relativistic particle of mass m and momentum p, moving in the plane under the 

influence of an external force F about a fixed origin, O: 

                                                 y                                                                                  
                                                                                                       F                                      
                                                                                                                        
                                                                                                                        
                                                                                                 p                                           
                                                                                              m                                            
                                                                            r           φ                                                  
                                                  O                                                                                
                                                                                                                           x                          
 The angular momentum, L, of m about O can be written in vector form 

                                     L = r × p.                          (4.15) 

 The torque, Γ, associated with the external force F acting about O is 

                                    Γ = r × F.                          (4.16) 

 The rate of change of the angular momentum with time is 
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                               dL/dt = r × (dp/dt) + p × (dr/dt)                                       (4.17) 

                                       =  r × m(dv/dt) + mv × v  

                                       =  r × F (because v × v = 0) 

                                       = Γ. 

 If there is no external torque, Γ = 0.  We have, therefore 

   Γ = dL/dt = 0,                         (4.18) 

so that L is a constant of the motion. 

4.3.3  Rotation of n-interacting particles about a fixed point 

 The analysis given in 4.3.2 can be extended to a system of n-interacting particles.  The 

moments of the mutual interactions about the origin O cancel in pairs (Newton’s 3rd Law) so that we 

are left with the moment of the external forces about O.  The equation for the total moment is therefore  

               Γ1, 2, ....n = ∑[i=1, n] (xid(mivyi)/dt – yid(mivxi)/dt). 

 If the moment of the external forces about the fixed origin is zero then the total angular 

momentum of the system about O is a constant.  This result follows directly by integrating the 

expression for Γ1, 2, ...n = 0.                                                         (4.19) 

 If the origin moves with constant velocity, the angular momentum of the system, relative to the 

new coordinate system, is constant if the external torque is zero. 

4.4  Work and energy in Newtonian dynamics 

4.4.1  The principle of work: kinetic energy and the work done by forces 

 Consider a mass m moving along a path in the [x, y]-plane under the influence of a  
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resultant force F that is not necessarily constant.  Let the components of the force be Fx and Fy when 

the mass is at the point P[x, y].  We wish to study the motion of m in moving from a point A[xA, yA] 

where the force is FA to a point B[xB, yB] where the force is FB.  The equations of motion are 

          m(d2x/dt2) = Fx            (4.20) 

and  

          m(d2y/dt2) = Fy            (4.21) 

Multiplying these equations by dx/dt and dy/dt, respectively, and adding, we obtain 

  m(dx/dt)(d2x/dt2) + m(dy/dt)(d2y/dt2) = Fx(dx/dt) + Fy(dy/dt). 

This equation now can be integrated with respect to t, so that 

  m((dx/dt)2 + (dy/dt)2)/2 = ∫(Fxdx + Fydy) . 

or 

      mv2/2 = ∫(Fxdx + Fydy),                         (4.22) 

where v = ((dx/dt)2 + (dy/dt)2)1/2 is the speed of the particle at the point [x, y].  The term mv2/2 is called the 

classical kinetic energy of the mass m.  It is important to note that the kinetic energy is a scalar.  

 If the resultant forces acting on m are FA at A[xA, yA] at time tA, and FB at B[xB, yB] at time tB, then 

we have 

  mvB2/2 – mvA2/2 = ∫[xA, xB]Fxdx + ∫[yA, yB]Fydy .                       (4.23) 

The terms on the right-hand side of this equation represent the work done by the resultant forces acting 

on the particle in moving it from A to B.  The equation is the mathematical form of the general Principle 
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of Work: the change in the kinetic energy of a system in any interval of time is equal to the work done 

by the resultant forces acting on the system during that interval. 

4.5  Potential energy 

4.5.1  General features 

 Newtonian dynamics involves vector quantities — force, momentum, angular momentum, 

etc..  There is, however, another form of dynamics that involves scalar quantities; a form that originated 

in the works of Huygens and Leibniz, in the 17th century.  The scalar form relies upon the concept of 

energy, in its broadest sense.  We have met the concept of kinetic energy in the previous section.  We 

now meet a more abstract quantity called potential energy.   

 The work done, W, by a force, F, in moving a mass m from a position sA to a position sB along 

a path s is, from section 4.3, 

         W = ∫[sA, sB] F⋅ds  = the change in the kinetic energy during the motion, 

              = ∫[sA, sB] Fdscosα, where α is the angle between F and ds.                          (4.24) 

If the force is constant, we can write 

          W = F(sB – sA), 

where sB – sA is the arc length. 

If the motion is along the x-axis, and F = Fx is constant then 

         W = Fx(xB – xA), the force multiplied by the distance moved.                    (4.25) 

This equation can be rearranged, as follows 

            mvxB2/2 – FxxB = mvxA2/2 – FxxA .                         (4.26) 
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This is a surprising result; the kinetic energy of the mass is not conserved during the motion whereas 

the quantity (mvx2/2 – Fxx) is conserved during the motion.  This means that the change in the kinetic 

energy is exactly balanced by the change in the quantity Fxx. 

Since the quantity mv2/2 has dimensions of energy, the quantity Fxx must have dimensions of energy if 

the equation is to be dimensionally correct.  The quantity –Fxx is called the potential energy of the mass 

m, when at the position x, due to the influence of the force Fx.  We shall denote the potential energy by  

V.  The negative sign that appears in the definition of the potential energy will be discussed later when 

explicit reference is made to the nature of the force (for example, gravitational or electromagnetic). 

The energy equation can therefore be written 

  TB + VB = TA + VA .          (4.27) 

 This is found to be a general result that holds in all cases in which a potential energy function 

can be found that depends only on the position of the object (or objects).  

4.5.2  Conservative forces 

 Let Fx and Fy be the Cartesian components of the forces acting on a moving particle with 

coordinates [x, y].  The work done W1→2 by the forces while the particle moves from the position          

P1 [x1, y1] to another position P2[ x2, y2] is  

  W1→2 = ∫[x1, x2] Fxdx + ∫[y1, y2] Fydy                        (4.28) 

                                = ∫[P1, P2] (Fxdx + Fydy) . 

 If the quantity Fxdx + Fydy is a perfect differential then a function U = f(x, y) exists such that 

      Fx = ∂U/∂x and Fy = ∂U/∂y .                        (4.29) 
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Now, the total differential of the function U is 

     dU = (∂U/∂x)dx + (∂U/∂y)dy                         (4.30) 

       = Fxdx + Fydy. 

 In this case, we can write 

  ∫dU = ∫(Fxdx + Fydy) = U = f(x, y). 

The definite integral evaluated between P1 [x1, y1] and P2 [x2, y2] is 

 ∫[P1, P2] (Fxdx + Fydy) =f(x2, y2) – f(x1, y1) = U2 – U1 .                       (4.31) 

We see that in evaluating the work done by the forces during the motion, no mention is made of the 

actual path taken by the particle.  If the forces are such that the function    U(x, y) exists, then they are 

said to be conservative.  The function U(x, y) is called the force function.   

 The above method of analysis can be applied to a system of many particles, n.  The total work 

done by the resultant forces acting on the system in moving the particles from their initial configuration, i, 

to their final configuration, f, is 

 Wi→f = ∑[k=1, n] ∫[Pk1, Pk2] (Fkxdxk + Fkydyk),                        (4.32) 

        = Uf – Ui,  

a scalar quantity that is independent of the paths taken by the individual particles.   Pk1 [xk1, yk1] and      

Pk2 [xk2, yk2] are the initial and final coordinates of the kth-particle.   

 The potential energy, V, of the system moving under the influence of conservative forces is 

defined in terms of the function U:  V ≡ – U . 

 Examples of interactions that take place via conservative forces are: 
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 1) gravitational interactions 

 2) electromagnetic interactions 

and 

 3) interactions between particles of a system that, for every pair of particles, act along the line 

joining their centers, and that depend in some way on their distance apart.  These are the so-called 

central interactions.   

 Frictional forces are examples of non-conservative forces. 

 There are two other major methods of solving dynamical problems that differ in fundamental 

ways from the method of Newtonian dynamics; they are Lagrangian dynamics and Hamiltonian 

dynamics.  We shall delay a discussion of these more general methods until our study of the Calculus 

of Variations in Chapter 9.  

4.6  Particle interactions 

4.6.1  Elastic collisions 

 Studies of the collisions among objects, first made in the 17th-century, led to the discovery of 

two basic laws of Nature: the conservation of linear momentum, and the conservation of kinetic energy 

associated with a special class of collisions called elastic collisions.   

 The conservation of linear momentum in an isolated system forms the basis for a quantitative 

discussion of all problems that involve the interactions between particles.  The present discussion will 

be limited to an analysis of the elastic collision between two particles.  A typical two-body collision, in 

which an object of mass m1 and momentum p1 makes a grazing collision with another object of mass 
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m2 and momentum p2 (p2 < p1), is shown in the following diagram.  (The coordinates are chosen so 

that the vectors p1 and p2 have the same directions).  After the collision, the two objects move in 

directions characterized by the angles θ and φ with momenta p1́  and p2́ . 

                                Before                                       After 
                                                                                                                  m1           p1́                                   
                                                                                                                                            
                                                                                                                                            
                                                                                                            θ                                                        
               m1                      p1                     m2                                                                                       
                                                                                        p2            φ                                                            
                                                                                                                                           
                                                                                                              m2                    p2́                                
                                                                                                                                            
 
 If there are no external forces acting on the particles so that the changes in their states of 

motion come about as a result of their mutual interactions alone, the total linear momentum of the 

system is conserved.  We therefore have 

   p1 + p2 = p1́  + p2́           (4.33) 

or, rearranging to give the momentum transfer, 

                p1 – p1́  = p2́  – p2 . 

 The kinetic energy of a particle, T is related to the square of its momentum  

(T = p2/2m); we therefore form the scalar product of the vector equation for the momentum transfer, to 

obtain 

  p12 – 2p1⋅ p1́  + p1́ 2 = p2́ 2 – 2p2́ ⋅ p2 + p22 .                       (4.34) 

Introducing the scattering angles θ and φ, we have 
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     p12 – 2p1p1́ cosθ + p1́ 2 = p22 – 2p2p2́ cosφ + p2́ 2 . 

This equation can be written 

       p1́ 2 (x2 – 2xcosθ + 1) = p2́ 2(y2 – 2ycosφ + 1)                       (4.35) 

where 

             x = p1/p1́   and y = p2/p2́  . 

 If we choose a frame in which p2 = 0 then y = 0 and we have 

 x2 – 2xcosθ + 1 = (p2́ /p1́ )2 .          (4.36) 

If the collision is elastic, the kinetic energy of the system is conserved, so that 

     T1 + 0 = T1́  + T2́  (T2 = 0 because p2 = 0) .                            (4.37) 

Substituting Ti = pi2/2mi , and rearranging, gives 

                (p2́ /p1́ )2 = (m2/m1)(x2 – 1) . 

We therefore obtain a quadratic equation in x: 

 x2 + 2x(m1/(m2 – m1))cosθ – [(m2 + m1)/(m2 – m1)] = 0 . 

The valid solution of this equation is 

  x = (T1/T1́ )1/2 = – (m1/(m2 – m1))cosθ 

                              + {(m1/(m2 – m1))2cos2θ + [(m2 + m1)/(m2 – m1)]}1/2.                                    (4.38)  

If m1 = m2, the solution is x = 1/cosθ, in which case 

         T1́ = T1cos2θ .          (4.39) 

 In the frame in which p2 = 0, a geometrical analysis of the two-body collision is useful.  We 

have 
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    p1 + (–p1́ ) = p2́ ,           (4.40) 

leading to                                                                                                             
                                                                                                       p1́                                    
                                              p1                                                                    θ                                
                                                                                                                           
                                            φ                  θ                                                                      
                                       p2́                                – p1́                                                       
                                                                                                                            
 If the masses are equal then 

         p1́  = p1cosθ . 

In this case, the two particles always emerge from the elastic collision at right angles to each other       

(θ + φ = 90o).   

 In the early 1930’s, the measured angle between two outgoing high-speed nuclear particles of 

equal mass was shown to differ from 90o.  Such experiments clearly demonstrated the breakdown of 

Newtonian dynamics in these interactions. 

4.6.2  Inelastic collisions 

 Collisions between everyday objects are never perfectly elastic.  An object that has an internal 

structure can undergo inelastic collisions involving changes in its structure.  Inelastic collisions are found 

to obey two laws; they are 

 1)  the conservation of linear momentum  

and 

 2)  an empirical law, due to Newton, that states that the relative velocity of the  colliding objects, 

measured along their line of centers immediately after impact, is  –e times their relative velocity 

before impact.   
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The quantity e is called the coefficient of restitution.  Its value depends on the nature of the materials of 

the colliding objects.  For very hard substances such as steel, e is close to unity, whereas for very soft 

materials such as putty, e approaches zero.   

 Consider , in the simplest case, the impact of two deformable spheres with masses m1 and 

m2.  Let their velocities be v1 and v2, and v1́  and v2́  (along their line of centers) before and after impact, 

respectively.  The linear momentum is conserved, therefore 

       m1v1 + m2v2 = m1v1́  + m2v2́  

and, using Newton’s empirical law, 

            v1́  – v2́  = – e(v1 – v2) .                         (4.41) 

Rearranging these equations, we can obtain the values v1́  and v2́  after impact , in terms of their values 

before impact: 

          v1́  = [m1v1 + m2v2 – em2(v1 – v2)]/(m1 + m2),                      (4.42) 

and 

          v2́  = [m1v1 + m2v2 + em1(v1 – v2)]/(m1 + m2) .                      (4.43) 

 If the two spheres initially move in directions that are not colinear, the above method of analysis 

is still valid because the momenta can be resolved into components along and perpendicular to a 

chosen axis.  The perpendicular components remain unchanged by the impact. 

 We shall find that the classical approach to a quantitative study of inelastic collisions must be 

radically altered when we treat the subject within the framework of Special Relativity.  It will be shown 

that the combined mass (m1 + m2) of the colliding objects is not conserved in an inelastic collision.   
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4.7  The motion of rigid bodies 

 Newton’s Laws of Motion apply to every point-like mass in an object of finite size.  The smallest 

objects of practical size contain very large numbers of microscopic particles — Avogadro’s number is 

about 6 × 1023 atoms per gram-atom.  The motions of the individual microscopic particles in an 

extended object can be analyzed in terms of the motion of their equivalent total mass, located at the 

center of mass of the object. 

4.7.1  The center of mass 

 For a system of discrete masses, mi, located at the vector positions, ri, the position rCM of  the 

center of mass is defined as 

  rCM ≡ ∑i miri / ∑i mi = ∑i miri / M, where M is the total mass.                                    (4.44) 

 The center of mass (CM) of an (idealized) continuous distribution of mass with a density ρ 

(mass/volume), can be obtained by considering an element of volume dV with an elemental mass dm.  

We then have 

  dm = ρdV.           (4.45) 

The position of the CM is therefore 

  rCM = (1/M)∫rdm = (1/M)∫rρdV.                        (4.46) 

The Cartesian components of rCM are   

  xiCM = (1/M)∫xiρdV.          (4.47) 

In non-uniform materials, the density is a function of r. 

4.7.2  Kinetic energy of a rigid body in general motion 
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 Consider a rigid body that has both translational and rotational motion in a plane.  Let the 

angular velocity, ω, be constant.  At an arbitrary time ,t, we have  

               y                         y  ́
                                                  v  ́= ŕω, the velocity of m  
                y                   y  ́     ŕ                   relative to G 
                               O ,́ G             φ  ́
                                                                   x ́                     x ́        ω = constant 
        
             ←  Total mass, M = ∑m 
 
                                              O       x 
                                                     x      
       
Let the coordinates of an element of mass m of the body be [x, y] in the fixed frame (origin O) and       

[x ,́ y ]́ in the frame moving with the center of mass, G (origin O )́, and let u and v be the components of 

velocity of G, in the fixed frame.  For constant angular velocity ω, the instantaneous velocity of the 

element of mass m, relative to G has a direction perpendicular to the radius vector ŕ , and a magnitude 

         v  ́= ŕ  ω.       (4.48)  

The components of the instantaneous velocity of G, relative to the fixed frame, are  

           u in the x-direction, and 

           v in the y-direction. 

The velocity components of m in the [x, y]-frame are therefore 

           u – ŕωsinφ  ́= u – y´ω in the x-direction, 

and 

          v + ŕωcosφ  ́= v + x´ω in the y-direction. 
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The kinetic energy of the body, EK, of mass M is therefore 

         EK = (1/2)∑m{(u – y´ω)2 + (v + x´ω)2}                                      (4.49) 

             = (1/2)M(u2 + v2) + (1/2)ω2∑m(x 2́ + y 2́) 

      – uω∑my  ́+ vω∑mx .́ 

Therefore 

          EK = (1/2)MvG2 + (1/2)IGω2,                        (4.50) 

where 

         vG = (u2 + v2)1/2  the speed of G, relative to the fixed frame, 

    ∑my  ́= ∑mx  ́= 0, by definition of the center of mass, 

and 

           IG = ∑m(x 2́ + y 2́) = ∑mŕ 2 , is called the moment of imertia of M about an axis 

through G, perpendicular to the plane. 

We see that the total kinetic energy of the moving object of mass M is made up of two parts,  

 1)  the kinetic energy of translation of the whole mass moving with the velocity of  

                 the center of mass , 

and 

 2)  the kinetic energy of rotation of the whole mass about its center of mass. 
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4.8   Angular velocity and the instantaneous center of rotation             

 The angular velocity of a body is defined as the rate of increase of the angle between any line 

AB, fixed in the body, and any line fixed in the plane of the motion.  If φ is the instantaneous angle 

between AB and an axis Oy, in the plane, then the angular velocity is dφ/dt. 

 Consider a circular disc of radius a, that rolls without sliding in contact with a line Ox, and let φ 

be the instantaneous angle that the fixed line AB in the disc makes with the y-axis.  At t = 0, the rolling 

begins with the point B touching the origin, O: 

         y 
     a 
                  vy                  A            
        y         B            ← φ         
                         vx 
       O      x            P (corresponds to φ = 0)                                     x 
    
At time t, after the rolling begins, the coordinates of B[x, y] are 

           x = OP – asinφ = BP – asinφ = aφ – asinφ = a(φ – sinφ), 

and 

           y = AP – acosφ = a(1 – cosφ). 

The components of the velocity of B are therefore 

          vx = dx/dt = a(dφ/dt)(1 – cosφ),                       (4.51) 

and 

          vy = dy/dt = a(dφ/dt)sinφ.                        (4.52) 

The components of the acceleration of B are 
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          ax = dvx/dt = (d/dt)(a(dφ/dt)(1 – cosφ))                                      (4.53) 

              = a(dφ/dt)2sinφ + a(1 – cosφ)(d2φ/dt2),  

and 

          ay = dvy/dt = (d/dt)(a(dφ/dt)sinφ)                       (4.54) 

              = a(dφ/dt)2cosφ + asinφ(d2φ/dt2). 

If φ = 0, 

     dx/dt = 0 and dy/dt = 0, which means that the point P has  no instantaneous velocity.  

The point B is therefore instantaneously rotating about P with a velocity equal to 2asin(φ/2)(dφ/dt); P is 

a “center of rotation”. 

Also,  

  d2x/dt2 = 0 and d2y/dt2 = a(dφ/dt)2, the point of contact only has an acceleration 

towards the center.   

4.9  An application of the Newtonian method 

 The following example illustrates the use of some basic principles of classical dynamics, such 

as the conservation of linear momentum, the conservation of energy, and instantaneous rotation about 

a moving point: 

 Consider a perfectly smooth, straight horizontal rod with a ring of mass M that can slide along 

the rod.  Attached to the ring is a straight, hinged rod of length L and of negligible mass; it has a mass m 

at its end.  At time t = 0, the system is held in a horizontal position in the constant gravitational field of the 

Earth. 
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At t = 0: 

  g ⇓          

                 m                                 L                               M   
             x = 0 at t = 0 
 
At t = 0, the mass m is released and falls under gravity.  At time t, we have 
 
  g ⇓          
              vx  
                                                                                        φ 
                                                                                                                  x            x = 0                        
                                                                                    L    
 
 
 
           vx                      Lsinφ(dφ/dt) 
        Lcosφ(dφ/dt)   L(dφ/dt) = instantaneous velocity of m  
          about M 
 
There are no external forces acting on the system in the x-direction and therefore the horizontal 

momentum remains zero: 

 M(dx/dt) + m((dx/dt) – Lsinφ(dφ/dt)) = 0.                        (4.56) 

Integrating, we have 

  Mx + mx + mLcosφ = constant.                         (4.57) 

If x = 0 and φ = 0 at t = 0, then 

                  mL = constant,                         (4.58) 

therefore 

        (M + m)x + mL(cosφ – 1) = 0, 
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so that 

                     x = mL(1 – cosφ)/(M + m).                       (4.59) 

We see that the instantaneous position x(t) is obtained by integrating the momentum equation. 

 The equation of conservation of energy can now be used; it is 

 (M/2)vx2 + (m/2)(vx – Lsinφ(dφ/dt))2 + (m/2)(Lcosφ(dφ/dt))2 = mgLsinφ. 

(The change in kinetic energy is equal to the change in the potential energy). 

Rearranging, gives 

 (M + m)vx2 – 2mLsinφvx(dφ/dt) + (mL2(dφ/dt)2 – 2mgLsinφ) = 0.                     (4.40) 

This is a quadratic in vx with a solution 

 (M + m)vx = mLsinφ(dφ/dt)[1 ± {1 – [(M + m)(mL2(dφ/dt)2  

                                      –  2mLgsinφ)]/[m2L2(dφ/dt)2sin2φ]}1/2]. 

The left-hand side of this equation is also given by the momentum equation: 

       (M + m)vx = mLsinφ(dφ/dt). 

We therefore obtain, after substitution and rearrangement, 

    dφ/dt = {[2(M + m)gsinφ]/[L(M + mcos2φ)]}1/2,                     (4.41) 

the angular velocity of the rod of length L at time t. 

PROBLEMS 

4-1  A straight uniform rod of mass m and length 2l is held at an angle θ0 to the vertical.  

      Its lower end rests on a perfectly smooth horizontal surface.  The rod is released and  

      falls under gravity.  At time t after the motion begins, we have 
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            g⇓    θ0        
 
            Initial position 
 
              θ 
 
                                                          Mass m, length 2l 
       mg 
 
 
      If the moment of inertia of the rod about an axis through its center of mass, 

      perpendicular to the plane of the motion, is ml2/3, prove that the angular velocity of  

      the rod when it makes an angle θ with the vertical, is 

   dθ/dt = {6g(cosθ0 – cosθ)/l(1 + 3sin2θ)}1/2. 

4-2  Show that the center of mass of a uniform solid hemisphere of radius R is 3R/8 above  

      the center of its plane surface. 

4-3  Show that the moment of inertia of a uniform solid sphere of radius R and mass M  

      about a diameter is 2MR2/5. 

4-4  A uniform solid sphere of mass m and radius r can roll, under gravity, on the inner surface of a 

       perfectly rough spherical surface of radius R.  The motion is in a vertical plane.  

      At time t during the motion, we have 

 
                                                                                         g 
 
rolling sphere,  mass m and radius r             ω                             
       θ      
              R 
                          • 
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      Show that  

   d2θ/dt2 + [5g/(7(R – r))]sinθ = 0. 

      As a preliminary result, show that rω = (R – r)(dθ/dt) for rolling motion without  slipping. 

4-5  A particle of mass m hangs on an inextensible string of length l and negligible  

      mass.  The string is attached to a fixed point O.  The mass oscillates in a vertical plane  

      under gravity.  At time t, we have 
           O 
 
 
 
 
            l              θ                  ω = dθ/dt 
 
             Tension, T 
                           m 
            mg 
 
      Show that 

      1)  d2θ/dt2 + (g/l)sinθ = 0. 

      2)  ω2 = (2g/l)[cosθ – cosθ0], where θ0 is the initial angle of the string with respect  

          to the vertical, so that ω = 0 when θ = θ0.  This equation gives the angular velocity  

          in any position. 

4-6  Let l0 be the natural length of an elastic string fixed at the point O.  The string has a  

      negligible mass.  Let a mass m be attached to the string, and let it stretch the string 

      until the equilibrium position is reached.  The tension in the string is given by Hooke’s  
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      law: 

      Tension, T = λ(extension)/original length, where λ is a constant for a given material. 

      The mass is displaced vertically from its equilibrium position, and oscillates under  

      gravity.  We have 

       O             Equilibrium                   General position 
 
              g ⇓ 
 
    l 0                             y E    
 
            y(t) 
           TE 
 
 
           mg 
                T 
 
 
                mg   
 

      Show that the mass oscillates about the equilibrium position with simple harmonic   

     motion, and that 

  y(t) = l0 + (mgl0/λ){1 – cos[t √λ/ml0]} (starts with zero velocity at y(0) = l0) 

4-7  A dynamical system is in stable equilibrium if the system tends to return to its original  

      state if slightly displaced.  A system is in a position of equilibrium when the height of  

      its center of gravity is a maximum or a minimum.  Consider a rod of mass m with one  

      end resting on a perfectly smooth vertical wall OA and the other end on a perfectly  

      smooth inclined plane, OB.  Show that, in the position of equilibrium 
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     cotθ = 2tanφ, where the angles are given in the diagram: 

 
        g  ⇓  
             A      Center of gravity 
 
                                                   •     
                                  θ                    B 
       y(θ)                                        φ (fixed angle) 
        
    O 
      Find y = f(θ), and show, by considering derivatives, that this is a state of unstable  
 
      equilibrium. 
 
4-8  A particle A of mass mA = 1 unit, scatters elastically from a stationary particle B of mass  

      mB = 2 units.  If A scatters through an angle θ, show that the ratio of the kinetic  

      energies of A, before (TA) and after (TÁ ) scattering is 

        (TA/TÁ ) = (–cosθ + √3 + cos2θ)2. 

      Sketch the form of the variation of this ratio with angle in the range 0 ≤ θ ≤ π. 

      (This problem is met in practice in low-energy neutron-deuteron scattering).  
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5 

INVARIANCE PRINCIPLES AND CONSERVATION LAWS 

5.1  Invariance of the potential under translations and the conservation of  

        linear momentum 

 The equation of motion of a Newtonian particle of mass m moving along the x-axis under the 

influence of a force Fx is 

  md2x/dt2 = Fx .              (5.1) 

If Fx can be represented by a potential V(x) then 

  md2x/dt2 = – dV(x)/dx .                            (5.2) 

In the special case in which the potential is not a function of x, the equation of motion becomes 

  md2x/dt2 = 0, 

or 

  md(vx)/dt = 0.              (5.3) 

Integrating this equation gives 

  mvx = constant.                             (5.4) 

We see that the linear momentum of the particle is constant if the potential is independent of the 

position of the particle. 

5.2  Invariance of the potential under rotations and the conservation of angular  

        momentum 
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 Let a Newtonian particle of mass m move in the plane about a fixed origin, O, under the 

influence of a force F.  The equations of motion, in the x-and y-directions, are 

             md2x/dt2 = Fx and md2y/dt2 = Fy.                                  (5.5 a,b) 

If the force can be represented by a potential V(x, y) then we can write 

             md2x/dt2 = –∂V/∂x and md2y/dt2 = –∂V/∂y .                                 (5.6 a,b) 

The total differential of the potential is 

           dV = (∂V/∂x)dx + (∂V/∂y)dy. 

Let a transformation from Cartesian to polar coordinates be made using the standard linear equations 

             x = rcosφ and y = rsinφ . 

The partial derivatives are 

 ∂x/∂φ = –rsinφ = –y, ∂x/∂r = cosφ, ∂y/∂φ = rcosφ= x, and ∂y/∂r = sinφ . 

We therefore have 

              ∂V/∂φ = (∂V/∂x)(∂x/∂φ) + (∂V/∂y)(∂y/∂φ)                                        (5.7) 

               = (∂V/∂x)(–y) + (∂V/∂y)(x) 

               = yFx + x(–Fy) 

               = m(yax – xay)  (ax and ay are the components of acceleration) 

               = m(d/dt)(yvx – xvy)  (vx and vy are the components of velocity). 

If the potential is independent of the angle φ then 

   ∂V/∂φ = 0,              (5.8) 

in which case 
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  m(d/dt)(yvx – xvy) = 0 

and therefore 

      m(yvx – xvy) = a constant.             (5.9) 

The quantity on the left-hand side of this equation is the angular momentum (ypx – xpy) of the mass 

about the fixed origin.  We therefore see that if the potential is invariant under rotations about the origin 

(independent of the angle φ), the angular momentum of the mass  about the origin is conserved.  

 In Chapter 9, we shall treat the subject of invariance principles and conservation laws in a 

more general way, using arguments that involve the Lagrangians and Hamiltonians of dynamical 

systems. 
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6  

 EINSTEINIAN DYNAMICS 

6.1  4-momentum and the energy-momentum invariant 

     In Classical Mechanics, the concept of momentum is important because of its rôle as an invariant in 

an isolated system.  We therefore introduce the concept of 4-momentum in Relativistic Mechanics in 

order to find possible Lorentz invariants involving this new quantity.  The contravariant 4-momentum is 

defined as: 

            Pµ = mVµ                              (6.1) 

where m is the mass of the particle. (It is a Lorentz scalar — the mass measured in the rest frame of 

the particle). 

     The scalar product is 

        PµPµ = (mc)2.                             (6.2) 

Now, 

           Pµ = [mγc, mγvN]                            (6.3) 

therefore, 

       PµPµ = (mγc)2 – (mγvN)2. 

Writing 

            M = γm, the relativistic mass, we obtain 

        PµPµ = (Mc)2 – (MvN)2 = (mc)2.                           (6.4) 

Multiplying throughout by c2 gives 
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              M2c4 – M2vN2c2 = m2c4.                             (6.5) 

The quantity Mc2 has dimensions of energy; we therefore write 

           E = Mc2,              (6.6) 

the total energy of a freely moving particle. 

This leads to the fundamental invariant of dynamics 

               c2PµPµ = E2 – (pc)2 = Eo2                            (6.7) 

where 

           Eo = mc2 is the rest energy of the particle, and p is its relativistic 3-momentum. 

     The total energy can be written: 

            E = γEo = Eo + T,                            (6.8) 

where 

           T = Eo(γ - 1),                             (6.9) 

the relativistic kinetic energy. 

     The magnitude of the 4-momentum is a Lorentz invariant 

    |Pµ| = mc.           (6.10) 

The 4- momentum transforms as follows: 

       P µ́ = LPµ.           (6.11) 

6.2  The relativistic Doppler shift 

For relative motion along the x-axis, the equation P´µ = LPµ is equivalent to the equations 

        E  ́=   γE – βγcpx           (6.12) 
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and, 

    cp x́ = –βγE +  γcpx.          (6.13) 

     Using the Planck-Einstein equations E = hν and E = pxc for photons, the energy equation becomes 

           ν  ́= γν – βγν 

                 = γν(1 – β) 

                 =  ν(1 – β)/(1 – β2)1/2 

                 =  ν{(1 – β)/(1 + β)}1/2.                        (6.14) 

This is the relativistic Doppler shift for photons of the frequency ν ,́ measured in an inertial frame 

(primed) in terms of the frequency ν measured in another inertial frame. 

6.3  Relativistic collisions and the conservation of 4-momentum 

 Consider the interaction between two particles, 1 and 2, to form two particles, 3 and 4.  (3 and 

4 are not necessarily the same as 1 and 2).  The contravariant 4-momenta are Pi
µ : 

                                            Before                                        After                                     
                                                                                              3              P3

µ                             
                                  P1

µ                             P2
µ                                 θ                                

                                                                                                                      
                        1                                                                                                 
                                                               2                                             φ                                
                                                                                              4                                               
                                                                                                                  P4

µ                           
 
                                                               1 + 2    →     3 + 4    
 
 All experiments are consistent with the fact that the 4-momentum of the system is conserved.  

We have, for the contravariant 4-momentum vectors of the interacting particles, 
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        P1

µ + P2
µ     =     P3

µ + P4
µ                         (6.15) 

                      ______                ______ 
                            ↑                           ↑         
             initial “free” state     final “free” state 

and a similar equation for the covariant 4-momentum vectors, 

       P1µ + P2µ      =     P3µ + P4µ .                         (6.16) 

 If we are interested in the change P1
µ → P3

µ , then we require 

            P1
µ – P3

µ = P4
µ – P2

µ          (6.17) 

and 

            P1µ – P3µ = P4µ – P2µ .          (6.18) 

Forming the invariant scalar products, and using PiµPi
µ = (Ei0/c)2, we obtain 

          (E10/c)2 – 2(E1E3/c2 – p1⋅p3) + (E30/c)2 

      =  (E40/c)2 – 2(E2E4/c2 – p2⋅p4) + (E20/c)2 .                        (6.19) 

Introducing the scattering angles, θ and φ, this equation becomes 

           E10 2 – 2(E1E3 – c2p1p3cosθ) + E30 2 = E20 2 – 2(E2E4 – c2p2p4cosφ) + E40 2. 

 If we choose a reference frame in which particle 2 is at rest (the LAB frame), then p2 = 0 and 

E2 = E20 , so that 

           E10 2 – 2(E1E3 – c2p1p3cosθ) + E30 2 = E20 2 – 2E20E4 + E40 2.                     (6.20) 

The total energy of the system is conserved, therefore 

           E1 + E2 = E3 + E4 = E1 + E20                           (6.21) 
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or 

           E4 = E1 + E20 – E3 

Eliminating E4 from the above “scalar product’ equation gives 

           E10 2 – 2(E1E3 – c2p1p3cosθ) + E30 2 = E40 2 – E20 2 – 2E20(E1 – E3).                    (6.22) 

This is the basic equation for all interactions in which two relativistic entities in the initial state interact to 

give two relativistic entities in the final state.  It applies equally well to interactions that involve massive 

and massless entities.   

6.3.1  The Compton effect 

 The general method discussed in the previous section can be used to provide an exact 

analysis of Compton’s famous experiment in which the scattering of a photon by a stationary, free 

electron was studied.  In this example, we have 

 E1 = Eph (the incident photon energy), E2 = Ee0 (the rest energy of the stationary electron, the 

“target”), E3 = Eph́  (the energy of the scattered photon), and E4 = Eé  (the energy of the recoiling 

electron).  The “rest energy” of the photon is zero: 

                                                                                                Eph́                                        
                                                                                                                      θ                          
                             Eph = pphc                         Ee0                                                            
                                                   >                                                                             
                                                                                                                        
                                                                                                                       
                                                                                                       Eé                                      
 
The general equation (6.22), is now 

 0 – 2(EphEph́  – EphEph́ cosθ) = Ee0 2 – 2Ee0(Eph + Ee0 – Eph́ ) + Ee0 2                      (6.23) 
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or 

    –2EphEph́ (1 – cosθ) = –2Ee0(Eph - Eph́ ) 

so that 

          Eph – Eph́  = EphEph́ (1 – cosθ)/Ee0 .                      (6.24) 

Compton measured the energy-loss of the photon on scattering and its cosθ-dependence. 

6.4  Relativistic inelastic collisions 

 We shall consider an inelastic collision between a particle 1 and a particle 2 (initially at rest) to 

form a composite particle 3.  In such a collision, the 4-momentum is conserved (as it is in an elastic 

collision) however, the kinetic energy is not conserved.  Part of the kinetic energy of particle 1 is 

transformed into excitation energy of the composite particle 3.  This excitation energy can take many 

forms — heat energy, rotational energy, and the excitation of quantum states at the microscopic level.   

 The inelastic collision is as shown: 

                                                        Before                           After                                    
                                                                                                                     
                                               1                      2                        3                                       
                                                                                                                      
                                                                                                                       
                                               p1                p2 = 0                    p3                                   
                                                                                                                      
 Rest energy:     E10            E20                  E30 
 Total energy:     E1             E2 = E20          E3 
 3-momentum:   p1             p2 = 0             p3  
 Kinetic energy:  T1             T2 = 0             T3    
 
In this problem, we shall use the energy-momentum invariants associated with each particle, directly: 

 i)    E12 – (p1c)2 = E10 2            (6.25) 
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 ii)   E22                = E20 2            (6.26) 

 iii)  E32 – (p3c)2  = E30 2.           (6.27) 

The total energy is conserved, therefore 

      E1 + E2 = E3 = E1 + E20 .          (6.28) 

Introducing the kinetic energies of the particles, we have 

 (T1 + E10) + E20 = T3 + E30 .          (6.29) 

 The 3-momentum is conserved, therefore 

                  p1 + 0 = p3 .           (6.30) 

Using 

      E30 2 = E32 – (p3c)2,                         (6.31) 

we obtain 

      E30 2 = (E1 + E20)2 – (p3c)2  

               =  E12 + 2E1E20 + E20 2 – (p1c)2 

               = E10 2 + 2E1E20 + E20 2 

               = E10 2 + E20 2 + 2(T1 + E10)E20                         (6.32) 

or 

     E30 2 = (E10 + E20)2 + 2T1E20    (E30 > E10 + E20).                      (6.33)  

Using T1 = γ1E10 – E10, where γ1 = (1 – β12)–1/2 and β1 = v1/c, we have 

     E30 2 = E10 2 + E20 2 + 2γ1E10E20 .                        (6.34) 

If two identical particles make a completely inelastic collision then 
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     E30 2 = 2(γ1 + 1)E10 2.          (6.35) 

6.5  The Mandelstam variables 

 In discussions of relativistic interactions it is often useful to introduce additional Lorentz 

invariants that are known as Mandelstam variables.  They are, for the special case 

 of two particles in the initial and final states (1 + 2 → 3 + 4): 

            s = (P1
µ + P2

µ)[P1µ + P2µ], the total 4-momentum invariant 

              = ((E1 + E2)/c, (p1 + p2))[(E1 + E2)/c, –(p1 + p2)] 

              = (E1 + E2)2/c2 – (p1 + p2)2, a Lorentz invariant ,                                                 (6.36) 

           t = (P1
µ – P3

µ)[P1µ – P3µ], the 4-momentum transfer (1→3) invariant 

              = (E1 – E3)2/c2 – (p1 – p3)2, a Lorentz invariant,                     (6.37) 

 and 

         u = (P1
µ – P4

µ)[P1µ – P4µ], the 4-momentum transfer (1→4) invariant 

              = (E1 – E4)2/c2 – (p1 – p4)2, a Lorentz invariant.                      (6.38)          

 Now,  

         sc2 = E12 + 2E1E2 + E22 – (p12 + 2p1⋅p2 + p22)c2 

                = E10 2 + E20 2 + 2E1E2 – 2p1⋅p2c2 

               = E10 2 + E20 2 + 2(E1, p1c)[E2, –p2c].                       (6.39) 
              _____________ 
                                                                                      ↑     
               Lorentz invariant     
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 The Mandelstam variable sc2 has the same value in all inertial frames.  We therefore evaluate 

it in the LAB frame, defined by the vectors 

  [E1L, p1Lc] and [E2L = E20, –p2Lc = 0],        (6.40) 

so that 

                              2(E1LE2L – p1L⋅p2Lc2) = 2E1LE20,                        (6.41) 

and 

                                sc2 = E10 2 + E20 2 + 2E1LE20.                                     (6.42) 

 We can evaluate sc2 in the center-of -mass (CM) frame, defined by the condition 

                               p1CM + p2CM = 0 (the total 3-momentum is zero): 

                                sc2 = (E1CM + E2CM)2.                                      (6.43)      

This is the square of the total CM energy of the system.  

6.5.1  The total CM energy and the production of new particles 

 The quantity c√s is the energy available for the production of new particles, or for exciting the 

internal structure of particles.  We can now obtain the relation between the total CM energy and the 

LAB energy of the incident particle (1) and the target (2), as follows: 

                 sc2 = E10 2 + E20 2 + 2E1LE20 = (E1CM + E2CM)2 = W2, say.                                     (6.44) 

Here, we have evaluated the left-hand side in the LAB frame, and the right-hand side in the CM frame. 

 At very high energies, c√s >> E10 and E20, the rest energies of the particles in the initial state, in 

which case,  

                                W2 = sc2 ≈ 2E2LE20.        (6.45) 
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The total CM energy, W, available for the production of new particles therefore depends on the square 

root of the incident laboratory energy.  This result led to the development of colliding, or intersecting, 

beams of particles (such as protons and anti-protons) in order to produce sufficient energy to generate 

particles with rest masses greater than 100 times the rest mass of the proton (≈109 eV). 

6.6  Positron-electron annihilation-in-flight 

 A discussion of the annihilation-in-flight of a relativistic positron and a stationary electron 

provides a topical example of the use of relativistic conservation laws.  This process, in which two 

photons are spontaneously generated, has been used as a source of nearly monoenergetic high-

energy photons for the study of nuclear photo-disintegration since 1960.  The general result for a 1 + 2 

→ 3 + 4 interaction, given in section 6. 3, provides the basis for an exact calculation of this process; we 

have 

 E1 = Epos (the incident positron energy), E2 = Ee0 (the rest energy of the stationary electron), E3 

= Eph1 (the energy of the forward-going photon), and E4 = Eph2 (the energy of the backward-going 

photon).  The rest energies of the positron and the electron are equal.  The general equation (6.22), 

now reads 

 Ee02 – 2{EposEph1 – cpposEph1(cosθ)} + 0 = 0 – Ee02 –2Ee0(Epos – Eph1)                     (6.46) 

therefore, 

                  Eph1{Epos + Ee0 –[Epos2 – Ee02]1/2 cosθ} = (Epos + Ee0)Ee0, 

giving 

                                               Eph1 = Ee0/(1 – kcosθ)       (6.47) 
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where 

            k = [(Epos – Ee0)/(Epos + Ee0)]1/2. 

 The maximum energy of the photon, Eph1max occurs when θ = 0, corresponding to motion in 

the forward direction; its energy is  

     Eph1max = Eoe/(1 – k).          (6.48) 

 If, for example, the incident total positron energy is 30 MeV, and Ee0 = 0.511MeV then 

    Eph1max = 0.511/[1 – (29.489 / 30.511)1/2] MeV 

                 = 30.25 MeV. 

The forward-going photon has an energy equal to the kinetic energy of the incident positron                 

(T1 = 30 – 0.511 MeV) plus approximately three-quarters of the total rest energy of the positron-electron 

pair (2Ee0 = 1.02 MeV).  Using the conservation of the total energy of the system, we see that the 

energy of the backward-going photon is approximately 0.25 MeV. 

The method of positron-electron annihilation-in-flight provides one of the very few ways of generating 

nearly monoenergetic photons at high energies. 

PROBLEMS 

6-1  A particle of rest energy E0 has a relativistic 3-momentum p and a relativistic kinetic  

      energy T.  Show that 

      1) |p| = (1/c)(2TE0)1/2{1 + (T/2E0)}1/2, 

      and 

      2) |v| = c{1 + [E02/T(T + 2E0)]}–1/2, where v is the 3-velocity. 
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6-2  Two similar relativistic particles, A and B, each with rest energy E0, move towards  

      each other in a straight line.  The constant speed of each particle , measured in the  

      LAB frame is V = βc.  Show that their total energy, measured in the rest frame of A, is 

  E0(1 + β2)/(1 – β2). 

6-3  An atom of rest energy EA0 is initially at rest.  It completely absorbs a photon of energy  

      Eph, and the excited atom of rest energy EA0* recoils freely.  If the excitation energy of  

      the atom is given by  

       Eex = EA0* – EA0, show that  

       Eex = –EA0 + EA0{1 + (2Eph/EA0)}1/2, exactly. 

If, as is often the case, Eph « EA0, show that the recoil energy of the atom is 

   Erecoil ≈ Eph2/2EA0. 

Explain how this approximation can be deduced using a Newtonian-like analysis. 

6-4  A completely inelastic collision occurs between particle 1 and particle 2 (initially at  

      rest ) to form a composite particle, 3.  Show that the speed of 3 is 

  v3 = v1/{1 + (E20/E1)}, 

      where v1 and E1 are the speed and the total energy of 1, and E20 is the rest energy of 2. 

6-5  Show that the minimum energy that a γ-ray must have to just break up a deuteron 

      into a neutron and a proton is γmin ≈ 2.23 MeV, given 

  Eneut0 = 939.5656 MeV, 

  Eprot0 = 938.2723 MeV, and 
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  Edeut0 = 1875.6134 MeV. 

6-6  In a general relativistic collision: 

  1 + 2 → n-particles 

           → (3 + 4 + ...m) + (m+1, m+2. + ...n) 

      where the particles 3 → m are “observed”, and the particles m+ 1 → n are  

      “unobserved”.  We have 

  E1 + E2 = (E3 + E4 + ...Em) + (Em+1 + Em+2 + ...En), the total energy, 
              = Eobs + Eunobs 
 
      and 

            p1 + p2 = pobs + punobs. 

      If Wunobs/c2 is the unobserved (missing) mass of the particles m+1 to n, show that, in 

      the LAB frame 

           (Wunobs)2 = (E1L + E20 – ∑[i = 3,m] EiL)2 – (p1Lc – c∑[i = 3,m] piL)2. 

      This is the missing (energy)2 in terms of the observed quantities.  This is the principle 

      behind the so-called “missing-mass spectrometers” used in Nuclear and Particle  

      Physics. 

6.7  If the contravariant 4-force is defined as Fµ = dPµ/dτ = [f0, f] where τ is the proper time, and Pµ is the  

      contravariant 4-momentum, show that 

      FµVµ = 0, where Vµ is the covariant 4-velocity. (The 4- force and the 4-velocity are orthogonal). 

      Obtain dE/dt in terms of γ, v, and f. 
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7   

NEWTONIAN GRAVITATION 

 We come now to one of the highlights in the history of intellectual endeavor, namely Newton’s 

Theory of Gravitation.  This spectacular work ranks with a handful of masterpieces in Natural 

Philosophy — the Galileo-Newton Theory of Motion, the Carnot-Clausius-Kelvin Theory of Heat and 

Thermodynamics, Maxwell’s Theory of Electromagnetism, the Maxwell-Boltzmann-Gibbs Theory of 

Statistical Mechanics, Einstein’s Theories of Special and General Relativity, Planck’ s Quantum Theory 

of Radiation, and the Bohr-deBroglie-Schrödinger-Heisenberg Quantum Theory of Matter. 

 Newton’s most significant ideas on Gravitation were developed in his early twenties at a time 

when the University of Cambridge closed down because of the Great Plague.  He returned to his 

home, a farm at Woolsthorpe-by-Colsterworth, in Lincolnshire.  It is a part of England dominated by 

vast, changing skies; a region buffeted by the winds from the North Sea.  The thoughts of the young 

Newton naturally turned skyward — there was little on the ground to stir his imagination except, 

perhaps, the proverbial apple tree and the falling apple.  Newton’s work set us on a new course. 

 Before discussing the details of the theory, it will be useful to give an overview using the 

simplest model, consistent with logical accuracy.  In this way, we can appreciate Newton’s radical 

ideas, and his development of the now standard “Scientific Method “ in which a crucial interplay exists 

between the results of observations and mathematical models that best account for the observations.  

The great theories are often based upon relatively small numbers of observations.  The uncovering of 
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the Laws of Nature requires deep and imaginative thoughts that go far beyond the demonstration of 

mathematical prowess. 

 Newton’s development of Differential Calculus in the late 1660’s was strongly influenced by his 

attempts to understand, analytically, the empirical ideas concerning motion that had been put forward 

by Galileo.  In particular, he investigated the analytical properties of motion in curved paths.  These 

properties are required in his Theory of Gravitation.  We shall consider motion in 2-dimensions.  

7.1  Properties of motion along curved paths in the plane 

 The velocity of a point in the plane is a vector, drawn at the point, such that its component in 

any direction is given by the rate of change of the displacement, in that direction.  Consider the following 

diagram 

                                        y                                                                       B                                        
                                                                                                                            
                                                                                                                            
                              y + ∆y                                                       Q                                               
                                                                               PQ                                                        
                                    y                                  P                               ∆y                                     
                                                        A                            ∆x                                                   
                                                                                                                            
                                          O                                                                            x                              
                                                                            x                  x + ∆x                                       
                                                                             t                   t + ∆t                                      
 
P and Q are the positions of a point moving along the curved path AB.  The coordinates are P [x, y] at 

time t and Q [x + ∆x, y + ∆y] at time t + ∆t.  The components of the velocity of the point are 

        lim(∆t→0) ∆x/∆t = dx/dt = vx, 

and 
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        lim(∆t→0) ∆y/∆t = dy/dt =vy. 

 ∆x and ∆y are the components of the vector PQ.  The velocity is therefore 

   lim(∆t→0) chordPQ/∆t . 

We have 

    lim(Q→P) chord PQ/∆s = 1, 

where s is the length of the curve AP and ∆s is the length of the arc PQ. 

The velocity can be written 

   lim(∆t→0) (chordPQ/∆s)(∆s/∆t) = ds/dt.                          (7.1) 

The direction of the instantaneous velocity at P is along the tangent to the path at P. 

 The x- and y-components of the acceleration of P are 

   lim(∆t→0) ∆vx/∆t = dvx/dt = d2x/dt2 , 

and 

  lim(∆t→0) ∆vy/∆t = dvy/dt = d2y/dt2. 

 The resultant acceleration is not directed along the tangent at P. 

 Consider the motion of P along the curve APQB: 

                                       y                                                            B                                       
                                                                                                            v + ∆v                      
                                                                                              Q   •                                    
                                                                                                         ∆ψ                                    
                                                                                                                   
                                                               P   •          v                                                     
                                                   A                                                                             
                                         O                                                                           x                          
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The change ∆v in the vector v is shown in the diagram: 

 
 
           v + ∆v             ∆ψ              ∆v 
 
                                                                        v 

The vector ∆v can be written in terms of two components, a, perpendicular to the direction of v, and b, 

along the direction of v + ∆v:  The acceleration is 

  lim(∆t→0) ∆v/∆t,  

The component along a is 

        lim(∆t→0) ∆a/∆t = lim(∆t→0) v∆ψ/∆t = lim(∆t→0) (v∆ψ/∆s)(∆s/∆t) 

               = v2(dψ/ds) = v2/ρ                            (7.2) 

where 

           ρ = ds/dψ, is the radius of curvature at P.                         (7.3) 

The direction of this component of the acceleration is along the inward normal at P. 

If the particle moves in a circle of radius R then its acceleration towards the center is v2/R, a result first 

given by Newton. 

The component of acceleration along the tangent at P is dv/dt = v(dv/ds) = d2s/dt2. 

7.2  An overview of Newtonian gravitation 

 Newton considered the fundamental properties of motion, embodied in his three Laws, to be 

universal in character — the natural laws apply to all motions of all particles throughout all space, at all 

times.  Such considerations form the basis of a Natural Philosophy.  In the Principia, Newton wrote …”I 
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began to think of gravity as extending to the orb of the Moon…”  He reasoned that the Moon, in its 

steady orbit around the Earth, is always accelerating towards the Earth.  He estimated the acceleration 

as follows: 

If the orbit of the Moon is circular (a reasonable assumption), the dynamical problem is 

                                                                                                                              
                                                                                                                               
                                                                                             v                                                     
                                                                               aR       •   Moon                                             
                                            Earth                         R                   The acceleration of the Moon    
                                                                                                      towards the Earth is                  
                                                                                                     |aR|= v2/R                  
                                                                                                                                 
                                                                                                                                  
                                                                                                                                  
                                                                                                                                   
Newton calculated v = 2πR/T, where R =240,000 miles, and T = 27.4 days, the period, 

so that  

                                 aR = 4π2R/T2 ≈ 0.007 ft/sec2.                           (7.4) 

He knew that all objects, close to the surface of the Earth, accelerate towards the Earth with a value 

determined by Galileo, namely g ≈ 32 ft/sec2.  He was therefore faced with the problem of explaining 

the origin of the very large difference between the value of the acceleration aR, nearly a quarter of a 

million miles away from Earth, and the local value, g. 

 He had previously formulated his 2nd Law that relates force to acceleration, and therefore he 

reasoned that the difference between the accelerations, aR and g, must be associated with a property 
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of the force acting between the Earth and the Moon — the force must decrease in some unknown 

way. 

 Newton then introduced his conviction that the force of gravity between objects is a universal 

force; each planet in the solar system interacts with the Sun via the same basic force, and therefore 

undergoes a characteristic acceleration towards the Sun.  He concluded that the answer to the 

problem of the nature of the gravitational force must be contained in the three empirical Laws of 

Planetary Motion announced by Kepler, a few decades before.  The three Laws are 

 1)  The planets describe ellipses about the Sun as focus, 

 2)  The line joining the planet to the Sun sweeps out equal areas in equal intervals  

                 of time, 

and 

 3)  The period of a planet is proportional to the length of the semi-major axis of  

                 the orbit, raised to the power of 3/2. 

 These remarkable Laws were deduced after an exhaustive study of the motion of the planets, 

made over a period of about 50 years by Tycho Brahe and Kepler.   

 The 3rd Law was of particular interest to Newton because it relates the square of the period to 

the cube of the radius for a circular orbit: 

          T2  ∝ R3                (7.5) 

or 

          T2 = CR3, 
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where C is a constant.  He replaced the specific value of (R/T2) that occurs in the expression for the 

acceleration of the Moon towards the Earth with the value obtained from Kepler’s 3rd Law and 

obtained a value for the acceleration aR: 

         aR = v2/R = 4π2R/T2 (Newton)                           (7.6) 

but 

      R/T2 = 1/CR2 (Kepler)                            (7.7) 

therefore 

        aR = 4π2(R/T2) 

            = (4π2/C)(1/R2) (Newton).                           (7.8) 

The acceleration of the Moon towards the Earth varies as the inverse square of the distance between 

them. 

Newton was now prepared to develop a general theory of gravitation.  If the acceleration of a planet 

towards the Sun depends on the inverse square of their separation, then the force between them can 

be written, using the 2nd Law of Motion, as follows 

  F = Mplanet aplanet = Mplanet(4π2/C)(1/R2).                          (7.9) 

 At this point, Newton introduced the first symmetry argument in Physics: if the planet 

experiences a force from the Sun then the Sun must experience the same force from the planet (the 

3rd Law of Motion!).  He therefore argued that the expression for the force between the planet and the 

Sun must contain, explicitly, the masses of the planet and the Sun.  The gravitational force FG between 

them therefore has the form 
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  FG = GMSunMplanet/R2,          (7.10) 

where G is a constant. 

 Newton saw no reason to limit this form to the Sun-planet system, and therefore he 

announced that for any two spherical masses, M1 and M2, the gravitational force between them is 

given by 

           FG = GM1M2/R2,          (7.11) 

where G is a universal constant of Nature. 

 All evidence points to the fact that the gravitational force between two masses is always 

attractive. 

 Returning to the Earth-Moon system, the force on the Moon (mass MM) in orbit is 

           FR = GMEMM/R2 = MMaR          (7.12) 

so that  

           aR = GME/R2, which is independent of MM.  (The cancellation of the mass MM in 

the expressions for FR involves an important point that is discussed later in the section 8.1). 

At the surface of the Earth, the acceleration, g, of a mass M is essentially constant.  It does not depend 

on the value of the mass, M, thus 

            g = GME/RE2 , where RE is the radius of the Earth.                     (7.13) 

(It took Newton many years to prove that the entire mass of the Earth, ME, is equivalent to a point mass, 

ME, located at the center of the Earth when calculating the Earth’s gravitational interaction with a mass 

on its surface.  This result depends on the exact 1/R2-nature of the force). 
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 The ratio of the accelerations, aR/g, is therefore 

        aR/g = (GME/R2)/(GME/RE2) = (RE/R)2.                       (7.14) 

Newton knew from observations that the ratio of the radius of the Earth to the radius of the Moon’s orbit 

is about 1/60, and therefore he obtained  

       aR/g ≈ (1/60)2 = 1/3600. 

so that 

          aR = g/3600 = (32/3600)ft/sec2 = 0.007...ft/sec2. 

In one of the great understatements of analysis, Newton said, in comparing this result with the value for 

aR that he had deduced using aR = v2/R …”that it agreed pretty nearly” …The discrepancy came 

largely from the errors in the observed ratio of the radii. 

7.3  Gravitation: an example of a central force 

 Central forces, in which a particle moves under the influence of a force that acts on the particle 

in such a way that it is always directed towards a single point — the center of force — form an 

important class of problems .  Let the center of force be chosen as the origin of coordinates: 

                                                                                                                 v                                     
                                                                                                                                     m                          

                                                                                                                                    •  P [r, φ]              
                                                                                                                           F                          
                                                                                   r                                                        
                                                                                                                              
                       Center of Force                                   φ                                                           
                                                                                                                              
                                     O  •                                                                                          x                     
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The description of particle motion in terms of polar coordinates (Chapter 2), is well-suited to the analysis 

of the central force problem.  For general motion, the acceleration of a point P [r, φ] moving in the plane 

has the following components in the r- and “φ”- directions  

           ar = ur(d2r/dt2 – r(dφ/dt)2),                        (7.15) 

and 

           aφ = uφ(r(d2φ/dt2) + 2(dr/dt)(dφ/dt)),                       (7.16) 

where ur and uφ are unit vectors in the r- and φ-directions.  

 In the central force problem, the force F is always directed towards O, and therefore the 

component aφ, perpendicular to r, is always zero: 

           aφ = uφ(r(d2φ/dt2) + 2(dr/dt)(dφ/dt) = 0,                                      (7.17) 

and therefore 

                        r(d2φ/dt2) + 2(dr/dt)(dφ/dt) = 0.                                       (7.18) 

This is the equation of motion of a particle moving under the influence of a central force, centered at O. 

 If we take the Sun as the (fixed) center of force, the motion of a planet moving about the Sun is 

given by this equation.  The differential equation can be solved by making the substitution 

          ω = dφ/dt,                          (7.19) 

giving 

                             rdω/dt + 2ω(dr/dt) = 0,                         (7.20) 

or  

                     rdω = –2ωdr. 
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Separating the variables, we obtain 

              dω/ω = –2dr/r. 

Integrating, gives 

                logeω = –2loger + C (constant), 

therefore 

           loge(ωr2) = C. 

Taking antilogs gives 

         r2ω = r2(dφ/dt) = eC = k, a constant.                       (7.21) 

7.4  Motion under a central force and the conservation of angular momentum 

 The above solution of the equation of motion of a particle of mass m, moving under the 

influence of a central force at the origin, O, can be multiplied throughout by the mass m to give 

       mr2(dφ/dt) = mk           (7.22) 

or 

    mr(r(dφ/dt)) = K, a constant for a given mass,                       (7.23) 

We note that r(dφ/dt) = vφ, the component of velocity perpendicular to r, therefore  

 angular momentum of m about O = r(mvφ) = K, a constant of the motion for a   

              central force. 

7.5  Kepler’s 2nd law explained 

 The equation r2(dφ/dt) = constant, K, can be interpreted in terms of an element  
 
of area swept out by the radius vector r, as follows                                                                                                               
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                                                 ∆A                           r∆φ                               (r + ∆r)∆φ  
                                                                                                                      
                                                            r + ∆r                                                              
                                              ∆φ                               r                                               
                                                                                            φ                                           
                                       O                                                                                   x    
            
From the diagram, we see that the following inequality holds 

  r2∆φ/2 < ∆A < (r + ∆r)2∆φ/2 

or 

       r2/2 < ∆A/∆φ < (r + ∆r)2/2. 

When ∆φ → 0, r + ∆r → r, so that, in the limit, 

  dA/dφ = r2/2. 

The element of area is therefore 

       dA = r2dφ/2. 

Twice the time rate of change of this element is therefore 

           2dA/dt = r2(dφ/dt).                          (7.24) 

 We recognize that this expression is equal to k, the constant that occurs in the solution of the 

differential equation of motion for a central path.  The radius vector r therefore sweeps out area at a 

constant rate.  This is Kepler’s 2nd Law of Planetary Motion; it is seen to be a direct consequence of the 

fact that the gravitational attraction between the Sun and a planet is a central force problem. 
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7.6  Central orbits 

 A central orbit must be a plane curve (there is no force out of the plane), and the moment of 

the velocity r2(dφ/dt), about the center of force, must be a constant of the motion.  The moment can be 

written in three equivalent ways: 

 

                                          rdφ/dt               v                                                     v        y                        dy/dy              v  
                                                                  dr/dt                                                                     
                                      r             Fc                                                Fc                                                       Fc        dx/dt  
                  O                    φ                    x           O                              p           x       O                                         x 
 

The moment of the velocity about O is then 

  r(r(dφ/dt)                  =               pv                  =      x(dy/dt) – y(dx/dt)  

            = a constant, h, say.                       (7.25) 

 The result r2(dφ/dt) = constant for a central force can be derived in the following alternative way: 

 The time derivative of r2(dφ/dt) is 

        (d/dt)(r2(dφ/dt)) = r2(d2φ/dt2) + (dφ/dt)2r(dr/dt)                                       (7.26) 

If this equation is divided throughout by r then  

 (1/r)(d/dt)(r2(dφ/dt)) = r(d2φ/dt2) + 2(dr/dt)(dφ/dt)                                        (7.27) 

                         = the transverse acceleration 

              = 0 for a central force.                        (7.28) 

Integrating then gives 

         r2(dφ/dt) = constant for a central force.                        (7.29) 
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7.6.1  The law of force in [p, r] coordinates 

 There are advantages to be gained in using a new set of coordinates — [p, r] coordinates — in 

which a point P in the plane is defined in terms of the radial distance r from the origin, and the 

perpendicular distance p from the origin onto the tangent to the path at P.  (See following diagram).  

 Let a particle of unit mass move along a path under the influence of a central force directed 

towards a fixed point, O.  Let ac be the central acceleration of the unit mass at P, let the perpendicular 

distance from O to the tangent at P be p, and let the instantaneous radius of curvature of the path at the 

point P be ρ: 

                                                                                                  Central orbit                                      
                                                                                                       v                                                       
                                                                                                                                      
                                  Component of acceleration                        •    P [r, p]                                   
                                       along inward normal at P, a⊥                                                                    
                                                                                                              α                                            
                                                                            ρ                ac                                                
                                                                                             r                                                            
                                                                                                           p                                              
                                                                                                                                    
                                                Center of Force →  O                                                                 
                                                                                                                                      
The component of the central acceleration along the inward normal at P is  

          a⊥ = acsinα = v2/ρ = ac(p/r).                        (7.30) 

The  instantaneous radius of curvature is given by 

          ρ = r(dr/dp).                                                           (7.31) 

For all central forces,  

         pv = constant = h,                          (7.32) 
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therefore 

         a⊥ = v2/ρ = (h2/p2)(1/r)(dp/dr) = ac(p/r),                       (7.33) 

so that 

          ac = (h2/p3)(dp/dr).                         (7.34) 

This differential equation is the law of force per unit mass given the orbit in [p, r] coordinates. 

(It is left as a problem to show that given the orbit in polar coordinates, the law of force per unit mass  is 

                                ac = h2u2{u + d2u/dφ2}, where u = 1/r ).                                                                       (7.35) 

 In order to find the law of force per unit mass (acceleration), given the [p, r] equation of the orbit, 

it is necessary to calculate dp/dr.  For example, if the orbit is parabolic, the [p, r] equation can be 

obtained as follows 

                                                                   y                     P                                                     
                              Tangent at P                                                                                  
                                                               Q   •                                                                    
                                                                             p         r                                                       
                                                                                                                           
                                                      Apex , A         •                                                    x                  
                                                                               F , the Focus                                          
                                                                                                                           
                                                                                                                           
                                                                                                                          
 
The triangles FAQ and FQP are similar, therefore 

         p/a = r/p, where AF = a,         (7.36) 

giving  

        1/p2 = 1/ar, the p-r equation of a parabola.                      (7.37) 

Differentiating this equation, we obtain 
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        (1/p3)dp/dr = 1/2ar2.                          (7.38) 

The law of acceleration for the parabolic central orbit is therefore 

            ac = (h2/p3)dp/dr = (h2/2a)(1/r2) = constant/r2.                      (7.39) 

 The instantaneous speed of P is given by the equation v = h/p; we therefore find  

            v = h/√ar.                          (7.40) 

This approach can be taken in discussing central orbits with elliptic and hyperbolic forms.   

Consider the ellipse 
                                                                      Q                    y                                                           
                                                                                                                        P                                          
                                                                                                                                       R                               
                               b                                        p1         r1                          r2                                              
                                                                                                                                p2                                    
                                                                                                 O                                                               x              
                                                                   F1                                                      F2                                        
                                                                                                                                         
                                                                                                                                        
                                                                                                                                          
                                                                                                                         a                                            
 
The foci are F1 and F2, the semi-major axis is a, the semi-minor axis is b, the radius vectors to the point 

P [r, φ] are r1 and r2 , and the perpendiculars from F1 and F2 onto the tangent at P are p1 and p2.   

Using standard results from analytic geometry, we have for the ellipse 

 1)  r1 + r2 = 2a,                                    (7.41 a-c) 

 2)      p1p2 = b2, and 

 3)  angle QPF1 = angle RPF2. 

The triangles F1QP and F2RP are similar, and therefore 

                  p1/r1 = p2/r2                           (7.42) 
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or 

       (p1p2/r1r2)1/2 = b/{r1(2a – r1)}1/2 = p1/r1 

so that 

                 b2/p12 = 2a/r1 – 1.                          (7.43) 

This is the [p, r] equation of an ellipse. 

The [p, r] equation for the hyperbola can be obtained using a similar analysis.  The standard results 

from analytical geometry that apply in this case are 

   1)     p1p2 = b2,                                  (7.44 a-c) 

   2)  r2 – r1 = 2a, and 

   3)  the tangent at P bisects the angle between the focal distances. 

(b2 = a2(e2 – 1) where e is the eccentricity (e2 > 1), and 2b2/a is the latus rectum). 

We therefore obtain  

               b12/p12 = 2a/r1 + 1.                          (7.45) 

This is the [p, r] equation of an hyperbola. 

7.7  Bound and unbound orbits 

 For a central force, we have the equation for the acceleration in [p, r] form  

      (h2/p3)dp/dr = ac.           (7.46) 

If the acceleration varies as 1/r2, then the form of the orbit is given by separating the variables, and 

integrating, thus 

          h2 ∫dp/p3 = k∫dr/r2,                          (7.47) 
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so that 

             –h2/2p2 = –k/r, where k is a constant, or 

      h2/p2 = 2k/r + C, where the value of C depends on the form of the orbit. 

Comparing this form with the general form of the [p, r] equations of conic sections, we see that the orbit 

is an ellipse, parabola, or hyperbola depending on the value of C.  If  

  C is negative, the orbit is an ellipse, 

  C is zero, the orbit is a parabola, 

and if 

  C is positive, the orbit is an hyperbola. 

 The speed  of the particle in a central orbit is given by v = h/p.  If, therefore, the particle is 

projected from the origin, O (corresponding to r = r0) with a speed v0, then 

       h2/p2 = v02 = 2k/r0 + C,                         (7.48) 

so that the orbit is  

 1)  an ellipse if v02 < 2k/r0,                                  (7.49 a-c) 

 2)  a parabola if v02 = 2k/r0 ,  

or  

 3) an hyperbola if v02 > 2k/r0. 

 The escape velocity, the initial velocity required for the particle to go into an unbound orbit is 

therefore given by 
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     v2escape = 2k/r0  = 2GME/RE, for a particle launched from the surface of the Earth.  This 

condition is, in fact, an energy equation 

             (1/2)(m = 1)v2escape =  GME(m = 1)/RE .                       (7.50) 
                                                                            
                              kinetic energy              potential energy 
 
7. 8  The concept of the gravitational field 

 Newton was well-aware of the great difficulties that arise in any theory of the gravitational 

interaction between two masses not in direct contact with each other.  In the Principia, he assumes, in 

the absence of any experimental knowledge of the speed of propagation of the gravitational interaction, 

that the interaction takes place instantaneously.  However, in letters to other luminaries of his day, he 

postulated an intervening agent between two approaching masses — an agent that requires a finite 

time to react.  In the early 17th century, the problem of understanding the interaction between spatially 

separated objects appeared in a new guise, this time in discussions of the electromagnetic interaction 

between charged objects.  Faraday introduced the idea of a field of force with dynamical properties.  In 

the Faraday model, an accelerating electric charge acts as the source of a dynamical electromagnetic 

field that travels at a finite speed through space-time, and interacts with a distant charge.  Energy and 

momentum are thereby transferred from one charged object to another distant charged object.   

Maxwell developed Faraday’s idea into a mathematical theory — the electromagnetic theory of light — 

in which the speed of propagation of light appears as a fundamental constant of Nature.  His theory 

involves the differential equations of motion of the electric and magnetic field vectors; the equations are 

not invariant under the Galilean transformation but they are invariant under the Lorentz transformation.  
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(The discovery of the transformation that leaves Maxwell’s equations invariant for all inertial observers 

was made by Lorentz in 1897).  We have previously discussed the development of the Special Theory 

of Relativity by Einstein, a theory in which there is but one universal constant, c, for the speed of 

propagation of a dynamical field in a vacuum.  This means that c is not only the speed of light in free 

space but also the speed of the gravitational field in the void between interacting masses.   

 We can gain some insight into the dynamical properties associated with the interaction 

between distant masses by investigating the effect of a finite speed of propagation, c, of the gravitational 

interaction on Newton’s Laws of Motion.  Consider a non-orbiting mass M, at a distance R from a mass 

mass MS, simply falling from rest with an acceleration a(R) towards MS.  According to Newton’s Theory 

of Gravitation, the magnitude of the force on the mass M is  

  |F(R)| = GMSM/R2 = Ma(R),          (7.51) 

We therefore have 

                  a(R) = GMS/R2.                           (7.52) 

Let ∆t be the time that it takes for the gravitational interaction to travel the distance R at the universal 

speed c, so that  

         ∆t = R/c.           (7.53) 

In the time interval ∆t, the mass M moves a distance, ∆R, towards the mass MS; 

                   ∆R = a∆T2/2 

             = (GMS/R2)∆t2/2 

             = (GMS/R2)(R/c)2/2.                         (7.54) 
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 Consider the situation in which the mass M is in a circular orbit of radius R about the mass, MS.  

Let v(t) be the velocity of the mass M at time t, and v(t + ∆t) its velocity at t + ∆t, where ∆t is chosen to 

be the interaction travel time.  Let us consider the motion of M if there were no mass MS present, and 

therefore no interaction; the mass M then would continue its motion with constant velocity v(t) in a 

straight line.  We are interested in the difference in the positions of M at time t + ∆t, with and without the 

mass MS in place.  We have, to a good approximation: 

                                                 M   v(t)                                                                     
                                                   •                                 • ← “extrapolated position”  (no mass MS)  
                                                     F(R)           M   •   ∆R                                                      
                                                                                        v(t + ∆t)                                        
                                            R                          R                                                                        
                                                                                                                        
                                                                                                                         
                                                  ⊗  MS                                                                          
 
The magnitude of the gravitational force, FEX, at the extrapolated position, with MS in place, is 

        FEX = GMSM/(R + ∆R)2          (7.55) 

             = (GMSM/R2)(1 + ∆R/R)–2  

             ≈ (GMSM/R2)(1 – 2∆R/R), for ∆R << R.                      (7.56) 

Substituting the value of ∆R obtained above, we find 

       FEX ≈ GMSM/R2 – (GMSM/Rc2)(GMS/R2).       (7.57) 

Nerwton’s 3rd Law states that 

    FMS, M = – FM, MS           (7.58) 
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This Law is true, however, for contact interactions only.  For all interactions that take place between 

separated objects, there is a mis-match between the action and the reaction.  It takes time for one 

particle to respond to the presence of the other!   

In the present example, we obtain a good estimate of the mismatch by taking the difference between 

FEX(R + ∆R) and F(R), namely 

  FEX(R + ∆R) – F(R) ≈ (GMSM/Rc2)(GMS/R2).       (7.59) 

On the right-hand side of this equation, we note that the term (GMS/R2) has dimensions of 

“acceleration”, and therefore the term (GMSM/Rc2) must have dimensions of “mass”.  We see that this 

term is an estimate of the “mass” associated with the interaction, itself.  The space between the 

interacting masses must be endowed with this effective mass if Newton’s 3rd Law is to include non-

contact interactions.  The appearance of the term c2 in the denominator of this effective mass term has 

a special significance.  If we invoke Einstein’s famous relation E = Mc2, then ∆E = ∆Mc2 so that the 

effective mass of the gravitational interaction can be written as an effective energy: 

    ∆EGRAV = GMSM/R.          (7.60) 

This is the “energy stored in the gravitational field” between the two interacting masses.  Note that it has 

a 1/R-dependence — the correct form for the potential energy associated with a 1/R2 gravitational 

force.  We see that the notion of a dynamical field of force is a necessary consequence of the finite 

propagation time of the interaction.   
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7.9  The gravitational potential 

 The concept of a gravitational potential has its origins in the work of Leibniz.  The potential 

energy, V(x), asssociated with n interacting particles, of masses m1, m2, ...mn, situated at x1, x2, ...xn, is 

related to the gravitational force on a mass M at x, due to the n particles, by the equation 

        F(x) = –∇V(x).          (7.61) 

The exact forms of F(x) and V(x) are 

         F(x) = –GM∑[i = 1, n] mi(x – xi)/|x – xi|3,                                      (7.62) 

and 

       V(x) = –GM∑[i = 1, n] mi/|x – xi| . 

In upper-index notation, the components of the force are 

      Fk(x) = – ∂V/∂xk, k = 1, 2, 3.                        (7.63) 

 The gravitational field, g(x), is the force per unit mass: 

       g(x) = F(x)/M,                          (7.64) 

and the gravitational potential is defined as 

     Φ(x) = V(x)/M = –∑[i = 1, n] Gmi/|x – xi|.                       (7.65) 

The sign of the potential is chosen to be negative because the gravitational force is always attractive.  

(This convention agrees with that used in Electrostatics). 

 If the mass consists of a continuous distribution that can be described by a mass density ρ(x), 

then the potential is 

      Φ(x) = – ∫(Gρ(x )́/|x – x |́) d3x .́                                       (7.66) 
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It is left as an exercise to show that this form of Φ means that the potential obeys Poisson’s equation 

    ∇2Φ(x) – 4πGρ(x) = 0. 

 We should note that the gravitational potential of a mass M has the form 

        V(r) = –GM/r                          (7.67) 

only around a mass distribution with spherical symmetry.  For an arbitrary mass distribution, the 

potential can be written as a series of multipoles.  

 

 The potential of a circular disc at a point on its axis can be found as follows 

                                                                                                        P       
 
 
                                                                                                        p 
 
                                                                                                                       dr 
                       R 
                                                                                Q         r       O 
 
 
 
Let the disc be divided into concentric circles.  The potential at P, on the axis, due to the elemental ring 

of radius r and width dr is 2πrdrGσ/PQ, where σ is the mass per unit area of the disc.  The potential at 

P of the entire disc is therefore 

           VP = ∫[0, a] 2πGσrdr/PQ,         (7.68) 

where a is the radius of the disc.  Therefore, 

           VP = 2πGσ∫[0, a] rdr/(r2 + p2)1/2   



 145 

    = 2πGσ[(r2 + p2)1/2][0, a] 

    = 2πGσ(R – p),                         (7.69) 

where R is the distance of P from any point on the circumference. 

PROBLEMS 

7-1  Show that the gravitational potential of a thin spherical shell of radius R and mass M at  

      a point P is 

      1) GM/d where d is the distance from P to the center of the shell if d >R, and 

      2) GM/R if P is inside or on the shell.   

7-2  If d is the distance from the center of a solid sphere (radius R and density ρ) to a point  

      P inside the sphere, show that the gravitational potential at P is 

       ΦP = 2πGρ(R2 – d2/3). 

7-3  Show that the gravitational attraction of a circular disc of radius R and mass per unit  

      area σ, at a point P distant p from the center of the disc, and on the axis, is 

       2πGσ{[p/(p2 + R2)1/2] – 1}. 

7-4  A particle moves in an ellipse about a center of force at a focus.  Prove that the  

      instantaneous velocity v of the particle at any point in its orbit can be resolved into  

      two components, each of constant magnitude: 1) of magnitude ah/b2, perpendicular to  

      the radius vector r at the point, and 2) of magnitude ahe/b2 perpendicular to the major  

      axis of the ellipse.  Here, a and b are the semi-major and semi-minor axes, e is the  

      eccentricity, and h = pv = constant for a central orbit. 
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7.5  A particle moves in an orbit under a central acceleration a = k/r2 where k = constant.   

      If the particle is projected with an initial velocity v0 in a direction at right angles to  

      the radius vecttor r when at a distance r0 from the center of force (the origin ), prove 

  (dr/dt)2 = {(2k/r0) – vo2(1 + (r0/r))}{(r0/r) – 1}. 

      This problem involves the energy and momentum equations in r,φ coordinates. 

7-6  A particle moves in a cardioidal orbit, r = a(1 + cosφ), under a central force        

                                                                     v 
                       a                                                  P [r, φ] 
         p                           F 
           r 
                 φ 
          O                                                          2a  
 
      1) show that the p-r equation of the cardioid is p2 = r3/2a, and 

      2) show that the central acceleration is 3ah2/r4, where h = pv = constant. 

7-7  A planet moves in a circular orbit of radius r about the Sun as focus at the center.  

      If the gravitational “constant” G changes slowly with time — G(t), then show that the 

     angular velocity, ω, of the planet and the radius of the orbit change in time according     

     to the equations 

  (1/ω)(dω/dt) = (2/G)(dG/dt) and (1/r)(dr/dt) = (–1/G)(dG/dt). 

7-8  A particle moves under a central acceleration a = k(1/r3) where k is a constant.   

      If k = h2, where h = r2(dφ/dt) = pv, then show that the path is  

  1/r = Aφ + B, a “reciprocal spiral”, where A and B are constants. 
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8   

EINSTEINIAN GRAVITATION:  

AN INTRODUCTION TO GENERAL RELATIVITY 

8.1  The principle of equivalence 

 The term “mass” that appears in Newton’s equation for the gravitational force between two 

interacting masses refers to “gravitational mass” — that property of matter that responds to the 

gravitational force …Newton’s Law should indicate this property of matter: 

          FG = GMGmG/r2, where MG and mG are the gravitational masses of the interacting 

objects, separated by a distance r. 

 The term “mass” that appears in Newton’s equation of motion, F = ma, refers to the “inertial 

mass” — that property of matter that resists changes in its state of motion.  Newton’s equation of 

motion should indicate this property of matter: 

       F(r) = mIa(r), where mI is the inertial mass of the particle moving with an 

acceleration a(r) in the gravitational field of the mass MG.  

 Newton showed by experiment that the inertial mass of an object is equal to its gravitational 

mass, mI = mG to an accuracy of 1 part in 103.  Recent experiments have shown this equality to be true 

to an accuracy of 1 part in 1012.  Newton therefore took the equations 

        F(r) = GMGmG/r2 = mIa(r),                           (8.1) 

and used the condition mG = mI to obtain 

        a(r) = GMG/r2.                             (8.2) 
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 Galileo had, of course, previously shown that objects made from different materials fall with the 

same acceleration in the gravitational field at the surface of the Earth, a result that implies mG ∝ mI.  

This is the Newtonian Principle of Equivalence.   

Einstein used this Principle as a basis for a new Theory of Gravitation!  He extended the axioms of 

Special Relativity, that apply to field-free frames, to frames of reference in “free fall”.  A freely falling 

frame must be in a state of unpowered motion in a uniform gravitational field.  The field region must be 

sufficiently small for there to be no measurable variation in the field throughout the region.  If a field 

gradient does exist in the region then so called “tidal effects” are present, and these can, in principle, be 

determined (by distorting a liquid drop, for example).  The results of all experiments carried out in ideal 

freely falling frames are therefore fully consistent with Special Relativity.  All freely-falling observers 

measure the speed of light to be c, its constant free-space value.  It is not possible to carry out 

experiments in ideal freely-falling frames that permit a distinction to be made between the acceleration 

of local, freely-falling objects, and their motion in an equivalent external gravitational field.  As an 

immediate consequence of the extended Principle of Equivalence, Einstein showed that a beam of 

light would be deflected from its straight path in a close encounter with a sufficiently massive object.  

The observers would, themselves, be far removed from the gravitational field of the massive object 

causing the deflection.  Einstein’s original calculation of the deflection of light from a distant star, grazing 

the Sun, as observed here on the Earth, included only those changes in time intervals that he had  

predicted would occur in the near field of the Sun.  His result turned out to be in error by exactly a factor 

of two.  He later obtained the “correct” value for the deflection by including in the calculation the changes 
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in spatial intervals caused by the gravitational field.  A plausible argument is given in the section 8.6 for 

introducing a non-intuitive concept, the refractive index of spacetime due to a gravitational field.  This 

concept is, perhaps, the characteristic physical feature of Einstein’s revolutionary General Theory of 

Relativity. 

8.2  Time and length changes in a gravitational field  

 We have previously discussed the changes that occur in the measurement of length and time 

intervals in different inertial frames.  These changes have their origin in the invariant speed of light and 

the necessary synchronization of clocks in a given inertial frame.  Einstein showed that measurements 

of length and time intervals in a given gravitational potential are changed relative to the measurements 

made in a different gravitational potential.  These field-dependent changes are not to be confused with 

the Special-Relativistic changes discussed in 3.5.  Although an exact treatment of this topic requires the 

solution of the full Einstein gravitational field equations, we can obtain some of the key results of the 

theory by making approximations that are valid in the case of our solar system.  These approximations 

are treated in the following sections. 

8.3  The Schwarzschild line element 

 An observer in an ideal freely-falling frame measures an invariant infinitesimal interval of the 

standard Special Relativistic form  

  ds2 = (cdt)2 – (dx2 + dy2 + dz2).                                         (8.3) 

It is advantageous to transform this form to spherical polar coordinates, using the linear equations 

      x = rsinθcosφ, y = rsinθsinφ, and z = rcosθ. 
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We then have  

 

            z      dr                            dl, the diagonal of the cube 
          dφ 
           z                                                           rdθ 
 
                          θ        r                                                          y 
 
          dθ                        rsinθ 
 
                x               φ 
 
                                    x 
 
The square of the length of the diagonal of the infinitesimal cube is seen to be 

         dl2 = dr2 + (rdθ)2 + (rsinθdφ)2.                           (8.4) 

The invariant interval can therefore be written 

         ds2 = (cdt)2 – dr2 – r2(dθ2 + sin2θdφ2).                          (8.5) 

The key question that now faces us is this: how do we introduce gravitation into the problem?  We can 

solve the problem by introducing an energy equation into the argument.   

 Consider two observers O and O ,́ passing by one another in a state of free fall in a 

gravitational field due to a mass M, fixed at the origin of coordinates.  Both observers measure a 

standard interval of spacetime, ds according to O, and ds  ́according to O ,́ so that 

         ds2 = ds 2́ = (cdt́ )2 – dŕ 2 – ŕ 2(dθ 2́ + sin2θ´dφ 2́)                                       (8.6) 

The situation is as shown 
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      z 
 
        vO(r)              
                    O                               
          O  ́
             r                    vO (́r) ≈ 0          y 
              θ 
      Mass, M 
   (the source of the field) 
            φ 
 
 
               x 
 
Let the observer O  ́just begin free fall towards M at the radial distance r, and let the observer O, close 

to O ,́ be freely falling away from the mass M.  The observer O is in a state of unpowered motion with 

just the right amount of kinetic energy to “escape to infinity”.  Since both observers are in states of free 

fall, we can, according to Einstein, treat them as if they were ‘inertial observers”.  This means that they 

can relate their local space-time measurements by a Lorentz transformation.  In particular, they can 

relate their measurements of the squared intervals, ds2 and ds 2́, in the standard way.  Since their 

relative motion is along the radial direction, r, time intervals and radial distances will be measured to be 

changed: 

          ∆t = γ∆t́  and γ∆r = ∆ŕ ,                                  (8.7 a,b) 

where 

            γ = 1/{1 – (v/c)2}1/2 , in which v = vO(r) because vO’’(r) ≈ 0. 
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 If O has just enough kinetic energy to escape to infinity, then we can equate the kinetic energy 

to the potential energy, so that 

  vO2(r)/2 = 1⋅Φ(r) if the observer O has unit mass.                         (8.8)  

Φ(r) is the gravitational potential at r due to the presence of the mass, M, at the origin.   

This procedure enables us to introduce the gravitational potential into the value of γ in the Lorentz 

transformation.  We have vO2 = 2Φ(r) = v2, and therefore 

          ∆t = ∆t́ /{1 – 2Φ(r)/c2}1/2,                           (8.9) 

and 

          ∆r = ∆ŕ {1 – 2Φ(r)/c2}1/2.                        (8.10) 

Only lengths parallel to r change, therefore 

 r2(dθ2 + sin2θdφ2) = ŕ 2(dθ 2́ + sinθ´dφ 2́),                                       (8.11) 

and therefore we obtain 

 ds2 = ds 2́ = c2(1 – 2Φ(r)/c2)dt2 – dr2/(1 – 2Φ(r)/c2) – r2(dθ2 + sin2θdφ2).                                 (8.12) 

If the potential is due to a mass M at the origin then 

         Φ(r) = GM/r,  (r > R, the radius of the mass, M) 

therefore, 

                          ds2 = c2(1 – 2GM/rc2)dt2 – (1 – 2GM/rc2)–1dr2 – r2(dθ2 + sin2θdφ2). 
                             (8.13) 
 
This is the famous Schwarzschild line element, originally obtained as an exact solution of the Einstein 

field equations.  The present approach fortuitously gives the exact result! 
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8.4  The metric in the presence of matter 

 In the absence of matter, the invariant interval of space-time is  

         ds2 = ηµνdxµdxν  (µ, ν = 0, 1, 2, 3),                       (8.14) 

where 

        ηµν = diag(1, –1, –1, –1)         (8.15) 

is the metric of Special Relativity; it “lowers the indices”   

        dxµ = ηµνdxν.                          (8.16) 

 The form of the Schwarzschild line element, ds2sch, shows that the metric gµν in the presence of 

matter differs from ηµν.  We have 

      ds2sch = gµνdxµdxν,          (8.17) 

where  

        dx0 = cdt, dx1 = dr, dx2 = rdθ, and dx3 = rsinθdφ, 

and 

       gµν = diag((1 – χ), –(1 – χ)–1, –(1 – χ)–1, –(1 – χ)–1) 

in which 

         χ = 2GM/rc2. 

The Schwarzschild metric lowers the indices 

      dxµ = gµνdxν,                          (8.18) 

so that 

    ds2sch = dxµdxµ.                          (8.19) 
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8.5  The weak field approximation 

 If χ = 2GM/rc2 << 1, the coefficient, (1 – χ)–1, of dr2 in the Schwarzschild line element can be 

replaced by the leading term of its binomial expansion, (1 + χ ...) to give the “weak field” line element: 

        ds2W = (1 – χ)(cdt)2 – (1 + χ)dr2 – r2(dθ2 + sin2θdφ2).                     (8.20) 

 At the surface of the Sun, the value of χ is 4.2 x 8–6, so that the weak field approximation is 

valid in all gravitational phenomena in our solar system. 

 Consider a beam of light traveling radially in the weak field of a mass M, then  

        ds2W = 0 (a light-like interval) , and dθ2 + sin2θdφ2 = 0,                     (8.21) 

giving 

            0 = (1 – χ)(cdt)2 – (1 + χ)dr2.                        (8.22) 

The “velocity” of the light vL = dr/dt, as determined by observers far from the gravitational influence of M, 

is therefore 

          vL = c{(1 – χ)/(1 + χ)}1/2 ≠ c if χ ≠ 0.                                      (8.23) 

(Observers in free fall near M always measure the speed of light to be c). 

 Expanding the term {(1 – χ)/(1 + χ)}1/2 to first order in χ, we obtain 

   vL(r)/c ≈ (1 – χ/2  ...)(1 – χ/2  ...) 

             = (1 – χ...).                          (8.24) 

Therefore 

      vL(r) ≈ c(1 – 2GM/rc2...),         (8.25) 

so that vL(r) < c in the presence of a mass M according to observers far removed from M. 
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8.6  The refractive index of space-time in the presence of mass 

 In Geometrical Optics, the refractive index, n, of a material is defined as 

            n ≡ c/vmedium           (8.26) 

where vmedium is the speed of light in the medium.  We introduce the concept of the refractive index of 

space-time, nG(r), at a point r in the gravitational field of a mass, M: 

          nG ≡ c/vL(r)  

              ≈ 1/(1 – χ) 

              = 1 + χ  to first-order in χ. 

              = 1 + 2GM/rc2.                         (8.27) 

The value of nG increases as r decreases .  This effect can be interpreted as an increase in the “density” 

of space-time as M is approached.   

8.7  The deflection of light grazing the sun 

 As a plane wave of light approaches a spherical mass, those parts of the wave front nearest 

the mass are slowed down more than those parts farthest from the mass.  The speed of the wave front 

is no longer constant along its surface, and therefore the normal to the surface must be deflected: 

       vL ≈ c                                         vL ≈ c 
  
 
 
 
        Deflection angle 
       Normal to  
       wavefront 
         vL < c 
               Mass, M, the source of the field 
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The deflection of a plane wave of light by a spherical mass, M, as it travels through space-time can be 

calculated in the weak field approximation.  We choose coordinates as shown 

 

                                                                                                 y        

                             dx  ́= v´dt 
 
                      x                                  dy 
       Plane wave  
                                     of light                                dx = vdt 
 
         y              r 
 
         y = 0                                                                                        x 
 
          Mass, M (this includes the mass of  
              its field) 
 
               R 
 
We have shown that the speed of light (moving radially) in a gravitational field, measured by an 

observer far from the source of the field, depends on the distance, r, from the source  

        v(r) = c(1 – 2GM/rc2)                         (8.28) 

where c is the invariant speed of light as r → ∞. 

We wish to compare dx with dx ,́ the distances travelled in the x-direction by the wavefront at y and y + 

dy, in the interval dt. 

We have  

            r2 = (y + R)2 + x2                          (8.29) 
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therefore v(r) → v(x, y) so that 

          2r(∂r/∂y) = 2(y + R), 

and  

                ∂r/∂y = (y + R )/r .                          (8.30) 

Very close to the surface of the mass M (radius R), the gradient is 

         ∂r/∂y|y →0 → R/r.                          (8.31) 

Now, 

            ∂v(r)/∂y = (∂/∂r)(c(1 – 2GM/rc2))(∂r/∂y) 

               = (2GM/r2c)(∂r/∂y).         (8.32) 

We therefore obtain 

     ∂v(r)/∂y|y→0 = (2GM/r2c)(R/r) = 2GMR/r3c.                       (8.33) 

Let the speed of the wavefront be v  ́at y + dy and v at y.  The distances moved in the interval dt are 

therefore  

        dx  ́= v´dt and dx = vdt.                 (8.34 a,b) 

The first-order Taylor expansion of v  ́is 

          v  ́= v + (∂v/∂y)dy, 

and therefore 

           dx  ́– dx = (v + (∂v/∂y)dy)dt – vdt = (∂v/∂y)dydt.                      (8.35) 

Let the corresponding angle of deflection of the normal to the wavefront be dα, then 

         dα = (dx  ́– dx)/dy 
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    = (∂v/∂y)dt = (∂v/∂y)(dx/v).        (8.36) 

The total deflection of the normal to the plane wavefront is therefore 

        ∆α = ∫[–∞,∞](∂v/∂y)(dx/v)         (8.37) 

              ≈ (1/c)∫[–∞,∞] (∂v/∂y)dx . 

(v ≅ c over most of the range of the integral). 

The portion of the wavefront that grazes the surface of the mass M (y → 0) therefore undergoes a total 

deflection 

         ∆α ≈ (1/c)∫[–∞,∞](2GMR/r3c)dx                        (8.38) 

    = 2GMR/c2∫[–∞,∞]dx/(R2 +x2)3/2 

    = 2GMR/c2[x/(R2(R2 + x2)1/2)]–∞∞  

    = 2(GMR/c2)(2/R2). 

so that  

         ∆α = 4GM/Rc2. 

This is Einstein’s famous prediction; putting in the known values for G, M, R, and c, gives 

         ∆α = 1.75 arcseconds.         (8.39) 

Measurements of this very small effect, made during total eclipses of the Sun at various times and 

places since 1919, are fully consistent with Einstein’s prediction. 

PROBLEMS 

8-1  If a particle A is launched with a velocity v0A from a point P on the surface of the  

      Earth at the same instant that a particle B is dropped from a point Q, use the Principle  
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      of Equivalence to show that if A and B are to collide then v0A must be directed along PQ.   

                 Q                          g ⇓ 

            B 
 
        

⊗     
                                                           A 
               v0A  

                              P 
 
8-2  A satellite is in a circular orbit above the Earth.  It carries a clock that is similar to a 
 
      clock on the Earth.  There are two effects that must be taken into account in   

      comparing the rates of the two clocks.  1) the time shift due to their relative speeds 

      (Special Relativity), and 2) the time shift due to their different gravitational potentials  

      (General Relativity).  Calculate the SR shift to second-order in (v/c), where v is the  

      orbital speed , and the GR shift to the same order.  In calculating the difference in the  

      potentials , integrate from the surface of the Earth to the orbit radius.  The two  

      effects differ in sign.  Show that the total relative change in the frequency of the 

      satellite clock compared with the Earth clock is 

   (∆ν/νE) ≈ (gRE/c2){1 – (3RE/2rS)}, where rS is the radius of the 

      satellite orbit (measured from the center of the Earth).  We see that if the altitude of  

      the satellite is > RE/2 (~ 3200 km) ∆ν is positive since the gravitational effect then 

      predominates, whereas at altitudes less than ~3200 km, the Special Relativity effect  

      predominates.  At an altitude ~ 3200 km, the clocks remain in synchronism. 



 160 

9   

AN INTRODUCTION TO THE CALCULUS OF VARIATIONS 

9.1  The Euler equation 

 A frequent problem in Differential Calculus is to find the stationary values (maxima and 

minima) of a function y(x).  The necessary condition for a stationary value at x = a is 

  dy/dx|x = a  = 0. 

For a minimum, 

  d2y/dx2|x = a > 0,  

and for a maximum,  

  d2y/dx2|x = a < 0. 

 The Calculus of Variations is concerned with a related problem, namely that of finding a 

function y(x) such that a definite integral taken over a function of this function shall be a maximum or a 

minimum.  This is clearly a more complicated problem than that of simply finding the stationary values 

of a function, y(x).   

 Explicitly, we wish to find that function y(x) that will cause the definite integral 

  ∫[x1, x2] F(x, y, dy(x)/dx)dx                            (9.1) 

to have a stationary value. 

The integrand F is a function of y(x) as well as of x and dy(x)/dx.  The limits x1 and x2 are assumed to be 

fixed , as are the values y(x1) and y(x2).  The integral has different values along different “paths” that 
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connect (x1, y1) and  (x2, y2).  Let a path be Y(x), and let this be one of a set of paths that are adjacent to 

y(x). We take Y(x) – y(x) to be an infinitesimal for every value of x in the range of integration. 

Let the difference be defined as 

         Y(x) – y(x) ≡ δy(x) (a “first-order change”),                          (9.2) 

and 

 F(x, Y(x), dY(x)/dx) – F(x, y(x), dy(x)/dx) ≡ δF.                          (9.3) 

 The symbol δ is called a variation; it represents the change in the quantity to which it is applied 

as we go from y(x) to Y(x) at the same value of x.  Note δx = 0, and 

             δ(dy/dx) = dY(x)/dx – dy(x)/dx = (d/dx)(Y(x) – y(x)) = (d/dx)(δy(x)). 

The symbols δ and (d/dx) commute: 

         δ(d/dx) – (d/dx)δ = 0.              (9.4) 

 Graphically, we have 

                 y    Y(x), the varied path 
                 y2 
 
      δy                                                
 
                 y1 
                                                                                              y(x), the “true” path 
 
 
     O                    x1                                               x2               x    
Using the definition of δF, we find 

         δF = F(x, y + δy, dy/dx + δ(dy/dx)) – F(x, y, dy/dx)                        (9.5) 
                 ↑                 ↑  
              Y(x)          (d/dx)Y(x) 
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               = (∂F/∂y)δy + (∂F/∂y )́δy  ́ for fixed x.  (Here, dy/dx = y )́. 

The integral 

  ∫[x1, x2] F(x, y, y )́dx,             (9.6) 

is stationary if its value along the path y is the same as its value along the varied path, y + δy = Y.  We 

therefore require  

  ∫[x1, x2] δF(x, y, y )́dx = 0.                            (9.7) 

This integral can be written 

  ∫[x1, x2] {(∂F/∂y)δy + (∂F/∂y )́δy }́dx = 0.                          (9.8) 

The second term in this integral can be evaluated by parts, giving 

  [(∂F/∂y )́δy]x1 x2 – ∫[x1, x2] (d/dx)(∂F/∂y )́δydx.                                        (9.9) 

But δy1 = δy2 = 0 at the end-points x1 and x2, therefore the term [   ]x1x2 = 0, so that the stationary 

condition becomes 

  ∫[x1, x2] {∂F/∂y – (d/dx)∂F/∂y }́δydx = 0.                       (9.10) 

The infinitesimal quantity δy is positive and arbitrary, therefore, the integrand is zero: 

  ∂F/∂y – (d/dx)∂F/∂y  ́= 0.                         (9.11) 

This is known as Euler’s equation. 

9.2  The Lagrange equations 

 Lagrange, one of the greatest mathematicians of the 18th century, developed Euler’s equation 

in order to treat the problem of particle dynamics within the framework of generalized coordinates.  He 

made the transformation 
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  F(x, y, dy/dx) → L(t, u, du/dt)         (9.12) 

where u is a generalized coordinate and du/dt is a generalized velocity. 

The Euler equation then becomes the Lagrange equation-of-motion: 
                                                                  •                                                 •  
  ∂L/∂u – (d/dt)(∂L/∂u) = 0, where u is the generalized velocity.                    (9.13) 
                                          • 
The Lagrangian L(t; u, u) is defined in terms of the kinetic and potential energy of a particle, or system of  
 
particles: 
              L ≡ T – V.                        (9.14) 

 It is instructive to consider the Newtonian problem of the motion of a mass m, moving in the 

plane, under the influence of an inverse-square-law force of attraction using Lagrange’s equations-of-

motion.  Let the center of force be at the origin of polar coordinates.  The kinetic energy of m at [r, φ] is 

            T = m((dr/dt)2 + r2(dφ/dt)2 )/2,                        (9.15) 

and its potential energy is 

             V = – k/r, where k is a constant.                       (9.16) 

The Lagrangian is therefore 

             L = T – V = m((dr/dt)2 + r2(dφ/dt)2)/2 + k/r.                      (9.17) 

Put r = u, and φ = v, the generalized coordinates.  We have, for the “u-equation” 
                                       •                                                 • 
    (d/dt)(∂L/∂u) = (d/dt)(∂L/∂r) = (d/dt)(m(dr/dt)) = md2r/dt2,                                     (9.18) 
 
and  

     ∂L/∂u = ∂L/∂r = mr(dφ/dt)2 – k/r2                                        (9.19) 

Using Lagrange’s equation-of-motion for the u-coordinate, we have 
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         m(d2r/dt2) – mr(dφ/dt)2 + k/r2 = 0                       (9.20) 

or 

                       m(d2r/dt2 – r(dφ/dt)2) = –k/r2.                       (9.21) 

This is, as it should be, the Newtonian equation 

  mass × acceleration in the r-direction = force in the r-direction. 

 Introducing a second generalized coordinate, we have, for the “v-equation” 
                                                                •                                                    •                                                  •   
               (d/dt)(∂L/∂v) = (d/dt)(∂L/∂φ) = (d/dt)(mr2 φ)                                     (9.22) 
                                                                                      ••     •       •  
               = m(r2 φ + φ 2r r), 
 
and 

           ∂L/∂v = ∂L/∂φ = 0,                         (9.23) 

therefore 
                                                  ••         •   •   
            m(r2 φ + 2r r φ) = 0 
 
so that 
                                                                   •  
     (d/dt)(mr2  φ) = 0.                         (9.24) 
 
Integrating , we obtain 
                                                                        • 
     mr2  φ = constant,        (9.25) 
 
showing, again, that the angular momentum is conserved. 

 The advantages of using the Lagrangian method to solve dynamical problems stem from the 

fact that L is a scalar function of generalized coordinates.   
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9.3  The Hamilton equations 

 The Lagrangian L is a function of the generalized coordinates and velocities, and  
 
the time: 
                                                                       •      •   
   L = L(u, v, ...;u, v, ...;t).                        (9.26) 
 
 
If the discussion is limited to two coordinates, u and v, the total differential of L is 
 
                                                                                                            •       •                                •        • 
             dL = (∂L/∂u)du + (∂L/∂v)dv + (∂L/∂u)du + (∂L/∂v)dv + (∂L/∂t)dt. 
 
Consider the simplest case of a mass m moving along the x-axis in a potential, so that u = x  
         •          • 
and u = x = vx, then 
 
    L = T – V = mvx2/2 – V                        (9.27) 

and 

      ∂L/∂vx = mvx = px, the linear momentum.                       (9.28)  
                                                                                        •                                     • 
In general, it is found that terms of the form ∂L/∂u and ∂L/∂v are “momentum” terms; 
 
they are called generalized momenta, and are written 
                                             •                                      •  
      ∂L/∂u = pu, ∂L/∂v = pv, ..etc.                        (9.29) 
 
Such forms are not limited to “linear” momenta. 

The Lagrange equation 
                                                       • 
      (d/dt)(∂L/∂u) – ∂L/∂u = 0          (9.30) 
 
can be transformed, therefore, into an equation that involves the generalized momenta: 
 
             (d/dt)(pu) – ∂L/∂u = 0, or 
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                                                                                      • 
           ∂L/∂u = pu.                        (9.31) 
 
The total differential of L is therefore 
                                                  •                       •                                  •                      • 
          dL = pudu + pvdv + pudu + pvdv + (∂L/∂t)dt.                      (9.32) 
 
We now introduce an important function, the Hamiltonian function, H, defined by 
                                                      •                  • 
            H ≡ puu + pvv – L,                         (9.33) 
 
therefore 
                                                          •         •                                  •           • 
          dH = {pudu +udpu + pvdv + vdpv} – dL .                                      (9.34) 
 
It is not by chance that H is defined in the way given above.  The definition permits the  
                                                                                 •            • 
cancellation of the terms in dH that involve du and dv, so that dH depends only on du, dv, 
 
dpu, and dpv (and perhaps, t).  We can therefore write 
 
            H = f(u, v, pu, pv; t) (limiting the discussion to the two coordinates   

     u and v).                       (9.35) 

The total differential of H is therefore 

         dH = (∂H/∂u)du + (∂H/∂v)dv + (∂H/∂pu)dpu + (∂H/∂pv)dpv + (∂H/∂t)dt.                                        (9.36) 

Comparing the two equations for dH, we obtain Hamilton’s equations-of-motion: 
                                                     •                                                • 
    ∂H/∂u = –pu,  ∂H/∂v = –pv,                        (9.37) 
                                                   •                                               • 
   ∂H/∂pu = u,    ∂H/∂pv = v,                         (9.38) 
 
and 

     ∂H/∂t = –∂L/∂t.                          (9.39) 

 We see that 
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                                                       •                 •  
             H = puu + pvv – (T – V).                        (9.40) 
 
If we consider a mass m moving in the (x, y)-plane then 

             H = (mvx)vx + (mvy)vy – T + V        (9.41) 

     = 2(mvx2/2 + mvy2/2 ) – T + V 

     = T + V, the total energy.                        (9.42) 

In advanced treatments of Analytical Dynamics, this form of the Hamiltonian is shown to have general 

validity. 

PROBLEMS 

9-1  Studies of geodesics — the shortest distance between two points on a surface —  

         form a natural part of the Calculus of Variations.  Show that the straight line  

         between two points in a plane is the shortest distance between them. 

9-2  The surface generated by revolving the y-coordinate about the x-axis has an area  

        2π∫yds where ds = {dx2 + dy2}1/2.  Use Euler’s variational method to show that  

        the surface of revolution is a minimum if 

             (dy/dx) = {(y2/a2) – 1}1/2 where a = constant. 

        Hence show that the equation of the minimum surface is 

            y = acosh{(x/a) + b} where b = constant, and y ≠ 0. 

9-3  The Principle of Least Time pre-dates the Calculus of Variations.  The propagation of  

        a ray of light in adjoining media that have different indices of refraction is found to  

        be governed by this principle.  A ray of light moves at constant speed v1 in a medium 
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       (1) from a point A to a point B0 on the x-axis.  At B0, its speed changes to  

        a new constant value v2 on entering medium (2).  The ray continues until it reaches a  

        point C in (2).  If the true path A → B0 → C is such that the total travel time of the 

        light in going from A to C is a minimum, show that 

  (v1/v2) = x0{[yc2 + (d – x0)2]/[yA2 + x02]}1/2/(d – x0), (Snell’s law) 

        where the symbols are defined in the following diagram: 

 
 
      y   Medium 1, speed v1        
    A 
 
               yA 
 
 
 
         0               B0                       B                   x 
                     x0 
                           yC 
      x 
            C 
       d 
     Medium 2, speed v2       
 
        The path A → B → C is an arbitrarily varied path. 

9-4  Hamilton’s Principle states that when a system is moving under conservative forces 

        the time integral of the Lagrange function is stationary.  (It is possible to show that 

        this Principle holds for non-conservative forces).  Apply Hamilton’s Principle to the  

       case of a projectile of mass m moving in a constant gravitational field, in the plane.   

       Let the projectile be launched from the origin of Cartesian coordinates at time t = 0.   
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       The Lagrangian is  

                 L = m((dx/dt)2 + (dy/dt)2)/2 – mgy 

        Calculate δ∫[0, t1] Ldt, and obtain Newton’s equations of motion 

          d2y/dt2 + g = 0 and d2x/dt2 = 0. 

9-5  Reconsider the example discussed in section 9.2 from the point of view of the Hamiltonian of the 

system.  Obtain H(r, φ, pr, pφ), and solve Hamilton’s equations of motion to obtain the results given in 

Eqs.9.21 and 9.25. 
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10   

CONSERVATION LAWS, AGAIN 

10.1 The conservation of mechanical energy 

 If the Hamiltonian of a system does not depend explicitly on the time, we have 

          H = H(u, v, ...;pu, pv, ...).         (10.1) 

In this case, the total differential dH is (for two generalized coordinates, u and v) 

        dH = (∂H/∂u)du + (∂H/∂v)dv + (∂H/∂pu)dpu + (∂H/∂pv)dpv.                                 (10.2) 

If the positions and the momenta of the particles in the system change with time under their mutual 

interactions, then H also changes with time, so that 

 dH/dt = (∂H/∂u)du/dt + (∂H/∂v)dv/dt + (∂H/∂pu)dpu/dt + (∂H/∂pv)dpv/dt 
                                  •  •           •  •        •   •         •  • 
           = (–puu) + (–pvv) + (upu) + (vpv)                        (10.3) 

           = 0, using Hamilton’s equations-of-motion.                       (10.4) 

Integration then gives 

                     H = constant.                          (10.5) 

In any system moving under the influence of conservative forces, a potential V exists.  In such systems, 

the total mechanical energy is H = T + V, and we see that it is a constant of the motion.  

10.2  The conservation of linear and angular momentum 

 If the Hamiltonian, H, does not depend explicitly on a given generalized coordinate then the 

generalized momentum associated with that coordinate is conserved.  For example, if H contains no 
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explicit reference to an angular coordinate then the angular momentum associated with that angle is 

conserved.  Formally, we have 

    dpj/dt = –∂H/∂qj , where pj and qj are the generalized momenta and    

                                   coordinates.                        (10.6) 

Let an infinitesimal change in the jth-coordinate qj be made, so that 

          qj → qj + δqj,          (10.7) 

then we have 

         δH = (∂H/∂qj)δqj.                         (10.8) 

If the Hamiltonian is invariant under the infinitesimal displacement δqj, then the generalized momentum 

pj is a constant of the motion.  The conservation of linear momentum is therefore a consequence of  the 

homogeneity of space, and the conservation of angular momentum is a consequence of the isotropy 

of space.   

The observed conservation laws therefore imply that the choice of a point in space for the origin of 

coordinates, and the choice of an axis of orientation play no part in the formulation of the physical laws; 

the Laws of Nature do not depend on an “absolute space”. 
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11 
 

CHAOS 
 

 The behavior of many non-linear dynamical systems as a function of time is found to be 

chaotic.  The characteristic feature of chaos is that the system never repeats its past behavior.  Chaotic 

systems nonetheless obey classical laws of motion which means that the equations of motion are 

deterministic. 

 Poincaré was the first to study the effects of small changes in the initial conditions on the 

evolution of chaotic systems that obey non-linear equations of motion.  In a chaotic system, the erratic 

behavior is due to the internal, or intrinsic, dynamics of the system.   

     Let a dynamical system be described by a set of first-order differential equations: 

                           dx1/dt = f1(x1,x2,x3,...xn)                          (11.1) 

                            dx2/dt= f2(x1,x2,x3,...xn) 

                        .       . 

                        .       . 

                            dxn/dt= fn(x1,x2,x3,...xn)  

where the functions fn are functions of n-variables. 

The necessary conditions for chaotic motion of the system are 

1) the equations of motion must contain a non-linear term that couples several of the variables. 

A typical non-linear equation, in which two of the variables are coupled, is therefore 
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                       dx1/dt= ax1 + bx2 + cx1x2 + ... rxn,  (a, d, c, ...r are constants)                     (11.2) 

and 

2) the number of independent variables, n, must be at least three. 

The second condition is discussed later. 

The non-linearity often makes the solution of the equations unstable for particular choices of the 

parameters.  Numerical methods of solution must be adopted in all but a few standard cases. 

11.1  The general motion of a damped, driven pendulum 

     The equation of a damped, driven pendulum is 

     ml(d2θ/dt2) + kml(dθ/dt) + mgsinθ = Acos(ωDt)                        (11.3) 

or 

           (d2θ/dt2) + k(dθ/dt) + (g/l)sinθ = (A/ml)cos(ωDt),                       (11.4) 

where θ is the angular displacement of the pendulum, l is its length, m is its mass, the resistance is 

proportional to the velocity (constant of proportionality, k), A is the amplitude and ωD is the angular 

frequency of the driving force. 

Baker and Gollub in Chaotic Dynamics  (Cambridge, 1990) write this equation in the form 

            (d2θ/dt2) + (1/q)(dθ/dt) + sinθ = Ccos(ωDt),                                       (11.5) 

where q is the damping factor.  The low-amplitude natural angular frequency of the pendulum is unity, 

and time is dimensionless.  We can therefore write 

the equation in terms of three first-order differential equations 

                         dω/dt = –(1/q)ω – sinθ + Ccos(φ)  where φ is the phase,                                    (11.6) 



 174 

                          dθ/dt = ω,                           (11.7) 

and 

                          dφ/dt = ωD .                          (11.8) 

The three variables are (ω, θ, φ). 

The onset of chaotic motion of the pendulum depends on the choice of the parameters q, C, and ωD. 

     The phase space of the oscillations is three-dimensional: 

                                     ω 

                                                                                     θ 

 

                                                                                                                 A spiral with a pitch of 2π 

 

 

                                                                                                                                                            φ 

 

The θ - ω trajectories are projections of the spiral onto the θ - ω plane. 

     The motion is sensitive to ωD  since the non-linear terms generate many new resonances that occur 

when ωD/ωnatural  is a rational number.  (Here, ωnatural is the angular frequency of the undamped linear 

oscillator).  For particular values of q and ωD, the forcing term produces a damped motion that is no 

longer periodic — the motion becomes chaotic.  Periodic motion is characterized by closed orbits  in 

the (θ - ω) plane.  If the damping is reduced considerably, the motion can become highly chaotic. 
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 The system is sensitive to small changes in the initial conditions.  The trajectories in phase 

space diverge from each other with exponential time-dependence.  For chaotic motion, the projection 

of the trajectory in (θ, ω, φ) - space onto the (θ - ω) plane generates trajectories that intersect.  

However, in the full 3 - space, a spiraling line along the φ-axis never intersects itself.  We therefore see 

that chaotic motion can exist only when the system has at least a 3 - dimensional phase space.  The 

path then converges towards the attractor without self-crossing. 

 Small changes in the initial conditions of a chaotic system may produce very different 

trajectories in phase space.  These trajectories diverge, and their divergence increases exponentially 

with time.  If the difference between trajectories as a function of time is d(t) then  it is found that logd(t) ~ 

λt or 

                                                d(t) ~ eλt                           (11.9) 

where λ > 0 - a positive quantity called the Lyapunov exponent.  In a weakly chaotic system λ << 0.1 

whereas, in a strongly chaotic system, λ >> 0.1. 

11.2  The numerical solution of differential equations 

     A numerical method of solving linear differential equations that is suitable in the present case is 

known as the Runge-Kutta method.  The algorithm for solving two equations that are functions of 

several variables is: 

     Let  

                     dy/dx = f(x, y, z) and dz/dx = g(x, y, z).                      (11.10) 

If y = y0 and z = z0 when x = x0 then, for increments  h in x0 , k in y0, and l in z0   
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 the Runge-Kutta equations are 

     k1 = hf(x0, y0, z0)                                             l1 = hg(x0, y0, z0) 

     k2 = hf(x0 + h/2, y0 + k1/2, z0 + l1/2)             l2 = hg(x0 + h/2, y0 + k1/2, z0 + l1/2) 

     k3 = hf(x0 + h/2, y0 + k2/2, z0 + l2/2)            l3 = hg(x0 + h/2, y0 + k2/2, z0 + l2/2) 

     k4 = hf(x0 + h, y0 + k3, z0 + l3)                       l4 = hg(x0 + h, y0 + k3, z0 + l3) 

     k  = (k1 + 2k2 + 2k3 + k4)/6 

and  

     l  = (l1 + 2l2 + 2l3 + l4)/6.                         (11.11) 

The initial values are incremented, and successive values of the x, y, and z are generated by iterations.  

It is often advantageous to use varying values of h to optimize the procedure. 

     In the present case,  

  f(x, y, z) → f(t, θ, ω) and g(x, y, z) → g(ω). 

 As a problem, develop an algorithm to solve the non-linear equation 11.5 using the Runge-

Kutta method for three equations (11.6, 11.7, and 11.8).  Write a program to calculate the necessary 

iterations.  Choose increments in time that are small enough to reveal the details in the θ-ω plane.  

Examples of non-chaotic and chaotic behavior are shown in the following two diagrams. 
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 The parameters used to obtain this plot in the θ-ω plane are : 
 
 damping factor (1/q) = 1/5, 
 amplitude (C) = 2, 
 drive frequency (ωD) = 0.7, and 
 time increment, ∆t = 0.05. 
 All the initial values are zero. 
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 The parameters used to obtain this plot in the θ-ω plane are: 
 
 damping factor (1/q) = 1/2, 
 amplitude (C) = 1.15, 
 drive frequency (ωD) = 0.597, and 
 time increment, ∆t = 1. 
 The intial value of the time is 100. 
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 12   

WAVE MOTION  

12.1  The basic form of a wave 

 Wave motion in a medium is a collective phenomenon that involves local interactions among 

the particles of the medium.  Waves are characterized by: 

 1)  a disturbance in space and time. 

 2)  a transfer of energy from one place to another, 

and 

 3)  a non-transfer of material of the medium. 

 (In a water wave, for example, the molecules move perpendicularly to the velocity vector of the 

wave). 

 Consider a kink in a rope that propagates with a velocity V along the +x-axis, as shown 

 
              y 
 
               Displacement 
              V , the velocity of the waveform 
 
              x 
      x at time t 
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Assume that the shape of the kink does not change in moving a small distance ∆x in a short interval of 

time ∆t.  The speed of the kink is defined to be V = ∆x/∆t.  The displacement in the y-direction is a 

function of x and t, 

            y = f(x, t). 

We wish to answer the question: what basic principles determine the form of the argument of the 

function, f ?  For water waves, acoustical waves, waves along flexible strings, etc. the wave velocities 

are much less than c.  Since y is a function of x and t, we see that all points on the waveform move in 

such a way that the Galilean transformation holds for all inertial observers of the waveform.  Consider 

two inertial observers, observer #1 at rest on the x-axis, watching the wave move along the x-axis with 

constant speed, V, and a second observer #2, moving with the wave.  If the observers synchronize 

their clocks so that       t1 = t2 = t0 = 0 at x1 = x2 = 0, then  

           x2 = x1 – Vt. 

We therefore see that the functional form of the wave is determined by the form of the Galilean 

transformation, so that 

    y(x, t) = f(x – Vt),                          (12.1) 

where V is the wave velocity in the particular medium.  No other functional form is possible!  For 

example, 

   y(x, t) = Asink(x – Vt) is permitted, whereas 

   y(x, t) = A(x2 + V2t) is not. 

 If the wave moves to the left (in the –x direction) then 
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   y(x, t) = f(x + Vt).                          (12.2) 

 We shall consider waves that superimpose linearly.  If, for example, two waves move along a 

rope in opposite directions, we observe that they “pass through each other”. 

If the wave is harmonic, the displacement measured as a function of time at the origin,      x = 0, is also 

harmonic: 

   y0(0, t) = Acos(ωt) 

where A is the maximum amplitude, and ω = 2πν is the angular frequency. 

The general form of y(x, t), consistent with the Galilean transformation, is 

    y(x, t) = Acos{k(x – Vt)} 

where k is introduced to make the argument dimensionless (k has dimensions of 1/[length]).  We then 

have 

  y0(0, t) = Acos(kVt) = Acos(ωt). 

Therefore, 

          ω = kV, the angular frequency,        (12.3) 

or 

      2πν = kV, 

so that, 

            k = 2πν/V = 2π/VT where T = 1/ν, is the period.                     (12.4) 

The general form is then 

     y(x, t) = Acos{(2π/VT)(x – Vt)} 
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               = Acos{(2π/λ)(x – Vt)}, where λ = VT is the wavelength, 

    = Acos{(2πx/λ – 2πt/T)}, 

    = Acos(kx – 2πt/T), where k = 2π/λ, the “wavenumber”, 

    = Acos(kx – ωt), 

    = A cos(ωt – kx), because cos(–θ) = cos(θ).                     (12.5) 

For a wave moving in three dimensions, the diplacement at a point x, y, z at time t has the form 

         ψ(x, y, z, t) = Acos(ωt – k⋅r),                         (12.6) 

where |k| = 2π/λ and r = [x, y, z]. 

12.2  The general wave equation 

 An arbitrary waveform in one space dimension can be written as the superposition of two 

waves, one travelling to the right (+x) and the other to the left (–x) of the origin.  The displacement is 

then 

              y(x, t) = f(x – Vt) + g(x + Vt).                                        (12.7) 

Put 

          u = f(x – Vt) = f(p), and v = g(x + Vt) = g(q), 

then  

          y = u + v . 

Now, 

             ∂y/∂x = ∂u/∂x + ∂v/∂x = (du/dp)(∂p/∂x) + (dv/dq)(∂q/∂x) 

            = f́ (p)(∂p/∂x) + g (́q)(∂q/∂x). 
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Also, 

         ∂2y/∂x2 = (∂/∂x){(du/dp)(∂p/∂x) + (dv/dq)(∂q /∂x)} 

          = f́ (p)(∂2p/∂x2) + f́ (́p)(∂p/∂x)2 + g (́q)(∂2q/∂x2) + g´́ (q)(∂q/∂x)2. 

We can obtain the second derivative of y with respect to time using a similar method: 

         ∂2 y/∂t2 = f́ (p)(∂2p/∂t2) + f́ (́p)(∂p/∂t)2 + g (́q)(∂2q/∂t2) + g´́ (q)(∂q/∂t)2. 

Now, ∂p/∂x = 1, ∂q/∂x = 1, ∂p/∂t = –V, and ∂q/∂t = V, and all second derivatives are zero (V is a 

constant).  We therefore obtain 

           ∂2y/∂x2 = f’́ (́p) + g´́ (q), 

and 

           ∂2y/∂t2 = f’́ (́p)V2 + g´́ (q)V2. 

Therefore, 

           ∂2y/∂t2 = V2(∂2y/∂x2). 

or 

          ∂2y/∂x2 – (1/V2)(∂2y/∂t2) = 0.                         (12.8) 

This is the wave equation in one-dimensional space.  For a wave propagating in three-dimensional 

space, we have 

            ∇2ψ – (1/V2)(∂2ψ/∂t2) = 0,                         (12.9) 

the general form of the wave equation, in which ψ(x, y, z, t) is the general amplitude function. 

12.3  The Lorentz invariant phase of a wave and the relativistic Doppler shift 

 A wave propagating through space and time has a “wave function” 



 184 

      ψ(x, y, z, t) = Acos(ωt – k⋅r) 

where the symbols have the meanings given in 12.2. 

 The argument of this function can be written as follows 

                     ψ = Acos{(ω/c)(ct) – k⋅r).                      (12.10) 

It was not until deBroglie developed his revolutionary idea of particle-wave duality in 1923-24 that the 

Lorentz invariance of the argument of this function was fully appreciated!  We have 

          ψ = Acos{[ω/c, k]T[ct, –r]} 

             = Acos{KµEµ} = Acosφ, where φ is the “phase”.                   (12.11) 

deBroglie recognized that the phase φ is a Lorentz invariant formed from the 4-vectors 

        Kµ = [ω/c, k], the “frequency-wavelength” 4-vector,                   (12.12) 

and 

        Eµ = [ct, –r], the covariant “event” 4-vector. 

deBroglie’s discovery turned out to be of great importance in the development of Quantum Physics.  It 

also provides us with the basic equations for an exact derivation of the relativistic Doppler shift.  The 

frequency-wavelength vector is a Lorentz 4-vector, which means that it transforms between inertial 

observers in the standard way: 

     Kµ  ́= LKµ,         (12.13) 

or 
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       ω /́c                     γ   –βγ      0       0               ω/c          
           kx́                –βγ       γ       0       0                 kx           
           ký       =           0        0       1       0                ky            
           kź                     0        0       0       1                kz           
 
The transformation of the first element therefore gives 

       ω /́c = γ(ω/c) – βγkx,                       (12.14) 

so that 

      2πν  ́= γ2πν – βγc(2π/λ) 

or 

         ν  ́= γν – Vγ(ν/c), (where ω = 2πν, V/c = β, and c = νλ) 

therefore 

        ν  ́= γν(1 – β) 

or         ν  ́= (ν/(1 – β2)1/2)(1 – β) 

giving 

        ν  ́= ν{(1 – β)/(1 + β)}1/2.                      (12.15) 

This is the relativistic Doppler shift for the special case of photons  − we have Lorentz invariance in 

action.  This result was derived in section 6.2 using the Lorentz invariance of the energy-momentum 4-

vector, and the Planck-Einstein result E = hν for the relation between the energy E and the frequency ν 

of a photon.  The present derivation of the relativistic Doppler shift is independent of the Planck-Einstein 
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result, and therefore provides an independent verification of their fundamental equation E = hν for a 

photon. 

12.4  Plane harmonic waves 

 The one-dimensional wave equation (12.8) has the solution 

  y(t, x) = Acos(kx – ωt), 

where ω = kV and A is independent of both x and t. 

This  form is readily shown to be a solution of (12.8) by direct calculation of its 2nd partial derivatives, 

and their substitution in the wave equation.  

 The three-dimensional wave equation (12.9) has the solution 

      ψ(t, x, y, z) = ψ0cos{(kxx + kyy + kzz) – ωt},  

where ω = |k|V, and k = [kx, ky, kz], the wave vector. 

The solution ψ(t, x, y, z) is called a plane harmonic wave because constant values of the argument (kxx 

+ kyy + kzz) – ωt define a set of planes in space — surfaces of constant phase: 

             z               k, normal to the wave surface 
 
 
         Equiphase surfaces of a plane wave 
           y 
 
            O 
 
 
             x     
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It is often useful to represent a plane harmonic wave as the real part of the remarkable Cotes-Euler 

equation 

         eiθ = cosθ + isinθ, i = √–1, 

so that 

           ψ0cos((k⋅r) – ωt) = R.P. ψ0ei(k⋅r – ωt). 

The complex form is readily shown to be a solution of the three-dimensional wave equation. 

12.5  Spherical waves 

For given values of the radial coordinate, r, and the time, t, the functions 

cos(kr – ωt) and ei(kr – ωt) have constant values on a sphere of radius r.  In order for the wave functions to 

represent expanding spherical waves , we must modify their forms as  

follows: 

  (1/r)cos(kr – ωt) and (1/r)ei(kr – ωt)  (k along r).                                   (12.16) 

These changes are needed to ensure that the wave functions are solutions of the wave equation.  To 

demonstrate that the spherical wave (1/r)cos(kr – ωt) is a solution of (12.9), we must transform the 

Laplacian operator from Cartesian to polar coordinates, 

  ∇2(x, y, z) → ∇2(r, θ, φ). 

The transformation is 

 ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2 → (1/r2)[(∂/∂r)(r2(∂/∂r)) + (1/sinθ)(∂/∂θ)(sinθ(∂/∂θ))    

                                    + (1/sin2θ)(∂2/∂φ2)].                     (12.17) 

This transformation is set as a problem. 
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 If there is spherical symmetry, there is no angular-dependence, in which case, 

  ∇2(r) = (1/r2)(∂/∂r)(r2(∂/∂r)) 

           = ∂2/∂r2 + (2/r)(∂/∂r).                       (12.18) 

We can check that  

         ψ = ψ0(1/r)cos(kr – ωt)  

is a solution of the radial form of (12.9), 

Differentiating twice, we find 

           ∂2ψ/∂r2 = ψ0[(–k2/r)cosu + (2k/r2)sinu + (2/r3)cosu], where u = kr – ωt, 

and 

           ∂2 ψ/∂t2 = –ψ0(ω2/r)cosu, ω = kV, 

from which we obtain 

           (1/V2)∂2ψ/∂t2 – [∂2ψ/∂r2 + (2/r)∂ψ/∂r] = 0.                     (12.19) 

12.6  The superposition of harmonic waves 

 Consider two harmonic waves with the same amplitudes, ψ0, travelling in the same direction, 

the x-axis.  Let their angular frequencies be slightly different —  ω ± δω with corresponding 

wavenumbers k ± δk.  Their resultant, Ψ, is given by 

         Ψ = ψ0ei{(k + δk)x – (ω + δω)t} 

              + ψ0ei{(k – δk)x – (ω – δω)t} 

              = ψ0ei(kx – ωt)[ei(δkx – δωt) + e–i(δkx – δωt)] 

              = ψ0ei(kx – ωt)[2cos(δkx – δωt)] 
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              = Acosφ,                        (12.20) 

where 

           A = 2ψ0ei(kx – ωt), the resultant amplitude, 

and 

          φ = δkx – δωt, the phase of the modulation envelope . 

The individual waves travel at a speed 

      ω/k = vφ, the phase velocity,                      (12.21) 

and the modulation envelope travels at a speed 

  δω/δk = vG, the group velocity.                      (12.22) 

In the limit of a very large number of waves, each differing slightly in frequency from that of a neighbor, 

dk → 0, in which case  

  dω/dk = vG. 

For electromagnetic waves travelling through a vacuum, vG = vφ = c, the speed of light. 

We shall not, at this stage, deal with the problem of the superposition of an arbitrary number of 

harmonic waves. 

12.7  Standing waves 

 The superposition of two waves of the same amplitudes and frequencies but travelling in 

opposite directions has the form 

         Ψ = ψ1 + ψ2 = Acos(kx – ωt) + Acos(kx + ωt) 

              = 2Acos(kx)cos(ωt).                      (12.23) 
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This form describes a standing wave that pulsates with angular frequency ω, associated with the time-

dependent term cosωt. 

In a traveling wave, the amplitudes of the waves of all particles in the medium are the same and their 

phases depend on position.  In a standing wave, the amplitudes depend on position and the phases 

are the same. 

For standing waves, the amplitudes are a maximum when kx = 0, π, 2π, 3π, ... 

and they are a minimum when kx = π/2, 3π/2, 5π/2, ...(the nodes). 

PROBLEMS 

 The main treatment of wave motion, including interference and diffraction effects, takes place 

in the second semester (Part 2) in discussing Electromagnetism and Optics. 

12-1  Ripples on the surface of water with wavelengths of about one centimeter are found  

         to have a phase velocity vφ = √(αk) where k is the wave number and α is a  

         constant characteristic of water.  Show that their group velocity is vG = (3/2)vφ.  

12-2  Show that  

   y(x, t) = exp{x – vt} 

        represents a travelling wave but not a periodic wave. 

12-3  Two plane waves have the same frequency and they oscillate in the z-direction; they  

         have the forms 

  ψ(x, t) = 4sin{20t + (πx/3) + π}, and 

  ψ(y, t) = 2sin{20t + (πy/4) + π}. 
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         Show that their superposition at x = 5 and y = 2 is given by 

  ψ(t) = 2.48sin{20t – (π/5)}. 

12-4  Express the standing wave y = Asin(ax)sin(bt), where a and b are constants as a  

         combination of travelling waves. 

12-5  Perhaps the most important application of the relativistic Doppler shift has been, and  

        continues to be, the measurement of the velocities of recession of distant galaxies  

        relative to the Earth.  The electromagnetic radiation associated with ionized calcium 

       atoms that escape from a galaxy in Hydra has a measured wavlength of 4750 × 10–10m,  

       and this is to be compared with a wavelength of 3940 × 10–10m for the same process  

       measured for a stationary source on Earth.  Show that the measured wavelengths  

       indicate that the galaxy in Hydra is receding from the Earth with a speed v = 0.187c. 
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13  

 ORTHOGONAL FUNCTIONS AND FOURIER SERIES 

13.1  Definitions 

 Two n-vectors 

           An = [a1, a2, ...an] and Bn = [b1, b2, ...bn] 

are said to be orthogonal if 

       ∑[i = 1, n] aibi = 0.           (13.1) 

(Their scalar product is zero). 

 Two functions A(x) and B(x) are orthogonal in the range x = a to x = b if 

 ∫[a, b] A(x)B(x)dx = 0.           (13.2) 

The limits must be given in order to specify the range in which the functions A(x) and B(x) are defined. 

 The set of real, continuous functions {φ1(x), φ2(x), ...} is orthogonal in [a, b] if 

       ∫[a, b] φm(x)φn(x)dx = 0 for m ≠ n.                         (13.3)  

If, in addition, 

     ∫[a, b] φn2(x)dx = 1 for all n,          (13.4) 

the set is normal, and therefore it is said to be orthonormal. 

 The infinite set 

  {cos0x, cos1x, cos2x, ... sin0x, sin1x, sin2x, ...}                      (13.5) 

in the range [–π, π] of x is an example of an orthogonal set.  For example, 

  ∫[–π, π] cosx⋅cos2xdx = 0 etc.,         (13.6) 
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and 

  ∫[–π, π] cos2xdx ≠ 0 = π, etc. 

 This set, which is orthogonal in any interval of x of length 2π, is of interest in Mathematics 

because a large class of functions of x can be expressed as linear combinations of the members of the 

set in the interval 2π.  For example we can often write 

      φ(x) =  c1φ1 + c2φ2 +     where the c’s are constants 

              =  a0cos0x + a1cos1x + a2cos2x + ... 

               + b0sin0x + b1sin1x + b2sin2x + ...                       (13.7) 

A large class of periodic functions ,of period 2π, can be expressed in this way.  When a function can be 

expressed as a linear combination of the orthogonal set 

 {1, cos1x, cos2x, ...0, sin1x, sin2x, ...} , 

it is said to be expanded in its Fourier series.     

13.2  Some trigonometric identities and their Fourier series 

 Some of the familiar trigonometric identities involve Fourier series.  For example, 

      cos2x = 1 – 2sin2x          (13.8) 

can be written 

        sin2x = (1/2) – (1/2)cos2x 

and this can be written 

        sin2x = {(1/2)cos0x + 0cos1x – (1/2)cos2x + 0cos3x + ... 

                   + 0{sin0x + sin1x + sin2x + ...}                       (13.9) 
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               → the Fourier series of sin2x. 

The Fourier series of cos2x is 

       cos2x = (1/2) + (1/2)cos2x.                      (13.10) 

More complicated trigonometric identies also can be expanded in their Fourier series. For example, the 

identity 

       sin3x = 3sinx – 4sin3x 

can be written 

       sin3x = (3/4)sinx – (1/4)sin3x,                      (13.11) 

and this is the Fourier series of sin3x. 

The terms in the series represent the “harmonics“of the function sin3x.  

 In a similar fashion, we find that the identity 

     cos3x = 4cos3x – 3cosx 

can be rearranged to give the Fourier series of cos3x 

      cos3x = (3/4) + (1/4)cos3x.      (13.12) 

 In general, a combination of deMoivre’s theorem and the binomial theorem can be used to 

write cos(nx) and sin(nx) (for n a positive integer) in terms of powers of sinx and cosx.  We have 

  cos(nx) + isin(nx) = (cosx + isinx)n  (i = √–1)  (deMoivre)                   (13.13) 

and 

                 (a + b)n = an + nan–1b + (n(n–1)/2!) an–2b2 ...+bn .                   (13.14) 

For example, if n = 4, we obtain 
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       cos4x = (1/8)cos4x + (1/2)cos2x + (3/8),                     (13.15) 

and 

       sin4x = (1/8)cos4x – (1/2)cos2x + (3/8).                     (13.16) 

13.3  Determination of the Fourier coefficients of a function 

 If, in the interval [a, b], the function f(x) can be expanded in terms of the set  

{φ1(x), φ2(x), ...}, which means that  

         f(x) = ∑[i=1, ∞] ciφi(x),                       (13.17) 

where {φ1(x), φ2(x), ...} is orthogonal in [a, b], then the coefficients can be evaluated as follows: 

 to determine the kth-coefficient, ck, multiply f(x) by φk(x), and integrate over the interval [a, b]: 

 ∫[a, b] f(x)φk(x)dx = ∫[a, b] c1φ1φkdx +          ...∫[a, b] ckφk2dx + ...                                  (13.18) 

      =          0        +        0       +      ≠ 0          +      0  ... 

The integrals of the products φmφn in the range [–π, π] are all zero except for the case that involves φk2.  

We therefore obtain the kth-coefficient 

              ck = ∫[a, b] f(x)φk(x)dx / ∫[a, b] φk2(x)dx       k = 1, 2, 3, ..                                           (13.19) 

13.4  The Fourier series of a periodic saw-tooth waveform 

 In standard works on Fourier analysis it is proved that every periodic continuous function f(x) of 

period 2π can be expanded in terms of {1, cosx, cos2x, ...0, sinx, sin2x, ...};  this orthogonal set is said to 

be complete with respect to the set of periodic continuous functions f(x) in [a, b]. 
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 Let f(x) be a periodic saw-tooth waveform with an amplitude of ± 1: 

           f(x) 
             +1 
 
 
 
 
                       –2π                              –π                            0                            π                             2π       x 
 
 
              -1 
 
 
The function has the following forms in the three intervals 

         f(x) = (–2/π)(x + π)    for –π ≤ x ≤ –π/2, 

               = 2x/π                    for –π/2 ≤ x ≤ π/2,  

and 

               = (–2/π)(x – π)     for π/2 ≤ x ≤ π. 

The periodicity means that f(x + 2π) = f(x).  

 The function f(x) can be represented as a linear combination of the series {1, cosx, cos2x, 

...sinx, sin2x, ...}: 

          f(x) = a0cos0x + a1cos1x + a2cos2x + ...akcoskx + ... 

                   + b0sin0x + b1sin1x + b2sin2x + ...bksinkx + ...                   (13.20) 

The coefficients are given by 

 ak = ∫[–π, π] coskx f(x)dx / ∫[–π, π] cos2kxdx = 0, (f(x) is odd, coskx is even, and           

              [–π, π] is symmetric about 0), (13.21) 
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and 

   bk = ∫[–π, π] sinkx f(x)dx / ∫[–π, π] sin2kxdx ≠ 0, 

       = (1/π){∫[–π, –π/2] (–2/π)(x + π)sinkxdx + ∫[–π/2, π/2] (2x/π)sinkxdx  

          + ∫[π/2, π] (–2/π)(x – π)sinkxdx } 

       = {8/(πk)2}sin(kπ/2).                        (13.22) 

The Fourier series of f(x) is therefore 

 f(x) = (8/π2){sinx – (1/32)sin3x + (1/52)sin5x  – (1/72)sin7x + …}. 

 The above procedure can be generalized to include functions that are not periodic.  The sum 

of discrete Fourier components then becomes an integral of the amplitude of the component of angular 

frequency ω = 2πν with respect to ω.  This is a subject covered in the more advanced treatments of 

Physics. 

 

 

PROBLEMS 

13-1  Use deMoivre’s theorem and the binomial theorem to obtain the Fourier expansions: 

 1) cos4x = 3/8 + (1/2)cos2x + (1/8)cos4x, 

 and 

 2) sin4x = 3/8 – (1/2)cos2x + (1/8)cos4x. 

 Plot these components (harmonics) and their sums for –π ≤ 0 ≤ π. 

13-2  Use the method of integration of orthogonal functions to obtain the Fourier series of 
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         problem 13-1; you should obtain the same results as above! 

13-3  Show that 1) if f(x) = – f(–x), only sine functions occur in the Fourier series for f(x), 

         and 

   2) if f(x) = f(–x), only cosine functions occur in the Fourier series for f(x). 

13-4  The Fourier series of a function f(t) that is a periodic repetition outside (–T, T), of the shape inside,  

with period 2π is often written in the form 

         f(t) = (a0/2) + ∑[n = 1, ∞] {ancos(nπt/T) + bnsin(nπt/T)}, 

        where 

 an = (1/T)∫[–T, T] f(t)cos(nπt/T)dt, 

 and 

 bn = (1/T)∫[–T, T] f(t)sin(nπt/T)dt. 

        If f(t) is a periodic square-wave: 

        f(t) = 3 for 0 < t < 5µs 

              = 0 for 5 < t < 10µs, with period 2T = 10µs 

         f(t)              
 
           3                          
 
           0                           
                          –10                –5                       0                       5                     10                        t  
 
 obtain the Fourier series : 

  f(t) = (3/2) +(3/π)∑[n = 1, ∞] [(1 – cosnπ)/n]sin(nπt/5)). 
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 Compute this series for n = 1 to 5 and –5 < t < 5, and compare the truncated  

            series with the exact waveform.  

13-5  It is interesting to note that the series in 13-4 converges to the exact value f(t) = 3 

        at the value t = 5/2 µs, so that  

  3 = (3/2) + (3/π)∑[n=1, ∞][(1 – cosnπ)/n]sin(nπ/2). 

        Use this result to obtain the important Gregory-Leibniz infinite series : 

  (π/4) = 1 – (1/3) + (1/5) – (1/7) + ... 
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Appendix A 

 

Solving ordinary differential equations 

 Typical dynamical equations of Physics are 

 1)  Force in the x-direction = mass × acceleration in the x-direction with the  mathematical 

form 

  Fx = max = md2x/dt2, 

and 

 2)  The amplitude y(x, t) of a wave at (x, t), travelling at constant speed V along  

 the x-axis with the mathematical form 

  (1/V2)∂2y/∂t2 – ∂2y/∂x2 = 0. 

Such equations, that involve differential coefficients, are called differential equations. 

 An equation of the form 

       f(x, y(x), dy(x)/dx; ar) = 0           (A.1) 

that contains  

 i)  a variable y that depends on a single, independent variable x, 

 ii)  a first derivative dy(x)/dx, 

and 

 iii) constants, ar, 
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is called an ordinary (a single independent variable) differential equation of the first order (a first 

derivative, only). 

 An equation of the form 

  f(x1, x2, ...xn, y(x1, x2, ...xn), ∂y/∂x1, ∂y/∂x2, ...∂y/∂xn; ∂2y∂x12, ∂2y/∂x22, 

  ...∂2y/∂xn2; ∂ny/∂x1n, ∂ny/∂x2n, ...∂ny/∂xnn; a1, a2, ...ar) = 0                       (A.2) 

that contains 

 i)  a variable y that depends on n-independent variables x1, x2, ...xn, 

 ii)  the 1st-, 2nd-, ...nth-order partial derivatives: 

      ∂y/∂x1, ...∂2y/∂x12, ...∂ny/∂x1n, ..., 

and 

 iii)  r constants, a1, a2, ...ar, 

is called a partial differential equation of the nth-order. 

Some of the techniques for solving ordinary linear differential equations are given in this appendix. 

 An ordinary differential equation is formed from a particular functional relation,   f(x, y; a1, a2, 

...an) that involves n arbitrary constants.  Successive differentiations of f with respect to x, yield n 

relationships involving x, y, and the first n derivatives of y with respect to x, and some (or possibly all) of 

the n constants.  There are (n + 1) relationships from which the n constants can be eliminated.  The 

result will involve dny/dxn, differential coefficients of lower orders, together with x, and y, and no arbitrary 

constants. 

 Consider, for example, the standard equation of a parabola: 
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           y2 – 4ax. = 0, where a is a constant. 

Differentiating, gives 

               2y(dy/dx) – 4a = 0 

so that 

                  y – 2x(dy/dx) = 0, a differential equation that does not contain the constant a. 

 As another example, consider the equation 

                   f(x, y, a, b, c) = 0 = x2 + y2 + ax + by + c = 0. 

Differentiating three times successively, with respect to x, gives 

 1)   2x + 2y(dy/dx) + a + b(dy/dx) = 0, 

 2)   2 + 2{y(d2y/dx2) + (dy/dx)2} + b(d2y/dx2) = 0, 

and 

 3)   2{y(d3y/dx3) + (d2y/dx2)(dy/dx)} + 4(dy/dx)(d2y/dx2) + b(d3y/dx3) = 0. 

Eliminating b from 2) and 3), 

 (d3y/dx3){1 + (dy/dx)2} = (dy/dx)(d2y/dx2)2. 

 The most general solution of an ordinary differential equation  of the nth-order contains n 

arbitrary constants.  The solution that contains all the arbitrary constants is called the complete 

primative.  If a solution is obtained from the complete primative by giving definite values to the constants 

then the (non-unique) solution is called a particular integral. 

Equations of the 1st-order and degree.  

 The equation  
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  M(x, y)(dy/dx) + N(x, y) = 0           (A.3) 

is separable if M/N can be reduced to the form f1(y)/f2(x), where f1 does not involve x, and f2 does not 

involve y.  Specific cases that are met are: 

i)  y absent in M and N, so that M and N are functions of x only; Eq. (A.3) then can be written 

            (dy/dx) = –(M/N) = F(x) 

therefore 

          y = ∫F(x)dx + C, where C is a constant of integration. 

ii)  x absent in M and N. 

Eq. (A.3) then becomes 

  (M/N)(dy/dx) = – 1, 

so that 

      F(y)(dy/dx) = –1, (M/N = F(y)) 

therefore 

          x = –∫F(y)dy + C. 

iii)  x and y present in M and N, but the variables are separable. 

Put M/N = f(y)/g(x), then Eq. (A.3) becomes 

      f(y)(dy/dx) + g(x) = 0. 

Integrating over x, 

         ∫f(y)(dy/dx)dx + ∫g(x)dx = 0. 

or 
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                    ∫f(y))dy + ∫g(x)dx = 0. 

For example, consider the differential equation 

         x(dy/dx) + coty = 0. 

This can be written 

       (siny/cosy)(dy/dx) + 1/x = 0. 

Integrating, and putting the constant of integration C = lnD, 

    ∫(siny/cosy)dy + ∫(1/x)dx = lnD, 

so that 

                      –ln(cosy) + lnx = lnD, 

or 

                 ln(x/cosy) = lnD. 

The solution is therefore 

                  y = cos–1(x/D). 

Exact equations    

The equation 

                   ydx + xdy = 0 is said to be exact because it can be written as 

            d(xy)  = 0, or 

    xy = constant. 

Consider the non-exact equation  

   (tany)dx + (tanx)dy = 0. 
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We see that it can be made exact by multiplying throughout by cosxcosy, giving 

       sinycosxdx + sinxcosydy = 0 (exact) 

so that 

      d(sinysinx) = 0,  

or 

           sinysinx = constant. 

The term cosxcosy is called an integrating factor. 

Homogeneous differential equations. 

 A homogeneous equation of the nth degree in x and y is such that the powers of x and y in 

every term of the equation is n.  For example, x2y + 2xy2 + 3y3 is a homogeneous equation of the third 

degree.  If, in the differential equation M(dy/dx) + N = 0 the terms M and N are homogeneous functions 

of x and y, of the same degree, then we have a homogeneous differential equation of the 1st order and 

degree.  The differential equation then reduces to  

             dy/dx = –(N/M) = F(y/x) 

To find whether or not a function F(x, y) can be written F(y/x), put 

                      y = vx. 

If the result is F(v) (all x’s cancel) then F is homogeneous.  For example 

             dy/dx = (x2 + y2)/2x2 → dy/dx = (1 + v2)/2 = F(v), therefore the equation is 

homogeneous. 
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Since dy/dx → F(v) by putting y = vx on the right-hand side of the equation, we make the same 

substitution on the left-hand side to obtain 

   v + x(dv/dx) = (1 + v2)/2 

therefore 

               2xdv = (1 + v2 – 2v)dx. 

Separating the variables 

    2dv/(v – 1)2 = dx/x., and this can be integrated. 

Linear Equations 

 The equation 

            dy/dx + M(x)y = N(x) 

is said to be linear and of the 1st order.  An example of such an equation is 

            dy/dx + (1/x)y = x2. 

This equation can be solved by introducing the integrating factor, x, so that 

               x(dy/dx) + y = x3,  

therefore 

                   (d/dx)(xy) = x3, 

giving 

                  xy = x4/4 + constant. 

In general, let R be an integrating factor, then 

         R(dy/dx) + RMy = RN, 
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in which case, the left-hand side is the differential coefficient of some product with a first term R(dy/dx).  

The product must be Ry!  Put, therefore 

         R(dy/dx) + RMy = (d/dx)(Ry) = R(dy/dx) + y(dR/dx). 

Now, 

               RMy = y(dR/dx), 

which leads to 

          ∫M(x)dx = ∫dR/R = lnR, 

or 

        R = exp{∫M(x)dx}. 

We therefore have the following procedure: to solve the differential equation 

             (dy/dx) + M(x)y = N(x), 

multiply each side by the integrating factor exp{∫M(x)dx}, and integrate.  For example, let 

              (dy/dx) + (1/x)y = x2, 

so that         

                        ∫M(x)dx = ∫(1/x)dx = lnx and the integrating factor is exp{lnx} = x:.  We therefore obtain the 

equation 

             x(dy/dx) + (1/x)y = x3, 

 deduced previously on intuitive grounds.  

Linear Equations with Constant Coefficients. 

 Consider the 1st order linear differential equation  
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           p0(dy/dx) + p1y = 0,  where p0, p1 are constants. 

Writing this as 

           p0(dy/y) + p1 dx = 0,  

we can integrate term-by-term, so that 

                    p0lny + p1x = constant, 

therefore 

                     lny = (–p1/p0)x + constant 

                           = (–p1/p0)x + lnA, say 

therefore 

          y = Aexp{(–p1/p0)x}. 

Linear differential equations with constant coefficients of the 2nd order occur often in Physics.  They are 

typified by the forms 

 p0(d2y/dx2) + p1(dy/dx) + p2y = 0. 

The solution of an equation of this form is obtained by following the insight gained in solving the 1st 

order equation!.  We try a solution of the type 

          y = Aexp{mx}, 

so that the equation is 

      Aexp{mx}(p0m2 + p1m + p2) = 0. 

If m is a root of 

             p0m2 + p1m + p2 = 0  
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then y = Aexp{mx} is a solution of the original equation for all values of A. 

Let the roots be α and β.  If α ≠ β there are two solutions  

   y = Aexp{αx }and y = Bexp{βx.}. 

If we put  

        y = Aexp{αx} + Bexp{βx}  

in the original equation then 

 Aexp{αx}(p0α2 + p1α + p2) + Bexp{βx}(p0β2 + p1β + p2) = 0, 

which is true as α and β are the roots of 

         p0m2 + p1m + p2 = 0, (called the auxilliary equation) 

The original equation is linear, therefore the sum of the two solutions is, itself, a (third) solution.  The third 

solution contains two arbitrary constants (the order of the equation), and it is therefore the general 

solution. 

As an example of the method, consider solving the equation 

       2(d2y/dx2) + 5(dy/dx) + 2y = 0. 

Put y = Aexp{mx }as a trial solution, then 

        Aexp{mx}(2m2 + 5m + 2) = 0, so that  

       m = –2 or –1/2, therefore the general solution is 

         y = Aexp{–2x} + Bexp{(–1/2)x}. 

 If the roots of the auxilliary equation are complex, then 

         y = Aexp{p + iq}x + Bexp{p – iq}x,  
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where the roots are p ± iq ( p, q ∈ R). 

In practice, we write 

            y = exp{px}[Ecosqx + Fsinqx]  

where E and F are arbitrary constants. 

For example, consider the solution of the equation 

 d2y/dx2 – 6(dy/dx) + 13y = 0, 

therefore 

                     m2 – 6m + 13 = 0, 

so that  

                             m = 3 ± i2. 

We therefore have 

                               y = Aexp{(3 + i2)x} + Bexp{3 – i2)x} 

                                  = exp{3x}(Ecos2x + Fsin2x). 

The general solution of a linear differential equation with constant coefficients is the sum of a particular 

integral and the complementary function (obtained by putting zero for the function of x that appears in 

the original equation). 
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