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PREFACE 

Physic! is the mOSI fundamental of Ih e sciences. and some knowledge of il is 
required in fie lds as disp ar ate as chemistry, biology, engineering, medicine. 
and arch il�lurc. OUT experience in leaching physics to a "'ide variety of 
audiences in the U.S. and Europe o\'cr many years is Ihal, while siudents 
may acquire some familiarity wilh formal concepes of physics, they are all 
too oncn uneasy about applying these concepts in a variety of practical situa· 

tions. As an elementary e�ample. they may be able to quote the Jaw of con­
""rvation of angular momentum in Ihe abxnc<: of c�lcrnal torques, bUI be 
quile unable 10 explain why a spinning top does not fall over. The ph ysici s t  
Richard Feynman coined the pbrnsc: "fnlgile knowledge" t o  dC'SCribc thi s kind 

of mismatch between knowledge of an idea and the ability t o  apply it. 
In our view there is really only one way of acquiring a robust ability to use 

ph ys ics: the repeated employment of physical concepts in a wide variety of 

applications. Only then can students appreciate the mength of these ideas 
and fed c onfide nt in using them. This book aims to meet this need by pro­
vidin g a large number of pro hle ms for i ndi\;d ua l s tud y. We think it very 
i mportant to provide a full solution for each one, so that s tude nu can check 
their progress or discover where they have gone wrong. We hope that users of 

this book will bo: able to acquire a working knowledge of those pnrt! of 
physics they need for their science. 

Calculation is an essential i ngredie nt of physics: th e ability 10 make quan­
titative statements which can bo: checked by observation and e�periment is 
the basis of the enormous sua::css of modem science and tochno logy . NewT­
thdess. in this book we ha'J1: tried to avoid mathematical complications 

wtlich are not fu nd ame ntal to understanding Ihe physics. In particular we 
make n o use of calculus. It is worth pointing out th at many practic al situa­
tions that s cientists ern;ounter are 100 comple� to allow detailed calculations. 

vII 



viII PREFACE 

In th.ese cases a simple estimate is oflen quite sufficient to give great insigh.t, 
and is in any case an indispensable preliminary to any attempt at a more 
elaborate treatment. 

The book. conlains problems organized in Ihra: chapters, on mechanics, 
electromagnetic thcory, and the properties of mailer and waves. We give brief 
summaries of the reb'ant theory al Ihe beginrtiog of each of Ihe chapters. 
Thc-scare not extensi�e, as this is nOI inlended a s a  textbook., but they docover 
all of the topics, and establish. the conventions we use. Solutions 10 e-.... ch 
probltm are given in the second half of the book.. We hope that users of the 
book. will attempt a problem before look.ing up the solution; even an unsuc­
cessful attempt brings the subject ioto much sharper focus than simply reading 
the solution before appn:ciating the difficulty. Knowledge hard-won in this 
way is the essence of a working grasp of physics. jusl as an athlete's perfor­
mance owes much to loog hours o f t r  .... ining. Realislically. ho .... e�er. we expecl 
that some of the lime this "ill not happen. particularly when Ihe subjecl is 
new. We hope we have provided enough problems so that lhe reader may, if 
desired. use the firsl ooe or IWo solutions on any lopic to "spot Ihe pattern," 
and thus acquire the ability 10 attempt the latn problems without ha�ing to 
look up the solution first. Accordingly, Ihere is a general tendency for the 
problems in a given area to be easier al the bcginrting than the end. However, 
we have resisted any idea of doing this absolutely systematically, for Ihe good 
reasons Ihal (a) lhedegrce of difficulty ofa problem is often a rather subjective 
judgement, and (b) we do nOI want readers to t.'x�rt the problems to get too 
difficult for them as the se<:tion proceeds. Indeed, we have deliberately 
sprinkled some simpler problems over Ihe sections 10 avoid this, so our advice 
10 Ihe reader is always at leasl to try the problem before giving up! 

We h.ope thai this book will be useful to college and universilY under­
graduates in the physical and life sciences, engineering, medicine and archi_ 
lecture, as well as for some hish school and secondary school courses. With 
this in mind we have tried 10 include problems drawn directly from Ihese 
subjects. The enormous range of applicability of physics, ftom understanding 
why black. holes are black. 10 IIhy boiling franlr.:Furtcrs splil lcngthways, is for 
us one of ils greal f3.5cinations, and we hope we have managed to convcy a 
lillIe of this in Ihe book. We hope too thai il will provide ils readers with the 
basis of a sound and adaptable knowledge of physics, As a very important 
side-effect, we tm<t Ihat it will be useful in preparing for e�aminat;ons: most 
common Iypes of physics problems set al Ihis level will be encountered here. 
We make no apology 10 our colleagues in unh'crsilies and schools for this­
after all, in an important sen5C the subjttl is defined by the huge range of 
queslions il can answer. A student who has acquired the ability to solve 
problems (and so pass e.taminations) has a good grounding in ph�ics, and 
Ihoroughly deserves $ucce§!. 

, 



NOTE ON UNITS 

This books uses SI (rncter-kilogram-sewnd) units throughout, ",;th onc 
exception: we follow the cllstomary usage of gram moles. rather than kilo­
moles, in discu.sing gases. We sometimes Siale problems using convcll1ional 
non-51 units (e.g. kmlh for sp:cds), but these are converted inlo 51 units in 
the soll11ions. Numerical answ.:r:s are usually ii"cn \0 \"'0 significant figure!l. 

Ix 



PHYSICAL CONS TANTS 
USED IN THIS BOOK 

Gravitational oon�tanl 

A<xclerJlion due to gravity 

Sr«<! of light in \-acuum 

Coulomb con�I"nl 

Pemlcability of vacuum 

Pennittivity of vacuum 

lIo1tzm:mn constant 

Gas constant 

Specific heat of waIn 

Planck coostant 

PrOlan charge 

Mass of electron 

Mass of proton 

Atomic mass unit 

Compton wavelength 

Rydberg 

G = 6.7 x 10-11 Nml kg-1 

g=9.8ms-1 

c=3xlOSms-1 

_,_ '" 9 X 101 N C-1 m-1 
'". 
,�= 8.84 X 10-12 N -I C m-1 

1Io=4:rxlO-7TmA-1 

k'" 1.38 X JO-2J J K-L 

R", 8.31 J mole-I K-1 
= O.0821itcr AIm K-1 
'" 8.31 X 10J J 1;:8-1 K-1 

C", '" 4200 J kg-1oC-1 

1r=21fh=6.63x 10-).0 Js 

e _ 1.6 x 1 O-19C 

m, = 9,] x 10-11 kg 

m, '" 1.67 x 10-171;:8 

m,l = 1.67 x 10-27 kg 

1.., = 2.4 X 10-12 m = O.024A 

Eo = 13.6 eV 

xl 
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PROBLEMS 
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CHAPTER ONE 

MECHANICS 

• SUMMARY OF THEORY 
I. St3tUS of thl! Subje<:t 

Newtonian me.,:hanics provides a romplete description of virtually all 
mechanical phenomena. The two exceptions to this statement concern (a) 
speeds approaching that of light, and (b) lengths of order the size: of atoms. 

NOIf that air reJiJllmct' i.J Ik'S'I'('Ted in oll probfetrU unll!l1 Ihl' COIIUMJ' is 
txplirilly UOltd. 

1. Statics 
• Equilibrium of a body under e;o;tcmaJ forces requires that their resultant is 

zero, i.e. 

EF, = EFy _ EF, = 0, (I) 

when: F" Fy. F, are the th.ree Cartesian components of the resultant force. If 
the forces act on lines that all meet at a point. tbis condition is also sufficient. 
It is then legitimate to represent all the forces as acting at the body's center of 
mass. 

• The relller of /tUl3J is the pointd with coordinates (XCM,YCN, ZCM). wbere 

Em,x, 
XCM = 

Eml ' (2) 

ell'. Here the summations ext�nd over all the mass points of the body. The 
position of the center of maM can often be found from symmetry requi�-
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ments. If two bodies of IlUlSS m" ml aTe joined together so that their �entef$ 
of mass have coordinates (xl,)'J,=Il, (xl,"),zl), tbe center of mass of the 
combined body has coordinates given by applying (2) to them. i.e. 

X
(;M = mix, + mIxI , etc. (3) m,+m:/ 

• If the e"ternal forces do not act along lines meeting at a point. "'c require in 
addition to (I) that Ihe resultant torque should vanish, In this book we 
restrict allention to forces acting in a plane, and the torque condition for 
equilibrium is 

EMo=O, (4) 
where Mo is the prootIC! of the force and il5 perpendicular distance from the 
uis through O. The torque is ooullled positive if the force tends to cause 
anticlockwise rotation about the axis and ncgath"\: othcrwi�. The position 0 
of Ihe axis may be chollCn freely: ir lh�re is an unknown roreo: in Ihe problem. 
it is generally uIICru]to choose 0 on the line of action of this force, so thai its 
torque vanishes. Given a point a such that EMQ = O. then EMu = 0 for any 
other poilll 0'. 

• The I,iclionu/ l(II"a f or Fj acting on a body has two forms: if the body is 
static, and the normal reaction force between two surfaces is N. thenl takes a 
value no larger tllan a certain maximum, i.e. 

I S /I,N. (I) 
Here /1, is a dimensionless quantity charncteristic of the two surfaces, called 
the coefficient of stalic friction. Note that this equation does not dell."minl' 
the actual value of/: tbis is r(luod from the equiUbrium cnnditions (1, 4). If 
the force required to mainlllin equilibrium exceeds i',N, the bodies slide with 
respect to each other, and the Frictional Force becomes 

I'" p.N, (6) 

"'here p. is now the coefficient of sliding (or kinetic) friction. 

J. Kinematics 

• A"erog" speed � (distance travded)f(time). 

• In adding two velnel/ii's (U�,Ul'U,) and (vI'''r'v,). we mU$t add �"Ompon�nt 
by component, i.e. the resultant \�Iocity is (ux + VI' U, + v,, Ii, + 1',). This 
form of addition (and subtraction) also applies to accelcrations, momenla. 
etc. and expresses what is sOllletimes called t� pamlle/ogrom (nr Iriang/I') 
rule (tee the Figure faT the ClUC (If adding two veclO1""5 A, B in the planc). 
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I' 
1 , , , 

(A.,A,) 
'. --------------

A. + B. 

s 

• The Tld(Jli,'� I"fdociry of a moving point A with respect to a moving point a. 
whose velocities in a given refcren.:e frame are (u(A)",., , •• ), 

(u(8).,. . .) is given by subtracting a's velocity from A's component by 
component, i.e. by ([u(A)x - u(B).], ... ,., ,). 

• Acu/eralion - (change of ,·c1ocity)f(time). 

Note that zero acceleration does 1101 automatically imply.zero velocity: steady 
motion has zero accelerJt;on. 

• Under cotlS/anl acerlumion D. the velocity 1/ and distan.:e x tra'-c:led are 
related to the elapsed time / and initial velocity � by the three formulae 

1I= �+al, (7) 

if = l� +:lax, (8) 

., (91 X=IIoI+T' 

In two- or thrtt-dimensional mOlion these formulae can be used component 
by component. If air resistance is neglected. projectiles have constant venica! 
acceleration and zero horizontal acceleration. 

h 'l alElr 



6 PR08t£MS - OW'TER t. HEOiANICS 

4. Newton's Second law 

• The fundamental postulate of Newtonian mechanics e�plains what happens 
when the re$ul!ant o;tc:mal force on a body d� not vani�h as in statics: Ihr 
r�JUII/Ul1 foru 011 a lx>dy �qUaJS 1M rUl� of chQ1lg� of irJ momt'nlum. Here 
momentum - mass )( velocity. Irthe mass oflhe body o.Iocs not change (true: 
for all th� problems in this book), we can write Newton's second law in the 
familiar fonn 

EF� '" ma�, (10) 

1:F.r",ma" ( II)  

EI-� = mal' (12) 

These equalions give us Ihe accelerations in lenns of Ihe forces. Kioemalics 
can then be used to lind the motion. 

S. Work. Ene'1� and Power 

• Work - (force) )( (distal\CC moved in direction of force) 

Thus if the motion makes angle (J 10 the force F. the work done by the force 
in moving distance I is 

"' .. FloosO. (13) 
(Here il is assumed thaI the force F docs not change during the mOlion 
through t.) 

• PO""t!r - nile of working. ThUs. if work II' is pcrfonm:d at a uniform rate in 
time I. the power is 

w P=�. 
, (14) 

• A body of mass ttl moving ... i1h velocity to has kintlic enngy 

(15) 

• If the body is raised through a height h against the Earth's gravily. it gains 
gravi/aliMol pol�nliaJ tllrrgJ 

U=mgh. (16) 

• The principle of conservation of enagy stales Ihal the 10lal energy of a closed 
system remains oon513nl. If the only forces acting on a mechanical system are 
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coruerfari.·I'. no mechanical cnergy is convened to otber forms, and the total 
meclwnical energy is conserved. The commonest �xampl� of a conservative 
force is gravity: a body moving under grdvity alon� conserves the sum of its 
kinetic and potential energies. i.e. 

T + U =�mJ + mgh = constant. (17) 

Forces which arc not conservative (e.g. friction) and convert mechanical 
encrlty to heat are called dissipati'·c. 

5. Impulse and Momentum 

• It follows from Newton's seccnd law thaltht towl momentum of an isalatcd 
.• ys/Cm remains (onstant. i.e. 

l::ntl!� "" constam, 

Emu, = constant, 

Emv, � constant, 

where the summation is over all the bodies of the system. 

( 1 8)  

(19) 

(20) 

III some ca� we deal with systems where bodies move freely except for 
large forces F. which act for short times I (e.g. collisional forces). In these 
cases it is easier to deal with the product I = Ft. which is called the impulse. 
From Newton's second law it follows Ihal the 10lal impulse on a body gives 
the change of its momentum. 

[n collision problems, the effects of the elastic forces of collision are 
expressed in the cOI!f!idenl of reslilUlion 1', defined by 

(relative velocity after collision) _ -e X (relative "elocily before collision), 

[f e = I. the collision is elastic and total mechanical energy is conserved. If 
e < 1, the collision is inelas{ir ind some of the mechanical energy i510st in the 
collision. e.g. as heat. defonmtion of the bodies, etc. 

7. Circular motion 

• The angular I'clarity of a poi�t mass about another point is defined as 

" 
w=� 

, 
(21) 

where 1/ is the linear velocity of the mass perpendicular to the line joining thc 
two points, and r is the length of this lint. Clearly, 11 rigid body rotates with 
uniform angular velocity about any of its points. 

, 



8 PROBLEMS - CHAPTER I. MECHANICS 

• For a body to move i n  a circle of radius r with speed v requires centripetal 
audero/lon 

(22) 

directed towards the center of the circle. By Newton's second law this 
requires a un/ripe/al force 

(2J) 

directed towards the center of the circle, where m is the mass of the body. 

• Angular acceleralion a - rate of change of angular velocity, If the angular 
"elocity changes by 101 at a unifonn rate in time /, "'"C h:1\"e 

a=�. (24) 
, 

If a is constant, there is a complete analogy with the case: of eonstant linear 
acceleration a, and the three fannulae given for that case can he taken o\"cr 
with the substitution of a for 11, 101 for v and the angular displacement (J for x. 

• Newton's second law applied to rotational motion of a particle of mass m 
about a fixed point 0 implies that 

(2S) 

Thus if the total torque about a vanishes, the angular momentum m?IoI is 
coniICrved. 

8. Hannonic motion 
A body is undergoing simple harmonic mOlioll when il moves in a slraight line 
under a restoring foro; proportional to the distance: x from a fixed point. The 
acceleration of such a body can be expressed as 

a = -";x. (26) 

Here .., i. Ihe ang"la, f'<'<I"�lICy. The concepl can be e�tcnded 10 "ngu]"T 
motion. The motion rrpeats itself exactly after a time 

(27) 

P is called Ihe period. The maximum displaccment from Ihe center of force 
(e,g, x = 0) is called the amplirude. The period of a simple pendulum. a mass 
suspended from a sIring of length / osciUaling under gravity. is 

". 
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I I) '" P = 2'1f\,g , (28) 

independent of the mass and the amplitude of the motion. provided that this 
remains smaiL The period of a mass m moYing on a smooth horizontultable 

attilched to il spring of constant k whose other end is fixed is 

P=21f(�Y'1
. (29) 

• If simple harmonic motion of angular frequency w is initiated from rest with 
displacement Xo. the subsequent displacement is 

lO(f) = XoOOSWf. (30) 
If simple harmonic motion of angular frequency,", is initiated from the origin 
with speed too. the subsequent displacement is 

9'. Gravitation 

X(f) = �sinwl. w (31) 

• Newton's law of ,min',sll! gra"illliion states that the attractive gravitational 
force between two point masses ml,m) is 

. Gm,m2 
fJR.v =--;;r- (32) 

when: G is a unil'ersaJ constant. and d is the separation of the two masses. 
The gravitational potential energy of the two masses is 

(33) 

It can be shown that the gravitational force e�erted by a uniform sphere is the 
same as if the sphere's mass wen: all conccntrau:d at its CClller. 

For bodies close 10 the Eanh. d is always cffeclhl:ly equal to the Earth's 
radius R., so the dO"'nwards vertical force on a body of mass m is 

FJR.Y = mg, (34) 

where g = G/II,/ /f., with /II, '"' mass of the Earth. Hen: g is called the sur­
jace grUl'ify or the aeu/era/ion due 10 grul·ily. If the body is subject 10 
upwards vertical a�leration a. we define tile e/Jeclivl! gravity as 

g.rr=g+u. (35) 
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For example, at the Earth's equator, some of the gravitational force must be 
used to provide the centripetal acceleration needed to keep the body on the 
Earth's surface, so the tfft(:tive gravity is lower thcre. 

I O. Motion of a rigid body 

• A rigid body is one in which the distances between any of its particles remain 
constant at all times. 

• The motion of a rigid body can be decomposed into the linear motion of its 
ceotcr of mass, and rotations about the center of mass. Thc center of mass 
motion is that of a point object of the same mass as the body. As explained 
above, a rigid body has uniform angular velocity about any point. 

• IfNewton's second law is app�ed to rotational motion about eilher any fixed 
point 0 Dr the centcr of mass. it implies that 

(36) 
where 

J = Em?, (37) 
is called the moment of inerlia about O. l/......, r i� the perpendicular dinan"" 

of each point of mass m from the axis. "flI.c moment of inertia plays for 
angular motion the role ofthemass in linear motion. The moments of inertia 
of simple bodies may hi: found easily, and are given in Table l. 

• If the total torque about 0 vanishes, then the angular mDmenllmr I", is con­
served. This is the analog of the conservation of (linear) momentum for an 
isolated system referred to in Section 6 above. 

The kinetic energy of rotation with angular velocity w about a point 0 is 

(3g) 
where I is the relevant moment or inertia. The rate of increase of T is given 
by the ... ork done by the wrf(lU's Mo, which is EMolJ, where IJ is the angle 
traveled in the direction of the torque. 

The period of a physic-of !"wdulum undergoing simple hannonic motion is 

p= 2rr(mg�CM(1, (39) 

where I is the relevant moment of inertia, m the mar.s of the body, and leM is 
the distance of the centet' of mass From the pivot. 

, 



STATICS 

TABLE I. Moments of inenia of limple �nifcrm 
bodies of mus M abo\lt their symmetry 
UU . 

... , 
circular hoop. radius t 

(ylindrkal sheil, rud;�s, 
dn:ular disc. radius , 

wlid cylinder. rndiU$' 
rod. icngth I 
sphere, radius, 

• STATICS 

II 

PI. Show thai the center of mass of the Earlh-Sun system is located insidl! the 
Sun. (The Sun's mass M@=2x 10)0 ltg, the Earth's trulSS M, = 6 x 1!Y' kg. 
the Sun's radius R0 = 7 X 10' m. and Ihe Earlh--5un distance 
d, = 1.5 X lOll m.) Where is Ihe center of mass of the Sun-Jupiter system? 
(Jupiters mass !ttJ = 2 x IOn Itg, Jupiter-Sun distancc dJ = 1.4 X lOll m.) 

P2. A tennis rackel can be approllim9too by a artular hoop of radius ,and mass 
ml atlached to a uniform shaft of length f and mass mI' Assuming that 
r = 1/2 and mt = ml = m. find the position of the racket's center of mass. 

Pl. The tennis racket of the previcus question is modified by adding a poim mass 
ml .. m/2 to the pari of the rim furthest fmm the shaft. Find the new posi­
tion of the center of mass. 

P .... A pizza can be regarded as a unifonn thin disk of radius r and mass m. A 
narrow slicc of ang/e 11 = 20· is cut out and eaten. Approximating the slice as 
a triangle, where would you have to support the parlly eaten pizza to hold it 
in balance? 
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PS. Ships whicll Ilave been emplif<! of cargo are often refilled willl balla§t (e.g. 

sand, waler). Wily? 

P6. Given two !>et§ of weigiling scales and a long board, how could you delermine 

thc po§ilion of tile center of mass of a person? 

fTl. A mass rests on an inclined plane of angle (J '" 30·. The coefficient of slatic 

friClion is 1', = 0.6. Draw a diagram sllowing all Ihe forces acting on the 

maM, and explain their origin. Calculale Iheir value5 if the man is 
m = � kg. Verify Illal under Ihe!ie conditions Ille mass "'ill nOI slide. 

PS. A mass 1>1 = 10 kg hangs by two strings making angles Q '" 4S· and tJ = 60" 
to Ihe vertical. The sirings arc connected through pulleys 10 1"'0 masses ml 
and I>Il (Stt Figure). Find m"ml such that Ihe mass hangs in equilibrium. 

P9. A uniform sphere of mass m and radius, hangs from a sIring against a 

smooth vertical wall. the line of tile SIring passing through the ball's center 

(!>ee Figure). The string is attached at a height h '" ../3r abovc the poinl wllere 

Ihe ball touches the wall. What is the tension T i n  Ihe string, and Ihe force F 
exerted hy Ihe ball on Ihe walr? If the wall is rough. "'ith coefficient of slatic 

friction I',. are these forces iIKl"l:ascd or reduced? 

" 
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PIO. A drcus perfonner of mass m = 60 kg stands at the midpoint of Ii rope of 
unstretehed length 10 = 6 m. It is known that the tension T in the rope is 
proponi onal to the amount it is stretched. i.e. T = ,,(I � 10), where" is a 
constant and 1 the actual length of the rope. How large must" be if the 
perfonncr is not to sink more than a distance h '" 1 m below the endpoinls of 
the rope? With this value of ". how much would the rope ntend if the 
perfonner were to relea!Oe one end of it and hang venically from it? 

�}, 

P I I. A mass m is suspended from the center of Ii wire, which is stretched over two 
supports of equal heights. The tensions at each end of the wire are T. Show 
that however large T is made, the wire is never compkteIy hori7.ontal. Esti­
mate the angle 10 Ihe horizontal if T = 100mg. 

P12. A patient's leg is in tnlction ... ith the arr.lngement shown in the Figure, with 
W = 100 N. A student nul1lC moves the cord to an anchoring point nearer to 
the patient, so Ihat the two angles of the cord to Ihe horizontal change from 
01 = 450 to 01 "" 30". Docs this make any difference 10 the patien t? 

h-'\ alltr 
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P I J. The human forearm can be approximaled by a lever as shown in Ihe FiguTl:. 

Given that L = 201 and the arm "''eight is w, what muscle force F mUSI be 
exerted 10 lift a weighl W with the arm al angle 810 the hori7.0ntal? Why is it 
larger than W +,.tI 

P14.  A box of DUlSS m is pulled by a man holding a rope at an angle 8 to Ihe 
horizontal. A second man pulls horizontally in Ihe opposite diTtttion with a 
force equal to lwice Ihe box's weighl. Whal is Ihe maximum value 8, of8 such 
Ihat Ihe box begins to mo\'e in the direction of Ihe first man wilhout being 
lifted from Ihe ground? What, in terms of mg, is Ihe foro: P Ihen exerted by 
the first man? 

PIS. A uniform rod of mass m can rolale fn:cly around a horizonlal axis 0 alone 
end which is fixed to the floor. It is supported al an angle Ct .. 45· 10 Ihe floor 
by a ming attached to the olhtr end making an angle 8 = 15" 10 Ihe vertical. 

o 

n· 1 Ma 
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the free: cnd of thc ming hanging ,·crtically from a pulley and holding a mass 
M (sec Figure). Find M in tcrms of III if the s�ttm\ i� in equillbrium. Caleu· 
late the force P exerted by the floor on the axi. O. and its direction. (E�pren 
your answer in terms of III and g.) 

P16. A shop puts up a signboard of mass m hanging from the end of a rod of 
length I and negligible mass, .... hich is hinged to the shop wall at an axis O. 

The rod is held horizontal by means of a wire attached to its midpoint and to 
the wall, a height h above the hinge (sec Figure). Ir the wire will break when 
its tension T reacbes T "'"' = Jmg, wbat is tbe minimum height h ... lin tt"TlllS 
of f) that the wire must be attached to the wall? 

PI? A rectangular door of mass M, width M' and height Ii = 3 ... is supported on 
tWO hingcslQC;lted a distance d � K·/4 from its upper and 10 .... 'CT edgcs. If thc 
hinges aTC amlngro $0 that the upper one carri� the entire weight of the 
door, find the forces lin termiof Mg) cxerted on the door by the two hinges. 

rOT 
3: 1 

t--w-j 

PIS. A uniform rod of mass III leans against a smooth vertical wall. making an 
angle 81 with it. Its other end is supported by a smooth plane inclined at an 
angle (h to the horizontal (soc FiguTl:). Find a relation between the angles 

n· 1 Ma 
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9),92, If 92 = 30· find the forces e�erted by the wall �nd inclined pl�ne on the 
rod in terms of mg. 

P19. A uniform ladder leans agairun a :;mooth vertical w�lI, making an angle 0 
with a honzomal floor. The roefficient of static friction between the ladder 
and the floor is ,.. Find (in terms of,.) the minimum angle Om for which the 
ladder does nOI slip. 

PlO. In the configuration of the prn'ious problem. a repair worker whose mass is 
twice that of the ladder wishes to climb to its top. What does the minimum 
angle 9", become? 

P21. A uniform rectangular plalfcrm of width L hangs by two ropes making 
angles 9j = 30·, 9) = 60· 10 the venicaL A load of twice the mass of the 
platfonn is placed on il 10 Ir.eep it horirolllal: how far from Ihe edge of the 
platform must it be? 

" \,���======,.(' 

" 

, 
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P2.2. A uniform circular cylinder of radiu§ , has its bast on a plane inclined at 
nngle (J to the horizontal. The coefficient of static friction is /1,. Find the 
minimum hcight h of the cylinder such that i\ overturns rather than sliding. 

P23. The human jaw is worked by two pairs of mll5Cles, positioned on each side of 
the pivot (see Figure). Is it poMiblc to arrange for there: \0 be no reaction force 
on the pivot when the jaw e�erts a steady chewing force C upwards and the 
10"'er mU5Clc pair e�ens a for«' L as shown? Find C in this case if the upper 
lind lower muscle pllirs oct III 110gl"" O. _ SO'. (}/ _ 40' to the hori7.onw,L 

Mulde lone U 

'. 

P24. A horizontal force F = 0.2 N acts on the tooth shown in the Figure. Find 
the forces f"t,Fl e�erted by the jawbone on the root and viu ,'''''!"Sa. if 
11=1.5cm.ll=2cm. 

P25. A football player of height h is subjected to a horizontal push at his 
shoulders. which ar� a distanoe h/4 from his ecnter of mass. which in tum 
is a distance Sh/8 from his fe<:t (see Figure). To counteract the push he leans 
forward at an angle 0 to Ihe vc:rtical. The coefficient of static friction between 
the player's feet and the pitch is / •. Find the minimum angle fJ", of lean such 

n 1 a r 
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that tbe player slides backwards rather than being o\'enumed by a strong 

push. 

P2.6, A woman of mass m stands on one platform of a large beam balance and 

pull5 on a eord eonnected to the center of its nearer arm. The other platform 
holds a mass M. What restrictions on AI, m are required if the balance is to 

remain level'? 

P27. A woman liflS a mass M by means of the double pulley alTIlngement shown in 

the Figure. If all sections of the rope are regarded as venical, the pulleys are 

very light and friction is negligible, what force must she exert? lfshe wishes to 

raise: the mass through a height h, what length of rope must she pull down? 

" 

, 



STATICS 19 

P28. What happens to the results of the previous question if a second pair of 
pulleys are added, 115 shown in the Figure? 

P29. Rotation of the shaft of the right_hand lever (of length b) in the Figure is 
resisted by a frictional torque whose maximum possible value is G1" What 
torque must be supplied to the shaft of the left-hand levcr (length a) in order 
to begin to tum it anticlockwise as shown? Repeat the calculation if the Ic\"crs 
aTe rcplaced by steadily turning gear wheels 115 shown" If the left-hand shaft is 
totated with angular velocity fI, what is the angular \"elocity of the right"hand 
shaft? 

, 
-'-

(='::::::;.�
'?' ,= 
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PlO. A cylindric-.lI oil drum of mass m and radius R lies on a road against the curb, 
which has hcight R/2 (see Fig�rc). It is  to be lifted gemly (quasistntically) on 
to the sideW"dlk by means of a rope wound around ils circumfercnce. What is 
the minimum force F., needed if the rope is  pulled horizontally? What is  the 
magnitude and direction of the reaction force at the curb? Willthc minimum 
force F,. change as the drum is lifted? If the rope is pulled al an angle (J to Ihe 

horizonllli. for whal value of e is the required force a minimum? Whnt is the 
value of thi§ minimum force? 

Pli. A drinking straw of lenglh I is placed in a smoolh hemispherical gIass of 
radius R rcsting on a horizomal table. Find its equilibrium posilion 

(a) - if! < 2R. 
(b) - if I > 2R. assuming Ibat the maw does not fall out. 

Pl2. A woman lifts a mass .If slowly by means of a pulley. placed at the height of 
her hand (IOee Figure). Her fo ... arm isf _ 24 em long. and her biceps nluscle§ 
are attached to it 0 = 3 em fwm the elbow joint. Estimate the tension T in 
her biceps if her upper arm and forearm make anglcs (J, <? to the verticaL If 

she keeps (J = 6, does it gel easier or barder to lift the mass as sh� rdises it? 

, 
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P33. A market siallhoider erecls an awning (sec Figure) of mass M and breadth 2/. 
The supports arc placed a distance a from Ille rear edge. which is secured by a 

venical rope. Find Ihe foru: F on the supports. If instead a second sel of 
supports is placed a dislJ.lncc (J from Iht front of the awning and the ropt is 

removed, whal is the new force F on each of Ihe sets of supporls? Compare 
the two cases if M � 50 kg, i= I m, a= 10 em . 

• KINEMATICS 

P34. A train travels SO km in half an hour. It Ihen stops at a statioo for 20 
minutes. before lraveling for 2 hours at an average speed of 90 km/h. 
What was the train's average speed over Ihe wllole journey? 

P3S. A car starts from rest and "",thes a �'clocity of 100 km/h aner accelerating 
uniformly for lOs. What distance has it tm"eled? What "'as its averasc 
vclocity? 

P36. A train travels a distance J in a sttuighl line. For the first half of the di5lance 
its velocity has Ihe constant "alue VI> and for Ihe second half il has the 
constant value p:!. What is the a"crase "elocity? Is it larger or smaller than 

(It, + u,)/1:I 

P37. A police officer on a motorcycle chase!> a speeding car on a strdight highway. 
The car's speed is constant at u. = 120 km/h, and the officer is a distance 
J = 500 m behind it when sh. starts Ihe chase "'ith velocity u, = ISO kmlh. 
What is Ihe police officer's speed relative 10 Ihe cat? How long will it take her 
\0 calch up "'ith il? 

P38. Taking ofT from a point on the Equator in the late afternoon and flying due 
West. passengers on the Concorde supersonic airliner see the sun set and then 

n 1 a r 
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rise again ahead of them. E!timate Concorde's minimum speed. (Earth's 
mruus '" 6400 km.) 

P39. The maximum straight-line deceleration of a racing car under braking is 
5 m �-2. What is the minimum stopping distance of the car from a velocity 
of 100 kmfh? What does this distance become if the velocity has twicc Ihis 
value? 

P40. A rocket-powered sled accelerates from rest. After I = 10 s it has traveled a 
distance x = 400 m. What is its speed in km/h at this point? 

P41. A ball is thrown vertically upwards with initial speed 10 m s-1 from the edge 
of a roof of height H _ 20 m. How long does it take for the ball to bit the 
ground? AI what velocity does it hit the ground? 

P42. A stone is dropped from rest into a well. It is observed to hit the water after 
25. Find the distance down 10 the water surface. How fast must the stone be: 
thrown downwards in order to hit the surface after only I s? What are the 
impact velocities in the two cases? 

P43. A car and a truck stan moving at the $lime time, hut the truck starts some 
distance ahead. The car and the truck move with constant accelenllions 
al = 2 ms-2, al = I m s-1 respectively. The car o�'ertak\:S the truck after 
the laller has moved 32 m. How long did il take the car to catch up wilh 
the truck? What """ere the velocities of the car and the truck at that moment? 
How far apart did the truck and the car start? 

P44. A rocket climbs vertically and is powered in such a way lhut it has oonstant 
acceleration a. It reaches a height of \ km with a velocity of 100 m s-I .  What 
is the value of a1 How long does the rocket take to reach this I km height? 

P45. A bullet is fired vertically from a toy pi§tol with muzzle velocity 30 ms-1. 
How high :lbovc the firing poiot docs the bullet go before falliag back under 
gr1l\"ity? What is its velocity 4s after being fired? At what height is it then? 

P46_ A body falls freely from rest to the ground a distance It below. In the la�t I s 
of its flight it falls a distance ./2. What is It? 

P47. A man falls from =1 from the top ofa building of height H = 100 m. A time 
, _  I , bier, Super",oman $wooPS after him with initial $PC<XI <'II downw/Ir<U, 

subsequently falliog freely. Sh: catches the man at a hcight h ;;  20 m above 
the ground. What was vo? 

P48. A boy in an elevator throws a ball vcnical!y upwards wilh speed 
vo � 5 m S-1 relative to the elev:ltor. The elevator has cooSUlnt upw:lrd 
acceleration a = 2 m S-l. How long d� it take for the ball to return 10 
the boy's hand? 

, 
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P49. An arlillcry shell is fired from a cannon wilh an elcvalion o f "  = 30" and 
muzzle velocity of Vo = 300 m ,-'. Find the time offlighl of the shell, and ils 
range. 

PSO. A cc:nain athlete consistently thro,,·s a javelin at a speed of 25 m S-I . What is 
her best distance? On one o('ullion the athlcte released Ihe javelin poorly. and 
achieved only one half of this dislance. AI whal elevalion angle did she 
release the jal'e1in'! 

PS I. In the last problem. doe, ttle �levation angle for half distance depend on the 
speed of the throw? Explain your answer. 

PS2. A projectile is fired on ICI'd ground, Show thaI. for given range and initial 
velocity the projection angle h�s two rouible values, which are symmetrically 
spaced each side of 45°. 

PS3. In the movie SfH'ed a hus has 10 Icap a gap in an elcvated freeway. If the hus 
had speed '10 = 100 km/h and the gap "'as x = 15 m, 

(a) - aSliuming the takooff and landing points were at the same level, find 
the angle of projection of the bus's center of maM; 

(b) - if the bus took off horizontally. how much lower mUSt the landing 
side have been than takeoff'! 

PS4. A rifleman aims directly and horizontally at a target at distance x on level 
ground. and his bullet strikes a height " too low. If h < x . • how that in order 
to hit Ihe target, be should aim a height " (lbo,'j' il. 

PSS. A tnmsport airplane flies horiwntally with a constant velocity of 600 km/h, 
at a height of 2 km. Directly Ol'er a marker it releases an empty fuel tank. 
How far ahead of the marker docs the tank hit thc ground? At this time, is 
the airplane ahead or behind the tank? 

PS6. An airplane ill steady lC\'el flight with velocity v = 700 km/h releases a num· 
ber of bombs at regular intervals 1::., ,,  I s, A photogrnph of the release is 
taken from an accompanying airplane. Describe the relative position of the 
first airplane and the bombs on the photograph. How far apart are tbe 
imp<lct points of the bombs on tbe ground? 

PS7. A combat tank fires a shel1 while moving on horilOntai ground with velocity 
u '"  10 m s-'. The gun is pointing directly forwards with elevation a '" $", 
and the muzzle velocity is !'o = 1000 m s-'. The shell hits a target which is 
moving directly away from the tank at It' = 15 m 5-'. How far from the tank 
is the tur�t at the moment of impact? How far apan were the tank and the 
target wben the shell was fired? 

PS8. A softball is thrown at an angle of (l = 60" above the horizontal. It lands a 
distance d = 2 m from the edge of a flat roof. whose height i s "  = 20 m; the 

" '  a r 
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�m 
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edge of the roof is I '" 38 m from the thrower (5C'e Figure). At what speed was 
Ihe softball thrown? 

PS9. A projectile is laun<;hed with h()rizontal and verlical velocity components u, >I. 
Show thaI its Irdjectory is a parabola. and that lhe maximum height and Ihe 
mnge (on level ground) arc h '" JIg. r = 21fV1g, respectively. 

P60. An athlete can Ihrow the jav",�n al four times the speed al which she Can run. 
AI what angle in her rcfercn� frame should she laun<;h the javelin for max· 
imum range? 

P6 1 .  A small boy uses a pea·shooter to hlow a pea dim:dy at a cat in a tree. The 
"':l.t i • •  taMled by the noij;/< of the boy blowing ,.nd falls vertically oUI of Ihe 
Irtt. Does the pea miss? 

P62. A dO"'llhill sider approaches horizontally a hump of height h = I m whi<;h 
b'els OUI before steepening suddenly to an angle D = 25" to the horizontal 
(sec Figure). If her hori1.Ontai speed at the lOp of Ihe hump is u = 100 km/h. 
how long doo:s she spend in the air before landing down the slope? Iflhe slr::ier 
is ahle 10 jump veMicaHy at speed v '"  5 m S-I, and she moves more qui<;lr::ly 
when in oonla<;\ with the snow than in the air, C'oIn you suggest a strategy for 

improving her time? 

P63. A man can 5wim at a speed "', = I m S-I. and wishes to <;ross a river of width 
L = 100 m flo"'ing at v� = 0.5 m ,-I \0 reach his girlfriend who is dircctly 
opposite him on the other bank. In what direction should the man swim so as 
to reach her as soon as possible? How long will it take him? 

, 
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P64, Two trains A and B are traveling in opposite directions along straight parallel 
tTacks at the same speed 11 =  60 kmlh. A light airplane crosses above them. A 
person on train A see$ it cross at right angles, ..... hite a person on train B sees it 
cross the track at an angte 8 .,  30'. At what angle a does the airplane cross 
the track as seen from the gr�und? What is its ground � II,? 

P6S. Rain falls vertically lit speed II on a man who runs lit horizontal speed II. 
Show that he sees thc rJin falling towards him at speed (J + J)I!l and angle 
<> = tan-1 V/1I 10 the vertical. Thc man leans into Ihe rain as he runs. at angle 
(J to the \·ertical. His lotal frontal area is A}, and his lotal area viewed from 
abovc is A,. If A, < AJ, sh�w that hc gets least wet ifhc leans so Ihat () = ¢. If 
he runs a distance I and there is mass p of water per unit volume of rain, show 
that he absorbs a minimum total mass 

nt_ A,lp ""C2+;;-J-LJ '-" 
, (<oJ 

of water. 
P66, A car rounds a bend in a road at a speed of 70 km/h and collides with il 

second car that hIlS emerged from a concealed side road 50 m ffom the bend. 
Analysis of the damage to the cars shows thai the collision took place lit a 
closing speed of 10 kmjh or l�. In making his insurance claim. the driver of 
the first .ar asserts that the second .ar emerged from the side road in sm:h 
a way that the first car had only 4 m in which to brake. Is this version 
plausible? 

• NEWTON'S SECOND LAW 

P67. A mass ntj '" I kg lies on a smooth table and is attached by a string and a 
frictionless pulley to a mass nil "" 0.01 kg hanging from the edge of the table 
($tt Figure). The system is released from rest. Calculate the distance the mllSS 
"'I mO\'e$ across the table in the first ]0$. How long will it take for this m3SS 
to tra\'e! I m from its initial position? 

m , 

m, 
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P68. A mass nI '" 20 kg is pulled upwards with constant acceleration by a cable 

a!lathed to a motor. The cab:c can withstand a maximal tension of 500 N. 

What is the maximum aca:leration "Mal possible? If the acceleration has this 
maximum value, what distance will the mass have mO\'cd after 2s, if it stans 
from res t? 

P69. A smooth indined plane has a slope of 30·. A body begins to mo\'e upwards 
"'lth initial velocity 5 m s-t . How long dOC'> it take for the body to begin to 
slide down the plane again? 

P70. Two bodies are attached to the ends of a ming hanging from a frictionless 
pulley (5ee Figure). The masses of the two bodies are "'1 "" 5 kg and 
ml - 10 kg. Find the aca:lerations of the I1UISSCS and the tension in the string. 

P71. A subway train has constant acceleration u = O.lg. In nne of the cars a mass 
m bangs from the ceiling by means of a string. Find the angle the string 
makes to the vertical and the tension in the string in terms of m and g. 

P72. An elevator of mass M mo,-cs upwards with constant aca:leration a '" O.lg, 
pulled by a cable. What is the normal force exerted by the ete,-ator floor on a 

person of mass m nanding inside it? What is the tension in Ihe cable? Express 
your answer in terms of M, m,g. 

P73. Two masses m,M lie on each $ide of a smooth wedge (see Figure), connected 
by a string passing over a frictionless pulley. The wedge faces make angles 
91 ", 53· and 81 = 4r to the horizontal respectively. What value must the 
ralio M /m take so that the masses remain stationary? What is the tension in 
the string in this case, in tentl'l of m,g? 

" 

" 
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Pl4. An experiment is performed to determine the value of the grnvil3tional aecel· 

eration g on Earth. Two equal masses M hang at rest from the ends of a 
string on each side of a frictionless pulley (se.: Figure). A mass m '" O.OIM is 
placed on the left·hand mass, After the hea,ier side has mO\·ed down by 
h '" I m the small mass m is remowd. The system continues to move for 

the nellt I s, covering a distance of II '" 0.312 m. Find the value of g from 
these data, 

Pls. A rifleman holds his rifle at a height h = 1.5 m and fires horizontally over 
level ground. The bullet lands �t a distance s _ 500 m from the muuJe of the 
gun. What was the muzzle ,'c1ocity of the bullet? The rifle barrel has length 
I .. 0.5 m. Assuming that the hullet hus conSl3nt ac:a:lerntion inside it. cal· 

culate the force on the bullet, if its maS!; was 10 g. 

Pl6. A skydiver jumps from an airplane and acquirc! a falling ,'elocity of 20 m 5-1 

before opening her pardchute. As a result her falling velocity drops to 5 m 5-1 

in 5 s. The skydivcr hus mass m "" 50 kg. Assuming that the deceleration was 
constant, find the total tension in the paraehuh: cords and the resull3nt foro: 
on the skydiver, 

m. The coefficient of sliding friction between the tires of a cur and the road 
surface is /-I '"  0.5. The driver brakes sharply and locks the ,"'heels. If the 
velocit)" of the car b<:fore bruking wus �\l = 60 km/h. how much time will 
the car take to stop? What is the stopping distance? 

P78. The coefficient of kinetic friction between a sled of mass m = 10 kg and the 
snow is JJ '" 0.1. What horizontal foro: F is required to drug the sled at a 
constant velocity? 

Pl9. A skier is stationary on a ski slope of angle 0 = IS', The pre!isure of his $kis 
grJdually melts the snow and reduces the effective coefficient of static friction 
/-I,. What is the value of this coefficient at the moment thm the skier b<:gins to 
move? If the coefficient I' of kinetic friction between the skis and the snow is 
0.1, what is his velocity after 5$, and wlult distanoe has he then traveled? 

" '  . 
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PSO. A length of timber of mass M = 100 kg is dragged along the ground with a 
force F = 300 N by meallS of a rope. The rope makc-s an angle of (> = 30' to 
the ground. The roeffieient of friction between the limber and the ground is 

/1 = 0.2. Find the accc:leration a of the timber. Find also the nonnal force N 
exerted by the ground on the timber. 

PS I .  A body is given an initial sliding velocity Ug =- 10 m I_I up an inclined plane 
of slope (> :: 20' to the hori7.ontal. The coefficient of friction is II = 0.2. Find 

the time I"" the body spends sliding up Ihe slope before reversing ils motion. 
the distance J lraveled 10 this point, and the lime ldoo<n to relurn to the 
starting point. 

PS2. A mass III is placed on a rough inclined plane and altached by a string to a 
hanging mass M over a frictionless pulley (5« Figure). The angle n of the 
slope is such that sin a = 0.6. The coefficient of slatic friction between the 

mass III and the plane is 1'. = Q.2. Show thaI equilibrium is pos.�ib!c only if M 

lies belween two values MI,M1 and find the values of MI, Ml in Icnns of m. 

m 

PS3. A unifunn chain uf total !cnlth f lies partly un a horizoDtal table. with a 
lenglh II overhanging the edge. If I', is the cocflicienl of static friction. how 
large can II be if the chain is nO! 10 slide off the lable? 

P84. Two equal masses lie on each side ofa rough y,�dgc, l"Onnecled by a siring 
passing over a friclionless pulley. The wedge faces make angles 81 :: 53' and 
8J '" 47" to the hurizontal. Find the coefficient of friction I' for which the 

masses move 31 COlIStant \"ClociIY. 

PSS. A IlUlIS III is held at rest on an inclined plane, whuse slope is a, by means ofa 
horizontal force F (see Figure). The roefficient of sialic friction is I',. Find the 

m 

, 
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maximum F allowed before the body stam 10 move up the plane. Express 
your answer in tenns of m, n, JJ, and g. 

P86. A Aatbed truck carnes a box. The coefficienl of slatic friction bel"'eeo the 
box aod the truck is I' . ;;  0.3. What is the maximum acceleration the truck 
driver can allow so that the box does not slide? In the case where this max­
imum acceleration is just ex�cd. find the distance the box travels wUIJ 
rl'spect 10 tlu! truck in the first I s of the motion. Take the coefficient of s�ding 
friction as I' � 0.2. 

P87, A computer monitor stands on a personal computer resting on a horizontal 
table. The mooitor and computer have masses m,M '" 2m respectively. A 
student pull� the monitor horil.ontal1y with for� F. The coefficients of fric­
lion between the computer and the table. and between the computer and the 
monitor arc both I'. Whal is the maximum allowed force F ..... such that the 
monitor does nOI move wilh respect to the computer? Will the computer 

mo\"e "'ith respect to the table in thi s case? What happens if F = 2F"",? 
Justify your answer quantitati\'Cly. 

PSS. A book of mass M rests on a long lable. with a piece of paper of mass 
m "" D.!M in between. The coefficienl of friction between all surfaces is 

/, = 0.1. Thc paper is pulled with hori7.0ntal fom: P (sec Figure). What is 

the minimum \'all1" or P ""lui"'" 10 callo;e any mminn1 With what force ntll.<1 
the page be pulled in order 10 extract it from betwet'n the book: and the table? 
Express your answer.; in units of Mg. 

'-

\ • 

-

\ 
M m _ , 

• WORK. ENERGY, AND POWER 

PB9. A child pushes 11 toy cart from reSI on a smooth horizontal surfacc with a 
force F "" 5 N, directed at an angle (J "" 10' below the horizontal (sec Figure). 
Calculate thc work done by the child in 5 s if Ihe cart's mass is m � 5 kg. 

--=..z:..:..::. - - -- -

'L0;@J 
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P90. A train of mass m = 1000 metric ton� accclerates from rest to II speed 
v = 72 kmfh on a horiwntal track. Calculate the work W dOlle by the 
locomotive cnginc, negk.:ting friction. 

P91. A bucket of water of mass m = 10 kg is raised from rest through a height of 
11 = 10 m IlIld pia=! on a platfonn. How much docs its potential energy 
increase? What was the work done againsl gravity? 

P92.. A rollercoastcr climbs to its malimum height h) = 50 m abo,'c ground, which 
it passes with speed v) '" 0.5 m 5-1. It then rolls down to a minimum height 
"l = 5 m before climbing again to a height of hI .. 20 m (sec Figure). 
Neglecting friction. find the §pccd of the rollercoaster at these two points. 

P93. A tennis player's serve si"cs t�e ball a kinetic energy TI = 10 1. Assuming 
that she Sl'!"\"e5 from a height 11 '" 2 m abo\"e the level of the coun. find the 
speed with which Ibe ball reaches the ground. A§sume thal lhe work done by 
the ball against air resistance i� IV '" 5 J. (Mass m of a tennis ban ... 60 g.) 

P94. Show that the kinematic formula oJ = va + 2a.� for unifonnly accelerated 
straight-line motion can al&o be derived from energy conservation. 

P9S. A high-jumper clears the bar al a heighl of h _ 2 m with horizontal velocity 
VI = J m 5-1• Using conscrvatiM of energy, calculate the velocity ... ith which 
he hilS the landing platform (I m above ground) and Ihe direction of this 
impact velocity. 
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P98. A water·skier is towed by a boa! with horizontal fora: F = 100 N. She 
maintains a oonstant ,-elocity v _ 36 km/h. Find Iho: .... -ork done against fric­
tional forces, sueh as water and air resistance, in lOs. 

P99. Police drivers are t3Ught Ihal doubling Ihe speed quadruples the br-.Iking 
distance. Why? 

PIOO. A SUiICllr.e of mass m = 20 kg is dragged witll a oonslant fora: F ",  150 N 
along an airport ramp of slope 0 = 30' up 10 a heiglll h = 5 m (see Figure). 
Find the coefficienl /' of sliding friction if the suitcase's \'docity is increased 
from r.ero at the bottom of the romp to liz = I ms-t al the heighl h. 

' @  

• 

PIOI. Consider the pulley lifting arrangements of P27 and P28. Show tbat in each 
cas.c tile lowl work done by the woman in raising tlte mass III through a 
height h is tlte same. neglecting friction. Prove a similar result for the gear 
wllec1 arrangement of P29. Is Ihe neglect of friction realistic in practice? 

PI02. A crane lifts a load of mass m '"  500 kg vertically at conSlant speed 
v = 2 m s-I . Find the power expended by the cralle motor. What is the 
work done by Ihc eranc if the load is lifted through h = 20 m? A second 
crone is able 10 lift Ihe same load a\ twice Ihe vertical speed. Find Ihe powcr 
expended and the work done in lifting the load through the same height. 

P103. An elcctric pump dra .... ·s water from a well of depth d _ SO m al a rate of2 ml 

per second. The waler is ejeclro from Ihe pump with velocity liz = JO m ,_1 . 
What is Ihe po\\"1:r consumption of the pump if its efficiency is 'I _ 0.8 (80% 
efficiency)? 

PI04. A car of mass AI = 1000 kg decelerates from a velocily v .. 100 km/h to a 
Slop in r = 10 S. AI what average rate must Ihe bmking surfaccs losc heal if 
their lemperature is nOI to rise significantly? 

PIOS. Animals of similar types but very different sizes lend all to be able to jump to 
roughly similar maximum heights (e.g. v�rious types of dog.', or fleas and 
grasshoppers), although larger animals need more room to lake off, roughly 

n 1 Ma 
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in proportion to their size. What does this suggest about the rUle of energy 
release by muscles in larger animals compared with smaller ones? 

PI06. A mass m slides from rest at height h dO,,"l1 a smooth curved surface which 
becomes horiT.ontal al l.ero height (see Figure). A spring is fixed horizon tally 
on the level part of tbe surface. Find the velocity of the rna>!> immediately 
before encountering the spring, in terms of g,h. The spring constant is k. 
When the mass encounters the spring it compresses it by an amount 
x :o hjtO. Find k in terms ofm,g,h. What height docs the mass reach. on 
returning to the curved pan of the surface, if there are no energy losses in the 
spring? 

, 

PI07. A mass m is projected upwards with initial ,·elocity v along an inclined plane 
of slope a, with sin n = 1/./2 (sec Figure). The coc:fficient of sliding friction is 
11 = 0.1. Using energy conservation, calculate the distance d thc mass travcls 
up the slope. E:o:prCiS your amwer in terms of v,g. What must the minimum 
value of the coefficient of static friClion I'. be in order that the mass docs not 
slide back? If /1, is smaller than this value, with what velocity docs the mass 
return 10 ils s tarling point? EIpTeS$ )·our answer in terms of v. 

h··l alltr 
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• MOMENTUM AND IMPULSE 

PI08. A bird :tnd an ins.:ct fly dirccLly to .... ards each other on a horizontal trajec­
tory. The mass of the bird is ,II and that of the insect is m. The com.-sponding 
(constant) velocities arc V,1I. The bird swallows Ihe insect and continucs 10 

glide in the same direction. Find its Vl:locity U after swallowing the insect. 
Find U in tenns of If in the case m _ O.OIM and v _ IOV. 

PI09. A rifle has mass .If '" 3 kg and fires a bullet of mass m = 10 g with mll.1.7Je 
"doc;ty " = 700 ILl • -' , What is th� n;cuil vd",,;ty u of th� IIU"? F,u", whal 
height It would you ha .. ·c to drop thc rine on to your shoulder 10 feci the same 
kick? 

Pl iO. A rocket works by reacting against the momentum of its uhaust gases. Why 
arc they often constructed with S<'vcral stages? 

Pi l i . A cue bill! hilS velocity U ilnd collides head-on with a stationary pool ball of 
equal mass m on a smooth horil.ontal table. The collision is perfectly elastic 
(mechanic..11 energy is conserwd). What are the velocitics 11" � of the 11'00 

oolls after the collision? 

P1 12. In a one-dimensional collision, masses m" m2 have velocities II" "2 before the 
collision and 1:" V:! aftCfllo'aros, Show thaI if mechanical energy is conserved 
V:! - v, = -(1/2 - "d. i.c. the bodies scpamte at the same speed Ihey 
approached. 

P 1 1 3. An elementary particle of rna." m, oollidcs with a stationary proton of rna'" 
m,. As a result of the collision the particle recoils along its direction of 
approach. A second elementary particle of mass ml continues to move 
fo""ard after �"Olliding with a proton. Gi\'e limits on the ratio� 
m,1 m,. m2/ m,. 

If the velocity of the incoming particle is II in each cas<:, find the final 
velocities of all the particles .ner the l:oHisions in terms of II in the �"ll� 
m! = mpl2. m! = 2mp' 

PI 1-4. An elementary particle of mal� '" and vclocity u collides with a stationary 
proton or mass m,. A ... uming thaI thl: 10lal mcchanil:al CDl:rSY i. ""n"" .... cd, 
calculate what fraction of the particlc's energy is transferred to the prolon. 

PI IS. A mass Ill, moving with \'elocity II, collides with a s tationary mass nil' If the 
cocftkiem of restitution is e (  < I). find the velocity 'I: of"'2 after the colli­
sion, Sho ..... that very litt!e of the original kinetic cnergy is transferred to ml if 
m"m! are vcry different. 

P 1 1 6. If you want to knock a nail into the floor, why is it preferable to use a 
hammer than jump on the nail? 

n 1 Ma 
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P117. A physicist observes the cue ball make a direct collision with a stationary 
pool ball and follow it with significant velocity. He concludes that the coeffi­
cient of restitution of pool baUs is significantly smaller than I .  [5 he correct? 

PI IS. A baseball player 5",ings the bat with velocity Il, and hilS a ball traveling with 
velocity "l (where "l < 0 of course) directly back towards the pitcher. If the 
bat and ball have masses mL,ml. with m! » ml, and the collision is perfectly 
cla�tic, show that the ball ieUI'e5 Ihe bat with velocity at most 2UL - U!. 

P 1 1 9. A mao sits at one end ofa boxcar ofintcrnal length d. which isstationary on 
very smooth level rails. He tries to get the boxCIlr moving by throwing his 
boot. of man m. at the opposite end with velocity UL Describe what happens. 
assuming the collision of Ihe bool with the wall is complelely inelastic (i.e. it 
does not rebound from the wall at all). and the total mass of the boxcar and 
mall minus boot is M. 

PI20. In the previous qUC5tion, what happens ifinstead of a boot the man throws a 
very bouncy ball. whose collision with the wall is completely clastic'! 

P121.  A basketball player bounces Ihe ball (coefficicll1 of restitution e) so that it hilS 
the floor "crtically with velocity 110. AI Ihat moment hc falls over so Ihal Ihe 
ball bounces freely. If no other player intervenes. how high wi!! the ball rise 
011 Ihe firsl bounce. and on the sa:ond bounce? 

Pill. In Ihe previous question. how long does the player hUI'e to regain control of 
the ball lx:fore it stops bouncing? 

Pill. An ani!!ery shell is fired at an angle (J '" 45° to the horizontal with velocity 
IIIJ - 450 m s-t. At the malLimum height of its trajectory the shell explodes, 
breaking inlo two rans of equal mass. One of these initially has zero velocity 
with resped to the ground. How far from the firing point does the other part 
fall back 10 Ihe ground? 

P124. A ball of mass m _ 0.1 kg bits a rigid vertical wall at right allgles with 
velocity u '" 20 m S-L

. The impact is a heigh! h 0:: 4.9 m above the groulld. 
[t rebounds and falls to the gmund 3 distanee X ;:o  1 S m from the fOOl of the 
'''!In. What is the impubiC exerted by the wall on the ball'l Was the collisioll 
elastic? 

PI25, 1'1 bullel uf mil .. '" = 10 J!l it liral hurizulIlI111y illlu II wuu .. kll blud uf rna .. 
M = 7 kg, which lies 011 a smooth horizontal table. The bullet is embedded in 
the block. and the block slides with velocity V ",  0.5 m 5-t after the impact. 
Find the muzzle velocity U of the gun firing tbe bullct. 311d the t01al meehan· 
leal energy lost in lhe impact. 

PI26, A wooden block of mass M '" 10 kg hangs freely 3nd at rest from venical 
strings. A hullet of mass m = 10 g is fired into it alld it rises by h = 3 em. 
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What was the velocity u of the bullet? Where does most of it� kinetic energy 
go? 

P127. A dart of mass nI is thrown horizontally with velocity u and stj,ks into a 
wooden block of mass M = Sm. whicb slides on a smooth horiwntal table. 
The block's motion is resisted by an ela.�tic spring with constant II; {see 
Figure). Find the maximum distance through which the block oompresses 
the spring. fupress your answu in tenus of m, u and k. 

P128. A freight train move!! steadily on a le\-el In,,;-k with vclocity V =  108 km/h. 
Snow falls vertically on to it, and a",",umui:ncs on it at a oonstant rate 
r", = IOkgs-I, Calculatc the additional power the locomotivt" must expend 
in order to maintain the train's speed despite the snow. 

P129. A grain sack of mass M = 10 tg is dropped from a hcight of h = I m on to a 
platform. Calculate Ihe impulle on the plntfon». Assume that the impact is 
short enough that gravity doci not change the momentum during impact. 

If Ihe impact lasts III = 0.1 s, what is the Q"cragt' force on the platfonn 
during the impact? 

Pl lO. A steady stream of grain from a punctured sack falls vertically on a platform 
from a height h = 1 m. Each grain lands without bouncing, and 1000 grains 
lund each §CCOnd. Each grain has mass m = 10 g. What is the force on the 
platform, assuming again that gravity does not change the momentum during 
impact? 

PilI.  A �r goalkeepl:r of mass m, = SO kg punches a ball approaching him 
horiT.ontally. The ball has mass ml> '" 0.5 kg and velocity u = I m S-I. Imme­
diately after thc punch the ball moves horizonull1y awuy along the direction 
of approach with velocity " = O.Su. Assume that the impact lasts t:J.1 = 0.2 s. 
What is the minimum value of the coefficient p, of static friction of the 
goalkeeper and Ihc ground if �c does not slide backwards? 

Pl l2. A boal and its occupant oftolal mass Mb = 200 kg contains 10 sacks ofooal 
each of mass m .. S kg. The boal is silltionary because of engine failure. The 
o<xupant tries 10 reach land by throwing Ihe 5ach hori7.0ntally out of Ihc 
boal. He throws each sack with a vclocity tJ, relali"e to the boat. Assuming 
no friction. what is the velocily after the first sack is thrown out? After the 
second sack is thrown out? Express your result in terms of 11,. 

Pill. Two cars of masses ml = lOOOkg and nil = SOOkg. and velocities 
UI = 18 km/h and Ul = 36kmJh collide at a right-angled intersection. After 
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the collision they slide together as one. What dirt(;tion (with n:lipcct to the 
first car's motion) do they move after the collision? With what velocity do 
they move? How much mechanical energy was lost on the collision'! 

P1 34. A cue ball lIits a stationary pool ball of equal mass. After the collision the 
velocities of the balls make anglt$ 8,';' to the original dirt(;tion of motion of 
the cue balL Find a relation retween 8 and ¢t, if the collision is regarded as 
elastic and the balls slide mther than tolling. 

P1 35. 1\ stationary spacesbJp of mass !of is abandoned in space and must be 
destroyed by Silfety charges placed within it. The crew observc the explosion 
from a safe distance. and see that it breaks the ship into three picecs. All threi: 
pieces fly off in the same plane at angles 120° to each other. The velocities of 
the three fragments are measured to be v, 211 and 3v. What expn:lisions will 
the crew find for the ffiaS5C!l of the threi: fragments in teml5 of M? If all orthe 
explosion energy E goes in10 the kinetic eoergy of the fragments, what was E 
in terms of M, ,,1 

• CIRCULAR AND HARMONIC MOTION 

P136. A spaceship of mass nr "" W· kg is in uniform cireular motion h = 200 km 
above the surface of a planet of radius R _ SOOO km. Ea<.:h revolution lakes 
P = 2h. Calculate the tangential velocity II of the spaceship. its angular 
velocity w, and the ccmripetal force required to keep it in this orhi!. 

P137. A toy car of Dlass '" '"' 0.] kg is constrained to move in a eircle of radius 
r = I m on a horizontal table by means of a string. C�kulate the tension in 
the string if the car has constant angulor \·elocity ,." = 1 tad S-I 

P13e. A plumb]ine hangs in equilibrium at latitude A. Express the angle f) between 
the plumblinc and the local vertieal in terms of A, and the Eanh's radius, 
angular velocity and gravity R,w,g. (Usc the faet that g >  R,) to simplify 
your answer.) Taking R ", 6400 km, what is the maximum possible value of 
'" 

P1 39. A sportS car allCmptS to take a bend which is an arc of a cirelc of radius 
r = 100 m. The road is harizontal and the car h�ts constant speed 
" '"  go km{h. If the coefficient of static friction between the car tires and 
the road surface is jJ, .. 0.4. witl the car stay on tbe road? 

PI<40. A moss m is allached to a string and whirled in a vertical circle at constant 
speed. Calculate the difference between the tension ilt the lowest and highest 
points of the circle. 

h" 1 alltr 
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P 141. A mass m = I kg is auached to a string and whirled in it vertical circle at 
constant sp«d. The radius of the cirde is r .. I m. What must the speed be to 
keep the string taur? 

P142, In the armngcment described in PI41 abol'e, the string breaks ..... hen the mass 
is at its lowest point. ]n what direction and .... ith what sp«d does tile mass 
initially mOI'e? 

P 143, A mass M moves in a vertical circle al the end of a string of length L. 115 
velocity at the lo\\·est point is to. Show Ihat when the Siring makes lin lingle 0 
10 Ihe downward vertical ils lension i& 

T = M(38OOS O - 2g +�). 

PI44. A conical pendulum cons iSIs <i II string oflenglh I '" 2 m and a bob of mass 
nr .. 0.5 kg. The pendulum rotatL'S at a frequcncy f .,  2 lurns per second 
about the I'ertical. Calculate the tension T in the string and the angle (} of 
the siring to the vertical. 

P I 4S. An amusement park proprietor wishes to design a rolierooaster with a ver_ 
tical circular loop in the track, of mdius R = 20 m. Before the cars reach the 
loop, they d�Sttnd from a ma�imum height Ir, at which they hal·e 7.Cro 
velocity (5Ce Figure). Anuming thaI the cars roll freely (no motor and no 
friction), how large must Ir be to keep the cars on the track? 

• 

1 
PI46. A bobsleigh run consisl5 of b�nked curves. One oflhe curves is circular and 

has r�dius r = 10 m, and is banked at an angle () = &)' to the horizontal. 
Ncglocting friction, what is th: maximum I'elocity at which a bobsleigh can 
take the curve? 

P147. A fighter airplane has ma�imum level speed v = Me" where M is the Ma.h 
number and e, "" 34() m S·I is the spct.od of sound . The maximum acceleration 

" '  . 



J8 PR.08lEMS - CHAPTER I. MECHANICS 

the pilots C"dn .",ithstand ..... ilhoul blacking oul is II = 6g. How lighl a lum am 
Ihe fighler make at lOp speed if M '"' 2? What if M _ 31 

P 148. For the airplane oflhe pre,·iolls queslion. whal is Ihe angle of banking 10 Ihe 
hori7..0nlal in itll tightest turns? If the pilot"s ma� is In = 65 kg, what is his 
appare:nl weight in the lurns"? (The lif! on an airplane aCIS perpendicular 10 ils 
wings.) 

P149. A rail track has. bends "ith radius of curvature as small as r _ 4 km. If the 
passengers complain when alXelcrations cxce-cd II = O.OSg. how fasl can 
lrains Iravel? Commcnt on the feasibility of trains running al v '" 400 km/h. 

P ISO. The dining <;;ar of a tntin UJC$ water glasses of diameter II = II <;;m. If the 
maximum centripetal acceleration of the train is II _ O.OSK. how close 10 Ihe 
brim can these be 611ed ... ·ithoul spilling? 
(Him: Remember thaI pressure: = force per unit area. and consider Ihe 
equilibria of the hori7.0ntal Ind vertical columns of water meeling al a 
point on the outer side of Ihe glass.) 

PI 5 1 .  Two equal masses If! �re allached by a sIring. One mass lies al radial dislallCC 
r from Ihe center of a horizontal lumtable which rotaln with <;;onS lant angu­
lar velocity w ""  6 Tad S-I. while the s«:ond hangs from the string inside Ihe 
tumtable's hollow spindle (see Figure). The coefficient of Sialic friction 
bclwc:cn the lumu.blc lind Ihe mll .. lyinS on il i, p, _ 0.5. Find Ihe maximum 

and minimum values r ...... r.,,;. ofr such Ihat lhe maSS lying on the lumtable 
does nOI slide. 

--,--
, cpo 

m 

m 

P152. The bends on a cycle track an: semicircular. and Ille track is banked at an 
angle 0 10 the horizonlal. AI what speed '\) can II cycle and rider of mass M 
lake Ihese bends in horizontal circular motion of radius r even if there is no 
friclion belween the cycle lires and the IruCk? Find the value of the fri<;;lional 
force J if Ihe speed is III = 2'�. and also if il is v" = "0/2. (A�sume Ihal Ihe 
rider can always lean Ihe cycle to avoid overturning.) 

·h ·1 alllr 
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PI5). A satellite is in a circular orbit whose height above the Earlh is much less 
than Ihe latter's radius R. = 6400 km. What is its period? 

P 154. You are driving youTear along a straigh.1 road at speed "0 when )·ou suddenly 
come 10 a T·inlerseclion a distance r ahead with a river along Ihe far side (sec 
Figure). Wilh ma�imum braking, Ihe car would just stop without skidding 
with ils nose overhanging the river bank. Should you atlempt 10 take Ihe 
tum? 

P I SS. A pendulum has length I = I m. How many swings (10 the neaml whole 
number) does il perform in one hour'I 

PI56. A pendulum is suspended from the ceiling of an elev-�tor and set swinging 
while the elevator is at rest. A remote camera monitofll lhc swing rate. How 
could you tell if the elcvator moves up or down? 

PIS7, When a mass m = I kg is hun, \'crtically from a certain spring, it cxtends the 
spring by .it = 0.1 m. Find the period of O$Cil1alion of the mass-spring 
system, if it lies on a smooth horizontal table. 

n" 1 Ma 
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PI5S. T .. 'o studenlS have a spring (of unknown eonsl3nt), two equal masses III and 
n string whose length can be adjusted. They \\ish to comtruet two oscillating 
devices (a mass-spring system and a pendulum) with exactly equal periods. 
What should they do? 

PI 59. A mass m = 0.2 kg and a spring with constant k = 0.5 N m-I lie on a smooth 
horilOntul table, The mass i� released a dis tance -"0 = 0.1 m from the equili· 
brium point. At wbat later time does the mass first pass through the point 
Xl = 0.Q2 m from equilibrium? What is its velocity then? 

PI60. A pendulum of length 1 = 9.8m hangs in equilibrium and is then given 
velocity ttl = 0.2 m S-l at its lowest point. What is the amplitude of the sub­
sequent oscillation? 

P161.  A spring ofconsmnt k = O.S N m-1 and an attached mass m oscillate on a 
smooth horizontal table. When the mMS is at position XI = 0.1 m its \'elocity 
is "I = -I ms-I• and at X1 = -0.2 m it has velocity v� = O,Sms-l. Find m 
and the amplitude A of the motion. 

P162. A delicate pica: of ela:lronic equipment would be destroyed by vibration at 
frequencies greater than /I .. = 1 0  S-I . 1t is transported in a box supported by 
four springs. The total mass orthe equipment and the box is !If = 5 kg. What 
constant k would you recommend for the springs? 

P163. A mass M '" I kg is conna:ted to IWO springs ], 2 of constants kr '"' I N m-I. 
kl = 2 N m-1 and slid� on II smooth horirontal table (SCi: Figure). In the 
equilibrium position it is gi\'tn a velocity VI = 0.5na-1 towards spring 2. 
How long will it take to reach ilS muimum compression of spring I? What 
will this be? 

I 

� 
, 
, 

PI64. In the previous qUeltion. how long does it take for the mass to reach the 
point whcre it compresses spring I by :<: '"" -0.1 m for the first time? 

P165. When eonlll:ctw to a spring, a mass oscillates on a smooth horizontal lllbic 
"'ilh [X"riod P. A second spring \\ith the same constant is now connected 
between tbe first spring and tbe mass. What is the new oscillalion period? 

PI66. A small plalform of mass m = I kg lies on a smooth table and is attached to a 
wall by a spring. A block of mass !If 0: 4", lies on the plalform. The plat­
fonn-block system oscillates bodily witb r�uency ,,= I $-Iand amplitude 
A _ O. I m. Find the spring constant k and the maximum horizontal force 
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exerted on the block during th� motion. If the coefficient of friction between 
the block and the platform is I', .: 0.7, how large an amplitude can the 
oscillation have without the block sliding from the platform? 

• GRAVITATION 

P167. Compute the gravitational allraction force betwCffi the Sun and the Earth. 
(The mass of the Sun is 2 x 10Xl kg. that of the Eanh is 6 x leY' kg. and their 
separation is " '"  1.5 X 101 1  m.) 

PI68. A planet h;u a cireular orbit of radius a about the Sun, of mass MG>. What is 
the length P of the planet's year in teml$ of the.<C quantitil:li? (The planet's 
mass is much smaller th3n the Sun's.) 

P169. The I!jJutj'·1! gro'·it)' g<ff 3t 3 point of the Earth's SUrf3Cl: is defined by ,,·eigh­
ing 3n objeet and dividing the result by its known mass. What is the r3tio of 
the effective gravity between the E.1rth·s equator and the poles? (Assume the 
Eanh is a sphere of mass M, � 6 x IcY' kg and radius R, _ 6.4 x lif m.) 

P170. Wh3t revolution period P� must a spheriC3l celestial body of mass /If and 
radius R ha�e if the effective gr3vity is rero at its equator? Find this v31ue for 
the Eartb (mass M, '" 6 X 101< kg. radius R. = 6400 km). 

Pili. Is it likely that a star can have a rotation period shorter than the value Ph 
defined in the previous question? The rotation periods of pulsar3 are detect­
able by radio astronomy and are found to be as short as Pp = 5 X 10- 3 s. 
Are they more likely to be while dwarf�taJ1\ (mass M" '" 2 x loXI kg, r .. dius 
R., = 5000km) or neutron St3TS (m3ss /If� = 2 )(  10Xl kg, r..ldius 
R. = IOkm)? 

Pin. A certain planet has mass /If,. whieh is twice the mass M, of the Earth. On 
the planet the weight of any body is half the value it has on Earth. What is 
the planet's radius in tenns of the Earth's r:ldius R../ 

P 1 73. The Earth's distance from the Sun is known to be 0 =  J.5 )( 1011 m (the 
astronomical unit). Estimate the Sun's mass Af0. 

P174. Estimate the mass M. of the Earth from the facts that g = 9.8 m S-l and 
R. '" 6400 km. 

Pll5. A toy pistol uses a spring to fire a plastic bullet. On Earth the gun can propel 
the bullet to a maximum height h, above the firing point. The gun is taken to 
the Moon and fired by an astronaut. who obscr,es that the bullet ean reaeh a 
height h .. = 6h,. Find the acceleration g .. due to gra\·ity on the Moon. (The 
heights h" h", can be assumed much smaller than the radius of the Earth and 
Moon respectively, and air resistance is to be neglccted.) 
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P176. An artificial ilalellile is called gftnlutiona,y if it orbils directly over the equa­
tor al exactly the !.lime angular velocity a5 the Earth. Find the height of sueh 
a llatellite above Ihe Earl�. (Earth's muSiI M, '" 6 x 1&' kg. radius 
R. = 6.4 x lit m.) 

Pin. Clearly, it would be useful 10 ho\'e a geostationary communications satellite 
placed dim::lly over every large city. Yet there arc none. Why not? 

P178. A space shulIle is in a circular orbit al a heighl ll above the Earth. A small 
""tdlite i. hdd above the .huttl .. (i.e. dirc:<:tly away from the Btl/th) by mC3nS 
of a rod of length h and then released. What is its initial motion relative 10 Ihe 
shull Ie? 

P1 79. The space shutlle of the previous question fires a reI/a rocket, i.e. one direc­
ted with its exhaust pointing forward. What will happen to the shuttle? 

PI80. An lIr1ificilll llate!lile is in II ciICular orbit ofrudius , about a planet of mass 
Af. Find its speed and angular momentum per unit mass. The plllnet's atmo­
sphere o;crts a drag on the satellite in such a way that its orbit remains 
circular. Docs it slow down or speed up? 

P 181.  Show Ihal Ihe Sun's gravitational pull on the Moon is marc than twice as 
large as the Eanh·s. Why does the Moon not fly off? (Mass of Sun 
M@ � 2 x  lO30kg, mass of Earth M, = 6 x  llt'kg; Sun-Earth distance 
0 _  1.5 x 1011 m. Eanh-Moon distance r � 3.9 x 101 m.) 

P182. A non-rolating planet of radius R has a circular orbit of radius II Hboul Ihe 
Sun (mass M). Show thaI on the planet's surface, Ihe �JJ�rlil'f inl<'o"J grav_ 
itational acceleration gctf is lowesl at Ihe points nearest 10 and furthest from 
the Sun. and highest on the circle equidistanl from these two pointli (sec 
Figure). Assuming a >  R. !how tltat the diffell:nce in Dccelerations is 
approximalely 3GMR/rfJ. 

, 

, 
\ 

, 
\ 

\ 

, 

, 

" B pOOls o! .,.,..,.. g .. 
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PIS). Ifln the pn:vlou� problem the planet IS completely covered by an ocean, lI'hat 
is the ratio of its maximum to minimum depths1 1f the planet rotatl:§. what 
would the inhabitanl of a small island o�rve? 

PIS4. Show Ihal the Moon mises aboul twice the tide Ihal the Sun docs. When 
would you exp.:<;;t the maximum and minimum tides 10 occur? (Masses 
Me.M .. of Sun and Moon arc 2 x  IOXl. 7 x  llfl kg; Earth-Sun distance 
u = 1.5 X 10" 01, Earth-Moon distance b = 3.8 X JOI 01.) 

PISS. Why are no tides obscn'cd on Ihc Great Lakes or the MedilerranCan? 

PI86. Ikcause the Earth docs not rotate synchronously v.;th the Moon. dissipation 
in lides cause angular momentum to be transferred from the Earth's spin to 
the Moon's orbit. Show tbat the Earth-Moon distance and the length of the 
Earlh day must be (slowly) increasing. If thc process will StOP when the 
Earlh-Moon dist:mce is about I.S times its current value. what will the length 
of the day be? (Earth's mass /II, = 6 x 1&' kg. current Earth-Moon distunce 
b = 3.8 X JOI m.) 

PI87. What is the \'$Cape velocity from Earth? (I.e. the velocity with which an 
object must be launched in order to escape to infinity). (Earth mass 
AI, = 6 x llf' kg. Earth radius R. = 6400 km.) 

PI88. How docs the escape velocity from Saturn compare with that from Earth 
(eompare 1'187)1 (Saturn mass M, = 95M" Saturn radius R, = 9.4R..) 

PI89. A space probe i� launched, but by mi�ltap achieves a vertical speed t\) only 
thrce..quarters of the escape ,·elocity. It then goes into a circular orbit: find its 
radius in terms of the Earth's radius R,. 

PI90. A rocket is launched from Earth (mass M" radil)$ R.) with velocity t'o. and 
reacho:s radial distance r = 6R, with velocity 1/ = t'o/IO. Express tlJ in tCTlll5 
of M" R,. 

PI91. What is the maximum height that the rocket of tile previous problem could 
n:ach if launched vertically? 

P 192. A space slalion orbilS the Earth (radiu� R..) at height R./2 above its surface. 
What is its s�d? The astronauts on board launch a rocket. What minimum 
speed with respect to the station does it need in order to leave tile Earth'S 
gravitational field? 

PI9). Thc escape velocity from a black hole of mass AI equals thc speed of light c. 
What is Its radius? Evaluate this if (a) M � Sun's mass M",. (b) M = 3M0. 
(M", = 2 x IOle kg.) 

PI94. Confider the JM0 black hol� of the previous question. How docs ils avcrage 
density compare with that of the atomic nucleus1 <A."" '" lO" kg 01-1.) 
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P195. The nuclei of some gala�ies are thought to contain supcrmaMil'e black holes 
with M = 3 X 109 M0. How do their al'erage densities compare \\ith that of 
air? (Pa;, '" \.3 kg m-).) 

• RIGID BODY MOTION 

PI96, A car accelerates uniforml), from rest for lO s. when its velocity is 
tI =  IOms- t, Assuming that lhe whoels do not slip, find the final angular 
velocily '" of the wheels and Ihe angular aocelemtion a. The rJdius of the 
wheels is R = O.o5m. 

P197. Four masses are attached to a massless eireular hoop of radius R = I m as 
sho .... ,o in the Figure. Find the moment of inertia of the resulting configura· 
tion about a perpendicular (1) a�is through the hoop's center (ml = I kg. 
m2 = 2 kg. m) ., 3 kg). A fortt F '" 5 N is applied tangentia!l)' to the rim nf 
the hoop, What is i15 angularaccelerdtion 01 

P198. I n the previous problem. whal are Ihe momentl; of inertia 1 .. 1, about the x 
and y axes respectively? 

, 
m, 

111 , F! m , 

m, 

• 

PI99. A uniform cireular cylinder ofma$$ m, radius r and length I "" r is allowed to 
roll horiwntally do .... ,o an in�lined plane of angle 0 = 60° 10 the horizontal 
(see Figure), It stam from rest .... ·ilh its ""nter of mass al a height h + r above 
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the base of the plane. Calculate the time I, for it to reach the bottom (i.e. to 
roll through a height h). Compare your result with the corresponding time I, 

for a unifonn sphere of mass m and r,ldius r. Assume that there is no slipping 
in either casco Compare I" I, with the time 10 for a mass to slide through the 

same height without fri<.:tion 

PlOO. A solid unifonn cylind�r of mass m and f,ldius r rolls without slipping down 

an inclined plane with a \'eni<.:al eireulaT loop of radius R fixed at the bottom 
(!ott Figure). Thecylinder starts to roll from rcst at height h. You may assume 

that r ¢: h, r <: R. What is tbe minimum value h", of h such that ttle cylinder 

does nOI fall from the circular loop? A cylinder ... ith the SlIme mass m all 
concentrated in a thin shell at radius r is released from rest al h '" h,." Docs 

this cylinder complete the loop or not? 

" 

1_-------"'"....L-' _ 

PlOI. A body of mass /If tlas moment of inertia I about an axis through its center 
of mass. Show that its moment of inenia aboul a parallel axis a distance d 
from the first is 1 +  Md1 (parallel lues lhearem). 

P202. A mass m hangs from a string whose other end is wound on a circular pulley 
of mass M = 2m and radius R. The siring docs nOI stretch or slip. Find the 
linear acceleration a and the string t�nsion Tin lerms of m,g, and R. If the 

= starts from resl, calculate the lotal angular momentum L about the 

pullcy's center after the mass tlas descended a hcigtlt ,, =  R. 

Pl03. A child's top is gh'cn angular momcntum L about a \'cnical axis. Why docs it 
nOI f,,11 o\"�r untit Ihis has been losn Explain q"alitati,'ely what happ"ns if 
one tries to push o\"er a spinning top. 

PlO4. A rifle barrel has a spiral groove which imparts spin to Ihe bullet. Why1 

PlOS. A turntable consists of a thin horizon tal disc or mass M and radius R, and 
rotates ",thout rriction at CQn�!ant angular speed w. At a cenain instant a 
drop of gluc of mass m = MIlO falls vcrtically on to the turntable and 
adheres to a point al a distance , = 3RI4 from the axis. Find the new angular 
velocity of the turntable. 
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P206. A p:hdulum CO'II';'" <>f & tiftif""" red A 8 of lenS,h I � II.! m "nd rna .. 
M .. I q. CaloW.,. ,I>< period Po("", pendulum in ,I>< casc:s 

(0) _ the pendulum i> ,� fmm poinl A, 
(h) - i, i . ... per>doo.l from " p<>inl c ...rn ,bo, AC K Ie .. 1/4, 

P207, A ,h' ... . pi ... ... ilh "nlulu '''Io<i,� .... .. 6 """,-' .'i'h hi, .ntI . .... nd<d. 
How fas( "';ll bo "';n wiIh hi> ""'" by hi> sidt1! 

Ttr" \be .ulCr·, body ••• unifollD qiiodn of ",diu, R .. 20 rnI; .ppra •. 

im". hi, .rms ., uniform rods ofle"Jlh J. _ 1(l.m and ma� '" _ 4,� kl. 
Hi> ,o,.l mu. <-",Iudin, O"tIlI i> M .. 7\1 k,. 

P208. A mon of mOD m _ 110  q ... .,.,. on • fb, hONo","1 di>k of mo .. 
M .. 160 q 11<'" ilS <olIO • •  1 r:tdius , .. 2.' m. 1k dil\ is frt< 10 'ulal< 
obou' it> .. i •. AI 0 ","oin i"'tanl ,110 mon bolin,. to .... lk .",und lbo disk 
odJO "i,b """"aD' l'Cioci'y ." 2 " 0-' "";tl! mp<el 'o ,bo Eanh. lfhi' fcc' 
do "'" <lip 011 lhe lIi'k. Ilow 1o .... .,..;l!;1 take 'he "...n ,<> ro'um '<> ,be ....... 
poin, on lbo di,k! Wbo, "";11 happrn if 'h< man .. Op' .... lbn" 

P209, A po<>! ball of maD '" .nd ,.diu. /I. i, F'� .n ini,ial didi". ,,,loci1y .. (no 
"".boo) "" • hori><mUlI pool labl<. Tbe "",,1IiISnt. o( friction 1><'''"«11 ,II< 
",II .nd ,bo table ;, p. II.,... 10<11 .. ill i . .. k. r", 'h< bo.lI '0 .... " • put< ,ollin8 
"""ion (no .II.,i"511 Who, "ill be ilS �loci'Y • •  , llIaI porn .! 

PliO. A t.. .. b.oll pllo)", .. ri k .. ,be boU • dill,nee " r",," ,he handle of ,be bot . 
.. hleh lias rna .. M and "'001,,,,, 01' inrnia 1 .bou' ,be """'0. of ....... Ihl>< 
lano. lie.. diotana: 1 (",m ,bo hondk, ho ... ",,"uld ,II< pla}'<'f <hoo;c:" so 'hOI 
hi, IIandi .. perimce no moction (.,..,.? 

Pli l .  A pool boll Iw .. di ... 1 &nd ma .. M. A pby<r h,jll il • borirontal _ "',Ill 
hCT ..... , hoi"u A obo ... ,II< table. How obould .... ,hoo;c: �.., 'h>t lhe hall 
roll> wi,,,,,,,, Wdif\l'1 

Plil. In PlOS. ;( ,110 .. i. friction .bou, .he di<ll rn .. ... hat boP!><'l' ,,'hn! ,bo man 
""'" W2ft;qT 



C H A P T E R  T W O 

E L E C T R I C I T Y  A N D  
M A G N E T I S M  

• SUMMARY OF THEORY 

I. Coulomb's Law 

• The force between two charges 'II' '12 wilh �par�tion r is 

F =  '11'11, . 
4Jr€o'" 

(I) 

in vu�uo (or air), where Ihe charges arc in coulombs (C). The ro� Ilclll along 

the line joining the charges. and ;5 repulsive for charges of the same sign and 

attr.tCt;vc for charges of opposite sign. (0 is a constant, the permeability of 

vacuum. 

1. Electric Field 
• We define the elertric: field E as the folW on PC' unit stali<: pOsiti\"c charge. 

The units are N C-I . A general charge q expericl1«'S force 'IE in tile same 
direction as E if q > 0, and the opposite direction othcrv.ise. The e!e.:lric field 
duc \0 a point charge q is 

q 
E = 4"41,1 ' 

(2) 

ulld is radial. If o;crtain charge distributions produce electric fields Ej, £1, '  
at a point, the resuhant dcclric field hiU components 

E"' -Eb + Ez." .. 
and similarly for the other components £r' E,. 

(3) 

47 
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The electric charge and elcctric field vanish everyv.·here inside a perfeet 
conductor: all charge must be confined to :J. thin layer at the surface. 

• Gauss's law states that the l1u.! nf electric field over a dosed surface is 1/<0 
times the total charge enclosed. This agrees with (I) for a point charge, and 
shows that for example 

E " -'-
2"'or 

�t diJtance r from a very long line of charge, distributed at � e m-I. 

J. Potential 

(4) 

• The pale1llial at a point is the work done against electric forces in moving unit 
positive charge from infinity to the point. The uniu are volts - J C-I The 
work done in moving It charge from one point to anothcr dcrcnds only on 
the potential difference between the points. and not on thc path between 
them. The potential difference in a unifona field £ between two points is 

V = £z, ('i 
where : is the distallCl: measured in the direction of the field. The potentia] at 
diSlam:c r from a point charge q is 

v � -'- . 4"/;(Ir (0) 

Inside It perfcct conductor the potentia] is oonstant, since the field vanishes. 

4. Capacitance 

• A capacitor is a device for �toring charge, consisting of conductors sur­
rounded by an insulator or dielectric. The caparilallce C of a capacitor is a 
measure of its ability to store charge and is defined as 

(7) 

where q is the charge on either conductor and l!. V is the potential difference 
causing the accumulation of this charge. 

• The capacitance of It parall�1 pIalI.' capa(ilor is 

(') 

, 
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where KJ is a dimensionle�s constant chardcteristic of the insulator between 
the platcs (the dielectric oonslant). A is lhe area of one plate. and d the plate 
scpar.l1ion. II is assumed that A > d1. 

• !f capacitances C1, C1, . .  are connel:lcd in series. lhe total capacitance is C, 
where 

If they arc connected in parallel the total capacitance is 
C .. C1 + C1 + 

• The e1cclroslatic energy s10red in a capacitor is 

s. Current and ResIstance 

(9J 

(10) 

( I I )  

• Elcclric c�rr .. n t  is defined a s  (charge lmnsponed)/(time). The t'/I'c(romotire 
[orcl'. usually ahbreviated 10 emf. of a battery is equal 10 lhe polenlial dif­
ference (or \·ol!age drop) between its lennina!s when no currenl flows. 

• The rt'$istWlCI' R of part of an clt:etric circuit is defined as the potentia! 
difference required to make unit current flow. It is mCllllured in ohms (fi). 
The vohage required to make current I flow is lhus 

v = 11<, (12) 
which is known as Ohm·s law. 

• The r/'s'J/;l"iIY P ofa medium is defined as 

(13) 

where R is the resistance of a length / of a cylinder of cross-sectional area A 
made of the medium. p is measured in n m. 

• The PO""U dissipated in a resislor is 

which is lost as heat. 

v' 
P : Vl = /2 R = 7f '  (14) 
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• If resistors R1, Rl, . . .  are connected in series tbe total resistano: is 

R = R\ + Rl + · · · ,  

while if they are connected in parJlIel the total resistance is R, wbere 

I I I - = - + -+ 
R RI Rl 

. 

(15) 

(16) 

• The flow of current in II direct current (DC) circuit is detennincd by 
Kirchhoffs laws. Tbese state that: 

(a) - Tbe total net current at each junction of a circuit is zero. 
(b) - The total potential drop around any closed circuit is uro. 

Note that in (a), currents are counted as having opposite signs when Hawing 
into lind away from the junction. In (b) we must be careful to include nil tbe 
potential drops V = JR call5Cd by resistoN. as well as any emf sources. 

O. Magnetic f«-ces and Fields 

• A magnetic field is present if a charge expcrien�s a for� resulting from its 
motion. The mngnnicforu F on a charge q moving with velocity tI at angle 9 

to tbe field direction is 

F = qvBsin9, (17) 

wbere the direction of F is given by the right-hund ru/ .. : point the .. xt .. nded 
fingers of tile right hand in the direction of the field and the tbumb in the 
direction of motion of the: charge. The palm then puslles in the direction of 
the magnetic force on a positil'e charge. The force is reversed if the charge is 
negative. The unit of magnetic field is tbe , .. sla en, sometimes called the 
K· .. lwr per squa, .. nlttu, The Earth's magnttic field is of tbe order 10-' T. 
The tOlal force on a cbarge due to both electric and magnetic fields is usually 
called the LiJ,ent: force. 

The force on a short length III of wire carrying current I is 

!::.F _ J811lsinO, (IS) 

with the direction given as before. The force eXCTtOO by unifonn field B on 
any length I of a straight wire is 

F = IBI. (19) 

, 
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• A magnet of dipole moment Ii placed at angle (J to the direction ofa magnctic 
field B will e:;o;perienct: a torque 

r = -/J8�in(J 
trying to align it to the field direction. 

(20) 

• All magnetic fields result from e1cl:lric currents. The fields of permanent 
magnets are caused by charge mOlions al a microscopic le\"el. 

Ampere'J law �tatcs that the sum of the products of the tangential magnetic 
field with the length of CIIch element of a clnsed curve is J.Io times the total 
current enclosed by the curve. I'<J is a constant, the permittivity of vacuum. 

• The field of a long straight wire carrying current I is 

8 = /101 ,  2" (21) 

at distance r from the wire. The fieldlines arc circles centered on the win: with 
planes perpendicular to it. 

The field inside a long sO/el/oid with n loops per unit length carrying 
CUl'fcnt / has the cons tant value 

(22) 
in the intcrior. 

The field inside a toroidal coil with N loops carrying current / is 

B _ /'<J1I'1 2J1'r ' (23) 

when: r is the radial distance of the point from the center of the torus. 
• The magnetic force per unit length betw�n two 

separation d carrying currents II ' I: is 
long pa ... "l1el wires with 

(24) 

The force is allractive if II and /1 are in the same direction and repulsive 
otherwise. 

7. Electromagnetic Induction 
• The magnetic flux 01> through a surface of area A is defined as 

(25) 
where (J is the angle between the normal to the surface and the field direction. 
and it is assumed that B and (J do not vary appreciably over the surface. 
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• Faraday's law a!magnt/;c imiUJ:r;an states that the rate of change ofmagnclic 
flU}; Ihrough a circuil is minul the inducro cmf in thc circuit. i.c. 

(26) 

where Llo<t>,LloI ale the changes in flux and time. 
The minus sign in thi$ equation expresses what is sometimes called Len;'s 

la"" the ind"ced emf '$ alwaY' in the d'Tttlion OPJ'O<ing the change in mag. 
netic flUll thnt produced il. 

As a corollary. one can show that the emf induced bet","n Ihe ends of a 
rod oflenglh I moving with uniform velocity 1/ perpendicular to it.sc:lf and at 
angle 8 10 Ihe field is 

£ ", Blu sin 8 (27) 

The direction of the emf is given by Ihe right-hand rule. 

• A time_varying current in a circuit induces an emf. This effeet is called self­
inJucIIJJlCf'. If a change Llol in lime Llol induces emf v, we may write 

v = -L Llol 
"',.  (28) 

The minus sign here again reflect.. Lenz·. law. The coefficient L is determined 
by the geometry of the circuit and is called its self-inductance. The units of L 
arc henries (U). 

The self-inductance of a coil of N turns. cross-sectional area A generating 
magnetic field B from currentl is 

L = NBtf . I (29) 

• ELECTRIC FORCES AND FIELDS 

P213. Two charges q] = 2 x 10-' C and ql = 4 x 10-' C are held a distance d = I m 
apart. Calculate the force cxened b)' Ihese two charges on a charge 
Q '"  10-' C. if il is placed halfway betwttn them. Is there a point oct,,·ttn 
Ihe t,,-o charges where the force �anishcs? 

P214. Charges q! = 0.09 C, q� = 0.01 C arc a distance I = I m apart. A �harge Q is 
held fixed on the line bctw«n them, a distance x from qt. Whal \'alue muSI 
Q, x have for qt, q� 10 feel no net fora:? 

, 



ElECTRfC FORCES AND fIELDS n 

PlIS. A charge Q '" I C is at the origin of coordinates (see Figure). Calculate the 
magnitude and direction of the force exerted on it by the charges 
ql = -0.5 x IO-�C at position (0, J), and Ifl = 10-6C at J>QSition (4, 0), 
where all distances are in melers. 

" 

T 'm 
. m---l . 

0 " 

Pl16. Charges If, .. -2 x 10-6 C �nd If). = J x 10-6 C arc fixed �t the poin� A,(S,O) 
�nd Az(O.IO) respectively in a Cartcsiall coordinate system. ,,·ith the length 
units being centimeters. Calculate the force on a charge If} "" _10-6 C placed 
at the origin. 

P217. A small sphere carries charge Q and can slide f!"ttly on a hori7.ontlll insulating 
rod of1englh I. Two further small spheres ha'·e charges q,4q and are fixed 10 
the ends of the rod. Where docs LIIe sliding spherc come 10 rest"! 

PlIS. Charges q,,'12, I{}, If' are placed at the comers of a square of side a = 2 m. If 
If, = q2 '" q} = Q '" I C and q� = -Q. tind the electric field at the cenler of 
the square. 

Pl19. In a hydrogen alom the electron is at a distance a = 5.28 x 10-" m from the 
nucleus, which consists of a single prolon. What is the elCCtric field of the 
nucleus at the position of the electron? What is the force on the electron? If 
the electron is in a uniform circular orbit around the nucleus whal arc its 
speed �nd orbital period? (Treat the elcctron·s mOlion using classical 
mechanics.) 

P220. The elcctric field just above the Earth's surrace IS known to be 
f..� = 130 N C-I. Assuming that tbis field results from a spherically sym­
metrical charge distribution over the Earth. find the total charge Q, on 
the Earth. (Earth's radius R, = 6400 km.) 

mi. Assuming that the Earth's field mentioned in the last problem acts vertically, 
what charge q would a ball of mass m = 10 g have to have to ho\'er in mid-air'! 

P222. Point charges I{ and 9q are a distance I apart. Where should a tbird charge Q 
be placed Ml that the net force on all Ihree charges vanishes? What is Ihe 
required value of Q? 
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P223. Two horizontal plates of opposite charge create a constant electric field 
Eo = 1000 N C-I dira:ted vertically downwards (sec Figure). An electron 
of mass m, and charge -I' is fired hori1.onlally with velocity 1!0 = O.k 
between the plales. Calculate the electron's aC(;Cleration; if the plates have 
length 10 == 1 m. find the electron's def1cction from the horizontal when it 
emerges. Neglect gr:Jvity in this calculation: is Ihis justitkd? 

1--,,-----1 , 
'!--_ _ _ _  L _ _ _  _ 

v, tEo 
P2l4. A beam of electrons is injected horizontally with velocity v, = 106 m 5-1 into 

a vacuum lUbe in which then: is a constant electric field Eo _ 2000 N C-I 
directed vertically upw,mh. AI the end of me tube the beam hits a fluorescent 
sclttn h = 10 em lower than the injection point. 
(a) If the polarity of the field is rever� what happens \0 the impact point? 
(b) What is the horizontal distance 1 between the injection point and the 

ilCrt:en? 

P225. In the cathode ray tube of a television sct electrons are accelerated by a high 
voltage Y. They arc then dellC<'ted by a pair ofhori1.ontal plates ofscparation 
d,  length I and potential differt:nce Y p (sec Figure). The electrons then hit a 
fluorescent sclttn at distance C. from the plates. How must Y,. be chosen Kl 
that the eloctronsjust clear the pLates? (NegJoct gr:J\"ily.) 

P226. In an experiment to measure the eloclron charge -I' (a modem \"e�ion of 
Millikan's oil drop experiment) plastic balls of radius r = 10-6 em and den. 
sity p '"  O.Sgcm-l are placed in vacuum betWcctl two horizontal charged 
plates. which create a uniform electric field 1::. directed vertically downwards. 

n 1 a r 
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The field is gradually adjusted until somc balls remain stationary. In 
onc CAperimenl, balls wcre found 10 remain stationary for fields 
£1 = 3.13 )( 10"' N c-I. £1 = 3.69 )( 10' N C-I. Assuming that the balls' 
charges differ by cxactly one electron. cstimate c. 

P227. Two masses III = I kg with equal charges Q arc suspended by light strings of 
length 10 = L m from a point. The strings h3ng at JO� to the \'utical; wll3t is 
Q1 

P22B. Two small me tal balls 3re tied together by a taut string of length J = I m. 
The b31lS are electrically neutr.1I and the string can withstund a maximum 
tension Tma:t " lOOON. Calculate how many electrons would have to be 
added in equal numbers to each ball before the string breaks. Is this a 
large number compared to the nwnber in 3 metal ball of mass 10 g1 

P229. Two alpha particles (hclium nuclei. charge 'I" = 24' = 3.2 X 10-t9 C. mass 
In" = 6.68 X 10-11 kg) arc a distance J = 2 ){  IO-14m apart. Calculate their 
electrMtatlc repulsion. How docs thi� force compare with their gr.lVitational 
attraction? 

P230. What e[cclric field Eo is required to exert a force on an electron equal to its 
weight on Earth? Comparc this field with that produced by a proton at a 
distance of lie = 10-10 m (110 _ typical size of an atom). 

P2.3 1 .  A very long solid cylinder has radius R = 0.1 m and uniform charge density 
PI> = 10-1 C m-1. Find the electric field at distance r from the :aAis insidc the 
cylinder in terms of rJ R. 

P2.32. A charge 'I of milSS III is constrained to mo,'c along thc y-a:\is. Charges 
Q = -q/2 are placed on the .l·a,;;! at positions x = ±o. Calculate the force 
on the charge q at any position y. Show that the origin is an equilibrium 
point. I'rove: thut for y <t:: u the charge will oscillate about the origin. Find the 
period of this o§cillation if <I = 10-1 C. 1>1 = I kg and a = 2 m. 

P233. Electric charge is distribUled at a line density A = -2 C m-1 along an infinite 
line. A point charge q = 0.01 C of moss m = I kg orbits in 0 circle whose 
planc is perpendicular 10 the line. What is its velocity? 

P234. Point charges 'I and -'I are located at points A(O, -a) ond 8(0,0) in a 
cart�"Sian coordinale system (this type of atTangt:ment is knowo as an elcctric 
dipolc). Find the electric field at any point on the x-aAis. Show that for x ,. "  
the field decays as x-J• 

P23S. A l:arge square insulating plate of side 0 and ncgligible thkkness is uniformly 
charged wilh 100ai charge lOOQ. The plate is placed in the �z plane. A 
spherical shell of r<ldius r is uniformly charged with to t31 charge Q and has 
its ecntcr at the point (d,O,O) (sec Figure), [f 0 = 100<1 and r ""  diS. calculate 
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, 

• 

, 

the electric field at any point PI inside the shell, and at the point 
Pl = (d/2,dj2,O). E�press your answer in tenns of Q. 4) and d. 

P2.36. A unifonnly charged insulating sphere of radius u is surrounded by a con­
centric conducting shell of inner and outer radii 2a,3u. The tOlal charge of 
the conducting shell is zero and that of the insulating sphere is Q. Find the 
electric field at all points. Plot your result. 

P2.37. A point charge q is at the center of a thin spherical shell of mdius R carrying 
uniformly distributed charge -lq. A second concentric shell of radius 2R has 
unifonnly distributed charge +q. Find the electric field E(r) for all values of 
the radial coordinate r, and p!ot your results schematieally. 

P2.3e. A long coaxial cable consists of a unifonn cylindrical core of radius R with 
uniform volume charge density p and a hollow cylindrical sheath of outer 
radius 2R with sur/act charge densily 0 (see Figure). What value must 0 take 
(in lenns of p, R) so that the ulernal electric field vanisltes? 

P2.39. A very long cylinder of radiul R Itas unifonn cltarge density p C m-1. Find 
the magnitude and dirtttion of tlte electric field E everywltere. Piol E as a 
funclioo of r, the distance from the axis of tlte cylinder. 

P240. A point charge q of mass m is released from rest at a distance J from an 
infinite plane layer of surface charge 0 _ _  qjdl. The point charge can pass 
through the layer without disturbing it. Find the acceleration and velocity of 

'.' 
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the charge as a function of position. Show that Ihe mOlion is periodic aod 
find the period P . 

• ELECTROSTATIC POTENTIAL AND 
CAPACITANCE 

P241 . Two charges q, == 5 )( 10-' C and q1 == -5 X 10-1 C are held al a distance of 
J = ]2 m. Calculalc Ihe eleclroslal;c polenl;a] al the poinl5 A and B in the 
Figure. 

, A- "-, , 

� "Mr3 d.3 _ 

q, B Q, 

P242. In order to hold a small charged body in equilibrium against gravity an 
electric field £ .. 2 x 10' N C-' is needed. What potential difference would 
be required between two plates held J = 2 em apart in order to achieve this 
field? 

P243. An elementary particle of charge q = +e and mass m = 2"" (mp is the proton 
mass) fall. from re�t at infinity towards the Earth. assumed electrically 
neutral. Find il5 kinetic energy T when it reaches a height h = 100 km 
above the Earth's surface. (Mass AI, of earth = 6 )(  101'kg, radius 
R, _ 6400 km.) 

The same particle is now projected from infinity towards the Earth with the 
kinetic energy T found above. Whal must the total charge Q, on the Earth be 
if the particle never reaches its surface? 

P244. An eicmcllIary partiele of mass m and charge +e is prnjected with velocity II 
at a much mnre massive particle of charge Ze, where Z > O. What is the 
closest possible approach distance b of the incident particle? 

P21S. Two particlcs with electric charges q, .. +21: and ql" -e have masses 
"', = 4mp and ml = m, respectively. (-f is the electron charg� and m, the 
proton mass.) The particles are released from rest when very far apart, and 
approach each other under their mutual electrostatic al1raction. Find their 
relative velocity when they are at a d.i5tance L = 10-9 m apan. 

P246. An clectr()O \'olt (eV) is an energy unit equal to the kinetic energy acquired by 
an electron accelerated \hrough a potentia] difference of I volt. This is a 
common energy unit in atomic and nudear physics. E:o<pross the unit in 
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joules, given that the electron charge is f' = -1.6 )( 10-19 C. What potential 
difference is required to acccJenlle an alpha panicle (charge +2.0) to an cnergy 
of H)-I cY! 

P247. Charges q1 '" 10-6 C, ql '" 2 )( 10-6 C and ql == -3 )( 10-6 C are held at the 
points (XI =O,YI = O), (Xl = J,y: '" O),(xl = I,y) =4) ofa Cartesiancoor­
dinate system. the units of len&th being meters. Calculate the potential at the 
point P with coordinales (2,2). 

P248. A \mifonn electric field Eo '" 100 N e-i in the positi\� )'-direction (sec Fig. 
ure) is maimained between the planes )' .. ° and y = YI = 5 cm. What is the 
potential difference ll. V between the two planes? A charge Qo = I Cis mO\'ed 
quasistaliQllly from the upper plane [position (0,),,)] along the )�axis to the 
lower plane. i.e. 10 (0, 0). What is the mechanical work done? Show explicitly 
that the same work is done if the ebarge is brought to the lower plane along a 
diagonal path to the point (XI' 0). where Xl == 5 em (see Figure). 

, 

�. , , .. , "  

P249. The electric potential at a certain distance from a point chargc is 500 vollS. 
The eleetric field at that poimt is 100Ne-l. What is the value Qo of the 
chargc, and what is the distance of the point from the charge? 

P250. Two points A and B lie a distance d = 10 m apart in the direction of a uni­
fonn electric field £ _ 200 N C-l. What is the potential difference between A 
and 8'1 What work is done moving a charge q = -0.01 e from A to B 

(a) - directly along the straight line AS; and 
(b) - by moving 1 m from A to the left of the line. and then directly 

towards B in a straight line? 

P25 1 .  A spherical conducting shell of radius II = 10 m ischarged by an3ching it to a 
DC source of voltage t = 1000 V. What is its final charge? How much work 
is done in bringing a test charge q = I ,.e from infinity to thc surface of the 
�hell? If the test charge can penetrate the shell, is extra work required to bring 
it to thc center? 

'h 'l alllr 
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P252. N = IIXKJ spherical drops of mercury (which c:ln be regarded as 11 perfect 
conductor) each of radius r all have the same potential V when they are far 
apan. They merge and foml one spherical drop. Find Ihe original charge on 
each drop, the char&<, Q on Ihc mcrged drop. and its potential VI ' (E�press 
your results in terms of r, V and physical c0115Ial1I5.) How and why does Ihe 
tolal electros tatic energy change in the merging? 

P253. In a Rutherford scattering experiment a beam of alpha panicles. each with 
charge q" = 4e and energy E" = I MeV - 106 eV is incident on a gold foil. 
Sec P246 for the definition of an electron vo11 (eV). What is the distance of 
closest possible approach J of an alpha panicle 10 a gold nucleus (charge 
q"u = 7ge)1 Wh3t is the ratio of an alpha panicle's kinetic energy T" and ilS 
cleclric polential energy U when it is a distance 2d from 11 gold nucleus? 

P254. An electron is accelCI"'.lIed through a pote11tial difference of 1000 V. thus 
acquiring kinetic energy E, = IIXKJ eV = I keV (see P246). What is its 
vclocity? If n = 1010. such electrons hit an electrode every second. Wh3t is 
the fon;c on the electrode? What is the fon:c if the electrons are replaced by 
protons of encrg), ] keV? 

P25S. An accelerator creates an electron beam equivalent 10 a current of I _ 1O-� A 
and energy E, = 1010 eV per electron. How many electrons would hit a target 
in 1 s. and how much energy would be dcposited? 

P256. A parallel plate capacitor of capacilance C = 10-1 F is connected through a 
resistor R to a power supply [ =  1000 volts. What charge Q aocumulates on 
eaeh plate? What is the energy thereby stored in the capacitor? When the 
capa<.itor is fully charged it is disconnected from tile circuit and the distance 
between its plat\:S is doubled. What is the stored energy 00"') Where did the 
extra energy come from"! 

P257. To measure tile capacitance of an electrometer;t is first charged 10 a potential 
Vo '" 1350 V. It is then connected by a eondu.:ling wire to a distant metal 
sphere of radius r = 3 em. As a result the electromeler'S potential drops tn 
VI '" 900 V. What is the capacitance C of the eleetrometer. and the charges 
Q, QI on it before and after eonnocting it to the sphere? 

P258. In the circuit shown in the Figure. the capacitance C) has the value 8 /lF. The 
space between the plat\:S of Cl is filled with material of dielectric constant 
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Kd '" 3. and as a result C: = 24 jlF. Calculate the potential diffen:nces VI, V2 
H<;"ross the capacitors, and the loto.l electrostatic energy stored in them. Recal· 
<;"ulatc Ihese quantities if the dielectric material is remo�·ed from C2. 

P259. Two capacitors C1 and C: =2CI an: connecled in a circuit with a switch 
between them (� Figun:). Initially the swit<;"h is open and CI holds charge Q. 
The switch is closed and the system n:lallcs to a steady state. Find the polen­
lial V. c1eetrostati<;" energy U and charge for each capacitor. Compan: the 
10lal electrostatic energy befon: and after elosing the switch. expressed in 
lenos of C1 and Q. 

c,_�, 

P260. A Glpacitor has parallel squan: condU<;"ting plates of side I a distance 
d '"' 1/100 Hpart (lice Figun:). It is filled with liquid of dielectric constant 

Kd = 2 and connected 10 a fixed voltage V. The Liquid slowly leaks out so 
that its level decreases with velocity tI. Find the capacilllncc C(/) and charge 
Q(I) as a function of time I after the leak begins. Ellpress your answer in 
lerm5 of I, tI and physical constants. 

n' 1 Ma 
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P26 1 .  A parallel plate capacitor has plale area A and holds charge Q. If the distance 
belween Ihe plal� is x. find the lotal eleclrostatic encrgy stored in the capa­
citor. Hence show that the force between the plates is F = -(f /2'�A. A 
given capacitor has square plates of sidc 1 =  10 em and is filled with material 
of die1e<:tricconstant KJ '" 3. It is found that when the capaciloris uncharged 
and lying on its side il can supporl a mass of no more lhan 200 kg before 
collapsing. What is thc ma!limum charge the capacitor can e,'cr in principle 
hold? What happens to this m3Ximum if K.J is halved? 

P262. A par.lllel plate capacitor of area S and separation d (with S :2>.1) is con­
nected to a voltage source V through a switch. Calculate thc charge Q on 
each plate, the ell!'Ctric field £ between the plates, and the ele<:trostatic energy 
U in each of the three cases below. 

(3) - The s"'itch is dosed and the system reaches a steady state. 
(b) - The switch is closed, the plates separation is increased 10 2d and the 

system reaches II steady stale. 
(c) - The switch is open, the plate s.:paration is increased 10 211; the switch 

is then elosed and the system reaches steady state. 
Elpress your answers in tenns of S, J and V. 

P263. Two conducting spheres. of radii RI '" 0.2 m and Rl '" 0.1 m carry charges 
ql = 6 x 10-' C, ql = -2 X 10-1 C and arc placed al a distance :2> R1, Rl 
from cach olher. They are then connected by a conducting wire: what arc 
their final charges? 

P264, [n the previous problem, find the lotal electrostatic energy of the two spheres 
befure and after conne<:tion (neglect their interaction energy a� they are vcry 
distant). Is it surprising that the two energies are not equal? 

P265. A conducting sphere of radius RI = I m is charged by conne<:ling it to a 
potential y", 9 )(  10) V. After it is fully charged it is disconnected. An 
uncharged conducting sphere of radius Rl .. 2 m is brought into electrical 
contact with the first sphcre at large distance by means of a long wire and 

Ihen disconnected. What are the charges on the t,,·o sphere:s now? 

P266. Two spherical conducting shells have radii RI = a, Rl = 3a and equal 
charges q. What is the potential difference bctwco:n them if they are: 

(a) - for apart. 
(b) - arranged with one concentrically inside the other? 

P267. A point charge 'I is placed al the center of a perfectly conducting spherical 
shell of inncr and outcr radii R,2R (sec Figure). Find Ihe electric field and 
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potential at radii r"", > 2R,r", < R and r, with R < r, < 2R. Repeat the 
calculation for tile case whc� the shell is grounded (has l,ero poterllial). 

P26B. A plane pantllel capacitor has squa� plates of side (J and separJtion d ¢ (J 
kept initially at a potential difference V. Material of dielectric constant 

K� = 2 oo::upies lIalf of the lap (see Figure). The material is now pulled 
slowly out of the capacitor. Find the capacitance C(.�) when the edge of 
the dielectric is a distance x from the center of Ihe capacitor (i!CC Figure). 
Whal current I Rows in Ihe circuit if the dielectric is removed at constant 
velocity II? 

• 

P269. Two thin concentric spherical shells of radii RA = R, R, = 2R each carry 
unifonnly distributed charge q. A third shell of radius Rc = R and unifonnly 
distributed charge -2q is at a distance > R from A, B. Calculate the electro­

static potential of each shell. If B and C are connected by a conducting wire. 
what will their potentials be once the system reaches a steady state? 

P270. Electric fences are widely used in agriCUlture. If tlley are capable of giving a 
large oow a noticeable sbock, how are small birds able 10 sit on them quite 
�fely7 

hu 1 �b"r" 
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• ELECTRIC CURRENTS AND CIRCUITS 

P271. A student uses a car battery (emf £ ,.. 12 V) to power his electric razor. The 
buUery supplies charge Q = o.� C each second. What electron cu�nt flows 
in the razor"s motor and what power docs the ballery suppll1 

P272. A ballery of emf £ '" 6 V is connected to a resistance R. The current in the 
circuit i� measured to be I = 0.2 A and the voltage drop across the battery is 
Vo = 5.8 V. Find the internal resistance R;n of the battery. 

P273. A battery of emF [ =  10 V and internal resistance r = I n is connected to two 
resistors R = 2 fl. Calculate the cum:1II drawn from the batter}' if the resis­
tors R are connected: 

(a) - in series; 
(Ii) - in parallel. 

P274. A copper pipe of length 1 = 10 m has inner and outer radii rl = 0.9 em, 
rl = 1 em. The resistivity ofeoppcr is Pc. = 1.75 x 10-� 1l m. Find the resis­
tance of the pipe. 

P275. Find the resistance of a copper wire of length I '" 10 em if the wire has: 
(a) - cro�sectional area Al = 3 mml; 
(b) - cylindrical radius r = 1 em. (The resistivity p of coplX'r is given in the 

previous question.) 

P276. Consider the circuit shown in the Figure. R, is a variable resistor, and the 
internal resistance: of the balleTic:! is negligible. If  the emfs [of the batteries 
are 6 V and RI = Rl = 2 n, eltprl:"SS the CUTTent h in the resistor R: in terms 
of Rx. Is thcre a value of R� for which this current vanishes? 

rPl 'LtJ' 
" 

P2T7. Calculatc the currents in the circuit in the Figure. where £1 = 7 V. [l = 3 V. 
Rj = 4 n, Rl = 5 n. R) = 8 n. and the internal resistance of both batteries is 
negligible. 

�. E, 
" 
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P278. Find the currents I), 11 and iJ at point A of tht electrical circuit shovm in tht 
Figure. 

P279. A bulb and an cmfsoura: are to be connected in parallel acron points A and 
8 of the circuit shown in the Figure. What should the emf X be so liIal no 
current paS5CS through the bulb? 

P280. An ammeter (or,..,.i5I<1ncc: RA) and" voltmctcr (or TC$is\ancc: R�) a,.., u..,d to 
calibmtt a resistor. If the resistor is connected as in Figure I ,  the ammeter 
and voltmeter give ,..,adings I" VI . while they read /2, VI in tbe arrangement 
of Figure 2. The emf is the same in botb ca!'oCs. EJIpms th� resistance R in 

lenns of the measured current and voltage and RA, R,. in the two cases. 
Under what conditions is it correct to say that both methods give the resis­
tance R as (measun:d vollllge)f(measured current)? 

f 
Fig 1 

Fig 2 

n' 1 Ma 
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P2B1. An electric cireuit consists of a power supply e and two equal mistors R in 
IICries (sc:c Figure). A voltmctcr of imcrnal resistance r is used to mCll5Ure thc 
»<.Itential difTerenCII:S Vob' "hi>. Find V,b' VN in tenn� of e,R and r. 

, 

{.. 12 v 

P2B2. Consider the three cireuits (a, h, c) sho�Tl in the Figure. In which dn:uit is the 
dissipated elcctric power greatest? You may ncglcct thc internal resistance of 
thc power supply e. 

j 

j , 
, 

, , 

� 
, 

, , , 
, , 

J 
(., (0' ,<, 

P283. An electric heater of resistance R = 500 is connected to a V '" 110 V power 
supply for a time 1 _  1 h. How much energy is used? 

P284. If the cost of I kWh of electrical encrgy is 30 cents, how much does it cost to 
usc a 100 W lamp for 24 h? 

P285. The staner motor of a car dr.lws a current f = 300 A from the v = 12 V 
battery. What is the power consumption? If the car staru only after I = 2 min. 
how mu<;"h energy is drawn from the bantry? 

P286. In the cin:uit shown in the Figure, the ammeter reading for the current is 
taken 

(a) - with both switches open; 
(b) - with both switches closed. 



66 PR08UMS - CHAPTER 2. ELECTRICITY AND MAGNETISM 

" , 
I\, - z u  

R. · 3 U  

The readings are (he same in tbe two cases. The power supply e has negligible 
internal resistance; using the: values R\ = 3 0, Rl = 2 0, R) = 30 and 
e = 12 V, find the resistance R. 

P2B7. Father and son disagree abcut how to light their Christmas tree: with 8 
identical bulbs. using a battery of emf e. The father wishes to connect the 
bulbs in series. while the son argues tbat the bulbs will be: brighter if con­
nected in paralkl. Who is right? 

P288, In a military CJ(ercise a field telephone is a distance d = 5 km from the 
rommand post. The wires have resistance , = 6 0 km-l and the telephone 
has resistance RT = 576 0. Hoping to capture the line intaet rather than 
simply destroying it, the "enemy" disables it by short-circuiting the pair of 
tclcphone wires with a metal rod of unknown resistance. To try to discover 
the problem, technicians mea.ure the re,i,tance Ro of the circuit twice: with 
(he telephone «Innected they find R, = 120 O. and with it disconnected they 
find R.t - ISO O. How far along the line from the command post is the 
problem? What is the resis tance R, of the metal rod causing the short? 

P289. Two bulbs A, B of resistance R, 2R arc a"ailab!e to light a shared office and 
can be: connected eitber in series or parallel. The clerk siuing under bulb A 
insists on ronnecting them so as to maximize: the light from thai bulb. while 
the other elerk argues (Rat it i� bc:tter to maximize the tOlal ligbl output. Can 
they agree on how to ronnect the bulbs? (Assume that Ihe emiued light is 
proportional 10 Ihe dissipated power.) 

P290. Consider the circuit $hown in the Figure. AB is a unironn wire of resistance 
RAil - 200 and length I m. The point P is a moveable connect inn; when this 

C, . 2 V  

" 

n' t Ma 
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is pl3ccd 60 em from A, the milliammeter registers zero current. Neglecting 
the internal resistances of the power supplies f" £:. find fl and the potential 
dilTerence VJI across the resilitor R. 

The connection P is moved so that it is 50 cm from A. Find the current I in 
the milliammeter, and the new \'alue of VJI' 

P291. III tile eireuit shown in the Figure. an emf source f = 12 V and internal 
resistance , = 0.3 fl is connected 10 two resislors R, = 1.5 n and 
Rl = 1.2 n. Two capacitors C, = 0.05 " F  and Cl = 0.02 ,.F are connected 
in pill"dlld 10 lh� n,.""Si�lors. and the swil�h S j� open. Qol<;ulale Ihe eurr�m in 
the circuit and tile charges QI,Q! on Ihe capacitors once 11 steady state is 
reacllcd. What \'alu1:5 do these quantities take if the s .... ;teh is clo5cd and a 
new steady state is reached? 

, 
, -f 

" 

P292. In the cireuit shown in the Figure. calculate the currents II, Iz in Rlo Rl. What 
is the potential difference VA'" and what arc the charges on all three capa­
citors? (f = 10 V. R, = I n, Rl = 4 n. C, = I /IF, C: = 5 pF.) 

, 

• MAGNETIC FORCES AND FIELDS 

P293. Two very long pamllel wires are a distance d = I m apan and carry equal 
and opposite currents of strength / = I A. Find the magnetic field between 
tile wires in their plane. An electron moves with velocity \I = c/2 along the 
line exaerly halfway bet ..... een the two wires in their plane (i.e. parallel to one 

• 
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of the currents), Find the mag�etic force: on it. What happens if the velocity is 
rcversed? 

P294. Two very long parallcl conducting wires carry currents 1\ = I A, h "" 2 A in 
opposite directions. Thcy hang horizon tally from pylons by pairs of insulat­

ing cables, each of length a = I m. and are a distance d ¢: a apart. The wiTCs 
have mass m per unit length and the cables make angles 6 to the vertical (see 
Figure). Find 6 and the magnetic field at a point midway between the wires. 

, 
/ 

/ 

/ / , 

P295. A circular coil has N = 10,000 turns of wire arranged uniformly (sec Figure). 
The wire carries current / = I A and the inner and outer Tadii of the coil are 
IJ = I m, b = 2 m. Describe the resultant magnetic field everywhere on the 
symmetry plane of the coil, and find the field strength at a distance r = 1.5 m 
from the center of the coil. 

P296. A slender solenoid of length I = I m is wound with two layers of wire. The 
inner layer has Nt = 1000 turr.$ and the outer onc has N2 = 2000 turns. Each 
carries the same curnnt I = 2 A. but in opposite directions. What is the 
magnetic field inside the solenoid? 

, " 
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P297. A homeowner tries to set up a simple electric doorbell mechanism (see 
Figurr). A permanent magnet of moment I' _ 10-) A.m is suspended by 
a wirr that resists twisting. A solenoid of length 1= 10 em lies in th!! plane 

of the magnet. at an angle 0 _ 45' 10 its axis. Each loop of the solenoid has 
rr�stance r = IO-J n. and the solenoid is connected to a bauery of emf 

£ = 12 V. A torque T, = lO-l N.m is required to mBke the ann strike the 
bell: will the mechanism function? (Assume thai Ihe magnetic field of the 
solenoid at the permanent magnet is 0.01 of its value inside the solenoid.) 

P298. Parallel loops ofTadii TO, 2To are a distance d = 4To apan and carry eurrent� I 
in opposite senses. Find the magnetic field 81' at the point P halfway between 
the loops as a funClion of I, TO and physical constants. 

P299. A long wire carrying eurrenl I = 10 A lies in the plane of a rigid rectangular 
loop carrying current 11 '"" I A (sec Figurr). parallel to its longer sides. The 
l'C'C\angle has sides u '" 0.2 m, b '"' 0.3 m as shown, and the wire is d = 0.25 m 
from the loop. Find the magnitude and direction of the resultant force on the 
loop 

. 

'-D' 
I, 

P300. The arrangement of the prr\'ious problem is used in the design of a magne­
tically levitated lrain. Many "crtical JO<Jps (a rectangular coil) are fixed in 
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C1Ch. carriage directly abo\'c a cable fixed to tbe ttad: bed (SC() Figure). The 
ooil and carriage have the same length b. The carriage has weight per unit 
length w kg m-I• How should the dimensions d, u be chosen $0 as to minimixc 
the po .... er requirements? If d '" I em . .. ' _ 1000 kg m-I and the trackbed 
cable and ooil each. carry currents of 100 A. how many turns ..... ould the coil 
",,11 

PlOI. In the magnetically levitated train of the previous prohlem. three football 
playen; each ..... eighing 100 kg take their seals in a particular 1 m section of a 
carriage. What happens to tI? 

PlO2. A long wire carrying a current I = I A i$ bent at its midpoint around one 
quarter of a circle of radim r = 0.1 m, the waight parts of the wire being 
perpendicular to each other (� Figure). Find the magnetic field at the 
point O. 

! · 111 

P30l. A horizontal conducting rod of length L and mass m can slide on a \'ertical 
track (sec Figure) and is in equilibrium at height L above a long horizontal 
wire ..... hen both the rod and ..... ire carry current 1, hut in opposite direction!!. 

n 1 Ma 
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Find I in terms of m, L. If the culTt'nt in tile lower wire is suddenly doubled, 
what is the initial accelemtion of the rod? 

P3G4. A particle of charge q and mass II! moves in lh� plan� perpendicular to a 

uniform magnetic field B, Show that the particle moves in a circle. and find 
the angular frequency of the motion. What happens if the panicle's "clarity 

does not lie in lhe plane perpendicular to lhe field? 

P305. A cyclotron is a dC\"icc in "'hieh electrons gyrate in a uniform magnctic field 
B. In so doing they emit radio wavcs at thc cyclotron frequcncy (sec previous 
problem). The invenlor orlhe cyclotron. Ernest O. Lawrence. was able to lell 
whethcr the apparatus was opcmling even when at home (and thus keep his 
graduate studenu up to the mark) by tuning a mdio receiver to the appro­
priate wavelength and liitcning for the hum. Lawrence's original cyclotron 
hold 8 = 4.1 X 10-4 T. What wavelength was his radio tuned to? 

P306. Three long wires carry currents II = 8 A (horizontally), Il = II A (horilOn­
tally, but opp05ite to the first current). and I) = 11/2 A (venically down­
wards, perpendicular to the first two). Find thc magnetic fields at the point 

P indicated in the Figurc, wilh a = I ffi. 

" . 

'. 

P307. A particle of charge q allll mass m is accclemted from rest by a constant 
electric field Eo acting O,'cr a length d (sec Figure). [t then encounters a region 
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of constant magnetic field Bo perpendicular to its velocity. Describe its sub­
Ktluent motion. For .... hat \'alue of Bo will the particle re-erller the region of 
eonstant clectric field a distalEC d from the point at which it left? 

P308. The arrangement of the previous problem can be used to measure the ratio 
q/m for unkno .... n panicles (the apparatU.'l is calJed a muss Jpt'C"/Tomnu). 
Using the results of the pre�ious problem. find q/m for a particle whose 
deflection 2R is measured to be D. If Eo = 10' N/C. d = 10 em. Bo =< 0.1 T 
and D = 9.1 em. calculate q/m and compare it with the values for electrons 
and protons. 

P309. Three typ"" of particles arC emilled by a certain radioactive !I:lmple. The 
particles are accelerated by J very large poteotial differeoce V and then 
enter a region of constant magnetic field B directed perpendicular to their 
motion. The radii of the particle orbits are in the ratio Rr : Rl : R) = I : 2 : 3 
and their charges are equal. What un you infer about the particles" masses? 

P310. A panicle of mass m and charge q moves with constant velocity � along the 
negative x-axis. towards increasing x (sec Figure). Between x _ 0 and x _ b 
there is a region of uniform magnetic field B in the )"-direction. Under whal 
conditions will the particle reach the region x > b? If it does. at what angle to 
the .l-axis ..... ill it enter this region? 

P3 1 1 . A ch:r.rged particle is injected with vclocity v into a region containing electric 
and magnetic fields E, B, which are perpendicular to each other and also to 

" ' . 
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thc particlc's velocity (see Figure). E and B aTe adjusted so that the particle is 
undeflected. Find its velocity 11 in tenm of E and B. How can this arrange­
ment be used to select only panicles of a panicul:lr speed from a beam with a 
range of speeds? 

PJI2. A slender solenoid of length L = 2 m ",ilh N = 10,000 turns carries a current 
1 = 2  A. Inside the solenoid. ncar the midpoint. there is a rectangular con· 
ducting loop ABeD (see Figure) "'ith plane parallel to the axis of the sole­
noid. The loop has AD = 10cm. BC = 6cm. and carrics current i = I A. Find 
the resultant force and torque on the loop. 

:0
' 

, , 

I !. 

PJIJ. A re<:tangular wire loop carries current I and i. fn:<: 10 rotate �bout il.\ long 
axis (length I) in a �gion of uniform magnetic field B. If its short axis has 
length ,,', show that when the loop plane makes an angle {J to the field (sec 
Figu�) the loop e�periences a torque Bfllllcos8 about its axis. What 
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happell$ if the current I is rel·ersed each time the loop is perpendicular 10 
the field? 

P314. A mass M with small electric charge q slides on a smOOlh inclined plane of 
angle 8 to Ihe horizontal. A magnetic field B is directed perpendicular to the 
section of the plane (see Figure). Calculate the acceleration of the mass when 
its \·elocity is Ii • 

• 

• ELECTROMAGNETIC I N DUCTION 

P3IS. A m;l<Ingular wire loop "ith sides II = 0.5 m. '2 = I m is removed with 
constant velocity Ii '" 3 m I-I pamlle1 to in longer sides from a region of 
corutao! magnetic field Bo = 1 T perpendicular to its plane (see Figure). The 
loop's electrical resistancc is R = 1.5 O. Find the current in the loop as a 

• 
• " " .  1 
" " • " I 

• " • •  I B. : :
� 

: ��- ' : : " : I
I, 

• • " x I 
" " " "  I 
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function of the distance x of its leading edge from the boundary of the field 
region. 

P316. A plane loop of wire of area A is rotated about an axis lying in its plant'. in a 
region of magnetic field B (see Figure). Show that a current Hows alternately 
in the wire in one direction and thm reverses ,)mmetrieally each time the 
loop is rotated. If the loop is rotated N times per second, show that the 
average induced emf in one half orthe cycle is lNAB. 

, 

P317. An emf £1 is used to drive a current II through a long .wlenoid of cross­
sectional area A with " turns of wire per unit length and total resistance RI. 
The emf alternates N times per second (see previous problem). and the sole­
noid is surrounded by a coil of nr turns of wire per unit length. Show that 
the avemge emf induced in the coil over one half of the cycle is 
£1 '" 2NA'J¢nr£I!R1· 

P318. The ends .4, B of a conducting rod of length I = I m can slide freely while 
maintaining electrical contact with a rectangular conducting loop KLMN 
(sec Figure). A constant magnetic field Do = 2 T is directed perpendicular 
to the plane of the loop (into the page). Sides KAt and LN have resistance 
RKliI = I fl and Rut = 2 fl respectively, and the rest of the loop has negli­
gible resistance. The rod AD is moved with constant velocity 11 =  5 m S-I 

towards LN. What force must be applied to maintain this motion? 

'[ • 

• 
' . 'E----------', ;· I: 

, 

P)19. A long couducting wire is bent at an angle of 00' aud lies in a plane perpen­
dicular to a uniform magnetic fidd Bo = I T. A Sttond very long conducting 
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wire is pulled with velocity v ... 2 m S-I while lying on top of the ben! wire so 
that the points of contact and the 60" ,·e"ex make an equilateml triangle (s.ee 

Figure). At time 1 = 0 the triangle has side IQ = 0.5 m. Both wir�s ha\"� uni­
form resistance per unit length r '" 0.1 n m-1. Assuming perfect contact 
between the two wires, eJ<press the induced emf in the triangle as a runction 

oftimc in terms of Bu, v, 10 and I. What is the value of this emf at t .. 5 s1 Find 
the current in the triangle at this time. 

P320. An amusement park owner designs a new test-your-strength machine. Con­

testants propel a metal bob up a smooth vertical �lide by means of a hammer 

n t Ma 
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(see Figure). To measure Ihe initial speed Ihey gI\'e 10 Ihe bob. Ibe owner 
dccid�5 to usc Ihc indOClion effect in the Earth's magnetic field (8 _ 10-'1 T): 
the boh compietes a circuit with the sides of the slide. and a vohmeter 
measures Ihe induced emf. If Ihe bob is "' _ 10 em ",ide, and contestants 
Iypically manage to make Ihe bob rise to hcigbls h ",  10 m, how sensitive 
must Ihe voltmeter be? 

P321. A plane conducting circular wire loop lies perpendicular to a uniform mag­
netic ficld D, and ils area S(I) is changed as SIt) _ So(1 - or) for 0 < t < I/o. 
(So.<> constanl). The wire has resistance per unil lcngth p !l m-l. Find Ihe 
curren! in Ihe wire. 

P322. A conducting loop of area A = I m! and N '" 200 \Urns whose resistance is 
R = 1.2 fI is situated in a region oroonstanl external magnetic field 8 '" 0.6 T 
parallel to ils axis. The loop is removed from the field region in a time 
t = 10-) s. Calculate the 10lal work done. 

P323, A ph)'llicist works in a laboratory where the magnetic field is 81 = 2T. She 
wears a m:cklacc enclosing area A "" 0.01 101 of field and having a resistance 
r = om n. Because of a po .... -er failure, the field decays to 81 = 1 T in II lime 
t = 10-) s. Estimate the currenl in her necklace and the total hellt produced. 

P324. To meusuTC the field 8 between the poles of an electromagnet, a small tesl 
loop of area A = 10-4 m!. TCsistance R = 10 n and N = 20 lums is pulled oot 
of il. A gah'anometcr shows that a total charge Q ""  2 )(  1O-6C passed 
through Ihe loop. Whal is H! 

P325. A coil carries a current of I = 10 A. When the circuit is broken the 
currenl decays to lerO in a time 1::.1 = 0.255. The inductance of the coil is 
L = 18 Henry. What is the a\'erage induced cmP 

P326. When a current in a certllin coil "aries at a rate of SO A S-1 the induced emfis 
V = 20 volts. What is the inductance of the coil? 

P327. A coil of N = 100 turns carries a current I = 5 A and creates a magnetic nUl( 
4> = IO-J T m!. What is ils inductance L? 

P328. A rectangular loop of conducting ..... ire has area A and N lurn�. It is free 10 
rotate about an axis of symmetry. A constant magnetic field B is prescnt and 
�rpcndicular In the axis. Find the induced emf as a funelion of limc if Ihe 
loop is rotated al angular velocity w. 

P329. A d�\'ice for measuring wind speed has IWO conical cups allached to a hor­
izontal rod oflcnglh L = 0.5 m (sec Figure). The rod is attached to a vertical 
axle, which rotates a vertical conducting wire loop of area A = 0.1 m1 and 
N = 200 turns. The Earth'� magnetic field has horizon tal oomponent 
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B = ]0-. T at this point. Find the maximum voltage indllC\:{j by a wind of 
speed 11 == 100 kmJh. assuming that the cups route at c�aetly this speed. 

" , 



C H A P T E R  T H R E E  

M AT T E R  A N D  W A V E S  

• SUMMARY OF THEORY 

I. Pressure 

• A force F aCling �rpelldicuJarJy on an area A exerts (average) pressure 

(I) 

• The hydrostatic prenure al depth h below the lurfaCC' of It fluid of mass 
density p is 

P = {lgh (2) 

The hydrostatic pressure: orthe atmosphere is always close 10 P A = lOS N m-2 

al sea Ic\'cl. PA is called 1 atmosphere (J aIm). 

• Archiml'd .. s' principle stales thaI a body panly or wholly immersed in a fluid 
experiences a buoywrcy forrr cquili lo the weight orthe fluid il displaces. This 
fol"Ol:' acts vertically upwards through the center of mau orlhe displaced fluid 
(the Unler of fIota/ion or buoyancy). 

1.. Membranes and SurfaceTension 

Flexible enclosures slIch as balloons or tires exen a tension force resisting the 
pressure of their conlents. 

• A spherical enclosure of radius r made of material clening tension I per unit 
length supports a pressure difference 

79 
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2, P,-P,=-; (3) 

betwttn its interior and exterior. This is kllo\\'lI as Laplace's relation. For II. 
cylindrical enclosure the corresponding relation is 

PI - p. = :'. (4) , 

• The free surface of a liquid exerts a sur/au ("flJiOIl 1" per unit length. A 
membrane made of such a liquid exerts tension ]'1\'1 unit length 1 =  2'1. The 
force of the liquid surface 011 a container is ...,cos II per unit length, where 8 is 
the COlllaCI unK/�, whi<,:h depends on the liquid and the material of the con­
tainer. 

l .  BernoullisTheorem 

An i"compr� .... ibk fluid is one whrn;c density p may be taken as constant. 
Water is effectively incompressible under standard tcrrestrial conditions, and 
so is air if we do not consider sonic or supersonic motions. 

• If the pressure in such a fluid is P at a poinl where the fluid velocity is v, 

Bernoulli's theorem Slates that 

p , -+-� +/fJ' - constant , 2 (S) 

along a streamlinc in Ihe fluid. Here ), is the vertical heighl above some 
reference level in Ihe fluid. This can be thought of as an equation of con­
scrvation of mechanical energy for Ihe fluid. 

4. Ideal Gases 

• A mol .. of a subs tance is an amount whose mass is a number of grams equal 
to the molecular mass divided by the muss of a hydrogen atom mH (the molar 
ma.<�). Thm the molar mass or carbon 12 is 12 g. Note that th .. gmm mole is 
not an SI ""il. 

• At conditions far removed from those under which they liquefy or solidify, 
most common gases (air, hydrogen, oxygen, nitrogen, helium. e\c.) can be 
regarded as ideal (or �r/eCl): a fixed mass obeys the ideal (or [>fr/ect) gas law 

PV _ nRT (6) 

where P, Jf, and T arc the pressure, volume. and absolute tcmperoture T of 
the gas, Hnd 11 is the number of moles of gas. R is the Unil'UJlI! gll� cmWllnt. 
We also USC alternative forms of this relation, such as 

n· t Ma 
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(7) 

whcre p ; �  Ihe mllSs density of Ihe gas. Ie is BoII:mann's COIl.llam and I' is Ihe 
mean I1w/eru/ar muss. i.e. the mass of one molecule of the gas in units of Ihe 
mass mil of a hydrogen alom. This is consistent w;lh Ihe earlier form using R 
if it ;s remembered Ihat Ihe gram mole is not an SI unit. It i$ also sometimes 
convenient to use the form PV '" nRT "'ith P in atm and V in liters. The 
appropriate value of R can be found in the table of constants. 

The absolute temperdture T (mc-dsured in K) and the temperature I 
(measured in 'C) an: related by T ",  1 + 273. 

S. Heat and Thermodynamics 
• The coeffirirnl of lim'ar t'xpans;on n is the fractional lenglh by which a solid 

expands whcn healed through I'e. The coeffirwnI of m/uml' I'xpans;on '"I is 
the fractional volume inercase when the solid is healed Ihrough I'e. 

• The sped fie hl'IU of a subst3nce is the amount of heat required 10 raise the 
temperalUre of unit mass of it by I'e. 

• Thc mechanical cqu;"alenl oj heal is approximately 4184 J/kcal, where I ltcal 
(kilocalorie) is the amounl of heal required 10 raise Ihe temperature of I kg of 
waler Ihrough. I'e. 

• The firsl lC1W of IhermodynumlcJ expresses the conservation of heal and 
mechanical energy ;n the form 

(8) 

Here aQ is Ihe heal energy flowing into Ihe system. t.U ;s lhe increase in 
inlem31 energy of Ihe syslem. and a W is Ihe work done by the system on ;t:;; 
surroundings. For example, a gas of pressure P whose I'olume increases by 
t.V performs work t.W '" PaV. 

In an adiabm;c process no heal is lransferred to or from Ihe system, so 
aU+t.W=O. 

• The JecO/Jd l(IM' oj tMrmodynumiCf States that htatjloK'5Jrom /rolll'r 10 colder 
hatlies; reverse Dows can be arranged. but only al Ihe COSt of supplying energy 
10 Ihe system. When a syslem al absolute lemperature T absorbs heat energy 
t.Q at equilibrium (i.e. slowly). ;tS I'nrrapy S changes by nn amount 

(9) 



81 PROSLEMS - CHAPTER 1 MATTER ANDWA'IES 

• If a body of mass nr and specific heat C per un,t mass ,s healed from T) to Tl, 
the total entropy change is 

!:.s �mCln(�) . (IO) 

• Clearly the entropy rema,ns constant ,n an adiabatic change. The KCOnd law 
ofthcnnodynamics can be restated in the fonn Iht enlropy of a cirurd S),.lIem 
can nel·t'r Ikcrt'OH. Thc cntropy of an ideal gas of prcssure P occupying 
volume V remains constant if the quantity pvl is constant, where "1 is the 
ratio of specific heats at constant pressure and constant volume. For an ideal 
monatomic gas .,. = 5/3, and the full expression for the entropy is 

lk k 
S =-- lnT+--I,V 

2JUr1H jlIIlH 
(II) 

Using the idea! gllS law to replace T by P, V this indc:cd shows that pvlfl '" 
constant if S is constant. The internal energy of an ideal monatomic gas is 

lk U =-,--nRT. 
JunH 

(12) 

For a diatomic gas (e.g. 0l) .,. = 1/S. 

d. KineticTheoryofGases 

• Kinetic theory treats gases as composed of di!ICrcte particles or molecules in 
random motion. 

The ideal gas law can be derived from the assumption that collisions of the 
gas particles are perfectly clanic. The average kinetic energy of the panicles is 
3kT/2, where k is Boll2mann's constant, so their average (root·mean·square) 
speed is 

7. Light 

_ (lkT) 'I' 
'- - -- . 

pm" 

• RefrocliOll of light is governed by two laws: 

(13) 

L - AI a boundary betw�n two media, the incident and refracted rays 
and the normai to the boundary all lie in the same plane. 

2. - The angles of incidence and tefr�clion 01,Ol arc related by 

(14) 
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(Snell's Jaw), wllere nl,nl are tile refractive indices of tile media contain­
ing tile two rays. and the angles are measured from the normal to the 
interface. 

• For spllerical mirrQrs of curvature radius R we 3dopt the following conven­
tions: the focal length f = -R/2, where R < 0 for a concave mirror and 
R > 0 for a conve:o; mirror. The obj�t dist3nce is 5 from tile front of the 
mirror, and tile image distance is I bellind the mirror. These quantities are 
related by the mirror {'qUa/ion 

(IS) 

The image is "irmal or imaginary if s' > 0 3nd rro/ if s' < O. The magnifica­
tion m = I/J is positive for an upright image and negative for an inverted 
image. 

• For tlrin ll'nsl's, we adopt the convention that tile focal length f > 0 for 
converging lenses and f < 0 for diverging lenses. The object distance .• is 
always positive and the image distHnCC .f is positive wilen it is on Ihe opposite 
side of tile lens. These quantities �n: related by the thin fens equation 

(16) 

A virtual image has I < O. The magnification m = -I/s is positive for an 
uprigbt image and negative for an inverted image. 

• The focal lengthf ora thin lens m�de ofm�teri�l ofrefraf,;tive indeA n is gi"en 
by the /ensmaker's equation 

I ( I I ) 
- -= (n - I) - + - ,  / RI Rl (\7) 

wbere RI, Rl are the cun'alun: radii of its two faces, counted positive if they 
are com'e,t and negative if concave. 

• The quantity P = 1// is called the power of a lens, and is measured in m-I '"' 
diopters. 

A mirror or lens is denoted/ /4 or/ /8. ete. ifiu diameter is lf4 or 1/8 of its 
focal length /. 

• A I"O,'C disturbance (e.g. light, sound) propagating in the :c-direction �an be 
represented ItS 

. [ 2, ] ¢{:c,t) = A sm 2:TIII - -r:c '  (\8) 
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Here A i� the amplitude, v the[requmcy [measured in Hertz (H�) .. cycles ,-IJ 
and A the U'(H'eilmglh. The combination in square brackets is the phWir 9{x, I). 
The phase "f'locil), v. = AV. One sometimes also u�s the anglllar f"qaency 
'"' _ 211"v, which is measured io radians ,-I . 

• A wave emilln in motion exhibits the Doppler effect: the frequency of the 
received wa''CS is raised (lowered) ir the motion is towards (away from) the 
obsen/er. For light wal'es the f�uency change is 

uv , - = - - (19) 

when: c is the phase velocity of the wave and v is the velocity along the line 
joining the observer to the emiuer: v >  0 implies motion all'ay from the 
obscrver. The corresponding wavelength change is 

(20) 

For sound "'aves the soun:e velocity is added to the phase velocity, so a 
stationary obsen'cr hears the frequency 

ot w�wlength 

". v = �--, 
v, + v  

(21) 

(22) 

Here v, is the ,'e1ocity of sound. v is the velocity of the soun:e away from the 
obscrver, and the suflh 0 refers to the frequency and wavelength for a soun:e 
at test. 

• Cohert'nl "'ava; have the same frequency and a fi�ed phase difference. Inler­
[t'rence OCCUrt when two or more coherent wa"es interact. If the waves have 
the same phase where tkey are combined. we have rOfwrur/;,'e interference 
(e.g. gr"atcr light inten.ity); if they have phases that differ by 11" mdians = 
180·, this is dt'Jlrueli�t' interference (reduced light intensity). 

When parallel lighl rays of wavelength A are normally incident on t"'O slits 
separated by distance d, illlf'r[eTmu fringcs are observed. Constructil'c inter­
ference occurs at angles O. to the original ray direction. where 

dsin9. = II,l,, 1I =0,1 ,2 , .  (23) 

This is also true for a dijfraelioll graling "'ith spacing d. 
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Diffraction from a single slit of width 0 produces destructive interference 
3t angles 0 .. to the original dircction, where 

DsinO .. "" ±mA. III "" I.2,3 . .  (24) 

8. Atomle PhysiC$ 
• The enerJ!Y of a photon of frequency 1/ is E = IHI, where h is Planck's oon­

stant. The momentum of the plloton is p = Elc '" !Hllc "" hlA. 

• The d� Sraglit' wavelengtll of 3 body of momentum p is >'s"" hlp. 

• The unurlaillly principlf states that the un(:trtainties fl. ... , Op in position and 
momentum obey the inequality 

(25) 

where I, = h/{2"). 

• In Ille pholOl'll'Clrir plJ�el. incident ligllt of wavelength A rel� a pho\Oo 
electron of energy 

(") 

where B is a constant called the "'ork fiwelion of the medium surface. 

• Light scattered through an angle 0 by free elocHons of mass m, has ilS 
wavelength A changed to >.'. where 

>.' = >. + -\(1 - cosO), (27) 

Here A, = hlm,c "" 0.024 ft. is the Complon >t'ovt'/englfJ of the electrnn. and 
this is called Comp/QII SCOllerillg. The Angstrom unit (ft.) is defined by 
1 ft.  = 1O�IO m. 

• The energy levcls of the Bohr model of the hydrogen atom are 

Eo E. _ -�' (28) 

where � = 13.6 eV is the Rydlwrg and n is the princifH,1 quantum lIunw--r, 
which takes integer values. When the elcctronjumps between these levels, the 
energy of the emitted or absnrbed photon is given by the difference E" - E,.. 
The transitions down to n = I gi"e spec/ral/ines called the Lyman series, and 
those to n '" 2 the Balmer series. Thc lines appear in absorption if there is a 
cooler Hansparent medium in fronl of a hOller one. In the limit n = 00 the 
electron is no longer bound to the atom. which is therefore ioni:ed. The 
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ioni:<IIiun poltlll/al is the en�rgy required to bring this about, whieh is 
I. = £01,(- for ionir.ltion frol1\ the IIlh bound 1e-"eL 

• In rodioaeri .... decoy the number of rlidioBcti\'c nudei decrcases in lime 
Bccording to 

(29) 

where A is the d .. ca)' can3luIII, characteristic of the nucleus. and (' "" 2.718 is 
the base of natural logarlthms. The halflif .. 11{1 i5 the time in which one-half 
of a large sample of the nuclei will docay. It is related to A by Mill "" O.6g3. 

The ael;";I)' of the nucleus is defined by 

�N A = -7l:/' PO) 

where AN is the change in the number of nuclei in time interval t::.1: one can 
show that A = AN(IJ, 

Nuclei of the same charge numbc:r Z but dilTerent mass numbc:r A are 
cBlled isQlOpeS. 

In /win duo)' a neutron disintegrates into II proton, an electron and an 
anlineutrino. This increases Z by one but leaves A unchanged. 

P. Relativity 

The theory of relativity is based on the postulate that the )'elociIY of fight in 
fra 3ptJCe i.J lhe same for all ob.<eT>"us. As II conKqucncc. obscf\'crs moving 
relative \0 each other with n:locily v assign different vaiuc5 to various 
ph)'$ical quantities. The relations bct"'ccn them invoh"c thc quantity 

( 
J)

- 'I
' 

1{U) = I -? . (31) 

• Tim .. dilation. A time interval 10 on II clock at rest with respect 10 an observer 
is sccn as having thc value I when in motion, where 

1 = 1"0' (32) 

10 is the pr()�r lim ... 

• L:ngth eomra,li()l1. An object of length In When al rest ""ilh rcs(Kt:t to an 
observer (10 = the proper lenglh) appears shortened to length I when in 
motion. where 

(33) 

n' 1 Ma 
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• S/mu/umeily. Events occurring at different points but at the SlIme instant for 
one ohsc:rver do not in general appear simultanoous for another obscT\'Cr. 

• RrlatMstir '·f/Xity addition formllia. If an object is seen by observer 1 to 
move at velocity VI. and obseT'ler 1 is seen by a second obsen·er (2) to move 
at velocity V1 in the SlIme direction, then ohscl"\·er 2 sees the object moving 
,,·ith velocity 

v (34) 

Thus V can never exceed c; no object can be aeu/era/ell/o Ipceds > c. 
• The mrrg)' of a body of rest-mass III moving at speed v is 

E = imcl. (3S) 

11 therefore has rts/-mu.u m>!rSY Eo : III? when 1/ :  O. The mOllltn/um orthe 
body is 

P == ""loW. (36) 

These: two quantities arc related by 

£1 = plC1 + IIIlc�. (37) 

• LIQUIDS AND GASES 

P330. Oil is added to the right-hand arm of a U-tu� comaining water. The oil 
floats above the water to a height of Ir = 10 em. The top of the oil + water 
column is a height d "" 2 em above the top of the ... ·:;lIer column in the other 
arm (see Figure). Calculate the oil density flo. Fluid of density p� is added to 
the water column in the left arm to a height / = 11/2. If the fluid levels in the 
two arms are now equal. calculate p�. 

, 
, 

'" 
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P3JI. A hydraulic press contains oil of density Po = 800 kg m-l• and the areas of 
the large and small cylinders a� A, = 0.5 ml, A, = 1 0-4 m!. The mass of the 
large piston is M, = 51 kg. while the small piston has an unknown mass m. If 
an additional mass AI = 510 kg is placed on the large piston. the press is in 
balance "'ith the small piston a height h = I m above the large one (sa: 
Figure). Find the mass m. 

T 
M. 
F
iMl!zZ,M �_._- 'l.Jmj 

., 

P312. How could you decide if a ",.edding ring is made of pure gold using sensitive 
scales. a liquid volume measure. a length of thread, and a sample of pure 
gold? 

P333. A woman of man M = 60 kg has height h = 1.6 m and shoulder width 
'" = 45 em. She v.ears shoes of length 1 = 25 cm and averJ.ge breadth 
h = 7 em. Appro�imating the �levant areas as rectangles, what average 
pressure does she exert 

(a) - on the ground when standing. 
(b) - on a bed when lying fiat? 

Why is it uncomfortable to lie on a hard 110011 What pressure does the 
woman exert if she puts her weight on stiletto heels of total area A = 2 cm� 

P33-1. The lires on a meing bicycle are innated to a pressure P = htm. Docs the 
pressure gauge on the pump read 7 atm? The combined mass of the bicycle 
and rider is m _ 70 kg. What is the total tire area in contact with the road? 

P33S. Two cylinders of cross·sectional area A = 10 m2 arc fitted smoothly together 
as shown in the Figure, and then evacuated. Masses M are hung from cables 
attached to CIlch of the cylinders. How large can the masses At be made 
before the cylinders are pulled aparl? 

Ur Jeberroc ,', 
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PJ36. A payload m = ZOOk!! is beld stationary by a balloon at a crrtain height 
above the ground. The volume of the balloon is Vb = 1000 mJ, and i s  far 
larger than that of the payloud. Express the gas density Ph inside the balloon 
in tenns of the air density P. at this height. 

P337. Early air:ships were fined with hydrogen mlher Ihan wilh helium, somelimes 
wilh tragic consequences (c.g. the destruction by firc of the �rman airship 
llindenburg in 1937). One sometimes reads thatlhe reas.on for using hydro­
gen was Ihal. since the densily Pit. of helium is twice Ihat of hydrogen (Pit) 
under the s;Jmc conditions, twice the volume of helium would !m,'c been 
needed 10 lift the same payload. Is this correct? <PIt = 0.09 kg m-1, air density 
p. = Ukgm-J.) 

P33S. A ball ofunifonn density 2/3 of that of water falls vertically inlo II pond from 
a height h = 10 m abo,'c its surface. How decp below the surface can the ball 
sink before buoyancy forces push it back? (Neglect the water drag on the 
motion of Ihe ball.) 

P339. A yaehl is at rest on a small lake. What happens 10 the water level if Ihe 
yachtsman throws overboard (a) a boo),. and (b) an anchor? 

PJ.40. A plastic cube of density P '"  800 kg m-) and side a ". 5 cm is floated in a 
cylindrical water container of sorface area A = IOOcm2. Find the resulting 
increas.c h of the waler height. A mass m is placed on the cube and just 
.ubmer� it. rind Ill. 

P341. A wooden cube of side a ". 0.1 m is just submerged in water when pressed 
down with a force F "" 3.43 N. Calculate the demity p of the wood. What 
depth of the cube is submerg;:d if it floats freely1 

P342. A cube of �ide <I is made of moterial of density p = 3p,.j4. where PO' i s  the 
density of water. It is placed in a container with a square cross-section whose 
side is a + c. where r ¢ 0, and whose heighl exceeds 0 (sec Figure). Find the 

� . .  '---1 



90 PROBLEMS - CHAPTER 1 MATTER AND WAVES 

minimum volume V of water that must be poured inlo the container to Hoat 
the cube. Can V be made arbitrarily smaU by reducing c"! 

P343. A solid cube of side a _ 0.1 m hangs from a dynamomcter (a spring measur­
ing force), and is submerged inside a con tainer of liquid. The container bolds 
water. with above it a layer d = 0.2 m of oil of density p� = 5OOkgm-1. In 
�uilibrium the base of the eube is a distance h = 0.02 m be:low Ihe waler lewl 
(sec Figure), 50 thnl its upl'C'r face is below the surface of the oil. The 
dynamometer reading is WD = O.4c)N. Calculate the mass M of Ihe eube: 
lind the h)'drostatic pressure P al the base of the cube. 

- - --- -- --
- ==---====- ---- - -

P344. An keberg has the shape of a cube nnd floats in se-olwaler with II'" 2.5 m 
protruding abo1lC' the surface. The dcnsities of iee, sc;Iwater, nnd fresh 
water are PI = 900 kg m-I, p, = 1300 kg m-1 and PI = 1000 kg m-J respec_ 
\;'·cly. Find 

(a) - the submerged depth l", of the iceberg in the sea, 
(b) - the submerged depth XI in fresh water. 

What fraction of the ieeberg would be abo"e the surface in the second ease? 

P345. A certain liquid has density p, and surface tension '"t and eonta" angle (J when 
in cantaet with glass and air. find the height II orthe liquid in a glass lube of 
cylindrical radius r immersed in this liquid. 

P3-46. Can capi1Jary action account for sap rising in trec:s? (Assume surface tension 
of sap is ""l" = 0.07 N m-I, canlnet angle /;I "" 0, sap density p = 101 kg m-J, 
tr« capillary radius _ 10-2 mm.) 

P347. A glnss tube has a removable cap at one end, which tends 10 fall ofl'whcn the 
tube i� inverted. The cap is made of material of density p = 700 kg m-J and is 
d _ 2 mm thick. For what lube radii r will wening the end of the tube keep 
the cap on when it is invened? (Assume surface tension of walcr 
1" = 0.07 N m-I lind eOIltae1 angles /;I '" 0 where appropriate.) 

n" t Ma 
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P.l48. The pressures inside and outside a sphcri�al membrane of radius r are PI' p •. 
with PI > p •. Show thm the material of the membrane must exert lotal 
tension per unit lenglh I. where 

" P,- P,, "" -
, 

If the rnaterial is a liquid whose slir/oct' tension is i, .how that 

P)49. Repeat the last question for thc case of a cylindrical tubc of radius r. Why do 
boiling frankfurters lend to splil lengthv.ays rather than around their cross­
sections? 

P350. A lire on a racing bicycle is inflated to a pressure PI '" 7 Dtm. The radius of 
the tire is r '" 1.5 cm. Find the tension in the walls. 

P)51 .  Whal is the rJdius r of the smallest droplel that can fonn from water of 
surface tension r = 0.07 N m-t and vapor prmure p. = 2300 N m-!? 

P352. A spherical balloon has interior pressure PI and radius 'I' and is in equili­
briurn inside an endosure with pressure P� _ SPI/Y. The endosure is gradu­
ally evacuated. Assuming that the temperature is fixed and the tension I per 
unit length of the balloon material remains constant. show that the balloon 
radius never exceeds 3'1_ 

P353. The air sacs in the lungs (alveoli) can be approximated as srnall spherical 
membrJnes of radius , containing air at atmospheric pressure Po. The pres­
sure P< in the chest ClIvity (pleural pressure) increases when the person 
breathes oul. Sirnultaneously, muscle contraction de<;;reases r. These changes 
are reversed as the person bre.1lhes in. Show that the membrane tension per 
unit length I must decrease as the pc:rwn c�hales and incn:aloC 3S he inhales. 

P354. Two identical small balloons are inflated, one much more than the other. 
They are then connected by a pipe which is closed by a vah'c between them. 
The whole apparatus is placffi in an e"acuated enclosurc_ What happens 
when the valve is opc:ned? 

(You may assume that the surface tension of the balloon malerial is inde· 
pendent orlhe balloon's size except when the balloon is smaller than a certain 
�pherical r .. dius '",;n, below which the surface tension de<;;realoCs.) 

P355. A container is filled with water to a depth H = 2.5 m. The container is tightly 
sealed and above the water is air at pressure PI = 1.34 x 10sNm-l (see 
Figure). A small hole is drilled at a height Ir = I m above the bollom of 
the container. What is the speed of the resulting jet of water? Compare 
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lJ�---_-=-=-_---::--�=---,o I 
your answer with the enS(: of a container open at the top. but otherwise 
identical. 

P356. When a doctor measures a patient's blood pressure. Ihe cuff is always placed 
around Ihe arm. rather Ihan the ankle or olher part of Ihe body. Why? 

P357. A homeowner wishes to drain her swimming pool by siphoning the water, 
"'hose deplh is Ir, inlo a nearhy gully a dislance 1/ below ii, where 1/ is mueh 
larger Ihan h (see Figure). She uses a pipe of cross·sectional area n, and Ihe 
pool waler has surface area A. How long docs it take to empty the pool if 
h =0 2  m. II ::  20 m, A ::  50 ml, a =  S cm2� 

� '--. --

P358. In the siphon arrangement of Ihe lasl question, Ihe pipe develops a leak at a 
point above the water surface. Whal happens 10 Ihe waler flowl Iftherc is no 
leak. what is the effcci of having air lrapped in the pipe? 

P359. Wall:r is pumped al a conSlant rate r = 6 m1 min-r through a pipe. Near the 
pump Ihe pipe diameter is dr =0 0.2 m, but this widens to a diameler 

I I" 

, 

I 
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d1 = 0.4 m in a horizontal section at a height h = 20 m above the pump (sec 
Figure). This section discharges into a contain�r open to the atmospher�. At 
what ,·clocity does water leavc the pipe? 

P360. In the last problem. what is thc water pressure near thc pump? 

P36 1 .  A wide container is filled with water up to a depth If. A small hole is drilled 
in the container at a distance h belo"· thc water Icvcl. and a jet of water 
emerges from il. How far from the container does the jet hit Ihe ground? 

P362. A Venturi tube (sec Figure) is used to measure the water speed u in a pipe by 
comparing the pressures in the wide and narrow sections (cross-sectional 
areas A,A' = A/4). Find v if the diffcrence in mereury lel"cis is h = 25 mm. 
(The density of mercury is PUI = 13.600 kg m-1.) 

P363. The window and door of a room are both open. The door opens inwards: 
why does it tcnd to slam shut if only slightly ajar"1 

P364. Air of density p '"  I kg m-l flows smoothly and horizontally o'·cr the airfoil 
shape shown in the Figure. The streamline path of air flowing above the 
airflow is m limcs longer than that of the air flowing below it. which has 
speed v. Show that the airfoil experiences an upward fora: 

per unit area. Assume that both streamlines pass through A and B. 
An airplane of mass /If .. 500 kg hilS a total wing area A _ JO m). and the 

airfoil design is such thai m = 1.1.  Estimate the airplaoc's minimum takeoff 
spccd al sea level (p = I kg m-1). How docs this change in high-altitudc wr­
ports? 

, C---"---------, , 
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P365. At high altitude the airplane of the last question can achieve a maximum 
airspeed of tImu = 70ms-t. The air den§ity p dt<:rcases with height = as 
p ""  I X IO-" H kgm-J, where /{ "" 23,000 m. What is the maximum height 
thnt the airplane can in principle uchie"e? 

P366. In light of P364 can you suggest why the early airplanes (e.g. the Wright 
brothers') were all bipianes'l 

P367. T,,'o species of bird are very similar in every respect ucepl that every dimen­
sion of onc species is on average I times the ootresponding dimension of the 
other. Ho'" are their respecthe takeoff speeds for flight rdated? 

P368. A hydrofoil boat uses suhmerged fins with airfoil-type cross-�tions to lift 
the boat largely clear of the water and allow much higher speeds. Find the 
condition for this to be achicved at watCT speed u and total hydrofoil lln:.:l AA. 
if the watcr strCilmliuc path ""er the up�r �urrace of the lalter is m times 
longer than o,'er Ihe lower surface and the boat has mass M. Show that Af 
can be much smaller than the wing area required for takeolT of an airplane of 
the same mass, c,'en with slower speeds u (eumpare P364). 

P369, When II yacht sails into the wind its sails adopt II curved shape as viewed 
from abovc (sec Figure). At a suilable angle to the wind dirct:tion the air on 
the ooncave side of the sails moves much more slowly than th"l on Ihe con,'ex 
side. If the a"erage speed ofth� latter is .... the sails have total area A. and the 
yaehl sleers at angle (} 10 the wind direction (:;eoe Figure), .how Ihat the yachl 
experiences tOlal wind force 

o 
I 

n' 1 Ma 
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in the forward direction, where p. is the air density, 
The same ya<;:ht oow sails with the wind more nearly behind it (sec Figure: 

at an angle ¢ < 90· from directly astero). If the wind has velocity I<' and the 
boaI's forward speed is mrn:h less than this, find the maximum forward force 
Fl on the yacht and compare it ""ith Ft in the case D = '" = 456• 

P370. Tbe yacht of the previous question bas submerged frontal cross· sectional 
area Af (� Figure). If the water density is p and the yacht moves at speed 
tI. show that it has to supply rnomenlllm "" AfpJ per unit time to the water, 
and thus estimate the drag force on it. Estimate the boat's speed Vb II:! in 
terms of w, A, Af,P.,p,D and <p in the cases where it (I) .sails into the wind, 
and (2) has the wind behind it. Evaluate Vt, II:! for I\' = 30 kmlh, A = 20 ml. 
Aj = 0,3 ml, D _  9 = 4S·, using p. = I kg m-l• ,, - (0) kg m-l. 

P371. The ya<;:ht considered in the last t",·o problems has mas.� M, and the sub­
merged depth is lLpproxirnately constanl along its length I. The sails arc 
triangular and the mast has height I also (sec Figure). Show that 
Aj "" Mgj pl, and hence that the yacht should be designed to muimil.e the 
quantity III AI 10 achic\'c high speeds. 

P372. A yacht, as considered in the previous three problems. resists sidcwa)'ll 
motions by means of its keel. which gives the boat total side·on 
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cross-sectional area A,. Show that the boat should be dl:'Signed so thm 
A, ,. AI' What is the usual way of achieving this? 

P373. A ccrtain Gr-.. nd Pri:\ racing car has mass m '= 1000 kg, and the coefficient of 
sliding friction between its tires and the road is Jl = 0.5. What is the ma�­
imum speed at which it can take a levd bend of radius of curvature 
r _ 100m? 

A very efficient wing of area A = 2ml is now fitted to the car. so that the air 
p;assing above the wing moves much more slowly than the car's speed v, while 
that passing below moves at v. What is the new mll!limum speed around the 
bend? (Air density p = I kg m-J.) 

P374. Is the wing of the last question more of an advantage on slow, tight comers 
or fast. rdatively gentle ones? 

P375. An ideal 83S at temperature II = 16°C is heated until its prcsilure and volume 
are douhled: what is its final temperature? 

P376. A closed container of volume VI "" 12 liters holds u mass ml = 0.858 kg of 
o�ygen. It is known that the mass of a liter of o�ygen at atmospheric pressure 
is ml. = 0.0015 kg at the lame h:mperature. What is the pressure in the con­
tainer'? 

P3n. A cylindrical container is enclosed by a piston or mass m = 21 kg and holds a 
mass mH = 0.17g of molecular hydrogen. The volume of hydrogen is 
VH - l400cm) and the height of the piston is h '" 40 em (!-CC Figure). Find 
the atmospheric pressure PA outside the container if the absolUTe temperature 
is T = 300 K. 

P378. A glass pipe of eonslant cross-sectional area A = IO-� m! and length 
1 =  1.\4 m is sealed ut one end and closed by a cork lit the other. Inside 
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tile pipe tllere is a mercury column of !engtll 11 _ 0.3 m. Wllcn tile cork is 
removed and Ihe pipe IIcld lIorizontally in llle atmospllere. Ihe air columns on 
eacll side nftlle mercury ha\'e equal !engllls II = I) = 0.42 m (sec Figure). The 
pipe is now lIeld vertically willi the open end upwards. Find the length iI of 
tile air column at ilS scaled end. Whal would be lhe length ii' of til is column if 
instead tile pipe had been corked in the horizontal position befoTl: being 
turned \'Crtical? Assume that the temperature remains constant throughout. 
The density of mercury is Pltl == 13,600kgm-l. 

P379. A glass bulb of radius R ", 1.5 em is attached to a glass tube of cross-sec· 
tional aTl:a A ", 0.2 em�. A mercury drop of length I" = 6 em seals the air in 
the bulb and a length I� of the tube (see FiguTl:). When the temperature is 
t = 10·C and the tube is lIorizontal, we have I� = 17 em: when the tempera· 
tUTl: is I = 20·C and the tube is vertical with the bulb al the hollom. we have 
1.. "" 113 em. Find the atmospheric pressUTl: PA• given Ihal the density of 
mercury is Pit, = 13.600 kg m-1. (Assume constant temperature.) 

Ai, HsI 

8f--_+-t"';'" Ii. 

P380. A narrow glass lube oflenglh 1 _  0.5 m is sealed al one end. The open end is 
loweral vertically into a bath of mercury. which enters the lube and traps 
some air in the upper end. When the sealed end of Ihe tube is hi = 0.05 m 
abo\'e the mercury le"el in the bath the mercury level in the tube is 
hI = 0.15 m below this level (see FiguTl: I). The tube is now raised so 
that the scaled end is h'l � 0.45 m above the mercury Ic\'C1 in the bath: the 

ttJ' 
'. 

.. 
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" , 

.. 



98 J>fI.08LEMS - CHAPTER 3. MATTER AND WAVES 

level in the tube is now h; = 0.15 m abol·t this level (sec Figure 2). Find the 

atmospheric pressure PA• At what height h must the sealed end of the tube be 
placed so that the mercury in the lube is level wilh thai in Ihe bath? (Densily 
of mercury PH, _ 13.600kgm-l; assume cons tant lemperature.) 

P38I. A solid cylinder of radius R = 0.5 m and height H = I m is drilled al one end 
to make a concentric cylindrical cavity of radius, = R/2 and depth h = If /2. 
The cylinder is placed in a Large mercury bath with the drilled end lowest. and 
floats with il5 upper face exactly al the level of the mercury (sec Figure). The 
atmospheric pressure is PA = 0.987 x lOS N. Caleulate the pressure PI of the 
air trapped in the cavity. the height )' of the mercury in the cavity above the 
cylinder's base. and the density p of the cylinder material. (Density of mer­
cury - 13.600 kgm-l.) 

P382, Two containers of volumes VI :: 2V, Vl :: V are conne<:ted by a narrow pipe 
with a faucet (sec Figure). With the faucet closed VI, Vl contain n, 2n moles 
of a certain ideal gus respectively. The faucet is opened and the syslem 
allowed 10 stabilize al constant temperature. Find the number of moles in 
each container in terms of II. 

, , ", 
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P383. Two containers of volumes VI = 5 liters and V2 = 3 liters arc oonnecl�'d by a 
narrow pipe y .. ith II fllucet. The larger container has II yalve. which releMCll 
gas if its pressu� PI exceeds a Ylllue P"";1 '" 3 atm. The absolute lernperalu� 
is T '" 275 K. and with the faucet dosed the containers hold ideal gas at 
pressures /'1 '" 2 atm. P1 = 4 atrn. Whal is the total nurnber of moles in the 
two containers? The faucet is now opened: does gas leak from the yalye? If 
the systern is heated to r = 400 K how many rnoles of gas will remllin in the 
containers? 

• HEAT AND THERMODYNAMICS 

P384. A car's fuel tank i, fiUed to 970/. of its o;-apacity wilh II volurne V r, of gasoline. 
This process takes place al a ternperdlure of I = O· C. The car is then trans­
porled by truck 10 II wann district. whe� Ihe lemperJlUre is 1 _ 40' C. Is 
there a danger that the fuel will overHow Ihe Ulnk? (The volume expansion 
coefficients of the gasoline and the metal of the tank are 1',; = 9 x 10-� 'e-I 
and 1'T = lQ-he-l. 

PJ85. Thc coefficient of thennal linear expansion of copper is a = 4 X 10-6 °C-I. 
and its specific heat is C = 0.386 J g-I ·C-I. A square copper plale of side 
10 em lind mas.� 100 g is heated from O'C to lOO'C. 

(a) - How rnuch docs the plate's area increase? 
(b) - How much heat docs the plate absorb? 

P386. A solid has thermal linear expansion coefficienl .... Show that its volume 
expansion coefficient is l' = 3(t. 

P387. A steel cube Hoats in a bath of mercury. Whal happens liS Ihe lemperature 
rises? (Coefticient of linear expansion of steel = a, = 1.2 x 10-' 'C-I, coeffi­
cient of volurne expansion of mercury _ ,," _ 1 .8 x 1O-� 'C-I.) 

P388. A heater is used to raise the temperalure of water from 11 = IO'C to 
'] = 38Q C. II has 10 supply V = I ml of hot ..... ater per hour. What is the 
minimum po ..... er that the heating element must supply? (The specific heat of 
..... aler is C .. = 4200 J kg-I 'C-I.) 

P389. An electric element of po ..... er P = I kW is used to heat a room of dimensions 
4 x 5 )( 2.5 meters. Assuming thai the efficiency of heating the air in the room 
is 75%. and thaI the air's heal capacity is CA = 1500 J m-loC-I, how long 
docs it take 10 heal the air in Ihe roorn from I

I 
.. lO'e lO ll = WOe? 

P390. To prepil� coffee, water hIlS 10 be boiled starting from room lemperature 
') = IS'C. Assuming that the electric kellie is .500/. efficient, how much does 
it cost 10 boil I liter of water if electricity costs 10 ccnts per kWh? 
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P39 1 .  A container holds a tOlal mass III '" 1 g of gas molecules, each with velocity 
\I = 600 m s-!. Find the total kinetic energy of the gas molecules. 

P392. An icc cube ofmas5 nI, = 4{) g and tcmperature I, '" -1"C i5 added to a glass 
of �'Okc (mass III, '" 200 g) at room temperature t = 20'C. Neglecting any 
heat exchange between the drink (coke + ice) and its surroundings (glass + 
air). what will the temperature of the coke be oncc the ice has melted com· 
pletely? The specific heat of ice is Cr '" 2310 J kg-! "C-! and the latcnt he�t 
of mclting is L, = 3.36 )( IOj 

J kg-'. Assume that the coke has the SlIme 
specific hcat as watcr. 

P393. Two animal species ate similar in every rcspC'(:t exccpt thaI every dimension 
of one is I times the corresponding dimension of the other. The species 
radiate cxcess hcat from their surfaces and have plentiful supplies of the 
same type of food. By considering the heat balllncr of each species, explain 
why few smaJl mammals are found in polar regions. 

P394. A metal calorimeter has mass 111< ., 0.25 kg and contains mo. = 5 kg of "'ater, 
and the whole systCtn is at a temperature ', = lO'C. A block of mass 
III .. = 10 kg orthe 5ame mctal as the calorimetCT is removed from a container 
of boiling waler and placed in the water inside the calorimeter. The imulated 
calorimeter-waler-metal system reaches thennal equilibrium at a tcmperol· 
ture of I '" �WC. Find the specific heat C .. of the mctal. 

P395. A bullet of maSil m _ 10 g is fired with velocity 11 =  800 m 5-' into a block 
of mass M = 10 kg of material with specific heat C '" 2000 J kg-! °C-!. 
Assuming that all of the bul1et"s kinetic energy is used to heat the block 
(cr. P125. PI26). by how much docs its temperuture rise? 

P396. A copper calorimeter of mass m< '" 125 g contains m! = 60 g of water at a 
tempel1ltul"l: of I

! 
'" 24'C. ,\ mass nil '"' 90 g of hOlier water with tempera· 

ture 11 = 63�C is added, and the temperature of the calorimeter and water 
stabilizes at I) "" 45"C. The calorimeter is perfectly insulated from its sur· 
roundings, Find the specific hcal C"" of copper in kcal kg-toC-t. 

P397. A mass m! - I  kg of cold water at tcmpemture I! = JOC is mixed with a mass 
lit) '" 2 kg of hot water �t '1 = 37�C. You may �ssumc that no heat is 
cxchanged wilh the surroundings, and that the: total volume of water does 
not change. Find the temperature r of the m;';ture. Did the total internal 
cnergy of the water change? What was the lotal entropy change? 

P398. A mass III, = 0.05 kg of an ideal gas is held at a temperature of I
! '" O·C in a 

container of constant volume. The gas absorbs a quantity of heat 
flQ '" 1.25 x lOS J. and as a result its pressure increases to three times its 
inila! value. What is the final temper.tture I) of the gas? What is its specific 
heal at constant volume Cv (in J kg-I)? 
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P399. A glassful of waler of mass m .. = 0.25 kg is boiled at atmospheric pressure 
and totally converted to steam. The latent heat of the \\"ater-steam transition 
is L.. = 540 hal kg-I. Find the chonge of entropy. 

P400. A certain mass of gas is held at a pressure PI = 2 )( 101 N m-1 and occupies a 
volume VI '" I mJ• The gas expands at constant pressure until its volume is 
doubled (i.e. Pl _ Ph Vz _ 2VI). lt is then held at constant volume while i\.$ 
pressure is halved (i.e. PJ = PJ/2, V) = V1). A cyclic tr3nsformation (sec 
Figure) is oomplttcd by an isobaric (constant prenure) compression 
(P. = p) to V. = VI' fonowed by an i.soo::horic (constant volume) trnnsfor­
mation back to VI, PI' What is the work .a.1V done by the g.1S? What is the 
absorbed hcat tJ.(lI 

, 

'0' 
. , 

'. 

'. 

'. , 

P40I. A glass sphere ofvolumc 1 liters contains air at 27'C and is 311ached to a pipe 
full of mcTl'ury os shown ill the Figure. InitiaUy the mercury is Icvel with the 
bollom of the sphere in both arms of the tube. and the ouuide pressure 
i� 760 mmHg. The air in the sphere is thcn beated so that the mercury 
level is raised by 5 mm in the outcr arm. If the crou-sectional area of the 
pipe is 10 eml. what is the temperature of the air in thc spbere? 

v � 71 
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P-t02. An ideal gas of volume V, =400 eml and temperature I, "" ISoC e.lpands 
adiabatically. As a result its temperature drops to I) "" O°c. If the ga� hu-� 
adiabatic index "f "" 1.4. what is the volume V1 of the gas �ncr the exp�nsion1 
The gas i, then compressed isothennally until its pressure returns to the 
initial vBlue (before expansion). What i� its volume now'! 

P403. Five moles of an ideal monatomic gas expand adiabatically from an initial 
temperature TI = 400 K and pressure PI = 106 N m-2 to a final pressure 
p� = ]0' N m-l. Calculate the I1nal lcmperaturc and the work done by the 
.... 

P404. The tires on a racing bicycle are generally inflated to pressures P '" 6>< atmo· 
spheri<.:. When the valve is slurply depressed, ice forms around it. Why? 

P40S. Why docs rain or snow tend to fall on the ,,·indv,.ard side of a mountain 
range? Why is there often a warm dry wind on the other side? (e.g. the 
Chinook on the castern side of the Rockies.) 

P..06. Consider the baUoon of P351 above. If iru;lead of the temperature being 
fixed, the monatomic gas inside the balloon expands adiabatically. sbow 
thaI its m!\.limum r�dius is smaller Ihan in P352. Why? 

P407. A certain mass of ideal gas, wilh constant·volume spco::ific heat 
Cv .. 0.6 Jmol-I K-1. is cooled at constant pressure Po "" IOl Nm-l. As a 
re.ull il. volume d""rca.� fmm V, = I m) In half of ,hi� value. Find ,he 
amount of heat lost by the gas in this process. 

P-408. Two moles of an ideal monalomic gas expand isobarically (i.e. at constan, 
pressure) from an initial volume VI "" 0.03 ml to a final volume V1 = 0.01 ml. 
The pTCllsure througbout is P= 1.52 X 101 N m-2. Calculate the initial and 
final temperatures T), T2 of t�e gas. the total amount of heat Q absorbed in 
tbe process, and the change t.S in the entropy of the gas. 

P-409. T,,·o solid bodic:s ofcqual masse!; m and temperatures TI and Tl "" 2T, 8re 
brought into contact. If their beat capacities are C, and C1 '" UCI, what is 
their common temperature. T. when they reach !hennal equilibrium? Find 
the entropy change as for each body, and show that the total cntropy of the 
system has increased. Express your results in terms of TI,C1 and m. 

P410. A mass m "" 0,16 kg of molecular o�ygen (Ol) at a temperature T, '" ]00 K 
and a pressure PI = I atm "" 101 N m-l is adiabatically compressed to a 
pressure PI C 10atm. Calculate the final volume V2 and temperature Tl of 
the oxygen. What quantity of work all' is performed in the compression, 
and what is the change au of internal energy? 

P41 1 .  The volume of an ideal gas is doubled in a quasislatK: isothermal prOCl!ss. 
Find the change in the pressure P, temperature T. internal energy U. and 
entropy S. fupl"C5oS the changes l!.P, l!.T,l!.U,l!.S in terms of the initial 
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values P/I, T/I, UII, So, Vo and �. the number of molar masses of gas. (Use the 
formula !l, IV .,. IrRT In( V / V�) for the work done by an isothermal ideal gas 
in e�panding from volume V, IO V). 

P4 12. A hent pump is used to heat a house by absorbing a cenain heat quantity Ql 
from the outside air (temperature Tl) and supplying a quantity of heat Qr to 
the house (tempcralUre Tr). lIith Tl < Tl. The machine works cyclically, and 
on each cycle a quantity W of work is performed (by an electric motor), Find 
the relation between Ql ' Ql. and W. If the machine i! completely emdem. 
how much heat will be supplied to a house at Tl = 17 'C with an outside 
temperature Tl = -5·C for every joule of output from the electric motor? 

P413. N gas molecules. each with mass m, are confined in a cube of volume V. 
Show that the p .... "SSurc on th! wall. is 

P =  
Nnn? 

lV . 

where II is the root·mean·!Squue (rms) spnxl of the molecules, defined as 

J = * (Er:; + EJ, + EJ,). 

P414. Three gas molO:'Cules have speeds Ilj ::; 1 , 3  and 10 m S-l in the same direction. 
Find (a) their average spt. ... -d and (b) their rms speed v. where 

P415. Show that Ihe fms speed of molecules of a gas is 

where T is the absolute lemperature, R the gas conSlam. and I' the mean 
molecular mass. 

P416. Find the rms speed of ox)'gen molecules (mean molecular mass 11 '"  32) and 
hydrogen molecules (j, = 2) at room temperntun: (T = 300 K), 

P417. A boule of perfume is open=<! in one corner of a large room. Show that 
typical molecular rIDS speeds do not gi"e a good estimate of how 500n you 
lI'ould expect to nOlice the scent in a distant pan of the room? Why not? 

P418, Sholl' that the specific heat per unit mllSS at constant volume for a monatomic 
gas is 3k/2pmlf. 

One kilojoule of energy is requin:d 10 raise the tcmper:IIUn: of a certain 
mass of helium gas (,' = 4) t�rough )0 K. How much i5 nceded to raise the 
temperature of the same mass of argon (,I = 40) by the same amount? 
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Explain this result in terms of microscopic properties of the two gases. (Both 
helium and argon lire monoalOmic.) 

P419. The gas in a cylinder is adiabatically compressed by a pislOn. By considering 
miero!l(:opic processes, explain qualitatively why its temperature and pressure 
rise. 

P420. A box containing gas is ,,"'Cighcd on II scale. Most orthe gas molecules are not 
in contact with the ba!iC. Why docs the !iC3le neverthelcss regi�ter Ihe weight 
of the gas as well as the box? 

P421 .  The escape speed from Ihe Earth (KC S187) is v"'" = 11.2 km S-I. AI what 
temperature would the following gases lend 10 escape from the Earth's atmo­
sphere: nitrogen (I' = 28), oxygen (/. == 32) and hydrogen 0' = 2)7 

• LIGHT AND WAVES 

P422. The base angles of II triangular glass prism are Il = 30', and its refr4cti�e 
index is n = 1.414 (see Figure). Parallel light rays A and 8 are normally 
incident on ilS base. Whal is Ihe angle �twecn the twO emergent rays? 

, 

, 

P423. A light my is incident on side AD of un cquilutcral triangular prism al angle Q 
(see Figure). If Q < 90' some of Lhe ligbt emerges through side AC, bUI if 
Q 2: 90°, no light emerges through lhis silk. Calculale the refractive index " 
of the prism glass. 

, 

L-__ --' o 
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P424. A light ray i. incident at 40' on a glass plate of refractive index II = 1 .3 and 
width II _ I em. and emerges from the other side of it. Find the linear dis­
plaCl..'1llent of the light my caused by refraction. 

P425. A swimming pool is illuminated by an undcrw3Ier point source of light. 
Viev.-ed from abo'-e the water at a horizontal distance d = I m the light is 
:;cen at an angle III = 30' (see Figure). How deep is it? (Rcfractive index II of 
watcr = 1.3.) 

P426. A light ray is incident on the end of a straight optical fiber at angle III and 
clltel1l the fiber al angle III (Itt Figure). If the refractive index of the fiber is II. 
what is the maximum value of 91 such that the ray remain. within the fiber? 
(Express your answer in tcnns of II.) 

�----+ 
P427. A beam of while light is incidellt at angle (l : 30' 011 a water droplet with 

refractive index n = neAl gi"en as a function of wa,'clcngth >. (see Figure). As 

- - - -
/ 
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the my emerges from the far side of the droplet it has been deflected through 
an angle 6 from its original path. Calculate 6 as a function of A. If Ir(A) is such 
that /I == 1.53 for blue light and n -= 1.52 for red light, by how much will the 
corresponding deflections differ? 

P428. A candle is placed a distance 1 = 1.5 m along the aJtis of a con\·e� spherical 
mirror of curvature radius R == I m (see Figure). Find the position. nature. 
and magnification of the image. Draw a schematic ray diagnlm. 

, 

P429. An object is on the axis of a concave spherical mirror of curvature radius 
R = -2m. Its image is twice: the object size: and appears in front of the 
mirror. Find the positions of the object and image, and supply a ray diagram. 

P430. An object is placed at a distance: J = R/4 from a cOlICave spherical mirror of 
curvature radius It Find the position and natUTl: of the image. Draw a ray 
diagram. 

P43 1 .  An experimenter vdshes to produce an image of the coil of an electric lamp 
on a waU. ",ilh the aid of a spherical mirror. The coil is a distance J = 0.1 rn 
from Ihe mirror. which is itself d '" 3 m from Ihe wall. What kind of mirror 
(concave or coovex, and what radius of curvature) should the experimenter 
u$e? What is the image si�e if the coil is II = 0.5 em long? Give a ray diagram. 

P432. Calculate the focal lengths of the following Ihin glass (II = 1.5) len�s: 
(0.) - biconvex. ",ilh radii Rr '" I m, R! ,.. L3m, 
(b) - biconcave, with the same radii, 
(e) - conca\·e-convex. with the same radii, 
(d) - com·ex-concave, with the same radii. 
(e) - one fiat surface:. the other convex with Rl == 1.3 m. 

P433. A converging lens with focal lcngthf = \0 em is used 10 observe an insect of 
si�e h. Find the position. natUTl: and sil!C (in teons of h) of the image if 

(a) - the insect is s = 5 em rrom the lens. llnd 
(b) - the insect is J � 15 em from the lens. 

Give a ray diagram in each casco 
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P434. A bright object is placed a dis tance s = 1 m from a com'crging kns of focal 
length I = O.S m. A plane mirror is placed perpendicular to the optic:ll axis 
on the opposite side of the lens. How many imHges are: formed? Determine 
whether each image is real or virtU(l1. and upright or invcrted. Ched: your 

f;"oncJusions by means of drdwings. 

P435. A point light source is a height h = 50cm above a table. An experimenter 
wishes to obtain a sharp image of the source al the table, using a converging 
lens of focal length I = 8 cm. AI what height x should she place the lens? 

P436. Show that the thin lens formula can be rewritten as 

where p,p' are the distances of the object and image from the first and second 
focal points. 

P437. Two thin lensc, of focal lengths It ,il arc placed in contact. Show that they 
are equivalent 10 a thin lens wilh focal length I given by 

P438. Two lenses of power Pt = 2 diopters and Pl = 0.5 diopters are placed in 
contact. What is the power of the combined lens? 

P439. An optical doublet is formed from IWO lenses A, B made of glass of different 
refractive indices 'I",'ItJ. Lens A has two con"e� sides of radius of curvature 
R, and lens B has onc flat side and onc conca,'C side of radius of curvature R. 
Derive an expression for the power of the doublet. 

Both refr.lcti,·e indices vary slightly with wa"elength M follows: 
,,� = 1.50, LSI, 1.52 at red, yellow, and blue respectl\'ely, while 
'ItJ '" 1.60, 1.62, 1.64 at the same wavelengths. Show that the doublet has 
consta1l1 power al all thra: wavelengths. 

P440. A simple camera has a converging lens offocal lengthl = 5 em and is w;ed to 
rtCOrd sharp images of distant objects on film. If instead the objects UI"\' 
3 = I m from the lens, by how much must the distance between Ihe lens 
and the film be changed? 

P44I. Show that, except for extreme cJoseups, the magnification of a c:lmera lens is 
approximately proportional to the foclll lcngih of its lens. How al"\' different 
magnifications achie,'oo in praclice? Does this affect the field of view? 

P442. A photographer uses a camera with anllS lens and obtains a good picture 
with an exposul"\' 01"0.02 s. The diaphragm is now stopped down 101/16 and 
Ihe lighting conditions remain the same. WhJt exposure: is now required? 
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P443. By changing the radii of its converging lens, and Ihus its focal length, the 
human eye is able to produce a sharp image on the retina (at a hed dinance 
from the lens) of objects at any distance from :I certain minimum (the " Ieast 
distance of distinct vision", or"near point") up to infinity. trlhe near point is 
a distance d. '" 25 crn from the e�'e's lens, and the retina is 2.5 em behind the 
lens. by what factor must the eye muscles be able 10 change the lens's focal 
length? 

P4+!. A normal human eye can produce 11 sharp image of an object at any distance 
beyond a nenr point (about 25 crn, see the previous problem) all the way out 
to infinity. A certain perron has an e)'e with a normal near point. bUI is 
unable tn scc dearly objects beyond a rar point at df:o I m. How Can her 
vision be corrected? 

P+4S. A man has a near point 31 J. '" 0.6m from his cy�s. What po"'er glasses will 
bring his ncar poinl to d. = 0.25 m? 

P446. The hunuHl eye can distinguish point objects down to angular s<:pardtions 
Do '" 5 )( IO-· ... d ("" 0.0)° '" 1.7'), If a person has a ncar point d, "" 25 �1ll, 
What is the size of the smallest detail that he can pick oul? 

P+47. A person with a near point J. "" 25 em uses a converging lens with a power of 
10 diopters to view a vcry small object. Where must the object be place:d with 
respect to Ihe lens for best results, and how large is the angular magnifiea­
tion1 

P448. A microscope has an objecth'e lens of focal lengthJi = I em and an ocular 
lens offocal lengthfl = 5 cm. What is its angular magnification? It is used to 
"iew a specimen at distance 41 "" 1,1 em from the objectiw. What is the size 
of the smallest dctail lhat can be observed by a nomml eye using the micro­
scope? 

P+49. The focal length of a ce:r1ain astronomical reflecting telescope is f = 15 m, 
The image is I;ev.·ed through an eyepiece of focal lengthJ.. = J cm. Wh�t is 
the angular magnillcation? Why "'ould it be difficult to huild a rerracting 
teles.cope of the same magnification? 

P4SO. A wave is described by the formula 

)ix.l) :0 0.1 sin [2n (O.�I -
j) ], 

whe� y and x are in meters and I i s  i n  se.;onds. What are the amplitude A ,  
...... lVclength '\, phase "elocity � .. and frequency "? 

P4SI. A sinusoidal wave offrequency" = leY Hz has phase vdocity v .. = 500 n15-I , 
What is its wavelength ,\? Find the distance: betl'>'o:cn any two points with a 
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pbase difference ll.Q = rr/6 rad at any given time. At a fi�ed point. by ho'" 
much does the phase change o,'cr a time interval ll.1 '"' 10-' s1 

P452. A car driven by a physicist is sto;>ped by a policeman who claims that it 
passed a traftic light on red. The physicist tries to convince the policeman that 
the light appeared as yellow bet:aule of the Doppler elfocl. Is the policeman 
justified ;n giving the physicist a spteding ticket? (The wavelengths of red and 
yellow light arc 6900 A. 6000 A.) 

P453. A uniformly moving trJin sounds its horn as is pas>C.'S a stational)' obscr.'er. 
The ob..,r,er hears Ihe horn nole 3 faclor 1.2 lower in frequency afler ;1 pa ..... 5 
tlian before. What is tile tn,in's speed (speed ofSOlind v, in air = 330ms-I)? 

P454, A car liorn moving at v = 40 m s-t toward� a static pedestrian emits a �ound 
wave of frequency 1'0 = 500 H7 .. The sound speed is �, = 340 m 5-1. 

(a) - What is the wavelength A cmilted by the horn? 
(b) - At "'hllt frequency " docs the pcdeMrian hear the horn? 

P455. An astronomer u.res a telciICOpe an� speclrogrJph to observe II I>I:t of absorp­
tion linC5 in the spectrum of a star. All of them are shifted slightly to the red 
compared with the same lines in the Sun. In particular the H" line 
(>.0" 6562 A in the Sun) appears at A = 6563 A. What can you conclude 
about the motion of the star? 

P456. An astronomer U>C.'S a telescope an� spectrograph to observe the spoctrum of 
one star of a binary system (two stars orbiting about their common �ntcr of 
mass). If he continues to ol!ser.'c for long enough. "'hat will hc notice? 

P4S7. Two identiQI sound Sources A and B arc: I m apart under watcr and emit 
sound wa"cs of frequency " '" 3500 Hz in phase with cach other. A micro­
phone is platt<;! on a line parallel III AB at a distance L _ 1000 m from AB. 
Where should it be positioned so thaI the sound intensity is a local 
maximum? (Speed of sound in water " 1500 m S- I .) 

P458. In Ihe arrangement of the pTl:I'ions problem. thc microphone is placed at 
position x '" 414.4 m. The em;uC(i frequency is now adjusted in the range 
2500 � ,, �  5500 Hz. What value should it take 50 that the microphone now 
detects =�ro sound intcnsity? 

P4S9. A Young's double slil c�pcriment is pcrfonned using light of .... 'avclength ,\ = 
5OOO A. "'hich emerges in phase flOm two slits a distance d = 3 X 10-) cm 
apart. A transparent shect or thickness I = t ,S X IO-J em is placed ovcr one 
of the slits. The rerractive index of the material of this sheet is ,, = 1.17. 
Where docs the central maximum of the interference paltcrn now appear"? 

P460. In a two-slit interference paltem (Young's experiment) lhe slill; are a distance 
d = 0.3 mm upart. A screen is platt<;! at L = 1 m from thc slits. "'hich are 
illuminated by light of one "'aldength only (monochromatic beam). In the 
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interfcrence pallem on thc screen the 81h ma.limum is a dislance 0 = 1.46 cm 
from Ihe principal maximum. Find Ihe wal'c1cnglh >. of th.e lighl in 
nanometers. 

P46I. A §pcctrometer makes use of a grating with 5000 lines em-I. At what angl� 
will maxima of light of wavelength >. = 6563 A appear? If white light 
(4000A!S >' :s 7oooA) is analyzed by the spectrometer, over what mnge of 
angles do the !ieCond- and th.ird·order interference pallerns overlap? 

P462. A laser beam of light at >. = 6870 A passes through a slil of width 
0 ",  10-4 <.:m. In whal dir«"linns is the intensity l.t:ro? What happens if 0 
is doubled? 

P463. A parallel beam of light of wa\"Clength >. = 7000 A passes through a narrow 
slit in an opaque screen. It prodLlCe$ a arntral intensity maximum of width 
!J.z '" 1.4 em (between the zeros on e�eh side of the maximum) on a second 
parallel screen L = I rn from the first. What is the ,,·idlh of the s1it? 

P464. A Ihin uniform layer of oil of refr.lcth·c index tI ,., 1_25 lies on a pcrf«"tly 
reflecting flat surface. A monochromatic light beam ofw31'clcngth >. (in air) is 
normally incident on the oil. In terms of >.. for what thickness d of oil will the 
rcflcrtcd intensity be (a) a minimum. (b) a maximum? 

P465. A mob official wishes nOl to be seen through the windo,,-s of her Merttdes in 
daylight (dominant wavelength >.). The refractive index of Ihe car·s window gl�s� ;$ tl6 = 1.4. To minimize light tmnsmission, the mob·s engineer has the 
windo"·, coated with a thin layer or optical paint with refnletil·c index 
tlJ .. 1.5. The width of the layer is <.:hoscn 10 be d = 7>.,/2. where >'p is the 
light wavelength in the paint. Speculate on the engineer's fate. 

P"I66. A soap film (refractive index n., 1.3) is illlumin3ted by monochromatic 
light of wavelength >. '" 5200A. Initially the film has thickness c4J and its 
trunsparcncy is maximal, but it is gradually stretched until its thickness 
reaches d) and its tl"�nsparency !"Caches a minimum. Find the possible 
values of c4J and dl • 

• ATOMIC AND NUCLEAR PHYSICS 

P467. Calculate the de Broglie wavelength of electrons lO.'hose speed is 
u, = 101 m S- I. What �xpcriment could one perform to distinguish between 
II beam of such electrons and a beam of photons having the same wal'e\ength? 

P468. In a ('trlain metal, the binding energy of electrons (the work function) is 
B = )  X 10-19 J. Thc metal is illiuminaled by a monOt;hromatic beam of 
light of wl1velength >.. What is the maximum value of >. such thai photo­
electrons are emitted? If ). = 4.4 X 10-7 m, calculate the maximum kinetic 
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energy E .... of the photoelectrons and the stopping potential Vs' How do 
these two results depend on the iniensilJ' of the beam� 

P469. Whcn iIIuminatoo b)' monochromatic light nf wa\'clcngth >. ;; 5500 A, a ccr­
tain metal emits eleo.;tron$ with a maximum energy of E, = 1.02 eV. When th� 
metal is illuminated by monochromatic lighl of wavelcngth >.' = 4800 A, the 
maximum electron energy is F. = 1.35 cV. Find the value of Planck's con­
stant I, from these data. Can such an cxperiment be performed using any 
meta!'! Explain your answer. 

P470, Calculate the number of photons cmilled per second by a radio transmitter 
broadcasting al a frequency of" '" 1 MHz with power P = IOkW. 

P47 1 .  In a cerlain experiment. thc position of an electron is detcrmined to all 
accuracy .c.x = 10-9 m. Assuming that the electron is non-rdativi§lic. whul 
is the most accurate knowledge .... ·c can hope to ha"c about its velocity in this 
experimcnt"! 

p-tn. Find the energy (in bolh joules and eleclron vol IS) and momC111um of an 
X-ray photon of frequency /I = 5 )( 10" H7 .. 

P473. The electron current in an X-ray tube is I = 1 6  rnA. and the potential dif­
ference is .c. V  = I 2,OOOV. What is the shortest wavelength of the emilted 
photons? How many clectrons hit the anode per second? 

P47-t. What is the de Broglie wa\"l�length of the Earth moving in its orbit? Using the 
Bohr modcl for tbe Sun-Earth system, find the quantum number n of the 
orbit. (You m�>' assume that the Earth has mass M, = 6 X 101' kg and 
moves in a circular orbil of radius R = 1.5 X lOll m.) What can you say 
about the applicability of quantum versus classic,1I mechanics in this case? 

P475, Electrons are accelerated in a cathode ray tube by 3 potential difference of 
Vo = 5000 V. 

(/I) - What is the de Broglie wawlcngth of the electrons? 
(b) - What is the shortest wavelength of photons emittoo by Ihe anode 

when electrons hit it? 

P476. A photon of w3\'dength >. = 0.2 A encounters a stationary electron and is 
5Caltercd directly backwards. Calculate lhe final wavelength >.' of the photon, 
and thc electron's kinetic energy l:� after the collision. 

P4n. A gamma ray of wa"ckngth >'t = 0.0048 nm is Compton scattered �t an 
angle 0 from an electron at rest. After the scattering, Ihe magnitudes or the 
photon and electron momenta are equal. Find the angle () and the w3"e!englh 
>'1 of the photon after scatlering. 

P478. The quantization condition of Hohr's theory of the hydrogen atom is 
m,u�r" '"' ITf;, whcre v.,r. arc the "elocity aod radius of the nth electron 



112 PP.OBUMS - CHAPTEfll. MAnER AND WAVES 

orbit. Show that this is equivalent to requiring the circumfen:nce of the orbit 
to be n times the electron's de Broglie wavelength. 

P479, Use Bohr's quantir.ation condition (sec pre,·iolls question) and classical 
mechanics to find the total energy of the /lIh orbit in the hydrogen atom. 
E.�press the ground state energy in terms of physical constants. 

P480. An elcctron collides ",ith a gas (If atomic hydrogen. all of which is in the 
ground Slate. What is the minimum energy (in eV) the electron must have to 
cause the hydrogen to emit a Balmer line pholon� 

P-481.  A hydrogen atom in Ihe n = 4 slate makes a tr.lDsition 10 the ground stalc. 
emilting one photon. Calculate the wa,·elength of the emined photon and the 
recoil velocity of Ihe alom. 

P-482. Calculate the energy of levels n '" 100 ano,;l n '" 100Q in Ille Bohr moxie! of Ihe 
hydrogen atnm. What can you !lily aboul lhe hinding energy of the electron in 
these orbits? Describe the spectrum of radiation emilled when such states 
make a transition 10 a gi'·en low-lying level. 

P483. Use the Bohr model of the hydrogen atom 10 show that when an electron 
jumps from the 1C"·eI n to level n - 1 the frequency of the emilled photon is 
close to the elcctron rotation f�uency (in Hz) if n is very large. 

P484. Figure I represents the energy levels ofa certain atom. Ifn gas of such atoms 
is irradiuted by a beam of white light, what absorption line� an: e�pe<:led in 
the spectrum, when the uperimenl is viewed along the beam a�is (sec Figure 
2)"1 

,," 

Fig 2 

, 
,.,f-------
"f-------
"f-------

,'--------
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P485. An atom of singl� ionized !lelium has a single electron, whose energy lel'cls 
<Irc given by an e�pression similar to tbat of a hydrogen atom, i.e. 

4E, E� = - 7 ' (38) 

where � = 1J.6eV. What is the minimum �nergy requirl."d to ioniJ:e a helium 
atom completely'? 

A �am of electromagnetic radiation has a continuous sp«"trum e�tending 
�tween A_ = 24{) A amI ,\�j'" = soo A; it ill incidem on an ensemble of 
singly ionized helium atoms. "'hich are all in the ground stale. Calculate 
the wavelengtbs of the absorption lines involving transitions from the ground 
state seen if the experiment is viewed along the beam a�is. How many dif­
ferent emis.,ion lines will he Sl:en in this casc? How many are seen if the 
e�pcrimcnt is viewed from tbe side? 

P486, A sample of sodium �'Qntaining a certain conttntration of the I INa2-1 isotope 
is prepared. After 60 hours this concentration has fallen to 7'Yo of its original 
value. Calculate the half-life II/l of IlNa.l-l. 

P487, An isotope of iron (2 = 26, A = 59) undergoes beta decay into a stable iso­
tope of cobalt. Find Z and A for the cobalt isotope. In 30 days the num�r of 
radioactive iron atoms in a certain sample decreases from NI = 1021} to 
Nl � 6.25 X 101�. What is the half-life of the iron isotope? 

P488. The half-livC'5 of the two uranium i!;Otopes UH8, Um are known to be 
11/:(UlJl) = 4,5 x 109 )T, IIJ:(Um) = 7.1 x )0' j'r. [f the Earth was fomled 
with equal amounts of the two isotopes, estimate its cum:nI age, given that 
uranium ores �re now 99.29�. UilE! and 0.710;' Um by num�r. 

P"I89. Th� radioactive �lemen! I�C decays by beta emission. [n a lil'ing organism the 
activity of I�C (i.e. the number of decays per minute per gmm) is known to be 
15.3. [n a certain archaeological exca\'ation a human bone is found in which 
the activity is 1.96, The !lalf-life of I�C is Iitl >= 5568 y. Estimate the age of 
the bone, 

P490, When a helium nudeus is fonned from two deuterium nuclei an energy 

of 23.8 MeV is released. [n tbe fission of Um an energy of approxima1e!y 
200 MeV is released. Compare the total amount of encrgy released in the 
fusion of I g of deuterium "'ith that released in tbe fission of I g of U1JB

, 

• RELATIVITY 

P49 1 .  A body mows unifonn[y relati\'e to an obsen'cr, who measures its length and 
finds a value I = In/2. where 19 is its proper length. What is the I'clocit� v of 
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the body? A clock moving with the body measures a time inu:rval T� = I s 
bet .... een two events. What does the observer measure for this interval'! 

P492. An el�tron mov� so Illat its lotal energy is twice its resl-mass energy. Wllat 
is its \"(>loc;ty? At .... Ilat velocity i!l its momentum me. wllere nr is its r�t-mass? 

P493. A certain elemenlary particle lives only a lime TO = 5 s before disintegrating. 
Whal velocity mUSI the particle h.ave if il is to reacll the Earth from tile Sun 
(distance I = l.5 )( 1011 m) before disintegrating? 

P49-4, A spaceship SI moves with unifonn velocity II = 0.99(" willl respect to a space 
slatioll S1. Tile clocks in SI �lId S1 are synellronized at lcrO hours �s tile 
spaceship p�sscs tile �pace slation. Tile captain of SI sends a radio signal to 
S! wllell his clock reads 1.00 hr. What win S/s clock read when tile signal 
reaclles il? 

P495. A spaceship mOI'es with velocity II, '" 0.& directly towards a space slation. II 
fires � missile al Ihe slalion lI.;tll velocity t' .. = 0.5e witll respecl to itself. 
Wh.at is tile missile's velocity .... ith respecl to tile slalion? Repeal the calcub­
tion for tllc case II, '" O.OOIc. Compare your resulls in both cases witll tile 
answer given by the non-relativistic I'eiocity addilion formula: d,," Ihe latter 
pro\'ide a good appro:timalion in either case? 

P496. A particie of mass m mo\'es ... ·jlh velocity II '" 0.8e in the laboratory fr�mc 
and collides ",;tb un identical IUllionary parlicle, combining wilh it to creale 
a new single particle of mas. M and velocity V. Find ,\/, V. 

P497. An eleclron and a positron (each of mass m, = 9.1 )( 10-)1 kg) conide with 
I'elocities ±II � ±O.&- in the laborotory frume. and gamma radiation is 
emitted. Show thai more Ihun one photon mUSI be cmitlcd. If e�actly two 
photons are emilled show Ihn they mUSI mO\'e in opposite directions and 
have equal energies E. Caku[ate E and the corresponding photon wavelength 
,. 

P498. A eosmie·ray source mo\'es with �clocity ". = 0.& away from the Earth. In 
its rest rrame it emits protons with energy E = 2000 MeV in all directions. 
Calcululc the speed vp in the source frame and ,f, in the Earth's rrame 
or a proton emilled towards the Earth. How long (in the Earth's frame) 
"'ill it take for a proton 10 reach the Earth if emined al a distance 
I = lOt! km? What is the corresponding time in the proton's rrame"! 
(mp = 1.67 )( lO-u kg.) 

P499. An alien spaceship movC"S "'ith constant velocity v _ O.&- relative to Ihe 
Earth. It passes the Sun at i certain point on its "'ay to the Earth (you 
may neglect !he Earth's motion about the Sun in Ihis problem). How long 
docs Ihe Sun-Earth journey lake according to a lerreslrial obscrl'er"! How 
long do Ihe aliens measure the trip as taking"! (EaTlh-Sun distanc.: 
1 =  1.5 )( [(f km.) 

n' 1 Ma 
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PSOO. When a spaceship passes the Earlh. an alien aged 20 Earlh·years ralls in love 
with a terrestrial student whom she sees on her monitor screen. At the time 

the student is also exactly 20 years old. The relationship is diiiCouraged by the 

aJicTi authorities und the spaceship continues to move at constant speed 
v '" 0.998 ... Aftcr one year (spaceship time) the alicTi is able to send a radio 

message to the studen!. How old is the student when the message arrives 3t 
Earth? 



PA RT T W O  

S O L U T I O N S  

, , " 



C H A P T E R  O N E  

M E C H A N I C S  

o STATICS 

S I. Choosing the origin at the center of the Sun and the x-axis along Ihe Sun­
planet direction. we have for the Earth-Sun system 

O + M-", /II, _6 II j xCM = U0 + M,
"" U0

d, = 3 x lO x 1.5 >< 10 =4.5 )( 10 m, 

which is well inside the Sun. i.e. XCM <C::: Re. 
For the Jupiter-Sun system 

0 +  lII)d, M� -l Il i 
XC:M = I ,,"-d, = l0 x l .4 x lO = 1.4 )( 10 m . . " ", + M, M", 

This is outside the Sun (about 2R,;, from its ceDlcr). 

52. We choose the origin of coordinates at the cenler of the hoop and the x-axis 
along the shaft (sec Figure). The positions (.ll,yd, (Xl,Yll of the centers 

'" , (.< .. rv 

119 
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of mass of the hoop and shaft are obviously given by XI = 0, 
)'1 '" O,Xl = I,Yl = O. so the center of mass of the entire racket is givcn by 

1 I 
tnl.2m ",, :'! 

with )"0.1 = O. The center of mass is where the shaft joins the hoop. This is 
obvious by s)mmetry, as the hoop and shaft have equal musses and thcir 
centers of mass arc equally spaced llooul lhal point 

53. In calcu lating XCM "'"C havc to add a mass m) = m/2 with coordinates 
x) � -1/2,,) '" 0 to the expression in S2 aOOvc. This gi\'cs 

" M  
-ml/4 +ml _ 3

1 
5m/2 10 . 

The ncw center of mass is inside tbe hoop. a distance 115 from thc point 
where the shaft joins it. 

5-4. The center of mass of a triangle of unifornl density and thickness is at ils 
centroid. i.e. the intersection of the medians (sec Figure). The centroid divides 
each of the medians in the ratio of2: I. so the center of mass of the ealcn slice 
is at II position 2r/3 from the center of the pina. Choosing the origin of 
coordinates at the center of the pizza and Ihe x·axis along lhe symmctry line 
orthe slice, the center of mass of the full pizza lies at x = O. while those orthe 
slice and pizza minus slice lie at X, '" 2r/J and x,. respecti\·e]y. Thus 

o 
m,x. +m,.x. 

m,+m, 
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where m"m, are the masses orthe uicc and pizza minus slice. Since the pizza 
is uniform Ill, '" (20/360)111 = 0.056111, and Ill, '" In - m,:: O.944m, W 

m, 
x, = --x, 

m, 

0.667r )( 0.056 ., 
-O.04r. 

0 944 

Thus the balan� point is shifted away from the original �nler of the piu.a by 
only 4'Y. of the radius. 

55. The ballast lowel"$ the center of ma;s. This makes the boat more stable: iflhe 

cenler of mass is too bil!.h. the bo31 ma� even capsize. 

56. The board is placed across the tWI) scales as shown in the FiguTl:, and Ihe 
person lies on it. The elltta weights WI' W2 registered by the scales are noted. 
If the 5C:\les are a distance d apart and the ccnter of mass (eM) is a distance II 
from the top of the len-haRd scale. requiring EMo = 0 about the eM gi\'CS 
Wla = WI(d - a), i.e. 

W1J o � ---- . 
Wt + W2 

We may regard this as the ;: coordinate of the eM. 
The process is then Tl:peatcd wilh the person standing facing a particular 

dir�'(:tion, and then facing al right angles to ii, giving also the x. y coordinates 
of the eM. 

57. The forces acting on the body aTl: its weight Uf, the static frictional force!. 
and the normal reaction fome N orlhe plane (sec FiIlUn:). The laller two are 
nencd by the inclined plane. The weight is a result of the Earth's gravity. To 
calculate the force we choose a Cartesian coordinate system with the y-allis 
normal to the plane and the x-allis dow'n it. In equilibrium. as here. we have 
EF .. = EFy = 0, Or 

WsinO-/, : O, (I)  

N - Woos O : O. (2) 
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With IV = rng thi§ give!; /. = rug sin 0 = 5 x 9.8 x sin 30" = 24.5 N and 
N = 5 x 9.8 x cosJO' = 42.4 N. The maximum value the frictional forteS 
can have is J:""" = NI', = 42.4 x 0.6 = 25.4 N, and this exceeds the actual 
value of/. we ha\'e calculated above, which prevents the body sliding. In 
general, equations (I) and (2) show that/. = mgsin 0 and NI', = /J,mgcos O. 

so that Loquilibrium is possible for /. :5  N/l,. i.e. mgsin 6 :5 /I,mgcos6. or 
I'. ;?: tan 9. Here tan 30· _ 0.S8 < 0.6. as required. 

sa. Choosing the origin of coordinate!; al the mass III with the X,), axes res­
pectively horizonlal and venical, Ihe conditions for equilibrium are 
"EFT. = 0, "EF, = O. With T,• T2 the temiolU in the sirings ..... e have (sec Figure) 

T, coso + T)cosfJ - mg = 0 

T, sinn - T2 sinfJ = O. 

The second equalion can be rewriltl:Tl as T, = T2 sinfJ/ sin n. allowing us 10 

eliminate T, from the first equation: 

T:[cos (lsin� + �in n cosffl = mg sin n, 

T, 
T, 

mg 
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SO using Ihe trigonnmelric identity for sin (a + 0), 

T, mgsinCl 
sinter + PI' 

The relation between T, and 72 shows th3t 

T, mgsinO 
sinter + {J)' 

113 

Now using II = 45·.0 = ro· gi\'eS T, = O.897mg, T, = O.732mg The equili. 
brium of the two vertically hanging wcight� requires T, = mig, T, = mu:. 
and thus m, = O.897m '" 8.97 kg, m: '" O.732m = 7.32 kg. 

59, Let the string make an angle a 10 thc wall. As thc "'"lI1l is smooth, therc is only 
a nonnal reaction force: N between it and the ball. Taking the x and y axes 
horizontal and \'crtical. the equilibrium conditions EFx = 0, El-� = 0 become 
(5CC Figure) 

N - Tsin o = O  (I) 

Tcoso - mg = O. (2) 

Then from (2). T = mg/cosn = mgseco. Since tan a _ r/h_ l/,[5, Ihe 
identity sr:<:'o = I + tan1o �hows thaI see n = 2/,[5 so tho! T =  2mg/.f3. 
Now (I) shows thai N := mg Ian 0 = mg/./J. 

If the wall is rough. (2) above becomes instead 

!.,N + TcosCl = mg, 

Eliminating N bet .... een (3) and (I) gh'es 

" 

T '" mg 
IJ,sin o + coso' 

(l) 
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and (ll shows that 

mgsina N � . . 
il .. smo + co�o 

As can be seen. both T and N are reduced by nonzero I',: the ctrcet of friction 
is to help support the sphere. reducing the required tension in the string and 
thus the normal fon:e on thc walL 

S 10. Taking the x and y axes horizontal and vertical. "'e sec from the Figure that 
Ihe horizontal equilibrium condition EF. = 0 is satisfied by symmetry. With 
a the angle of the twO rope sections to the horizontal. the vertical equilibrium 
condition EF, = 0 is 

2Tsin o - mg = 0. (I) 

The length of the stretched rope is I = 4/ coso (each sectioo is stretched by a 
factor l / e050-). so that 

T - .. (1 - 10) - 1;/0(_'- - I) . 
cosn 

Thus substituting for T in (I) shows that 

21;10(1 - cos a) tan 0- = mg. (2) 

Thecriticul (mu.o;imum) angle a, has tana, = h/Io = 1/6. so Ihal a, = 9.46°. 
and cosn, = 0.986. From (2) wc thus find that .. must ha"c at Ica�t thc 
value ,,;, _ mg[24 tana,( I - oosn,JrI '" 6O x 9.8(2 x 6 x l /6 x O.014)-1 
.. 2.1 x lqi N m-I. If the performer hangs vertically from thc rope. we must 
h�ve thc C(juilibrium condition 

mg = T =  .. (I - lo), 

so thai the extension of the rope is 1- 10 = mg/ .. = 60 x 9.8/2.1 x 10' = 
0.028 m, i.e. less than J em. The big difference from Ihe earlier ease results 
from the faet that there Ihc rope was almost horizonlal, so that a much larger 
tension was needed to balance the performer's wcight. 

--- - r---- ----,.---
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S I I . This problem is a p3rticular case of P8. ",ilh now ,," = (1, Tl '" Tz = T. Using 
the relation for Tl or Tz in S8 

T = m  smn = � .  
g sin 2n 2eos,," 

m, 
cosn = 

2T 

A horizont:>l ",ire would ha"e {I = 90' {lr COSo = O. For nr '" 0 this is impos. 
sible, however large T becomcs. For T = 1000g we find n = 89.7". i.e. the 
",ire makes an angle 0.3' to th: horizontal. 

The win: must always sag slightly in order to balance the weight of the 
muss. Since the wire itself al"-'llYs has mass, it can never be stretched com· 
pletely horizontal. This effect can be secn easily by looking at a tennis ne\. 

S 1 2.  The vertical equilibrium oflhe hanging weight, EF, '" 0, gives T = W, where 
T is the tension in the cord. Using r.F� '" 0 at the anchoring point gives a pull 

P = 2Tcosn 

on the leg. With the data given, the nur.;c increasn the pull from PI = 140 N 
\0 P2 " 170 N. 

-- - -»-------.:.' 

S 13. Requiring EMo = 0 for the pivot a (the elbow), 

L 
LWcosll"'" I"'eosll - IFeosll = 0, 

so that F = (L/I) IV + [L/21)", ... 20W + 10 .... This greatly exceeds W + w 
because the arm is (deliberately) an inefficient lever. as are most limbs. (An 
efficient lever would require large muscle contractions for small movements.) 
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SI4, With the follX'S as shown in the Figure, Ihe horizontal and v�rtical equili­
brium conditions arc 

Peos8 - 2mg '" 0 (I) 

"d 

Psin O + N - mg = O, (2) 

where N is the reaclion force of the ground, If P is very slightly larger than 
the value specified by these conditions. the box will begin to move towards 
the first man. The condition specifying 0 = 0, is N = O. i.e. lhat the vertical 
component of the first man's pull would almost lift the box from Ihe ground. 
Thus from (2), PsinO, = mg. Now eliminating P from (I), with 0 '" 8, we get 
tan 0, = 0.5 or 0, = 26.51', From (I) we get P = ]mg! cos 0, = 2.24ml/. 

, 

S IS, As 0 is a fixed axis, we require EMo = O. The torques acting at 0 3re the 
moments of the rod's weight and the ming tension T. Since the weight acts 
through the midpoint of the rod. we must have 

. I 
ITsm8 - 2'mgcoso = 0, (I)  

where I i s  the rod's length and 8 is the angle o f  the string to the rod (sec 
Figure). Note that we must use the fora: components acting perpendicular to 
the rod in mlcing momcnt5, otherwise we will introduce the internal folW$ 
in the rod. Clearly 8 = 9Q' - o - /J. so {Il becomes Tcos (o+/J)= 
(1/2)mgcosCt. From the vertical equilibrium of the hanging mass M we 
h.3ve T '" Mg, so 

},f = m coso 
2oos(a + /'fJ  

cos4S' III 
2cos60

' = 0.7\",. 

Let the reaction force P at the axis make an angle ..,. \0 the horizontal (sa: 
Figurc). With the x and y axes horixontal and verlical the equilibrium con· 
ditions EF� = O. EF, = 0 become 
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Poos ,.- Tsin (J = O, 

Psiwy + TeosfJ - mg = O. 

With T = .\If( = 0.71mg and {J = IS°, these an:: 

Peos r - 0.71mg x 0.26 _ 0.1 85mg 

Psin,. = mg- 0.71mg x 0.97 = 0.31 Img. 
Dividing the second equation by tbe first "'e get tan,. = \.68\. so 
that ,. = 59.25°. Then from tbe first e1;juation we get P = 0.185mg/cos,. = 
0.362mg. 

, 

S 16. Let tbe wire make an angle " to tbe horizontal (see Figure). Then requiring 
EMo " 0 about 0 giws 

I . 
"2 TslD o - lmg=O. 

Thus T = m'g/.ino. Clearly "in a = h/[I,l + (1/2)2j'11. Writing x = 1,/1 we 
have 

T "' 2(1 + 4�)mg. 

Wben T = T ... , = 3mg we have xl = 1/2. so that h ...... = 1/../2 = 0.711. 
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517. Let the upper hinge: be at A and the lower one at B and ict the forcc� they 
exert on the door be FA' F" The center of mas..� of the door is at its L'enter O. 
I\s weight acts vertically downwards through this point. Since hinge A mrries 
all of this weight, F" must be purely hori�ontal, while FA must have both 
horizontal and vertical components (see Figure). Requiring EM.j = 0 si"cs 

" 
- "2Mg+ (II - 2J)F8 " O. 

With d = w/4 and Ir '" 3 ... , wc gct F, ""' Mg/5. Thc horizontal and \"Crtical 
equilibrium conditions EF% '" 0, EF, = 0 give 

F.j cosa- F, ,,, O, 

F� sino - Alg "" O. 

Thus rearranging and dividing these two equations gives tan (I; = Mgl Fw = 5. 
Hcnce (I; '" 78.7·. The last equation now gives FA _ Mg/ sin a _ 1.02Mg. 

518. The forees N» Nl exerted by the "'"all and plane are normal to thcse two 
surfaces respecti>'ely (no friction). Thus NI is hnrizontal and Nl makes an 
angle 91 to the vertical (sec Figure). Then the horizontal and vertical equili­
brium conditions EFA = 0, EF,. = 0 imply 

(I) 

. , 

• -------
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(2) 

Dividing (2) by (II gives tan O2 "" N,/mg. Requiring EMA '" 0 about the 
point A where the rod touches the inclined plane gives 

IN,cosO, = �mgSinO" 

50 that tanO, = 2N,/mg. Iknee the required relation between the angles is 
tanO, = 2tan02. With OJ = 30', this gives tunO, = I .lSS. so 0, "" 49.1°. 
From (I) we get Nl = mg/coslh = 1.ISmg. and substituting this into (2) 
gives N, = Nl sinOl = 1.15mg x (1/2) = 0.5Rmg. 

519. Let NloN2 be the normal reaction force� of the Hoor and wall, andf the 
frktional force exerted by the Hoor. """t the ladder have mau M and length 
L. Then the equilibrium conditions EF, = 0, EF, ., 0 arc: 

(I) 

(2) 

Requiring EMo = 0 about the point 0 where the ladder is in contact with the 
Hoor (see Figure) gives 

0' 

. L 
-LN2smO+ "2 Mgoos 0 = 0, 

(3) 

Thus using (\) in (3) we gctf = Mg/2tan (I. Equilibrium is possible as long as 
f is no larger than the maximum possible frictiol1;li force, I.e.f S NIp.. Now 

11',1' = /IIgI" using (2). Hence equilibrium requires !an O ;;:=  1/21', i.e, 
0 .. = lan-'(1/2,..). 

520. The forces are as in the pre,·ious problem. with the addition of the workers 
weight Hfg acting at tbe top end of the ladder (see Figure). The equilibrium 
cODditions EFx = 0, EF, = 0 thus beoomc 
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' . 

Nz -! = O, 

N, - 2Afg - Mg = 0, 

or Nz = f, N, = 3Mg. Requiring EMo = 0 about the contact poinl 0 now 
gives 

-LNl sinO +�MgcOS8 + L x 2MgcosO = 0 

or NzlanO = (5/2)Mg. Thus! = 5Mg/2 IanO. As before we require! S N,/l­
if the ladder is not 10 s�p, which here becomesf S 3M81'. Hence the eondi· 
tion determining 8 .. is tao 0 � 5/6/" i.e. 0 .. = tao-I (5/6/1), which is of course 
more restrictive than before. 

521. lei the mass of the platform be M, and let the load (of mass .\1 •. _ 2M) be Ilt 
distan� x from its lef\-hand roSC. If the tensions in the t .. ·o roJlCs are T1, T1, 
the equilibrium conditions EF, = 0, EF7 '" 0 become 

(See Figure.) 

(I)  

(2) 

Requiring EMo = 0 ahout the position 0 of the load: 

-xT\ COSO, - (�-x )Mg + (L - x)Tzcos61 ;; O. (3) 

SubstilUliog for the angles 0" (Jl as given. lind dividing (3) by L/2. equlltions 
(1-3) become 

(4) 

(5) 

(6) 

n· 1 Ma 
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Solving (4. 5) for T]> T� gh'es T, = (3.jj/2)Mg, T2 = (3/2)Mg. Substituting 
these values in (6) and dividing by JIg we get 

9 ,  ( .,) J ( ') zz+ 1 - 2Z = z  I - Z ' 
with the solution x = L/8. 

522. If the cylinder is not to slide we require tan (J $ 1', (see e.g. P1 above). II will 
overturn ihnd only ifits center of gravity lies vertically outside the base, i.e. 
tan 8 > r/(h/2) (sec Figure). Combining these two requirements shows that 
for h > 2r/ tan (} = 2r/" , the cylinder will ovenurn. Note that this re-quire­
ment is independent of 8. 

523. The reaction force at the pivot will vanish if the two muscle pairs are 
arranged to be in vertical and �orizontal equilibrium witb the reaction 
force C acting dO"''llwards. EFA = 0 requires 

u cosO. - Leos (J, = 0, 

when: U is Ihe force exerted by th: upper muscle pair. EF, '" 0 gives 

Usin6. 1 1...;n6, c _ o. 

Eliminating U between these two equations gives C = L(tan O. COsO, + sin (J,) 
= 1.56L with the data given. This arrangement allows a larger biting or 
chewing force Ihan would be: e�rrted by either muscle group alone, and 
avoids creating large stresses on the jaw pivol. 

524. Horizontal equilibrium EFr = 0 Tnjuires 

F + Fz - F, = 0. (I)  
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Requiring EMo "" 0 about the root. 

(/1 + Iz)/-" - lzF, "" o. 
From (2). F, _ (I, + '1)F/11 "" 0.35 N. From (I). Fl � F, - F = 0.15 N. 

(2) 

S2S, If the pushing force is Pand the player"s mass is 1fJ. he will not ovenurn if the 
torque of P around his feet is smaller than that of his weight, i.e. \\"C require 

(lh ') lh . g + 4 Pcos B < gmgsmll, 

or tan ll  > 1P!5mg. Horizontal equilibrium EFx = 0 requires P "" f, when: 
f S mXI' is the frictional resistance at the player's fcet. Thus the player begins 
to slidc once P reaches the value mgl': hc will not ha'·c overturned before Ihis 
happens provided that tan S >  7/-1/5. Hence the minimum angle of lean is 
0", = tan-'(7 ... 15). 

S26. Assume that thc balance i$ lc�1. Let the force: e�erted by the woman on the 
cord be F, and let the cord make an angle a to the vertical. Also, lei the force 
«crted by the woman on the floor because of her weighl be 11" .  Oearly 
N' '" N, where N i$ the reaction force oflhe floor on the \\·oman (see Figure). 
Requiring EMo _ 0 about the pivot 0 of the balance \\"C have 

I IN + 2: Fcoso: = IMg 

where I is the length of each arm of the balancc. Canccling /, 

N + !Fcos a -= Mg (I) 

(the weights of each side of the balance cancel). The vertical equilibrium 
condition '£J.� == 0 for the woman is (see Figure) 

N + Fcos o. = mg (2) 
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as obviously F' = F. Eliminating Fcoso between (I) and (2) gives 

N = (2M - mlg, 

and thus from either (I) or (2) we get 

Fcoso "" 2(m - M)g. 

(3) 

(4) 

We require N > 0 if the woman is to remain on the platfonn, i.e. 2M > m. 
Since she pulls the string we must havc Frosa > 0, i.e. m > M. Combining 
these two requirements. the balance can remain level [for a suitable force F 
and angle 0, cr, equation (4)] provided Ihlll m, M obey 

M < m < 2M. 

" 

o 

M, N 

N' 

527. If the lifting is slow, the silualion is quasistatic. The pulley and mass arc 
supported by 11m sections or rope. >0 Ef� = 0 gives Mg = 2T or T '" Mg/2. 
The "'oman only hs 10 exert a force equal to one-half of the weight 10 be 
lifted. To lift the mass a height h. bolh Ihe supporting se<:lion orropc mUSI be 
shortened by an omount II. Thus tt.c woman has to pull down a length 2h of 
rope. 

528. When the seo:::ond pair of pulleys arc added. the mass is supported by four 
sections of rope. so thc vcrtical �ui�brium condition :t;I'y "" 0 becomes 
4T '" Mg or T = Mg14. The fOIll se<:lions each have 10 be shortened by 
an amount h to raise the mass, so the woman now has to pull down a lenglh 
4h of rope. 

529. At the poim A where Ihe 1"'0 leven touch. II torque Gl on the lcrt-hand shaft 
produces on upward fol'\X' F2 = Glio. To gel the right-hand shaft just to turn 
requires Ef� = O. i.c. Fl must balance the rtsisti,'c force FI = Gdb. Thus the 
required torque is G2 .. (alblGI• The calculation is precisely the �me for the 
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IWO gear wh�ls. as the teeth cause: Ihem 10 beha�e like a su�sion or levers, 
and steady mOlion implies Ihal the forces are again in oolan� 31 A. 

As the gear wheels cannot slip relati�e to eaeh othcr. the upward velocities 
al A must be equal. If the right-hand wheel has angular ,'elocity w we have 
an .. Ix.!, so w = (a/h)fI. 
The last three questions illustrate the principle of gearing: a �maller (larger) 
required force or torque ooTmlponds to moving the load more slowly 
(mpidly). 

530. As the mOlion is quasistatic the forces and tOrqUCi are effectively in equili­
brium al all times. Simple geometry shows that the rudius from the center of 
the cylinder to the contact point 0 makes an angle 0 = 60· to the "ertical (see 
Figure). When the rope is pulled horizontally. requiring EMu � 0 about 0 
gives 

or F .. = mg./3/J. 

) . , '2RF,. = RmgSln , 

!flhe reaction force of the eurb is G and it makes an angle a to the 
horizontal, the equilibrium conditions r:.F� = 0, r:.f� = 0 arc F = Gcosa. 
ml{= Gsina. Dividing these equations shows that lana = mg/F = ../3. or 
a = 60" for F = F .. as above. As lifting pr�d •• the Lever arm of the rope 
pull F inereases, wlliLc that of the weight decreases (sec figure). so we d�'duce 
that F .. decrease:s during lining. 

If the direction of the pull is allowed to vary. the best angle is obviously the 
one making the lever ann of the pull largest. i.e. perpendicular 10 the dia­
meter passing Ihrough O. This is clearly at 60" 10 the horizontal (sec Figure). 
Requiring r:.Mo = 0 about 0 now gives 

or F .. = (v'3/4)mg . 

.--�:--, 
, 
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531. (a) If I < 2R the str.!w will slide until it reaches equilibrium, which by sym­
metry must occur when it is horizontal. 
(b) If / > 2R the horizontal equilibrium position is unattainable. and parI of 
the straw ",'ill protrude from the glass (sec Figure). Since the glass is smooth. 
lhc forces NA,Ns exerted at Ihe lower and upper contact points must be 
respectively perpendicular to the glass surface, i.e. directed towards the center 
of CUT\'llture 0 of Ihc gl.us, and perpendicular to the straw (see Figure). 
Clearly the straw makes the same angle fl "'1th the hori7.0ntal and wilh NA_ 
Funher the length AS is equal to 2RcosfJ. Now choosing thc x-axis to lie 
along the stl"'JW and the y-axi! perpendicular to it. the equilibrium conditions 
EF:. "" 0, 'EF, '" 0 become 

NAcos/J '" It'sin/J, ( I) 

NA slnp + Na = It'COSP, (2) 

where II' is thc straw's weight. Requiring EM A = 0 aboul A gh'es 

I 
2RcosPNa - 2 ",,"os{j = 0 

or Na = (lj4R)",. Substituting this into (2) gi\'�s 

N�sinfJ = ",(c05P- il), (3) 

where we hue wriuen J' = 1/4R for con'·cnicnce. Thus dividing (I) by (3) 
giVe5 

oos{3 sinp 
sin{j (cosP il) ' 

Multiplying out, and using the identity sin1 fJ = I - cos2 fl, we gel a quadrntie 
equation for cosfJ: 

wilh the solution 

cosfJ = i�' + ,;;;r:tij, 

'" 
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The other solution has cosfJ < 0, which requires fJ > 90", and is unphysicaL 
Hence in the equilibrium position fJ is specified by 

and the length AD is 2Roos/J, i,e, 

which should be larger than 1/2 if the straw is not to fall out of the glass 

532. The woman lifts the mass slowly. so we can regard the situation as dose to 
equilibrium. Using EF, "" ° gi\'es 

Mg - R ""O, 

where R is the tension in the rope. so R = Mg. Requiring EM E "" ° about the 
elbow joint E, 

Combining, we find 

T' Hin(O +¢) =/RcosQ. 

T _ 
fRoos6 

- llsin(I1 +¢) 
8oos? 

sin(O +6) 
Mg

. 

With 0 ",  ¢ we ha\'C sin(O + ¢) = sin 20 = 2 sinOoos 11, so T o<  1/ sin (J. The 
required tension in the biceps increases. rapidly as the mass is raised and 11 
decreases. 

533, Lct the tension in the rope be T. Using EF, = 0 we get 

T + Mg = F. 

Taking moments about the point where thc supports join the awning. 

aT - (f- a)Mg =O. 

From the first equation T ",  F - Mg, so eliminating from the $CCond gi\'es 
F = Mgl/a. If instead two symmetrical selS of supports are used, Ef� = 0 
immediately shows Ihal F = Mg/2. Wilh the data gi\'en, we get F", 4900 N 
in the finlt caK and F _ 24S N in the second. 

" , 
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534, The average speed is the IOtal distance di�ided by the total time. The distance 
Xl traveled after the stop is found from x = VI as Xl = 9Q x 2 - 180 "m. 
Thus the total distance is x = SO + 180 .. 230 km. The total time includes the 
stop and is I '" ]/2 + 1/3 + 2 '" 17./6 h (20 min .. ]/3 h). Hence the avcrage 
spo:«! is v = X/I = 230/(17/6) "" 81 .2 km/h. 

535, To answer the queslion we need w find the car's acceleration a. We must 
com'crt the ear's velocity v to m S-I. This J!ivcs v '"  100 x lOOO/3(,()() '" 
27.8 m S-I. Now using the kinematical formula v = "0 + <1/ with "0 '" 0, I '" 
10 s and" as above, we find a � vII � 2.78m s-l. The distance follows upon 
substituting these �alues into the ronnula x = ''01 + all/2, giving 
.l = 2.78 x 101/2 = 139 m. The (lI"eragc velocity is this distance divided by 
the time lOs. i.e. lJ.9m ,-I. 

536. The average ,'ciocity is I!,,� = J/I, where I is the time to complele the journey. 
Clearly I = s/21)1 + s/2Uz = S(UI + 112)/21)117. Thus 

s 2vl17 11,,,, = - ; --- . I VI + 17 

This is always less than tim<an = {VI + 17)/2 as the ratio is 

and since (VI - '!:I)l > O. "'c ha'-e 2VtVl < vl + vi. 
4vt17 < vi + 2v1VJ + vi = (VI + lid. so the rhs of (I) is always :S:: 1. 

(I) 

537. The rel:l!i\'e speed is �', = vp -u, = 60 km/h. The officer has to travel 
d = 0.5 km relative 10 the car to catch it. so the time required is 
I = dIu, = 0.5/60 h '" 30 s. 

538. Concordc flies at speed II from East to West. relative to the Eanh's atmo­
sphere which turns "1th the Earth at speed " = 2IrR/d from West to East. 
Where R is the Earth's radius and dis the length orthe day. To make the Sun 
risc again requires II > U = 2:1" x 6400/24 = 1675 km{h. 

539. We wish 10 usc the formula t? '" v5 + :!ax: however. we must conven 
the velocity unit5 first. Thu§ t"o = 100 km{h - 27.8 m 5-1. Then with 
d = -5 m S-l (dcce1er.llion '" ne�ative acceleration) and v = 0 (the car 
comes to a stop) we find x = -v5/2a = 77.3 m. [f Vo i§ increas<.-d by a factor 
2. we see that x increases by a factor 2l = 4. Thus the new sLOpping distance 
is 309 m. 
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5-40. Using the kinematic formula x = Vol + ar /2 with 110 = 0 ..... e find 
a = 2x/r = 2 x 4OO/1<r = 8 m ,-2. Thu§ from v = Vo + al we get 
,, =  80 m ,_t. or a speed of 288 kmlh. 

541. In the kinematic formula x = Vol + a/l/2 we measure." upwards: we choose 
thc roof level as x = O. so the ground level is x = -20 m. Also a = -g. Thcn 
with I.\) = 10 m s-I wc get -20 = 101 _ 9.811/2. i.c. 

4.9(2 - 101 - 20 = 0. 

The solution of this quadratic equation is I = (10 ± ,,1100 + 392)/9.8. Thc 
negative root is not meaningful for this problem, so the answcr required is the 
positive roOi 1 = 3.28 s. Thc impact velocity follows from the kinematic for­
mula v = 110 + a/. Wilh l'(l,U as abo\'e and / = 3.285 we find v = -22.2 m S-I, 
i.e. the ball hits the ground at 22.2ms-1 (the negative sign shows that the 
balrs motion is downwards). 

542. Choosing the posilh'e x--i1ircction down ..... ards . ..... e usc the kinematic formula 
x -Vol + at2/2. Here a _ g since the motion is downwards. In the first case 
we hal'e 110 "" 0, thus x = g17/2 = 9.8 x 22/2 = 19 .6 m; this is the distance to 
the water surface. The impact velocity in this case is given by the formula 
v = ''(1 + a/ = gl '" 9.S X 2 = ]9.6 m,-I . To find the initial vclocity Vo in the 
second case, we again use x = Vol +ar /2, hut now ... ith x sel equ�1 to 19.6 
m. a � g and I "" I s. Thi' gives ]9.6 = Vo x I + 9.8 x ]2/2 _ l\) + 4.9. Thus 
'-'11 = 19.6 - 4.9 = 14.7ms-l . Here the impact velocity is gil'cn hy 
v = Vo + "'= 14.7 +9.8x I = 24.5ms-l. 

543. The time needed for the car to ol'crtoke the truck is the timc the truck 
takcs to travel 32 m. From the kinematic formula x _ 1.\)/ + atl/2 with 
''0 = 0,,, = "2 = 1 ms-l. we get 32 = r/2 and Ihus / = v'64 = Ss. The velo· 
cities of the car and truck follow from the formul� v '"  110 + at, using the 
value of I abm'e and 0 ""  OJ, a = "1 respectively. wilh til = 0 in both cases. 
We find VI � 2 x 8 = 16ms-1 and "1 = 1  x 8 = 8ms-l. We can find the 
initia! separation of tbe vehicles by subtracting 32 m (the distance tl"1lvcled 
by the truck) from the distance Xl tl"1lveled by the car by the time 
they are level. The laner is given by the formula ."( = 1.\)1 + all/2 with 
Vo = O,a = al '" 2m,-2 and / = 8 5. This gives X

l 
", 2  x 82/2 '" 64 m. Thus 

the initial §cparation was h.x = 64 - 32 = 32 m. 
S44. From the kinerrwtic formula ,} = ,£ + la)' .... ith \.\:I = 0 (the rocket starts 

from rest). )' = 1000 m and v = IOOms-1 .... e find a = ,}/2)' = 
10,000/2000 = 5 m 1_2. The time follows from v'" t\) + a/ wilh "0 = 0 as 
above and a = 5 m s-I as deduced: this gi\'es f = via = 100/5 � 205. 

S4S. The bullet reaches its maximum height when its vertical velocity v = O. From 
the kinematic formula ,} = tij + lay with Vo = 3{) mIs, II = -g we find a 
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maximum height y = 16/2g = 9OOj(2 x 9.8) = 45.92 m. To find the \'elocity 
after 4$ we use the formula " ""  Vo + <.II with Vo, Q as above, to find 
tJ = 30 - 9.8 x 4 = -9.2 m ,_I. The negative sign shows thai the bullel has 
passed its greatesl height and is f�lling back. The corresponding height is 
gi\'cn by Ihe formula ,. = Vol + a/Il2 wilh lIe,a as above and , = 45. We gel 
)' = 30 x 4 - 9.8 x 16/2 = 120 - 78.4 = 41.6 m. 

S46. From the kinematic formula ,; = I� +2ay, with l\) " O,a '" g,)' = h/2 we 
find the velocity ,, = ../iJi as Ihe body nuns the second half of ib fall. 
No",' using )' �,,<>1+(112/2 with ''u =  ,,= ./i1i, " =R,), = h/2 "'e find it 
falls the second half in a lime I salisfying 

Now we are told Ihal I = I s. so 

h = 2.,.!9.8ii + 9.8, 

implying 

(h _ 9.8)2 = 39.2h 

or hl 
_ 58.8h + 96.04 = O. This quadratic equation has two roots, namely 

hi = 57.1 m and hI = l.68m. The luner 501ulion is clearly impossible, as 
we know Ihal the body falls for longer than I s, in which time it will have 
covered more Ihan gr /2 = 4.9 m. Thus h = 57.1 m. 

547. Using the kinemalic formula "= Vol + or /2 wilh y = II - h, l'� = 0, 
/I "" g tbe lIIan falls for a time I,.. whefe' II - h _ gl�/2. i.e. I", = 
]2(1/ -h)/g]l/l = 4.04 5. SU�r\\'oman falls Ihe s.ame distance in time 
I,. - 1 = 3.()4 s. Using the same kinemalic formula again we have 
11 - h = Vot+g,l/2, or 80 � J.04t� + 9.8 x 3.042/2, so that Vo = 11.4 m s-t. 

S48. In the elevalor frame Ihe effeclive gravity is R.n" = g + /I = 11.8 III ,-1. and the 
ball simply rises and falls wilh re-spcct to Ihe elevator and boy under this 
acoelerntion. Using the kinematic formula 

where y is the vertical distance from Ihe boy's hand we see that y = 0 both al 
/ = 0 and al / = 211o/8<fT '" 0.85 s. 
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549. The time offHght is giveo simply by the venical motion. This is gO"ernro by 
the equation y = I.\)yt - It? /2. Here %- = t.\) sin tl with t'o = 300m5-1 the 
muv.le velocity and a = 30" the elevation. The lime of flighl is gi"en hy 
selliog y = O. "'hich gives 0 = Vo,t - g? /2. The root 1 = 0  is lrivial (the 
shell starts from y = 0 also), so we can divide through by t in this equation 
to get 1= 2t-o,-1t "" 300 )( 0.5/4.9 "" 3O.6s. The range follows from the 

horizontal motion, which is simply constant velocity 3t '-'0),. "" ''0 cos 30' = 
300 )( 0.866 = 260m S-I. Thus the rangc is x =: "(1..1 = 7956m. 

S50. The muimum dislance is achieved when the elevation angle is 45·. We find 
the time of Hight, as before. from the equ3tioo of venical molion, finding 
1 = 2''o,/g = 2 x 25 5in 4So/9.8 = 50 x 0.71/9.8 _ 3.62 s. The best dist3ncc is 
thus x = Vo"I = 25oos45' x 3.62 = 64m. To find the el!'Vation of the faulty 
throw, we note that the range can be written quite generally as 
x _ 1.1.>,' = t'o.. x 2''I),/g "" 2l�sinQcos",/g. Using the trigonometric identity 
sin:m = 2 sin QCOSQ. this is x = � sin :mig. With x = 32 m for this throw 
and I'll = 2S m s-' as before. we find sin 20 = 0.5. This has /1>'0 solutions, 
o = I S" and 0 = 90· - IS· = 75·, It is of course much more likely that the 
faulty throw was too fiat than too steep. i.e. (} = IS". 

SSt. We can rewrite the general range formula x = �sin 2o/g given in the laS! 

solution as x = x.,., sin 2a. where .lma, = lilg is the ma:dmum range. This 
shows that the maximum range is achievN when sin 2c. = I .  i.e. ° = 45·. and 
that half the maximum range is achic"ed when x"". sin 2l> = x..,.,/2, i.e. 
sin 20 = 0.5. so that ° = IS· or 75· for half the range, independent of l'o. 

S52. From the general range formula x _ 2t.i sinocoso/K used in the last twO 
answers. we sec that for given x and I'll we have an equation for a. 
i.e. sino COSU = gx/2,,;'. If we find a w1ulion ,� = 01 of this equation, we 
can sec that °1 - 90' - 01 is also a solution. sioC'C sinol = COS01, 
COSOI = sin 01' Clearly 01 - 45' = 45' - 01' 

SS3. (a) If the takeoff and landing points arC:LI the same lewl we can usc: Ihe nlllge 
formula (see last three answen) in Ihe fonn sin 20 = xg/�,a. With .l = IS m 
and l'g = 100 iun/h'"'27.8 m 5-1. this gives sin20 '" 0.19. implying 0 "  5.5' 
(the alternati"e possibility u = 84.5' is rather unlikely!). 
(b) If the bus takes off horizontally. Ihe time of flight across the gap is 
I '" X/I'\). Using the kinematic formula y _ <'or + ar2/2 during this time the 
bus falls 3 "ertical distance y = gr /2, since it has zero vertical "docity initio 
ally. With the data given we find y = g� /2111 = 1.4 m. 

S54. The time of flight follows from the horizontal motion as I = xlvo, when: ttl is 
the muzzle velocity. The kinematic formula y = VOyl + 01112 with t'n, = 0 
shows that the bullet falls II distance h = gr /2 = 8.�1/2.·1, Ix:low the horizon· 
tal. If the rifle is aimed oorrC\.11y at some angle 0 to the horizontal. the ronge 
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ronnuli!. used in SSO above requires that x ", 2ttsinocoso/g, so 
sin acos,., '" xg/2� '" II/.t. For 11 «  x, ,., is a small angle, so casu"" I 
and tan 0 "" sin" '" II/x. The rifleman should .lim at a point x tan" "'" II 
abo,'" the targe\. 

SSS, The time of flight is giv .. n by the v .. rtical frec-fall time from the airplane's 
height, wilh zero initial vertical velocity. Using)" '" l'O,' - sr /2 with "'0, '" 0 
and y '" -II we find r _ J2h/g. Here II is tbe height, and )" is negative 
because it is measured from the airplane's position. With h = 2 km = 
2000 ", we gel I _ 20.2 •. The lank's horizontol velocity is the ."me a. Ihol 

of the airplane �nd is Ihus Vox = 6OOkm/h = 167 m s-t, The horizontal 

distance traveled by Ihe tank ancr release is thus x '"  l"(lzf = 
167 )( 20.2 = 3370 m. As the airplane and t�nk have e�actly the same 

horizontal velocity, the airplane is always directly overhead the tank, includ­
ing al the momenl of impact. 

5S6. Sin�� thc bombs all h�ve the sarne hori�ontal velocity as the bomber Ihey lie 
on a venical line di�ly underneath il al all limes (sc.: Figure). Each bomb 
takes CMlctly the !.arne time 10 hit the ground, so they do so at intervals 

ill _ 1 s. Their release points differed by uilf_ 194 m, hence so do their 
imp�cl points. 

= 
= 
= 
= 
= 
= 
= 

557. The time of flight is gi"en by the "ertical motion as I '" 2l'tJ,.fg (see S49). With 

vu,. = t'usin o =  1000 x O.087 _ S7 ms-l• we find 1 ", 2 x  87/9.S = 17.79 s. 
The horizontal .'CIocity of the shell wilh respec, to the growrJ includes the 
tank's velocity II and is Vox = 110 cosa + II = 1000 )( 0.996 + 10 - 1006 m s-r. 

The ranse of the shell was Iherefore .'{ = Uo..' = 1006 x 17.79 = 17.897 rn. 
During the shell's flight, \he tanl:: ad\"a�d a distance ", = 
10 x 17.79 = 177.9 m, so the so:parntion of the tank and target at impact is 
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Ihe difference 17,897 - 177.9 = 17,719m. The separation of the tanlr:: and 
larget al the moment of firing is Ihe sheWs runge minus the distance 
traveled by Ihe larget during the shell's flight, i.e. 17,897 _ W/ = 
17,897 - IS x 17.79 ", 17.630 m. 

558. The horizontal distance troveled b)' the softball is .t" = f + d = 38 + 2 = 
40 m. The time of flight is thus / = x/t'o.., when: t·o.. = t"Gcosa = 
Vo/2 (c0560' = O.S) is the (constant) horizontal velocity of the ball. and tIo 
is the unlr::nown velocity of the throw. Hence / .. 2xjtlo = 80/110 S. Substitut· 
ing this expression inlO the equation for vertical motion ), = '"G,I _ gllj2 
"'1lh tl<, _ tl<sina - 0.866t\) and J ' = h  =20 m wc lind 

20 = 0.&66t.t, X 80/11< - 9.& x (80/11(1)1/2. 

i.e. 20 = 69.3 - 31,360/�, or 1.\) = .fTI.360/49.3 = 25.2 m 5.1 .  

559. Using the kinematic formulae, aftcr time I we ha"e horilOnlal and vertical 
displacements 

X _ iii, 

,r y= vt- T' 

Using (I) to eliminale 1 =  x/u. (2) becomes 

(I) 

(2) 

(l) 

This is a parabola. Clearly J' = 0 al x =: O  and x = r = 2uv/g. The beighl " 
follows either dire<:tl)' h)' pulling x = r/2 = liv/g inlO the equation (3) of Ihe 
parobola. giving h _ J /2g. or by using the kinematic formula v, _ v - gl for 
the vertical molion. which gives / = v/g for the time at which the projectile 
reachcs its greatest height (v, = 0 there); giving I this value in (2) givcs the 
same value for h. 

560. The athlete needs to launch the javelin at 45' to the ground (as "iewed by a 
stational)' observer) for maximum range (sec 551). Ifshe tbrows theja\"clin at 
angle 0 in her own frame, she has to ensure thaI the horizontal and "erlkal 
components of i15 initial velocity seen by a stational)' observer arc equal. i.c. 

where v is the speed of the throw. Thus sin (J - cos O ",  0.25, which is satisfied 
for (J = 55". 



KINEMATICS 143 

561 . Equations (1-3) of S59 hold here 100. As the pea is aimed directly at the cat. 
the boy chose the velocity eomponCllts u, v so that the straight line y/x "" v/u 
passes through the cai"s initial position. Equation (2) shows that at time r the 
pea is a distance gr /2 below this line. But the cat falls from rest on this line, 
so at lime I it 100 is a distance g,J /2 below this line. Thus when the pea 
reaches the line of the cal's fall it will have the same venical displacement 
from the line, i.e. it hits the cal. 

562. The skier takes off from Ihe top of the hump with hori:tontal and venical 
velocity components u,O. From equations (I. 2) of Solution 61 we 
have horizontal and venical displacements it '" ul,Y = _gll/2 at time t. 

This gives the dashed trajectory in thc Figure. The skier lands when 
y ""  -xtan 0, or -xr /2 = -u/tan 0, Le. / = (2u/g) tan 0. Using u '" 
lOOkm/h "'27.8 m s-i, we find I '" 56.7tan 25� = 2.65 s. 

The \'CTtica! velocity 11 =  5 m $_1 allows the skier instead to "pre-jump" 
the creSI of the hump. i.c. takc the trajectory indicated in the Figure by 
the dotted curve, since h < J/2t. If elteculed perfcctly, this trajectory 
would have takeoff speed given by w = (2gh)l/l < II and take a lime 
'rr< = w/g = (2h/g)I{l. With the data given lpee = (2/9,8)1{l = 0.45 s. The 
pre-jump trajectory saves more than 2 s of time in the air. The speed differ­
ence between skiing on snow and airborne implies a significant overall timc 
saving, and pj"(--jumping is a standllrd competition technique. 

563. Thc man should arrongc that his velocity with respect to thc river banks 
points directly towards his girlfriend. Thus he should swim at angle 0 to 
the shonest distance across the river, partly into the current so that he cancels 
it. i.c. v,sino = t'. (see Figure). Thus sino = v�lll, = 0.5, or 0 = 30", His 

�. , . , '. 
, 
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velocity across the ri\'er is then u,CQsa : O.87m S-I , so the crossing takes a 
lime I = L/O.87 = 115 s - 1.9 min. 

564, We have the two velocity triangles shown in the Figure. Here UrA' �ptJ are the 
airplane's speed relative to trdins A and B respectively. From that for A "'e 
ha\·c that he �s the airplane'! !peed as u,A : ut�nu. Using Ihis in the 
lriangle for B we have Ulanu = 2�lan9, which gi\·cs tHnu = 
2tanJO" = 1.155 and thus u = 49". From the triangle for A we have 
u, : 1)/ coso = 60/ CQs49" = 91.5 kmfh. 

, �. 

. '. 
. . 

, 
, . , 

565. [n the runner's reference frdme Ihe rain has a horizontal velocity CQmpo­
nent eltaetly equal and opposite to the runner's velocity (� FiguTl:). The 
10lal velocily of the rain is lhen (.J + J)1/1, al angle <!> :  lan-I u/Il 10 Ihe 
vertical. If the runner leans forward at angle 8 he PTl:sentS tolal effective 
area A : A, sin(4) - 8) + A,cos(4) - 9) to Ihe rain (� Figure). If A, < A, 
Ihis is obviously smallest when 9 ",  Q, so Ihlll A '" A" i.e. all the rain falls 
on Ihe runner's head and shoulders. ,\s it falls with velocity (ul + J)I/l and 
elfecti\·e density p, the lotHI mass of water absorbed in unit time is 



NEWTON'S SECOND LAW 

A,P(ll + J)1/1. The runner spends a time llv in the rain, so the minimum 
amount of water he absorbs is 

(Il + J)l/l 
m = A,lp . 

, 
Thus even if the runner could run much faster than the rain falls (II" u) he 
would still absorb at least a mniS A,lp of water {actually much more, as he 
cannot lean forward at an angle (j = ¢ = tan-l v/u "" 90'1). [n practice: 
v 4:: u. and /It "" A,lplilv. This gives the answcr to thc onen-asked question 
as to whether running faster in rain merely gets the runner ..... ct fastcr - on 
the contrary, doubling the speed II actually halves thc mass of watcr 
absorbed. 

S66. The main problem in believing the man's claim are the aceclerntionll 
required to reduce: thc rel3livc speed of the two cars 10 10 km/h or 1=. 
[f thc second car did not manage to tum and accelerate significantly, the 
first ear must have brakcd hard cnough to reduce its speed from 
1\1 = 70 kmfh " ]9.44 m 5-1 to 11:= 10 km/h - 2.77m S-I in a distance 
x = 4 m. Using the kinematic formula '; = til + lax we find an acceleration 
a = -46 m S-l, or a ""  -4.7g. This ii far more rapid braking than is likely 
(typically 101 < g) even allowing for the first driver's reaction time. ]f 
instead the second ear managed to tum and accelerate to 60 km/h in 4 
m, tbe Silme fomlUla requires the car to ha\'e an acceleration (I '" 3.5g. This 
is again implausibly high. Obviously one can imagine a combination of 
lhesc two possibilities in .... ·bieh thc first car slowed somewhat and tbe 
second accelerated by some amount. Howcver. in all cases the required 
accelerations arc too large to be bclic\'ablc. 

o NEWTON9S SECOND LAW 

567. To lind how the masses move we need their accelerations. ]n tbis problem 
they havt: the same value <1 becau,," the string is under tension. The only foree 
acting in the direction of motion on the mass /ltl is the string t�nsion T (see 
Figure). so the equation of motion of nil is 

JUjo= T. 

The forces acting on mass IItl are T and its own ..... eight nilS (see Figure). so 

IItl<1= nllg - T. 

Adding these two equations eliminates T, i.e. 

(nil + nll)a = nilS, 
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m, . = ---,. 
ml + m! 

With the masses given we find a = 0.097 m 5-1. From the kinematic formula 
x = �I + m1/2 with 1'0 = 0, I = lOs, we get the distance traveled in the first 
10 5 II.S X = 4.85 m. The same formula gives the time 10 tTavel a distance 
x = I m from rest lIS J = .j2x/u. Here Ihis is 4.54 s. 

m , 

S68. The resultant upward fnrce nn the mass is EFy = T - mg, where T is the 
tension. From Newton's sc:cond law we have a _ EFyim � Tim - g. The 
maximum acceleration follows upon substituting the maximum allowed 
tension T ,.  SOO N. giving Omu ,. 500/20 _ 9.8 = 1 S.2m S·l. Using this 
acceleration in the kinematie formuln y = VOt + or 12 with l'(l "" 0 and 
( =  2 s we get )' = 15.2 x 21/2 = 30.4 m for the dislance the mass has 
tra,"(:lcd. 

569. The motion up the inclined p1.ane is onc-dimensinnal. and we define the 
distance from the initial position to be x. To usc the kinematic formullle 
we first need the acceleration. The resultant force component on the body 
in the x-direction is r:.F� = -mgsino (see Figure). (The resultant foltt 
normal 10 the plane is zero as the component of weight in this direction is 
balanced by the nonnal reaction forcc I)f the plan<:.) Thus th<: accelenltion is 
a = EFxlm = -gsin Q. In this case: Q = 30· and thus II = -R x 0.5 = 
_4.9ms-l. The kinemalic formula 10 UK here is II = VO + aJ. With 11 = 0  
(Ihe turning point) and VO = 5 III 5-1 we get J = -tola _ 5/4.9 .. 1.025. 

, 
\ 
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570. We take Ute motion of the lighter body to define the positive x-dircction. 
(The heavier body moves downwards.) Considering each body separately. we 
can use Newton's second law and the resultant forces on them to write 

",!o = EFA2) = "'ll! - T, 
where 0 is the common acceleration of the two masses (see Figure). Adding 
the \\'·0 equations we find (ml + m2)a '" (m2 - tIll jg. and thus 

nl2 - 1111 
' = ---g. III] +ml . 

giving a = 5 x 9.8/15 = 3.27ms-1• From either of the equations we 
ean now find T by substituting for a. From the first eqWltion II>"C find 
T=ml (a+g) = 5 x (3.27 +9.8)= 65.35 N. 

571. leI the angle We seek be (J and the tension be T. The resultant fo= on the 
mass in the x and y direttioos are then (see Figure) r:.F� = Tsin8, 
EF). = Tease - mg. There is no vertieal motion. $0 r:.F, = 0, bUI in the 
hOrUontal direction. Newton's second law requires r:.F .. = mo. Thus 

J DD  � 
I 

, 

"" 

Tcoi8-mg = 0  

Tsin (J = 1110 

0 DJ  • II 
�I . 
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Putting a '"'  O.lg in the second equation and rearranging the first .... ·c get 

TcosO= "'g, TsinO = O.lmg. Dividing the second equation by the first we 
get tan/1 '"' 0.1, with the solution /1 = 5.7". Using this value in the first equa· 
lion we find T '"' mg/ cos 5.7' '"' 1.005nrg. Note that the tension is larger than 
the weight, because: the subway car aa%leralcs the mass through the tension 

in the string. 

572. In the vertical direction. the forces acting on the person are Ef� = N - mg. 
where N is the normal force exerted by the e\cvator floor. B)' Newton's 

second law, EF, = rna, �o N = "'(II +g) = 1.1mg. (Note: this is the person's 
cffe<:tive ",-eight.) The vertical fom: on the elevator and its COll1ents is 
EF, = T - Mg -mg. By Newton's second law this is equal to 
(M +m)a=O.I(M+m)g. Thus T - (M+m)g =O.I(M+nr)g. so T =  
I . 1 (M+m)g. 

573. The motion of each mass is one--<limensional, and they must move equal 
amounts along the wedge faces. The resultant forces on the masses along 
the wedge faces tn the left can be wrillen as 

EFt = mgsin/1t - T 

EFz = T - Mgsin01' 

If the ma.>Sc1 are to remain stationary. both resultant forces must vanish. 
With sin 53' = 0.8, sin 37' _ 0.6 this gives 0.8mA" - T .. 0, T - 0.6.41,( _ O. 
Eliminating T between these: equations gives O.8mg = 0.6Mg. so M /m = 
0.8/0.6 '" 1.33. The tension T fo11ows from the first relation as T = 0.8mg. 

574. After the additional mass m has been added. the resultant forces on 
elIch mass arc EFj = (M + m)g - T, EF2 = T - Mg. Eaeh mass has the 
same acceleration II, which by Newton's second law obeys EFj = 
(M + 111)11, 1:F) = Ma. Substituting these expressions into the first pair of 
equations gives 

(101 + ",)g- T =  (M +m)a, 

T - Mg _ Ma. 

Adding these: equations eliminales T, and we get (M +m)g - Mg = 
(M+mJa + MII. so mg = (2M+ m)a or II = mg/(2M +m) = 
0.0IMg/(2M + 0.01"') = 4.98 " lO-lg. Afler the extra mass is removed. 
the masses move with a constant velocity (the forces balance) whose value 
is v - 11/1 _ 0.312/1 = 0.312m s-1. This is also the velocity acquired after 
accelerating under the extm weight. Using the formula J .. vl + 2ax 
with Vo = O,x = h '" I m, and a as above, we get ,} = 2ah '" 
2 " 4.98 " 1O-1g " I = 9.96 X 1O-1g. Using v = 0.312 m s- t as found above 
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giVe!i g = 0.3122/9.96 >< 1O-1 = 9.17m s-2. (The deviation from the best 
\'alue g '" 9.81 m S-l is a result of experimental error.) 

575. The bul1ct"s time of flight is equal 10 the frec-fal1 time from rest at height h, 
since the bullet had zero initial vertical velocity. Thus using , = 1101 - g? /2 
�;th 110 '" 0" '" -II ..... e find I '" ..j2lr!g = J2 )( 1.5/9.8 0.5535. The hor­
ilOnt�1 r,mgc s and thc time t giYc thc muulc velocity from the relation 
x = 1:1 with x '"  j = 500 m and I = 0.553s. Hence II = s/t = 904ms-l• To 
find the foro: on the bullet we need the acceleration it experiences inside the 
gun. This is given by the formula J = v5 + 2ax with Vo = 0 (the bullet accel­
erates from rest) and x = I = 0.5 m. Thus a = V'-/2/ = '}O41/2 )( 0.5 = 
8.17)( l O' m s-!. The force on the bullet is (by Newton's second law) 
F = ma, where m = om kg, so Ihat F = 8170 N. 

576. We ChOOK the downward dir�tion of motion �s positi'·e. We can find the 
�ccelerntion from the kinematic formula 11 =  110 + at with 110 = 20 m �-I, V = 
5 m I_I and 1_ 5s. Thus a _ (" -VU)/I = (5 _ 20)/5 = -15/S = _3ms-1. 
The minus sign shows that the skydiver decelerates. The forces acting on the 
skydiver duting deceleration are her weight mg downwards and the (cusion 
T in the parachute cords up .... ards. Hence the resul tant dO .... 'Ilward force is 
EF� = mg - T. Using Ne .... ton·s second l�w this is eqUllI to ma, so 
mg - T = mao Hence T = m(g - a) = 50(9.8 - (-3» = 50 >< 12.8 = 640N. 
The resultant force on the skydiver is EF, = mg - T = SO x 9.8 - 640 = 
-ISON. Note that this is equal toma, as it must be ocwrding to Newton's 
second law. The force acts upwards. as the skydiver's down ..... ard motion is 
decelerated. 

sn. During braking tbe resultant horilOnul force on tbe car is 

l::F, = -I, 

wherel = JIN is the frictional foro: and we ha"e chosen the x-direction to lie 
in the direction of motion. Here N is tbe normal force exerted by the road on 
the ear tires. The vertkal resultant force on the car vanishes, i.e. 

EF, ... N - mg = O, 

so Ibot! = JIN = JIm/(. Newton's !lCCOnd law for the hori7..onlu! motion gives 
ma = EFx = -I = -lUng. Thus (I = -I'g. The negative sign impliesdecelem­
tion. 

Using the kinematic formula 11 '"  Vo + a/ with " = 0 (complete stop) and a 
as above, we get tbe Slopping time 1 =  -Vo/a = "'o/(/Ig). Since 1.'0 = 
6Okm/b .. 16.67m5-1 this gives tbe stopping time 1 =  16.67/(0.5x 9.8) = 
3.4 S. The stopping distance follows from the formula x = Vol + utl/2 = 
16.67 x 3.4 - 0.5 x 9.8 x 3.4l/2 = 28.4m. 
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578. The horizonlal and vertical forces aCling on the sled (see Figure) give the 
rt$ultant force!> EFr "" F -I, EFT = N - IIIg where I is the frictional force 
and N is the nonnal fortt exerted by the snow. For constant velocity both 
resultant forces must vanish, so that F ."  I and N = mg. Thc frictional force 
is given by 1 =  /IN, so using the value for N we find 1 =  Jlmg; thus 

F = ! = /ung =O.1 x IO x 9.8 = 9.8N. 

579. Choosing the x...::oordinate to run downwards along the slope and the y­
coordinate as its upward nonnal, the resultant forces on the static skier are 
(see Figure) EF .. = mgsina -I,EF, = N - mgcosa. Both resultant forces 
vanish. so that 

N = mgcosa, 

I "' mgsina. 

Until the skier begins 10 mo\·e, I is mlllll�r than /J,N; the motion starts 
when I � /J.N. Substituting this into the s«ond equalion and dividing it 
by the first, we find /', = tan a = tan ISO = 0.268 (cr. P7). After the motion 
stans, the coefficient offri<:tion drops 10 a value /J = 0.1, andl "" I,N always 
holds. Now, EF .. has the non7.CTO value mgsina - /<N, where N is the 
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same as before. Replacing .IV in the last elpression, we get EF. = 
mgsin 0 - j.<mgcoso. Newton's liCCOnd law now gi"cs thc acceleration 

a = EF./m '" g(sin o - flCOSo) or 

<I = 9.8 x (sin 15' - O. I cos l5�) '" 1.59 m S-1. 
The velocity u and distance x after 55 follow from the kinematic formulac 
tl '" "0 + 01, X '" "01 + 01'/2 respectively. With ''0 = 0 and <I as found abo�e 
these give v = 1.59 x 5 = 7.95 ms-' and .T = 1.59 x 51;2 = 19.9 m. 

580. Using the Figure, we sec that 

EF. = Foos o -I, 

EF, = F�ino + N - Mg, 

where I is the friction,,1 force given by 1 =  jjN, with N the normal foree on 
the timber. Using Newton's second law, E;� = Ma, where a is the accelera. 

tion. and EF, = O. (The rope docs not lift the timber completely off the 
ground: if it did, N would become formally negative.) Substituting these 
three relalions inlo the pair of equllions above, we get 

Mo = FcosO - flN, 

O = Fsin o + N - Mg. 

From the second equation, N = Atg - F sin o. Putting Ihis into the fi�1 

equation gives 

Mu = Feoso - fl{Mg - Fsino) = F(oos o + I, sino) -I'Mg. 

Substituting the numerical values givcn wc gel a = 3 x 0.97 - 0.2 x I x 9.8. 
i.c. <I = O.95m s-l. From the equation for N \\'c find 

.IV = 100 x 9.8- 300 x 0.5 = 830N. 

, 

-, 
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Note that this is positive, but smaller than the weight Mg of the timber, as the 
dmgging force has an upward component. 

sal.  We take the x-dirtction to run up the slope, and the y-dirtction nonnal to the 
slope. The resultant forces on the body in its upward motion are (see Figure I) 

'£f:< = -mgsin Q -f. 

EF, _ N - mgcoso. 

With Ef� = 0 and / = liN as usual. we get (eliminating N) 
EF, = -mg sino -Iungcoso. The 3u:eleration 01 follows from 
Newton's s.econd law i.e. al _ EF,/m � -g(sin o + /-Icoso) i,e. 
01 = -9.8{O.342 +0.2 x 0.940) = _5.19ms-l. The negati\'e sign implies 
that this is downwards. The timc II is given by the fonnula 11 =  "0 + al 
with II" 0 (turning point), �'o � 10 m $-1 and 0 = 01 as above. We find 
lup = -L'o/Ol = -1O/{-5.19) = L.93s. The distance s can be found from 
s = x = V01+ or/2 v.ilh t\j = lOm s-l. a = 01 = -5. 19 ms-1 and 
1 = lup= 1.93s. We lind s= lO x 1.93 - 5.\9)( {L93)1/2 = 9.63 m. 

[n the downward motion, the resultant force in the y-direction is the same. 
but the frictional force! is te''f'fud in the formula for EF". because friction 
always opposes the mouon (see Figure 2). This gives EF" = 
-mg sino + wngcoso, and thus the acceleration ol = -g(sino - /< coso) 
Irl the downward motion. Hence III = -9.8(0.342 - 0.2 x 0.940) = 
-1.51 m 5-2. The time 1<Iown follows from the formula x = ''of + ar /2 with 
VO = 0 (turning point). x = -J (the motion is downwards. i.c. to ncgati\'c x) 
and 0 =  01' Thus 1 __ = )2(-J)/01 = )2 x 9.63/1.51 3.575. 

mg",,, \ 
\ __ �mg..,. u 

� 
FIg 1 t.ipoard II'IOIiM 

" 
\ \�""a 

' /  
m, 

1"'11 � Downward _ 

582. Let the tension in the string be T. If T is too large the mass m mo\'CS 
upwards. The maximum allowed value follows from TI = mg sin n + f. 

where f = /<,N = /J,mg is the frictional force (see Figure). Thus 
TI = mg(sina + /<,cosa). 
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The resultalll force on the other mass m is 

EFl = mg sin /II - T - l,nrgeos/l1 . 

Motion at constant velocity implies that both forces vanish. Adding the 
two equations "'ith EF1 = EFl .. 0, we get 0 = nrg(sin 61 - sin 6l) 
-l'nrg(cos91 +c059) . Thus I' = (O.K - 0.6)/(0.8 + 0.6) ., 0.2/1.4., 0,143. 

saS. We take the x-dircction up the slope: and the y-dirC"Ction nomlal to it. At the 
moment when the mass begins to movc. F = F ...... and the resultant forces 
(s.cc Figure) are 

EF, = F",.,cosa - mgsina - I',N. 

EF, = N - F".., sino -mg cosn. 

Both forces must vanish, so we can use the second equation to write 

N = F..., sinO"+mgeosn 

and thus 

.. sinn + i',cosa 
l"nwt = nrg . ' cosa I',sma 

586. As long as the box remains 511llionary on the accelerating truck their accel· 
erations are the same. The only horiwntal force acting on the box is friction 
(see Figure). Hence in this case we must havef = rna, where! is the frictional 
force. m is the mass of the box and a is the acceleration. Since f hilS a 
maximum valuef .... = I',N = I',mg, wc obtain the maximum allowed accel­
eration of the truck as a, = p,g = 0.3 X 9.8 = 2.94ms-1. 
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If this is e"en slightly e�ceeded. the coefficient of friction drops to /.l = 0.2. 
Again Ihe only horizontal force on the bo� is friction, but now this is too 
small to pltvent the box sliding backwards ",illl respeci 10 111 .. I,uck. We now 
ha.-c f = ma&, where f is now the sliding frictional foret: f = /.IN = IImg 
ond a� is the acceleflllion of Ihe bo� .. · .. Ih '''SP<'cl /0 I/'" gmund. Thus 
Ub = 11m = 11K = 0.18 == 1.96m s-'. 

The distances .'\C,. Xb traveled by the truck and the box reJath-c to the 
ground in the first second are given by the fonnulo x == 1Io1 + a? 12. The 
inilial velocily ''0 with respect to the ground is the same for the truck and 
the box. so 

"/ x, = VoI +T' 

The distance traveled by the box with respect to the truck i s  h.x _ xb - x,. 
Subtracting the firsl equalion from the steond we gct !!u = (ab - o,)? /2. 
Note thaI Ub - OQ is the acceleralion of Ihe box with res�1 10 Ihe truck. 
This gives h.x = {1 .96 - 2.94)/2 = -0.49 m. Thus Ihe box slides 0.49 m 
backwards on the truck in lime I '" ] s. 

S87. Cle-drly the monitor cannOI move wilh respect to Ihe computer witllout also 
moving with respecl to the table. The condition Ihat the monitor should not 
move ... ilh r .. specl 10 Ih .. rabl .. is found from the balance of horizontal forces 
on tbe monitor. This gi"es F -Ji = 0 (see Figure). Since II has a maximum 
value of /lmg, Ihis gives F".., = jlJflt. We can now show thallhc full moniloT­
<;,ompulet system does not mo,'e in this case. The external horizontal force 
acting on Ihis system is EFJ = F -fl' wberell is the frictional force between 
the computer and the table. For th: case F = F...,. = jlI1I8. "'"c sec that this is 
less than Ihe maximum allowed value 3wng of h. so the �ystem remains at 
res\. Hence the monitor docs nol move with respect 10 the computer either. 
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M _ 
-
t, t, 

I, ! i_ P 

Adding thc two equations and soh'ing for P gives 

p ",  (M + nr)(a + I'g). 

157 

Now!, has a maximum \'aluef, (max) '" /JMg, so since/, '" Ma. u also has 1\ 
maximum value u...., "'I, (max)/ M = I'g. Above this value the boo\.: cannot 
accelerate as fast as the paper, which can thereFore be extracted. Substituting 
U '" u ... , into the equation for P abol'c gi"cs P = (M + m)(/Ig + /'1) = 
2/,(,1.1 + m)g '" 0.22Mg. Thus Pe","", :<= 0.22Mg, 

o WORK, ENERGY AND POWER 

589. Only the horizontal component of the force F does war\.: (there is no motion 
in the vertical direction). The horiwmal component is F� '" Fcos8 = 
5 )( 0.984 = 4.92 N. To find the work done we need the disUince inlvelcd 
in 5 s. Newton's second law 8ives the horizonUlI acceleration as u '" 
F,/nr '" 4.92/5 = 0.98 nl$-l. The distance tra"ded follows from the formula 
x '" Vol +ur/2 � 0.98 )( 52/2 � ]2.3m. Thus the work done is IV � F;rX -
4.92 )( ]2.3 = 60.5 J. 

590. The train initially has no kinetic energy (Tl = 0). but eventually acquires 
a speed of � '" 72 kmlh '" 20 m s-'. It therefore has kinetic energy 
T! = nIl? /2 '" ]01 )( ]01 )( 201/2 '" 2 )( lit J. This energy was all supplied 
by Ihe motor. which did no other work. lO Ihal IV ,.  Tl - T, _ 2 )(  lit J. 

591. The increase i:J.V in the gravitational potcnlial energy is Ihe difference 
between the energies in the final and initial states. Thus t::.u = 
mli:Yl - mgy, = mgh, where m = 10 kg is the mass of Ihe bucket and 
C<)ntents. n,YI are the flnal and initial heighls of the bucket measured 
from an arbitrary origin. and h = 10 m is their difference. Thus 
.6.V _ 10)( 9.8 )( 10 _ 980 J. The work donc againsl gravity musl equal 
the change of potential energy (there is no kinetic energy in either the initial 
or final state). Thus W = .6.V = 980 J. 

592. We choose the ground as the zero-point of gravitational p!)!cnlial energy. 
The tOla! energy of the rollercoaster remains fixed as frielion is neglecled. 
Its value can be found at the first poinl (maximum height) as E = 
T, + V, = mvr/2 + mgh,. At the SCC<lnd (minimum height) point the energy 
is E '" T2 + U2 := m�/2 + mghl. Equating these two expressions ..... e get 
vl � if, +g(h, - h)). Thus 
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5 102. Sin� the motion is uniform. the vertkal forces on the load mu�t balance. i.e. 
F = mg. when: F is the force exerted by the crane on the load. The power 
follows from the formula P= FII. giving P= '"811 = 500 x 9.8 x 2 = 9800W. 
To find the work done by the crane we usc IV = Fh since the force is con· 
stant. Thus W = 500 x 20 = 1000 J. 

Sin� the second enllle lifts the load at twice the above speed, ;\$ power ;s 
larger by a factor of 2. The work. however, has the same value. since both the 
force and the height are the same as in the fiT51 er,lIIe. 

5103. The work done by the pump in ejecting a mass m of "'aler is given 
by conservation of energy: W = £l - £1 = Tl - Tl + Vl - VI ,.. 
mt4/2 + mgd, since: the waler in the well is at rest and we can take ils surface 
as the zero-poinl of potential energy (we assume Ihat the water level does not 
change significantly during pumping). Thus the elTective power Pdt of the 
pump is gillCll by 

II' m (� ) Pc« = - = - - + gJ . 
, , 2 

The flow rate 2 m1 per second implies mIl = 2 x lal kg5-1 . since 1 m] of 
water has a mass of leY kg. Substituting also 'I:! " 10 m 5.1 and J = 50 m. 
we get Pc« = 2 x IOl(100/2 + 9.8 x SO) = 1080 kW. The efficiency '1 = 0.8 
implies that Pdf = 0.8P. so thaI the power consumed is P _ p.rr/0.8 -
1350 kW. 

5104. The car's original kinetic energy is T = ",J 12 has to be dissipated in time I, 
so the average rale of working of the brdkes i5 P = nlll121 _ 101 x (27.8)11 
(2 x 10) = 38.6 kW. (100 km/h - 27.8 m 5-1.) All of this goes initially into 
heating tlte braking surfaces. so they must lose al this rate in order not 10 

heat up. 

5105. Animals jumping to the same heights h gain tlte same potential energy 
VIm = mxhlm =gh per unit mass. Since their muscle masses scale wilh 
tlteir tOlal masses. this suggests that the total energy supplied per unit muscle 
mass is similar in similar animals. The vertical speed required is similar (of 
order (2g/r)lfl). but larger animals need more room to achieve il. suggesting 
tltat the ralr of energy release is lower for larger animals. rOllgltly as ,-1 . 
wltere I is the size. 

5106. We write V,, Vri for the gravitational and elastic potential energies. The 
energy of the mass-�pring system is constant. Inilially it is E = V, z: nrgh. 
since the mass is at rcst and the spring is relaxed. On the level �urface 
£ = mJ 12. since the mass iii at zero height and the spring is still relaxed. 
Thus v = -/fiTi. 
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After the mllss encounters th� spring, il compresses it until all ihe energy is 
in the form of clastic potential energy (maximal compression, zero velocity, 
zero heigh!), Thus E = Un = if /2, Equating this to the lim expression for 
£ and using x .. h/IO gives kK/200 = mgh. i.e. k "" 200mg/h. Since no 
encrgy is lost. Ihe mass returns to eXllctly the same height " aner the spring 
relaxes. 

S 107. Energy conservation applied to the mOlion between the initial (I) and highest 
(2) positions gives 

£1 = E2 + 1t', 

where W is the work done aglinst friction. With £1 = mJ/2, £l = mgh = 
mgdsina = mgdl.fi. and It' =fd = IJNJ = IJmgdcosu "" O.lmgdl.fi Ihis 
gives 

Thus d .. J/(1.h12g). 
As we saw in P7, the mass can only rest in equilibrium under gravily and 

friclion on an inclined plane if JI., :: tana. Here tana = 1 .  so that thc 
required 1(, is l .  In practice this is impossible. 

Using energy conservation for the downward motion gives 

where £) is the energy when the mass returns to ils starting point, and W' is 
Ihe work done against friction on the descent. Because the normal force is the 
same, the distance traveled is the same, and the coc:fficient of friction has not 
changed, w' '" It' "" O.lmgdl.fi = O.0454mJ . .... ·hen: we have substituted 

J = J 1(1.1';-28') from abovc. Funhcr. £2 = mgdl../2 = 0,454mJ. Thus 
El = E1 - 11" = 0.409mJ, Equating this to mvi!2 gives Vl = O.905v for 
the return velocity. This is smaller tban the initial velocity, since energy 
has been lost performing work against friction. 

D MOMENTUM AND IMPULSE 

S 1 OS. Horizontal momentum is conserved as there are no external horizontal 
forces, i.c. the total momenta befon: and aftcr the collision are equal. Choos­
ing thc bird's motion 10 defme Ihc positi\'c x�ircction, wc havc 

MI' -mu = (M + m)U. 
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Thus U = (MY-mv)/(M+m), For the case given we gct U =  
(MY - O.OIM x IOY)/(M + O.OIM) = O.9MV/l .DUf = D.89V. Note that 
energy is nor conserval in this case: some is lost rrom the mechanical system. 

S 109. Conservation of momentum implies Mu + mu = O. where v is the velocity of 
the gun after firing. Thus v = -mu/ M = -2.3 m S-I. The minus sign here 
shows that the gun recoils, with recoil velocity Ivl '" 2.Jms-t. To reach this 
speed by being dropped from rest, the kinematic formula J = � + 2tu 
shows that an initial height h =-tJ /2g = 0.28 m is required. 

Si lO. To achieve the highest terminal velocity. conservation of momentum shows 
that one needs to maximize the momentum of the exhaust fuel and minimize 
the final mass of the rocket. Rockets thus use po"'erful fuels (high exhaust 
velocity) and carry as large a mass ofit as possible. Once a fuel tank is empty, 
it is �l1isoncd, reducing the propelled mass and thus raising thc final speed. 

S I I I .  Momentum conservation givcs 

mu + O = mVI +III":1, ( I) 

where III, VJ arc the final vclocities of the cuc ball and pool ball respectively. 
As then" are t .. 'o unknowns in this equation we must use a second relation. 
This is supp�cd by mechanical encrgy conservation. i.e. 

Ii � � ffl2" + O = m "2 +nr2" ' 

Rearranging and canceling nr we get 

Dividing (4) by (3). "'e gel 

(2) 

(J) 

(4) 

(5) 
Adding this to (3) we get 2vI = 0, so VI = O. Thus from (5) liZ '" u. The cue 
ball stops dead and the pool ball moves off with the cue ball's orisinal 
velocity. NOle that the restriction to pure sliding motion is unrealistic in 
practice. as the energy in the rolling motion of the balls is usually signific.ant 
and causes them 10 behave diffcrently (see 51 17). 

SI I2. Momentum conservation gives 

mlll\ + mlUl =m\1I1 +mlll2. 

Energy conservation gi\'CS 



MOMENTUM AND IMPULSE 

We can r(wile these equations as 

IIJI("I - IIIl = ml(t>:! - "I), 

ml("1 - vd("1 + VI) = m:(lIl - "2)(11: + iiI)' 

Dhiding these equations gives "l + VI - '-'I + ":!. or 

'-'1 - 1:1 = -(") -"1) 

as required. 

51 1 3. We treat both Cil.'lC"5 �imulutneou�ly by writing m for the mass of the incoming 
particle and II, \I for its velocities befon: and afler collision. The proton velo­
city aficr collision is v,. We aMumc that no external forces act on the pani­
cles. and that they collide elastically. Then both momentum and mechanical 
energy an: conserved. 

and 

Rearranging we get 

Dividing (4) by (3) gh'es 

m" "' lItv+m,vp 

m U _ II = "2VI' 
m 

' J nr� ,  ,, - '" ....L l)i . 
m 

(I) 

(2) 

(3) 

(4) 

U+II=L:' (5) 
Adding (5) and (3) gives 2u = (I +1It,/III)II,- Thus 

2m vP = m+mpll· 

Using tbis in (5) gives 

Assume " > 0 in both cases. In the first collision we have v = III < O. Thus 
III = ml < /lip. In the second collision we have \I = II:! > O,.!.O m = IItl > mp. A 
lighter particle recoils from a stationary target, while a he3vicr one movu 
forward after collision. 
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Using the last two equations twice, with m = nrl = nlp/2, m = m2 = 2m" 
we gel final velocities ", = 211/3, IJ r; -1113 and "p = 411/3, IJ = 11/3. 

S 1 14. From the previous problem. the protoo's velocity after collision i� 

2m 
IJ = --�  •. , m + nrp 

Its total energy (all kinetic. = mpJ,/2) is therefore 

All of this energy was transferred from the incoming particle. so !lE = Er 
The incoming particle had energy E = nul /2, so 

!lE 4mnr� 
E (m+m,)i ' 

independent of II. Note tht if the incoming particle is an electron. 
m = m. ¢: nrp' so this fraction becomes !lEI E '" 4m.lnrp <: I .  If the incom­
ing particle is much more massive than the proton. m >- IIIp. the transfer is 
similarly inefficient. Only when the ma5ses arc comparable is the transfer 
significant. 

5 I I  S. Momentum conscrv9tion gives 

and the energy equation is now 

Eliminating IJI betlll·ecn these equations gives 

1111(1 + <") .,- ----." ml +m2 

( I )  

(2) 

so that the ratio of the kinetic energy of 1112 after the collision to that of ml 
before it is 

!m2� = ( I +  .. )1 mimI 1 .  
!mlui (nrl +nl2l 

For ml >- nil this ratio is (I +einrdml <: I, and for 1111 <: m2 it is 
(I + e)11ll1/m2 «: 1. (Compare lIIith S1 14, where e = I.) 
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S 1 1 6, We musl supply a fued amount of energy to drive the nail in. From the 
previous ans ..... er ..... e sec that energy transfer in a collision is efficient only if 
the bodies have similar masses. So jumping on a nail ..... astes a lot of energy. 
The oollision ..... ith your shoes is ;tIro likely \0 be more inelastic (e < I) than 
hammering it . ..... asting even more energy. 

5 1 17. Equation (2) ofSl13 gives 

Equation (I) of S l 1 5  gives 

I 
V, = ''l - eul = "2(I - ejul 

for the velocity of the cue lxlll aner the collision, since In] � mI' At first sighl 
it appears that the physicist is right, since if f is dose 10 I ,  VI must Ix: much 
smaller Ihan 1Ij. Ho ..... e'·er, the argument is co�t only if the cue ball was in 
pure sliding motion, whereas in reality it is usually rolling. The spin of the 
lxlll then causes the ball to continue \0 mo,'C after the ooHision. (A purely 
sliding ball stOps almost dead al impact - this is a stun shot. The ball must be 
cued at exactly one-half of its height for this 10 happen. See 5211.) 

5 1 18. Momentum cOT\SC"I"\'ation gh'es 

(I) 

as before. where Vl> ".! 3rc the vdocities or the bat and ball respectively. We 
can use the result of the lasl question to express the elastic (energy conserva­
tion) condition as 

We wish to find IIj '" VI + U, - U1, so we need to eliminate the unknown VI' 
Using (1) we hal'c 

IIj '" 21" _ U! + /rI2 (,,! - "2) ' m, 
For m, ,. m1 lhe term in brdcktls is negligible, and we gel ,,:! = 2", - "1' As 
thc term in brackets is negali"e, this is the maximum value of 1Ij. Faster 
pitches can be hit further. !io .... el·er, e,'en the slowest ball is of no use if 
the hiller's "alue of 2u, is already large enough for a home run. 
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position and some other point. Note that the center of mass of the system 
remains stationary at all times. 

S 121 .  Immediately before hil1ing the floor for tile first time, tile ball lias velocity uo 
down,,·arlis. The coefficient of restitution I' is defined so tllat (velocity of 
separation) '"' (' x (velocity of approacll). Hcn: the separation velocity is 
the upward velocity "I immediately after the bounce. so tllat "I = ""0. The 
kinematic formula if '" ,i + 20x now giws lile IIcight reaclled on the first 
bounce as 

Clearly, the ball hits the ground for the second time with velocity "I. and 
leaves it with upward velocity "l '" I'll,. The same Idnel1Ultie calculation now 
shows that the ball reaches a height 

on the second bounce. By the same reasoning. after n bounces the ball 
reaches height x. '" el.oxo. with Xg = ua/2g. 

S 122. From the kinematic formula 1/ '" Ii) + III with 1/ = 0, ''0 = ", and a = -g the 
time 10 re'.Ieh the lOp of Ihe firsl bounce is 1t/2 = III/g. so the tolal time 
between first oDd second impacts is I, = 2"I/g = 2eUJ/g. After the second 
impact the upward velocity is "1 = I'll, '" ;"". so the time between second 
and third impacts iS 'l = 2"1/g = Y,,(]/g. In an C.tHCtly similar way, we see 
that lhe time between the nth and (q + Ijth impact is '. = UUQ/g. Hence the 
total timc beforc bouncing stops i� 

2Uo" l '  /..,."", = -- (1 + � + e  + .... + ...... ). , 
The quantity in brnckets is an infinite genmetric series. whose sum is 
(I - e)-I. Ilf this result is unfamiliar, let S = I + e + ,.z  + el + . . . .  then 
eS = f + el + ,;  . . . . so subtracting we find that S( I - t) = 1 ,  hence the 
re�ult.l Thus 

2'<01 e 
I"""""' = g l _ ,,' 

S 123. The highest poinl is reached when the vertical velocity II, = O. Using the 
ronnula IIf = 11)<1 - gl with v)<I = t'g sin 11, this happens at time ' .. = 

1'0 sin (J/g. The corresponding horiwntal distance is x .. = 110.1 ... since the 
horiwntal motion is uniform. Thus x .. = ti sin(Jcos(J/g (note that this is 
h:t.lf the total mnge of the shell). 
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S 126. Momentum conservation requires that 

n:u = (M + m)V, (I) 

where V is the vclocit� of the bhxk and embedded bullet after impact. The 
latter thus has kinetic energ)' T = (M + m)Vl/2, which is all converted to 
gr.lvitational potential energy (M + m)g/r. i.e. V1,. 2gh. Using this in (I) 
gives 

U = (M + m) (2g/r)r/l. 
m 

With the data gi'"en we find u '" 768 m s-r. The kinetic energy T of the block 
and bullet COdn be rewritten, using (I). as 

nr I rl 
T = M+m2:m , 

so only a fmetion mlM _ 10-) of the bullet"s kinetic energy was used to mise 
the block. Almost all of it ended up heating the block slightly (ef. 5114-
5 1 16). 

5127. Conservation of horizontal momentum gives 

It"' = (m + 8m)V, 
whcre V is thc vclocity of the daTI and block after impact (aSllumed to be 
alm05t instantaneous). Therefore V = ulCJ. This is the initial \'ciocily just 
after impact: the motion of the block and dart is resisted by Ihe spring. 
Total mechanical energy is conserved in the subsequent compression of the 
spring, so Hl = Hr. where Hl IS the total energy at maximum comprcSllion 
and EI is the kinetic energ� juot after impact. Thus 

I , I 1 2kx;;, = 2:9mV , 

wherc x .. is the maximum compression of the spring. With V as above, this 
gives 

� - §� 
' .. Vli3 

S I 28. The locomotivc must expend more pov.·er bccau5C the accumulating snow 
increases the ma!oS and hence the momentum of the train. In a vcry short 
intCT'val 1::.1, the accumulated mass is 1::.111 " r .. 1::.I. Hcnce the momentum 
change of the train is t:.p = t:.(mv) = '.,£:..I v. The extra force the locomoti"e 
must exCT't is thus 
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The power required to maintain the eonSlant speed v with this F is P � 
FlJ = ,/OJ. With lJ = 108 kmlh - JOm 5-1, and '", = IOkgs-l. we find P ,.. 
9000 W '" 9 kW. 

S129. We choose the downward vcrtical a5 the pollitive direction. The velocity of 
the sack just before impact is given by the free-fall formula v = .j1jTi. Since 
the sack comes to a SlOp, its entire momentum is los\. Thus the momentum 
change of the sack is 

!:.p -Pl -PI = 0 - /IIv = -!>fv. 
Henee the impulse on the sack is J, = !::.p = -Mv. The impulse on the 
platform is J, = -J, "" Mv (Newton's third law). From the data given 
J, = M../'!iIi = lO x "/2 x 9.8 x l  44.J kg m s-l• 

The average force on the platform follows from F!J.I = J. where !J.I is the 
duration of the impact. With !J.I == 0.1 s and J = J, as abo'·e. we find the 
a,·erage force on the ptatform F, = J,/!J.I = 44.3 N. 

Momentum conservation is nO! violated here: the sack and the Earth share 
the fin;ll momentum. Because the mass of the Earth is so high, the recoil is 
negligible. Momentum is u/,,·oYJ conser .... ed in collision problems: mechanical 
eDt"rgy need nOI be (3$ here). 

S 130. As in the previous problem, the impact velocity is v = v'fili. Thus the 
momentum of each grain chaTlgcs by -rnv on lauding; the momeTltum of 
the platform therefore changes by mv as each grolin lands. Denote by R the 
number rote at which groins are deposited on the platform. The correspond­
ing ratc of momentum depositioTl is !:.p/!::.I = Rmll. and this is therefore the 
impact force F exerted by the stream of grain. With the data giveTl 
F = Rmv'fili = (1000 x 0.01)../2 x 9.8 = 44.3 N. 

5 1 3 1 .  We take the positi'IC direction as that a,,·ay From the goalkeeper. The 
momemum change of the baJJ during impact is !::.P = P2 -PI = 
mbv - mb( -u) = nlb(U + II). This is the impulse Jb on the ball. The impulse 
on the goalkeeper is equal aTld opposite, i.e. J, = -Jh = -nlb(U + v). Thus 
the force excrted on lIIe goalkeeper duriTlg the punch is F, = J,/!J.I '" 
-rnb(U + V)/!::.I. 

If the goalkeeper is not to slide backwards. the resultant force on him 
immediately after Ihe punch must be zero. Thus f + Fr = 0, where f is the 
frictional (orce. Thus! = -F� = mh(u + 11)/!::.I. S;ru:ef < ,.,"',g, we require 
fI,m,S > mh(u + V)/.6.I. Rearranging, this gives 

> nI� (U+II) _ t 8 nlbU 
11, rn, g!::'1 - . mrg!::.I '  

because v = 0.8u. With the d�t� given this implies 
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MOSI of this energy goes into deforming the cats. 

S 134. We 13ke the x-din:ction in the direclion of the cue bali's original motion. and 
the y-direclion al right angles 10 it (see Figure). Lei the cue baws approach 
velocity be u and the velocities of the cue ball and object ball after collision be 

uh t.'z· 
Conservation of x·momentum ghoes 

1/1U = mu\ cosO+mll:cos? 

and conservation of y·momcntum gives 

0 =  m(11 sinO - m!l;! sin (J. 

Conservation of energy (all kinetk) gives 

1 , 1 
J. I , 2"'u "' 2'" ' + 2"'''1: ' 

( I )  

(2) 

(3) 

Note that the rna,s m of each ball cancels from all of the equations. 

From (2) we gCI 
lI,si08= "1: siot;), 

so eliminating II: from (I) gives 

Thus 

o lI,sin8cos,) 
u = u, cos + 

sin ¢ 
. 

• 

u, sio(8 + .... ) 
sin oj> 

" 

'. 

(4) 

(5) 

l� . 1 
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J , F = m - == /�r 
, 

and substituting tbe values of m,,",, and r we get T = F = 0.1 N 
S 138, The forces acting on the plumbline bob (mass m) arc its weight mg and Ihe 

tension T of Ihe string. The resultant of these must provide the centripetal 
force f� = m&}cos). towards the Eanh's axis (see Figure). Tair.:ing the x­
and y-dirco:.::tions along the locul horizontal (Nonh) and vertical (towards Ihe 
center of the Earth) we have in the .l-direction 

EF, = Tsin9, 

and in the Jo..direction 

Ef� == lI1g - Teos(J. 

In the x,y system, the centripetal force has oomponents 

Fu = nrRd oos ).sin)., 

F" = mRJcos1).. 

Hence selling :EF .. = Ft.<, :Ef� = F'1 gh·es 

TsinO = mRJeos).sin)., 

mg - ToosO = mR�oosl).. 

Eliminating T between these two equations gives 

tan(J 
RJ 0(5). sin ). 
, 
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l:F = T  ...... -mx, (I) 

whjle at the highest point 

EF = T  .. p +mg. 1'1 
The vitlue of '£.f is the (ilIme in both equations, so subtracting (2) from (I) 
gives Tlow - Tbiah = 2mg. 

This is independent of the speed and the radius of the circle. 

S 1-1 [ .  When the sIring makes an angle 0 to the vertical (see Figure) the centripetal 
force i� T + mg{XlsO. This must be oonstanl in uniform circular motion. 50 
the minimum tension T is reached when cosO has its maximum value I. i.e. at 
the highest point. Here 

� 
T+mg_m_. 

, 

To keep the string taut requil"C$ T > 0, i.e. ,; > rg, or 

u> ,;;g. 

With the data given the velocity must e�ceed J.IJ m S-L. 

I 
I, 
I 
I 
I 
I 

S 1-12. When the string breaks the mass is moving horizontally, 50 by Newton's first 
la .... · it will initially continue to do 50, v,ilh the velocity u it had before the 
string broke. Thereafter it will fall under gravity and hit the ground. In a 
recent survey, U.S. {Xlilege students wen:: asked a similar question. A majori/)' 
(including many science majors) believed that tile mass would initially fly 
rndially outwards along the line of the string (here vertically downwards)! 
Surveys in other countries give similar results. Remember. the SIring tension 
is nO/ l"C$isling a tendency oflhe mass to fly rndially outwards, but forcing the 
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, 
, , , 
' . 

'" 
, 
, , 
, , , 

m<:lc-"'-J 

But the bob's speed is v = 2r.RJ, and R "" Isin 0, so (2) si"cs 

T sin 0 = 4";'f�nrR = 4";'f1nr/sin u. 

so that T ",  4r?lnrl c 158 N. 
Equation (I) now gives eoso = "'g/T = 0,031 so that 0 = 88.2�, i.c. the 

pendulum is almost horizontal. 

5 145. Clearly the cars are in most danger of falling from the circulllr loop al ils 
highesl poinl (sec Figure). There 

J 
N+mg="'"R ' (I) 

" 
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where u is Ihe velocily at lhis point and N is the track's force on Ihe car; Ihis 
is normal to the traek as there is no friction. In {Il Il must be large cnough to 
make N positive, or the can; will delach from the track. Thus we require 

J > Rg. (2) 

Mechanical en�rgy is "unserved, so equating its value'! at the high point h and 
the top of the loop. we get 

'" 

,; 1I ::o , + 2R. 
·K 

By (2). h > R/2 +2R = 2.SR. 
In practice II mU�1 be apprttiably higher, because of frictional losses. 

S 146. The forces on the bobsleigh are shown in the Figure. The resultanl vertical 
force must vanish, so thaI 

EF, = Neoso - lltg = 0, (I) 

where N is the force exerted by the track on the bobsleigh (normal 10 its 
surface as there is no friction) and lit is the mass of the bobsleigh. The 
resultant horizontal fora: must supply the centripetal force required \0 
keep the bobsleigh in drcular motion. Thus 

Eliminating N we get 

,,' 
EF, =Nsina=IIt-. , 

J = rgtana. 

With the data giwn, the maximum u = 13.0 m S-I . 

(2) 

Iflhe speed exceeds this value. the bobsleigh moves outwards and therefore 
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inner side (point B). At S the water pressure is equal to the atmospheric value 
1'0. To supply the centripetal acceleration 10 a hori7.0ntaJ column ofwaler of 
unit cross·sectional area requires a pressure 

P = Po + /ldu 

where p is the water density (pressure '"' force per unit area). To maintain the 
vertical balance of the water above A (height h) requires 

1' =  Po + pgh 

Eliminating P - Po between these equations shows thai lin = gh. With 
a :s O.05g we find h :s 0.05<1 = 0.4cm. Of cou� it would be ndvi!illble to 
allow more room between water and brim than this \0 cover other possible 
disturbancc:s. 

S 15 1 .  The resultant horizontal force: on the mass on lhe turntable must equal the 
centripetal force: m.i,. At r""". thc frictional force:J opposes the tendency to 
movc outwards (see Figure), so 

T+J=nlifr ... " 

�" � 
I r I 

r 

"" "" 
�--'--+----I 

(I) 
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where T is th� ten.ion in the siring. The laller muSI <!qual lhe weight of Ihc 
hanging mass. i.c. T = mg. while I _ ",mg. Substituting in (I) wc gct 

IIIg + ",mg = m :.J,rrw., 
so that 

, '"",. = ;J" ( l  +J.',). 
At , =  'mio the mass on the turntablc is on thc vergc of moving inwards (see 
Figure). so that the frictional force is rcversed as compared to (I), i.e. 

T -I = nl:.ll\ • .in· 
Substituting T = mg, I = IJ,mg as before "'c find 

g rmill =;J"(I - J.'.). 

With the data given we find ' .... = (9.8/36)(1 + 0.5) = 0.41 m, 'mi. = 

(9.8/36)(1 - 0.5) = O.14m. 
S 152. In the case of no friction. the resultant horizontal and vertical forces on thc 

eycle and rider arc (see Figure) 

EFJ = Nsino, 

EF, _ II' cos a - mg, 
where II' is the normal fora: acned by the lrack on the cycle lires. To supply 
the cenlripetal force as the cycle performs the lum requires EFJ = m"5/" 
while EFy mUSI \'anish as there is no venica! motion. Thus 

. '6 NSlOo = m - ,  , (1) 

Ncos o = mg. (2) 

Dividing (1) by (2) gives tano = �J(,g). so that t·o = (,gtan O)I/!. 
At speed Vj = 2Vo the cycle and rider are in danger of sliding upwards. so 

the frictional force I acts downwards (Ii« Figure). Thus 

EF, = N sino +  lcoso = m�, , 
EFy = Ncosa -Isinn - mg = 0 

(3) 

(4) 

From (4) we Illtvc II' -llano +mg/(coso), so substituting into (3) we find 

llano sino + mgtaoo+ Icoso = miI, , 



ORCULAR AND HARMONIC MO'TlCN 

j,C. 

• -< '. 

f(sinl 
Ct + COlO) '" m 0. _ mg tnn Q. 

= "  , 

185 

Using the trigonometric idenlity sinl Q + eosl 0 '" I, the coefficient of f in 
this equation is 1/(005u), so we ,el 

f = m!1ooso - mgsina. 
, 
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Substituting III ,.. 2110 ". 2{rg tan alit: we gel 

f = 4mgsin 0; - mgsina = 3mg sin ..... 

When the speed is ":l = 110/2, the cycle and rider are in danger of sliding down 

the banting so Ihe frictional force f acts upwards (sec Figure). Thus 
, 

EF. = N sin a -fcosa : m.'.1, , 

f.F, = Ncosa +f�ino - mg = O. 

Eliminating N between these two eqUal ions similarly as in the previous case, 
we get 

J, f ... mg sin a - m-;cosa; 

substituting V:z = 110/2 = (rgtana)1/1/2 now gives 

f .. mgsina - lmgsina - lmgsin a. 

Note thm 10 find the cOl'fficient of friction we would ha"e to dhide the 
expressions for f by those for N in each case. 

S 153. If the satellite has mass m and speed " its weight mg must supply 
the centripetal acceleration ,ml/ R.. M:I that '1 = (gR.)l/l The period is 

27rR./v = 2,,(R,/g)11l = 85 min. Typically the period for low-Earth-orbit 

satellites is nearer to 90 min. 
S 154. No! The maximum controlled deceleration (l of the car is gh'en hy the kine­

matic formula J = t,3 + :!ax  as (l = -loG/V. To tum the car in a curve of 
radius r �uires centripetal acceleration -tilr. i.e twice as much. (Clearly 
turning the car also introduces additional risks such as skidding and over­
turning.) 

S 155. The p<-riod of the pendulum is F' = 2"11"(I/g)I/2. With 1 _  ! III we find P = 2 $. 
so il performs 1800 swings in one hour. 

SI56. Aocderaling the elevalOr upwards by u increases Ihe effective gr.lvity �.ff 10 
g + (l (see S48 or S72). The pendulum p<-riod is proportional to g;;: l and 
therefOr<: shortens. The reverse hUpp<-flS if the elevator accelerates down-
wards. 

SIS7. Hooke's law states that the force F cuned when Ihe spring extension is x 
is F = -k-f. Here this becomes mg = k!:u:. so the spring constant 
k = mg/i:J.x = 98 N m-1. The period of the system is p ,.  2tr(m/k),n = 0.63 s. 

5 1 58. The studenls should first measure Ihe spring constant by hanging a mass m 
from it. As in the previous ans .... -cr the� get k = mg/ ax. and the mass-spring 
system has period P =  2 ... (mlk}'/l = 2Yf(!J.X/g)l/l. A pendulum formed by 
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hanging a mass from the string has period p' = 2rr(l/g)1/l. They must 
amlng¢ the string !englh exactly �qual 10 the spring extension, if possible. 

S159. The motion is described by 

X(t) = .lOCOSWI, 

where '" '" (k/m)'!l, (Note that we must express...,1 in radians here.) It thus 
reaches x, al timc I, = ",-1 em-1(x,/xo). With the datu given we find 
" = 0.87 s. 

The velocity foUows from energy conservation: 

tkx5 =tkx7 +!mJ, 
so that v = [k(� - xi)/mj" l = 0.16 m 5-'. 

S 160. Energy conservation can be expreS$Cd as 

,,I +Jtf = c, 
where w is the angular frequency. dis the dislancc traveled by thc end oflhe 
pendulum and C is a constant. Si�cc v == t\) when d = 0, and v = 0 "'hen 
d = A (the amplitude) we have II = t'o/w = t"G..Ji7i = 0.2 m. 

S 161 .  Enngy eonsef\'"dtion rcquires that E = ",,;/2 + k.-?-/2 remain con Slant. Thus 

mvi + kxi = n"� + kx}, 

so Ihal m = k(x} - xi)/(vi - 03) - 0.02 kg. The amplitude is given by setling 
V:! = 0,"'2 = A. so that kAl = mv/ + kxi, leading to A = 0.22 m "'ith Ihe data 
given. 

S 162. Thc four springs can acl togelher as a single spring of constant 4k and thus 
oscillate al frequency 

We mUSI ensure thai this is smaller Ihan " .. = iO 5-1, so we require 
k < 100,.-1,., = 49JSN m-' , Other modes of oscillation (c.g. rocking) will 
Im,'c lower frequencies. so this is tbe required limit. 

S 163. The \"'0 springs behave as one spring of COns\anl k = k, + kj = J N m-'. 
The maximum compression of spring 1 occurs after 3f4 of an oscillation 
period. i.c. lifter a time 3Pj4 == (3;t/2)(M/k)'/l _ 2.7s, The maximum com­
pression is the amplitude A. which from energy conservation (sec S16O) is  
A == I1J/W = v,(M/k)'/l = 0.29 m. 

S 164. The motion of the mass is given by 

x{l) = A sin..." 
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with WI in radians. Here A '" 0.29 m (see prcv'ious an§wer), and W = 
(k/M)lfl = 1.7Jrads-1• Hence: the time at which x = -O.I m is t =  
(l/w) sin-'(x/A). Because x < 0 we havc to convert the negative valuc of 
0 ",  sin-'(x/A) (in radians) 10 2r.- IOI. With the dala given we lind 
1 = 3.425. 

S 165. Two springs connected "in scrics" in this way havc an efl"ectil'c constant k' 

given by 

I I I 2 
P = k +k "" k' 

so k' = kf,2. Thc oscillation period P = 21f(m/k)t/1 changes 10 p' = 
21f(m/k')1 I '" ../'iP. 

5 1 66. The o:;cillalion frequency is w = 2".., = (k/III'OI)'Il, where m,o, = III + {If = 
Sm is the 10lal oscillaling mass. Thus here: Ie = Jm"" = 4Jf1..,-l )( Sm. which 
givcs k _ 197 N m-' . 

The maximum horizontal force is exened on the block "'hen the m:cclcra­
tion a is a maximum. which happens at x = ±A. Then lui .... = kA/5m. and 
we havc F_. '" Mlal ..... = 4kA/S. For the case A '" 0.1 m given this implies 
F ..... "" 15.8 N .  

I n  all cascs this force musl be supplied by friclion,j, i.c.f = 4kA/5. Butf 
is limited by f S p,Mg = 4,l,mg, so the maximum possible amplitude A .. is 
given by 

or A .. = Sml-',g/k = 0.174 m. 

o GRAVITATION 

5167. From the fonnula 

4leA .. -,- = 41"mg 

with M, = Sun's mass, Ml = Eanh's mass. and the dat.a given. we find 
F = 6.7x 10-11 )( 2 x  liYO x 6 x  1&�/(I.Sx 1011)2 = 3.57 )( llf-l N. 

5168. The planct"s angular velocity is W= 21r/P. If Ihe planct has mass III, the 
gravitational force F = GMem/tf must supply the centripelal force 
F, = ma.,} '" ma(21f/ p)l required to keep it in a cin;ular orbit. Equating 
F, Fe siv'es 
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Thus the planers year is 

This relation is true eyen if the planers orbit is elliptical and a i� the semi­
major a�is (in pr'dctice all pl�netary orbits �re slightly elliptic�I), �nd is 
known 8S Kepler's 1hird l�w, 

S 169, By definition the weight is equal to the normal force N that must be exerted 
by the Earth's surrace on the mass in equilibrium, At the equator the resul­
tant force on a mass m is 

EF, = F, - N, 

where Ft is the gravilational fOn-<: 011 Ihe m�ss (liCe Figure). This must supply 
the centripetal fol"l:tl mJ R, needed to keep the mass in circular motioll v.ith 
angular velocity w, Substituting F, = GAI,IIl!':;. we find 

G,If,m 1 N = F, - EF, = ----or- - """" R" 
R, 

where 1If, is the Earth's mass. By definition g,rr = N !m, so Oil the equator 

( ) 
GM, ' 

g,rr cq '" R; - W-R., (I)  

" 

" 
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where III is the rnass of the satellite. This rnust equal the centripetal force 
III"? R required to keep the satellite in uniform circular motion with angular 
velocity w '= 27r/24 rad h-I '= 7.27 X 10-1 rad Ii-I. i.e. 

G�f'1 '= Iml R, 

so that we require R = (GM,/.,})Ifl. [ns.erting the vlIlues of M, and w wC find 
R = 4.24 X 10' rn. Subtracting the Earth's radius�, we find the height of the 
satellite as h = R - R. = 3.(0 )( 10' rn. 

This large: value (almost 6�) explains the high cost of launching such 
satellites. Because they remain fixed ovcr the Earth they arc nevertheless 
indispensable for communications, etc. 

sin. The satellite must orbit the center of the Earth. A geostationary satellite over 
a point not on the equator would not do Ihis. 

S 178. The Shuttle's orbit has rddius II = R,+ H, where R, is the Earth's radius. If 
its velocity and mass arc M, v, the gravitational and centripetal forces on it 
(see e.g. S176) are 

GM,AI 
F� = ---;;- ' F, 

" 

where M, is the Earth's mass. These forces arc in balance as the shuttle iii in a 
cireular orbit. s o '; = GM,/a. The satellite (mass m) has the same 3ngular 
velocity w '= via = (GM1/,)) lfl, but is held at a radius a+h, so the corre­
sponding forces on it are 

GM,m 1 GM,III I, = --2 ' I. =m,r {a + h) = -,-(u + h) >1,. 
(a + II) a-

Gravity is therdore unable to supply the required centripetal foree to keep 
the satellite in an orbit of radius a + h, and the initial motion is outwards, i.e. 
away from the shunle and the Earth. (The satellite wiU go into a slightly 
elliptical orbit.) 

S 179. The Tl:tro rocket gives forward momentum to its exhaust gases. SinL'C the 
shunle and rocket are a closed system, momentum is conserved and this must 
slow the shuuJc slightly. Gravity will now be larger than the centripetal force 
needed to hold the shuule in its original orbit, and it will fall to a lower 
altitude (in fact its orbit wiU become elliptical. as for the satellite in the 
previous question). This is the basic method for bringing the shuille back 
to Earth. 
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S 180, The gravitational aa:eleration F = GM I,,! of the $ateilite mu.t supply its 
ct'ntripetal acceleration J /r. Equating, we find u = (GM /r) '/�, The angular 
momentum po:r unit mass i5 II '"' no ,.  (GMr)'/'. The atmo5pherie drag exerts 
a torque on the satellite's motion, which rc<.luct's its angular momentum peT 
unit mas., h. Since h 0< r'll 0< I/v, this actually speeds the satellite up. This 
occurs because the satellite goes into an orbit at smaller r. It is a general 
propo:rty of gravilaling syslems Inal a loss of total (kinetic plus polenlial) 
energy always l�ads 10 an jll("relUl' of kinetic energy, while Ihe potenlial 
energy becomes more negative. 

5181,  The mtio or the Sun's pull 10 the Earth's is M",,,!/M,tl _ 2.3. In facl bolh 
the Earth and Ihe Moon are in �early circular orbits aboul the Sun. They 
perturb each other's orbits - viewed from the Sun, Ihe Moon performs a liny 
" rosettc" about the Earth's orbit (SI:C Figure). The Moon cannot kav ... its 
orbit (and us) because of its angular momentum about the Sun. 

5182, A point on the planet's surface has to move in a circle aboUI the Sun �ilh 
angular I'clccity w, so Ihe effective gravity is gdf = N 1m, where N is the 
nonnal force exerted by the ground on a body of mass m. From Ihe Figure 
we find 

OM", 2 N +-----., -mg = mw-(a - R), (0 - R)" 

for Ihe point ncafCl;\ 10 the Sun, 10 Ihal 

GM 2 gdf _g _ _ _ _ + (a _  R)..,-. (a _ R)' 

For the point furthest from Ihe Sun voe find 

GMm 2 mg+ �- N  "' "1<.T(a + RJ, 
(Il + RI 

(I) 
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P = pg<ffh, 

where p is the density of water and P is the pressure at the bottom of the 
ocean. If the ocean is static. P must be the SlIme all over the planet. 110 

h 0<. grlf. 

The ocean is thus d�st (h _ Ii) at the nearest and furthest points to the 
Sun, and shallowest (IJ = l') on the eirele equidistant from them. The ratio of 
depths iii 

� = (g _ J GMR)g_1 = 1 - 3 GUR = 1 _ 3 MR1, 
Ii oj alg mprr 

where we have used g = Gm,/ If. with /tip the planet's mass, in the last step. 
As the planet rotates. an observer on a small island would notice tbe ocean 
level rise and fall twice per revolution (i.e. twice per ·'day"'). TCIIching ils 
maximum heigbt as the island passes through its nearest and furthest points 
from the Sun. 

S 184. From the last equation of the previous answer, the ratio of lunar and IIOlar 
tides is M,.rr / !lf0b1 _ 2.1 5. The tides are then highest when the Sun and 
Moon line up on either the SlIme or opposite sides of the Earth, i.e. new moon 
or full moon. These: nre the so-<:alled spring tides. The tides are 10'"''CSt when 
the Sun and Moon pull at right angles at the Earth, and give the so-called 
neap tides. The answers given above predict the height orthe tides on a planet 
completely <;overed by water, and give a value of order 0.5 m. Far from land, 
this is about the observed change in the height of the oceans. The tides 
oh!>Crved ncar coasts can be mu<;h larger, as they result from water moving 
about in regions of varying depth in response to the chang<:" in grlf. 

SI85. The Greal Lakes and the Mediterranean are much smaller than thc Earth'S 
si7-c. 110 gerr is practically <;Qnstant over them. They arc almost landlocked, so 
as griT varies Mer the day their base pressures P simply vary in response, 
leaving their heights clTecti\"ely unchanged, i.c. P ex g,O". This is impossiblc in 
the oceans as water flows to make P the same in regions with dilTerent golf. 

SI86. The angular momentum of the Moon is L .. = M .. (GM.b)I/2 (see SI80). The 
Earth's spin angular momentum is L, = Hl where fI '" 2>r/(day) is il5 angu· 
lar velocity in rnds-I and I is the relevant moment of inertia. The angular 
momentum of the Earth-Moon system is oon!>Crved, so tbat L, + L,. = C or 

IfI + M",{GM,.h)I{1 _ C, (I)  

whcre C is  a <;Crlstant. Since L ,  dC<'reases, L", must ineTea!>C, so b increases. 
Tidal dissipation will stop when the Earth spins synchronously with the 
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S19O. Energy conservation requires 

where m is the rocket mass. Thus 

At r :o  6R, we haw v ::  �'o/IO, so (I) gives 

or 1'0 = U(GM,IR.-)tn. 

�u6 _ 5GM, 
100 - JR.. ' 

197 

(I) 

(2) 

S 1 9 1 .  The maximum height r is TCachC'd when u :: O. i.e. all kinetic cnergy has been 
con,·crted into potcntial cnergy. Using energy conscrvBtion. exprrssed by 
equation (I) of thc previous solution, with u = 0 and Vo = 1.3(GM,/R,)'n. 
wc find 

"' 

giving r = 6.45R,. 

1 1 
- = - ( 1 - 0.845). , R, 

SI92. Thc Earth's gravitational pull must supply thc centripetal aro:lcmtiun 
nC"rded to keep the station in a circular orbit at any r. so 

.; GM, -;:- = -;:r .  

Thus with , .. 3R,/2 we lind u _  (2GM,!3R..)'ll. 
To achievc escape: rrom 3R..12the minimum speed !/I: with respcctto the 

Earlh must satisfy 

.!.,;. _ GM, - 0 2 I: JR,/2 - , 

by energy conservation. Thus Uf.· :: (4GM,/JR,)'lt. The most efficient way 10 

arrange this is 10 usc Ihe speed the sLation already has. Then only a speed 
II, = tlc - V = O.34(GM.IR,) 1/2 h nC"rded. The rocket is fired in the di�lion 
of the station·s motion. 
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5193. Using equation (I) of SI87 gives 

R _ 2GM 

- c' . 

With the dab given we lind R ""  3 km and 9 km for the 1M0 and 3M0 black 
holes respeo;:tivel�·. In reality we need to use the General Theory of Relativity 
to evaluate R. Howe�er, the calculat;on gi�en here, first performed by 
Laplace and Michell at the end of the 18th century, gi\'es e.�ntially the 
eorra::t ansWCT. 

5194. Using the previous solution. the avernge density is 

3M It l P"" 4".Rj = 2  x 10 kg m-

with the data given. so the densities are comparable. A /wutrO/l star has 
R = 10 km with M = Ale. and so also has nudear density; the nucleons of 
its mailer are as tightly packed as in an atomic nucleus. 

5195. Since for black holes R ox M. the avemge density found in the previous 
solUlion can be Tewrinen as 

1.8 )( 10\"9 
k _J 

p - (M/M0)2 g m  
, 

so with MIM0 = 3 )(  109 we get r = 2 kg m-J• i.e. less than twice the density 
of air. Blael:; holes are nOI necessarily very dense! 

o RIGID BODY MOTION 

5196. Using tI = ",R, we get '" = til R = 10/0.S = 20 rad S-I . As the aoceler�lion is 
uniform. we have w _ <4l + at. so that a = ('" - Wol/', With "'0 = 0, I = 10 s 
and ", as abo�e. \I'e find () = 2 Tad 5-2. 

S 197. The moment of inertia is 

I ,.  Em? = m,if + mIFf + 2mJif = 9 kg m�. 

Newton'� second law applied to circular motion gives 

r ,. fa, 
where r is the torque. In our case r ,.  RF, so 

a '" � = RF = � '" 0.56 r�d S-l. 
I I 9 
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_'Qi, ,hi> """'1'0"""" ofonlul&. momrn'um boo:oua L_ f, 00 ,lit defi<" 
(I -"".,)L .... '" too molk up ........ "' .... 'fIIt'or loCh;"'", !hi, II,-"""'''iIy" 
;�. � """'eslu "';n .. il OI'Ound ,he ,..,.,.,." TIlit """,IlOllI' molion .. ,urns 
the mini", 1�ru.:.1 <:ornpt>ll<llt of I.,ull . .......... ,.'". One< I. i> m1""",, 1o 
• ,"'oil , .. J"" .,,," In,u'" ... ' ...... Uum i. p1Id ... Uy , .... ,r.rttd to ,lit ,ur(""" 
OIl "hich ,1Ie."I" ...... . h""'FI frictiOll a, .he pojn'). ,he ""'"""Oft In,l< 9 
1<" '" I.,,. ,Iu, ,he oi.ko of.IIt ."" hit tho ,.,fa« ond it f.lI. "vc •. 

S20-t "The bull<, kquila '"l"�r momenlum .bou. on .. i, p"",l1d 10 ,he bo.m:!. 
lkca ...... ola • ... 0....,'''''' i, <011 ..... '0<1 (Ie< J"'C""''' ",,",ion) 'hi' keeps 
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1.,_1.1+-'.1 . 

... Iom: .! .. 'k _ anpbr ,·.Ioo",y of "'" ,,,,,,,.1Ik • sfut. 1bus 

.J _ 1.,/(, + -'"I. \1t�� I .. U 11" 12 ... ..  M /10 .0<1 , _ 11t./(, we liN;! 
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5206. A pendulum of momenl of inenia I and mass M has period 

( J ) '" P = 27r MgLcM ' 

""'he� LCM is the distance: of Ihe ce:nter of mass from the pi.-ot. 
(a) Here I = MI1jI2+MrI4 = Mr/3 (parallel axes theorem) and 

LeM = 112. Thus P = 2;r(21/3g)ln = 1.16 s. 
(b) The moment ofinenia here is given by I = leM + M Rl. where R is Ihe 

distance of the pivot from the center of mass (parallel axes theorem). Thus 

Mr (' ) ' 1 =12 + M  i - I,. , 

since: ICM = Mrl12 for a uniform rod. Moreo\'er Leu = R = 1/2 - Ie. With 
Ie = 1/4 we have 

, , 
1 =  /tit" + M(!) = 0.146M11 12 4 

and Le.1I = 1/4. Thus P= 211"(0.146J10.25g)Lfl = 1.08 s. 

5207. By the parallel axes theorem (sc.: PlOI) the moment of inertia of an extended 
arm about the skater's axis is IIIL 2/12 + m(L12 + R)l. If the arms are by (he 
skater's side, the moment of inert in is just mRl. Thus the moments of inertia 
bero� and aner he drops his arms are 

MR' [mL2 L 2] 
Ib = T + 2  """"i2 +m("2+R) , 

" , 
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. " 

, 

1 1  
If x :> I. this rotation produces a linear ,'elocity at the bars base in the 
opposite dirfX1ion from v (see Figure). The reaction force at the player's 
hands vanishes if the total velocity there is zero, Le. the hal piyots about 
the player's hands. The condition for this is v � /w, i.e. p/ M "" I(x - [)pl!, or 

I 
h= I+ MI" 

If the but is regarded as a unifonn rod of length 21, the appropriate value of / 
is f = M/l/3. so x = 4113, i.e. Ihe player should aim 10 strike the ball about 
two-thirds of the length of the bat from the handle. This is the so-called 
crliln of P<'rcu.uion or " sweet spot."' An impact here gives the feeling of 
hilling the ball "off the meal:' j,e. without jarring the hands, 

521 J .  Thi� is actually ClIactly Ihe same physical problem as studied in Ihe previous 
question. Here the point where the ball reslS on the table plays the role of the 
baseball player's hands. The condition that the ball should initially pivot 
about Ihis point is 

I 
h = l +  

MI 
as before, With 1 =  2M/l/S for a sphere. we find h = 71IS, i.c. thc player 
should cue Ihe ball 7/10 of a diameter above the table. The eushions on a 
pool table are at this height so that a rolling ball rebounds without skidding, 

5212, If there is friction 3t the disk 3xis, angular momentum is lost by the disk to 
thc Earth. When the man stnp� walking, the disk's angular momentum is 
now too small to cancel his angular momentum completely. so he and the 
disk rotate slowly in his forv,ard direction. 
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S213. As Q has the same sign as q"qz the forlXs on it arc both repulsive. Thus 
taking llie direction from ql \0 'Il 3S positive (sec Figure) the net force on Q is 

Q [q, q, ] 
4lfcg ;I - (<I _ x)"! ' (1) 

whcrc .x is the distanC\: of Q flOm qt. 
Wilh ,T "" <1/2 we find 

F = �(ql -q21 = 4  � 9 x [09 )( lO-' x (-2 x 10-') = -7.2 N. 
4;or(od 

The force acts on Q in the dir:ction of q, _ We can find the point where the 
force vanishes by seuing F '"' 0 in equation (1). Thus 

� _  ql - 0  xl- (d_;.:)1 - ' 

" 

I , I " " 
• : I 1---. I ,- . 

., 0 ., 
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i.e. 

d 
1 +  (h/'II)lll ' 

Substituting we find x = 1/(1 + 21(1) = 0.414 m. 

5214. The total fora:s FI,f""z on 'Ihql should vanish. i.e. 

so that 

.....::...
= 
(�) lll = 3 

/- x '11 

(I)  

(I)  

and x .. 31/4 = 0.75 m. Using (I) we get Q = -q2(>!/r) = -�.6 )<  10-) c. 
5215. The resultant force F i1 the sum of the electrostatic forces FI, F2 exert�'(\ b)' 

each charge. We must add these forces component by component. so that 

Fy = Fly + fi,. 
Now Fl • ., 0 (force onl), along the )�axi5) and similarly F2, = O. Thus 

• 

.. . 

• • 

" . 
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- I Qql -9 X 109 X 10-6 
F, = Flo< =--.......... _ -563 N (repulsion), 

41:£0 Xi 16 

9 x  IOl X O.5 x 10- 6 

9 500 N (aUf-action). 

Thus F _ (50& + 5631)1/1 = 753 N. From the Figure this force makes an 
angle a to the ncgativc x-axis, where tan (> = IF,I/IF .. I, i.c. (l = 41.6". 

S216. See the Figure. The tinit charge gi'"l:S a forre ,.� along the x·axis: 

2.813 N, 

while the second charge gives a force aloog the >'-3xis: 

P. = qlq) = 9 x l 09 3 x lO-6
X IO-6

_ 2.7 N  , 4r.fQ)1 (0. i )l 

The total rorce is therefore F = (F; + FiliP. = 3.9 N. acting at an angle 
(l = tan- ' IF,/F.I = 43.83° to the x-lUis in tbe negative-x. positive-y direc­
tion. 

, . 

F���:C' _____ -*' ____ __ t-'�q, Q, 

S217. This is essentially the same as the second part of 5213, since the forces on the 
sliding sphere are opposed whatever the sign of Q. Substituting 
d = I,ql/ql = 4 iAlo equation (I) of S213 shows tbat 

i.e. the sliding spbcrc will be in equilibrium at distance 1/3 from the smaller 
charge qj. 
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5218. The diagonals of the square cross at right angles. so we take them as the axes 
of a coordinate system with origin at the center (sec Figure). The field E at 
the center is the sum of the fields produced by each charge. The laner are 

directed rndially about each charge, with strength q/(4r.(od1), when:: d, the 
distance of each charge from the center, is half of the diagonal length, i.e. 
d = a.J'i/2. Since the fields arc radial, the x and y components of E an:: 

� I (Q Q) �Q E,. - El + E· "' 41Tt{) ;p +;p = 1Tt{).? '  
Substituting Q .. I C. etc. we find a field E =  9 )(  1O� NIC in the -y-dire<:­
tion. i.e towards the charge -Q. 

" 

'. 
'. 

,. 

'.'-----------------0;' o - 0 

5219. The proton has charge q= � = 1.6)( IO-lq C, so the electric field is 
E = q/(4r.'tIi?) = 5.17)( lOll NC-l. and the force on the eh:ctron is 
F = eE = 8.26 x 10-1 N inwards. In circular motion this must supply the 
centripetal force F - m.,J./a, where m"v. are the electron's mass and 
velocity. Hence v. = kaF/m.)I{2 = 2.20 x 106 m s-l and the period is P '" 
2"a/I1, = 2r.(m.a/F)1 = l.SI x 10-16 s. 

5220. By Gauss's law the charge and field on: conne<:ted by Q. = 4"t{)�E. '" 
5.92 )( lo' C. 

5221. Venical force balance requires qE'" mg or q = mg/ E. Substituting "''' 
om kg and E = E< = 130 N C-l gives q = 9.8 x a.OJ/lJO = 7.54 x ]04 C. 

5222 As the first two charges have the $IImc sign. the charge Q must he on the line 
joining lhem. as otherwise the component of force on Q towards thal line 
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docs not vanish, To ol'cn:ome the e1cctrostatil: repulsion betv,ccn the original 
pair of charges, Q must clearly have the opposite sign and lie between them. 
Let its distance from charge q be .T (sec Figure). Then the vanishing of the 
electrostatic forces on the charges q,9q and Q gives us the three equations 

(I) 

(2) 

(3) 

We nOIC that (3) is automatically satisfied if (I .  2) hold. as can be secn by 
subtracting (1) from (2). From (3) we get 9i! = (/- x)�. or taking thc square 
root of each side, / - x = ±3x. This leads to x = //4, -1/2. Only the first roo! 
is physical, the second spurioU'l root being introduced by the oJX'mtion of 
taking the square root above. With x = 1/4 \I'C noll' find from (I) that 
Q _ _ 9i!q/ll _ -9qjI6. As CXf=ted. Q turns out to be negativc. 

i : 
.. 

S223. The force on the electron is F = cEo upwards (as the clectron's eharge is 
negatil·c). Thus its acceleration is a = I!Eo/m, = 1.76 x 101' m 5-2• This is 
far larger than g = 9.8 m s-l, 50 the neglcct of gravity is justified. The 
hori7.ontal motion is uniform. so timc of flight between the plates is 
I = lo/vo = 10/0/e, and the deflection is y = ar /2 = 5Oa!J/C1 = 0.098 m 
upwards. 

S224. No horiwntal forces act on the ck-ctrons in the beam, 110 at time I after 
injcction they arc at horizontal distance x = V,I. In the vertical direction 
gravity is negligible in cOl11pari!iQn with the Coulomb force -cEo. which 
produces a constant acceleration -cEo/m,. The I'ertical displacement a1 
time I is thus J' = -eEor 12m,. Eliminating I we find the path 

(a) Reversing the field nli$Cs the heam symmetrically, so it hits the screen at 
10 rn1 aoo"e the horizontal. 
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(b) At .� = I we have y = -h (= - LO em), so substituting in the �u:1tion 
abo�e we find I = (2n'.h/e�)')lu, = 2.4 em. 

sm. The electrons acquire horizontal velocity IIA given by cnergy conservation: 

!m,v! = 1 - eVI, 

i.c. u, _ (21'1' /m,)'/l. The potential difference V,. between the plate! gives an 
electric field E = V,./d, which deflects the electrons. This implies constant 
\"enical acceleration a = eE/m, == tVp/(m,d): the electron� spend a time 
1 = I/lix = l(m,/hV)'!2 passing hctween the plates, so using the kinematic 
fonnula y = Yo + at1/2 the deflection is 

y =  �VpC = eJl,. Il � = !.... VI' 
m,d2 m�d okV 4d V '  

The maximum deflection which still anow� the electrons to miss the plates is 
y = J/2, and this requires Vp = 2(ef/f)' V. 

S226. Lei Ihe balls have charges '1,,'11' Then �ertical force b�lance requires 
-E,'1, "" mg, -E2'11 = mg. whell: m = 4;r?p/3 is the ball's mass. U�ing 
p = 0.8 g cm-l = 800 kgm-l we find m = 3.35 )( 10-1) kg, and hene.: 
'I, = -3.26 )( 10-19 C, '11 = -4.89 X 10-'9 C. Hence -e = -('I, - '12) = 
1.59 )( lO-'9C. Note that in reality we cannot be SUIl: that the charges differ 

by exactly -I'. rather than some multiple of it. In pr3ctice the experimenter 
looks to find the smallest charge difference; all other differences should be 
integer multiples of this one. 

S227. From the Figure, we ha�c for each mass 

Tsin9 = F" 

TCDs8 = mg 

so Ihal the eleclrostatic repulsive force is 

f� = mglan8. 

,,' 

I Q' 
F, � ---or 411"fo d 

J "" 2Iosin9. 

(I) 
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"' 

, 
- - -(� - - -

O
' - -

" , 
_ _ _  "-1 _ _ _ _  , __ 

E(r) = Po, R!.. = 5.66 x I06 !.. N C l. 
'0 R R 

S232. From the Figure "'"C have the force components 

f� "" 0, (by symmetry) 

-I qly 
4''''0 (02 + .1)1/2 · 

Thus for y = 0 \Ole have F� = F, :: O. so that the origin is indeed an equili­
brium point. For y <: a we can neglect the term I in the denominator. so 
that 

, 
, 

/ 
-0 
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This is the equation for simple harmonic motion, with frequency "" given by 
dividing Ihe coefficient of y by Ihe mass m and taking the square root. i.e. 
"" == (r(/411lo';mjl/l = 335 rad 5-1. H�nce th� period is P = 2"/"" '" 0.0195. 

5233. The electric field E of the line charge is radial. We apply Gauss's law to a 
cylinder of rAdius R and length I aboul the line charge. The flux of elcctric 
field is <J> '" 2rrR/E and must equul l/<o times Ihe enclosed cbarge, q = >.1, so 
thaI E == )./{2rr(oRj. The resultin� electrostatic force on the orbiting charge is 
qE, which acts radially inwards. as ). < O. For this 10 supply Ihe centripetal 
force, mJ / R, requires J = -).q/(211(o"l). NOle that the radius of the orbit 
drops OUI. Inserting the values given shows Ihat v = 1.9 x 10· m 5-1. 

5234. On the x·axis the field C(Imponenls are (see Figure) 

E _ _ ,_ ( qCOS8 _ ,/C(IS{l) �O 
'- 4,,'0 � .r2 + ri 

1: = _'_ (-QSin B _ qsiIl O) = - 2-'- q sin O 
r 4rr£0 � � 4:lf(o:xr+"? 

Now sin8 = a(� + ;)-1/2, 50 
, "'" 

41r'o (xl + ri)'/: ' 

Clearly, for x::. (J we have Ey 0< x-1. 

/­
-, , 

5235. We can regard the plate as infinite with uniform surface charge density 
u =  lOOQ/A = lOOQ/(IOOd)l = lO-zQ/dz. Then Gauss's law shows that 
the resulting electric field has components �I< "" u/(2'o) = 5 x 1O-1Q/ (41ul); £to< = O. We must add to Ihis the iield of the shell. This is UfO inside 
the shell. and equal to thaI or It point charge Q outside it (by Gauss's law). 
Hence inside the shell 
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£,. ",0. 
Outside the shell (KC Figul't') for any point P(x,y) 

i.e. 

,,' 

E. = £t-'" + �I = f!"'''' - £"""ICOSQ, 

Q J' 
xli + T "[ (d-;--'�I'�+-T"'[�'n'-. 

This i, the gener,tl result for any point (x,y) outside the shell but not vel')' 
close: to the edges of the plate. Substituting x _ y _ 11/2 for point Pz, we find 

E. = -0.107 Q" ,  " '. 

Q E� = 0.1 t3:-:J!. 
,,d 

The magnitude of the resultant field is thus 

E = (0.1071 + 0.113Z)1/1 $..
d 

= 0.IS6� . 4J - £oa-

and it makes an angle e with the negative x-din:ction. where 

.... I 
" " .... - - , 

� , , , , 
" 

, 
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just as for a point charge. For 2a < r < 3a we have E(r) _ 0, as this is the 
interior or a perrea conductor; a charge -Q will be induud on the inside of 
the sheiL For r > 3/J we have 

E(r) ,", � ,  
4;rGJr" 

as a chargc +Q is induced on the outside of the shell. See Figure for a graph 
of E{r). 

5237. E(r) follows in each region (see Figure) by using Gauss's law. Inside the first 
sphere, a surface of constant r encloSt's total charge q, while between the two 
spheres the tOlal enclosed charge is -2q + q e -q. Outside both spheres tile 
endoKd charge is zero. Thus for 0 < ,  < R we have E(r) = q/(41141,-l): for 
R < r < 2R we have E(r) = -q/(47r41,-l): and for r > 2R we have E(r) '" O . 

• 

• 

, 

-'­...... 

- -'-.. "" 

, • 

, • 

. '.:--.--'" 

, 
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Note that E(r) is discontinuous at each of the spheres (see Figure). This is 
char-acteristic of the effect of charge layers. 

S238, By Gauss's law (sec S233) the external electric field is E, = >./(2rr(or). whert' 
A is the total linear charge demity (i.e. charge per unit length). Hert' 
A = "- + Awol! .. and unit Jengtb of the core and sheath bave �harges 

�'" = ,-m�.Awoth = 2rrR(1. To arrange that £(r) = 0 everywhere we must 
choose (1 !ioO that A = O. i.e. (1 = -pR/2. 

S239. By symmetry the field is dire<:t«l radially outwards and depends only on r. 
Gau$l;'s law applied to a cylinder of length L and radius r S R gives 

w that £(r) = pr/2to. 
For r > R Gauss's law gh·es 

21fTL£ =':rrK-Lp 
" 

since tbe whole cbarge is included. Thus E(r) = Rl p/(2for). These results are 
sketched in the Figure. 

, 

, \ 
.. 

\ I , I ,,�------

, 
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Substituting we find V,I = 3 x 9 x 10' x (1/12) x (2.5 x 10-1- 5 x 10--) = 
-56.3 volts. 

5242. For uniform fields we have 611 '" Ed. With £ = 2 x 10' NfC and d = 2 em 
W� find 6V = 2 x 10' )( 0.02 .. 400 volts. 

5243. If the Earth is elcClrical1y neutral. wc have only kinetic CD and gravitational 
potential energy CU). Conservation or energy thus gives T + U = constant. 
At infinity both T and U are zero, s.o tbe constant here is zero, and hence 

O = T
_ 2GAf,m,

. R, + h 

T = 2GM,m,/(R, + h) 
= 2 x 6.7 X 10-11 x 6 x 10" x 1.67 x 10-21/(6.5 )( 106) 

= 2 )(  1O-1QJ. 

If the Earth is positively charged the particle must do work against the 
el«trical potential VCr) = Q,/47rc"r, so conservation of energy now requires 
T + U + qV = constant. At infinity we ha'·c T = 0, U = V = O. and the 
panicle will just fail to reach the Eal"lh's surface if T = 0 at r = R.,. Thus 
the minimum charge Q, on the Earth is given by 

T = 
� _ 2GM,mp 
4/rc"R,. R, · 

Using the exp�ion for T found abo,·e we note that the second term on the 
rhs is T(R, + h)/R,.. This gives Q, = 4"'c"T(2R,. + Ir)/c = 1.8 X 10-) C. 

5244. The clo$C$t approach is achieved wben the particle is incident hClL d-on: con-
servation of energy (ef. the previous answer) gi'·es 

I Z,.! -nul = --2 4".(�b 
where b is the closest approach distance. Thus 

Ze2 b - ---- 27r�vl · 
The stationary p�rticle behaves �s if it h�d ··size"' b and cross·sectional area 
(1" '" 1'Ib2• In an ele<.:trically charged gas ta plasma) v can be related to the 
temperature, and (1" can be used to estimate properties such as thennal oon­
ducti"ity, etc. 

5245. When the panicles are at rest their toull linear momentum and energy are 

both zero (no kinetic energy and negligible potential energy). Momentum is 
conserved as there are no eJuemal forces, so that 
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m,ul + m�1I: = 0 

where u, and v: are the velocity components of the two particles when they 
are a distance L apart. No work is done on the system, so the sum of the 
kinetic and elcctrostatic potential energies is conserved at zero, i.e. 

I 2 I , q,q' 
'2m, ut + '21/12Vi + 4'Jf€QL = O. 

Substituting II: from the first equation into thc second "'c gct: 

(I + ml)m,vl _ -q,ql . nrl 21r41L 

and using thc data gi\'cn 

Thus, choosing VI > 0 wc hal'c v, = 5.25 )( 101 ms-', to:! = -(m,/m2)v, = 
-2, I )( 104 m S-I. The particles' relativc velocity is v, - v: = 2.63 )( 104 m s-'. 

5246. From the definition. leV = 1 .6)( 10-'9 )( I = 1.6)( 10-'9 J. we can find the 
required potential difference toV from 

£ 
to V = -, 

q 

where E is the energy. Mcasuriog E in eV and q in electron charges gil'es to V  
in volts. Thus to V = lOs /2 = 5 )( 104 volts. 

5247. The potential at P is 

,; V(P) "" E/ 47fC{)d; • 

where J, is the distance of thc charge q, from P. Since 
d, = [(x, _ 2)2 + (Y/ _ 2)2]1/2. we find 

S248. Since the field is uniform "'e have to V = Ed = EoJ·,. With En = roo N/C and 
YI = 5 em .. 0.05 m. we find l!oV = 100)( 0.05 '" 5 volts. 

We can cakulate the work IV using the formula IV = FdcosO. where F is 
the constant electrostatic force, d the straight·line distance moved, and (J the 
angle between the path and the force. In the prescnt case we must exert a 
force F = E.,Q to dOlg the charge quasistatic-<lJly in the neguth'c y-dircction. 
and the work done in the two cases is 
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,,' 
WI = F-(lQ.(� + >i)'/20:0s/l, 

using d = Y, in the first ease and d = (�+ >'i)'/! in the second. Substituting 
cos (J  = YI(.oi + y;)_'/l, we see thai WI = EoQoYl' so that in both cases the 
work done is W, .., WI ,., EoY,Qu = 5 J. The same result follows immediately 
from the energy conservation law W = VI - U,. when: VI' V, an: the final 
and initial potential energies, as IJ.r - V, = QoIlV. 

5249. For a point charge we have 

, Q. E(r) = --, 411"4) ,-2 
V(r) = -'- Q· , 4"" 0 r 

Dividing these 1\"0 equations gh'C"5 V / E = r. so r = 500/100 = 5 m. Using 
this value in the fonnula for V gi\'1!S Qo '"' 411"£6'1' '"' 2.78 x 10-7 c. 

5250. The potential difference i:J. V = V8 - VA between A and B is just minus the 
field multiplied by Ihe distance AB, i.e. i:J. V  = -Ed = -2000 V. 
(a) The charge q is negath·e. so ... ork must be done 10 mo\'e il to lower 
potential. The lotal work done is IV = (force)x(dislance moved) = 
IqEdi - Iqll VI '"' 20 1. 
(b) The work done moving a eharge in a sUl1ic electric field depends only on 
the endpoints oflhe path, and not on its shape. so Ihe charge from A to B by 
any other route, iocluding the one ,pccificd hen:, is exactly Ihe same as along 
AB, i.e. 201. 

525 1 .  The potential of the charged shell is 1' = C = 10' V. Since V = Q/(4nou) 
." .. e have Q = 4,.,. ... Va = 1.1 x 1O-6 C. The work done is IV = qV =  
10-6 X leY = 10-) 1. If the eharge penetrates the shell. no extm work is 
required 10 bring it 10 the center, as the potential is con�lanl inside the shell. 

52S2. For a charged spherical shell we have V = q/(4u(jf) so q = 4,.,. ... Vr. By con· 
ser\'ation of eharge Q = lOOOq = 4tXXh,. ... Yr. The total volume oflhe merged 
drop must be the sum of Ihe individual volumes. as mercury is incampTl:$­
sible, so 411"Rl/3 = 1000 x 4if /3. i.c. R = lOr. Thus 

1001'. 

The e1ectrOSi<llic enngy of a spherical conductor is 
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(Note that these value!; satisfy VI + Vl = £, as they must.) The stored 
electrostatic energy is 

Q, Ur =,-C =O.QII J. 
- , 

After Ihe dielectric is remo\'cd, lite capacitance C: is decreased by the factor 
K� so thaI its new value � is � = el/ K.t = 8 ,.F. The two capacitors are 
now equal. making the calculation casier. Thus VI = 111 = £/2 = 30 V. and 
Vr = 2Vt = 2(CI Vfl2) = 7.2 x 10-) J. 

5259. The 10lal capacitance of the two capacitors connected in parallel after the 
circuit is closed is Cr = CI + C1 = CI + 2CI = 3CI. The total charge is con­
$C!"'.·oo, i.e. Qr = Q, so the \'ohllgc on both capacitors will be 

The charges on each are then 

and the energies arc 

QI ", el VI "' t, 

c. vf if VI = -'- = "i"8""C"; ' 

c1vi 1 Ql 
U: = -- = CI III = - .  

2 9C1 

Thus Ur = Q1/6CI . lnilially "'c bad Ur = VI = (f12el• "'bieh was larger. 
Energy was rclea$Cd in sharing Ihe charge out between the IWO capacitors 
(currents dissipate heat). 

5260. If the level of dielectric liquid has faJlen a distance vI _ It < I we have IWO 
capacitors in parallel, i.e. 

/h CI(t) = {o'IIOO = lOOcovl, 

(/-1t)1 C1(1) - K�(o 1/100 - 2�(I- 1:1). 

Thus C(t) '" C1 + C1 '" JOO<{I(2/ - vt) unti l t  '" Ilv, when C(t) staysconslant 
at C =  100.:01. The charge is just C(/) V. 
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5263. After Ihe spheres are connected, cliarge will now unlit llie splieres are al Ihe 
same potentiaL The potential of a conducting sphere with charge Q and 
radius R is V = Q/411{oR. so charge flows until the charges on the spheres 
are QI,Q�, with QdR, = Ql/Rl or 

( I)  

Moreover charge must be conserved i n  the How, so tliat 

Hence eliminating QI we find 

"' 

Then (\) gives 

Ql = (ql + Q2)R , . 
RI +Rl 

With the values gi\'en we get Ql = 2.67 x 10-' C, Ql = 1.33 x IO-� c. 

5264. Each conducting sphere is a capacitor, so that the stored electrical energy is 
U = CVl/2 =QV/2, when:: C,V,Q are the capadlance, potential and 
charge. Since V = Q/41f(oR for a sphere of radius R. we have total energy 

befon:: the spheres an:: connected, and 

after connection. Substituting Ihe data from the pre"ious problem and its 
ans",'er we find U, ,., 9.9 x 1O-� J, Uf = 2.4 x IO-� J. As can be seen, Ihe fmal 
energy is 10"''CT. This is 10 be: e�pected, as the currents Howing in the con­
nected system must dissipate some energy as heal. 
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S265. The firsl sphere will accumulate charge ql such Ihat its potential 
VI = ql/41f(oRI reaches the external potential V, Thus ql = 4lrtoVRI = 

10-6 C. When the IWO spheres are connected, charge will now until the 
1"'0 potentials are equal. i.e. they will have charges QI. Ql with 
Qd RI = Q2/ R2 and QI + Ql = ql'  Thus Q! :: 2QI and QI + Q) = 10-' C. 
implying QI = J.JJ )( 10-1 C, Qz = 6.66)( 10-7 c. 

5266. (a) Here the shells arc independent. so 

VI = -'- , 
4r.·oo 

, V1 =-, ,-- , 
- ""'" 

and the potential difference is 

fl.V = VI - VZ = -'- . 
6r.(oo 

(b) See the Figure. The potential of the inner sphere has the value 
V; = q/(4,,(ou) resulting from its own ehar�, plus the polential VI of Ihe 
outer sphere. Hence VI � V( + V1, so 

fl.V � VI - V1 = V; = -'- . 
411"£00 

(The outer sphere behuves as ifit had a total charge 2q. so that its potenlial is 

V! = (1/4lfto)(2q/Ja).) 

, 

5'11l7. The field inside a perfect conductor must vanish. so by Gauss's law, charges 
-q and +q arc induced on the inner and outer surfaces of the shell respec­
tively. Thus 
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,., 

The potentials follow by superposition. i.e. 

,., 

, 
V('oo,) '"' ,---. 

1'I'(�'o.' 

V(r;.) ". _1_ (.!L _ !i + ..'.!....) "" ....!L (.!L _ .!L) . 
4no '", R 2R 4 .... '<1 ';". 2R 

If the shell is grounded its potential is zero. so that the charge on its outer 
surface vanishes. However, Gauss's law still requires a charge -q on the inner 
surface. The fields and potentials are calculated as above. but now with no 
charge on the shell's outer surface. ThILS 

,., 

£(' •• ') _ £(',) =0. E('",) = � , 4"'0';. 

V{, ... ,) = VI,,) = 0, 

V('i.) ,. _,I (.!L - _.') . 'fC« 'io! 
5268. We can regard the capacitor as the superposition of two panlHel capacitors at 

thc same voltage. with one containing the dielectric. Their capacitances are 

,., 

Thus 

C(x) = C1 + Cz =;;' [�(Xd + I) + ax(J - KJl] 

With K� '" 1 this gives C(x) ". «(lIld)(J<l/2 - ax), which reduces to 
C = ",tl /d for x = all (all the dielectric remo"ed) as it should. 

" , 
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To find the current we n�d the charge 

'." (l , ) Q(x) - C(.l)V = T 2"0 - ax 

In a time interval 61 the dieloxttic moves a distance t.x = ual. The charge 
changes by 6Q = -�Vaaxld (i.e. it decreases). Thus 

1 =  aQ 
= 

� t:ovoax 
= 

_ {oVaI' 
al d 61 d 

5269. The large distance between C and the AB system allows us to assume that 
they do not influence each other. Then 

I "  I 'I " V/I =---+--� -- , 
41r� 2R 41i"� 2R 41r4JR 

I q I q 3'1 V� = -- + - - � -- , 41T41 R 411"£0 2R 8:r�R 

where we have used the fact that the potential is constant inside a spherical 
shell in writing the last equation. Arter B and C arc connected, charge flows 
between them until their potentials become ti:jua1. If the new charges are 
Q/I, Qc, conscl"\'ation of charge gives 

Q/I + Qc = q - 2q = -q· 

Since Ihe new v�, Vc arc equal, 

I q + Q/I I Qc 
411"'o"""""""2lf"" 

= 
4:'1"{0 R' 

(1)  

(2) 

(1.2) are twO equations for Q9,QC. with the solution Qc = 0, Qs "" -q. The 
potentials become 

I q- q 
V. � ---- _ O  

4lrlo 2R ' 

Vc = O. 
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U!ing (I) we find 
(2) 

(J) 

Multiplying (2) by 2 and (3) by 3 and adding gives Il = I A. so from (2) or (3) 
/) = 0.25 A, and from (I) II = 1.25 A. 

S278. Using Kirchhoff's laws 

-£1 " il Rl + ijRj. 
With the values of Rio R1,£I,£1 given, (he first equatinn simplifies the other 
two to 

3il + 2i1 = -I, 

whieh have the solution il = -I A. il '" I A. There is  no current in the 
resistor R), as iJ = II + i1 '" O. 

S279. The current in the original circuit is 1 == (U - e)/4R = e/4R clockwise. 
Thus the voltage drop between A and B is VA - Va = -IR + 2£ = 7£/4. 
The emf X must be in Ihe same directivn as Ihe t ... ·o in the original circuit. 
wilb magnitude X '" 7[:/4. 

5280. Fvr the case shown in Figure I,  we have V .. = VI' But by Kirchhoffs laws 

" , 
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voltmeter will measure V..e == R/). To find I) we first calculate the equivalent 
resistance of the whole cireuit: 

Thus 

I Rr == R + l/R + I/r 
2r+ R R. 
, +  R 

I "", i.... = t:(r+R)
_ Rr R(2r + R) (I) 

We can find I) from the fact that the potential drop through the resistor 
between c and b m�t be the same as that through the voltmeter between the 
same points, i.e. 

Solving for I, we get 
, 

I, '" R +/-
Substituting for I from <I) we �t 

r t:(r+R) r 
1' = , + R x  R(2r +R) t: (2r+R) 

and (hel"(:fol"(: 

V..e= R/, = t:--'- . 2,+ R 
By symmetry ""e get the same result for Vito. 

Note that if r > R we have V d> _ V/Io> '" t:j2. very dose: to the value in the 
circuit without the voltmeter. However. if the internal I"(:sistancc r is  not 
mIlCh larger than the resiSiances R, the voltmeter will draw a significant 
current and thus reduce the VOILBgc drnp V,� or V .. below this value. 

, 

" , 

" 

'110--+-----' 
, 
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S282. The equivalent resistance in each of the Ihrcc cases is 

and 

The dissipaled power is 

Thus 

R, R 
I/R+ I/R 2' 

R. = R + R = 2R, 

R,. - R  I 
- + l/R+ I/R 

JR 
,. 

The dis.�ipated power is largest in circuit (a). 

135 

S283. The power dissipated is P = /l R = VI; R = 242 W. The total energy used is 
h: = PI = ll."! x 10' J .. 0.242 kWh. 

52&4. The lotal energy used is E = PI = 0.1 x 24 = 2.4 kWh. The cost is therefore 
2.4 x 30 = 72 cents. 

$285. The power is P = IV = 3.6 tW. The tOlal energy is E _ PI '" 432 kJ or 
0.12 kWh. 

5286. (a) When the switches are open, we have 3 single circuil with a current 

£ 1.5 A. 

(b) When both switches are closcd. the resistor Rl is shorted out, $0 the 
equivalent circuit is as sho .... ·n in the Figure. The current through Ihe 3mmeter 
is again J = 1 .5 A. so the potemial diift'renoe between a and b is 

V",, = IRJ = 4.5V. 

BUI sine.: u and b 3re alw connected through Ihe po .... "er supply and resistor 
RI• we also have 
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With the data given we find x ",  3.0 km. From (2) we find R, 
Rd - 2xr == 114 O. 

S289. If the bulbs arc connected in parallel the lotal resistance Rr is gi\'en by 

so the total current is f = c/Rr = 3£/2R where £ is the mains \·oltage. The 
currents I", I. through the bulbs obey 

!! = 2R ", 2 
I, R 

and Kirehhoff"s [aw$ require 

J£ 
1,, + /8 = J = 2R ' 

so IA = £/ R and 1. '" £/2R. The emitted powers are P A '" tI" '" t:2/ R, 
p. = tl8 = £l/2R and the total power is P _ P" + PII ,,, 3£1/2R. lf the 
bulbs are oonne<:ted in series, the total resistance is RT = R + 2R = 3R, 
and the current is 1= £/3R. The powers are PA = d R ", t:2/'JR, 
p. = Jj.2R = U2/9R, and the total power is f' = E! /3R. Thus bulb A is 
brighter when the oonne<:tion is in panillel. which also mll�imizes Ihe 10Ial 
power oulpUt. The 11'10 clerks can agree 

S29O. In the first cast no current nOW5 in the circuit involving £1: the current in the 
circuit involving £1 is 

£, tl = - = O. I A. R" 

The resis tance of the interval AP is 

R"I' = RA6{AP/AB) = 20 x (60/100) _ 12 n, 
so VAl' '" liRA" = 1.2 V. This must equal the potential diffl:rence £) given by 
the power supply, i.e. £2 == 1.2 V. Also V R = O. since there is no currenl in R. 
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But the capacitors are no longer connected in series, so we have 
VI = lRI "" 6 V and V1 = lRl '" 4.S V. Thus QI '" C, VI '" 0.3 I,e and 
Q, Os CI VI '" 0.096 I.e. 

5292. The currcnt flowing in both resistors is the same: 

II ", /1 = 1 = --'- = 2 A. 
RI + Rl 

The potential difference VA6 follows from the voltage drop across Rf 
V"B = IRl = 8V. Thus Q2 = C1VI = C1V ... = 401'C. Also QI = CI VI = 
CI VA. '" S I'c. 

o MAGNETIC FORCES AND FIELDS 

5293. We take the origin of coordinatCb half-way between the two wires. the x-uxis 
perpendicular to them and the Y'L"l:is parallel to them (sec Figure). Each wire 
produces a magnctic field acting in circles centered on it and thus in the ±:­
direction at points in the x,Y plane. With thc orientations shown in the 
Figure both fields point ilno the plane (-z-direction) between the two 
... ,ires. so the total field is thc sum: 

i.c. 

I'<J 21 I'<J 21 
B(x) = 2,;: d+ !'� +"2,;: d - 2.>; '  

Jl() 4/d B(.l)="2,;: dl_4Xl' 

for -d/2 < x < J/2. Wilhlhe dlta gi\"cn B(x) = 8 x  1O-1(1 _4K)-1 T. At 
x = O. B = 8 x  10-1 T and the force is F = evB = ecB!2 = 1.92 x 10-11 N, 
acting in the x-direction if the vdocity is in the )�direction. If thc "clocity is 
re\'ersed the force points in the -x-diro:etion. 

'" 
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5294, Tbe m�gnetic force: between the wires is F", = /Lo/l/l/(2rrd) per unit length, 
and the weight per unit length is IV _ mg. In equilibrium (sec Figure) tbe 
tension T in a cable must satisfy Toosfl .. W,TsinO", 1'-;'. so 

tanfl = F .. = /-I{J/lh . 
mg 211mgJ I'I  

We can eliminate d sincc sinO .. d/(2a). Using the fuct that d ¢ a we see 
tbat fI is also small, so that sinO"" tan fl. Hencc substituting J"" 2atanO 
into (I) gives tanl fl _  /'(j/lh/4rrgQ. With the data given we find tanfl = 
(2 )( 10-7/9.8)1/1 = 1.43 )( 10-'. so that 0 = 8.2 )( 10-)0. The magnetie field 
at tbe midpoint is the superposition of the fields produced by ellcb "'ire, i.e . 

.... bere both fields point "erlk,llly downwards. Using tI/2 _ QtanB we find 
8 _ 2 )( 10-7 )( 3/( 1.43 )( 10-°) = 4.2 )( IO-l T. 

'. 

. . �  

5295. By Ampere's law the field vanishes outside the coil. By symmetry it is circular 
(elock .... ise, by the right hand rule) inside the coil. and its magnitude depends 
only on r. Using Ampere's law for a circular path inside the coil (5« Figure) 
.� 

I 
-8(r)2;rr = NI, <I < r < b. 
''0 



242 SOLUTlQNS - CHAPTER 2. ElECTRICITY AND MAGNmSM 

B 

where I" is the loop radius and x the distance along the altis from the centn of 
the loop (the sign is determined by the right hand rule; see Figure). Using this 
with the data given yields 8,. = 8\ - B2 = 

1'o/(2rO)l 
2(4ro + 4ro)J{2 

( _, _ _ _ 1_) 1'01 = 0 0441'01 
2 X S1{2 2 x Slfl 1"0 . ro · 

5299. The magnetic field of the long wire points every ..... hen: into Ihe plane of the 
loop (see Figure), witb magnitude 

(I ) 

where x is measured from Ihe wire 10 the loop. By symmetry the forces on 
sides AD and CD of the loop cancel out, and the forces F.K, F'D on AC, BD 
only have x-components. With the current directions sho"," (see Figure) we 
find the resultant force 

, , 

1-., -+'::.< "'"T--"-
, 0 
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F = F.K + fjw - /IB(d)b - /1B(d + alb. 

Using (I) we find 

(2) 

leading to a force F = 1 .067 X 10-6 N directed away from tbe wire. 
5300. Iftbere are N turns on a coil. tbe rbs of equation (2) of the previous problem 

is multiplied by N. Each coil must supply a force F = ,,-b to balance the 
weight of the train. :IO from the modified C<!uation (2) above we require 

W = /1o/li1l1 [ ' _�'_l . 
2. d d + a  

Since w is fixed. to minimize I und II we neW to maximize the term in square 
brackets. We can rna!.:e the negath'c pan of this term negligible by choosing 
a :2>  d. Thcn the requirement simplifies to 

/4)Nlll It' '" 
2r.d . (I) 

Eyidently we will minimize I, II by making N as large as possible and d as 
small as possible. (The latter requirement makes it .-cry easy to arrange thut 
a >- d.) For the data given. (I) shows that N = 5 )( I0611'dllll = 5000. 

S301. From equation (I) of the previous question. thc condition for balance is 
d <X I/w. The football players increase I\" from WOO kgm-I to lJOOkg m-I . 
so d decreases from I em to I )( 10000j13oo = 0.77 em. 

S302. The magnetic field at a distance r from a very long straight "'ire carrying 
current I has circular symmctry about the wire and strcngth 

By symmetry it is clear that one half of the wire contributes exactly one half 
of this expression. The field at 0 is the su�rposition of t\\"o such half-infinite 
wiTCS (ot right ongles). gi ... ing total field B, "' l-'<Jlj(2"r), logether with the 
field of u quancr-cirde loop at il5 cenler. Since the field of a rull circular loop 
at the ttlller is B = I�I j(2r). the quartet loop adds a conlribulion 
8, _ /'o1/(S,). Hence the 10lal field at 0 is 

B = B, + B/ = (..!.. + �) /101 .. 0.28 )( 
1 .26 )( 10-6 )( I 3.53 )( 10-6 T. 

211" 8 , 0.1 

The direction or the field is fixed by the right hand rule (into Ihe page). 
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5303. Tbe magnetic force between the rod and the wire is 

50 the equilibrium condition "EP = -mg + p .. = 0 becomes 

50 that / = (2rrmgl/.l(})I/1. 
If Ihe currell! in the wire i$ doubled, P,. becomes 1'"'., = I'O/!/r., so 

NeWlon's second law EF = F'.. - mg = mo gives mo = "lmg - mg = mg, i.e 
the initial acctleration a is eXlletly g, upwards. 

5304. The for<:e on the particle is quB, directed perpendicular 10 the motion. This 
force can do no work, so Ihe particle must mo�e at constanl speed in a circle, 
the magnetic force supplying the required centripetal for<:C. If the radius of 
the circle is R. "'e must have 

(I) 

The angular frequency is defined as w = vIR. so from (I) we find directly that 
w = qBlm. This is called the gyrojrequen(y. u,rm"r jrrqu,""c)" or cyci"lron 

jrrqumq of Ihe particle. Charged particles gyrate about magnetic fieldlines 
at this characteristic frequency: note that it is independent of thcir velocity. 

If the "elocity is not in the plane perpendicular to the field, we can �'(lnsider 
the instantaneous components Vl.,1I[1 perpendicular and parallel to il. The 
parallel component vu produces zero magnetic for<:C. while til. as before 
produces a force perpendicular to tbe field and always directed towards a 
particular fieldline. Since there is no foree component along the fieldlinc, the 
IXIrticlc moves with constant velocity 11[1 along it while gyrating about it as 
before. The combination of these t,,·o motions is a spiral cenTered on the 
fieldline. 

5305. The angular frequency w (measured in rads-I is related to the cin:ular fre­
quency " (mell$ured in cycles{s - Hertz) by w = 2"". The wavelcngth >. is 
given by Ihis frequency as >. = rllJ with c the speed of light (see Chapter 3). 
Here w = cBlm, ($/Xl previous problem), so v = eBI2r.m, and hence 
>. = 21rm,c/eB. With the data given, >. = "l6 m. 
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S306. Taking P as the origin of the coordinate system shown in the Figure, at P we 
have 

I'll II 1/ 
211"(.1 +�)lll (i! + 4<i)l/l ' 

/'0 II By .. z;;: lOa' 

" I, B' = Z;;:2ij '  

Substituting the numerical values given we get B.,., 3.2)( 1O-7 T, B, = 
1.6 )( 1O-1 T, Bf = 8 )(  1O-7 T, so R = (� + s;. + �)If2 = 8,76 )(IO-1T. 

" 

" . " 

" 

5307. The electric field exerls a constant force qt:.J in Ihe direclion on mOlion of the 
parlicle. and so pcrfonns lola! wor� qEod on il. This mllSl all go into kinelic 
energy. so thai the particle encounl�rs the magnetic field region with velocity 
tJ given by 
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i.e. II = {2qEod/m)I/!. The magnetic force acts perpendicular to the panicle's 
motion and thus docs no work on it, so that its speed remains constant lind it 
moves in a circle (see e.g. S304). The rAdius R of the circle is fi.\:t'd by the 
condition that the magnetic force qvBo should provide the centripetal force 
mli-IR. Thus qv8 = mli-IR or 

mo (2m� l/l 
R =  qBo '" qIio-) . (I) 

With Do as shown the panicle will move up the page in a semi-cirele. re­
entering the elocuic field region at a point 2R above its entry point. For this 
distance to be d \\'C require 2R = d, i.e. d '" 2{2mEod/q�)lfl. giving 
80 = (8mEr,/qd)tP, 

S308. Using equation (\) of the last solution, we find D = 2R = 2{bIIEodlqifol'fl 
or qlm = 8Eod/(�d), With the data given we find q/m = 9.67 x lit CJkg. 
For an electron the corresponding ratio is -elm, = -1.76 x lOll C/ks. and 
for a proton we get a ratio elm, = 9.58 x lit Clkg. The particle is probably a 
proton, as the deflection 0 is similar to that expected (making due allowance 
for experimental error). Note that the electron deflection would have the 
opposite sign, i.e. be on the opposite side of the initial track. 

5309. Let the particle masses be ml, ml,nlJ_ Their velocities 11" Vj:, VJ on entering the 
magnetic field region are given by energy conservation. i.e. 

so that III = (2qV /mtJI/!, etc. As the magnetic force acts perpendicular to the 
motion it docs no work, so the velocities remain at these values. Each particle 
moves in a circle (sec 5304 and subsequent problems). The radii, etc. of the 
orbits follow from the equations of motion, in which the Lorentz force qUIB. 
etc. must supply the centripetal force mlrli/RJ, so that 

Thus the masses lire in the ratios tnl : m2 : tn) = Rr : Rj : Rj = \ : 4 : 9. 

5310. The particle will begin to move in a circle of radius R = mv/qB (sec previous 
problems). Obviously if R < b the particle will not reach x = b, and the 
condition for this is 11 <  v< = bq8/m. If v is larger than this. the particle 
will reach x = b and continue in a straight line. From the Figure showing 
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• 

, 

-...
.................. .... 

angles, so the loop continues to re\·olve. This is the principle of the DC 
electric motor. 

5314. The fon:e5 acting on the mass are shown in thc Figure. The magnetic Lorentz 
force quB. "'here u is the velocity, acts nonnal to the plane and the mass's 
motion (as the magnetic force always does). Assuming that q is small enough 
that the mass does not leave the plane. the acceleration in the plane is 
unaffected, and is givcn by Newton's second law as 

.. 

F . 
a =

M
= gslll09 . 

If the plane is not smooth the magnetic foro: will change a by changing N 
Hnd thus the frictional force. 

o ELECTROMAGNETIC INDUCTION 

5315. Let x be the distance of the leading side of the loop from the boundary of the 
magnetic field region. Then the magnetic flux through the loop is 

for 0 < x < '2' For x < 0 all of the loop is in the field region, so the flux has 

the constant value <It '" 80/1/2• and for x > II the flu.>; is zero. Hence the flux 
changes only for 0 < x < Il• and induces an emf 
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The resis tance of the triangular loop at any time is R = 3/,. which increases 
with time in exactly the same way a$ [ oc:  I. Hence the current in the triangle is 

BoI" Bo1l 1 = v , = Tr = 6.67 A, 

and is independent of timc. 

S320. With the bob at height x the magnetic nux is <fI '" Bwx, so the induced cmfis 
[ =  -B"'1I, where 11 is the speed. If the bob reaches hcight h. thc kinematic 
formula if = � - 19h sho..,,.s thaI the inilial speed is 1'0 '"' ,/!irI. The largest 
induced emf is thus 

[lOlL' = -Bw,ffiii. 

Beanno! exceed 10-· T, and could be lower irthe slide is nOI oricnted exactly 
perpendicular to the local magnelic field. With the "alues gh'cn for 11', h we 
find 1£"...1 = 1.4 x 10-· V. The voltmeter must be able \0 measure voltages of 
Ihis order of magnitude. (Nole thut the magnetic force is always negligible 
compared with gravity.) 

S321 .  The magnetic nux is <fI .. BS(I} '"' B5,;,(1 -01), 50 the rate of change, and 
thus the induced emf. is [ =  -1l4>/ III = SgBo. The eurrenl direction is 
determined by Lenz's law, The strength of the current is 1ft) "" [/ R. where 
R .. 21r,(I)p. Wilh '(I) _ IS(I)/"lfj'll. we: find 

nB [ " ] '" 1(/) - - ---
- 2p ;r(l -ol) 

. 

S322. A nux <fI = NAB is remollCd in 1 = 10-] 5. so the induced emf is 
[= NABII = 1.2 x 101 V. This produces a current I = [/ R = NABI(Rlj 
and the dissipated power is P = [!/R= (NA8)2/(R1,2) = 1.2 x IOIUW. 
The lotal work done is IV _ PI'" (NAB)11(R1,) = 1.2 x 101 J. 

This shows the very large mechanical power required to remove eonduc­
IOrs rapidly from rlUIgnetic field regions. and the: dangers of rapidly dl'Caying 
fields. 

S323. We have Il<fl = (81 - 8:)A. so the induced emf is [ = 1l4>11 = 
I x O.oJ /0.001 _ 10 V, The current is I = [Ir = 1000 A. the dissipated 
po"'cr is P = £J = 10' W and the tolal heal produced i� Pr = 10 J. Whilt 
this is nOI large. it is extremely localized, and the \'ery high CUrrent 
1 =  1000 A is very dangerous. People working in regions of high magnetic 
field are strongly advised not to wear any conducting loops (e.g. bungl�. 
rings). 

S324, The flux through thc loop was <to => NBA and was reduced to zero in lime /, so 
thc induool emfis [ =  NBA/I. The current is I = [IR = NBA/(RI) and the 
total charge passed was Q = /1 = NBA/ R, so 
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with the data given. 
5325. The induced emf V is given by 

whm: 61 _ 10 A is the change in the CUTrent in limc Ill. Wilh thc data given. 
we find V - 1& >< 10/0.25 - 720 v. 

5326. The reJatiou 

V = LIl1 
" 

shows that L :. V /(6.1 / t::.1). Here L :.  20/50 = 0.4 H. 
53V. Using 

"'c find 

N< 
L =T 

100)( 10-1 L= 2x 10-' H = 0.2mH. 5 
5328. At time I the oorma1 to the loop piane makes an angle {J = wI to the magnetic 

field direction (sec Figure). wbere "'I: have chosen to measure I from the 
instant when the normal is parallel to the field. Thc magnctic nu� through 
the loop is therefore 

4> = NABC()swl. 

The induced emf 1: is minus the rate of change of <II with timc I. To find this 
we consider the small change 6.<1> in 4' which occurs when I incrcllSCS to 
1 +  6.1. Wc ha"c 

4> + Il<f> = NABcosw(1 + 6/) = NAB(coswl cos will - sin loll sinlollll). 

using thc identity costa + h) = cosacos b - sin asinh. Now siuoc III is small. 
we have 

where wL\1 is measured in radians. Then the first term on thc rhs above is just 
of> itself. 50 we find that in lime t::.1. 4> changes by an amount 
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5330. In equilibrium the pressure offluid in the left and right arms must be equal. 
By symmetry the waler columns below Ihe level of the oil arc in balance. so 
we ha'"!: 10 balance the oil column of height h against the remaining water 
column of height (h - d) in the lefl ann (see Figure in the Problem), i.e. 

Poh/{ '" p...(h -d)K, 

where p� = 1000 kg m-J i� the density of water. Thus 
Jr - d , Po '" p.. . -,- '" 0.8p,. = 800 kg m- . 

When the second fluid is added. vel: must balance the oil column ofhcighl h 
against a column of the same height. bm "'hich is half water and half the 
second fluid (:Itt Figure). Thus 

.•. 

153 
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Multiplying each side by 2/h and TeaTrJnging we find 

fl. = 21'0 - P .. = (1600 - lOOO) '" 600 kg m-1. 

533 1 .  The hydrostatic pressure immediately below the large piston is PI/ '" 
PA + (M + M,)g/A/> where PA is the aunospheric pressure. [n equilibrium 
this must equal thc hydrostatic pressure �I II distan� h below thc smllll 
piston. Since �, = PA + mg/A, + {Jogh. selling P" "" P" givcs 

Rearntnging. we find 

(M + M,)g mg h "'-+{Jog . A, A, 

m '" (M + MI)� - PuhA, = 561 )( (lO�/O.S) - 800 )( I )( lO-4 ., 0.032 kg. A, 
5332. Any impurity will alter thc density of the gold in the ring (usually 10"'cr it). 

The balance gives the ring's weight. Filling the volume measure to the brim 
and submerging the ring in it ll5ing the thl"Cld gives the ring volume when it is 
removed. so the density can be found. Archimedes is said to have been led to 
his principle by this type of experiment. (He was asked by the King of 
Syracuse to determine the purity of his crown: when he found it impure, 
the unfortuoate goldsmith was executed.) 

5333. (a) When standing. the woman's weight Ug is distributed over her shoe soles. 
of a,ea roughly 2b1. The pressure is thus p"" Mgl2b1 "" 16.800 N m-2. 

(b) When lying, the weight is distributed o,'er an area "" h .... so the pressure is 
p ""  Mg/h ... "" 820 N m-2• Lying on the lloor is uncomfortable since much 
less of the body is in contact with it than in a bed. w the pressure is much 
higher on those areas. 

The stiletto heds have area A = 2 )(  1O-4m". so the pressure is 
P = Mgl A "" 3 )( 106 N m-2. Even static pressures of this order are sufficient 
to cause damage to floors. 

5334. Thc prcssure gauge meuures /!XU" pressure. i.c. P - PA• whcre PA is atmo· 
spheric pressure. so it reads 6 IItm. (It reads P '" 0 before inllating, when the 
pressure inside thc tire is clCllrly P A!) 

In equilibrium the road exerts a reaction force P = 7 PA per unit area of tire 
in contHct wilh it. This reHction pressure balunces not only the weight per 
unil area or the rider and cycle. bUI also Ihllt of the atmosphere abovc. 
Exactly I PA is used ror the laller purpose. so it is the excess pressure 6P A 
which halaoCC5 the .... "cighl. The tires derorm so that a total area A is iu 
contact with the road. and then 
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Thus A : mg/6PA : 70 )( 9.8/6)( 101 = 1 0 1 )( IO-J m2• I.e. A = I I  cml• 

5335. The cylinders arc held togethcr by the atmospheric pn:ssun: on their cross­
sections. Whcn M is maximal, the rcaction force: between the two cylinders 
vanishes, i.e. they arc about to be pulled alX\rt, Since the cables each have 
tensions T .. Mg, horizontal equilibrium }:f� = 0 requin:s 

A/'A = Mg, 

so M = APA/g = 1.02 )( 10' kg "" 102 lonnes. For any other shape only Ihe 
projected cross'KCtionai orca i. relevllnt (sec S348). In a fllmou. cxperiment 
teams of horses were unable to prise ap.ln a pair of evacuated hemispheres 
("the Magdeburg spheres" ). 

5336. The buoyancy force FI/ on the balloon and payload must balance their 
combined "''eight W. By An:himedes' principle F. = p.V/>8, and W = 
(M .... +m)g "' PbVb8+mg. Thus 

PbVbl +mg= p.V�. 

"' 

Note that this il por.sihle only if P. > Pcti' = 0.2 kgm-1, i.e. the balloon cannot 
be lifted to a height at which the air density is lower than the value Peti. = 
m/ Vb_ (This is effectively the average density of the balloon and pa�load.) 

5337_ By Archimedes' principle, the payload mass M plus the mass of supponing 
gas (H or He) must equal the man of air displaced irthe balloon is to rise, i.c. 

when VI!, VH< are the required volumes of hydrogen and helium, so 

VI!, = P. - P I!  
VH P. - PH.. 

L3 - 0.09 
1.3 2 )( 0,09 1.08. 

The volumes are not very differen\. The main reason for using hydrogen "'as 
the difficulty and expense of producing so much helium, 

5338. Abo"e the surface the ball falls under gravity, so using the kinematic formula 
J = lIi - 2gy with IU = O. we s« that it entcrs the water (y = -h) with 
"clocity v = (2gh)lll. When the ball is under the surface tbe resultant upwurd 
foree acting on it is F = I'wVg - PbVg. where V is its volume and 
Pb = (2/3}p" its density (i.e. buoyancy minus weight). Since its mass is 
m = V Ph its upward acccleration is 
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a ", � ""  (�- I)g=0.5g. In Pb 

Using the k:inematic formula if = � + lay wilh inilial velocity 
1'0 "" _(2gh)l/l, we find that the ball's downward motion i$ brought to a 
halt (to = 0) at a depth 

l� 2g11 J' "" -"ftj" = -1Q = -2lr= -20 m. 

5339. (a) By Archimedes" principle, the buoy displaces its own weight of "'uter 
whether inside or oUlside the yachl. so Ihe water level remains unchanged. 
(b) The anchor displaces ils owo weight of water when inside Ihe boal, but 
less when il sino (il just displaces ils own I"olurn .. of water. which weighs 
less). The walcr level drops. 

53-tO. Let Ihe cube be submerged 10 a deplb .x (see Figure). By Arcbimedcs' prin­
ciple the buoyancy force on the cube is F, "" V,p,.g. where V, is the sub­
merged volume, i.e. V, _ ,lx, and P� is Ihe density ofwalcr. In equilibrium 
fa mUSI balance: Ihe cube's weight W = Vpg with V _ a). Thus from 
F,, "" IV we find 

';xp,.. = �p, 

i.e. x _ (plp�)a _ 0.8 x 0.05 _ 0.04 m. The submerged volume is therefore 
V, ",, ';x = (0.05)2 )( 0.04 = 1O-� ml This is also the volume of Ihc water 
displaced. The new heighl of Ihe water iii 

II,...., "" Vo + V, 
A 

whereas the original heighl was 

v, 
hold ="A' 

Thus h = h."., -hoi<! "" V,lA = 1O-�/\C}-l = 10-1 m. 
When the Mass m is added, Ihe wei&hl W is inCT�sed 10 W/ "" 

W + mg = V pg + mg. The buoyancy foree bc:wmes f8 = V ,,�g as now the 

------- - --
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whole cube is submerged. Requiring F's = w' for equilibrium as befo� . .... 'C 
ft., 

VPJ = Vpg + mg, 

so m = (p� - p) V = {IOOO - 800} )( (0.05)) = 0.025 kg ... 25 g. 

S34I. By Archimedes· principle, the buoyancy force FB on the cube when it is just 
submerged is (sec Figure) F/I = /i.- Vg. where p� is the density of water and 
V = if the volume of the submcr,ed cube. This must balance Ihe weight plus 
the downward force F. i.e. 

p Vg + F = p  .. .vg. 

F 3.43 ) p= p .. - alg = IOOO IO-J)( 9.8 650 kg m- . 

When the cube Doats freely, it is submerged only to a depth h, say, so the 
submerged volume is (lh and by Archimedes· principle Ihe buoyancy force 
becomes FB = fJ.,a2hg. This now bal3nccs just the .... eighl palg of the cube. so 

p";ltg = pifg, 
or h = (1'/1',,)(1 = (650/1000) )( 0 I = 0.065 m. 

'. , 

.[ [ [ 
- - - -- - ---

S342. The cube has lotal mass AI = 3(11".,/4, and will float when it displaces a mass 
At ofwaler. Since c ¢ a. the basi: area of the container is very close to Il, 50 
the water mm\ !'Cach a height It = 3a/4 (see Figure in the problem). The 
minimum volume of water nl'Cded to float the cube is thus 

r 3 2 V :::o 4 )( olt"2 = "2a- c, 

where we hove considered only the water around the four sides of the cube. 
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w� see that V becomes arbitrarily small as we decrease c: the pn.'Ssure at a 
gi\'tI1 depth brio ..... the surfuce of a continuous body of fluid is precisely the 
SlIme no matter ho ..... little of it there is. [n practice Ihe [o ..... er limit on the 
volume ofwaler occurs wben there is so little of it that surface tension breaks 
it up amI il is no longer a conlinuou� fluid. 

5343. By Archimedes' principle the buoyancy foree is given hy the combined 
weight_ of water and oil displaced (see Figure in prohlem), i.e. 

FB :: p.,ihg + p.u?(a - h)x 

The dynamometer reading W 0 gives the force supplied by the spring, which 
must equal tbe difference between the cube's weight Alx and the buoyanc)' 
force FB, i.e. 

Th� 

it'D = Mg - f''s. 

IVn +FB IVD 2 101 = ��- � � + a-[p"h + p�{a - h)) 
g g 

= 0.05 + (O.l)lIlOOO )( 0.02 + SOO II. 0.08] = 0.65 kg. 

Tbe hydrostatic pressure P at the base ofthc cube is gi\'en by the depths or oil 
and water above Ihat [evel, i.e. P = p.,xd + p�gh = [176 N m-1. 

5344. (a) The iceberg's volume is v ... (h + x,)l. so that its mass is M = Pi V = 
p;(h + x,)l. and its w-eight is W = Mg. By Arehimedes' principle Ihis mUSI 
equal the weight of seawater displaced, which is M'g = p, V'g, where 
V' "'" x,(h + :r,)2 is the submerged volume. Equating M and 101' we find 

which gives 

so that 

pith + x,)] = p,x,(h + X,)2 

p,-(h + x,) = p,:x, 

p,h 
x, = ��  

p, - Pi 
and tbus with the data givcn :r, _ 5.625 m. 
(b) In fresh water the icebc:rg displaces a mass PI(h+x,)2xl. which by 
Arehimooes' principle again must equal M _ p,(h + x,)l. Thus XI = 
O.9(2.5 +x,)m. and using x, from Ihe answer to (a) . ..... e find XI '" 7,313m. 
Since the side oflhe iceberg is 2.5 + x� = g.125 m. only 81.25em or one-tenth 
is above the surface. 
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53-15. Thc upward force cxcrted by surface tCn!;ioo (sec Figure) is F, _ 2".,...,0050. 
This must balance thc .... ·cight W "" 1trhpg of thc column of liquid, i.c. 
F, = W. Thus 

(I) 

T 
• 

I 
S346. Using equation (1) of the previous answer ,,·ith () _ 0, surface tension can 

hold a column of sap of height It = 2 X 0.07/(IOl X 9.8 )( 10-') = 1.4 m. As 
trees grow considerably taller than this. capillary actioo canoot be significant. 

S347. Assume that a very thin film of "',lier fills the gap betwcen the cap and the 
tube. Neglceting the mass of the water, the upward surface tension force 
F, = 21fT""'! must balance tbe "·eiP11 mg of the cap plus the reaction R of 
the tube (sec Figure). Now m = 1:rdp. so F, = mg+ R implies 
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"' 

2, R r = - - --. dpg ",rdpg 

Since R is positi\'e, the Illrgest r is given by R = 0, i,e. when the surface 
tension force just balances the weighl of Ihe cap. This gives r .... = 
2;/(dpg) := 2 x 0.07/(2 X 10-) x 700 x 9.8) '" 0.01 m '" 1 em. 

5348. Imagine Ihe spherc cut in half. The 10lal outward pressure force on one 
ho:misphere is gi\'en by Ihe pressure difference PI- p. multiplied by the 
projeClcd area -;r,2 of the hemisphere. because all components of this force 
other than the pcTJlCndicular oUlward one cancel hy symmclry. This outward 
force must be balanced by thc lension in the mo:mbrane, which by definition is 
2",rl. Thus (P1- p.)",r = 271"rl, or 

(I) 

Since the liquid walls have both an inner and an OUler surface. thc total 
tension I is twice the surface tension. i.e. 1 = 2;, and 

(2) 

5349. Consider a lenglh I of Ihe tube, Ihe excess pressure inside Ihe section of lube 
being maintained by inserting bungs in either end. Imagine the tube now cut 
in half along its a�is. The net outward pressure force again involvcs the 
projected area, and is thus 2rf(P1 - p.). The lension force in the walls is 
211 (the bungs e�ert no tension). so equilibrium requires 2rl(P, - p.) = 211 or 

, PI - p. = ; . (I) 

As before, if ",.e consider .rnrface tension ..... e have ' "  2; as Ihere are IWO 
surfaces, so 

(2) 

In both cases we sec that thc tension required 10 eonlain a given pressure 
difference PI - p. varies as the curvature radius r. Along Ihe cylinder \I'e have 
r "" 00. so boiling frankfurters split here Ilrst. This is why boiling frankfurters 
lend 10 split lengthways. 

5350. A short section of the tiTe can be regarded as stmight. $0 Ihe eonsidemlions 
of the previous question apply. With P, _ 7 atm. Po _ I aim. we usc 



UQUIDS AND GASES 161 

equation ( I )  or the previous answer to get I '" (PI - P.lr '" 6P A' = 
6 X 101 x 1.5 X 10-2 = 9000 N m-I .... .;th the data gi\·en. 

5351. When the droplet is on the point of evaporating the surface tcnsion fom: 
just balances the vapor pressure force. As the droplet has only an outer 
surface we use ..quation ( 1 )  of S348 with 1 = 1" to get ' = 2,/(P, - p.l = 
2-1/ p. = 2 x 0.07/2300 = 6.1 x 1O-'m = 6. 1 x 10-2 mm with the data given. 

5352. The pressure P; inside the balloon must obey 

2, p; - p. = - . , 
Initially PI '" PI,p.= 8P,/9 and T'" 'I' so 

PI 2/ "9 = ;;- '  

(') 

AJ p. is reduced r increases. Its largest possible radius '2 is given by sening 
p. = 0 in (I). The pressure inside the balloon changes to P2 because of 
�pan,ion. so 

Dividing these two equations sho .... , that 

PI 9'2 � = �. 
But since the temperature is hed. pfJ = constant (perfect gas law), i.e. 

Comparing these two equations we see that '1 = 3'1' 

(') 

(2) 

5353. The tension in the membrene must balance the pressure excess of the air sac, 
so from equation ( 1 )  of S348 we can write 

In breathing OUI. both , and P A - P, de<:rease (the laller because P, increases 
and PA is fixed). Equilibrium cannot be maintained unlcss l decreases. These 
changes are reversed in inhaling. so I increases. (If equilibrium failed in either 
state. the air sacs would either collapse or rupture.) The adjustment in I is 
provided by a protein - surfactam - which is vcry elastic. Asthma is a5S� 
clated with a failure of this mechanism \0 worlr.: properly. 
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5354. One might expe-ct air to How along the pipe to equalize the size of the two 
balloons. BUI amazingly. this is wrong: if the two balloons have spherical 
radii '1, '2 and interior air pressures Pa, Po. we must have 

2" 
P" - Po = -" (I) 

(2) 

(cr. eqn (I) of S348). here p. is the pressure in the endosurc and II. 11 the 
surface tensions of the balloon material at radii '1. '2' These can be assumed 
constant (II = 11 = I) provided that each balloon is larger than the minimum 
ntdius 'min' Thus if'l > '2 wc must have Pjl < P/l, i.c. thc �mallcr balloon 
has a larger interior pressure (remember Ihat it is hardest to blow up a 
balloon at the beginning. and Ihis gets easier as the b31100n expands!). 
Thus once the valve is opened. air will rush from the smaller balloon (making 
it smaller still) to the larger one (expanding it funher). The air pressure inside 
the two connected balloons will cquali7.c at some value PI with 
P" < Pj < P/l- Equations (I, 2) thcn require 12/11 = rll'l < 1 .  i.e. the smaller 
balloon must contract below 'min and make 12 < II '" I. 

Note that even if we h3d started with two balloons "'ith equal interior 
pressures Pi!. Prh a small pcnurbation making one of the pressures (say 
PIl) even slightly larger than the other would have startcd this process off. 
and again we would have ended wilh one larger balloon (large rtl and one 
small balloon with '2 < '""". 

5355. Bernoulli's theorem slates that the quantity 

P I 
-+-.r +gh 
p 2 

is col1lltant along a streamline in II Ruid, where P, fl, v are the Huid pressure, 
density and "docity and h the height of the point considered. Thus consider­
ing a streamline from the water surface (where v is effectively zero. P ",  PI 
and h = Jl) to the hole in Ihe container (where the pressure is atmospheric, 
i.e. P = PA)' we have 

PI PA I J - + gll = - + - +gh. 
p p 2 

Thus the jct velocity v is given by 

J PI - PA 
_ 2g(lI _ h) + 2  __ . , (I) 
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reduce its cross-sectional area a at s.ome point. and hence reduce the flow 
rale. Siphons work weU only if Ihe pipe has no leaks and aU of Ihe air is 
(;arefully remo"ed (e.g. here by filling the pipe from the lo .... er end using a 
hosepipe before submerging the upper end in the pool). 

S359. The .... 'lIter velocity follows from mass conservation: in one second the mass of 
water flowing with velocity v past a point where the pipe cross-section is A is 
Q = pvA = pr, where p is Ihe water density. This must be constant in steady 
flo,,'. Since p is (;onstant (waler is incompressible). this requires r = vA = 
constant. Convening the water ratc r to MKS units. r = 6 rnl min-I = 
0.1 mls -I

. Funher, the values of A at the two ends of the pipe are AI = 
1fd1l4 = 0.031 ml ncar the pump, and Al = xdi/4 = 0.126 m1 :It the other 
end. Thus VI = riAl = 3.2 m 5-1. Ilnd water leaves the pipe at velocity 
":I = rIAl = 0.8 m s-l. 

S360. The pressure PI ncar the pump follows on using Bernoulli's theorem: 

PI I 2 PI 1 . .2 -+-01 =-+-":1 +gh. p 2 p 2 
Since the upper end of the pipe is open to the atmosphere, Pl = P A' so 

With the data given. the results of the previous problem. and p = 
103 kgm-l• we find PI = � x 1000 (0.8! -3.2l) + 1000 x 9.8 x 20 + 101 = 
2.91 x Hi Nm-2. 

S36I. Considering a streamline from the water surface down to the hole. Bernoulli's 
Iheorem gives 

FA FA I , -+O+gh ==-+-or+ O, , , 2 
where v is the (hori7.ontal) velocity of the jet at the hole; Ihis uses the facts 
that the pressure at both places is close 10 atmospheric. and the water 
"elocity at the surface is "ery small because the container is wide. Thus 
v = (2gh)If.l. 

Thejel is initially horizontal. but falls venically from rest under gravity. so 
we can trcat it like a projectile. Using x = !\:II + al2/2 with "0 = 0, a = -g, 
Ihe lime to fall a distance x = -(H - h) to the ground is 

1 
= 
[2(fl

g
-h)] II:

. 

During this time the jet travels a horizontal distance 
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s = t'l = 2!h(H - h»)I/I. 
Thus the jet has the biggest range (:::: If) when it is about halfwpy down the 
filled pan of the eont3iner (h :::: 11/2). Very short ranges resull from holes 
near Ihe water surface (h _ 0: little pressure head to drive the jet) and near 
the base of the containCT (II _ If: jet emerges tOO close to the ground). 

5362. From Bernoulli's theorem ""e have 

(I) 

where P',,j are the pressure and v:locity in the narrow section. Mass oon­
servation, i.e. 

p.,Au = I',.A''; 
gives ,; ., !1(A/ A') = 4v, 50 substituting this into (I) and rearranging we get 

16J _ J = 2(P - P') 
P-

or .J = (2/15)I(P - P')/I'�). BUI hydrostatic equilibrium of the mercury 
requires 

p - p' "" PH�gh, 

� (.3.. PH, h) III = (2 )( 13,600 )( 9.8 x 2.5 )( 10-2) III = 0 _1 
\I I S p. g I S x lOOO .67ms . 

5363, let the window and doorwpy have effective open cross-sectional preps 
A,., A". If A� < A., e.g. the door h only slightly ajar, pny air draft entering 
the window must produce un air current with higher velocity on the open 
(outer) side of the door Ihan the other side (sec Figure). Hence by Bernoulli's 
theorem Ihere is an excess p1l.'SSur� on the inside and the door slams. The 
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door will not slam if opened sufficiently wide as the pressure torque on the 
door is smaller than the frictional torque at tile hinges. 

5364. The upward force (Iifl) arises because Ihe air must flow more s"iftly over the 
airfoil than below it. lowering the air pressure there. The height difference 
between the top and bottom paths is negligible, so Bernoulli's theorem gives 

PI J Pl m1v1 
--P+ 2 = --P+ -'- ' 

where PI, P2 are the air pressures on the lower and upper surfaces. (Air is 
dTectively incompressible if II is subsonic.) The speed above the airfoil is mv 
as the lIow is steady. The pTl:ssure difference acting vertically upwards is thus 

m2 _ 1  , PI - 1'1 = -,- ,,"" . 

The airplane will take off once the total lift fora: FL = A{PI - Pl) exceeds ilS 
weight Mg. Hence the minimum takeoff speed i1 given by 

IA{m1 - l)p1? = Mg, 

.; 2Mg 
" {mZ I)Ap' 

(I) 

With the data given. "l: find v = (2 x 500 x 9.8/(0.21 x 30)11/2 = 
39.4 m S-I .. 142 km/h. At high-altitude airports, p is significantly smaller, 
and by (I) we sec thul the tukcoff specd has to rise as p-lfl. 

The application of Bernoulli's theorem to airplane wings is subtle, as can 
be seen by considering the fact that airplanes can fly upside-down! The angle 
of the airplane 10 the horizoma! (the ansll' of ullack) is important in under­
standing this, as it determines the effective streamline ratio m. 

5365. From equation (I) of the prcl'ious answer we lIave 

2Mg 
p - (m2 I)Alfl ' 

Selling v = 11.,... gives the lowest deruity !'mi., which gives enough lift 
to support the airplane's weight. With the dala given we get Poilil -
2 x 500 >< 9.8/(0.21 x 30 x 702) = 0.32 kg m-t. Using Ihe formula for pI:) 
gives a maximum height z",.. = -1I1olhop""". Thus = ... , = 23.000 x 0.50 = 

11.500 m - I LS  km. 
5366. The main problem for early airplanes was the Jack or sufficiently po ... -erful 

engines to produce high takwff speeds v. From equation (I) of S364 we st'C 
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Ihal v is reduced by making A large. This could have been aChievcd by 
increasing the wingspan. but it was difficult to produce a strong wing of 
greal length. The easiest way of increasing A wali 10 stack shorter wings 
abo\'c each olher, i.e. biplanes (or triplanes). 

S367. As in P364 lhc lift force is FL 0< AJ, where A is Ille wing area. At lakeofflhis 
just eqUllls the weight Mg, when: M is the bird's mass. Clearly A scales as fl. 
while 111 scales as /], since the average densities of Ihe species are the same. 
Thus FL 0< A,? 0< fif, wllilc Mg<x fl. Therefore FL '" Mg requires v 0( t'll. 
Larger birds have higher takeoff speeds. and often have to run to achieve the 
nccc:ssary lift (e.g. flamingoes). 

S368. This calculalion here is essentially the same as in 5364. The condition to lift 
the boat from Ihe water is {ef. equation (I) 0(5364] 

u1 = , 2Mg . 
( ltr I )AM' .. 

The �at difference here in COmplT1SOn ",Ih PJ64 is Ihat p,.. is 1000 times 
larger than p for air. Thus even ... ith u smaller than an airplane's takeoff 
speed, A. can be made much srnal1�T lhan A, i.e. hydrofoils are much smaller 
than airplane wings. 

5369. Applied to the sail. Bernoulli's theorem gives 

� + !,; - p  .. 
p. 2 - P. ' 

where P, is the pressure on the convex side of the !>ail, p .. is atmospheric 
pressure, and '1'" ". is tht air sp«<! along the convex side of the sail. This 
produces a force F = (P .. - P,JA '" AP.w2/2 acting towards the convcx 
side (the air speed on the concave side is negligible), and so a force 
F, = FsinO '" (AP.".2/2) sinO in the direction of tile yachi"s motion. 

If the wind comes from behind the boat, the sails are best deployed p:r· 
pendicular to the wind velocity (sec Figure). Since the yacht usually moves 
more slowly than thc wind, essentill1y all of Ihe "'ind's momcntum is lost to 
the boat. Per unit �rea of thl: sails, the wind momentum is P."', and this 
arrives (and is lost) at "elocity ,,'. Hence the total wind momentum trans­
ferred to the boat per unit time is '" AP.I1.2. By Newlon's second law, this is 
the tO lal foree on the boat. The component Fl of this in the forward direction 
is JUSt given by multiplying by cos�, giving Fl '"" Ap'..2 cos ¢. For 
8 = t!> _ 45·. we have sinO .. cos¢= 1/.fi �nd 
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5371. By Archimedes' principle. the weight of the boal is equal to that of the wdter 
displaced. i.e. Mg <::: Aj/p. Also the sail area is A = /1/2. Substituting for 
AI> A into (1. 2) of the previous !-Olution shows that for any angJes B. ¢ 

(I' Po) 'I' IIhll;CX M w. 

Since p�, w are fixed. high sailing speeds an: achieved by making /J I /If as 
large as possible. Long slender yachts are much faster than shon stubby ones. 

5372. The dr-Jg fo� resisting the sideways motion is <::: A,P;. when: s is the 
sideways velocity component. Equating this to the sideways forces 
F, COS8,F2 sin ¢ (ef. 5369) shows that s will be as small as possible if 
A,p >- Apa. To give high forward speed, equutions (I, 2) of 5370 show 
that APa should be as large as possible in comparison with A/p. These two 
requirements are only compatible if A, ::' Aj. "Ilain we see Ihal an efficient 
yacht should be slender. A, is made large in practice by making the kcel deep, 
as this also gives stability against the tendency of the ""ind pressun: on the 
!lails to push the boal over. 

S373. The maximum speed " is fixed by the rcquircmcnt that thc inward frictional 
force l,N should supply the centripetal force ""; Ir, wh�'Te N is the nonnal 
reaction of the truck on the car. If there is no "'ing on the car, N .. mg, and 
we find 

tl(no wins) = I"g. 
If the wing is prescnt we have an cxtra downforoc given by Bernoulli's 
thoorem: 

with P A = atmospheric pressure and P the pressure below thc wing. Thus 
N _ mg+ A{P" - P) '" mg +!Ap!l. With again mtll' = /IN we get 

mlr /,ApI2 ' tl(wing) 
jJmg 

( I)  

which o f  course reduces to the previous formula if the downforce is absc:nt 
(formally if A = 0). With the data given we find v(no wing) _ SO km{h. 
v(wing) = 112 kmfh. Although this is small. it is a significant advantage. so 
the silc and pitch of wings is miclly regulated in motor spon. 

S374. Tight comers have small r, while gentle ones have large r. From equation (I) 
of the last ans"·er we see thai on gentle corners the '·",inS·· term w1pI2 is 
mon: nearly eompanlble to the other tenn miT in the denominator, and thus 
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has a greater effe.:!. Wings give less advanlage on tight corners because the 
lower $peeds make the Bernoulli effect less important. 

5375. Using the ideal gas la'" in the form 

PIVt P:V: 
�

=
T;""" 

with V� = 2 VI, P: = 2PI• "'e get Tl .. 4TI for the rdation of absolute tem­
pentium>. With TI = 'I + 273 = 289 K we find T: = 1156 K. or ': = 883"C. 

5376. The ideal gas law can be e:o:prcssed as 

R P = -pT, 
,. 

where (R/JJ)T is constant lit a fixed tcm!)("ruture (JJ. the ml!lln molecular 
weight. is fixed by the gas composition). Thus Pip = constant, or PV /m = 
constant in our case. Hence. writiog V" for I liter. 

pv = p"v" 
ml m: 

p = ml V" p = 0.&5& ..!.. x 1(}'I =4.77 x I06 N -: 
ml V " 0.0015 12 m . 

53n. If the hydrogen pressure is PH ,,·c have 
mg PA + S = PH, 

where S is the cros.�-sectional area of the container. i.e. S = VII/h. Thus 
mgh PA = p/( - --. V" 

We can find the h)'drogen pressure from the equation of state: under the 
Slated conditiOIl!l hydrogen behaves as an ideal gas. so 

RT PH = /lit - ,  V" 

where R is the gas constant. II/( the number of moles of molecular hydrogen 
in mil = 0.11 g and T the temperature. Hence 

I P,, = (/I/fRT- mg"l V/f 
Now /11/ = 0.17/2 = 0.0&5 as the molar mass of mole.:ular hydrogen is 2 g. 
Tbus 

PA = (0.085 x 8.31 x 300 - 21 x 9.& x 0.4) 1400 � 10-6 ""  9.26 x ]0' N m-l• 
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5381, At the base of the cylinder t�.e pressure given by the trapped air and the 
column y of men;:ury must equal that in the mercury hath al depth H. i.e. 

( ') 
Also. the trapped air obeys Boyle's law (ideal gas law at constant tempera­
ture). so 

P�V= PIVI 
where V � "?h (the original air volume). and VI = r.?(h - yl, i.c. 

P,(h -yJ - PAh. (2) 
Eliminating PI between (I) and (2) gives 

P,' -,- + Pil,gy = p .. + PII,gIl. -y 
Mulliplying through by {h -yl this gives a quadratic cqualion for y. which 
aner simplillcation becomes 

y - (£� +h + II)Y+ IIh = 0, 

or with thc data given 

1-2.24y + 0.5 = 0, 
with thc solutions y = 0.25, 2.0. Only the Il�t ii physical (Ihe olher has 
y >  h). so y = 0.25m. PI foUov.ll easily from (2) as 

PI = P .. h/(h -yl = 2P .. = 1.97 x 10$ N m-2. 

The density p foUo,,·s from An;:himedes' principle: the buoyancy force 
FtJ = VdPiI,g must equal the .. \'eight IV = V,pg. where I'd is the displaced 
Huid \'oJume .. (\'olume of solid cylinder + trapped air) .. r.K II _ ",ly. 
and V, is Ihe solid cylinder volume - "KH - r.?h. Sening FtJ '" IV gives 

I'd R211_ry 1 -0.25(y/lI) 
p = PIli V, = Pil, Rill TJh PlI' 1 0.25 x 0.5 · 

Using the result of the previoul part, this implies p = 13,600 x (0_94/0.S8) = 
14.600 kg m-l. 

5382. Aner the faucct is opened the total number of moles is the samc as beforc, i.e. 
n,ot '" n + 2n = 3n. The total volume is 3V so Ihe sas density is 3n/3 V = n/V 
mOb/unit volume. By the ideal gas law the pn:SSUfC is 

" P = "jiRT ( .) 

,,·here R is the gas connant alX! T the absolute temper-JllIre. This must also 
be the pressure in each of the con tainers. so applying lhe ideal gas law 10 
them in lum gives 
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v'T = (I + ""rT.6.I)VT = I.0004Vr. 

Substituting Vi; = 0.97VT into the first C\juation, we find 1'(; = 
1.036 X 0.97VT '" 1.0Q49VT. Thus v:. > v;. at 40°C. The fuel will overflow. 
Note that thi, result is independent of the volumes VT, V G of lhe tank and 
gasoline, and depends only on their rrlari,'" si7.C. 

S38S. (a) Each side of the plate increases by :I factor (I  + o.6.T), when: ll.T is the 
temperature increase. Since 0.6. T ¢ I, the area increases by a factor 
(]  + 0.6. T)l ::::. I + 20.6.T. Thus tbe coefficient P of surface expilnsion is 
approAimalcly twice the linear coefficient (8 :::. 20 = 8 x 10-' ·C-I). The 
increase in surface area S = 100 eml is therefore 

.6.S <= PSll.T = 8 x to-� x 100 x 100 = 0.08 err/. 

(b) From Ihe definition, Ihe amount of heat absorbed is Q '" Cmll. T. where 
m "" 100 g is Ihe mass. Thus 

Q = 0 .386 x l OO x  J OO J = 3860 J 
S386. Consider a cube of the solid. Iflhere is a small lemper.l1urc rise ll.T, its sidc-s 

increase from a 10 a(\ + all.T), so its volame increases from V = a' 10 
V + .6. V  = if(1 + a.6.T)l. Since nll.T ¢ I, Ihe rhs is approx.imately 
al(1 + 3oll.T). BUI by definition this is V(I +1'll.T) '" al(1 + ""rll.T). so we 
must have ""r = 3". 

S387. By Archimedes' principle Ihe sioel cube displacrs ils own mass of mercury, so 
il floats 10 a depth d given by nr = tipd. i.e. 

d = !!!.. 
.', 

(I)  

where p is the densil)' of mercury. Before heating, /l has the value 110. and after 
heating this becomes /l = /lo(] + <>, T), where T i� the temperature rise. 
Simultaneously the density of mercury decreases from P!J to PI/( I + 1' .. T)- L 
becuuse the same mass ofmctcury oocupics a larger volume. The equilibrium 
condition (I) becomn 

d = ..!!;!- I +1',.T ", II"  I + 1'  .. T 
/lOPI/(1 + o,Tji ] + 20,T 

where II" was the original depth. since �,T ¢ I. Wilh the data given we find 

d "" 10 1 + 1.8 x IO-"'T 

1 + 2.4x to-JT' 
which is > II" Hnd increases with T. The level of the mercury balh rises 
because of the e�""ntion of mercury, and Ihe cube floals slightly mnre dceply 
Ihun before. 
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mrunmals have to maintain constant body troJperature, so it is preferable to 
lIave large I in polar regions. 

5394. Conservation of lIeat �nergy impJie:. tllat tile lIeat lost by tile metal block i� 
gained by thc calorimeler and the water �ithin it. i.e. 

m.,C.,(I,. - I) = m,C .. (! - I,) +mO'Cw(I - I,), 

where I", _ lOO·C is the metal temperature berole immersion in Ihc calori­
meter. and CO' = 4200J kg-I'C-I is the specific heat of walcr. Thus 

IOC .. (IOO - 51) = 0.25C.,(SI - 10) + 5)( 4200(51 - 10). 

479.7SC .. _ 8.61 )( 10'. 

m that C .. = 1795 J kg-1 oC-I. This is about 0.43 of the spedfic heat ofwatcr. 

S395. If the temperature rise is ill ·C, the block's heat energy increases by 
Q = CM t:.1. This is all supplicd by thc kinetic energy mJ /2 of tile bullet. 
50 conservation of energy gives ill = mJ /2MC "" O.16°C 

S396. Since Ihe calorimeter is insulated, no heat energy is 10SI, and the heat gained 
by the calorimeter and contenl5 must balance that losl by the hot water, i.e. 

(m,Ct>< +"'1 C .. )(IJ - II) + mlC .. (/J - 'l) = 0 

Here C.- is the specific he'dt of water. which is I kcal kg-I 'C-I by the defini­
tion of the kilocalorie. With the datil given we find 

(o.mc .. + 0.(6)(45 - 24) + 0.<19(45 - 63) = 0, 

giving Ct>< = 0.137 keal kg-I ·C-I. 

S397. With C" the specific heat of water. conscn'ation of heat energy gives 

(mt +ml)C •. 1 = mle",'1 +mlC"ll, 

since no heat is C};changed with the surroundings. Thus 

l = ml'l +m1'1 
m] +m1 

1 )( 7 + 2 )( 37 
3 

27°C 

The total internal energy change t:.U is zero since both W (the work done) 
and t:.Q '" ilQl + t:.Ql (the total heat absorbed) are lero. However. there is 
a nonzero entropy change ilS = ilSI + t:..S1 (entropy of mi�ing). since the 
hcat transfers t:.Ql.ilQ2 = -t:.Q

I 
arc not perfonned at the same tempera­

tures. Thus using Ihe second law of thennodynamics. TilS
I 

= m,C •. t:..T, 
etc .. where T is lhe absolme lemperalure. leads to t:..S, = m,C,.ln(T /T,). 
etc. and hence 
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S-104. The air in Ihe lire expands and �ools adiabatically as it rushes OUI of the 
valve. Equation (1) of the previous problem gives a quantitative estimate; 
with P1 = PI/6,.., = 1.4 (appropriate for air), and TI = 290 K, we find 
Tl = 174 K, or _99°C! Of course there is very little cool air. so the icc 
soon disappears. A similar circe! causes the liny cloud of water vapor seen 
on opening coke or champagne bottles. 

$-405. On Ihe windward side the air rises; here the pressure is lower. so the moisture­
laden air has expanded. The expansion is too rapid for much heat to be lost 
or gained. so il is effectively adiabatic, and the air cools, causing the water 
vapor to condense and fall as rain or snow. On the othcr side. the air falls and 
is adiabatically compressed. so its temperature rises. This gi\'eS a wann dry 
wind. Another example is th� Fahn north of the Alps. 

S406. The derivation of equation (I) is still valid, so 

PI 9r! 

p; "" -';- '  (1) 

but equation (2) is no longer valid, as the gas now expands adiabatically not 
isothermally. We replace (2) using the adiahatic relation pyr = constant. 
Since "/ = 5/3 for a monatomic gas and V ex  ,.J, this requires W .. constant, 
so (2) is replaced by 

PI r1 
7';

=
'1 '  

(2') 

Eliminating Pl/Pl belween 0) and (2') now gi\'es f1 = v'Jfl as opposed to 
rl = 3rl in the isothermal case. The greater expansion in that case results 
from the fact that energy is being fed into the JlIlS there to keep its tempera­
lUre constant. This meant tllat more ";ork could be done expanding the 
�lloon against the tension io Ihe walls. 

S407. The change takes place at constant pressure, for which the specific heat is 
Cp = Cv + R (the ntra term R comes from the work done again�t the 
pressure). Then 

Using the id�-al gas low, we can replace nRT!, nRTI by POV2, Po VI respec­
tively. so 

(C, ) (0.' ) '
( ) . tJ.Q= 1f + 1  PO(Vl - Vi l "  m + l  10 0.5 - 1  = -5.36 x lO 1. 

The negative sign shows that heat energy has been lost from the gas. 
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5-408. From the ideal gas law we have PVI .,. nRTJ, PV2 .,. nRTI. with n "" 2. Thus 
TI = PVI/2R. T2 = PVl/2R. and we find TI = 274.3 K. T2 = 640.2 K. 
Using the first law of thermodynamics we ha"e 

where t.U = V1 - VI is the increase in internal energy. and l!. W "",  
P(V: - VI). the work done by the gas in the expanslon. Sinc"e 
U = (3/2}nRT '" 3RT for an ideul monatomic gas. and P V ,",  
nRT = 2RT . ." .. e have 

Q = 3R(T2 - TI) + 2R(T: - Td = 5R(T2 - Td 

= 5 x 8.31(640.2 - 274.3} = 1.52 x 10' 1. 
The entropy change of an idcal monatomic gas is 

!J.S = �IIRln T1 
+ nRln VI 

2 TI VI 
so that hen: tJ.S _ 3 x 8.31In(640.2/274.3} + 2 x 8.31 In(O.07/0.0J} _  
35.2 1 K-1• 

5409. Heat flo"'"5 from body 2 to I as Tl > TI. The heat absorbed by body I must 
be exactly that lost by body 2. i.c. 

0 =  ll.QI + tJ.Ql '" mCItJ.TI + mC2tJ.T2 
where !J.TI = T - TI, !J.T: = T - T: "" T - 2TI• With C1 = I.sCI, we get 

0 =  mCI(T - TI} + !.5mCt(T - 2Td 
i.e. T = 1.6TI. 

The entropy ehanges an: 

T T aSl = mC1111r; = 1.5mCt !n2Tt . 
Sub�tiluling T= 1.6TI• we gct tJ.S] = mCtIn 1.6 = 0.47I11CJ, tJ.S, = 
I.5I11C, ln(1.6/2} = -0.3]5I11C,. Clcarly tJ.S = tJ.SI + !J.S1 > O. as required 
by the !.CCOnd law of thcrmodynamics. Note that this occurs bcc-<lUIoC in tbe 
expression tJ.S = tJ.Q/T it is the body with the smaller value of T which has l!.Q > 0, i.e. heal flows from Ihe hotter body 10 the cooler body. 

5410. The inilial volume VI is gi"cn by using tbe ideal gas la'" PI V, ,, "RTI 
(II '" number of moles, R = gas constant). For O2 the molar mass is mJol - 32 g. so the number of moles here is m/mJol = 160/32 = 5. 

" , 
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nRT) ! J Vl _ � _ 5 x 8.Jl x JOO/10 .. 0.115 m .  

In an adiabatic process we have PI Vi = P�Vi, or using Ihe ideal gas I�\\". 
Tl vtl =: Tl vtl , where "I = 7/5 for a diatomic gas. Thus 

T! = (�:) -r-
I T

I 
= (0.125/0.024)1/1 x JOO = 580 K. 

As Ihe process is adiabatic, Illere is no entropy change. i.e. flS = O. Then 
using Ihe second law of Ihcrmodynamics we have flU "" -flW, i.e. all of the 
work done in compressing Ihe gas goes into raising the internal energy of the 
mygen. For a diatomic gas we ha"c U = (5/2)nRT. so 

5 flU = inRIlT = 2.5 x 5 x 8.31(580 - JOO) = 2.91 x I(t J. 

This iii also the work done in the compression. 

541 1 .  Since Ihe process is isolhermal. T docs nOI change. so 

6T=0. 

I n  an idcal gas al filled tcmperature, we have PV = constant. so PV = PoVo, 
or P = Po(Vo/ V) = Po/2 (since V = 2 Vol. Thus 

' p - -� '"" - 2 ' 

The inlernal cnergy of a fi�cd mass of an ideal gas depends only on the 
lemperature IU = (J/2)nRT. "'ilh /I the num\)c,r of moles and R the gas 

eonm.nt]. Thus U does not change. i.e. 

flU = O. 

Using the first law of thcrmodynamic.\, we have 6U = Q - tJ.1V, where 
Q is the heat absorbed by Ihe system and IlIV the work done by it. Here 
I:::.U = O. so Q .. I:::. II' and we ha"c Q = TtJ.S (quasislatic process). Thus 
I:::.S= flW!T. Now we usc tJ.1V= nRTln(VIVo) as given. In our case 
VIVo =2. so 

f:J.S = nR In 2 = 0.69JnR. 

" , 



186 SOlUTIONS - CHAPTEIl). MATTEIl AND WAVES 

U =  
3kT 

2/ullt/' 
At con§tant \'olumc the first law of thcnnodynamics implies 6Q = 6U, so 
the specific heat per unit ma§s at oonstant volume is 

CI' = .o.Q = .o. u = � 
llT llT 21""11 -

The energy required to heat the same mass of helium and argon through the 
same temperature is im-crscly proportional to the mean molecular ma§s J'. 
ThU$ the heat required for the argon sample is I x 4/40 = 0. 1 kl. Physically 
this lower value results from the fact that an argon atom is more ma§sive 
than a helium atom, and so there are fev .. er argon atoms in the same ma§s, 

5inct" each atom has the same energy 3kT /2 at a given temperature, Ic§s heat 
is required to raise the temperature of the argon sample. 

5419. As the piston moves inwards. molecules bining it rebound with greater 
Idnetic energies. If the piston moves in at speed II, it sees caeh molecule 
elastically renected al speeds II, + 1/, so they have ..-.vtlocities II, + 21/ in the 
laboratory reference frame. Collisions between molecules share this elItra 
energy and raise the nns speed II and thus the temperature. If the compression 
is adiabatic. this bappens before any of this extra energy is los! to the sur· 
roundings. In summary. the piston does work against the gas pressure. and 
this heau the gas. The pressure is rai� becau"" Ihe momentum transfer 
between the piston and the gas molecules is increased. 

5420. The gas molecules at the ba51: have on avemge gained kinetic energy mgh 
compared with tho51: at the top (which have higher potentia! energy). This 
raises the pressure at the base by Nmgh = pgh, where N is the number of 
molecules per unit volume, i.e, by precisdy the amount required to bear the 
total weight of the gas. Hence the full weight of the gas registers on the scale. 
The same argument shows that the pressure at every heighl in the gas is 
exactl� th�t required to support the weight of the gas abo'-e that height. 

S42J. Equation (I) of 5415 shows that tI = (3kT /lUtlH)II:, so the escape tempern· 

lure T is given by setting this equal to '(1 ... , i.e. 

T "" j.II1JNL-:" 
3k . 

Thm ligh!cr compounds escape at lower temperatures. With the data given. 
we find tI = 27.8T1/1 m S-I for oxygen. For this 10 reach t·..., requires 
T = 1.6 x IO

! 
K. Similarly for nitrogen we find T = 1.4 x to! K. and for 

hydrogen T "" I x 10' K. This difference is important in explaining why the 
Earth has lost most of the hydrogen in its original atmosphere. but retains the 
oxygen and nitrogen. 
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5428. The focul length of a convex mirror is I = -R12 = -0.5 m. The formula 
III - IJi = I II gilles the image distance f as 

I ! I 8 
- : - + - = -l I.S 0.5 3 

so that f = 0.315 m (i.e. the image is behind the mirror). The magnification is 
m = / I� = 0.315/1.5 = 0.25, so the image is virtual. upright, and smaller. Sec 
Figure for the ray diagrdm. 

5429. The mirror has focal lengthl = -R12 = I m. so using l/� - Ij.' = I/! with 
f = -2s (I < 0) (since Iml = Is' /sl = 2) gil·cs 

Thus :r = 1.5 m, I = -25 = -3 m. Sincc m = /1$ < O. the image is real and 
im·erle<;!. See Figu,," for the ray diagram. 

5430. Sincc R < 0, we have f > 0 and!"'" R/2. Using the mirror Formula with the 
data given implies 
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(d) R! = I m, R2= -1.3m, so 

i.eJ = 8.67 m (com'erging lens). 

(c) RI = 00, R2 = 1.3 m. We fmd/ '" 2.6 m (converging len�). 

5433. (a) Using lis + 1/1 - II/ with/ = 10 em ands = Scm, we get r '"' -IOcm. 
The image is on the !.arne side of the lens (behind the insect) and is vinual. Its 
size h' follows from m = -i 1.< = 2, i.c. II = 2h. II is twice lhe �izc and 
upright. 

(b) With / = 10 em and s = 1 5  em, the lens formula now gi"e$ J = 30 cm. 
The image is on the far side of lhe lens from lhe inse<:t and is real. From 
'" '" -II� '" -2, we have h' = -211. i.c. the image is twice the sizc and 
invened. NOle thai the image suddenly shifts when the object reaches the 
focal point. See Figures I and 2 for the ray diagrams for cases (a) and (b) 
rcspccti,·ciy. 

5434. We first find the image ,rented by tbe lens. Using II! + 1/1- III with 
/ '" O.S m and j = I m, we find J = I m. This first image is real and invened. 
II forms the object for the mirror, and ereates a second image a di�tance I m 
behind the mirror. This image is virtual. and Tl'mains inverted (sec Figure: 1). 
This second image il:;elf aelS as an objecl for lhe lens. at a dista�.1 = 3 m. 
The lens formula gives I = 0.6 m for Ihe resulting image. This third image is 
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-

t"" ",-. •  
• •  • • 

Fig I • 

" , 

tllu5 on the same 5ide of the len5 as tile object. reul. and upright (see Figure 
2). In summary: 

Fir&! image: real. inverted. I m on the opposite side of the lens from 
the object. 
Second image: virtual. inverted. I m behind the mirror. 
Third image: real. upright. 0.6 m from the lens on the side of the 
object. 

S·US. Using the thin lens fomula with object distance j = "  - x, I = X givcs 
I I I 

h - x  +;; =j' 
Substituting, we obtain a quadratic equation for x (expressed in ern): 

XZ - SOx+400 _0. 
This has the t .... ·o solutions XI '"" 4{) ern. Xz = 10 em. Both of these positions 
produce a sharp image: exchanging XI and Xl simply exchanges s and I, 
which must be possible. since they appear symmetrically in the lens fomula. 
The case X = Xl has j = 10 em, , = 40 and has magnification 4. while the 
opposite case x = Xl has s = 4{) em, , = 10 und magnifico.!t;on 0.25. 



UGHTANO WAVES 291 

5436. From the definitions. p = J -f,p' = / -/' so 

pp' = ,1- (s+IV + f". 
But multiplying through the thin lens fonnula by slf sbows that sf = 
(5 + lV. Hence the first two tenns above cancel, and pp' .. f2. This fonn 
of the thin lens fonnula was giwn by Newton. 

5437. We use the fact that the focul length is the image position for an objoct at 
infinity (putting J = 00 in the lens formula implies i = fl. Thus for the first 
lens the image is at il = fl' This forms the object for the second lens, with 
position S2 = -il (�ign conventions ensure that tbis expression bolds in all 
cases). Hence 52 = -fl' so using 

we find 

I I I 
- + - = -
52 

II h 

I I I 
- = - + - .  I:: fl Ii 

BUI !j is the image position for an obj�'Ct at infinity for the combined lens, Le. 
its focal length/. Thus 

I I I 
j =Tt +J;' 

S438. The power is llf, where f is the focal length. and is measured in diopters 
(meters-I ) if f is in meters. By the pre,-ious ans"·er. the powers of lenses 
placed in contact simply add, so the combined lens has power P = 
PI + Pl '" 2.5 diopter�. 

5439. Using the lcnsmaker"s formula 

we get 

and so 

I ( I  I )  
p=j' ,, (n - lj R;" + R; 

2("A - I) 1', 
= _ (,,� - I)  

PA = --R-- ' R ' 

P =  PA + 1'�=� (2nA -nB- I). 
Witb tbe data given. we see tbat I' = 0.41 R at all three wavelengths. Doublets 
are often used to correct chromatic aberration. i.e. the variation of focal 
length with color. 
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5440. Let the lens-film distance be I. With s '" 00 (distant objects), the lens for­
mula gives J =1= 5 cm if the image is to be in focus. 

If the ob�\s are at .f '" I m, the lens fonnula gives 

1 1 1 
;+ 100 "' 5 '  

i.e. J = 5.26 crn. The lens must be moved 0.26 em away from the film. 

5441. If s > 1  we find from I/s+ Iii = II! that / t>;1 (see previous solution). 
The magnification is thus m = -J /s "" -I/s (the minus sign means that the 
image is invened). Henct: to change magnification we ha�·e !O change lenses. 
so cameras often ba\'e interchangeable lenses. For very high magnification, 
... ·c need very long focal length lenses (which have to be pla�'ed further from 
the film). As the film is the same size, higher magnification lenses have smaller 
fields of view. 

5+12. The clTC\.1ive diameter of the lens has been reduced by a factor 2 and thcre­
fore the area by a factor 4. The rate at which light illuminates the film is 
reduced by the same factor, so the photographer must increase the exposure 
time from 0.02 s to 0.08 s. 

5443. We hu,·c J = 2.5 em in ull cuses (fixed retina-lens distance), while s rungcs 
over d� < .1 < 00. Thus lIs has the range I/d >. 1/.< > O. Using the lens 
fonnula I/s = III - I/s' withl and ,1. measured in cm. we find 

With d. = 25 cm • ... ·e gel 2.27 em <I < 2.50 em. The eye mU5Cles must be 
able to alter I (and therefore Ihe radius of curvature of the lens) by a factor 
2.5/2.27 ", 1 . 1  (i.e. by IOV.). 

5444. The perron is shon-sighted. Her vision can be corrected by placing a lens in 
front of the eye such tbat an obje-ct al infinity produces an im�gc al a distan�-.: 
::::; dj. Thus for this lens J '" 00, 1 _ -I m (the image has to be in frOnl of the 
eye so as to serve as an objecl for il.$ lens). The lens fomlula then gi�es 
1 - / ,. -I m. This is a divergin8 lens, with po" .. er P _ -I dioplers (m-I). 

5+45. The man is long-sighted. When an object is at d'" = 0.25 m. it must appear to 
be at d. = 0.6 m, i.c. it mU51 fonn a virtual image there. Using the thin lens 
fonnula with s "" ,/.,1 � -d., we find the required rocal lengthl or power P. 

I I I . p �
f
- ="7 - - = 2.)) dloplers. u. d. 
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Thus he needs glasses "'1th conycrging len�s of focal lcngthf = 0.43 m. In 
most people the ncar point retreats with �ge. Re�ding glasses are required al 
the latest by the age at which il reaches Ihe length of the arms! 

5446. The distance between two objocls subtends a larger angle the closer they arc 
to Ihe eye: but the eye cannot focus properly iflhey are placed closet" th:m Ihe 
ncar point. Thus Ihe smallest scale J thot the man can distinguish must 
subtend Ihe minimum anglc 90 al the ncar point. i.c. J = 00J. = 0.125 mm. 
Note that this formula is correct with 110 in radians. 

$447. The object is placed jusl inside the focal point so that il products a "cl)" 
distant virtual image (sec Figure). which com be vie,,·ed with comfort. The 
angular magnification AI = 0,/0 •• where 0, is the angular size of the image as 
seen through the lens. and O. that seen by the unaided eye at Ihe ncar point. 
From Ihe Figure, and assuming thaI " <f. d., we ha,·e 0/ "" "/f. while 
0. = "/d •. (These results usc the facts that tan8"" 0 for vel)" small angles 0 
expressed in radians and that the object is VCI)" close to the focal point.) Since 
the powcr D = I/f. we have AI = d./f = d.D = 2.S with the data gi'·en. 

� 
I - __ , 

5448. The specimen is vcry close to the focal point of the objective (sec Figure). so 
the line.1r magnification of the objcctive is 

where i is the distance of thc real image from the lens. 
This magnified real image is the object for the ocular. arranged to be just 

inside its focal point. The ocular acts as a simple magnifier (sec the previous 
solution). witb �ngular magnification Ml = d./h., where J. is the near point 
of the user's eye. Thus the o\'crall llngular magnification is 
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1/ = , )( �65�'i:J �-�65�'O' 
6562 

i.e. v = 46 km $-1 away from tho: obse-rvo:r (v is �ounled posilive for motion 
away, i.e. redshifis). We can say nothing about Ihe Irnnm:rsc motion. 

5456. The star's radial velocity (see previous solution) .... ill oscillate back and fonh 
periodically. Tho: mean value gives the radial velocity orthe center of mass of 
Ihe binary SystCffi. The amplitude of the radial velocity oscillations and 
Kepler's laws can be combined to constT"Jin or even measure Ihe masses of 
Ihe s tars or the hinary. 

5457. The "'lwc1ength of the emitted sound is >. '" v,/v = 1500/3500 = O.42S6 m. 
Local mllxima appear where constructive interference occurs. i.e. when the 
path lengths from A and B to the microphone differ by an integer number of 
wavelengths. This happens at angles 0 to the symmetry line (see Figure) such 
Ihal 

JsinO. '" II>', 
.... here II is a positive integer. (ThIS fonnula holds when d <: L as is the case 
here.) Since J = I m, we have sinO� = 0.428611. We thus have solutions up to 
II .. 2. i.e. 00 '" 0; sinOI = 0.4186 or °1 = 2�.38·: sinOl '" O.8�n or OJ = �9·. 
The detcctor should thus be placed at distances X� = L tan O. from the sym· 
metry line, i.e. at Xo = O,XI = 474.4 m. or .lj = [664 m 

,_-----::;::-:::::�'";;"',p1 0 (�) 

_00 <11-::::.::::.-- .  
, 

5458. We get destructive interference, i.e zero sound intensity, when the path 
lengths from A and B differ by exactly half II wavelength. i.e. 

. 2", - 1  
dSIn8", = --y->.. nr= 1,2,3,. 

(the paths dilfer by lin odd number of half·wave[engths). With d = I m and 
0", .. 25.38' (specifying the position x _ 474.4 mI. we get 

2m- I 
-,- >. = 0.4286 m, 
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so using A '" v.11I we have 

2111 - 1  I� 
,, = ----y--0.4286 - (2111 - l) )( 1750 H1.. 

For 111 _ I and m � J. I' is respectively belo .... · the minimum frequency and 

a1;)(;l\"e the maximum fr<:qucney; for 111 = 2, we have" = 5'250 H� which is the 
required answer. 

$459. Without the sheet the phase djfference al the central maximum (on Ihe sym· 

metry line) i� 1..ero, i.e. ('2"'/ .l.)d sin 0 = 0, where 0 = O. With the sheo:t in pineo: 

(see Figure), this is no longer true because of the change ofwavelcngth inside 
the shcct. u:t the angle at which the total phase difference 64> is zero be 0 
(sec Figure). 

The total phase ehange has a gO!Ometrical contribution 

6<", = 2:d sinO, 

and dispeT5ion contribution (caused by the different refraeth'e inde� in the 
sheet) 

t.4>J _ 2,,--- -- -, ( 1  1 ) 
cosO ..\ A, 

Equating this 10 lero the central maximum appears at 

dsinOcosO = I(n - I), 

. 21 
sm28 =d'(n- I). 

With the data given, we lind sin 28 = 0.17 or 8 = 4.9·. 

1 
�o--- -- ----- - - - -

--

, - -'­= .  

---- -
-- --

" , 
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