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Introduction

P hysics is what it’s all about. 

What what’s all about?

Everything. That’s the whole point. Physics is present in every 
action around you. And because physics has no limits, it gets 
into some tricky places, which means that it can be hard to 
follow. It can be even worse when you’re reading some dense 
textbook that’s hard to follow.

For most people who come into contact with physics, text-
books that land with 1,200-page whumps on desks are their 
only exposure to this amazingly rich and rewarding field. And 
what follows are weary struggles as the readers try to scale 
the awesome bulwarks of the massive tomes. Has no brave 
soul ever wanted to write a book on physics from the reader’s 
point of view? Yes, one soul is up to the task, and here I come 
with such a book.

About This Book
Physics Essentials For Dummies is all about physics from your 
point of view. I’ve taught physics to many thousands of stu-
dents at the university level, and from that experience, I know 
that most students share one common trait: confusion. As in, 
“I’m confused as to what I did to deserve such torture.”

This book is different. Instead of writing it from the physicist’s 
or professor’s point of view, I write it from the reader’s point 
of view.

After thousands of one-on-one tutoring sessions, I know where 
the usual book presentation of this stuff starts to confuse 
people, and I’ve taken great care to jettison the top-down 
kinds of explanations. You don’t survive one-on-one tutoring 
sessions for long unless you get to know what really makes 

              



2 Physics Essentials For Dummies 

sense to people — what they want to see from their points of 
view. In other words, I designed this book to be crammed full 
of the good stuff — and only the good stuff. You also discover 
unique ways of looking at problems that professors and teach-
ers use to make figuring out the problems simple.

Conventions Used in This Book
Some books have a dozen conventions that you need to know 
before you can start. Not this one. Here’s all you need to know:

 ✓ New terms appear in italic, like this, the first time I dis-
cuss them. If you see a word in italic, look for a definition 
close by.

 ✓ Physicists use several different measurement systems, or 
ways of presenting measurements. (See how the italic/
definition thing works?) In Chapter 1, I introduce the 
most common systems and explain that I use the meter-
kilogram-second (MKS) system in this book. I suggest 
that you spend a few minutes with the last section of 
Chapter 1 so you’re familiar with the measurements you 
see in all the other chapters.

 ✓ Vectors — items that have both a magnitude and a 
 direction — appear in bold, like this. However, when 
I discuss the magnitude of a vector, the variable 
appears in italic.

Foolish Assumptions
I assume that you have very little knowledge of physics when 
you start to read this book. Maybe you’re in a high school 
or first-year college physics course, and you’re struggling to 
make sense of your textbook and your instructor.

I also assume that you have some math prowess. In particular, 
you should know some algebra, such as how to move items 
from one side of an equation to another and how to solve for 
values. You also need a little knowledge of trigonometry, but 
not much.

              



3 Introduction

Icons Used in This Book
You come across two icons in the left margins of this book 
that call attention to certain tidbits of information. Here’s 
what the icons mean:

 

This icon marks information to remember, such as an applica-
tion of a law of physics or a shortcut for a particularly juicy 
equation.

 

When you run across this icon, be prepared to find a little 
extra info designed to help you understand a topic better.

Where to Go from Here
You can leaf through this book; you don’t have to read it 
from beginning to end. Like other For Dummies books, this 
one has been designed to let you skip around as you like. 
This is your book, and physics is your oyster.

You can jump into Chapter 1, which is where all the action 
starts; you can head to Chapter 2 for a discussion on the nec-
essary vector algebra you should know; or you can jump in 
anywhere you like if you know exactly what topic you want to 
study. For a taste of how truly astounding physics can be, you 
may want to check out Chapter 12, which introduces some of 
the amazing insights provided to us by Einstein’s theory of 
special relativity.

              



              



Chapter 1

Viewing the World through 
the Lens of Physics

In This Chapter
▶ Recognizing the physics in your world

▶ Getting a handle on motion and energy

▶ Wrapping your head around relativity

▶ Mastering measurements

Physics is the study of your world and the world and 
 universe around you. You may think of physics as a 

burden — an obligation placed on you in school. But in truth, 
physics is a study that you undertake naturally from the 
moment you open your eyes.

Nothing falls beyond the scope of physics; it’s an all- 
encompassing science. You can study various aspects of the 
natural world, and, accordingly, you can study different fields 
in physics: the physics of objects in motion, of forces, of what 
happens when you start going nearly as fast as the speed of 
light, and so on. You enjoy the study of all these topics and 
many more in this book.

Figuring Out What Physics 
Is About

You can observe plenty going on around you all the time in 
the middle of your complex world. Leaves are waving, the sun 
is shining, the stars are twinkling, light bulbs are glowing, cars 
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are moving, computer printers are printing, people are walk-
ing and riding bikes, streams are flowing, and so on. When you 
stop to examine these actions, your natural curiosity gives 
rise to endless questions:

 ✓ Why do I slip when I try to climb that snow bank?

 ✓ What are those stars all about? Or are they planets? 
Why do they seem to move?

 ✓ What’s the nature of this speck of dust?

 ✓ Are there hidden worlds I can’t see?

 ✓ Why do blankets make me warm?

 ✓ What’s the nature of matter?

 ✓ What happens if I touch that high-tension line? (You 
know the answer to that one; as you can see, a little 
knowledge of physics can be a lifesaver.)

Physics is an inquiry into the world and the way it works, 
from the most basic (like coming to terms with the inertia of 
a dead car that you’re trying to push) to the most exotic (like 
peering into the very tiniest of worlds inside the smallest of 
particles to try to make sense of the fundamental building 
blocks of matter). At root, physics is all about getting con-
scious about your world.

Paying Attention to Objects 
in Motion

Some of the most fundamental questions you may have about 
the world deal with objects in motion. Will that boulder roll-
ing toward you slow down? How fast will you have to move to 
get out of its way? (Hang on just a moment while I get 
out my calculator . . .) Motion was one of the earliest explora-
tions of physics, and physics has proved great at coming up 
with answers.

This book handles objects in motion — from balls to railroad 
cars and most objects in between. Motion is a fundamental 
fact of life and one that most people already know a lot about. 
You put your foot on the accelerator, and the car takes off.

              



 Chapter 1: Viewing the World through the Lens of Physics 7
But there’s more to the story. Describing motion and how it 
works is the first step in really understanding physics, which 
is all about observations and measurements and making 
mental and mathematical models based on those observa-
tions and measurements. This process is unfamiliar to most 
people, which is where this book comes in.

Studying motion is fine, but it’s just the very beginning of the 
beginning. When you take a look around, you see that the 
motion of objects changes all the time. You see a motorcycle 
coming to a halt at the stop sign. You see a leaf falling and 
then stopping when it hits the ground, only to be picked up 
again by the wind. You see a pool ball hitting other balls in 
just the wrong way so that they all move without going where 
they should.

Motion changes all the time as the result of force. You may 
know the basics of force, but sometimes it takes an expert 
to really know what’s going on in a measurable way. In other 
words, sometimes it takes a physicist like you.

Getting Energized
You don’t have to look far to find your next piece of phys-
ics. You never do. As you exit your house in the morning, for 
example, you may hear a crash up the street. Two cars have 
collided at a high speed, and, locked together, they’re sliding 
your way.

Thanks to physics you can make the necessary measurements 
and predictions to know exactly how far you have to move 
to get out of the way. You know that it’s going to take a lot to 
stop the cars. But a lot of what?

It helps to have the ideas of energy and momentum mastered 
at such a time. You use these ideas to describe the motion of 
objects with mass. The energy of motion is called kinetic energy, 
and when you accelerate a car from 0 to 60 miles per hour in 
10 seconds, the car ends up with plenty of kinetic energy.

Where does the kinetic energy come from? Not from 
nowhere — if it did, you wouldn’t have to worry about the 
price of gas. Using gas, the engine does work on the car to 
get it up to speed.
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Or say, for example, that you don’t have the luxury of an 
engine when you’re moving a piano up the stairs of your new 
place. But there’s always time for a little physics, so you whip 
out your calculator to calculate how much work you have to 
do to carry it up the six floors to your new apartment.

After you move up the stairs, your piano will have what’s 
called potential energy simply because you put in a lot of work 
against gravity to get the piano up those six floors.

Unfortunately, your roommate hates pianos and drops yours 
out the window. What happens next? The potential energy of 
the piano due to its height in a gravitational field is converted 
into kinetic energy, the energy of motion. It’s an interesting 
process to watch, and you decide to calculate the final speed 
of the piano as it hits the street.

Next, you calculate the bill for the piano, hand it to your 
roommate, and go back downstairs to get your drum set.

Moving as Fast as You Can: 
Special Relativity

Even when you start with the most mundane topics in phys-
ics, you quickly get to the most exotic. In Chapter 12, you 
discover ten amazing insights into Einstein’s theory of special 
relativity.

But what exactly did Einstein say? What does the famous 
E = mc2 equation really mean? Does it really say that matter 
and energy are equivalent — that you can convert matter into 
energy and energy into matter? Yep, sure does.

And stranger things happen when matter starts moving near 
the speed of light, as predicted by your buddy Einstein.

“Watch that spaceship,” you say as a rocket goes past at nearly 
the speed of light. “It appears compressed along its direction of 
travel — it’s only half as long as it would be at rest.”

“What spaceship?” your friends all ask. “It went by too fast for 
us to see anything.”
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“Time measured on that spaceship goes more slowly than 
time here on Earth, too,” you explain. “For us, it will take 
200 years for the rocket to reach the nearest star. But for the 
rocket, it will take only 2 years.”

“Are you making this up?” everyone asks.

Physics is all around you, in every commonplace action. But if 
you want to get wild, physics is the science to do it. 

Measuring Your World
Physics excels at measuring and predicting the physical 
world — after all, that’s why it exists. Measuring is the start-
ing point — part of observing the world so that you can then 
model and predict it. You have several different measuring 
sticks at your disposal: some for length, some for weight, 
some for time, and so on. Mastering those measurements is 
part of mastering physics.

To keep like measurements together, physicists and math-
ematicians have grouped them into measurement systems. 
The most common measurement systems you see in physics 
are the centimeter-gram-second (CGS) and meter-kilogram-
second (MKS) systems, together called SI (short for Système 
International d’Unités). But you may also come across the foot-
pound-inch (FPI) system. For reference, Table 1-1 shows you 
the primary units of measurement in the MKS system, which 
I use for most of the book. (Don’t bother memorizing the 
ones you’re not familiar with now; come back to them later as 
needed.)

Table 1-1 Units of Measurement 
 in the MKS System
Measurement Unit Abbreviation

Length meter m

Mass kilogram kg

Time second s

Force newton N

Energy joule J
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Keeping physical units straight
Because each measurement system uses a different standard 
length, you can get several different numbers for one part 
of a problem, depending on the measurement you use. For 
example, if you’re measuring the depth of the water in a swim-
ming pool, you can use the MKS measurement system, which 
gives you an answer in meters; the CGS system, which yields 
a depth in centimeters; or the less common FPI system, in 
which case you determine the depth of the water in inches.

 

Always remember to stick with the same measurement 
system all the way through the problem. If you start out in 
the MKS system, stay with it. If you don’t, your answer will 
be a meaningless hodgepodge because you’re switching 
measuring sticks for multiple items as you try to arrive at a 
single answer. Mixing up the measurements causes problems. 
(Imagine baking a cake where the recipe calls for two cups of 
flour, but you use two liters instead.)

Converting between units 
of measurement
Physicists use various measurement systems to record num-
bers from their observations. But what happens when you have 
to convert between those systems? Physics problems some-
times try to trip you up here, giving you the data you need in 
mixed units: centimeters for this measurement but meters for 
that measurement — and maybe even mixing in inches as well. 
Don’t be fooled. You have to convert everything to the same 
measurement system before you can proceed. How do you con-
vert in the easiest possible way? You use conversion factors. 
For an example, consider the following problem.

Passing another state line, you note that you’ve gone 4,680 
miles in exactly three days. Very impressive. If you went at 
a constant speed, how fast were you going? As I discuss in 
Chapter 3, the physics notion of speed is just as you may 
expect — distance divided by time. So, you calculate your 
speed as follows:
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Your answer, however, isn’t exactly in a standard unit of mea-
sure. You want to know the result in a unit you can get your 
hands on — for example, miles per hour. To get miles per 
hour, you need to convert units.

 

To convert between measurements in different measuring sys-
tems, you can multiply by a conversion factor. A conversion 
factor is a ratio that, when multiplied by the item you’re con-
verting, cancels out the units you don’t want and leaves those 
that you do. The conversion factor must equal 1.

In the preceding problem, you have a result in miles per day, 
which is written as miles/day. To calculate miles per hour, 
you need a conversion factor that knocks days out of the 
denominator and leaves hours in its place, so you multiply by 
days per hour and cancel out days:

miles/day · days/hour = miles/hour

Your conversion factor is days per hour. When you plug in all 
the numbers, simplify the miles-per-day fraction, and multiply 
by the conversion factor, your work looks like this:

Note: Words like “seconds” and “meters” act like the variables 
x and y in that if they’re present in both the numerator and 
denominator, they cancel each other out.

 

Note that because there are 24 hours in a day, the conversion 
factor equals exactly 1, as all conversion factors must. So, when 
you multiply 1,560 miles/day by this conversion factor, you’re 
not changing anything — all you’re doing is multiplying by 1.

When you cancel out days and multiply across the fractions, 
you get the answer you’ve been searching for:

So, your average speed is 65 miles per hour, which is pretty 
fast considering that this problem assumes you’ve been driv-
ing continuously for three days.
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Nixing some zeros with 
scientific notation
Physicists have a way of getting their minds into the darnd-
est places, and those places often involve really big or really 
small numbers. For example, say you’re dealing with the dis-
tance between the sun and Pluto, which is 5,890,000,000,000 
meters. You have a lot of meters on your hands, accompanied 
by a lot of zeros.

Physics has a way of dealing with very large and very small 
numbers. To help reduce clutter and make these numbers 
easier to digest, physics uses scientific notation. In scientific 
notation, you express zeros as a power of ten. To get the right 
power of ten, you count up all the places in front of the deci-
mal point, from right to left, up to the place just to the right 
of the first digit. (You don’t include the first digit because you 
leave it in front of the decimal point in the result.) So you can 
write the distance between the sun and Pluto as follows:

5,890,000,000,000 m = 5.89·1012 m

Scientific notation also works for very small numbers, such 
as the one that follows, where the power of ten is negative. 
You count the number of places, moving left to right, from the 
decimal point to just after the first nonzero digit (again leav-
ing the result with just one digit in front of the decimal):

0.0000000000000000005339 m = 5.339·10–19 m

If the number you’re working with is greater than ten, you’ll 
have a positive exponent in scientific notation; if it’s less than 
one, you’ll have a negative exponent. As you can see, handling 
super large or super small numbers with scientific notation 
is easier than writing them all out, which is why calculators 
come with this kind of functionality already built in.

Knowing which digits 
are significant
In a measurement, significant digits are those that were actu-
ally measured. So, for example, if someone tells you that a 

              



 Chapter 1: Viewing the World through the Lens of Physics 13
rocket traveled 10.0 meters in 7.00 seconds, the person is 
telling you that the measurements are known to three 
 significant digits (the number of digits in both of the 
 measurements).

If you want to find the rocket’s speed, you can whip out a cal-
culator and divide 10.0 by 7.00 to come up with 1.428571429 
meters per second, which looks like a very precise measure-
ment indeed. But the result is too precise. If you know your 
measurements to only three significant digits, you can’t say 
you know the answer to ten significant digits. Claiming as 
such would be like taking a meter stick, reading down to the 
nearest millimeter, and then writing down an answer to the 
nearest ten-millionth of a millimeter.

In the case of the rocket, you have only three significant digits 
to work with, so the best you can say is that the rocket is trav-
eling at 1.43 meters per second, which is 1.428571429 rounded 
up to two decimal places. If you include any more digits, you 
claim an accuracy that you don’t really have and haven’t 
 measured.

 

When you round a number, look at the digit to the right of 
the place you’re rounding to. If that right-hand digit is 5 or 
greater, you should round up. If it’s 4 or less, round down. For 
example, you should round 1.428 to 1.43 and 1.42 down to 1.4.

What if a passerby told you, however, that the rocket traveled 
10.0 meters in 7.0 seconds? One value has three significant 
digits, and the other has only two. The rules for determining 
the number of significant digits when you have two different 
numbers are as follows:

 ✓ When you multiply or divide numbers, the result has 
the same number of significant digits as the original 
number that has the fewest significant digits.

  In the case of the rocket, where you need to divide, the 
result should have only two significant digits — so the 
correct answer is 1.4 meters per second.

 ✓ When you add or subtract numbers, line up the decimal 
points; the last significant digit in the result corresponds 
to the right-most column where all numbers still have 
significant digits.
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  If you have to add 3.6, 14, and 6.33, you’d write the answer 

to the nearest whole number — the 14 has no significant 
digits after the decimal place, so the answer shouldn’t, 
either. To preserve significant digits, you should round 
the answer up to 24. You can see what I mean by taking a 
look for yourself:

  

 

By convention, zeros used simply to fill out values down to 
(or up to) the decimal point aren’t considered significant. For 
example, the number 3,600 has only two significant digits by 
default. If you actually measure the value to be 3,600, you’d 
express it as 3,600. (with a decimal point); the final decimal 
point indicates that you mean all the digits are significant.

              



Chapter 2

Taking Vectors 
Step by Step

In This Chapter
▶ Adding and subtracting vectors

▶ Putting vectors into numerical coordinates

▶ Dividing vectors into components

You have a hard time getting where you want to go if you 
don’t know which way to go. That’s what vectors are all 

about. Too many people who’ve had tussles with vectors decide 
they don’t like them, which is a mistake. Vectors are easy when 
you get a handle on them, and you’re going to get a handle on 
them in this chapter. I break down vectors from top to bottom 
and relate the forces of motion to the concept of vectors.

Getting a Grip on Vectors
Vectors are a part of everyday life. When a person gives you 
directions, she may say something like, “The hospital is 2 
miles that way” and point. She gives you both a magnitude 
(a measurement) and a direction (by pointing). When you’re 
helping someone hang a door, the person may say, “Push 
hard to the left!” That’s another vector. When you swerve to 
avoid hitting someone in your car, you accelerate or deceler-
ate in another direction. Yet another vector.

 

Plenty of situations in your life display vectors, and plenty of 
concepts in physics are vectors too — for example, velocity, 
acceleration, and force. You should snuggle up to vectors 
because you see them in just about any physics course you 
take. Vectors are fundamental.

              



Physics Essentials For Dummies 16

Looking for direction 
and magnitude

 

When you have a vector, you have to keep in mind two quanti-
ties: its direction and its magnitude. Forces that have only a 
quantity, like speed, are called scalars. If you add a direction 
to a scalar, you create a vector.

Visually, you see vectors drawn as arrows in physics, which 
is perfect because an arrow has both a clear direction and 
a clear magnitude (the length of the arrow). Take a look at 
Figure 2-1. The arrow represents a vector that starts at the 
foot and ends at the head.

A

Figure 2-1: The arrow, a vector, has both a direction and a magnitude.

You can use vectors to represent a force, an acceleration, 
a velocity, and so on. In physics, you use A to represent a 
vector. In some books, you see it with an arrow on top:

The arrow means that this is not only a scalar value, which 
would be represented by A, but also something with direction.

Take a look at Figure 2-2, which features two vectors, A and B. 
They look pretty much the same — the same length and the 
same direction. In fact, these vectors are equal. Two vectors 
are equal if they have the same magnitude and direction, and 
you can write this equality as A = B. 

B

A

Figure 2-2: Two arrows (and vectors) with the same magnitude and direction.
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You’re on your way to becoming a vector pro, but there’s 
more to come. What if, for example, someone says the hotel 
you’re looking for is 20 miles due north and then 20 miles due 
east? How far away is the hotel, and in which direction?

Adding vectors
You can add two direction vectors together. When you do, you 
get a resultant vector — the sum of the two — that gives you 
the distance to your target and the direction to that target.

Assume, for example, that a passerby tells you that to get to 
your destination, you first have to follow vector A and then 
vector B. Just where is that destination? You work this prob-
lem just as you find the destination in everyday life. First, you 
drive to the end of vector A, and at that point, you drive to 
the end of vector B.

When you get to the end of vector B, how far are you from 
your starting point? To find out, you draw a vector, C, from 
your starting point to your ending point, as Figure 2-3 shows. 
This new vector, C, represents the result of your complete 
trip, from start to finish.

B
C

A

Figure 2-3: Take the sum of two vectors by creating a new vector.

 

You make vector addition simple by putting one vector at 
the end of the other vector and drawing the new vector, or 
the sum, from the start of the first vector to the end of the 
second. In other words, C = A + B. C is called the sum, the 
result, or the resultant vector. But if having only one option 
bores you, there are other ways of combining vectors, too — 
you can subtract them if you want.
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Subtracting vectors
What if someone hands you vector C and vector A from Figure 
2-3 and says, “Can you get their difference?” The difference is 
vector B because when you add vectors A and B together, you 
end up with vector C. So to arrive at B, you subtract A from C. 
You don’t come across vector subtraction that often in phys-
ics problems, but it does pop up sometimes.

To subtract two vectors, you put their feet (the nonpointy 
parts of the arrows) together and draw the resultant vector, 
which is the difference of the two vectors. The vector you 
draw runs from the head of the vector you’re subtracting (A) 
to the head of the vector you’re subtracting it from (C). To 
make heads from tails, check out Figure 2-4.

B = C − A
C

A

Figure 2-4:  Subtracting two vectors by putting their feet together and draw-
ing the result. 

 

Another (and for some people easier) way to do vector sub-
traction is to reverse the direction of the second vector (A in 
C – A) and use vector addition. In other words, start with the 
first vector, C; put the reversed vector’s (A’s) foot at the first 
vector’s head; and draw the resulting vector.

As you can see, both vector addition and subtraction are pos-
sible with the same vectors in the same problems. In fact, all 
kinds of math operations are possible on vectors. That means 
that in equation form, you can play with vectors just as you 
can scalars, like C = A + B, C – A = B, and so on. This approach 
looks pretty numerical, and it is. You can get numerical with 
vectors just as you can with scalars.
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Waxing Numerical on Vectors
Vectors may look good as arrows, but that’s not exactly the 
most precise way of dealing with them. You can get numeri-
cal on vectors, taking them apart as you need them. Take a 
look at the vector addition problem A + B shown in Figure 2-5. 
With the vectors plotted on a graph, you can see how easy 
vector addition really is.

B

C

A

Figure 2-5: Use vector coordinates to make handling vectors easy. 

Assume that the measurements in Figure 2-5 are in meters. 
That means vector A is 1 meter up and 5 to the right, and 
vector B is 1 meter to the right and 4 up. To add them for the 
result, vector C, you add the horizontal parts together and the 
vertical parts together. The resulting vector, C, ends up being 
6 meters to the right and 5 meters up. You can see what that 
result looks like in Figure 2-5.

 

If vector addition still seems cloudy, you can use a nota-
tion that was invented for vectors to help physicists keep it 
straight. Because A is 5 meters to the right (the positive x-axis 
direction) and 1 up (the positive y-axis direction), you can 
express it with (x, y) coordinates like this:

A = (5, 1)

And because B is 1 meter to the right and 4 up, you can 
express it with (x, y) coordinates like this:

B = (1, 4)
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Having a notation is great because it makes vector addition 
totally simple. To add two vectors together, you just add their 
x and y parts, respectively, to get the x and y parts of the result:

A + B = (5, 1) + (1, 4) = (6, 5) = C

Now you can get as numerical as you like because you’re just 
adding or subtracting numbers. It can take a little work to get 
those x and y parts, but it’s a necessary step. And when you 
have those parts, you’re home free.

 

For another quick numerical method, you can perform simple 
vector multiplication. For example, say you’re driving along 
at 150 miles per hour eastward on a racetrack and you see a 
competitor in your rearview mirror. No problem, you think; 
you’ll just double your speed:

2(0, 150) = (0, 300)

Now you’re flying along at 300 miles per hour in the same 
direction. In this problem, you multiply a vector by a scalar.

Working with Vector 
Components

Physics problems have a way of not telling you what you want 
to know directly. Take a look at the first vector you see in 
this chapter: vector A in Figure 2-1. Instead of telling you that 
vector A is coordinate (4, 1) or something similar, a problem 
may say that a ball is rolling on a table at 15° with a speed of 
7.0 meters per second and ask you how long it will take the 
ball to roll off the table’s edge if that edge is 1.0 meter away to 
the right. Given certain information, you can find the compo-
nents that make up vector problems.

Using magnitudes and angles 
to find vector components
You can find tough vector information by breaking a vector up 
into its parts or components. For example, in the vector (4, 1), 
the x-axis component is 4 and the y-axis component is 1.
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Typically, a physics problem gives you an angle and a mag-
nitude to define a vector; you have to find the components 
yourself. If you know that a ball is rolling on a table at 15° with 
a speed of 7.0 meters per second, and you want to find out 
how long it will take the ball to roll off the edge 1.0 meter to 
the right, what you need is the x-axis direction. So, the prob-
lem breaks down to finding out how long the ball will take to 
roll 1.0 meter in the x direction. To find out, you need to know 
how fast the ball is moving in the x direction.

You already know that the ball is rolling at a speed of 7.0 
meters per second at 15° to the horizontal (along the positive 
x-axis), which is a vector: 7.0 meters per second at 15° gives 
you both a magnitude and a direction. What you have here is 
a velocity: the vector version of speed (more about this topic 
in Chapter 3). The ball’s speed is the magnitude of its velocity 
vector, and when you add a direction to that speed, you get 
the velocity vector v.

Here you need not only the speed, but also the x component 
of the ball’s velocity to find out how fast the ball is traveling 
toward the table edge. The x component is a scalar (a number, 
not a vector), and it’s written like this: vx. The y component of 
the ball’s velocity vector is vy. So, you can say that

v = (vx, vy)

That’s how you express breaking a vector up into its compo-
nents. So, what’s vx here? And for that matter, what’s vy, the y 
component of the velocity? The vector has a length (7.0 meters 
per second) and a direction (θ = 15° to the horizontal). And 
you know that the edge of the table is 1.0 meter to the right. As 
you can see in Figure 2-6, you have to use some trigonometry 
(oh no!) to resolve this vector into its components. No sweat; 
the trig is easy after you get the angles you see in Figure 2-6 
down. The magnitude of a vector v is expressed as v (you 
sometimes see this written as |v|), and from Figure 2-6, you 
can see that

vx = v cos θ

vy = v sin θ
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v

v sinθ
v cosθ

θ

Figure 2-6:  Breaking a vector into components allows you to add or 
 subtract them easily.

 

The two vector component equations are worth knowing 
because you see them a lot in any beginning physics course. 
Make sure you know how they work, and always have them at 
your fingertips.

You know that vx = v cos θ, so you can find the x component 
of the ball’s velocity, vx, this way:

vx = v cos θ = v cos 15°

Plugging in the numbers gives you

vx = v cos θ = v cos 15° = (7.0 m/s)(0.97) = 6.8 m/s

You now know that the ball is traveling at 6.8 m/s to the right. 
And because the table’s edge is 1.0 meter away,

1.0 meter / 6.8 meters per second = 0.15 second

It will take the ball 0.15 second to fall off the edge of the table. 
What about the y component of the velocity? That’s easy to 
find, too:

vy = v sin θ = v sin 15° = (7.0 m/s)(0.26) = 1.8 m/s

Using vector components to find 
magnitudes and angles
Sometimes, you have to find the angles of a vector rather than 
the components. For example, assume you’re looking for a 
hotel that’s 20 miles due north and then 20 miles due east. 
What’s the angle the hotel is at from your present location, and 
how far away is it? You can write this problem in vector nota-
tion, like so (see the section “Waxing Numerical on Vectors”):

Step 1: (0, 20)

Step 2: (20, 0)
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When adding these vectors together, you get this result:

(0, 20) + (20, 0) = (20, 20)

The resultant vector is (20, 20). That’s one way of specifying 
a vector — use its components. But this problem isn’t asking 
for the results in terms of components. The question wants to 
know the angle the hotel is at from your present location and 
how far away it is. In other words, looking at Figure 2-7, the 
problem asks, “What’s h, and what’s θ?”

x = 20 miles

Hotel 

You 

y = 20 miles
h

θ 

Figure 2-7: Using the angle created by a vector to get to a hotel.

Finding h isn’t so hard because you can use the Pythagorean 
theorem:

Plugging in the numbers gives you

The hotel is 28.3 miles away. What about the angle θ? Because 
of your superior knowledge of trigonometry, you know that

y = h sin θ 
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In other words, you know that

y / h = sin θ

Now all you have to do is take the inverse sine:

θ = sin–1 (y / h) = sin–1 [(20 mi)/(28.3 mi)] = 45°

You now know all there is to know: The hotel is 28.3 miles 
away, at an angle of 45°. Another physics triumph!

              



Chapter 3

Going the Distance with 
Speed and Acceleration

In This Chapter
▶ Getting up to speed on displacement

▶ Examining different kinds of speed

▶ Introducing acceleration

▶ Linking acceleration, time, and displacement

▶ Connecting speed, acceleration, and displacement

There you are in your Formula 1 racecar, speeding toward 
glory. You have the speed you need, and the pylons are 

whipping past on either side. You’re confident that you can 
win, and coming into the final turn, you’re far ahead. Or at 
least you think you are. It seems that another racer is also 
making a big effort, because you see a gleam of silver in your 
mirror. You get a better look and realize that you need to do 
something — last year’s winner is gaining on you fast.

It’s a good thing you know all about velocity and acceleration. 
With such knowledge, you know just what to do: You floor 
the gas pedal, accelerating out of trouble. Your knowledge of 
velocity lets you handle the final curve with ease. The check-
ered flag is a blur as you cross the finish line in record time. 
Not bad. You can thank your understanding of the issues in 
this chapter: displacement, speed, and acceleration.

You already have an intuitive feeling for what I discuss in 
this chapter, or you wouldn’t be able to drive or even ride 
a bike. Displacement is all about where you are, speed is all 
about how fast you’re going, and anyone who’s ever been in 
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a car knows about acceleration. These forces concern people 
every day, and physics has made an organized study of them. 
Knowledge of these forces has allowed people to plan roads, 
build spacecraft, organize traffic patterns, fly, track the motion 
of planets, predict the weather, and even get mad in slow-
moving traffic jams.

Understanding physics is all about understanding movement, 
and that’s the topic of this chapter. Time to move on.

From Here to There: Dissecting 
Displacement

When something moves from point A to point B, displacement 
takes place in physics terms. In plain English, displacement is 
a distance. Say, for example, that you have a fine new golf ball 
that’s prone to rolling around by itself, shown in Figure 3-1. 
This particular golf ball likes to roll around on top of a large 
measuring stick. You place the golf ball at the 0 position on 
the measuring stick, as you see in Figure 3-1, diagram A.

A
meters− 4 − 3 −2 −1 0 1 2 3 4

B
meters− 4 − 3 −2 −1 0 1 2 3 4

C
meters− 4 − 3 −2 −1 0 1 2 3 4

Figure 3-1: Examining displacement with a golf ball.

The golf ball rolls over to a new point, 3 meters to the right, as 
you see in Figure 3-1, diagram B. The golf ball has moved, so 
displacement has taken place. In this case, the displacement 
is just 3 meters to the right. Its initial position was 0 meters, 
and its final position is at +3 meters.
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In physics terms, you often see displacement referred to as 
the variable s (don’t ask me why). In this case, s equals 3 
meters.

Scientists, being who they are, like to go into even more detail. 
You often see the term s0, which describes initial position 
(alternatively referred to as si; the i stands for initial). And 
you may see the term sf used to describe final position. In these 
terms, moving from diagram A to diagram B in Figure 3-1, s0 is 
at the 0-meter mark and sf is at +3 meters. The displacement, s, 
equals the final position minus the initial position:

s = sf – s0 = +3 m – 0 m = 3 m

 

Displacements don’t have to be positive; they can be zero or 
negative as well. Take a look at Figure 3-1, diagram C, where 
the restless golf ball has moved to a new location, measured 
as –4 meters on the measuring stick. What’s the displacement 
here?

s = sf – s0 = –4 m – 0 m = –4 m

Examining axes
Motion that takes place in the world isn’t always linear, like 
the golf ball shown in Figure 3-1. Motion can take place in 
two or three dimensions. And if you want to examine motion 
in two dimensions, you need two intersecting meter sticks, 
called axes. You have a horizontal axis — the x-axis — and a 
vertical axis — the y-axis. (For three-dimensional problems, 
watch for a third axis — the z-axis — sticking straight up out 
of the paper.)

Take a look at Figure 3-2, where a golf ball moves around in 
two dimensions. It starts at the center of the graph and moves 
up to the right.

In terms of the axes, the golf ball moves to +4 meters on the 
x-axis and +3 meters on the y-axis, which is represented as the 
point (4, 3); the x measurement comes first, followed by the y 
measurement: (x, y).
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meters− 4

− 4

− 3

− 2

− 1

1

2

3

4

− 3 −2 −1 1 2 3 4

Figure 3-2:  As you know from your golf game, objects don’t always move in 
a linear fashion.

So what does this mean in terms of displacement? Well, it turns 
out that displacement is actually a vector (see Chapter 2 for 
details about vectors). To find the displacement vector, you 
need to find its components. The change in the x position, Δx 
(Δ, the Greek letter delta, means “change in”), is equal to the 
final x position minus the initial x position. If the golf ball starts 
at the center of the graph — the origin of the graph, location 
(0, 0) — you have a change in the x location of

Δx = xf – x0 = +4 m – 0 m = 4 m

The change in the y location is

Δy = yf – y0 = +3 m – 0 m = 3 m

So the displacement vector is:

s = (Δx, Δy) = (4 m, 3 m)

Measuring speed
In the previous sections, you examine the motion of objects 
across one and two dimensions. But there’s more to the story 
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of motion than just the actual movement. When displacement 
takes place, it happens in a certain amount of time, which 
means that it happens at a certain speed. How long does it take 
the ball in Figure 3-1, for example, to move from its initial to its 
final position? If it takes 12 years, that makes for a long time 
before the figure was ready for this book. Now, 12 seconds? 
Sounds more like it.

Measuring how fast displacement happens is what the rest 
of this chapter is all about. Just as you can measure displace-
ment, you can measure the difference in time from the begin-
ning to the end of the motion, and you usually see it written 
like this:

Δt = tf – t0

Here, tf is the final time, and t0 is the initial time. The dif-
ference between these two is the amount of time it takes 
something to happen, such as a golf ball moving to its final 
destination. Scientists want to know all about how fast things 
happen, and that means measuring speed.

The Fast Track to Understanding 
Speed and Velocity

 

You may already have the conventional idea of speed down 
pat, assuming you speak like a scientist:

speed = distance / time

For example, if you travel distance s in a time t, your speed, v, is

v = s / t

The variable v really stands for velocity, but true velocity also 
has a direction associated with it, which speed does not. For 
that reason, velocity is a vector and you usually see it repre-
sented as v. Vectors have both a magnitude and a direction, so 
with velocity, you know not only how fast you’re going but also 
in what direction. Speed is only a magnitude (if you have a cer-
tain velocity vector, in fact, the speed is the magnitude of that 
vector), so you see it represented by the term v (not in bold).
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Phew, that was easy enough, right? Technically speaking 
(physicists love to speak technically), speed is the change in 
position divided by the change in time, so you can also repre-
sent it like this, if, say, you’re moving along the x-axis:

v = Δx / Δt = (xf – x0) / (tf – t0)

Speed can take many forms, which you find out about in the 
following sections.

How fast am I right now? 
Instantaneous speed
You already have an idea of what speed is; it’s what you mea-
sure on your car’s speedometer, right? When you’re tooling 
along, all you have to do to see your speed is look down at 
the speedometer. There you have it: 75 miles per hour. Hmm, 
better slow it down a little — 65 miles per hour now. You’re 
looking at your speed at this particular moment. In other 
words, you see your instantaneous speed.

 

Instantaneous speed is an important term in understand-
ing the physics of speed, so keep it in mind. If you’re going 
65 mph right now, that’s your instantaneous speed. If you 
accelerate to 75 mph, that becomes your instantaneous 
speed. Instantaneous speed is your speed at a particular 
instant of time. Two seconds from now, your instantaneous 
speed may be totally different.

Staying steady: Uniform speed
What if you keep driving 65 miles per hour forever? You 
achieve uniform speed in physics (also called constant speed). 
Uniform motion is the simplest speed variation to describe, 
because the speed never changes.

Changing your speed: 
Nonuniform motion
Nonuniform motion varies over time; it’s the kind of speed you 
encounter more often in the real world. When you’re driving, 
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for example, you change speed often, and your changes in 
speed come to life in an equation like this, where vf is your 
final speed and v0 is your original speed:

Δv = vf – v0

The last part of this chapter is all about acceleration, which 
occurs in nonuniform motion.

Doing some calculations: 
Average speed
Say that you want to pound the pavement from New York to 
Los Angeles to visit your uncle’s family, a distance of about 
2,781 miles. If the trip takes you four days, what was your 
speed?

Speed is the distance you travel divided by the time it takes, 
so your speed for the trip would be

2,781 miles / 4 days = 695.3

Okay, you calculate 695.3, but 695.3 what?

This solution divides miles by days, so you come up with 695.3 
miles per day. Not exactly a standard unit of measurement — 
what’s that in miles per hour? To find out, you want to cancel 
“days” out of the equation and put in “hours.” Because a day 
is 24 hours, you can multiply this way (note that “days” cancel 
out, leaving miles over hours, or miles per hour):

(2,781 miles / 4 days) · (1 day / 24 hours) = 28.97 miles 
per hour

You go 28.97 miles per hour. That’s a better answer, although 
it seems pretty slow, because when you’re driving, you’re 
used to going 65 miles per hour. You’ve calculated an average 

speed  over the whole trip, obtained by dividing the total dis-
tance by the total trip time, which includes nondriving time.
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Contrasting average speed and 
instantaneous speed
Average speed differs from instantaneous speed (unless 
you’re traveling in uniform motion, in which case your speed 
never varies). In fact, because average speed is the total dis-
tance divided by the total time, it may be very different from 
your instantaneous speed.

During a trip from New York to L.A., you may stop at a hotel 
several nights. While you sleep, your instantaneous speed 
is 0 miles per hour; yet, even at that moment, your average 
speed is still 28.97 miles per hour (see the previous section 
for this calculation). That’s because you measure average 
speed by dividing the whole distance, 2,781 miles, by the time 
the trip takes, 4 days.

Average speed also depends on the start and end points. Say, 
for example, that while you’re driving in Ohio on your cross-
country trip, you want to make a detour to visit your sister 
in Michigan after you drop off a hitchhiker in Indiana. Your 
travel path may look like the straight lines in Figure 3-3 — first 
80 miles to Indiana and then 30 miles to Michigan.

Michigan

Indiana

Ohio

80 miles

85.4 miles

30 miles

Figure 3-3: Traveling detours provide variations in average speed.
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If you drive 55 miles per hour, and you have to cover 80 + 30 = 
110 miles, it takes you 2 hours. But if you calculate the speed 
by taking the distance between the starting point and the 
ending point, 85.4 miles as the crow flies, you get

85.4 miles / 2 hours = 42.7 miles per hour

You’ve calculated your average speed along the dotted line 
between the start and end points of the trip, and if that’s what 
you really want to find, no problem. But if you’re interested in 
your average speed along either of the two legs of the trip, you 
have to measure the time it takes for a leg and divide by length 
of that leg to get the average speed for that part of the trip.

If you move at a uniform speed, your task becomes easier. You 
can look at the whole distance traveled, which is 80 + 30 = 110 
miles, not just 85.4 miles. And 110 miles divided by 2 hours 
is 55 miles per hour, which, because you travel at a constant 
speed, is your average speed along both legs of the trip. In 
fact, because your speed is constant, 55 miles per hour is also 
your instantaneous speed at any point on the trip.

 

When considering motion, speed is not the only thing that 
counts; direction matters too. That’s why velocity is impor-
tant, because it lets you record an object’s speed and direc-
tion. Pairing speed with direction enables you to handle cases 
like cross-country travel, where the direction can change.

Speeding Up (or Slowing 
Down): Acceleration

As with speed, you already know the basics about accelera-
tion. Acceleration is how fast your velocity changes. When you 
pass a parking lot’s exit and hear squealing tires, you know 
what’s coming next — someone is accelerating to cut you off. 
And sure enough, the jerk appears right in front of you, miss-
ing you by inches. After he passes, he slows down, or deceler-
ates, right in front of you, forcing you to hit your brakes to 
decelerate yourself. Good thing you know all about physics.
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Defining our terms
In physics terms, acceleration, a, is the amount by which your 
velocity changes in a given amount of time, or

a = Δv / Δt

Given the initial and final velocities, v0 and vf, and initial and 
final times over which your velocity changes, t0 and tf, you can 
also write the equation like this:

a = Δv / Δt = (vf – v0) / (tf – t0)

Recognizing positive and 
negative acceleration
Don’t let someone catch you on the wrong side of a numeric 
sign. Accelerations, like speeds, can be positive or negative, 
and you have to make sure you get the sign right. If you decel-
erate to a complete stop in a car, for example, your original 
speed was positive and your final speed is 0, so the accelera-
tion is negative.

 

Acceleration, like speed, has a sign, as well as units.

Also, don’t get fooled into thinking that a negative accelera-
tion (deceleration) always means slowing down or that a 
positive acceleration always means speeding up. For example, 
take a look at the ball in Figure 3-4, which is happily moving in 
the negative direction in diagram A. In diagram B, the ball is 
still moving in the negative direction, but at a slower speed.

A
meters−4 −3 −2 −1 0 1 2 3 4

B
meters−4 −3 −2 −1 0 1 2 3 4

Figure 3-4:  The golf ball is traveling in the negative direction, but with a 
positive acceleration, so it slows down.
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Because the ball’s negative speed has decreased, the accel-
eration is positive during the speed decrease. In other words, 
to slow its negative speed, you have to add a little positive 
speed, which means that the acceleration is positive.

 

The sign of the acceleration tells you how the speed is chang-
ing. A positive acceleration says that the speed is increasing 
in the positive direction, and a negative acceleration tells you 
that the speed is increasing in the negative direction.

Looking at average and 
instantaneous acceleration
Just as you can examine average and instantaneous speed, 
you can examine average and instantaneous acceleration. 
Average acceleration is the ratio of the change in velocity and 
the change in time. You calculate average acceleration, also 
written as , by taking the final velocity, subtracting the origi-
nal velocity, and dividing the result by the total time (final 
time minus the original time):

This equation gives you an average acceleration, but the 
acceleration may not have been that average value all the 
time. At any given point, the acceleration you measure is the 
instantaneous acceleration, and that number can be different 
from the average acceleration. For example, when you first 
see red flashing police lights behind you, you may jam on the 
brakes, which gives you a big deceleration. But as you coast 
to a stop, you lighten up a little, so the deceleration is smaller; 
however, the average acceleration is a single value, derived 
by dividing the overall change in velocity by the overall time.

Accounting for uniform and 
nonuniform acceleration
Acceleration can be uniform or nonuniform. Nonuniform 
acceleration requires a change in acceleration. For example, 
when you’re driving, you encounter stop signs or stop lights 
often, and when you decelerate to a stop and then accelerate 
again, you take part in nonuniform acceleration.
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Other accelerations are very uniform (in other words, unchang-
ing), such as the acceleration due to gravity on the surface of 
the Earth. This acceleration is 9.8 meters per second2 down-
ward, toward the center of the earth, and it doesn’t change. 
(If it did, plenty of people would be pretty startled.)

Bringing Acceleration, Time, 
and Displacement Together

You deal with four quantities of motion in this chapter: accel-
eration, speed, time, and displacement. To relate displace-
ment and time in order to get speed (in one dimension), you 
use this standard equation:

v = Δs / Δt = (sf – s0) / (tf – t0)

To find the acceleration in one dimension from speed and 
time, you use this equation:

a = Δv / Δt = (vf – v0) / (tf – t0)

But both equations go only one level deep, relating speed 
to displacement and time and acceleration to speed and 
time. What if you want to relate acceleration to displacement 
and time?

Say, for example, you give up your oval-racing career to 
become a drag racer in order to analyze your acceleration 
down the dragway. After a test race, you know the distance 
you went — 0.25 mile, or about 402 meters — and you know 
the time it took — 5.5 seconds. So, how hard was the kick you 
got — the acceleration — when you blasted down the track? 
Good question. You want to relate acceleration, time, and dis-
placement; speed isn’t involved.

 

You can derive an equation relating acceleration, time, and 
displacement. To make this step simpler, this derivation 
doesn’t work in terms of vf – v0. When you’re slinging around 
algebra, you may find it easier to work with single quantities 
like v rather than vf – v0, if possible. You can usually turn v 
into vf – v0 later, if necessary.
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Locating not-so-distant relations
You relate acceleration, distance, and time by messing around 
with the equations until you get what you want. Displacement 
equals average speed multiplied by time:

You have a starting point. But what’s the average speed 
during the drag race from the previous section? You started 
at 0 and ended up going pretty fast. Because your acceleration 
was constant, your speed increased in a straight line from 0 to 
its final value.

On average, your speed was half your final value, and you 
know this because there was constant acceleration. Your final 
speed was

vf = at

Okay, you can find your final speed, which means your aver-
age speed (because it went up in a straight line) was

So far, so good. Now you can plug this average speed into the 
 equation and get

And because you know that vf = at, you can get

And this becomes

You can also put in tf – t0 rather than just plain t:
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Congrats! You’ve worked out one of the most important equa-
tions you need to know when you work with physics prob-
lems relating acceleration, displacement, time, and speed.

Equating more speedy scenarios
What if you don’t start off at zero speed, but you still want to 
relate accel eration, time, and displacement? What if you’re 
going 100 miles per hour? That initial speed would certainly 
add to the final distance you go. Because distance equals 
speed multiplied by time, the equation looks like this (don’t 
forget that this assumes the acceleration is constant):

Quite a mouthful. As with other long equations, I don’t recom-
mend you memorize the extended forms of these equations 
unless you have a photographic memory. It’s tough enough to 
memorize

If you don’t start at 0 seconds, you have to subtract the start-
ing time to get the total time the acceleration is in effect.

 

If you don’t start at rest, you have to add the distance that 
comes from the initial velocity into the result as well. If you can, 
it really helps to solve problems by using as much common 
sense as you can so you have control over everything rather 
than mechanically trying to apply formulas without knowing 
what the heck is going on, which is where errors come in.

So, what was your acceleration as you drove the drag racer I 
introduced in the last couple sections? Well, you know how 
to relate distance, acceleration, and time, and that’s what you 
want — you always work the algebra so that you end up relat-
ing all the quantities you know to the one quantity you don’t 
know. In this case, you have
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You can rearrange this equation with a little algebra; just 
divide both sides by t2 and multiply by 2 to get

a = 2s / t2

Great. Plugging in the numbers, you get

a = 2s / t2 = 2(402 m) / (5.5 s)2 = 27 m/s2

Okay, 27 meters per second2. What’s that in more understand-
able terms? The acceleration due to gravity, g, is 9.8 meters 
per second2, so this is about 2.7 g.

Putting Speed, Acceleration, 
and Displacement Together

Impressive, says the crafty physics textbook, you’ve been 
solving problems pretty well so far. But I think I’ve got you 
now. Imagine you’re a drag racer for an example problem. 
I’m going to give you only the acceleration — 26.6 meters per 
second2 — and your final speed — 146.3 meters per second. 
With this information, I want you to find the total distance 
traveled. Got you, huh? “Not at all,” you say, supremely confi-
dent. “Just let me get my calculator.”

You know the acceleration and the final speed, and you want 
to know the total distance it takes to get to that speed. This 
problem looks like a puzzler because the equations in this 
chapter have involved time up to this point. But if you need 
the time, you can always solve for it. You know the final 
speed, vf, and the initial speed, v0 (which is zero), and you 
know the acceleration, a. Because

vf – v0 = at

you know that

t = (vf – v0) / a = (146.3 m/s – 0 m/s) / (26.6 m/s2) = 5.5 s
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Now you have the time. You still need the distance, and you 
can get it this way:

s = v0t + 1⁄2at2

The first term drops out, because v0 = 0, so all you have to do 
is plug in the numbers:

s = 1⁄2at2 = 1⁄2(26.6 m/s2)(5.5 s)2 = 402 m

In other words, the total distance traveled is 402 meters, or a 
quarter mile. Must be a quarter-mile racetrack.

 

If you’re an equation junkie (and who isn’t?), you can make 
this step simpler on yourself with a new equation, the last one 
for this chapter. You want to relate distance, acceleration, 
and speed. Here’s how it works; first, you solve for the time:

t = (vf – v0) / a

Because displacement = , and  = 1⁄2(v0 + vf) when the accel-
eration is constant, you can get

s = 1⁄2(v0 + vf)t

Substituting for the time, you get

s = 1⁄2(v0 + vf)t = 1⁄2(v0 + vf) [(vf – v0) / a]

After doing the algebra, you get

s = 1⁄2(v0 + vf)t = 1⁄2(v0 + vf) [(vf – v0) / a] = (vf
2 – v0

2) / (2a)

Moving the 2a to the other side of the equation, you get an 
important equation of motion:

vf
2 – v0

2 = 2as = 2a(xf – x0)

Whew. If you can memorize this one, you’re able to relate 
velocity, acceleration, and distance. You can now consider 
yourself a motion master. 

              



Chapter 4

Studying Circular Motions
In This Chapter
▶ Staying steady with uniform circular motion

▶ Circling with centripetal acceleration

▶ Getting angular with displacement, velocity, and acceleration

Circular motion can involve rockets moving around plan-
ets, racecars whizzing around a track, or bees buzzing 

around a hive. The previous chapters discuss concepts like 
displacement, velocity, and acceleration; now you find out 
how these concepts work when you’re moving in a circle.

You have circular equivalents for each of the concepts I’ve 
mentioned, which makes handling circular motion no problem 
at all — you merely calculate angular displacement, angular 
velocity, and angular acceleration. Instead of dealing with 
linear displacement here, you deal with angular displacement 
as an angle. Angular velocity indicates what angle you sweep 
through in so many seconds, and angular acceleration gives 
you the rate of change in the angular velocity. All you have to 
do is take linear equations and substitute the angular equiva-
lents: angular displacement for displacement, angular velocity 
for velocity, and angular acceleration for acceleration.

Time to get dizzy with circular motion.

Understanding Uniform 
Circular Motion

An object with uniform circular motion travels in a circle with 
a constant speed. Practical examples may be hard to come by, 
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unless you see a racecar driver with his accelerator stuck or 
a clock with a seconds-hand that moves in constant motion. 
Take a look at Figure 4-1, where a golf ball tied to a string is 
whipping around in circles. The golf ball is traveling at a uni-
form speed as it moves around in a circle (not with a uniform 
velocity because its direction changes all the time), so you 
can say it’s traveling in uniform circular motion.

ac

v

θ

Figure 4-1: A golf ball on a string travels with constant speed.

Any object that travels in uniform circular motion always 
takes the same amount of time to move completely around 
the circle. That time is called its period, designated by T. You 
can easily relate the golf ball’s speed to its period because 
you know that the distance the golf ball must travel each time 
around the circle is the circumference of the circle, which, if r 
is the radius of the circle, is 2πr. So, you can get the equation 
for finding an object’s period by first finding its speed:

v = 2πr / T

If you switch T and v around, you get

T = 2πr / v

For example, say that you’re uniformly spinning a golf ball in 
a circle at the end of a 1.0-meter string so that it makes one 
revolution every half-second. How fast is the ball moving? 
Time to plug in the numbers:

v = 2πr / T = 2(3.14)(1.0 m) / (0.5 s) = 12.6 m/s

The ball moves at a speed of 12.6 meters per second. Just 
make sure you have a strong string!
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Creating Centripetal 
Acceleration

To keep an object moving in circular motion, its velocity 
constantly changes direction, as you can see in Figure 4-2. 
Because of this fact, acceleration is created, called centripetal 
acceleration — the acceleration needed to keep an object 
moving in circular motion. At any point, the velocity of the 
object is perpendicular to the radius of the circle.

v

v

v

v

Figure 4-2:  Velocity constantly changes direction to maintain an object’s 
uniform circular motion.

 

This rule holds true for all objects: The velocity of an object in 
uniform circular motion is always perpendicular to the radius 
of the circle.

If the string holding the ball in Figure 4-2 breaks at the top, 
bottom, left, or right point you see in the illustration, which 
way would the ball go? If the velocity points to the left, the 
ball would fly off to the left. If the velocity points to the right, 
the ball would fly off to the right. And so on. That’s not intui-
tive for many people, but it’s the kind of physics question that 
may come up in introductory courses.

 

You must also bear in mind that the velocity of an object in 
uniform circular motion is always at right angles to the radius 
of the object’s path. At any moment, the velocity points along 
the tiny section of the circle’s circumference where the object 
is, so the velocity is called tangential to the circle.
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Seeing how centripetal 
 acceleration controls velocity
Here’s what’s special about uniform circular motion: When an 
object travels in circular motion, its speed is constant, which 
means that the magnitude of the object’s velocity doesn’t 
change. Therefore, acceleration can have no component in 
the same direction as the velocity; if it could, the velocity’s 
magnitude would change.

However, the velocity’s direction is constantly changing; it 
always bends so that the object maintains movement in a 
constant circle. To make that happen, the object’s centripetal 
acceleration is always concentrated toward the center of the 
circle, perpendicular to the object’s velocity at any one time. 
The centripetal acceleration changes the direction of the 
object’s velocity while keeping the magnitude of the velocity 
constant. You can see the centripetal acceleration vector, ac, 
in Figure 4-1.

If you accelerate the ball toward the center of the circle to 
provide the centripetal acceleration, why doesn’t it hit your 
hand? The answer is that the ball is already moving. The 
acceleration you provide always acts at right angles to the 
velocity and therefore changes only the direction of the veloc-
ity, not its magnitude.

Calculating centripetal 
 acceleration
You always have to accelerate an object toward the center 
of the circle to keep it moving in circular motion. So, can you 
find the magnitude of the acceleration you create? No doubt. 
If an object is moving in uniform circular motion at speed v 
and radius r, you can find the centripetal acceleration with the 
following equation:

ac = v2 / r
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For a practical example, imagine you’re driving around curves 
at a high speed. For any constant speed, you can see from 
the equation ac = v2 / r that the centripetal acceleration is 
inversely proportional to the radius of the curve, which you 
know from experience. On tighter curves, your car needs to 
provide a greater centripetal acceleration.

Finding Angular Equivalents for 
Linear Equations

You can actually describe circular motion in a linear fashion, 
but doing so takes a little getting used to. Take a look at the 
ball in Figure 4-1; it doesn’t cover distance in a linear way. You 
can’t chart the x-axis or y-axis coordinate of the golf ball with 
a straight line. However, its path of motion provides one coor-
dinate that you can graph as a straight line in uniform circular 
motion: the angle, θ. If you graph the angle, the total angle 
the ball travels increases in a straight line. When it comes to 
circular motion, therefore, you can think of the angle, θ, just 
as you think of the displacement, s, in linear motion. (See 
Chapter 3 for more on displacement.)

 

The standard unit of measurement for the linear version of 
circular motion is the radian, not the degree. A full circle is 
made up of 2π radians, which is also 360°, so 360° = 2π radi-
ans. If you travel in a full circle, you go 360°, or 2π radians. A 
half-circle is π radians, and a quarter-circle is π/2 radians.

 

How do you convert from degrees to radians and back again? 
Because 360° = 2π radians (or 2 multiplied by 3.14, the rounded 
version of π), you have an easy calculation.

If you have π/2 radians and you want to know how many 
degrees that converts to, here’s the conversion:

π / 2 radians [360° / (2π radians)] = 90°

You calculate that π/2 radians = 90°.

              



Physics Essentials For Dummies 46
The fact that you can think of the angle, θ, in circular motion 
just as you think of the displacement, s, in linear motion is 
great because it means you have an angular counterpart for 
each of the linear equations from Chapter 3. Some such linear 
equations include

v = Δs / Δt

a = Δv / Δt

s = v0 (tf – t0) + 1⁄2a(tf – t0)
2

vf
2 – v0

2 = 2as

To find the angular counterpart of each of these equations, 
you just make substitutions. Instead of s, which you use in 
linear travel, you use θ, the angular displacement. So, what do 
you use in place of the velocity, v? You use the angular veloc-
ity, ω, or the number of radians covered in one second:

ω = Δθ / Δt

Note that the previous equation looks close to how you define 
linear speed:

v = Δs / Δt

Say, for example, that you have a ball tied to a string. What’s 
the angular velocity of the ball if you whirl it around on the 
string? It makes a complete circle, 2π radians, in 1⁄2 second, so 
its angular velocity is

ω = Δθ / Δt = 2π radians / (0.5 s) = 4π radians/second

Can you also find the acceleration of the ball? Yes, you can, 
by using the angular acceleration, α. Linear acceleration is 
defined this way:

a = Δv / Δt

Therefore, you define angular acceleration this way:

α = Δω / Δt
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The units for angular acceleration are radians per second2. If 
the ball speeds up from 4π radians per second to 8π radians 
per second in 2 seconds, for example, what would its angular 
acceleration be? Work it out by plugging in the numbers:

α = Δω / Δt = (8π rad/s – 4π rad/s) / (2 s) = 2π rad/s2

Now you have the angular versions of linear displacement, 
s, velocity, v, and acceleration, a: angular displacement, θ, 
angular velocity, ω, and angular acceleration, α. You can make 
a one-for-one substitution in velocity, acceleration, and dis-
placement equations (see Chapter 3) to get:

ω = Δθ / Δt

α = Δω / Δt

θ = ω0(tf – t0) + 1⁄2α(tf – t0)2

ωf
2 – ω0

2 = 2αθ

If you need to work in terms of angle, not distance, you have 
the ammo to do so for constant angular acceleration. To find 
out more about angular displacement, angular velocity, and 
angular acceleration, see the discussion on angular momen-
tum and torque in Chapter 9. 
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Chapter 5

Push-Ups and Pull-Ups: 
Exercises in Force

In This Chapter
▶ Having fun with force

▶ Introducing Newton’s three assertions on force

▶ Utilizing force vectors with Newton’s laws

This chapter is where you find Sir Isaac Newton’s famous 
three laws of motion. You’ve heard these laws before in 

various forms, such as “For every action, there’s an equal and 
opposite reaction.” That’s not quite right; it’s more like “For 
every force, there’s an equal and opposite force,” and this 
chapter is here to set the record straight. In this chapter, I use 
Newton’s laws as a vehicle to focus on force and how it affects 
the world.

Reckoning with Force
You can’t get away from forces in your everyday world; you 
use force to open doors, type at a keyboard, drive a car, 
climb the stairs of the Statue of Liberty, take your wallet out 
of your pocket — even to breathe or talk. You unknowingly 
take force into account when you cross bridges, walk on ice, 
lift a hot dog to your mouth, unscrew a jar’s cap, or flutter 
your eyelashes at your sweetie. Force is integrally connected 
to making objects move, and physics takes a big interest in 
understanding how force works. 
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Force is fun stuff. You may assume it’s difficult to understand, 
but that’s before you get into it. Like your old buddies dis-
placement, speed, and acceleration (see Chapters 3 and 4), 
force is a vector, meaning it has a magnitude and a direction 
(unlike, say, speed, which has only a magnitude).

As with all advances in physics, Newton made observations 
first, modeled them mentally, and then expressed those 
models in mathematical terms. If you have vectors under your 
belt (see Chapter 2), the math is very easy.

 

Newton expressed his model by using three assertions, which 
have come to be known as Newton’s laws. However, the 
assertions aren’t really laws. The idea is that they’re “laws of 
nature,” but don’t forget that physics just models the world, 
and as such, it’s all subject to later revision.

Objects at Rest and in Motion: 
Newton’s First Law

Drum roll, please. Newton’s laws explain what happens with 
forces and motion, and his first law states: “An object con-
tinues in a state of rest, or in a state of motion at a constant 
speed along a straight line, unless compelled to change that 
state by a net force.” What’s the translation? If you don’t 
apply a force to an object at rest or in motion, it will stay at 
rest or in that same motion along a straight line. Forever.

For example, when you try to score a hockey goal, the hockey 
puck slides toward the open goal in a straight line because 
the ice it slides on is nearly frictionless. If you’re lucky, the 
puck won’t come into contact with the opposing goalie’s stick, 
which would cause it to change its motion.

 

In everyday life, objects don’t coast around effortlessly on ice. 
Most objects around you are subject to friction, so when you 
slide a coffee mug across your desk, it glides for a moment 
and then slows and comes to a stop (or spills over — don’t 
try this one at home). That’s not to say Newton’s first law is 
invalid, just that friction provides a force to change the mug’s 
motion to stop it.
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What Newton’s first law really says is that the only way to 
get something to change its motion is to use force. In other 
words, force is the cause of motion. It also says that an object 
in motion tends to stay in motion, which introduces the idea 
of inertia.

Inertia is the natural tendency of an object to stay at rest or 
in constant motion along a straight line. Inertia is a quality of 
mass, and the mass of an object is really just a measurement 
of its inertia. To get an object to move — that is, to change its 
current state of motion — you have to apply a force to over-
come its inertia.

Say, for example, you’re at your summer vacation house 
taking a look at the two boats at your dock: a dinghy and an 
oil tanker. If you apply the same force to each with your foot, 
the boats respond in different ways. The dinghy scoots away 
and glides across the water. The oil tanker moves away more 
slowly (what a strong leg you have!). That’s because they 
have different masses and, therefore, different amounts of 
inertia. When responding to the same force, an object with 
little mass — and a small amount of inertia — will acceler-
ate faster than an object with large mass, which has a large 
amount of inertia.

Inertia, the tendency of mass to preserve its present state of 
motion, can be a problem at times. Refrigerated meat trucks, 
for example, have large amounts of frozen meat hanging from 
their ceilings, and when the drivers of the trucks begin turning 
corners, they create a pendulum motion they can’t stop from 
the driver’s seat. Trucks with inexperienced drivers can tip 
over because of the inertia of the swinging frozen load in the 
back.

Because mass has inertia, it resists changing its motion, which 
is why you have to start applying forces to get velocity and 
acceleration. Mass ties force and acceleration together.

 

Mass isn’t the same as weight. Mass is a measure of inertia; 
when you put that mass into a gravitational field, you get 
weight.
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Calculating Net Force: 
Newton’s Second Law

Newton’s first law is cool, but it doesn’t give you much of a 
handle on any math, so physicists need more. And Newton 
delivers with his second law: When a net force, ΣF, acts on an 
object of mass m, the acceleration of that mass can be calcu-
lated by using the formula ΣF = ma. Translation: Force equals 
mass times acceleration. The Σ you see stands for “sum,” 
so ΣF = ma in layman’s terms is “the sum of all forces on an 
object, or the net force, equals mass times acceleration.”

Newton’s first law — a moving body stays in motion along a 
straight line unless acted on by a force — is really just a spe-
cial case of Newton’s second law where ΣF = 0. This means 
that acceleration = 0, too, which is Newton’s first law.

For example, imagine a hockey puck sitting there all lonely in 
front of a net. These two should meet. In a totally hip move, 
you decide to apply your knowledge of physics to remedy 
the situation. You whip out your copy of this book and con-
sult what it has to say on Newton’s laws. You figure that if 
you apply the force of your stick to the puck for a tenth of a 
second, you can accelerate it in the appropriate direction. 
You try the experiment, and sure enough, the puck flies into 
the net. Score! You applied a force to the puck, which has a 
certain mass, and off it went — accelerating in the direction 
you pushed it.

What’s its acceleration? That depends on the force you apply 
because ΣF = ma. But, to measure force, you have to decide 
on the units first.

So what are the units of force? Well, ΣF = ma, so in the MKS or 
SI system (see Chapter 1), force must have these units:

kg·m/s2

Because most people think this unit line looks a little awk-
ward, the MKS units are given a special name: newtons (named 
after guess who). Newtons are often abbreviated as simply N.
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Gathering net forces
Most books shorten ΣF = ma to simply F = ma, which is what 
I do, too, but I must note that F stands for net force. An 
object you apply force to responds to the net force — that is, 
the vector sum of all the forces acting on it. Take a look, for 
example, at all the forces acting on the ball in Figure 5-1, rep-
resented by the arrows. Which way will the golf ball end up 
getting accelerated?

ΣF

Figure 5-1: The net force vector factors in all forces.

Because Newton’s second law talks about net force, the prob-
lem becomes easier. All you have to do is add the various 
forces together as vectors to get the resultant (or net) force 
vector, ΣF, as shown in Figure 5-1. When you want to know 
how the ball will move, you can apply the equation ΣF = ma.

Assume that you’re on your traditional weekend physics data-
gathering expedition. Walking around with your clipboard 
and white lab coat, you happen upon a football game. Very 
interesting, you think. In a certain situation, you observe that 
the football, although it starts from rest, has three players 
subjecting forces on it, as you see in Figure 5-2.

 

In physics, Figure 5-2 is called a free body diagram. This kind 
of diagram shows all the forces acting on an object, making it 
easier to determine their components and find the net force.
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Fa

Fb45°
Fc

Figure 5-2:  A free body diagram of all the forces acting on a football at one 
time.

Slipping intrepidly into the mass of moving players, risking 
injury in the name of science, you measure the magnitude of 
these forces and mark them down on your clipboard:

Fa = 150 N

Fb = 125 N

Fc = 165 N

You measure the mass of the football as exactly 1.0 kilogram. 
Now you wonder: Where will the football be in 1 second? 
Here are the steps to calculate the displacement of an object 
in a given time with a given constant acceleration — in other 
words, constant force:

 1. Find the net force, ΣF, by adding all the forces acting 
on the object, using vector addition. (See Chapter 2 
for more on vector addition.)

 2. Use ΣF = ma to determine the acceleration vector.

 3. Use s = v
0
(t

f
 – t

0
) + 1⁄2 a (t

f
 – t

0
)2 to get the distance 

 traveled in the specified time. (See Chapter 3 to find 
this original equation.)

Time to get out your calculator. Because you want to relate 
force, mass, and acceleration together, the first order of busi-
ness is to find the net force on the mass. To do that, you need 
to break up the force vectors you see in Figure 5-2 into their 
components and then add those components together to get 
the net force. (See Chapter 2 for more info on breaking up vec-
tors into components.)
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Determining Fa and Fb is easy because Fa is straight up — 
along the positive y-axis — and Fb is to the right — along the 
positive x-axis. That means

Fa = (0, 150 N)

Fb = (125 N, 0)

Finding the components of Fc is a little trickier. You need the x 
and y components of this force this way:

Fc = (Fcx, Fcy)

Fc is along an angle 45° with respect to the negative x-axis, as 
you see in Figure 5-2. If you measure all the way from the posi-
tive x-axis, you get an angle of 180° + 45° = 225°. This is the 
way you break up Fc:

Fc = (Fcx, Fcy) = (Fc cos θ, Fc sin θ)

Plugging in the numbers gives you

Fc = (Fcx, Fcy) = (Fc cos θ, Fc sin θ)

 = (165 N cos 225°, 165 N sin 225°)

 = (–117 N, –117 N)

 

Look at the signs here — both components of Fc are negative. 
You may not follow that business about the angle of Fc being 
180° + 45° = 225° without some extra thought, but you can 
always make a quick check of the signs of your vector compo-
nents. Fc points downward and to the left, along the negative 
x- and negative y-axes. That means that both components of 
this vector, Fcx and Fcy, have to be negative. I’ve seen many 
people get stuck with the wrong signs for vector components 
because they didn’t make sure their numbers matched the 
reality.

 

Always compare the signs of your vector components with 
their actual directions along the axes. It’s a quick check, and it 
saves you plenty of problems later.

              



Physics Essentials For Dummies 56
Now you know that

Fa = (0, 150 N)

Fb = (125 N, 0)

Fc = (–117 N, –117 N)

You’re ready for some vector addition:

Fa + Fb + Fc = (0, 150 N) + (125 N, 0) + (–117 N, –117 N)

 = (8 N, 33 N)

You calculate that the net force, ΣF, is (8 N, 33 N). That also 
gives you the direction the football will move in. The next step 
is to find the acceleration of the football. You know this much 
from Newton:

ΣF = (8 N, 33 N) = ma

which means that

ΣF / m = (8 N, 33 N) / m = a

Because the mass of the football is 1.0 kg, the problem works 
out like this:

ΣF / m = (8 N, 33 N) / (1.0 kg) = (8 m/s2, 33 m/s2) = a

You’re making good progress; you now know the acceleration 
of the football. To find out where it will be in 1 second, you 
can apply the following equation (found in Chapter 3), where s 
is the distance:

s = v0(tf – t0) + 1⁄2 a (tf – t0)
2

Plugging in the numbers gives you

s = v0(tf – t0) + 1⁄2 a (tf – t0)
2

 = 1⁄2(8 m/s2, 33 m/s2)(1.0 s)2 = (4 m, 16.5 m)

Well, well, well. At the end of 1 second, the football will be 
4 meters along the positive x-axis and 16.5 meters along the 
positive y-axis. You get your stopwatch out of your lab-coat 
pocket and measure off 1 second. Sure enough, you’re right. 
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The football moves 4 meters toward the sideline and 16.5 
meters toward the goal line. Satisfied, you put your stopwatch 
back into your pocket and put a checkmark on the clipboard. 
Another successful physics experiment.

Just relax: Dealing with tension
When you pull a rope in a pulley system to lift an object, you 
lift the mass if you exert enough force to overcome its weight, 
Mg, where g is the acceleration due to gravity at the surface 
of the Earth, 9.8 meters per second2 (see more discussion 
on this topic in Chapter 6). Take a look at Figure 5-3, where a 
rope goes over a pulley and down to a mass M.

F

M 
Figure 5-3: Using a pulley to exert force. 

The rope functions not only to transmit the force, F, that you 
exert on the mass, M, but also to change the direction of that 
force, as you see in the figure. The force you exert downward 
is exerted on the mass upward because the rope, going over 
the pulley, changes the force’s direction. In this case, if F is 
greater than Mg, you can lift the mass; in fact, if F is greater 
than Mg, the mass will accelerate upward — F = M(g + a) in 
this case.
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But this force-changing use of a rope and pulley comes at a cost 
because you can’t cheat Newton’s second law. Assume that you 
lift the mass and it hangs in the air. In this case, F must equal Mg 
to hold the mass stationary. The direction of your force is being 
changed from downward to upward. How does that happen?

To figure this out, consider the force that the pulley’s support 
exerts on the ceiling. What’s that force? Because the pulley 
isn’t accelerating in any direction, you know that ΣF = 0 on 
the pulley. That means that all the forces on the pulley, when 
added up, give you 0.

From the pulley’s point of view, two forces pull downward: 
the force F you pull with and the force Mg that the mass exerts 
on the pulley (because nothing is moving at the moment). 
That’s 2F downward. To balance all the forces and get 0 total, 
the pulley’s support must exert a force of 2F upward.

A balancing act: Finding 
equilibrium
In physics, an object is in equilibrium when it has zero accel-
eration — when the net forces acting on it are zero. The object 
doesn’t actually have to be at rest — it can be going 1,000 miles 
per hour as long as the net force on it is zero and it isn’t accel-
erating. Forces may be acting on the object, but they all add up, 
as vectors, to zero. See Chapter 9 for more on equilibrium.

Take a look at Figure 5-4. Here, the mass M isn’t moving, and 
you’re applying a force F to hold it stationary. Here’s the ques-
tion: What force is the pulley’s support exerting, and in which 
direction, to keep the pulley where it is?

You’re sitting pretty here. Because you know that the pulley 
isn’t moving, you know that ΣF = 0 on the pulley. So, what are 
the forces on the pulley? You can account for the force due to 
the part of the rope attached to the mass, Frope1. Because the 
mass is not moving either, you know that the mass’s weight, 
Mg, is equal to Frope1. Putting your findings in terms of vector 
components (see Chapter 2), here’s what you get. (Keep in 
mind that the y component of Frope1 has to be negative because 
it points downward, which is along the negative y-axis.)

Frope1 = (0, –Mg)
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F

45°

M 
Figure 5-4: Using a pulley at an angle to keep a mass stationary.

You also have to account for the force of the rope on the 
pulley, which, because you’re holding the mass stationary and 
the rope transmits the force you’re applying, must be Mg to 
the right — along the positive x-axis. That force looks like this:

Frope2 = (Mg, 0)

You can find the force exerted on the pulley by both parts of 
the rope by adding the vectors Frope1 and Frope2:

Frope1 + Frope2 = (0, –Mg) + (Mg, 0) = (Mg, –Mg) = Frope

(Mg, –Mg) is the force exerted by both parts of the rope. You 
know that

ΣF = 0 = Frope + Fsupport

where Fsupport is the force of the pulley’s support on the pulley. 
This means that

Fsupport = –Frope

Therefore, Fsupport must equal

–Frope = –(Mg, –Mg) = (–Mg, Mg)
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As you can see by checking Figure 5-4, the directions of this 
vector make sense (which you should always confirm) — the 
pulley’s support must exert a force to the left and upward to 
hold the pulley where it is.

You can also convert Fsupport to magnitude and direction form 
(see Chapter 2), which gives you the full magnitude of the 
force. The magnitude is equal to

Note that this magnitude is greater than the force you exert or 
that the mass exerts on the pulley because the pulley support 
has to change the direction of those forces.

What about the direction of Fsupport? You can see from 
Figure 5-4 that Fsupport must be to the left and up, but you 
should see if the math bears this out. If θ is the angle of Fsupport 
with respect to the positive x-axis, , the x component 
of Fsupport must be

Therefore,

You know that  = –Mg to counteract the force you exert. 
Because

you can figure that

Now all you have to do is plug in numbers:
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The direction of Fsupport is 135° with respect to the positive 
x-axis — just as you expected!

 

If you get confused about the signs when doing this kind of 
work, check your answers against the directions you know the 
force vectors actually go in. Pictures are worth more than a 
thousand words, even in physics!

Equal and Opposite Reactions: 
Newton’s Third Law

Newton’s third law of motion is famous, especially in wres-
tling and drivers’ education circles, but you may not recog-
nize it in all its physics glory: Whenever one body exerts a 
force on a second body, the second body exerts an oppositely 
directed force of equal magnitude on the first body.

The more popular version of this, which I’m sure you’ve heard 
many times, is “For every action, there’s an equal and oppo-
site reaction.” But for physics, it’s better to express the origi-
nally intended version, and in terms of forces, not “actions” 
(which, from what I’ve seen, can apparently mean everything 
from voting trends to temperature forecasts).

For example, say that you’re in your car, speeding up with 
constant acceleration. To do this, your car has to exert a force 
against the road; otherwise, you wouldn’t be accelerating. 
And the road has to exert the same force on your car. Because 
a force acts on your car, it accelerates. That’s where the force 
your car exerts goes — it causes your car to accelerate.

So why doesn’t the road move? After all, for every force on 
a body, there’s an equal and opposite force, so the road 
feels some force, too. You accelerate . . . shouldn’t the road 
accelerate in the opposite direction? Believe it or not, it does; 
Newton’s law is in full effect. Your car pushes the Earth, affect-
ing the motion of the Earth in just the tiniest amount. Given 
the fact that the Earth is about 6,000,000,000,000,000,000,000 
times as massive as your car, however, any effects aren’t too 
noticeable.
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No force can be exerted without an equal and opposing force 
(even if some of that opposing force causes an object to 
accelerate). Third-law force partners always act on different 
objects. If you are sitting on a couch as you read this, your 
weight is equal and opposite to the force of the couch on you. 
But that’s because you are not accelerating (so ΣF = 0), not 
because of Newton’s third law.

              



Chapter 6

Falling Slowly: 
Gravity and Friction

In This Chapter
▶ Getting up to speed on gravity

▶ Looking at angles on an inclined plane

▶ Taking the forces of friction into account

Gravity is the main topic of this chapter. Chapter 5 shows 
you how much force you need to support a mass against 

the pull of gravity, but that’s just the start. In this chapter, 
you find out how to handle gravity along ramps and include 
friction in your calculations.

Dropping the Apple: Newton’s 
Law of Gravitation

Sir Isaac Newton came up with one of the heavyweight laws 
in physics for us: the law of universal gravitation. This law 
says that every mass exerts an attractive force on every 
other mass. If the two masses are m1 and m2, and the distance 
between them is r, the magnitude of the force is

F = (Gm1m2) / r2

where G is a constant equal to 6.67·10–11 N·m2/kg2.

This equation allows you to figure the gravitational force 
between any two masses. What, for example, is the pull 
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between the Sun and the Earth? The Sun has a mass of about 
1.99·1030 kg, and the Earth has a mass of about 5.98·1024 kg; a 
distance of about 1.50·1011 meters separates the two bodies. 
Plugging the numbers into Newton’s equation gives you

 F = (Gm1m2) / r2

 =  [(6.67·10–11 N·m2/kg2)( 1.99·1030 kg) (5.98·1024 kg)] / 
(1.50·1011 m)2

 = 3.52·1022 N

For an example on the land-based end of the spectrum, say 
that you’re out for your daily physics observations when you 
notice two people on a park bench, looking at each other 
and smiling. As time goes on, you notice that they seem to be 
sitting closer and closer to each other each time you take a 
glance. In fact, after a while, they’re sitting right next to each 
other. What could be causing this attraction? If the two love-
birds weigh about 75 kg each, what’s the force of gravity pull-
ing them together, assuming they started out 1⁄2 meter apart? 
Your calculation looks like this:

 F = (Gm1m2) / r2

 = (6.67·10–11 N·m2 / kg2)(75 kg)(75 kg) / (0.5 m)2

 = 1.5·10–6 N

The force of attraction is roughly five millionths of an ounce — 
maybe not enough to shake the surface of the Earth, but that’s 
okay. The Earth’s surface has its own forces to deal with.

The equation for the force of gravity — F = (Gm1m2) / r2 — 
holds true no matter how far apart two masses are. But you 
also come across a special gravitational case (which most of 
the work on gravity in this book is about): the force of gravity 
on the surface of the Earth. Adding gravity to mass is where 
the difference between weight and mass comes in. Mass is 
considered a measure of an object’s inertia, and its weight is 
the force exerted on it in a gravitational field. On the surface 
of the Earth, the two forces are related by the acceleration 
due to gravity: Fg = mg.

Can you derive g, the acceleration due to gravity on the sur-
face of the Earth, from Newton’s law of gravitation? You sure 
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can. The force on an object of mass m1 near the surface of the 
Earth is

F = m1g

By Newton’s second law (see Chapter 5), this force must also 
equal the following, where re is the radius of the Earth:

F = m1g = (Gm1m2) / re
2

The radius of the Earth, re, is about 6.38·106 meters, and the 
mass of the Earth is 5.98·1024 kg, so you have

F = m1g = (Gm1m2) / re
2

 =  [(6.67·10–11 N·m2/ kg2) m1 (5.98·1024 kg)] / 
(6.38·106 m)2

Dividing both sides by m1 gives you

 g = [(6.67·10–11 N·m2/ kg2)(5.98·1024 kg)] / (6.38·106 m)

 = 9.8 m/s2

Newton’s law of gravitation gives you the acceleration due to 
gravity on the surface of the Earth: 9.8 meters per second2.

You can use Newton’s law of gravitation to get the accelera-
tion due to gravity, g, on the surface of the Earth just by know-
ing the gravitational constant G, the radius of the Earth, and 
the mass of the Earth. (Of course, you can measure g by let-
ting an apple drop and timing it, but what fun is that when you 
can calculate it in a roundabout way that requires you to first 
measure the mass of the Earth?)

Down to Earth: Dealing 
with Gravity

When you’re on the surface of the Earth, the pull of gravity is 
constant and equal to mg, where m is the mass of the object 
being pulled by gravity and g is the acceleration due to gravity:

g = 9.8 m/s2
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Acceleration is a vector, meaning it has a direction and a mag-
nitude (see Chapter 2), so this equation really boils down to g, 
an acceleration straight down if you’re standing on the Earth. 
The fact that Fgravity = mg is important because it says that the 
acceleration of a falling body doesn’t depend on its mass:

Fgravity = ma = mg

In other words,

ma = mg

 

Therefore, a = g, no matter the object’s weight. (A heavier 
object doesn’t fall faster than a lighter one.) Gravity gives any 
freely falling body the same acceleration downward (g near 
the surface of Earth).

This discussion sticks pretty close to the ground, er, Earth, 
where the acceleration due to gravity is constant. For the pur-
poses of this chapter, gravity acts downward, but that doesn’t 
mean you can use equations like Fgravity = mg only to watch 
what goes up when it must come down. You can also start 
dealing with objects that go up at angles.

Leaning Vertically 
with Inclined Planes

Plenty of gravity-oriented problems in introductory physics 
involve ramps, so ramps are worth taking a look at. Check out 
Figure 6-1. Here, a cart is about to roll down a ramp. The cart 
travels not only vertically but also along the ramp, which is 
inclined at an angle θ.

Fg

Fgsinθ

90°−θ

θ

Figure 6-1: A cart on a ramp with a force vector.
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Say, for example, that θ = 30° and that the length of the ramp 
is 5.0 meters. How fast will the cart be going at the bottom of 
the ramp? Gravity will accelerate the cart down the ramp, but 
not the full force of gravity. Only the component of gravity 
acting along the ramp will accelerate the cart.

What’s the component of gravity acting along the ramp if the 
vertical force due to gravity on the cart is Fg? Take a look at 
Figure 6-1, which details some of the angles and vectors. (See 
Chapter 2 for a detailed discussion of vectors.) To resolve the 
vector Fg along the ramp, you start by figuring out the angle 
between Fg and the ramp. Here’s where having a knowledge 
of triangles comes into play: A triangle’s angles have to add 
up to 180°. The angle between Fg and the ground is 90°, and 
you know that the ramp’s angle to the ground is θ. And from 
Figure 6-1, you know that the angle between Fg and the ramp 
must be 180° – 90° – θ, or 90° – θ.

Physics instructors use a top-secret technique to figure out 
what the angles between vectors and ramps are, and I’m here 
to let you in on the secret. The angles have to relate to θ in 
some way, so what happens if θ goes to zero? In that case, the 
angle between Fg from the example in the previous section 
and the ramp from the previous section is 90°. What happens 
if θ becomes 90°? In that case, the angle between Fg and the 
ramp is 0°.

 

Based on this info, you can make a pretty good case that the 
angle between Fg and the ramp is 90° – θ. So, when you’re at 
a loss as how to figure out an angle with respect to another 
angle, let the other angle go to 90° and then 0° and see what 
happens. It’s an easy shortcut.

Now you’re wondering, “What’s the component of Fg along the 
ramp?” Now that you know the angle between Fg and the ramp 
is 90° – θ, you can figure the component of Fg along the ramp 
(called resolving Fg along the ramp):

Fg, along the ramp = Fg cos (90° – θ)

If you love trigonometry as much as the normal person, you 
may also know that

cos (90° – θ) = sin θ
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(Hint: It isn’t necessary to know this; the previous equation 
works just fine.) Therefore,

Fg, along the ramp = Fg cos (90° – θ) = Fg sin θ

This makes sense; when θ goes to zero, this force goes to 
zero as well because the ramp is horizontal. And when θ goes 
to 90°, this force becomes Fg because the ramp is vertical. 
The force that accelerates the cart is Fg sin θ along the ramp. 
What does that make the acceleration of the cart, if its mass is 
800 kg? Easy enough:

Fg sin θ = ma

Therefore,

a = Fg sin θ / m

This equation becomes even easier when you remember that 
Fg = mg:

a = Fg sin θ / m = mg sin θ / m = g sin θ

 

At this point, you know that the acceleration of the cart along 
the ramp is a = g sin θ. This equation holds for any object 
gravity accelerates down a ramp, if friction doesn’t apply. 
The acceleration of an object along a ramp at angle θ to the 
ground is g sin θ in the absence of friction.

Facing Friction
You know all about friction. It’s the force that holds objects in 
motion back — or so it may seem. Actually, friction is essen-
tial for everyday living. Imagine a world without friction: no 
way to drive a car on the road, no way to walk on pavement, 
no way to pick up that ham sandwich. Friction may seem like 
an enemy to the hearty physics follower, but it’s also your 
friend.

Friction comes from the interaction of surface irregularities. 
If you introduce two surfaces that have plenty of microscopic 
pits and projections, you produce friction. And the harder 
you press those two surfaces together, the more friction you 
create as the irregularities interlock more and more.
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Physics has plenty to say about how friction works. For exam-
ple, imagine that you decide to put all your wealth into a huge, 
gold ingot, which you see in Figure 6-2, only to have someone 
steal your fortune. The thief applies a force to the ingot to 
accelerate it away, as the police start after him. Thankfully, 
the force of friction comes to your rescue because the thief 
can’t accelerate away nearly as fast as he thought — all that 
gold drags heavily along the ground.

Ffriction Fpull

Fnormal

Ground

Figure 6-2: The force of friction makes it tough to move large objects.

So, if you want to get quantitative here, what would you do? 
You’d say that the pulling force, Fpull, minus the force due to 
friction, Ffriction, is equal to the net force in the x-axis direction, 
which gives you the acceleration in that direction:

Fpull – Ffriction = ma

That looks straightforward enough. But how do you calculate 
Ffriction? You start by calculating the normal force.

Figuring out the normal force
The force of friction, Ffriction, always acts to oppose the force 
you apply when you try to move an object. Friction is propor-
tional to the force with which an object pushes against the 
surface you’re trying to slide it along.

As you can see in Figure 6-2, the force with which the gold ingot 
presses against the ground is just its weight, or mg. The ground 
presses back with the same force. The force that pushes up 
against the ingot is called the normal force, and its symbol is N. 
The normal force isn’t necessarily the same as the force due to 
gravity; it’s the force perpendicular to the surface an object is 
sliding on. In other words, the normal force is the force pushing 
the two surfaces together, and the stronger the normal force, 
the stronger the force due to friction.
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In the case of Figure 6-2, because the ingot slides along the 
ground, the normal force has the same magnitude as the 
weight of the ingot, so Fnormal = mg. You have the normal force, 
which is the force pressing the ingot and the ground together. 
But where do you go from there? You find the force of friction.

Finding the coefficient of friction
The force of friction comes from the surface characteristics of 
the materials that come into contact. How can physics predict 
those characteristics theoretically? It doesn’t. You see plenty of 
general equations that predict the general behavior of objects, 
like ΣF = ma (see Chapter 5). But detailed knowledge of the sur-
faces that come into contact isn’t something that physics can 
come up with theoretically, so it wimps out on the theoretical 
part here and says that the characteristics are things you have 
to measure yourself.

What you measure is how the normal force (see the previous 
section) relates to the friction force. It turns out that to a good 
degree of accuracy, the two forces are proportional, and you 
can use a constant, μ, to relate the two:

Ffriction = μFnormal

Usually, you see this equation written in the following terms:

FF = μFN

This equation tells you that when you have the normal force, 
all you have to do is multiply it by a constant to get the fric-
tion force. This constant, μ, is called the coefficient of friction, 
and it’s something you measure for a particular surface — not 
a value you can look up in a book.

The coefficient of friction is usually between zero and one. The 
value of zero is possible only if you have a surface that has 
absolutely no friction at all. You won’t often see coefficients of 
friction greater than one, unless you’re a fan of drag racing.

FF = μFN isn’t a vector equation (see Chapter 2) because the 
force due to friction, FF, isn’t in the same direction as the 
normal force, FN. As you can see in Figure 6-2, FF and FN are 
perpendicular. FN is always at right angles to the surfaces 
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providing the friction because it’s the force that presses the 
two surfaces together, and FF is always along those surfaces 
because it opposes the direction of sliding.

 

The force due to friction is independent of the contact area 
between the two surfaces, which means that even if you have 
an ingot that’s twice as long and half as high, you still get the 
same frictional force when dragging it over the ground. This 
makes sense because if the area of contact doubles, you may 
think that you should get twice as much friction. But because 
you’ve spread out the gold into a longer ingot, you halve the 
force on each square centimeter — less weight is above it to 
push down.

Okay, are you ready to get out your lab coat and start calcu-
lating the forces due to friction? Not so fast! It turns out that 
you must factor in two different coefficients of friction for 
each type of surface.

Bringing static and kinetic 
 friction into the mix
The two different coefficients of friction for each type of 
surface are a coefficient of static friction and a coefficient of 
kinetic friction.

The reason you have two different coefficients of friction is 
that you involve two different physical processes. When two 
surfaces are static, or not moving, and pressing together, they 
have the chance to interlock on the microscopic level, and 
that’s static friction. When the surfaces are sliding, the micro-
scopic irregularities don’t have the same chance to connect, 
and you get kinetic friction. What this means in practice is that 
you must account for two different coefficients of friction for 
each surface: a static coefficient of friction, μs, and a kinetic 
coefficient of friction, μk.

Getting moving with static friction
Between static friction and kinetic friction, static friction is 
stronger, which means that the static coefficient of friction for 
a surface, μs, is larger than the kinetic coefficient of friction, μk. 
That makes sense because static friction comes when the two 
surfaces have a chance to fully interlock on the microscopic 
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level. Kinetic friction happens when the two surfaces are slid-
ing, so only the more macroscopic irregularities can connect.

 

You create static friction when you’re pushing something that 
starts at rest. This is the friction that you have to overcome to 
get something to slide.

For example, say that the static coefficient of friction between 
the ingot from Figure 6-2 and the ground is 0.3, and that the 
ingot has a mass of 1,000 kg (quite a fortune in gold). What’s 
the force that a thief has to exert to get the ingot moving? You 
know from the section “Finding the coefficient of friction” that

FF = μsFN

And because the surface is flat, the normal force — the force 
that drives the two surfaces together — is in the opposite 
direction of the ingot’s weight and has the same magnitude. 
Therefore,

FF = μsFN = μsmg

where m is the mass of the ingot and g is the acceleration due 
to gravity on the surface of the Earth. Plugging in the numbers 
gives you

FF = μsmg = (0.3)(1,000 kg)(9.8 m/s2) = 2,940 N

Pretty respectable force for any thief. What happens after the 
burly thief gets the ingot going? How much force does he need 
to keep it going? He needs to look at kinetic friction.

Staying in motion with kinetic friction
The force due to kinetic friction, which occurs when two 
surfaces are already sliding, isn’t as strong as static friction. 
But that doesn’t mean you can predict what the coefficient of 
kinetic friction is going to be, even if you know the coefficient 
of static friction; you have to measure both forces.

 

You can notice yourself that static friction is stronger than 
kinetic friction. Imagine that a box you’re unloading onto a 
ramp starts to slide. To make it stop, you can put your foot 
in its way, and after you stop it, the box is more likely to stay 
put and not start sliding again. That’s because static friction, 
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which happens when the box is at rest, is greater than kinetic 
friction, which happens when the box is sliding.

Say that the ingot (from Figure 6-2), which weighs 1,000 kg, 
has a coefficient of kinetic friction, μk, of 0.18. How much force 
does the thief need to pull the ingot along during his robbery? 
You have all you need — the kinetic coefficient of friction:

FF = μkFN = μkmg

Putting in the numbers gives you

FF = μkmg = (0.18)(1,000 kg)(9.8 m/s2) = 1,764 N

The thief needs 1,764 N to keep your gold ingot sliding while 
evading the police — not exactly the kind of force you can 
keep going while trying to run at top speed, unless you have 
some friends helping you. Lucky you! Physics states that the 
police are able to recover your gold ingot. The cops know all 
about friction. Taking one look at the prize, they say, “We got 
it back; you drag it home.”

Dealing with uphill friction
The previous sections of this chapter deal with friction on 
level ground, but what if you have to drag a heavy object up a 
ramp? Say, for example, you have to move a refrigerator.

You want to go camping, and because you expect to catch 
plenty of fish, you decide to take your 100-kg refrigerator with 
you. The only catch is getting the refrigerator into your vehi-
cle, as shown in Figure 6-3. The refrigerator has to go up a 30° 
ramp, which happens to have a static coefficient of friction of 
0.2 and a kinetic coefficient of friction of 0.15 (see the previous 
two sections for these topics). The good news is that you have 
two friends to help you move the fridge. The bad news is that 
you can supply only 350 N of force each, so your friends panic.

“Don’t worry,” you say, pulling out your calculator. “I’ll check 
out the physics.” Your two friends relax. The minimum force 
needed to push that refrigerator up the ramp, Fpush, has to 
counter the component of the weight of the refrigerator acting 
along the ramp and the force due to friction. I tackle these 
issues one at a time in the following sections.
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mg

Ramp

Fpush
FN

θ 

FF

Figure 6-3:  You must battle different types of force and friction to push an 
object up a ramp.

Calculating the component weight
To start figuring the component of the weight of the refrigera-
tor acting along the ramp, take a look at Figure 6-3. The weight 
of the refrigerator acts downward. The angles in a triangle 
formed by the ground, the ramp, and the weight vector must 
add up to 180°. The angle between the weight vector and the 
ground is 90°, and the angle between the ground and the ramp 
is θ, so the angle between the ramp and the weight vector is

180° – 90° – θ = 90° – θ

The weight acting along the ramp will be

mg cos(90° – θ) = mg sin θ

The minimum force you need to push the refrigerator up the 
ramp while counteracting the component of its weight along 
the ramp and the force of friction, FF, is

Fpush = mg sin θ + FF

Determining the force of friction
The next question: What’s the force of friction, FF? Should you 
use the static coefficient of friction or the kinetic coefficient 
of friction? Because the static coefficient of friction is greater 
than the kinetic coefficient of friction, it’s your best choice. 
After you and your friends get the refrigerator to start moving, 
you can keep it moving with less force. Because you’re going 
to use the static coefficient of friction, you can get FF this way:

FF = μsFN
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You also need the normal force, FN, to continue. (See the sec-
tion “Figuring out the normal force” earlier in this chapter.) FN 
is the component of the weight perpendicular to (also called 
normal to) the ramp. You know that the angle between the 
weight vector and the ramp is 90° – θ, as shown in Figure 6-4.

mg

90° − θ

FN

Figure 6-4: The normal and gravitational forces acting on an object.

Using some trigonometry, you know that

FN = mg sin (90° – θ) = mg cos θ

You can verify this by letting θ go to zero, which means that 
FN becomes mg, as it should. Now you know that

Fpull = mg sin θ + μsmg cos θ

All you have left is plugging in the numbers:

 Fpull = mg sin θ + μsmg cos θ

 = (100 kg)(9.8 m/s2)(sin 30°)

 + (0.2)(100 kg)(9.8 m/s2)(cos 30°)

 = 490 N + 170 N = 660 N

You need 660 N to push the refrigerator up the ramp. In other 
words, your two friends, who can exert 350 N each, are enough 
for the job. 
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Chapter 7

Putting Physics to Work
In This Chapter
▶ Analyzing the work force

▶ Considering negative work

▶ Watching kinetic energy at work 

▶ Achieving your potential energy

▶ Encountering conservative and nonconservative forces

▶ Examining mechanical energy and power

You know all about work; it’s what you do when you have 
to do physics problems. You sit down with your calcula-

tor, you sweat a little, and you get through it. You’ve done your 
work. Unfortunately, that doesn’t count for work in physics 
terms.

You do work in physics by multiplying a force by the distance 
over which it acts. That may not be your boss’s idea of work, 
but it gets the job done in physics. Along with the basics of 
work, I use this chapter to introduce kinetic and potential 
energy, look at conservative and nonconservative forces, and 
examine mechanical energy and power. Time to get to work.

Wrapping Your Mind 
around Work

Work is defined as an applied force over a certain distance. 
In physics jargon, you do work by applying a force over a dis-
tance s. If the force F is constant, then the work is equal to Fs 
cos θ, where the angle between F and s is θ. In layman’s terms, 
if you push a 1,000-pound hockey puck for some distance, 
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physics says that the work you do is the component of the 
force you apply in the direction of travel multiplied by the dis-
tance you go.

Work is a scalar, not a vector (meaning it has only a magnitude, 
not a direction; more on scalars and vectors in Chapter 2). 
Because work is force times distance, Fs cos θ, it has the units 
newton-meters or joules.

Pushing your weight
Holding heavy objects — like, say, a set of exercise weights — 
up in the air seems to take a lot of work. In physics terms, how-
ever, that isn’t true. Even though holding up weights may take a 
lot of biological work, no physics work takes place if the weights 
aren’t moving. Plenty of chemistry happens as your body sup-
plies energy to your muscles, and you may feel a strain, but if 
you don’t move anything, you don’t do work in physics terms.

 

Motion is a requirement of work. For example, say that you’re 
pushing a huge gold ingot home after you explore a cave 
down the street, as shown in Figure 7-1. How much work do 
you have to do to get it home? First, you need to find out how 
much force pushing the ingot requires.

Ffriction Fpush

Fnormal

Ground

Figure 7-1:  Pushing requires plenty of work in physics terms when the 
object is in motion.

The kinetic coefficient of friction (see Chapter 6), μk, between 
the ingot and the ground is 0.25, and the ingot has a mass of 
1,000 kg. What’s the force you have to exert to keep the ingot 
moving without accelerating it? Start with this equation from 
Chapter 6:

FF = μkFN
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Assuming that the road is flat, the magnitude of the normal 
force, FN, is just mg (mass times gravity). That means that

FF = μkFN = μkmg

where m is the mass of the ingot and g is the acceleration due 
to gravity on the surface of the Earth. Plugging in the numbers 
gives you

FF = μkFN = μkmg = (0.25)(1,000 kg)(9.8 m/s2) = 2,450 N

You have to apply a force of 2,450 newtons to keep the ingot 
moving without accelerating. Say that your house is 3 kilome-
ters away, or 3,000 meters. To get the ingot home, you have to 
do this much work:

W = Fs cos θ

Because you’re pushing the ingot in the same direction as its 
motion, the angle between F and s is 0°, and cos θ = 1, so plug-
ging in the numbers gives you

W = Fs cos θ = (2,450 N)(3,000 m)(1) = 7.35·106J

Taking a drag
If you have a backward-type personality, you may prefer to 
drag objects rather than push them. It may be easier to drag 
heavy objects, especially if you can use a tow rope, as shown 
in Figure 7-2. When you’re pulling at an angle θ, you’re not 
applying a force in the same direction as the direction of 
motion. To find the work in this case, all you have to do is find 
the component of the force along the direction of travel. Work 
properly defined is the force along the direction of travel mul-
tiplied by the distance traveled:

W = Fpulls cos θ
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Ffriction
Fpull

Fnormal

Ground

θ 

Figure 7-2: Dragging an object requires more force due to the angle.

Assume that the angle at which you’re pulling is small, so 
you’re not lifting the ingot (which would lessen the normal 
force and therefore the friction). You need a force of 2,450 N 
along the direction of travel to keep the object in motion (see 
the previous section for the calculation), which means that 
you have to supply a force of

Fpull cos θ = 2,450 N

Therefore,

Fpull = 2,450 N / cos θ

If θ = 10°, you have to supply a force of

Fpull = 2,450 N / cos 10° = 2,490 N

Because only the work along the direction of travel counts, 
and because you’re actually pulling on the tow rope at an 
angle of 10°, you need to provide more force to get the same 
amount of work done, assuming the object travels the same 
path to your house as the ingot in Figure 7-1.

Working Backward: 
Negative Work

You’ve just gone out and bought the biggest television your 
house can handle. You finally get the TV home, and you have 
to lift it up the porch stairs. It’s a heavy one — about 100 kg, or 
220 pounds — and as you lift it up the first stair — a distance 
of about 1⁄2 meter — you think you should have gotten some 
help because of how much work you’re doing. Note: F equals 
mass times acceleration, or 100 times g, the acceleration due 
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to gravity; and θ is 0° because you’re lifting upward, the direc-
tion the TV is moving:

W1 = Fs cos θ = (100 kg)(9.8 m/s2)(0.5 m)(1.0) = 490 J

However, as you get the TV to the top of the step, your back 
decides that you’re carrying too much weight and advises 
you to drop it. Slowly, you let it fall back to its original posi-
tion and take a breather. How much work did you do on the 
way down? Believe it or not, you did negative work on the TV 
because the force you applied (upward) was in the opposite 
direction of travel (downward). In this case, θ = 180°, and 
cos θ = –1. This is what you get when you solve for the work:

W1 = Fs cos θ = (100 kg)(9.8 m/s2)(0.5 m)(–1.0) = –490 J

The net work you’ve done is W = W1 + W2 = 0, or zero work. 
That makes sense because the TV is right back where it 
started.

 

If the force moving the object has a component in the same 
direction as the motion, the work that force does on the 
object is positive. If the force moving the object has a compo-
nent in the opposite direction of the motion, the work done 
on the object is negative.

Working Up a Sweat: 
Kinetic Energy

When you start pushing or pulling an object with a constant 
force, it starts to move if the force you exert is greater than 
the net forces resisting you (such as friction and gravity). 
And if the object starts to move at some speed, it will acquire 
kinetic energy. Kinetic energy is the energy an object has 
because of its motion. Energy is the ability to do work.

For example, say you come to a particularly difficult hole 
of miniature golf, where you have to hit the ball through a 
loop. The golf ball enters the loop with a particular speed v0; 
in physics terms, it has a certain amount of kinetic energy. 
Assume that when it gets to the top of the loop, it slows down 
to speed vf. This means it has less kinetic energy. However, 
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now that it’s at the top of the loop, it sits higher than it was 
before. When it drops back down — assuming it stays on the 
track and there is no friction — it will have the same speed 
when it gets to the bottom of the track as it had when it first 
entered the track.

If the golf ball has 20 J of kinetic energy at the bottom of the 
loop, the energy is due to its motion. At the top of the loop, it 
is moving more slowly, so it has less kinetic energy, perhaps 
5 J. However, it took some work to get the golf ball to the top, 
and that work was 15 J, so the golf ball at the top has 15 J 
of what’s called potential energy. The golf ball has potential 
energy because if it falls, that 15 J of energy will be available; 
if it falls and stays on the track, that 15 J of potential energy, 
which it had because of its height, will become 15 J of kinetic 
energy again. (For more on potential energy, see the section 
“Saving Up: Potential Energy” later in this chapter.)

At the bottom of the loop, the golf ball has 20 J of kinetic energy 
and is moving; at the top of the loop, it has 15 J of potential 
energy and 5 J of kinetic energy; and when it comes back down, 
it has 20 J of kinetic energy again, as shown in Figure 7-3. The 
golf ball’s total energy stays the same — 20 J at the bottom of 
the loop, 20 J at the top of the loop. The energy takes different 
forms — kinetic when it’s moving and potential when it isn’t 
moving but is higher up — but it’s the same. In fact, the golf 
ball’s energy is the same at any point around the loop, and 
physicists who’ve measured this kind of phenomenon call this 
the principle of conservation of mechanical energy. I discuss this 
topic later in this chapter in the section “No Work Required: 
The Conversion of Mechanical Energy,” so stay tuned.

Kinetic + potential energy

All kinetic energy

Vf

Vo

Figure 7-3:  An object circling a loop without friction has the same energy 
throughout; it just takes different forms.
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Where does the kinetic energy go when friction is involved? If a 
block is sliding along a horizontal surface and there’s friction, 
the block goes more and more slowly until it comes to a stop. 
The kinetic energy goes away, and you see no increase in poten-
tial energy. What happened? The block’s kinetic energy dissi-
pated as heat. Friction heated both the block and the surface.

You now know the ins and outs of kinetic energy. So how do 
you calculate it?

Breaking down the kinetic 
energy equation
The work that you put into accelerating an object — that is, 
into its motion — becomes the object’s kinetic energy, KE. 
The equation to find KE is

KE = 1⁄2 mv2

Given a mass m going at a speed v, you can calculate an 
object’s kinetic energy. Say, for example, that you apply a 
force to a model airplane in order to get it flying and that the 
plane is accelerating. Here’s the equation for force:

F = ma

You know that force equals mass times acceleration, and you 
know from the previous sections in this chapter that the work 
done on the plane, which becomes its kinetic energy, equals 
the following:

W = Fs cos θ

Assume that you’re pushing in the same direction that the 
plane is going; in this case, cos θ = 1, and you find that

W = Fs = mas

You can tie this equation to the final and original velocity of 
the object (see Chapter 3 for that equation) to find a:

vf
2 – v0

2 = 2as
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where vf equals final velocity and v0 equals initial velocity. In 
other words,

a = (vf
2 – v0

2) / 2s

Plugging in for a in the equation for work, W = mas, you get:

W = 1⁄2 ·m(vf
2 – v0

2)

If the initial velocity is zero, you get

W = 1⁄2 ·mvf
2

This is the work that you put into accelerating the model 
plane — that is, into the plane’s motion — and that work 
becomes the plane’s kinetic energy, KE:

KE = 1⁄2 mvf
2

Using the kinetic energy equation
You normally use the kinetic energy equation to find the 
kinetic energy of an object when you know its mass and veloc-
ity. Say, for example, that you’re at a pistol-firing range, and 
you fire a 10-gram bullet with a velocity of 600 meters per 
second at a target. What’s the bullet’s kinetic energy? The 
equation to find kinetic energy is

KE = 1⁄2 mvf
2

All you have to do is plug in the numbers, remembering to 
convert from grams to kilograms first to keep the system of 
units consistent throughout the equation:

KE = 1⁄2 mvf
2 = 1⁄2 (0.01 kg)[(600 m/s)2] = 1,800 J

The bullet has 1,800 joules of energy, which is a lot of joules 
to pack into a 10-gram bullet. However, you can also use the 
kinetic energy equation if you know how much work goes 
into accelerating an object and you want to find, say, its final 
speed. For example, say you’re on a space station, and you 
have a big contract from NASA to place satellites in orbit. 
You open the station’s bay doors and grab your first satellite, 
which has a mass of 1,000 kg. With a tremendous effort, you 
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hurl it into its orbit using a force of 2,000 N, applied in the 
direction of motion, over 1 meter. What speed does the satel-
lite attain relative to the space station? The work you do is 
equal to

W = Fs cos θ

Because θ = 0° here (you’re pushing the satellite straight on), 
W = Fs:

W = Fs cos θ = (2,000 N)(1.0 m) = 2,000 J

Your work goes into the kinetic energy of the satellite, so

W = Fs cos θ = (2,000 N)(1.0 m) = 2,000 J = 1⁄2 mv2

From here, you can figure the speed by putting v on one side 
because m equals 1,000 kg and W equals 2,000 J:

The satellite ends up with a speed of 2 meters per second 
relative to you — enough to get it away from the space station 
and into its own orbit.

 

Bear in mind that forces can also do negative work. If you 
want to catch a satellite and slow it to 1 meter per second 
with respect to you, the force you apply to the satellite is 
in the opposite direction of its motion. That means it loses 
kinetic energy, so you did negative work on it.

You have to worry about only one force in this example: the 
force you apply to the satellite as you launch it. But in every-
day life, multiple forces act on an object, and you have to take 
them into account.

Calculating kinetic energy by 
using net force
If you want to find the total work on an object and convert 
that into its kinetic energy, you have to consider only the 
work done by the net force. In other words, you convert only 

              



Physics Essentials For Dummies 86
the net force into kinetic energy. Other forces may be acting, 
but opposing forces, such as a normal force and the force of 
gravity (see Chapter 6), cancel each other out. For instance, 
when you play tug-of-war against your equally strong friends, 
you pull against each other and nothing moves. You have no 
net increase in kinetic energy from the two forces.

For example, take a look at Figure 7-4. You may want to deter-
mine the speed of the 100-kg refrigerator at the bottom of the 
ramp using the fact that the work done on the refrigerator 
goes into its kinetic energy. How do you do that? You start by 
determining the net force on the refrigerator and then finding 
out how much work that force does. Converting that net-force 
work into kinetic energy lets you calculate what the refrigera-
tor’s speed will be at the bottom of the ramp.

mg

Ramp

FN

θ 

FF

Figure 7-4:  You find the net force acting on an object to find its speed at the 
bottom of a ramp.

What’s the net force acting on the refrigerator? In Chapter 6, 
you find that the component of the refrigerator’s weight 
acting along the ramp is

Fg ramp = mg cos (90° – θ) = mg sin θ

where m is the mass of the refrigerator and g is the accelera-
tion due to gravity. The normal force (see Chapter 6) is

FN = mg sin (90° – θ) = mg cos θ

which means that the kinetic force of friction (see Chapter 6) is

FF = μkFN = μkmg sin (90° – θ) = μkmg cos θ
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where μk is the kinetic coefficient of friction. The net force 
accelerating the refrigerator down the ramp, Fnet, therefore, is

Fnet = Fg ramp – FF = mg sin θ – μkmg cos θ

You’re most of the way there! If the ramp is at a 30° angle to 
the ground and has a kinetic coefficient of friction of 0.15, plug-
ging the numbers into this equation results in the following:

Fnet = (100 kg)(9.8 m/s2)(sin 30°) – 
(0.15)(100 kg)(9.8 m/s2)(cos 30°) = 363 N

The net force acting on the refrigerator is 363 N. This net 
force acts over the entire 3.0-meter ramp, so the work done 
by this force is

W = Fnets = (363 N)(3.0 m) = 1,089 J

You find that 1,089 J goes into the refrigerator’s kinetic 
energy. That means you can find the refrigerator’s kinetic 
energy like this:

W = 1,089 J = KE = 1⁄2 mv2

You want the speed here, so solving for v gives you

The refrigerator will be going 4.67 meters per second at the 
bottom of the ramp.

Saving Up: Potential Energy
There’s more to motion than kinetic energy. An object can 
also have potential energy, which is the energy it has because 
of its position, or stored energy. The energy is called potential 
because it can be converted back to kinetic or other forms of 
energy at any time.

Say, for example, you have the job of taking your cousin 
Jackie to the park, and you put the little tyke on the slide. 
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Jackie starts at rest and then accelerates, ending up with 
quite a bit of speed at the bottom of the slide. You sense 
physics at work here. Taking out your clipboard, you put 
Jackie higher up the slide and let go, watching carefully. Sure 
enough, Jackie ends up going even faster at the bottom of the 
slide. You decide to move Jackie even higher up. Suddenly, 
Jackie’s mother shows up and grabs him from you. That’s 
enough physics for one day.

What was happening on the slide? Where did Jackie’s kinetic 
energy come from? It came from the work you did lifting 
Jackie against the force of gravity. Jackie sits at rest at the 
bottom of the slide, so he has no kinetic energy. If you lift him 
to the top of the slide and hold him, he waits for the new trip 
down the slide, so he has no motion and no kinetic energy. 
However, you did work lifting him up against the force of 
gravity, so he has potential energy. As Jackie slides down the 
(frictionless) slide, gravity turns your work, and the potential 
energy you create, into kinetic energy.

Working against gravity
How much work do you do when you lift an object against 
the force of gravity? Say, for example, that you want to store 
a cannonball on an upper shelf at height h above where the 
 cannonball is now. The work you do is

W = Fs cos θ

In this case, F equals force, s equals distance, and θ is the 
angle between them. The force on an object is mg (mass times 
the acceleration due to gravity, 9.8 meters per second2), and 
when you lift the cannonball straight up, θ = 0°, so

W = Fs cos θ = mgh

The variable h here is the distance you lift the cannonball. To 
lift the ball, you have to do a certain amount of work, or m 
times g times h. The cannonball is stationary when you put it 
on the shelf, so it has no kinetic energy. However, it does have 
potential energy, which is the work you put into the ball to lift 
it to its present position.
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If the cannonball rolls to the edge of the shelf and falls off, 
how much kinetic energy would it have just before it strikes 
the ground (which is where it started when you first lifted it)? 
It would have mgh joules of kinetic energy at that point. The 
ball’s potential energy, which came from the work you put in 
lifting it, converts to kinetic energy thanks to the fall.

 

In general, you can say that if you have an object of mass m 
near the surface of the Earth where the acceleration due to 
gravity is g, at a height h, the potential energy of that mass 
compared to what it would be if it were at height 0 is

PE = mgh

And if you move an object vertically against the force of grav-
ity from height h0 to height hf, its change in potential energy is

ΔPE = mg(hf – h0)

The work you perform on the object changes its potential 
energy.

Converting potential energy 
into kinetic energy
Objects can have different kinds of potential energy — all you 
need to do is perform work on an object against a force, such 
as when an object is connected to a spring and you pull the 
spring back. However, gravity is a very common source of 
potential energy in physics problems. Gravitational potential 
energy for a mass m at height h near the surface of the Earth 
is mgh more than it would be at height 0. (It’s up to you where 
you choose height 0.)

For example, say that you lift a 40-kg cannonball onto a shelf 
3.0 meters from the floor, and the ball rolls and slips off, 
headed toward your toes. If you know the potential energy 
involved, you can figure out how fast the ball will be going 
when it reaches the tips of your shoes. Resting on the shelf, 
the cannonball has this much potential energy with respect to 
the floor:

PE = mgh = (40 kg)(9.8 m/s2)(3.0 m) = 1,176 J
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The cannonball has 1,176 joules of potential energy stored 
by virtue of its position in a gravitational field. What happens 
when it drops, just before it touches your toes? That poten-
tial energy is converted into kinetic energy. So, how fast will 
the cannonball be going at toe impact? Because its potential 
energy is converted into kinetic energy, you can write the 
problem as the following (see the section “Working Up a 
Sweat: Kinetic Energy” earlier in this chapter for an explana-
tion of the kinetic energy equation):

PE = mgh = (40 kg)(9.8 m/s2)(3.0 m) = 1,176 J = KE = 1⁄2 mv2

Plugging in the numbers and putting velocity on one side, you 
get the speed:

The velocity of 7.67 meters per second converts to about 
25 feet per second. You have a 40-kg cannonball — or about 
88 pounds — dropping onto your toes at 25 feet per second. 
You play around with the numbers and decide you don’t like 
the results. Prudently, you turn off your calculator and move 
your feet out of the way.

Pitting Conservative against 
Nonconservative Forces

 

The work a conservative force does on an object is path-
independent; the actual path taken by the object makes no 
difference. Fifty meters up in the air has the same gravitational 
potential energy whether you get there by taking the steps or 
by hopping on a Ferris wheel. That’s different from the force of 
friction, for example, which dissipates kinetic energy as heat. 
When friction is involved, the path you take does matter — a 
longer path will dissipate more kinetic energy than a short 
one. For that reason, friction isn’t a conservative force; it’s a 
nonconservative force.

For example, you and some buddies arrive at Mt. Newton, a 
majestic peak that soars h meters into the air. You can take 
two ways up: the quick way or the scenic route. Your friends 
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drive up the quick route, and you drive up the scenic way, 
taking time out to have a picnic and to solve a few physics 
problems. They greet you at the top by saying, “Guess what? 
Our potential energy compared to before is mgh greater.”

“Me too,” you say, looking out over the view. Note this equa-
tion (originally presented in the earlier section “Working 
against gravity”):

ΔPE = mg(hf – h0)

This equation basically states that the actual path you take 
when going vertically from h0 to hf doesn’t matter. All that 
matters is your beginning height compared to your ending 
height. Because the path taken by the object against gravity 
doesn’t matter, gravity is a conservative force.

Here’s another way of looking at conservative and nonconser-
vative forces. Say that you’re vacationing in the Alps and that 
your hotel is at the top of Mt. Newton. You spend the whole 
day driving around — down to a lake one minute, to the top of 
a higher peak the next. At the end of the day, you end up back 
at the same location: your hotel on top of Mt. Newton.

What’s the change in your gravitational potential energy? In 
other words, how much net work did gravity perform on you 
during the day? Because gravity is a conservative force, the 
change in your gravitational potential energy is 0. Because 
you’ve experienced no net change in your gravitational poten-
tial energy, gravity did no net work on you during the day.

The road exerted a normal force on your car as you drove 
around (see Chapter 6), but that force was always perpendicu-
lar to the road, so it didn’t do any work.

 

Conservative forces are easier to work with in physics because 
they don’t “leak” energy as you move around a path; if you end 
up in the same place, you have the same amount of energy. If 
you have to deal with forces like friction, including air friction, 
the situation is different. If you’re dragging something over a 
field carpeted with sandpaper, for example, the force of fric-
tion does different amounts of work on you depending on your 
path. A path that’s twice as long will involve twice as much 
work overcoming friction. The work done depends on the path 
you take, which is why friction is a nonconservative force.
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Allow me to qualify the idea that friction is a nonconservative 
force. What’s really not being conserved around a track with 
friction is the total potential and kinetic energy, which taken 
together is mechanical energy. When friction is involved, the 
loss in mechanical energy goes into heat energy. In a way, you 
could say that the total amount of energy doesn’t change if 
you include heat energy. However, the heat energy dissipates 
into the environment quickly, so it isn’t recoverable or con-
vertible. For that and other reasons, physics often works in 
terms of mechanical energy.

No Work Required: The 
Conservation of Mechanical 
Energy

Mechanical energy is the sum of potential and kinetic energy, 
or the energy acquired by an object upon which work is done. 
The conservation of mechanical energy, which occurs in the 
absence of nonconservative forces, makes your life much 
easier when it comes to solving physics problems. Say, for 
example, that you see a rollercoaster at two different points 
on a track — point 1 and point 2 — so that the coaster is at 
two different heights and two different speeds at those points. 
Because mechanical energy is the sum of the potential energy 
and kinetic energy, at point 1 the total mechanical energy is

E1 = mgh1 + 1⁄2 mv1
2

At point 2, the total mechanical energy is

E2 = mgh2 + 1⁄2 mv2
2

What’s the difference between E2 and E1? If friction is present, 
for example, or any other nonconservative forces, the differ-
ence is equal to the net work the nonconservative forces do, 
Wnc (see the previous section for an explanation of net work):

E2 – E1 = Wnc
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On the other hand, if nonconservative forces perform no net 
work, Wnc = 0, which means that

E2 = E1

or

mgh1 + 1⁄2 mv1
2 = mgh2 + 1⁄2 mv2

2

These equations represent the principle of conservation of 
mechanical energy. The principle says that if the net work 
done by nonconservative forces is zero, the total mechanical 
energy of an object is conserved; that is, it doesn’t change.

 

Another way of rattling off the principle of conservation of 
mechanical energy is that at point 1 and point 2,

PE1 + KE1 = PE2 + KE2

You can simplify that mouthful to the following:

E1 = E2

where E is the total mechanical energy at any one point. In 
other words, an object always has the same amount of energy 
as long as the net work done by nonconservative forces is zero.

A Powerful Idea: The Rate 
of Doing Work

Sometimes, it isn’t just the amount of work you do but the rate 
at which you do work that’s important, and rate is reflected 
in power. The concept of power gives you an idea of how 
much work you can expect in a certain amount of time. Power 
in physics is the amount of work done divided by the time it 
takes, or the rate. Here’s what that looks like in equation form:

P = W / t

Assume you have two speedboats, for example, and you want 
to know which one will get you to 120 miles per hour faster. 
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Ignoring silly details like friction, it will take you the same 
amount of work to get up to that speed, but what about how 
long it will take? If one boat takes three weeks to get you to 
120, that may not be the one you take to the races. In other 
words, the amount of work you do in a certain amount of time 
can make a big difference.

If the work done at any one instant varies, you need to rep-
resent the average power over the entire time t. An average 
quantity in physics is often written with a bar over it, like the 
following for average power:

Power is work divided by time, so power has the units of joules 
per second, which is called the watt — a familiar term for any-
body who uses anything electrical. Note also that because work 
is a scalar quantity (see Chapter 2) — as is time — power is a 
scalar as well.

Because work equals force times distance, you can write the 
equation for power the following way, assuming that the force 
acts along the direction of travel:

P = W / t = Fs / t

where s is the distance traveled. However, the object’s speed, 
v, is just s divided by t, so the equation breaks down to

P = W / t = Fs / t = Fv

That’s an interesting result — power equals force times 
speed? Yep, that’s what it says. However, because you often 
have to account for acceleration when you apply a force, you 
usually write the equation in terms of average power and 
average speed:

              



Chapter 8

Moving Objects with 
Impulse and Momentum

In This Chapter
▶ Acting on impulse

▶ Gathering momentum

▶ Putting impulse and momentum together

▶ Conserving momentum

▶ Watching worlds (or objects) collide

This chapter is all about the topics you need to know for 
all your travels: momentum and impulse. Both topics are 

very important to kinematics, the study of objects in motion. 
After you have these topics under your belt, you can start 
talking about what happens when objects collide and go 
bang. (Not your car or bike, I hope.) Sometimes they bounce 
off each other (like when you hit a tennis ball with a racket), 
and sometimes they stick together (like a dart hitting a dart 
board). With the knowledge of impulse and momentum you 
pick up in this chapter, you can handle either case.

Feeling a Sudden Urge to Do 
Physics: Impulse

In physics terms, impulse tells you how much the momentum 
of an object will change when a force is applied for a cer-
tain amount of time (see the following section for a discus-
sion on momentum). Say, for example, that you’re shooting 
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pool. Instinctively, you know how hard to tap each ball to 
get the results you want. The 9 ball in the corner pocket? 
No problem — tap it and there it goes. The 3 ball bouncing 
off the side cushion into the other corner pocket? Another 
tap, this time a little stronger.

The taps you apply are called impulses. Take a look at what 
happens on a microscopic scale, millisecond by millisecond, 
as you tap a pool ball. The force you apply with your cue 
appears in Figure 8-1. The tip of each cue has a cushion, so 
the impact of the cue is spread out over a few milliseconds. 
The impact lasts from the time when the cue touches the 
ball, t0, to the time when the ball loses contact with the cue, tf. 
As you can see from Figure 8-1, the force exerted on the ball 
changes during that time. In fact, it changes drastically, and 
if you had to know what the force was doing at any one mil-
lisecond, it would be hard to figure out without some fancy 
equipment.

Force

Time

Average force

Figure 8-1: The impulse depends on the amount of time you apply the force.

Because the pool ball doesn’t come with any fancy equipment, 
you have to do what physicists normally do, which is to talk 
in terms of the average force over time: . You can see what 
that average force looks like in Figure 8-1. Speaking as a physi-
cist, you say that the impulse — or the tap — provided by the 
pool cue is the average force multiplied by the time that you 
apply the force, Δt = tf – t0. Here’s the equation for impulse:

 

Note that this is a vector equation, meaning it deals with 
both direction and magnitude (see Chapter 2). Impulse is a 
vector, and it’s in the same direction as the average force 
(which itself may be a net vector sum of other forces). You 
get impulse by multiplying newtons by seconds, so the units 
of impulse are newton·seconds.
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Mastering Momentum
When you apply an impulse to an object, the impulse can 
change its motion (see the previous section for more info on 
impulse). What does that mean? It means that you affect the 
object’s momentum. Momentum is a concept most people 
have heard of. In physics terms, momentum is proportional to 
both mass and velocity, and to make your job easy, physics 
defines it as the product of mass times velocity. Momentum 
is a big concept both in introductory physics and in some 
advanced topics like high-energy particle physics, where the 
components of atoms zoom around at high speeds. When they 
collide, you can often predict what will happen based on your 
knowledge of momentum.

Even if you’re unfamiliar with the physics of momentum, 
you’re already familiar with the general idea. Catching a run-
away car going down a steep hill is a problem because of its 
momentum. If a car without any brakes is speeding toward 
you at 40 miles per hour, it may not be a great idea to try to 
stop it simply by standing in its way and holding out your 
hand (unless you’re Superman). The car has a lot of momen-
tum, and bringing it to a stop requires plenty of effort. Same 
thing for an oil tanker that you need to bring to a stop. Loads 
of oil sit in these tankers, and their engines aren’t strong 
enough to make them turn or stop on a dime. Therefore, it can 
take an oil tanker 20 miles or more to come to a stop — all 
because of the ship’s momentum.

 

The more mass that’s moving (think of an oil tanker), the 
more momentum the mass has. The more velocity it has 
(think of an even faster oil tanker), the more momentum it 
has. The symbol for momentum is p, so you can say that

p = mv

Momentum is a vector quantity, meaning that it has a mag-
nitude and a direction (see Chapter 2), and the magnitude is 
in the same direction as the velocity. All you have to do to 
get the momentum of an object is to multiply its mass by its 
velocity. Because you multiply mass by velocity, the units for 
momentum are kilograms-meters per second, kg·m/s.
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Connecting Impulse 
and Momentum

You can connect the impulse you give to an object — like 
striking a pool ball with a cue — with the object’s change in 
momentum. All you need is a little algebra and the process 
you explore in this section, called the impulse–momentum 
theorem. What makes the connection easy is that you can 
play with the equations for impulse and momentum (see the 
previous two sections) to simplify them so that you can relate 
the two topics. What equations does physics have in its arse-
nal that connect these two? Relating force and velocity is a 
start. For example, force equals mass times acceleration (see 
Chapter 5), and the definition of average acceleration is

where v stands for velocity and t stands for time. After you 
multiply acceleration by the mass you get force, which brings 
you closer to working with impulse:

Now you have force in the equation. To get impulse, multiply 
the force by Δt, the time over which you apply the force:

Take a look at the final term, m(vf – v0). Because momentum 
equals mv (see the previous section), this is just the differ-
ence in the object’s initial and final momentum: pf – p0 = Δp. 
Therefore, you can add that to the equation:

Now take a look at the term on the left, . That’s the 
impulse, or the force applied to the object multiplied by the 
time that force was applied. Therefore, you can write this 
equation as
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Getting rid of everything in the middle finally gives you

Impulse = Δp

 

Impulse equals change in momentum. In physics, this process 
is called the impulse–momentum theorem. The following two 
sections provide some examples so that you can practice this 
equation.

Taking impulse and momentum 
to the pool hall
With the equation Impulse = Δp, you can relate the impulse 
with which you hit an object to its consequent change in 
momentum. How about putting yourself to work the next 
time you hit a pool ball? You line up the shot that the game 
depends on. You figure that the end of your cue will be in con-
tact with the ball for 5 milliseconds. How much momentum 
will the ball need to bounce off the side cushion and end up in 
the corner pocket?

You measure the ball at 200 grams (or 0.2 kilograms). After 
testing the side cushion with calipers, spectroscope, and 
tweezers, killing any chance of finding yourself a date that 
night, you figure that you need to give the ball a speed of 
20.0 meters per second. What average force will you have 
to apply? To find the magnitude of the average force, you 
can find the impulse you have to supply. You can relate that 
impulse to the change in the ball’s momentum this way:

Impulse = Δp = pf – p0

So, what’s the change in the magnitude of the ball’s momen-
tum? The speed you need, 20.0 meters per second, is the mag-
nitude of the pool ball’s final velocity. Assuming the pool ball 
starts at rest, the change in the ball’s momentum will be

Δp = pf – p0 = m(vf – v0)

Plugging in the numbers gives you

Δp = pf – p0 = m(vf – v0) = (0.2 kg)(20 m/s – 0 m/s) = 
4.0 kg·m/s
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You need a change in momentum of 4.0 kg·m/s, which is also 
the impulse you need, and because Impulse = FΔt (see the 
section “Feeling a Sudden Urge to Do Physics: Impulse”), this 
equation becomes

FΔt = Δp = m(vf – v0) = (0.2 kg)(20 m/s – 0 m/s) = 4.0 kg·m/s

Therefore, the force you need to apply works out to be

F = 4.0 kg·m/s / Δt

In this equation, the time your cue ball is in contact with the 
ball is 5 milliseconds, or 5.0·10–3 seconds, so plugging in that 
number gives you your desired result:

F = 4.0 kg·m/s / (5.0·10–3 s) = 800 N

You have to apply about 800 N (or about 180 pounds) of force, 
which seems like a huge amount. However, you apply it over 
such a short time, 5.0·10–3 seconds, that it seems like much less.

Getting impulsive in the rain
After a triumphant evening at the pool hall, you decide to 
leave and discover that it’s raining. You grab your umbrella 
from your car, and the handy rain gauge on the top tells you 
that 100 grams of water are hitting the umbrella each second 
at an average speed of 10 meters per second. The question is: 
If the umbrella has a total mass of 1.0 kg, what force do you 
need to hold it upright in the rain?

Figuring the force you usually need to hold the weight of the 
umbrella is no problem — you just figure mass times the 
acceleration due to gravity, or (1.0 kg)(9.8 m/s2) = 9.8 N. But 
what about the rain falling on your umbrella? Even if you 
assume that the water falls off the umbrella immediately, you 
can’t just add the weight of the water because the rain is fall-
ing with a speed of 10 meters per second; in other words, the 
rain has momentum. What can you do? You know that you’re 
facing 100 g of water, or 0.10 kg, falling onto the umbrella 
each second at a velocity of 10 meters per second downward. 
When that rain hits your umbrella, the water comes to rest, so 
the change in momentum per second is

Δp = mΔv
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Plugging in numbers gives you

Δp = mΔv = (0.1 kg)(10 m/s) = 1.0 kg·m/s

The change in momentum of the rain hitting your umbrella 
each second is 1.0 kg·m/s. You can relate that to force with 
the impulse–momentum theorem, which tells you that

Impulse = FΔt = Δp

Dividing both sides by Δt to solve for the force (F) gives you

F = Δp / Δt

You know that Δp = 1.0 kg·m/s in 1 second, so plugging in Δp 
and setting Δt to 1 second gives you

F = Δp / Δt = 1.0 kg·m/s / 1.0 s = 1.0 N

In addition to the 9.8 N of the umbrella’s weight, you also 
need 1.0 N to stand up to the falling rain as it drums on the 
umbrella, for a total of 10.8 N, or about 2.4 pounds of force.

 

The sticky part of finding force is measuring the small time 
intervals that are involved in collisions like a cue stick hitting 
a pool ball. You can remove the time, or Δt, from the process 
to end up with something a little more useful, which I discuss 
in the following section.

Watching Objects Go Bonk: The 
Conservation of Momentum

 

The principle of conservation of momentum states that when 
you have an isolated system with no external forces, the initial 
total momentum of objects before a collision equals the final 
total momentum of the objects after the collision (pf = p0). This 
principle comes out of a bit of algebra and may be the most 
useful idea I provide in this chapter.

You may have a hard time dealing with the physics of impulses 
because of the short time intervals and the irregular forces. 
The absence of complicated external forces is what you need 
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to get a truly useful principle. Troublesome items that are hard 
to measure — the force and time involved in an impulse — are 
out of the equation altogether. For example, say that two care-
less space pilots are zooming toward the scene of an interplan-
etary crime. In their eagerness to get to the scene first, they 
collide. During the collision, the average force exerted on the 
first ship by the second ship is . By the impulse–momentum 
theorem, you know the following for the first ship:

And if the average force exerted on the second ship by the 
first ship is , you also know that

Now you add these two equations together, which gives you 
the resulting equation

Rearrange the terms on the right until you get

This is an interesting result because m1v01 + m2v02 is the initial 
total momentum of the two rocket ships, p01 + p02, and m1vf1 + 
m2vf2 is the final total momentum of the two rocket ships, pf1 + 
pf2. Therefore, you can write this equation as follows:

If you write the initial total momentum as pf and the final total 
momentum as p0, the equation becomes

Where do you go from here? You add the two forces together, 
, to get the sum of the forces involved, :
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If you’re working with what’s called an isolated or closed 
system, you have no external forces to deal with. Such is the 
case in space. If two rocket ships collide in space, there are 
no external forces that matter, which means that by Newton’s 
third law (see Chapter 5), . In other words, when you 
have a closed system, you get

This converts to

pf = p0

 

The equation pf = p0 says that when you have an isolated 
system with no external forces, the initial total momentum 
before a collision equals the final total momentum after a 
collision, thus giving you the principle of conservation of 
momentum.

Measuring Firing Velocity
The principle of conservation of momentum comes in handy 
when you can’t measure velocity with a simple stopwatch. 
Say, for example, that you accept a consulting job from an 
ammunition manufacturer that wants to measure the muzzle 
velocity of its new bullets. No employee has been able to mea-
sure the velocity yet because no stopwatch is fast enough. 
What will you do? You decide to arrange the setup shown in 
Figure 8-2, where you fire a bullet of mass m into a hanging 
wooden block of mass M.

The directors of the ammunition company are perplexed — 
how can your setup help? Each time you fire a bullet into a 
hanging wooden block, the bullet kicks the block into the air. 
So what? You decide they need a lesson on the principle of 
conservation of momentum. The original momentum, you 
explain, is the momentum of the bullet:

p0 = mv0
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v0

Bullet

h

wooden 
block 

Bullet
wooden 

block 

Figure 8-2:  Shooting a wooden block on a string allows you to experiment 
with velocity, but don’t try it at home! 

Because the bullet sticks into the wood block, the final 
momentum is the product of the total mass, m + M, and the 
final velocity of the bullet/wood block combination:

pf = (m + M)vf

Because there is no net external force on the bullet/block 
system during the collision, momentum is conserved and you 
can say that

pf = p0

So,

vf = mv0 / (m + M)

The directors start to get dizzy, so you explain how the 
kinetic energy of the block when it’s struck goes into its final 
potential energy when it rises to height h, so

1⁄2 (m + M)vf
2 = (m + M)gh
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Putting all the numbers together gives you

1⁄2 (m + M)vf
2 = 1⁄2 (m + M)(m2v0

2 / [m + M]2) = (m + M)gh

With a flourish, you add that solving for the initial speed, v0, 
gives you

You measure that the bullet has a mass of 0.05 kg, the wooden 
block has a mass of 10 kg, and that upon impact, the block 
rises 0.50 m into the air. Plugging in those values gives you 
your result:

 “Brilliant!” the directors cry as they hand you a big check.

Examining Elastic and Inelastic 
Collisions

Examining collisions in physics can be pretty entertaining, 
especially because the principle of conservation of momen-
tum makes your job so easy (see the previous section to 
find out how). But there’s often more to the story when 
you’re dealing with collisions than impulse and momentum. 
Sometimes, kinetic energy is also conserved, which gives 
you the extra edge you need to figure out what happens in all 
kinds of collisions, even across two dimensions.

You can run into all kinds of situations in physics problems 
where collisions become important. Two cars collide, for 
example, and you need to find the final velocity of the two 
when they stick together. You may even run into a case where 
two railway cars going at different velocities collide and 
couple together, and you need to determine the final velocity 
of the two cars.
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But what if you have a more general case where the two 
objects don’t stick together? Say, for example, you have 
two pool balls that hit each other at different speeds and 
at different angles and bounce off with different speeds and 
different angles. How the heck do you handle that situation? 
You have a way to handle these collisions, but you need more 
than just what the principle of conservation of momentum 
gives you.

Flying apart: Elastic collisions
When bodies collide in the real world, you can observe energy 
losses due to heat and deformation (a change in the shape of 
the colliding objects). If these losses are much smaller than 
the other energies involved, such as when two pool balls 
collide and go their separate ways, kinetic energy may be 
conserved in the collision. Physics has a special name for col-
lisions where kinetic energy is conserved: elastic collisions. In 
an elastic collision, the total kinetic energy in a closed system 
(where the net forces add up to zero) is the same before the 
collision as after the collision.

Sticking together: 
Inelastic  collisions
If you can observe appreciable energy losses due to noncon-
servative forces (such as friction) during a collision, kinetic 
energy isn’t conserved. In this case, friction, deformation, 
or some other process transforms the kinetic energy, and 
it’s lost. The name physics gives to a situation where kinetic 
energy is lost after a collision is an inelastic collision. The 
total kinetic energy in a closed system isn’t the same before 
the collision as after the collision. You see inelastic collisions 
when objects stick together after colliding, such as when two 
cars crash and weld themselves into one.

 

Objects don’t need to stick together in an inelastic collision; 
all that has to happen is the loss of some kinetic energy. For 
example, if you smash into a car and deform it, the collision is 
inelastic, even if you can drive away after the accident.
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Colliding along a line
When a collision is elastic, kinetic energy is conserved. The 
most basic way to look at elastic collisions is to examine how 
the collisions work along a straight line. If you smash your 
bumper car into a friend’s bumper car along a straight line, 
you bounce off and kinetic energy is conserved along the line.

You take your family to the Physics Amusement Park for a 
day of fun and calculation, and you decide to ride the bumper 
cars. You wave to your family as you speed your 300-kg car up 
to 10 meters per second. Suddenly, BONK! What happened? 
The person in front of you driving a 400-kg car came to a com-
plete stop, and you rear-ended him elastically; now you’re 
traveling backward and he’s traveling forward. “Interesting,” 
you think. “I wonder if I can solve for the final velocities of 
both bumper cars.”

You know that the momentum was conserved, and you know 
that the car in front of you was stopped when you hit it. So if 
your car is car 1 and the other is car 2, you get the following

m1vf1 + m2vf2 = m1v01

However, this doesn’t tell you what vf1 and vf2 are because 
there are two unknowns and only one equation here. You 
can’t solve for vf1 or vf2 exactly in this case, even if you know 
the masses and v01. You need some other equations relating 
these quantities. How about using the conservation of kinetic 
energy? The collision was elastic, so kinetic energy was con-
served, which means that

1⁄2 m1vf1
2
 + 1⁄2 m2vf2

2 = 1⁄2 m1v01
2

Now you have two equations and two unknowns, vf1 and vf2, 
which means you can solve for the unknowns in terms of the 
masses and v01. You have to dig through a lot of algebra here 
because the second equation has many squared velocities, 
but when the dust settles, you get

vf1 = [(m1 – m2) v01] / (m1 + m2)

and

vf2 = 2m1 v01 / (m1 + m2)
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Now you have vf1 and vf2 in terms of the masses and v01. 
Plugging in the numbers gives you

 vf1 = [(m1 – m2) v01] / (m1 + m2)

 = [(300 kg – 400 kg)(10 m/s)] / (300 kg + 400 kg) = –1.43 m/s

and

 vf2 = 2m1 v01 / (m1 + m2)

 = 2(300 kg)(10 m/s)] / (300 kg + 400 kg) = 8.57 m/s

The two speeds tell the whole story. You started off at 10.0 
meters per second in a bumper car of 300 kg, and you hit a 
stationary bumper car of 400 kg in front of you. Assuming 
the collision took place directly and the second bumper car 
took off in the same direction you were going before the colli-
sion, you rebounded at –1.43 meters per second — backward 
because this quantity is negative and the bumper car in front 
of you had more mass. The bumper car in front of you took off 
at a speed of 8.57 meters per second.

Colliding in two dimensions
Collisions don’t always occur along a straight line. For 
example, balls on a pool table can go in two dimensions, both 
x and y, as they zoom around. Collisions along two dimen-
sions introduce variables such as angle and direction. Say, 
for example, your physics travels take you to the golf course, 
where two players are lining up for their final putts of the day. 
The players are tied, so these putts are the deciding shots. 
Unfortunately, the player closer to the hole breaks etiquette, 
and they both putt at the same time. Their 45-g golf balls col-
lide! You can see what happens in Figure 8-3.

You quickly stoop down to measure all the angles and veloci-
ties involved in the collision. You measure the speeds: v01 = 
1.0 meter per second, v02 = 2.0 meters per second, and vf2 = 1.2 
meters per second. You also get most of the angles, as shown 
in Figure 8-3. However, you can’t get the final angle and speed 
of golf ball 1.
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Figure 8-3:  Before, during, and after a collision between two balls moving 
in two dimensions.

Because the golf balls create an elastic collision, both momen-
tum and kinetic energy are conserved. In particular, momen-
tum is conserved in both the x-axis and y-axis directions, and 
total kinetic energy is conserved as well. But using all those 
equations in two dimensions can be a nightmare, so physics 
problems very rarely ask you to do that kind of calculation. In 
this case, all you want is the final velocity — that is, the speed 
and direction — of golf ball 1, as shown in Figure 8-3. To solve 
this problem, all you need is the conservation of momentum 
in two dimensions. Momentum is conserved in both the x and 
y directions, which means that

pfx = p0x

and

pfy = p0y

In other words, the final momentum in the x direction is the 
same as the original momentum in the x direction, and the 
final momentum in the y direction is the same as the origi-
nal momentum in the y direction. Here’s what the original 
momentum in the x direction looks like:

p0x = m1 v01 cos40° + m2 v02
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Setting that equal to the final momentum in the x direction 
gives you

m1 vf1x + m2 vf2 cos30° = pfx = p0x = m1 v01 cos40° + m2 v02

This tells you that

m1 vf1x = m1 v01 cos40° + m2 v02 – m2 vf2 cos30°

Dividing by m1 gives you

vf1x = v01 cos40° + (m2 v02 – m2 vf2 cos30°) / m1

Because m1 = m2, this breaks down even more:

vf1x = v01 cos40° + v02 – vf2 cos30°

Plugging in the numbers gives you

 vf1x = v01 cos40° + v02 – vf2 cos30°

 = (1.0 m/s)(.766) + 2.0 m/s – (1.2 m/s)(.866) = 1.73 m/s

The final velocity of golf ball 1 in the x direction is 1.73 meters 
per second. 

              



Chapter 9

Navigating the Twists and 
Turns of Angular Kinetics

In This Chapter
▶ Shifting from linear motion to rotational motion

▶ Focusing on tangential speed and acceleration

▶ Examining angular acceleration and velocity

▶ Calculating torque in rotational motion

▶ Maintaining rotational equilibrium

This chapter is the first of two (Chapter 10 is the other) on 
handling objects that rotate, from space stations to mar-

bles. Rotation is what makes the world go ’round — literally. 
If you know how to handle linear motion and Newton’s laws 
(see Chapters 2, 3, and 5 if you don’t), the rotational equiva-
lents I present in this chapter and in Chapter 10 are pieces 
of cake. And if you don’t have a grasp of linear motion, no 
worries. You can get a firm grip on the basics of rotation here 
and go back for the linear stuff. You see all kinds of rotational 
ideas in this chapter: angular acceleration, tangential speed 
and acceleration, torque, and more. But enough spinning my 
wheels. Read on! 

Changing Gears (and Equations) 
from Linear to Rotational Motion

You need to change equations when you go from linear 
motion to rotational motion, particularly when angles get 
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involved. Chapter 4 shows you the rotational equivalents (or 
analogs) for each of these linear equations:

 ✓ v = Δs / Δt, where v is speed, Δs is the change in displace-
ment, and Δt is the change in time

 ✓ a = Δv / Δt, where a is acceleration and Δv is the change 
in speed

 ✓ s = v0(tf – t0) + 1⁄2a(tf – t0)
2, where s is displacement, v0 is 

the original speed, tf is the final time, and t0 is the original 
time

 ✓ vf
2 – v0

2 = 2as, where vf is the final speed

Here’s how you convert these equations in terms of angular 
displacement, θ (measured in radians — 2π radians in a circle); 
angular speed, ω; and angular acceleration, α (assuming that 
the angular acceleration is constant):

ω = Δθ / Δt

α = Δω / Δt

θ = ω0(tf – t0) + 1⁄2 α(tf – t0)
2

ωf
2 – ω0

2 = 2αθ

Tackling Tangential Motion

 

Tangential motion is motion that’s perpendicular to radial 
motion, or motion along a radius. You can tie angular quanti-
ties like angular displacement, θ, angular speed, ω, and angular 
acceleration, α, to their associated tangential quantities — all 
you have to do is multiply by the radius:

s = rθ

v = rω

a = rα

Say you’re riding a motorcycle, for example, and the wheels’ 
final angular speed is ωf = 21.5π radians per second. What 
does this mean in terms of your motorcycle’s speed? To 
determine your motorcycle’s speed, you need to relate angu-
lar speed, ω, to linear speed, v. The following sections explain 
how you can make such relations.
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Calculating tangential speed
Linear speed has a special name when you begin to deal with 
rotational motion; it’s called the tangential speed. Tangential 
speed is the speed of a point at a given radius r perpendicular 
to the radius. The vector v shown in Figure 9-1 is a tangen-
tial vector (meaning it has a magnitude and a direction; see 
Chapter 2).

v

Strin
g

Golf ball

s

θ 

Figure 9-1:  A ball in circular motion has angular speed with respect to the 
radius of the circle.

 

Given an angular speed ω, the tangential speed at any radius 
is rω. This makes sense because, given a rotating wheel, you’d 
expect a point at radius r to be going faster than a point closer 
to the hub of the wheel.

Take a look at Figure 9-1, which shows a ball tied to a string. 
In this case, you know that the ball is whipping around with 
angular speed ω.

You can easily find the magnitude of the ball’s velocity, v, if 
you measure the angles in radians. A circle has 2π radians; the 
complete distance around a circle — its circumference — is 
2πr, where r is the circle’s radius. And if you go only halfway 
around, you cover a distance of πr, or π radians. In general, 
therefore, you can connect an angle measured in radians with 
the distance you cover along the circle, s, like this:

s = rθ
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where r is the radius of the circle. Now, you can say that

v = s / t

where v is speed, s is the displacement, and t is time. You can 
substitute for s to get

v = s / t = rθ / t

ω = θ / t, which means

v = s / t = rθ / t = rω

In other words,

v = rω

Now you can find the magnitude of the velocity. The wheels 
of the motorcycle are turning with an angular speed of 21.5π 
radians per second. If you can find the tangential speed of 
any point on the outside edges of the wheels, you can find the 
motorcycle’s speed. Say, for example, that the radius of one of 
your motorcycle’s wheels is 40 cm. You know that

v = rω

Just plug in the numbers!

v = rω = (0.40 m)(21.5π s–1) = 27.0 m/s

Figuring out tangential 
acceleration
Tangential acceleration is a measure of how the speed of a 
point at a certain radius changes with time. This type of accel-
eration resembles linear acceleration (see Chapter 3), with 
the exception that tangential acceleration is all about circular 
motion. For example, when you start a lawn mower, a point on 
the tip of one of its blades starts at a tangential speed of zero 
and ends up with a pretty fast tangential speed. So, how do 
you determine the point’s tangential acceleration? How can 
you relate the following equation from Chapter 3, which finds 
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linear acceleration (where Δv is the change in velocity and Δt 
is the change in time)

a = Δv / Δt

to angular quantities like angular speed? You find in the pre-
vious section that tangential speed, v, equals rω, so you can 
plug this information in:

a = Δv / Δt = Δ(rω) / Δt

Because the radius is constant here, the equation becomes

a = Δv / Δt = Δ(rω) / Δt = rΔω / Δt

However, Δω / Δt = α, the angular acceleration, so the equa-
tion becomes

a = Δv / Δt = rΔω / Δt = rα

In other words,

a = rα

Translated into laymen’s terms, this says tangential accelera-
tion equals angular acceleration multiplied by the radius.

Looking at centripetal 
acceleration
Another kind of acceleration turns up in an object’s circular 
motion — centripetal acceleration, or the acceleration an 
object needs to keep going in a circle. Can you connect angu-
lar quantities, like angular speed, to centripetal acceleration? 
You sure can. Centripetal acceleration is given by the follow-
ing equation (for more on the equation, see Chapter 4):

a
c
 = v2 / r

where v2 is velocity squared and r is the radius. This is easy 
enough to tie to angular speed because v = rω (see the section 
“Calculating tangential speed”), which gives you

a
c
 = (rω)2 / r
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This equation breaks down to

a
c
 = rω2

Nothing to it. The equation for centripetal acceleration means 
that you can find the centripetal acceleration needed to keep 
an object moving in a circle given the circle’s radius and the 
object’s angular speed.

Applying Vectors to Rotation
The previous sections in this chapter examine angular speed 
and angular acceleration as if they’re scalars — as if speed 
and acceleration have only a magnitude and not a direction. 
However, these concepts are really vectors, which means they 
have a magnitude and a direction. (See Chapter 2 for more on 
scalars and vectors.) When you make the switch from linear 
motion to circular motion, you make the switch from angular 
speed to angular velocity — and from talking about only mag-
nitudes to magnitudes and direction. You can see the relation 
between the two in the following sections.

 

Angular velocity and angular acceleration are vectors that 
point at right angles to the direction of rotation.

Analyzing angular velocity
When a wheel is spinning, it has an angular speed, but it can 
have an angular acceleration as well. Say, for example, that 
the wheel has a constant angular speed, ω. (See the next sec-
tion for what happens if the angular speed is changing.) Which 
direction does its angular velocity, ω, point? It can’t point 
along the rim of the wheel, as tangential velocity does, because 
its direction would change every second. In fact, the only real 
choice for its direction is perpendicular to the wheel.

This fact always takes people by surprise: Angular veloc-
ity, ω, points along the axle of a wheel. (For an example, see 
Figure 9-2.) Because the angular velocity vector points the 
way it does, it has no component along the wheel. The wheel 
is spinning, so the velocity at any point on the wheel is con-
stantly changing direction — except for the very center point 
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of the wheel. The angular velocity vector’s base sits at the 
very center point of the wheel. Its head points up or down, 
away from the wheel.

ω

Figure 9-2: Angular velocity points in a perpendicular direction to the circle.

 

You can use the right hand rule to determine a vector’s direc-
tion. (Left-handed people often think that right-handed chau-
vinists invented this rule, and maybe that’s true.) To apply this 
rule to the wheel in Figure 9-2, wrap your right hand around 
the wheel so that your fingers point in the direction of the tan-
gential motion at any point — that is, the fingers on your right 
hand go in the same direction as the wheel’s rotation. When 
you wrap your right hand around the wheel, your thumb will 
point in the direction of the angular velocity vector, ω.

Now you can master the angular velocity vector. You know 
that its magnitude is ω, the angular speed of an object in 
rotational motion. And now you can find the direction of that 
vector by using the right hand rule. The fact that the angular 
velocity is perpendicular to the plane of rotational motion 
(the flat side of the wheel) takes some getting used to. But as 
you’ve seen, you can’t plant a vector on a spinning wheel that 
has constant angular velocity so that the vector has a con-
stant direction, except at the very center of the wheel. And 
from there, you have no way to go except up (or down, in the 
case of negative angular velocity).

Working out angular acceleration
If the angular velocity vector points out of the plane of rota-
tion (see the previous section), what happens when the angu-
lar velocity changes — when the wheel speeds up or slows 
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down? A change in velocity signifies the presence of angular 
acceleration. Like angular velocity, ω, angular acceleration, 
α, is a vector, meaning it has a magnitude and a direction. 
Angular acceleration is the rate of change of angular speed:

α = Δω / Δt

For example, take a look at Figure 9-3, which shows what hap-
pens when angular acceleration affects angular velocity.

In this case, α points in the same direction as ω in diagram A. 
If the angular acceleration vector, α, points along the angular 
velocity, ω, as time goes on, the magnitude of ω will increase, 
as shown in Figure 9-3, diagram B.

ω

α

A

ω

B

Figure 9-3:  The angular acceleration vector indicates how angular velocity 
will change in time.

 

You’ve calculated that the angular acceleration vector just 
indicates how the angular velocity will change in time, which 
mirrors the relationship between linear acceleration and linear 
velocity. However, you should note that the angular accelera-
tion doesn’t have to be in the same direction as the angular 
velocity vector at all, as shown in Figure 9-4, diagram A. If the 
angular acceleration moves in the opposite direction of the 
angular velocity, it’s called negative angular acceleration.

As you may expect in this case, the angular acceleration will 
reduce the angular velocity as time goes on, which you can 
see in Figure 9-4, diagram B. Say, for example, that you grab 
the spinning wheel’s axle in Figure 9-3 and tip the wheel. The 
angular acceleration is at right angles to the angular velocity, 
which changes the direction of the angular velocity.
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ω

A

ω

Bα

Figure 9-4:  Spinning in the opposite direction of angular velocity with nega-
tive angular acceleration.

Doing the Twist with Torque
You not only have to look at how forces work when you 
apply them to objects but also where you apply the forces. 
Enter torque. Torque is a measure of the tendency of a force 
to cause rotation. In physics terms, the torque exerted on an 
object depends on where you exert the force. You go from the 
strictly linear idea of force as something that acts in a straight 
line, such as pushing a refrigerator up a ramp, to its angular 
counterpart, torque.

Torque brings forces into the rotational world. Most objects 
aren’t just point or rigid masses, so if you push them, they not 
only move but also turn. For example, if you apply a force tan-
gentially to a merry-go-round, you don’t move the merry-go-
round away from its current location — you cause it to start 
spinning. Spinning is the rotational kinematic you focus on in 
this chapter and in Chapter 10.

Take a look at Figure 9-5, which shows a seesaw with a 
mass m on it. If you want to balance the seesaw, you can’t 
have a larger mass, M, placed on a similar spot on the other 
side of the seesaw. Where you put the larger mass M deter-
mines what results you get. As you can see in diagram A of 
Figure 9-5, if you put the mass M on the pivot point — also 
called the fulcrum — of the seesaw, you don’t create a bal-
ance. The larger mass exerts a force on the seesaw, but the 
force doesn’t balance it. 
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A

m

M

B

m
M

Figure 9-5: A seesaw demonstrates torque at work.

As you can see in diagram B of Figure 9-5, as the distance you 
put the mass M away from the fulcrum increases, the bal-
ance improves. In fact, if M = 2m, you need to put the mass M 
exactly half as far from the fulcrum as the mass m is.

Walking through the 
torque equation

 

How much torque you exert on an object depends on the 
point where you apply the force. The force you exert, F, is 
important, but you can’t discount the lever arm — also called 
the moment arm — which is the distance from the pivot point 
at which you exert your force. Assume that you’re trying to 
open a door, as in the various scenarios in Figure 9-6. You 
know that if you push on the hinge, as in diagram A, the door 
won’t open; if you push the middle of the door, as in diagram 
B, the door will open slowly; and if you push the edge of the 
door, as in diagram C, the door will open faster.
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A

F 

B

F 

l = r

C 

F 

l = 2r

Figure 9-6: The torque you exert on a door depends on where you push it.

In diagram B of Figure 9-6, the lever arm, l, is distance r from 
the hinge at which you exert your force. The torque is the 
product of the force multiplied by the lever arm. It has a spe-
cial symbol, the Greek letter τ (tau):

τ = Fl
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The units of torque are force multiplied by distance, which is 
newtons·meters in the MKS system.

So, for example, the lever arm in Figure 9-6 is distance r, so 
τ = Fr. If you push with a force of 200 N, and r = 0.5 meters, 
what’s the torque you see in the figure? In diagram A, you 
push on the hinge, so your distance from the pivot point 
is zero, which means the lever arm is zero. Therefore, the 
torque is zero. In diagram B, you exert the 200 N of force at a 
distance of 0.5 meters perpendicular to the hinge, so

τ = Fl = 200 N (0.5 m) = 100 N·m

The torque here is 100 N·m. But now take a look at diagram C. 
You push with 200 N of force at a distance of 2r perpendicular 
to the hinge, which makes the lever arm 2r = 1.0 meter, so you 
get this torque:

τ = Fl = 200 N (1.0 m) = 200 N·m

Now you have 200 N·m of torque because you push at a 
point twice as far away from the pivot point. In other words, 
you double your torque. But what would happen if, say, the 
door were partially open when you exerted your force? Well, 
you would calculate the torque easily, if you have lever-arm 
mastery.

Mastering lever arms
If you push a partially open door in the same direction as you 
push a closed door, you create a different torque because of 
the non-right angle between your force and the door.

Take a look at Figure 9-7, diagram A, to see a person obsti-
nately trying to open a door by pushing along the door toward 
the hinge. You know this method won’t produce any turning 
motion because the person’s force has no lever arm to pro-
duce the needed turning force. “Leave me alone,” the person 
says. (Some people just don’t appreciate physics.) In this 
case, the lever arm is zero, so it’s clear that even if you apply 
a force at a given distance away from a pivot point, you don’t 
always produce a torque. The direction you apply the force 
also counts, as you know from your door-opening expertise.
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Figure 9-7:  You produce a useful angle of a lever arm by exerting force in 
the proper direction.

Identifying the torque generated
Generating torque is how you open doors, whether you have 
to quickly pop a car door or slowly pry open a bank-vault 
door. But how do you find out how much torque you gener-
ate? First, you calculate the lever arm, and then you multiply 
that lever arm by the force to get the torque.

Take a look at diagram B in Figure 9-7. You apply a force to 
the door at some angle, θ. The force may open the door, but 
it isn’t a sure thing because, as you can tell from the figure, 
you apply less of a turning force here. What you need to do is 
find the lever arm first. As you can see in Figure 9-7, you apply 
the force at a distance r from the hinge. If you apply that force 
perpendicularly to the door, the lever arm would be r, and 
you’d get

τ = Fr
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However, that’s not the case here because the force isn’t per-
pendicular to the door.

 

The lever arm is the effective distance from the pivot point at 
which the force acts perpendicularly.

To see how this works, take a look at diagram B in Figure 9-7, 
where you can draw a lever arm from the pivot point so 
that the force is perpendicular to the lever arm. To do this, 
extend the force vector until you can draw a line from the 
pivot point that’s perpendicular to the force vector. You 
create a new triangle. The lever arm and the force are at right 
angles with respect to each other, so you create a right tri-
angle. The angle between the force and the door is θ, and the 
distance from the hinge at which you apply the force is r (the 
hypotenuse of the right triangle), so the lever arm becomes

l = r sin θ

When θ goes to zero, so does the lever arm, so there’s no 
torque (see diagram A in Figure 9-7). You know that

τ = Fl

so you can now find

τ = Fr sin θ

where θ is the angle between the force and the door.

 

This is a general equation; if you apply a force F at a distance 
r from a pivot point, where the angle between that displace-
ment and F is θ, the torque you produce will be τ = Fr sin θ. So, 
for example, if θ = 45°, F = 200 N, and r = 1.0 meter, you get

τ = Fr sin θ = (200 N)(1.0 m)(0.71) = 140 N·m

This number is less than you’d expect if you just push perpen-
dicularly to the door (which would be 200 N·m).

Realizing that torque is a vector
Looking at angles between lever arms and force vectors (see 
the previous two sections) may tip you off that torque is a 
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vector, too. And it is. In physics, torque is a positive vector if 
it tends to create a counterclockwise turning motion (toward 
increasingly positive angles) and negative if it tends to create 
a clockwise turning motion (toward increasingly negative 
angles).

For example, take a look at Figure 9-8, where a force F applied 
at lever arm l is producing a torque τ. Because the turning 
motion produced is toward larger positive angles, τ is positive.

τ

l
F

Figure 9-8:  A turning motion toward larger positive angles indicates a posi-
tive vector.

No Spin, Just the Unbiased 
Truth: Rotational Equilibrium

You may know equilibrium as a state of balance, but what’s 
equilibrium in physics terms? When you say an object has 
equilibrium, you mean that the motion of the object isn’t 
changing; in other words, the object has no acceleration. (It 
can have motion, however, as in constant velocity and/or con-
stant angular velocity.) As far as linear motion goes, the sum 
of all forces acting on the object must be zero:

ΣF = 0

In other words, the net force acting on the object is zero.
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Equilibrium also occurs in rotational motion in the form of 
rotational equilibrium. When an object is in rotational equi-
librium, it has no angular acceleration — the object may be 
rotating, but it isn’t speeding up or slowing down, which 
means its angular velocity is constant. When an object has 
rotational equilibrium, there’s no net turning force on the 
object, which means that the net torque on the object must 
be zero:

Στ = 0

This equation represents the rotational equivalent of linear 
equilibrium. Rotational equilibrium is a useful idea because, 
given a set of torques operating on an object, you can deter-
mine what torque is necessary to stop the object from rotating.

              



Chapter 10

Taking a Spin with 
Rotational Dynamics

In This Chapter
▶ Moving from linear to rotational thinking

▶ Introducing the moment of inertia

▶ Getting familiar with rotational work

▶ Conserving angular momentum 

This chapter is all about applying forces and seeing what 
happens in the rotational world. You find out what 

Newton’s second law (force equals mass times acceleration; 
see Chapter 5) becomes for rotational motion; you see how 
inertia comes into play in rotational motion; and you get the 
story on rotational kinetic energy, rotational work, and angu-
lar momentum. Everything that rolls comes up in this chapter, 
and you get the goods on it.

Converting Newton’s Second 
Law into Angular Motion

Newton’s second law, force equals mass times acceleration 
(F = ma; see Chapter 5), is a physics favorite in the linear 
world because it ties together the vectors force and accelera-
tion (see Chapter 2 for more on vectors). But if you have to 
talk in terms of angular kinetics rather than linear motion, 
what happens? Can you get Newton spinning?
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Chapter 9 explains that there are equivalents (or analogs) for 
linear equations in angular kinetics. So, what’s the angular 
analog for F = ma? You may guess that F, the linear force, 
becomes τ, or torque, after reading about torque in Chapter 9, 
and you’d be on the right track. And you may also guess that 
a, linear acceleration, becomes α, angular acceleration, and 
you’d be right. But what about m? What the heck is the angu-
lar analog of mass? The answer is inertia, and you come to 
this answer by converting tangential acceleration to angular 
acceleration. Your final conclusion is Στ = Iα, the angular form 
of Newton’s second law. But I’m getting ahead of myself.

You can start the linear-to-angular conversion process with a 
simple example. Say that you’re whirling a ball in a circle on 
the end of a string, as shown in Figure 10-1. And say that you 
apply a tangential force (along the circle) to the ball, making it 
speed up. (Keep in mind that this is a tangential force, not one 
directed toward the center of the circle, as when you have a 
centripetal force; see Chapter 9.)

r

String

F

Figure 10-1: Tangential force applied to a ball on a string moving in a circle.

Start by saying that

F = ma

To convert this equation into terms of angular quantities like 
torque, multiply by the radius of the circle, r:

Fr = mar
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Because you’re applying tangential force to the ball in this 
case, the force and the circle’s radius are at right angles (see 
Figure 10-1), so you can say that Fr equals torque:

Fr = τ = mar

You’re now partly done making the transition to rotational 
motion. Instead of working with linear force, you’re working 
with torque, which is linear force’s rotational analog.

Moving from tangential 
to angular acceleration
To move from linear motion to angular motion, you have to 
convert a, tangential acceleration, to α, angular acceleration. 
Great, but how do you make the conversion? If you’ve pored 
over Chapter 9, you know that angular acceleration is a force 
you can multiply by the radius to get the linear equivalent, 
which in this case is tangential acceleration:

a = rα

Substituting a = rα in the equation for the angular equivalent 
of Newton’s second law (see the previous section), Fr = τ = 
mar, gives

τ = m(rα)r = mr2α

Now you’ve related torque to angular acceleration, which is 
what you need to go from linear motion to angular motion. 
But what’s that mr2 in the equation? It’s the rotational analog 
of mass, officially called the moment of inertia.

Bringing the moment of inertia 
into play
To go from linear force, F = ma, to torque (linear force’s angu-
lar equivalent), you have to find the angular equivalent of 
acceleration and mass. In the previous section, you find angu-
lar acceleration. In this section, you find the rotational analog 
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for mass, known as the moment of inertia: mr2. In physics, the 
symbol for inertia is I, so you can write the equation for angu-
lar acceleration as follows:

Στ = Iα

Σ means “sum of,” so Στ, therefore, means net torque. The 
units of moment of inertia are kg·m2. Note how close this 
equation is to the equation for net force:

ΣF = ma

 

Στ = Iα is the angular form of Newton’s second law for rotat-
ing bodies: Net torque equals moment of inertia multiplied by 
angular acceleration.

Now you can put the equation to work. Say, for example, that 
you’re whirling the 45-g ball from Figure 10-1 in a 1.0-meter 
circle, and you want to speed it up by 2π radians per second2, 
the official units of angular acceleration. What kind of torque 
do you need? You know that

τ = Iα

 

You can drop the symbol Σ from the equation when you’re 
dealing with only one torque, meaning the “sum of” the 
torques is the only torque you’re dealing with.

The moment of inertia equals mr2, so

τ = Iα = mr2α

Plugging in the numbers and using the meters-kilograms- 
seconds (MKS) system gives you

 τ = Iα = mr2α

 = (0.045 kg)(1.0 m)2(2π radians·s–2) = 0.28 N·m

 

Solving for the torque required in angular motion is much like 
being given a mass and a required acceleration and solving 
for the needed force in linear motion.
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Finding Moments of Inertia 
for Standard Shapes

Calculating moments of inertia is fairly simple if you only have 
to examine the motion of spherical objects, like golf balls, that 
have a consistent radius. For the golf ball, the moment of iner-
tia depends on the radius of the circle it’s spinning in:

I = mr2

Here, r is the radius at which all the mass of the golf ball is 
concentrated. Crunching the numbers can get a little sticky 
when you enter the non-golf ball world, however, because you 
may not be sure of what radius you should use. For example, 
what if you’re spinning a rod around? All the mass of the 
rod isn’t concentrated at a single radius. The problem you 
encounter is that when you have an extended object, like a 
rod, each bit of mass is at a different radius. You don’t have 
an easy way to deal with this situation, so you have to sum 
up the contribution of each particle of mass at each different 
radius like this:

I = Σmr2

Therefore, if you have a golf ball at radius r1 and another at r2, 
the total moment of inertia is

I = Σmr2 = m(r1
2 + r2

2)

So, how do you find the moment of inertia of, say, a disk 
rotating around an axis stuck through its center? You have to 
break the disk up into tiny balls and add them all up. Trusty 
physicists have already completed this task for many stan-
dard shapes; I provide a list of objects you’re likely to encoun-
ter, and their moments of inertia, in Table 10-1.
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Table 10-1 Advanced Moments of Inertia
Object Moment of Inertia

Disk rotating around its center (like a merry-go-
round)

I = (1⁄2) mr2

Hollow cylinder rotating around its center (like 
a tire)

I = mr2

Hollow sphere I = (2⁄3) mr2

Hoop rotating around its center (like a Ferris 
wheel)

I = mr2

Point mass rotating at radius r I = mr2

Rectangle rotating around an axis along one 
edge

I = (1⁄3) mr2

Rectangle rotating around an axis parallel to one 
edge and passing through the center

I = (1⁄12) mr2

Rod rotating around an axis perpendicular to it 
and through its center

I = (1⁄12) mr2

Rod rotating around an axis perpendicular to it 
and through one end

I = (1⁄3) mr2

Solid cylinder I = (1⁄2) mr2

Solid sphere I = (2⁄5) mr2

Doing Rotational Work and 
Producing Kinetic Energy

One major player in the linear-force game is work (see 
Chapter 7); the equation for work is work = force times dis-
tance. Work has a rotational analog — but how the heck can 
you relate a linear force acting for a certain distance with the 
idea of rotational work? You convert force to torque, its angu-
lar equivalent, and distance to angle. I show you the way in the 
following sections, and I show you what happens when you do 
work by turning an object, creating rotational motion — the 
same thing that happens when you do work in linear motion: 
You produce energy.
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Making the transition 
to rotational work
Imagine that an automobile engineer is sitting around con-
templating a new, fresh idea in car design. What she wants to 
create is something environmentally responsible and daring — 
something never before seen in the industry.

In a burst of inspiration, the answer comes to her — not only the 
answer to her automobile dreams, but also your answer on how 
to tie linear work to rotational work. Take a look at Figure 10-2, 
where I’ve sketched out the whole solution. What she should do 
is tie a string around the car tire so that the driver can simply 
pull the string to accelerate the car! Doing so allows her to give 
feedback to the drivers on how much work they’re doing.

F

r

String tied around tire 

Figure 10-2: Exerting a force to turn a tire.

Work is the amount of force applied to an object multiplied by 
the distance it’s applied. In this case, the drivers apply a force 
F, and they apply that force with the string. Bingo! The string 
is what lets you make the handy transition between linear and 
rotational work. So, how much work is done? Use the equation

W = Fs

where s is the distance over which the driver applies the force. 
In this case, the distance s equals the radius multiplied by the 
angle through which the wheel turns, s = rθ, so you get

W = Fs = Frθ
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However, the magnitude of the torque, τ, equals Fr in this 
case, because the string is acting at right angles to the radius 
(see Chapter 9). So you’re left with

W = Fs = Frθ = τθ

The work done, W, by turning the wheel with a string and a 
constant torque is τθ. This makes sense, because linear work 
is Fs, and to convert to rotational work, you convert from 
force to torque and from distance to angle. The units here are 
the standard units for work — joules in the MKS system, for 
instance.

 

Note that you have to give the angle in radians for the conver-
sion between linear work and rotational work to come out right.

For example, say that you have a plane that uses propellers 
to fly, and you want to determine how much work the plane’s 
engine does on a propeller when applying a constant torque 
of 600 N·m over 100 revolutions. You start with

W = τθ

A full revolution is 2π radians, so plugging the numbers into 
the equation gives you

W = τθ = (600 N·m)(2π·100) = 3.77·105 J

The plane’s engine does 3.77·105 joules of work. But what hap-
pens when you put a lot of work into turning an object? The 
object starts spinning. And, just as with linear work, the work 
you do becomes energy.

Solving for rotational 
kinetic energy
When an object is spinning, all its pieces are moving, which 
means that kinetic energy is at work. However, you have to 
convert from the linear concept of kinetic energy to the rota-
tional concept of kinetic energy. You can calculate the kinetic 
energy of a body in linear motion with the following equation 
(see Chapter 7):

KE = 1⁄2 mv2
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where m is the mass of the object and v2 is the square of its 
speed. This applies to every bit of the object that’s rotating — 
each bit of mass has this kinetic energy.

 

To go from the linear version to the rotational version, you 
have to go from mass to moment of inertia, I, and from veloc-
ity to angular velocity, ω.

You can tie an object’s tangential speed to its angular speed 
like this (see Chapter 9):

v = rω

where r is the radius and ω is its angular speed. Plugging this 
conversion into the previous equation gives you

KE = 1⁄2 mv2 = 1⁄2 m(r2ω2)

The equation looks okay so far, but remember that it holds 
true only for the one single bit of mass under discussion — 
each other bit of mass may have a different radius, for exam-
ple, so you’re not finished. You have to sum up the kinetic 
energy of every bit of mass like this:

KE = 1⁄2Σ(mr2ω2)

You may be wondering if you can simplify this equation. Well, 
you can start by noticing that even though each bit of mass 
may be different and be at a different radius, each bit has the 
same angular speed (they all turn through the same angle in 
the same time). Therefore, you can take the ω out of the sum-
mation:

KE = 1⁄2Σ(mr2)ω2

Doing so makes the equation much simpler, because the 
moment of inertia, I, equals Σ(mr2). Making this substitution 
takes all the dependencies on the individual radius of each bit 
of mass out of the equation, giving you

KE = 1⁄2Σ(mr2)ω2 = 1⁄2 Iω2

Now you have a simplified equation for rotational kinetic 
energy. The equation proves useful because rotational kinetic 
energy is everywhere. A satellite spinning around in space has 
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rotational kinetic energy. A barrel of beer rolling down a ramp 
from a truck has rotational kinetic energy. The latter example 
(not always with beer trucks, of course) is a common thread 
in physics problems.

Going Round and Round with 
Angular Momentum

Picture a 40-ton satellite rotating in orbit around the earth. 
You may want to stop it to perform some maintenance, but 
when it comes time to grab it, you stop and consider the situ-
ation. It takes a lot of effort to stop that spinning satellite. 
Why? Because it has angular momentum.

In Chapter 8, I cover linear momentum, p, which equals the 
product of mass and velocity:

p = mv

Physics also features angular momentum. Its letter, L, has as 
little to do with the word “momentum” as the letter p does. 
The equation for angular momentum looks like this:

L = Iω

where I is the moment of inertia and ω is the angular velocity.

 

Note that angular momentum is a vector quantity, meaning 
it has a magnitude and a direction, and it points in the same 
direction as the ω vector (that is, in the direction the thumb 
of your right hand points when you wrap your fingers around 
in the direction the object is turning).

The units of angular momentum are I multiplied by ω, or 
kg·m2/s in the MKS system.

The important fact about angular momentum, much as with 
linear momentum, is that it’s conserved.

The principle of conservation of angular momentum states that 
angular momentum is conserved if there are no net torques 
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involved. This principle comes in handy in all sorts of prob-
lems, often where you least expect it. You may come across 
more obvious cases, like when two ice skaters start off hold-
ing each other close while spinning but then end up at arm’s 
length. Given their initial angular speed, you can find their 
final angular speed, because angular momentum is conserved, 
which tells you the following is true:

I0ω0 = Ifωf

If you can find the initial moment of inertia and the final 
moment of inertia, you’re set. But you also come across less 
obvious cases where the principle of conservation of angular 
momentum helps out. For example, satellites don’t have to 
travel in circular orbits; they can travel in ellipses. And when 
they do, the math can get a lot more complicated. Lucky for 
you, the principle of conservation of angular momentum can 
make the problems childishly simple. 
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Chapter 11

There and Back Again: 
Simple Harmonic Motion

In This Chapter
▶ Getting a handle on Hooke’s law

▶ Humming along with simple harmonic motion

▶ Tapping the energy involved in simple harmonic motion

▶ Predicting a pendulum’s motion and period

In this chapter, I shake things up with a new kind of motion: 
periodic motion, which occurs when objects are bounc-

ing around on springs or bungee cords or are even swooping 
around on the end of a pendulum. This chapter is all about 
describing periodic motion. Not only can you describe these 
motions in detail, but you can also predict how much energy 
bunched-up springs have, how long it will take a pendulum to 
swing back and forth, and more.

Homing in on Hooke’s Law
Objects that you can stretch but that return to their original 
shapes — such as springs — are called elastic. Elasticity is a 
valuable property. It means you can use springs for all kinds 
of applications: as shock absorbers in lunar landing modules, 
as timekeepers in clocks and watches, and even as hammers 
of justice in mousetraps. 

As long ago as the 1600s, Robert Hooke, a physicist from 
England, undertook the study of elastic materials. He created 
a new law, not surprisingly called Hooke’s law, which states 
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that stretching an elastic material gives you a force that’s 
directly proportional to the amount of stretching you do. For 
example, if you stretch a spring a distance x, you’ll get a force 
back that’s directly proportional to x:

|F| = kx

where k is the spring constant. In fact, the force F resists your 
pull, so it pulls in the opposite direction, which means you 
should have a negative sign here:

F = –kx

Staying within the elastic limit

 

Hooke’s law is valid as long as the elastic material you’re 
dealing with stays elastic — that is, it stays within its elastic 
limit. If you pull a spring too far, it loses its stretchy ability, 
for example. In other words, as long as a spring stays within 
its elastic limit, you can say that F = –kx, where the constant k 
is called the spring constant. The constant’s units are newtons 
per meter. When a spring stays within its elastic limit, it’s 
called an ideal spring.

Say, for example, that a group of car designers knocks on your 
door and asks if you can help design a suspension system. 
“Sure,” you say. They inform you that the car will have a mass 
of 1,000 kg, and you have four shock absorbers, each 0.5 meters 
long, to work with. How strong do the springs have to be? 
Assuming these shock absorbers use springs, each one has to 
support, at a very minimum, a weight of 250 kg, which is

F = mg = (250 kg)(9.8 m/s2) = 2,450 newtons

where F equals force, m equals the mass of the object, and g 
equals the acceleration due to gravity, 9.8 meters per second2. 
The spring in the shock absorber will, at a minimum, have to 
provide 2,450 N of force at the maximum compression of 0.5 
meters. What does this mean the spring constant should be? 
Hooke’s law says

F = –kx
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Omitting the negative sign (look for its return in the following 
section), you get

|k| = |F| / |x|

Time to plug in the numbers:

|k| = |F| / |x| = 2,450 N / (0.5 m) = 4,900 newtons/meter

The springs used in the shock absorbers must have spring 
constants of at least 4,900 newtons per meter. The car design-
ers rush out, ecstatic, but you call after them: “Don’t forget, 
you need to at least double that in case you want your car to 
be able to handle potholes.”

Exerting a restoring force
The negative sign in Hooke’s law for an elastic spring is 
important:

F = –kx

The negative sign means that the force will oppose your 
displacement, as you see in Figure 11-1, which shows a ball 
attached to a spring.

A

B

CF

F

Figure 11-1: The direction of force from a spring.

As you see in Figure 11-1, if the spring isn’t stretched or 
compressed, it exerts no force on the ball. If you push the 
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spring, however, it pushes back, and if you pull the spring, it 
pulls back.

 

The force exerted by a spring is called a restoring force. It 
always acts to restore itself toward equilibrium.

Déjà Vu All Over Again: Simple 
Harmonic Motion

An object undergoes simple harmonic motion when the force 
that tries to restore the object to its rest position is propor-
tional to the displacement of the object. Simple harmonic 
motion is simple because the forces involved are elastic, 
which means you can assume that no friction is involved. 
Elastic forces insinuate that the motion will just keep repeat-
ing. That isn’t really true, however; even objects on springs 
quiet down after a while as friction and heat loss in the spring 
take their toll. The harmonic part of simple harmonic motion 
means that the motion repeats — just like harmony in music, 
where vibrations create the sound you hear.

Browsing the basics of simple 
harmonic motion
Take a look at the ball in Figure 11-1. Say, for example, that you 
push the ball, compressing the spring, and then you let go; 
the ball will shoot out, stretching the spring. After the stretch, 
the spring will pull back, and it will once again pass the equi-
librium point (where no force acts on the ball), shooting back-
ward past it. This event happens because the ball has inertia 
(see Chapter 8), and when it’s moving, it takes some force to 
bring it to a stop. Here are the various stages the ball goes 
through, matching the letters in Figure 11-1 (and assuming no 
friction):

 ✓ Point A: The ball is at equilibrium, and no force is acting 
on it. This is called the equilibrium point, where the 
spring isn’t stretched or compressed.

 ✓ Point B: The ball pushes against the spring, and the 
spring retaliates with force F opposing that pushing.
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 ✓ Point C: The spring releases, and the ball springs to an 

equal distance on the other side of the equilibrium point. 
At this point, it isn’t moving, but a force acts on it, F, so it 
starts going back the other direction.

The ball passes through the equilibrium point on its way back 
to point B. At this equilibrium point, the spring doesn’t exert 
any force on the ball, but the ball is traveling at its maximum 
speed. This is what happens when the golf ball bounces back 
and forth; you push the ball to point B, it goes through point 
A, moves to point C, shoots back to A, moves to B, and so on: 
B-A-C-A-B-A-C-A, and so on. Point A is the equilibrium point, 
and both points B and C are equidistant from point A.

What if the ball in Figure 11-1 wasn’t on a frictionless horizon-
tal surface? What if it were to hang on the end of a spring in 
the air, as shown in Figure 11-2?

Equilibrium

A

-A

Figure 11-2: A ball on a spring, influenced by gravity.

In this case, the ball oscillates up and down. Like when the 
ball was on a surface in Figure 11-1, it will oscillate around 
the equilibrium position. This time, however, the equilibrium 
position isn’t the point where the spring isn’t stretched.

The equilibrium position is defined as the position at which 
no net force acts on the ball. In other words, the equilibrium 
position is the point where the ball can remain at rest. When 
the spring is held vertically, the weight of the ball downward 
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is matched by the pull of the spring upward. If the y position 
of the ball corresponds to the equilibrium point, y0, because 
the weight of the ball, mg, must match the force exerted by 
the spring, F = –ky0, you have

mg = –ky0

And you can solve for y0:

y0 = –mg / k

This equation represents the distance the spring will stretch 
because the ball is attached to it. When you pull the ball down 
or lift it up and then let go, it oscillates around the equilibrium 
position, as shown in Figure 11-2. If the spring is completely 
elastic, the ball will undergo simple harmonic motion verti-
cally around the equilibrium position; the ball goes up a dis-
tance A and down a distance A around that position. (In real 
life, the ball would eventually come to rest at the equilibrium 
position.)

 

The distance A, or how high the object springs up, is an 
important one when describing simple harmonic motion; 
it’s called the amplitude. You can describe simple harmonic 
motion pretty easily by using some math, and the amplitude 
is an important part of that description.

Exploring some complexities of 
simple harmonic motion
Calculating simple harmonic motion can require time and 
patience when you have to figure out how the motion of an 
object changes over time. Imagine that one day you come 
up with a brilliant idea for an experimental apparatus. You 
decide that a spotlight would cast a shadow of a ball on a 
moving piece of photographic film, as you see in Figure 11-3. 
Because the film is moving, you get a record of the ball’s 
motion as time goes on.
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Equilibrium

A

A

spotlig
ht

Figure 11-3: Tracking a ball’s simple harmonic motion over time.

You turn the apparatus on and let it do its thing. The results 
are shown in Figure 11-3 — the ball oscillates around the equi-
librium position, up and down, reaching amplitude A at its 
lowest and highest points. But take a look at the ball’s track. 
Near the equilibrium point, it goes its fastest, because a lot 
of force accelerates it. At the top and bottom, it’s subject to 
plenty of force, so it slows down and reverses its motion.

You deduce that the track of the ball is a sine wave, which 
means that its track is a sine wave of amplitude A. You can 
also use a cosine wave, because the shape is the same. The 
only difference is that when a sine wave is at its peak, the 
cosine wave is at zero, and vice versa.

Breaking down the sine wave
You can get a clear picture of the sine wave if you plot the 
sine function on an x-y graph like this:

y = sin(x)
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You see the kind of shape you see in Figure 11-3 on the plot — 
a sine wave — which may already be familiar to you from 
your explorations of math or from other places, such as the 
screens of heart monitors in movies or on television. Take 
a look at the sine wave in a circular way. If the ball from 
Figure 11-3 was attached to a disk rotating in a plane perpen-
dicular to the page, as you see in Figure 11-4, and you shine 
a spotlight on it, you’d get the same result as when you have 
the ball hanging from the spring: a sine wave.

spotlig
ht

Equilibrium

A

A

Figure 11-4: An object with circular motion becomes a sine wave.

The rotating disk is often called a reference circle, which you 
can see in Figure 11-5. In the figure, the view is from above, 
and the ball is glued to the turning disk. Reference circles can 
tell you a lot about simple harmonic motion.

As the disk turns, the angle, θ, increases in time. What will the 
track of the ball on the film look like as the film moves up out 
of the page? You can resolve the motion of the ball yourself 
along the x-axis; all you need is the x component of the ball’s 
motion. At any one time, the ball’s x position will be

x = A cos θ

              



 Chapter 11: There and Back Again: Simple Harmonic Motion 147
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Figure 11-5: A reference circle helps you analyze simple harmonic motion.

This varies from positive A to negative A in amplitude. In fact, 
you can say that you already know how θ is going to change in 
time, because θ = ω·t, where ω is the angular speed of the disk 
and t is time:

x = A cos θ = A cos(ωt)

You can now explain what the track of the ball will be as time 
goes on, given that the disk is rotating with angular speed ω.

Getting periodic
Each time an object moves around a full circle, it completes 
a cycle. The time it takes to complete the cycle is called the 
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period. The letter used for period is T, and it’s measured in 
seconds.

Looking at Figure 11-5, in terms of the x motion on the film, 
during one cycle the ball moves from x = A to –A and then 
back to A. In fact, when it goes from any point on the sine 
wave (see the previous section) back to the same point on the 
sine wave later in time, it completes a cycle. And the time the 
ball takes to move from a certain position back to that same 
position while moving in the same direction is its period.

How can you relate the period to something more familiar? 
When an object moves around in a circle, it goes 2π radians. It 
travels that many radians in T seconds, so its angular speed, 
ω (see Chapter 9), is

ω = 2π / T

Multiplying both sides by T and dividing by ω allows you to 
relate the period and the angular speed:

T = 2π / ω

Sometimes, however, you speak in terms of the frequency of 
periodic motion, not the period. The frequency is the number 
of cycles per second. For instance, if the disk from Figure 11-4 
rotates at 1,000 full turns per second, the frequency, f, would 
be 1,000 cycles per second. Cycles per second are also called 
Hertz, abbreviated Hz, so this would be 1,000 Hz.

So, how do you connect frequency, f, to period, T? T is the 
amount of time one cycle takes, so you get

f = 1 / T

You’ve found that ω = 2π / T, so you can modify this equation 
to get the following:

ω = (2π / T)·Tf = 2πf

 

So far, you’ve known ω only as the angular speed. But when 
you’re dealing with springs, you don’t have a lot of angles 
involved, so you call ω the angular frequency instead.
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Studying the velocity
Take a look at Figure 11-5, where a ball is rotating on a disk. 
In the section “Breaking down the sine wave,” earlier in this 
chapter, you figure out that

x = A cos θ

where x stands for the x coordinate and A stands for the 
amplitude of the motion. But in that section, you don’t realize 
that other forces are at work. At any point x, the ball also has 
a certain velocity, which varies in time also. So, how can you 
describe the velocity mathematically? Well, you can relate tan-
gential velocity to angular velocity like this (see Chapter 9):

v = rω

where r represents the radius. Because r = A, you get

v = rω = Aω

Does this equation get you anywhere? Sure, because the 
shadow of the ball on the film gives you simple harmonic 
motion. The velocity vector (the direction of the magnitude of 
the velocity; see Chapter 4) always points tangentially here, 
perpendicular to the radius, so you get the following for the x 
component of the velocity at any one time:

vx = –Aω sin θ

The negative sign here is important, because the x compo-
nent of the velocity of the ball in Figure 11-5 points to the left, 
toward negative x. And because the ball is on a rotating disc, 
you know that θ = ωt, so

vx = –Aω sin θ = –Aω sin (ωt)

 

This equation describes the velocity of a ball in simple harmonic 
motion. Note that the velocity changes in time — from –Aω 
to 0 and then to Aω and back again. So, the maximum velocity, 
which happens at the equilibrium point, has a magnitude of 
Aω. This says, among other things, that the maximum veloc-
ity is directly proportional to the amplitude of the motion; as 
amplitude increases, so does velocity, and vice versa.
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For example, say that you’re on a physics expedition watch-
ing a daredevil team do some bungee jumping. You notice 
that the team members are starting by finding the equilibrium 
point of their new bungee cords, so you measure that point.

The team decides to let their leader go a few meters above the 
equilibrium point, and you watch as he flashes past the point 
and then bounces back at a speed of 4.0 meters per second 
at the equilibrium point. Ignoring all caution, the team lifts 
its leader to a distance 10 times greater away from the equi-
librium point and lets go of him again. This time you hear a 
distant scream as the costumed figure hurtles up and down. 
What’s his maximum speed?

You know that the last time, he was going 4.0 meters per 
second at the equilibrium point — the point where he 
achieves maximum speed. You know that he started with an 
amplitude 10 times greater on the second try. And you know 
that the maximum velocity is proportional to the amplitude. 
Therefore, assuming that the frequency of his bounce is the 
same, he’ll be going 40.0 meters per second at the equilibrium 
point — pretty speedy.

Including the acceleration
You can find the displacement of an object undergoing simple 
harmonic motion with the following equation:

x = A cos (ωt)

And you can find the object’s velocity with the equation

vx = –Aω sin (ωt)

But you have another factor to account for when describing 
an object in simple harmonic motion: its acceleration at any 
particular point. How do you figure it out? No sweat. When an 
object is going around in a circle, the acceleration is the cen-
tripetal acceleration (see Chapter 9), which is

|a| = rω2

where r is the radius and ω is the angular speed. And because 
r = A — the amplitude — you get

|a| = rω2 = Aω2
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This equation represents the magnitude of the centripetal 
acceleration. To go from a reference circle (see the sec-
tion “Breaking down the sine wave” earlier in this chapter) 
to simple harmonic motion, you take the component of the 
acceleration in one dimension — the x direction here — 
which looks like

a = –A ω2 cosθ

The negative sign indicates that the x component of the accel-
eration is toward the left. And because θ = ωt, where t repre-
sents time, you get

a = –A ω2 cosθ = –A ω2 cos(ωt)

Now you have the equation to find the acceleration of an 
object at any point while it’s moving in simple harmonic 
motion. For example, say that your phone rings, and you pick 
it up. You hear “Hello?” from the earpiece.

“Hmm,” you think. “I wonder what g forces (forces exerted 
on an object due to gravity) the diaphragm in the phone is 
undergoing.”

The diaphragm (a metal disk that acts like an eardrum) in 
your phone undergoes a motion very similar to simple har-
monic motion, so calculating its acceleration isn’t any prob-
lem. You pull out your calculator. Measuring carefully, you 
note that the amplitude of the diaphragm’s motion is about 
1.0·10–4 m. So far, so good. Human speech is in the 1.0-kHz 
(kilohertz, or 1,000 Hz) frequency range, so you have the 
angular frequency, ω. And you know that

amax = A ω2

Also, ω = 2πf, where f represents frequency, so plugging in the 
numbers gives you

amax = A ω2 = 1.0·10–4 m[(2π)(1,000 Hz)]2 = 3,940 m/s2

You get a value of 3,940 meters per second2, which is about 
402 g.
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“Wow,” you say. “That’s an incredible acceleration to pack 
into such a small piece of hardware.”

“What?” says the impatient person on the phone. “Are you 
doing physics again?”

Finding angular frequencies 
of masses on springs
If you take the information you know about Hooke’s law for 
springs (see the section “Homing in on Hooke’s Law” earlier 
in this chapter) and apply it to what you know about finding 
simple harmonic motion (see the section “Déjà Vu All Over 
Again: Simple Harmonic Motion”), you can find the angular 
frequencies of masses on springs, along with the frequencies 
and periods of oscillations. And because you can relate angu-
lar frequency and the masses on springs, you can find the dis-
placement, velocity, and acceleration of the masses.

Hooke’s law says that

F = –kx

where F is the force, k is the spring constant, and x is distance. 
Because of Newton (see Chapter 5), you also know that force = 
mass times acceleration, so you get

F = ma = –kx

This equation is in terms of displacement and acceleration, 
which you see in simple harmonic motion in the following 
forms (see the previous section in this chapter):

x = A cos (ωt)

a = –A ω2 cos(ωt)

Inserting these two equations into the previous equation 
gives you

F = ma = –mA ω2 cos(ωt) = –kx = –kA cos(ωt)
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This equation breaks down to

m ω2 = k

Rearranging to put ω on one side gives you

You can now find the angular frequency for a mass on a 
spring, and it’s tied to the spring constant and the mass. You 
can also tie this to the frequency of oscillation and to the 
period of oscillation (see the section “Breaking down the sine 
wave”) by using the following equation:

ω = (2π / T) = 2πf

You can convert this to

and

Say, for example, that the spring in Figure 11-1 has a spring 
constant, k, of 1.0·10–2 newtons per meter and that you attach 
a 45-g ball to the spring. What’s the period of oscillation? All 
you have to do is plug in the numbers:

The period of the oscillation is 13.33 seconds. How many 
bounces will you get per second? The number of bounces rep-
resents the frequency, which you find this way:

f = 1 / T = 0.075 Hz

You get about 0.075 oscillation per second.
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Because you can tie the angular frequency, ω, to the spring 
constant and the mass on the end of the spring, you can pre-
dict the displacement, velocity, and acceleration of the mass 
using the following equations for simple harmonic motion 
(see the section “Exploring some complexities of simple har-
monic motion” earlier in this chapter):

x = A cos (ωt)

v = –A ω sin (ωt)

a = –A ω2 cos(ωt)

Using the previous example of the spring in Figure 11-1 — 
having a spring constant of 1.0·10–2 newtons per meter with a 
45-g ball attached — you know that

Say, for example, that you pull the ball 10.0 cm before releasing 
it (making the amplitude 10.0 cm). In this case, you know that

x = (0.10 m) cos (0.471 rad·s–1·t)

v = –(0.10 m)(0.471 rad·s–1) sin (0.471 rad·s–1·t)

a = –(0.10 m)(0.471 rad·s–1)2 cos (0.471 rad·s–1·t)

Examining Energy in Simple 
Harmonic Motion

Along with the actual motion that takes place (or that you 
cause) in simple harmonic motion, you can examine the 
energy involved. For example, how much energy is stored in 
a spring when you compress or stretch it? The work you do 
compressing or stretching the spring must go into the energy 
stored in the spring. That energy is called elastic potential 
energy and is the force, F, times the distance, s:

W = Fs
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As you stretch or compress a spring, the force varies, but it 
varies in a linear way, so you can write the equation in terms 
of the average force, :

The distance (or displacement), s, is just the difference in 
position, xf – x0, and the average force is 1⁄2(Ff + F0), which 
means

Substituting Hooke’s law (see the section “Homing in on 
Hooke’s Law” earlier in this chapter), F = –kx, for F gives you

Simplifying the equation gives you

W = 1⁄2kx0
2 – 1⁄2kxf

2

 

The work done on the spring changes the potential energy 
stored in the spring. The following is exactly how you give 
that potential energy, or the elastic potential energy:

PE = 1⁄2kx2

For example, if a spring is elastic and has a spring constant, 
k, of 1.0·10–2 newtons per meter, and you compress it by 10.0 
cm, you store the following amount of energy in it:

PE = 1⁄2kx2 = 1⁄2(1.0·10–2 N/m)(0.10 m)2 = 5·10–5 J

 

You can also note that when you let the spring go with a mass 
on the end of it, the mechanical energy (the sum of potential 
and kinetic energy) is conserved:

PE1 + KE1 = PE2 + KE2

When you compress the spring 10.0 cm, you know that you 
have 5.0·10–5 J of energy stored up. When the moving mass 
reaches the equilibrium point and no force from the spring is 
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acting on the mass, you have maximum velocity and therefore 
maximum kinetic energy. At that point, the kinetic energy 
is 5.0·10–5 J by the conservation of mechanical energy (see 
Chapter 7 for more on this topic).

Going for a Swing with 
Pendulums

Other objects move in simple harmonic motion besides 
springs, such as the pendulum you see in Figure 11-6. Here, 
a ball is tied to a string and is swinging back and forth.

L

s

θ

Figure 11-6: A pendulum, like a spring, moves in simple harmonic motion.

Can you analyze this pendulum’s motion as you would a 
spring’s (see the section “Déjà Vu All Over Again: Simple 
Harmonic Motion”)? Yep, no problem. Take a look at 
Figure 11-6. The torque, τ (see Chapter 9), that comes from 
gravity is the weight of the ball, negative mg, multiplied by 
the lever arm, s (for more on lever arms, see Chapter 9):

τ = –mgs
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Here’s where you make an approximation. For small angles θ, 
the distance s equals Lθ, where L is the length of the pendu-
lum string:

τ = –mgs = –(mgL)θ

This equation resembles the form of Hooke’s law, F = –kx (see 
the section “Homing in on Hooke’s Law”), if you treat mgL as 
you would a spring constant. And you can use the rotational 
moment of inertia, I (see Chapter 10), rather than the mass for 
the ball; doing so lets you solve for the angular frequency of 
the pendulum in much the same way you solve for the angular 
frequency of a spring (see the section “Finding angular fre-
quencies of masses on springs” earlier in this chapter):

The moment of inertia equals mL2 for a point mass (see 
Chapter 10), which you can use here assuming that the radius 
of the ball is small compared to the length of the pendulum 
string. This gives you

Now you can plug this into the equations of motion for simple 
harmonic motion. You can also find the period of a pendulum 
with the equation

ω = (2π / T) = 2πf

where T represents period and f represents frequency. You 
end up with the following for the period:

Note that this period is actually independent of the mass 
you’re using on the pendulum!
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Chapter 12

Ten Marvels of Relativity
In This Chapter
▶ Seeing how light behaves at high speeds

▶ Examining time and length in space

▶ Learning what Einstein said about matter and energy

▶ Shining light on the sun and the speed of light

▶ Making connections between Einstein and Newton

This chapter contains ten amazing physics facts about 
Einstein’s theory of special relativity. Well, sort of. The 

pieces of info I include aren’t really “facts” because, as with 
everything in physics, the information may yet be disproved 
someday. But the theory of special relativity has been tested 
in thousands of ways, and so far it has been on the money. 
The theory gives you many spectacular insights, such as the 
one that states that matter and energy can be converted into 
each other, as given by perhaps the most famous of physics 
equations:

E = mc2

You also find out that time dilates and length shrinks near the 
speed of light. After you read what Einstein has to say, your 
ideas about time and space will never be the same. 

Nature Doesn’t Play Favorites
Einstein stated long ago that the laws of physics are the 
same in every inertial reference frame. In an inertial refer-
ence frame, if the net force on an object is zero, the object 
either remains at rest or moves with a constant speed. In 
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other words, an inertial reference frame is a reference frame 
with zero acceleration. Newton’s law of inertia (a body at rest 
stays at rest, and a body in constant motion stays in constant 
motion) applies.

Two examples of noninertial reference frames are spinning 
frames that have a net centripetal acceleration or otherwise 
accelerating frames.

What Einstein basically said is that any inertial reference 
frame is as good as any other when it comes to the laws of 
physics — nature doesn’t play favorites among reference 
frames. For example, you may be doing a set of physics exper-
iments when your cousin rolls by on a railroad car, also doing 
a set of experiments, as you see in Figure 12-1.

Your cousin’s physics lab

Your physics lab

Figure 12-1:  Moving physics labs are as accurate for the laws of physics as 
stationary labs.

Neither of you will see any difference in the laws of physics. 
No experiment allows you to distinguish between an inertial 
reference frame that’s at rest and one that’s moving.

The Speed of Light Is Constant
Comparing speeds while you’re in motion is hard enough to 
do with cars on the highway, let alone with objects traveling 
the speed of light. For most people, finding out that the speed 
of light is constant, no matter how fast you go, is unexpected.

Say, for example, that your cousin, who’s riding on a railroad 
car, finishes a drink and thoughtlessly throws the empty can 
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overboard in your direction. The can may not be traveling 
fast with respect to your cousin — say, 5 m/s — but if your 
cousin’s inertial reference frame (see the previous section) is 
moving with respect to you at a speed of 30 m/s, the can will 
hit you with that speed added on: 35 m/s. Ouch. But light will 
always hit you at about 299,792,458 m/s.

Time Contracts at High Speeds
Imagine that you’re looking up at a starry night as an astro-
naut hurtles past in a rocket, as you see in Figure 12-2. 
Einstein’s theory of special relativity says that the time you 
measure for events occurring on the rocket ship is longer 
than the time measured by the astronaut. In other words, time 
dilates, or “expands,” from your point of view on the Earth.

Observer

s s

A

B

Δ t0D

D

vΔ t vΔ t
Δ t  = ?

Figure 12-2: Time dilates for observers on Earth looking at rockets.

To see how this works, take a look at Figure 12-2, diagram A. 
In that diagram, a special clock bounces light back and forth 
between two mirrors mounted on the inside walls of the 
rocket at distance D apart. The astronaut can measure time 
intervals based on how long it takes the light to bounce back 
and forth. From your perspective, however, the time appears 
different. You see the rocket ship hurtling along, so the light 
doesn’t just have to travel the distance s — it also has to take 
into account the distance the rocket travels horizontally.
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Space Travel Slows Down Aging
Don’t go telling this to your beauty-obsessed, wealthy aunt, 
but if you’re traveling in space, you may age less than some-
one on the ground. For example, say that you observe an 
astronaut who’s moving at a speed of 0.99c, where c equals 
the speed of light. For the astronaut, tics on the clock last, 
say, 1.0 second. For each second that passes on the rocket as 
measured by the astronaut, you measure 7.09 seconds.

This effect takes place even at smaller velocities, such as 
when a friend boards a jet and takes off at about 230 m/s. 
The plane’s speed is so slow compared to the speed of light, 
however, that relativistic effects aren’t really noticeable — it 
would take about 100,000 years of jet travel to create a time 
difference of 1 second between you and your friend’s watches. 
However, physicists conducted this experiment with jets 
and super-sensitive, cesium-based atomic clocks capable of 
measuring time differences down to 1.0·10–9 second. And the 
results agreed with the theory of special relativity.

Length Shortens at High Speeds
The length of the rocket an astronaut is riding on is different 
according to his measurements than according to your mea-
surements taken from Earth. Take a look at the situation in 
Figure 12-3 to see how this works.

The length, L0, of an object measured by a person at rest with 
respect to that object will be measured as L, a shorter length, 
by a person moving at speed v with respect to that object. In 
other words, the object shrinks.

 

Note that shrinking takes place only in the direction of motion. 
As Figure 12-3 shows, the rocket ship appears to contract in 
the direction of motion when you measure it (diagram B), but 
not from the astronaut’s point of view.
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Observer 

L0

L

L = ?

Long rocket 

Short 
rocket 

A 

B 

Figure 12-3: Length contracts for rocket ships in space.

Matter and Energy Are 
Equivalent: E = mc2

Einstein’s most famous contribution is about the equivalence of 
matter and energy — that a loss or gain in mass can also be con-
sidered a loss or gain in energy. Einstein’s result was actually

As a special case, the object you’re converting to energy may 
be at rest, which means that v = 0. In such a case, and only in 
that case, you do indeed find that E = mc2.

 

You’ve seen Einstein’s famous equation before, but what does 
it really mean? You can almost think of mass as “condensed” 
energy, and this formula gives you the conversion factor 
between kilograms and joules, which is c2, the speed of light 
squared.
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Matter + Antimatter 
Equals Boom

You can get a complete conversion of mass into energy when 
you have both matter and antimatter. Antimatter is just like 
standard matter but sort of reversed. In the atoms of antimat-
ter, rather than having electrons, you have positively charged 
positrons. And in place of positively charged protons, you 
have negatively charged antiprotons. Science fiction aficio-
nados may recognize antimatter as the driving force in the 
Starship Enterprise’s engines in Star Trek.

But the weird thing is that antimatter actually exists. 
Scientists can locate it in the universe and, in fact, can pro-
duce it in the laboratory using high-energy particle accelera-
tors. When a standard electron and an antimatter electron 
(a positron) come together, they both get converted entirely, 
100 percent, into energy. What happens to that energy? It can 
streak out as high-powered photons, or it can cause the pro-
duction of other, more exotic particles.

The Sun Is Losing Mass
Most of the energy we get from the Sun comes from fusion, 
the combination of atomic nuclei into other nuclei. The Sun 
is radiating away a heck of a lot of light every second, and for 
that reason, it’s actually losing mass. However, you have noth-
ing to worry about; the Sun’s mass is enormous, so the Sun 
won’t burn itself out anytime soon.

You Can’t Surpass 
the Speed of Light

You can’t go faster than the speed of light, which is why c is 
the same in all inertial reference frames (see the first section 
of this chapter), even if the light you see is coming from a 
source that’s moving toward you at constant velocity. Here’s 
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what the theory of special relativity says about the total 
energy of an object:

For an object at rest, Erest = mc2. So, the relativistic kinetic 
energy of an object of mass m must be

Note that as the velocity of the object gets larger, the term in 
parentheses above gets bigger, moving toward the infinite. So, 
as the speed of the object gets infinitesimally closer to c, the 
kinetic energy of the object becomes nearly infinite. Although 
that sounds impressive for rocket ships, what it really means 
is that you can’t do it — at least not according to the theory of 
special relativity.

Newton Was Right
After all the discussion about Einstein, where have physicists 
left Newton? What about the good old equations for momen-
tum and kinetic energy? These equations are still right, but 
only at lower speeds. For example, take a look at the relativis-
tic equation for momentum (see Chapter 8):

where p is momentum, m is mass, and v is speed. Notice this 
part:
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You see a difference only when you start getting near the 
speed of light; this factor changes things only by about 
1 percent when you get up to speeds of about 4.2·107 m/s, 
which would have been pretty big for Newton’s day. At lower 
speeds, you can neglect the relativistic factor to get

p = mv

Newton would be happy with this result.

How about the equation for kinetic energy (see Chapter 7)? 
Here’s how it looks in relativistic terms:

where KE is kinetic energy. Take a look at this term:

You can expand it by using the binomial theorem (from algebra 
class) this way:

When the term v2 / c2 is much less than 1, the equation breaks 
down to

Putting those terms into the equation for relativistic kinetic 
energy gives you — guess what? Your old favorite, the non-
relativistic version (see Chapter 7):

KE = 1⁄2mv2
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So Newton isn’t left in the dust when discussing relativ-
ity. Newtonian mechanics still apply, as long as the speeds 
involved are significantly less than the speed of light, c. 
(You start seeing relativistic effects at about 10 percent of c, 
which is probably why Newton never noticed them.)

              



Physics Essentials For Dummies 168

              



• A •
abbreviations, 9
acceleration

about, 15, 33–34
angular, 41, 46–47, 112, 117–119, 129
average, 35, 98
centripetal, 43–45, 115–116, 

150–151
displacement and speed, 39–40
displacement and time, 36–39
gravity, 36, 39, 57, 64–66
inertia, 51
instantaneous, 35
positive and negative, 34–35
second law of motion, 52–57
simple harmonic motion,  

150–152, 154
tangential, 114–115, 128–129
uniform and nonuniform, 35–36

amplitude, 144, 149
angles, 45–47, 67
angular acceleration, 41, 46–47, 

112, 117–119, 129
angular displacement, 41, 46–47, 112
angular frequency, 148
angular momentum, 136–137
angular motion. See rotational 

motion
angular speed, 112, 135, 148
angular velocity, 41, 46–47, 116–119, 

135–136, 149
antimatter, 164
axes, 27–28, 55

• C •
cancelling variable, 11
centripetal acceleration, 43–45, 

115–116, 150–151

CGS (centimeter-gram-second) 
system of measurement, 9–10

circular motion. See also 
acceleration: angular motion; 
rotational motion

angular acceleration, 41, 46–47, 112
centripetal acceleration, 43–45, 

115–116, 150–151
displacement, 41, 46–47
period, 42
radians, 45
through time, 146–147
uniform, 41–42
velocity, 41, 43–44, 46–47

closed system, 103
collisions, 102–103, 105–110
component weight, 74
conservation of angular 

momentum, 136–137
conservation of kinetic energy, 

105–106, 107
conservation of mechanical 

energy, 82, 92–93
conservation of momentum, 101–103
conservative force, 90–92
constant speed, 30
constants, 63, 70, 140, 160–161
conversion factors, 10–11
curves, driving on, 45 

• D •
deceleration, 33, 35. See also 

acceleration
Δ (delta), 28
direction, 15–17
displacement

about, 25–27
acceleration related to, 36–40
angular, 41, 46–47, 112
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displacement (continued)

axes, 27–28
circular motion, 41, 46–47
simple harmonic motion, 154
speed measurement, 28–29, 36

drag (pulling weight), 79–80

• E •
Earth, 63, 65. See also gravity
Einstein, Albert, 8, 159. See also 

special relativity theory
elastic collisions, 105–106, 107–108
elastic potential energy, 154–156
elasticity. See also simple 

harmonic motion
angular frequency of a mass, 

152–154
basics of simple harmonic 

motion, 142–144
elastic limit, 140–141
energy and work, 154–156
equilibrium point, 142–143
Hooke’s law, 139–142, 152
restoring force, 142
spring constant, 140
tracking harmonic movement 

over time, 144–147
elliptical orbits, 137
energy

kinetic. See kinetic energy
matter equivalent to, 163
mechanical, 82, 92–93
potential, 8, 82, 87–90, 154–156
units, 9

equal and opposite reactions. 
See Newton, Sir Isaac: third 
law of motion

equality of vectors, 16
equations

acceleration, 34, 35, 36–40
angular equivalents for linear 

equations, 45–47, 128
centripetal acceleration, 44–45
displacement vector, 28

E=mc2, 8–9, 159, 163, 165
Hooke’s law, 140, 152
impulse, 96
inclined planes, 68
kinetic energy, 83–84
momentum, 97
Newton’s law of universal 

gravitation, 63–65
relativistic kinetic energy, 

165, 166–167
relativistic momentum, 165–166
rotational kinetic energy, 136
rotational motion, 111–112
rotational work, 133
second law of motion, 52–53, 

127–128
speed, 29–30, 31, 36
time difference, 28
velocity, acceleration, and 

distance, 40
work, 133

equilibrium, 58–61, 125–126, 
142–144

equilibrium point, 142–143
equilibrium position, 143–144

• F •
fi ring velocity, 103–105
foot (of a vector), 18
foot-pound-inch (FPI) system of 

measurement, 9–10
force

about, 7, 15, 49–50
conservative force and 

nonconservative force, 90–92
elastic materials, 139–142
equal and opposite forces, 61–62
equilibrium, 58–61
friction, 69–75
gravity, 63–68
inclined planes, 66–68, 73–75
inertia, 50–51
momentum. See momentum
net force, 52–57, 85–87
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normal force, 69–70, 75
restoring force, 142
tension, 57–58
units, 9, 52
work related to, 77–78, 154–155

free body diagram, 53–54
frequency, 148
friction

about, 50, 68–69
coeffi cient, 70–77
gravity, 69–75
kinetic energy related to, 

83, 86–87, 90–92
kinetic friction, 71–73
normal force, 69–70, 75
static, 71–73
uphill, 73–75

fulcrum, 119
fusion, 164

• G •
gravity

acceleration, 36, 39, 57, 64–66
as conservative force, 90–91
friction, 69–75
inclined planes (ramps), 66–68
Newton’s law of universal 

gravitation, 63–65
potential energy related to, 88–91
simple harmonic motion 

infl uenced, 143–144, 156–157

• H •
harmonic motion. See simple 

harmonic motion
Hertz, 148
Hooke, Robert, 139–140
Hooke’s law, 139–142, 152

• I •
icons, explained, 3
ideal spring, 140

impulse, 95–96, 98–101. See also 
momentum

impulse-momentum theorem, 
98–99

inclined planes (ramps), 66–68, 
73–75, 86–87

inelastic collisions, 105–106
inertia, 50–51, 64, 142. See also 

moment of inertia
inertial reference frame, 159–160
instantaneous acceleration, 35
instantaneous speed, 30
isolated system, 103

• J •
joule, 9, 78

• K •
kilogram, 9
kinematics, 95. See also impulse; 

momentum
kinetic energy

about, 7–8, 81–83
calculating with net force, 85–87
collisions, 105–107
converting from potential energy, 

89–90
equation, 83–85
friction related to, 83, 86–87, 

90–91
relativistic, 165–167
rotational, 134–136
springs, 155–156

kinetic friction, 71–73

• L •
length, 9, 162–163
lever arm, 119–124, 156–157
light, speed of, 160–161, 164–165
line, collision along, 107–108
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• M •
magnitude, 15–17
mass. See also weight

gravity, 63–65
inertia, 51, 64
kinetic energy, 84–87
momentum, 97
potential energy, 88–90
second law of motion, 52–59
units, 9
weight related to, 51, 64

matter, 163–164
measurement systems, 2, 9–14
mechanical energy, 82, 92–93
meter, 9
MKS (meter-kilogram-second) 

system, 2, 9–11, 52–53
moment arm, 120
moment of inertia, 129–132, 136
momentum

about, 95, 97
angular, 136–137
collisions, 101–103, 105–110
conservation of, 101–103
fi ring velocity, 103–105
impulse related to, 98–101
relativistic, 165–166
units, 97

motion
about, 6–7
acceleration. See acceleration
circular. See circular motion
Newton’s laws. See Newton, 

Sir Isaac
nonuniform, 30–31
periodic. See periodic motion
rotational. See rotational motion
simple harmonic. See simple 

harmonic motion
speed. See speed; velocity

• N •
net force, 52–57, 85–87
newton, 9, 52–53
Newton, Sir Isaac

about, 49–50
fi rst law of motion, 50–51, 160
law of universal gravitation, 63–65
laws not applicable at relativistic 

speeds, 165–167
second law of motion, 

52–61, 127–130
third law of motion, 49, 61–62

newton-meter, 78
nonconservative force, 90–92
nonuniform acceleration, 35–36
nonuniform motion, 30–31
nonuniform speed, 30–31
normal force, 69–70, 75

• P •
pendulum, 156–157
period, 42, 147–148, 153
periodic motion. See also simple 

harmonic motion; springs
frequency, 148, 153
Hooke’s law, 139–142, 152
pendulum, 156–157
period, 42, 147–148, 153

physics (scope and defi nition), 5–6
pivot point, 119
potential energy, 8, 82, 87–90, 

154–156
power, 93–94
pulleys, 57–61

• R •
radian, 45, 112, 113
ramps (inclined planes), 66–68, 

73–75, 86–87
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reference circle, 146–147
relativity. See special relativity 

theory
restoring force, 142
resultant vector, 17
right hand rule, 117
rotational motion. See also circular 

motion
angular acceleration, 117–119
angular momentum, 136–137
angular velocity, 116–117
applying vectors, 116–119
centripetal acceleration, 115–116
equations, 111–112
equilibrium, 125–126
kinetic energy, 134–136
moment of inertia, 129–132
Newton’s second law, 127–130
tangential motion, 112–116
torque, 119–125
work, 132–134

rounding numbers, 13–14

• S •
scalars, 16, 21
scientifi c notation, 12
second, 9
seesaw, 119–120
SI system. See MKS (meter-

kilogram-second) system of 
measurement

signifi cant digits, 12–14
simple harmonic motion

acceleration, 150–152, 154
angular frequency of a mass, 

152–154
basics, 142–144
energy, 154–156
Hooke’s law, 139–142, 152
pendulum, 156–157
period and frequency, 

147–148, 153

tracking over time, 144–147
velocity, 149–150, 154

sine wave, 144–146
special relativity theory

about, 8–9, 159
antimatter, 164
E=mc2

 equation, 8–9, 159, 163, 165
inertial reference frame, 159–160
length, 162–163
Newtonian physics compared 

with, 165–167
speed of light, 160–161, 164–165
time, 161–162

speed. See also acceleration; 
velocity

about, 29
average, 31–33, 36
displacement measurement, 

28–29
instantaneous, 30
light, 160–161, 164–165
tangential, 113–114, 135
uniform and nonuniform, 30–31

spring constant, 140–141
springs. See also simple harmonic 

motion
angular frequency of a mass on, 

152–154
basics of simple harmonic 

motion, 142–144
energy and work, 154–156
Hooke’s law, 139–142, 152
spring constant, 140
tracking simple harmonic 

movement over time, 144–147
static friction, 71–73
Sun, 12, 63–64

• T •
tangential motion, 43, 112–116, 

128–129, 135, 149
tension, 57–58
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time, 9, 29, 36–39, 42, 161–162
torque, 119–125, 128–129

pendulum, 156–157
rotational work related to, 134

typographical conventions, 2, 29

• U •
uniform acceleration, 35–36
uniform circular motion, 41–42
uniform speed, 30

• V •
vectors

acceleration, 34, 35
adding, 17, 19–20
angles, 20–24
angular momentum, 136–137
centripetal acceleration, 44
component sign, 55
components, 20–24
direction, 15–17, 29
displacement, 28
equal, 16
feet, 18
force. See force
graphing, 19
magnitude, 15–17, 20–24, 29
multiplying, 20
notation, 16, 19–20, 21–22
numerical, 19–20
rotation, 116–119
scalars, 16, 21
subtracting, 18, 19–20
torque, 124–125
typographical conventions, 2, 29
velocity, 15, 21–22, 29

velocity. See also acceleration; 
speed

angular, 41, 46–47, 116–117
calculating using tangential 

speed, 113–114
circular motion, 41, 43–45, 46–47
collisions, 105, 107–110
fi ring velocity, 103–105
kinetic energy related to, 83–87
momentum, 97, 98
simple harmonic motion, 

 149–150, 154
vectors, 15, 21–22, 29

• W •
watt, 94
weight. See also mass

friction, 69–70, 72–75
mass related to, 51, 64
pushing/pulling, 78–80

work
about, 77–78
conservative force versus 

nonconservative force, 90–92
kinetic energy, 81–87, 89–90
negative, 80–81, 85
potential energy, 87–90
power, 93–94
pushing/pulling weight, 78–80
rotational, 132–134
springs, 154–155
units, 78
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