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PREFACE

Physics is the most fundamenal of the sciences, and some knowledge of it is
required in fields as disparate as chemistry, biology, enginsering, medicine,
and architecture. Our experience in teaching physics to a wide variety of
audiences in the U.S. and Europe over many years is that, while studenis
may acquire some familiarity with formal concepts of physics, they are all
too often uneasy about applying these concepts in a vaitety of practical situa-
tions. As an elementary ezample, they may be able to quote the law of con-
scrvation of angular momcntum in the abscnoc of cxternal torqucs, but be
quite unable to explain why a spinning 10p does not fall over. The physicist
Richard Feynman coined the phrase “*fragile knowledge’" t o descsibe this kind
of misnatch between knowtedge of an idea and the ability to apply it.

In our view there is really only one way of acquiring a robust ability to use
physics: the repeated employment of physical concepts in a wide variety of
applications. Only then can sudents appreciate the strength of these ideas
and feel confident in using them. This book aims to meet this need by pro-
viding a large number of prohlems for individual study. We think it very
important to provide a full solution for each one, so that students can check
their progress or discover where they have gone wrong. We hope that users of
this book will be able to acquire a working knowledge of those pnrts of
physics they need for their science.

Calculation is an essential ingredient of physics: ihe ability to make quan-
titative statements which can be checked by obsetvation and experiment is
the basis of the enommous success of modem science and technology. Never-
theless, in this book we have tried to avoid mathematical complieations
which are not fundamental to understanding the physics In patticular we
make no use of calculus. It is woith pointing out that many practical situa-
tions that scientists encounter are too complex to atlow detailed calculations.

vii
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PREFACE

In these cases a simple estimate is often quite sufficient to give great insight,
and is in any case an indispensable preliminary to any attempt at a more
elaborate treatment.

The book contains problems organized in three chapters, on mechanics,
electromagnetic theory, and the properties of matter and waves. We give brief
summaries of the rclevant theory at the beginning of each of the chapters.
These are not extensive, as this is not intended asa textbook, but they docover
all of the topics, and establish the conventions we use. Solutions to each
problem are given in the sccond half of the book, We hope that users of the
book will attempt a problem before looking up the solution; even an unsuc-
cessful attempt brings the subject into much sharper focus than simply reading
the solution before appreciating the difficulty. Knowledge hard-won in this
way is the essence of a working grasp of physics. just as an athlete's perfor-
mance owes much to long hours of training. Realistically, however, we expect
that some of the time this will not happen. particularly when the subject is
new. We hope we have provided enough problems so that the reader may, if
desired, use the first one or two solutions on any topic to *'spot the paiten,”
and thus acquire the ability to attempt the later problems without having to
look up the solution first. Accordingly, there is a general tendency for the
problems in a given area to be easier at the beginning than the end. However,
we have resisted any idea of doing this absolutely systematically, for the good
reasons that (a) thedegree of dificulty ofa problem is often a rather subjective
judgement, and {b) we do not want readers to expecs the problems to get too
difficult for them as the section procecds. Indeed, we have deliberately
spsinkled some simpler problems over the sections to avoid this, so our advice
to the reader is always at least to try the problem before giving up!

We hope that this book will be useful to college and university under-
graduates in the physical and life sciences, engineering, medicine and archi-
tecture, as well as for some high school and secondary school courses. With
this in mind we have tried to include problems drawn directly from thesc
subjects, The enormous range of applicability of physics, from understanding
why black holes are black to why boiling frankfurters split lengthways, is for
us one of its great fascinations, and we hope we have managed to convcy a
little of this in the book. We hope too that it will provide its readers with the
basis of a sound and adaptable knowledge of physics. As a very important
side-effect, we trust that it will be useful in preparing for examinations: most
common types of physics problems set at this level will be encountered here.
We make no apology to our colleagues in universities and schools for this —
after all, in an important sense the subject is defined by the huge range of
questions it can answer. A student who has acquired the ability to solve
problems {and so pass examinations) has a good grounding in physics, and
thoroughly deserves success.



NOTE ON UNITS

This books uses Sl (meter—kilogram-second) units throughout, with one
exception: we follow the custemary usage of grarm moles, rather than kilo-
moles, in discussing gases. We someti'mes state problems using conventional
non-Si units (e.g. km/h for speeds), but these are converted into SI units in
the solutions. Numerical answers are usuaily given to two significant figures.
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PROBLEMS



CHAPTER ONE

MECHANICS

Hl SUMMARY OF THEORY
1. Status of the Subject

Newtonian mechanics provides a complete description of virtually all
mechanical phenomena. The two exceptions to this statement concern (a)
speeds approaching that of light, and (b) Jengths of order the size of atoms.

Note that air resistance is neglected in ofl problems unless the contrary is
explicitly stated.

2, Statics

@ Equilibrium of a body under external forces requires that their resuitant is
zero, i.e.

TF, = £F, = TF; = 0, (1)

where F;, F,, F; are the three Cartesian components of the resultant force. If
the forces act on lines that ail meet at a point, this condition is also sufficient.
Tt is then legitimate to represent all the forces as acting at the body’s center of
mass.

@ The center of mass is the pointd with coordinates (xcy, ¥em, 2zcn )» Where

Eryx;
Sm; |

(2

XCcMm =

etc. Here the summations extend over all the mass points of the body. The
position of the center of mass can often be found from symmeiry require-
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ments. If two bodies of mass m,, m; are joined together so that their centers
of mass have coordinates (xj, y1,2;), (X1,33,22), the center of mass of the
combined body has coordinates given by applying (2) to them, i.e.

_mx +mx;
- my 4+ my
@ If the external forces do not act along lines meeting at a point, we require in
addition to (1) that the resultant torque should vanish. In this book we
restrict attention to forces acling in a plane, and the torque condition for
equilibrium is

, etc. [&)]

M, =0, (4)

where M, is the product of the force and its perpendicular distance from the
axis through O. The torque is counted positive if the force tends to cause
anticlockwise rotation about the axis and ncgative otherwise. The position O
of the axis may be chosen freely: if there is an unknown force in the problem,
it is generally useful to choose O on the line of action of this force, so thai its
torgue vanishes. Given a point O such that Mg = 0, then TMo = 0 for any
other poiut 0’

@ The frictional farce f or Fy acting on a body has two forms: if the body is
static, and the normal reaction force between two surfaces is ¥, then / takes a
value no larger titan a certain maximum, i.e.

S <N (5)

Here 1, is a dimensionless guantity characteristic of the two surfaces, called
the coefficient of static friction. Note that this equation does not determine
the aciual value of /: tbis is fouad from the equilibrium conditions (1, 4). If
the force required to maintain equilibrium exceeds ¢, /V, the bodies slide with
respect to each other, and the frictional force becomes

f=uN, (6)

where 4 is now the coefficient of sliding (or kinetic) friction.

3. Kinematics

@ Average speed = (distance traveled)/(time).

@ In adding two velocities (tt, y,10.) and vy, ty,v,), we must add component
by component, i.e. the resultant velocity is (uy + vyt + vy u: + v;). This
form of addition (and subtraction) also applies to accelcrations, momenta,
etc. and expresses what is sontetimes called the parallelogram (or triangle)
rule {gee the Figure for the case of adding two vectors A. B in the planc).
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@ 1hc relative velocity of a moving point A with respect to a moving point B,
whose velocities in a given reference frame are (w(A),.......),
(4(B).,.......} is given by subtracting B's velocity from A's component by
component, i.e. by ([u(A), — u(B);)....+..).

@ Acceleratien = (change of velocity)/{time).

Note that aero acceleration doss no¢ automatically imply zero velocity: steady
motion has 2ero acceleration.

@ Under constant acceleration a, the velocity v and distance x traveled are
related to the elapsed time ¢ and initial velocity vy by the three formulae

v=1y+at, )
vzztgé-Zax, (8)
x=vm+§. )

In two- or three-dimensional motion these formulae can be used component
by component. If air resistance is neglected, projectiles have constant vertical
acceleration and zero hoirizontal acceleration.
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4. Newsons Second l.aw

@ The fundamental postulate of Newionian mechanics explains what happens
when the resuitant external force on a body does not vanish as in statics: the
resultant force on a body equals the rate of change of its momentum. Here
momentum = mass X veloeity. If the mass of the body does not change (true
for all the problems in this book), we can write Newton's second law in the
familiar forin

TF, = ma,, (10)
F, = ma,, (1)
$F, = ma,. (12)

These equations give us the accelerations in terms of the forces. Kioematics
can then be used to find the motion.

5. Work, Energy, and Powes

@ Work = (force) x (distance moved in direction of force)
Thus if the motion makes angle @ to the force F, the work done by the force
in moving distance / is
W = Ficos8. (13)
(Here it is assumed that the force F does not change during the motion
through /.)

@ Power = rate of working. Thus, if work ¥ is perforined at a uniform rate in
time ¢, the power is

124
P=—, (14)
?
@ A body of mass m moving with velocity v has kiretic energy
T= %mvz. (15)

@ If the body is raised through a height 4 against the Earth’s gravity, it gains
gravitational potential energy

U = mgh. (16)

@ The principle of conservation of energy states that the total energy of a closed
system remains eonstant. If the only forces acting on a mechanical system are
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conservative, no mechanical energy is converted to other forms, and the total
mechanical energy is conserved. The commonest example of a conservative
force is gravity: a body moving under gravity alone conserves the sum of its
kinetic and potential energies, i.e.

T+ U =)mv? + mgh = constant. (17)

Forces which are not conservative (e.g. friction) and convert mechanical
encrgy to heat are called dissipative.

6. Impulse and Momentum

@ 1t follows from Newton's second law that the totat momentum of an isolated
system remains constant, ie.

Emit, = constant, (18)
Smu, = constant, (19)
£mv. = constant, (20)

where the summation is over all the bodies of the system.

In some cases we deal with systems where bodies move frecly except for
large forces F, which act for short times 7 (e.g. collisional forces). In these
cases it is easier to deal with the product 7 = Fi, which is called the impuise.
From Newton’s second law it follows that the total impulse on a body gives
the change of its momentum.

In collision problems, the effects
expressed in the coefficient of restitution e, defined by

(relative velocity after collision) = —e x (relative velocity bef ore collision).

If e = 1, the collision is efastic and total mechanical energy is conserved. If
e < 1, the collision is inelastic and some of the mechanical energy is lost in the
collision, e.g. as heat, deformation of the bodies, etc.

7, Circular motion

@ The angudar velocity of a point mass about another point is defined as

w= (21}
where v is the linear velocity ofthe mass perpendicular to the line joining the
two points, and r is the length of this line. Clearly, a rigid body rotates with
uniform angular velocity about any of its points.

v
4
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@ For a body to move in a circle of radivs r with speed v requires centripetal
acceleratlon

=ur 22)

a, =

=15,

directed towards the center of the circle. By Newton's second law this
requires a centripetal force

Fc=£=mwzr (23)

r
directed towards the center of the circle, where m is the mass of the body.

@ Angular acceleration o = rate of change of angular velocity. If the angular
velocity changes by w at a uniforin rate in time ¢, we have

a=Y. (24)

!
If « is constant, there is a complete analogy with the case of constant linear
acceleration g, and the three fortnulae given for that case can be taken over

with the substitution of a for 4, w for v and the angular displacement @ for x.

@ Newion’s second law applied to rotational motion of a particle of mass m
about a fixed point O implies that

EMg = mria. (25)

Thus if the total torque about O vanishes, the angular momentum mPw is
conserved.

8. Harmonic motion

A body is undergoing simple harmenic motien when it moves in a straight line
under a restoring force propoitional to the distance x from a fixed point. The
acceleration of such a body can be expressed as

= —ufx. (26)

Here w is the anguiar frequency. The concept can be extended to angular
motion. The motion repeats i%eif exactly after a time

2r
P=—. (27)
P is called the period. The maximum displacement from the center of force
(e.g. x = 0) is called the ampiitude. The period of a simple pendulim, a mass

suspended from a siring of length / osciliating under gravity, is



SUMMARY OF THECRY 9

P=2r G) m‘ (28)

independent of the mass and the amplitude of the motion, provided that this
remains small. The period of a mass m moving on a smooth horizontal table
attached to a spring of constant k whose other end is fixed is

172
P= h(ﬁ) . 29)

m

@ if simple harmonic motion of angular frequency w is initiated from rest with
displacement xp, the subsequent displacement is

x(t) = xpcoswit. (30)

If simple harmonic motion of angular frequency w is initiated from the origin
with specd vy, the subscquent displacement is

x(t) = %sin wt. (31)

9. Gravitation

@ Newton’s law of universal gravitation states that the attractive gravitational
force between two point masses my,m, is

Gmym;
‘Fsm\- = (;2 = (32)

where G is a universal constant, and d is the separation of the two masses.
The gravitational potential energy of the two masses is

Gnym;

i

It can be shown that the gravitational force exerted by a uniform sphere is the
same as if the sphere’s mass were all concentrated at its center.

For bodies closc to the Earth, d is always cffectively
radius R., so the downwards vertical force on a body of mass m is

anv =mg, (34)

where g = GM, /&2, with M, = mass of the Earth. Here g is called the su~
face gravity or the acceleration due to gravity. If the body is subject io
upwards vertical acceleration a. we define the cffective gravity as

g =g+a (35)

U= (33)
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For example, at the Earth’s equator, some of the gravitational force must be
used to provide the centripetal acceleration needed to keep the body on the
Earth’s surface, so the effective gravity is lower there.

10.  Motion of a rigid body

@ A rigid body is one in which the distances between any of its particles remain
constant at all times.

@ The motion of a rigid body can be decomposed into the linear motion of its
ceoter of mass, and rotations about the center of mass. The center of mass
motion is that of a point object of the same mass as the body. As explained
above, a rigid body has unifortn angular velocity about any point.

@ I1f Newton's second iaw is applied to rotational motion about either any fixed
point O or the center of mass, it implies that
My =la, (36)
where
I=Em?, (37)

is called the momient of inertia about O. Here r is the perpendicular distance
of each point of mass m from the axis. The moment of inertia plays for
angular motion the role ofthemass in linear motion. The moments of inertia
of simple bodies may be found easily, and are given in Table 1.

@ If the total torque about O vanishes, then the anguiar momentum Iw is con-
served. This is the analog of the conservation of (linear) momentum for an
isolated system referred to in Section 6 above.

The kinetic energy of rotation with angular velocity w about a point Q is
1
T= ifulz, (38)

where 7 is the relevant moment of inertia. The rate of increase of 7 is given
by the work done by the torques Mg, which is EMo#, where 8 is the angle
traveled in the direction of the torque.

The period of a physical pendulum undergoing simple hartnonic motion is

12
= 9
P zw(mglm) v (39)

where / is the relevant moment of inertia, m the mass of the body, and /¢y is
the distance of the center of mass from the pivot.
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TABLE ). Moments of inertia of simple uniform

bodies of mass M about their symmetry
axes.

body i
circular hoop, radius r M7
cylindrical sheil, rudius r

circular disc, radius ¢ i My
solid cylinder, radius r

rad, iength ¢ & MP
sphere, tadius r i mr

B STATICS

Pi.

P2.

P3.

P4.

Show that the center of mass of the Earth-Sun system is located inside the
Sun. (The Sun’s mass M, = 2 x 10® kg, the Earih’s mass M, = 6 x 10% kg,
the Sun’s radius Rg=7x 10  m. and the Earth-Sun distance
dy=15x 10'"' m.) Whece is the center of mass of the Sun-Jupiter system?
(Jupites’s mass M, = 2 x 107 kg, Jupiter-Sun distance d; = 1.4 x 10'2 m.)

A tennis racket can be approximated by a circular hoop of radius » and mass
my attached to a uniform shaft of length / and mass m;. Assuming that
r=1/2 and m = m, = m, find the position of the racket’s center of mass.

—

The tennis racket of the previous question is modified by adding a point mass
my = m/2 1o the part of the nm furthest from the shaft. Find the new posi-
tion of the center of mass.

A pizza can be regarded as a uniforin thin disk of radius r and mass m. A
narrow slice of angle § = 20° is cut cut and eaten, Approximating the slice as
a triangle, where would you have to support the partly eaten pizza to hold it
in balance?
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PS.

Ships which have been emptied of cargo are often refilled with ballast (e.g.
sand, water), Why?

. Given two sets of weighing scales and a long board, how could you determine

the position of the center of mass of a person?

. A mass rests on an inclined plane of angle & = 36°. The coefficient of static

friction is u, = 0.6. Draw a diagram showing all the forces acting on the
mass, and expiain their origin. Calculate their values if the mass is
m =S kg. Verify thar under these conditions the mass will not slide.

. A mass m = 10 kg hangs by two strings making angles & = 45° and 8 = 60°

to the vertical. The strings are connected through pulleys to two masses 71,
and a7, (see Figure). Find m,/m; such that the mass hangs in equilibrium.

. A uniform sphere of mass m and radius r hangs from a string against a

smooth vertical wall, the line of the string passing through the ball’s center
(see Figure). The string is attached at a height & = +/3r above the point where
the ball touches the wall. What is the tension 7 in the string, and the force F
exerted hy the ball on the wall? If the wall is rough, with coefficient of static
friction g, are these foroes increased or reduced?

i
1
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PIO

PIl.

Pi2.

A circus perforiner of mass m = 60 kg stands at the midpoint of a rope of
unstretched length fo = 6 m. It is known that the tension T in the rope is
proportional to the amount it is stretched, i.e. T = (! —fy), where x is a
constant and / the actual length of the rope. How large must « be if the
perfonner is not to sink more than a distance # = 1 m below the endpoints of
the rope? With this value of x, how much would the rope extend if the
perforner were to release one end of it and hang vertically from it?

Y

A mass m is suspended from the center of a wire, which is stretched over two
supports of equal heighis. The tensions at each end of the wire are T. Show
that however large T is made, the wire is never completely hotizontal. Esti-
mate the angle to the horizontal if T = 100mg.

A patient’s leg is in traction with the arrangement shown in the Figure, with
W = 130 N. A student nursc moves the cord to an anchoring point nearer to
the patient, so that the two angles of the cord to the horizonta) change from
a1 = 45° to ay = 30°. Does this make any difference
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P13.

Pl4.

PI5.

The human forearm can be approximated by a lever as shown in the Figure.
Given that L = 20/ and the am weight is w, what muscle force £ musi be
exerted to lift a weight W with the arm at angle & to the horizontal? Why is it
farger than W + w?

A box of mass m is pulled by a man holding & rope at an angle § to the
hotizontal. A second man pulls horizontally in the opposite direction with a
force equal to twice the box’s weight. What is the maximum value 6, of ¢ such
that the box begins to move in the direction of the first man without being
lifted from the ground? What, in terms of mg, is the force P then exerted by
the first man?

A uniform rod of mass m can rotate frecly around a horizontal axis O at one
end which is fixed to the floor. {tis supported at an angle a = 45 to the floor
by a string attached to the other end making an angle 8 = 15° to the vertical,
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Pl6.

PI7.

PI8.

the free end of the string hanging vertically from a pulley and holding a mass
M (see Figure). Find M in terms of a7 if the system i in equilibrium. Caleu-
late the force Pexerted by the floor on the axis O, and its direction. (Express
your answer in terms of m and g.)

A shop puts up a signboard of mass m hanging from the end of a rod of
length / and negligible mass, which is hinged to the shop wall at an axis O.
The rod is held horizontal by means of a wire attaehed to its midpoint and to
the wall, a height » above the hinge (see Figure). If the wire wiil break when
its tension T reaches T, = 3mg, wbat is tbe miniroum height i, (in terms
of ) that the wire must be attached to the wall?

A rectangular door of mass M, width w and height 4 = 3w is supported on
two hinges located a distance & = w/4 from its upper and lower edges. If the
hinges are arranged so that the upper one carrics the entire weight of the
door, find the forces (in terms of Mg) exerted on the door by the two hinges.

4]

T

F——

A uniform rod of mass m leans against a smooth vertical wall, making an
angle #; with it. {ts othes end is supported by a smooth plane inclined at an
angle #, to the horizontal (see Figure}. Find a refation between the angles
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NN

ENNSNNANANY

61,6, If 8; = 30° find the forces exerted by the wall and inclined plane on the
rod in terms of mg.

PI9. A uniform ladder leans against a smooth vertical wall, making an angle 6
with a horizontal floor. The cocfficient of static fiiction between the ladder
and the foor is ;. Find (in terms of ) the minimum angle 6,, for which the
ladder dees not slip.

£20

In the configuration of the previous problem, a repair worker whose mass is
twice that of the ladder wishes to climb to its top. What does the minimim
angle 6, become?

P2l. A uniform rectangular platform of width L hangs by two ropes making
angles #; = 30°,8, = 60° to the vertical. A load of twice the mass of the
platform is placed on it to keep it horizontal: how far from the edge of the
platform musi it be?
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P23.

P24.

. A uniform circular cylinder of radius r has its base on a plane inclined at

angle & to the horizontal. The coefficient of static friction is y,. Find the
minimum height % of the cylinder such that it overturns rather than sliding.

The human jaw is worked by two pairs of muscles, positioned on each side of
the pivot (sec Figure). [s it possiblc to arrange for there to be no reaction force
on the pivot when the jaw exerts a steady chewing force C upwards and the
lower muscle pair exerts a force L as shown? Find C in this casc if the upper
and lower muscle pairs act atengles 8, = 50°,8; = 40° to the horizontal.

Muscle lorwe j u
nI!

C Reaction to chewlng force

A horizontal force F = 0.2 N acts on the tooth shown in the Figure. Find
the forces Fy,F exerted by the jawbone on the root and vice versa, if
Ii=15cm, 4 =2cm.

. A football player of height A is subjected to a horizontal push at his

shoulders, which are a distance

is a distance Sh/8 from his fect (sce Figure). To counteract the push he leans
forward at an angle ¢ to the vertical. The coefficient of static friction between
the player’s feet and the pitchis g. Find the minimum angle 8,, of lean such
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P27.

that the player slides backwards rather than being overturned by a strong
push.

A woman of mass m stands on one platform of a large beam balance and
pulls on a cord connected to the center of its nearer arm. The other platform
holds a mass M. What restrictions on M, m are required if the balance is to
remain level?

A

Cord
Woman pulling

M

A woman lifts a mass M by means of the double pulley arrangement shown in
the Figure. If all sections of the rope are regarded as vertical, the pulleys are
very light and friction is negligible, what force must she exert? 1fshe wishes to
raise the mass through a height 4, what length of rope must she pull down?

“
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P28. What happens to the results of the previous question if a second pair of
p q pa
pulleys are added, as shown in the Figure?

v

M

P29. Rotation of the shaft of the right-hand lever {of length 5) in the Figure is
resisted by a [rictional torque whose maximum possible vaiue is Gi. What
torque must be supplied to the shaft of the lefi-hand lever (length @) in order
to begin to turn it anticlockwise as shown? Repeat the calculation if the levers
are rcplaced by steadily turning gear wheels as shown. If the left-hand shaft is
rotated with angular velocity £, what is the angular velocity of the right-hand
shaft?

( = -
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P30.

P31.

P32.

A cylindrical oil drum of mass m and radius R lies on a road against the curb,
which has height R/2 (see Figurc). ltis to be lifted gently (quasistatically) on
to the sidewalk by means of a rope wound around its circumnfercnce. What is
the minimum force Fp, needed if the rope is pulled horizontally? What is the
magnitude and direction of the reaction force at the curb? Will thc minimum
force F,, change as the drum is lifted? if the rope is pulled ai an angle @ to the
horizontal. for what value of & is the tequired force a minimum? What is the
value of this minimum force?

h=1iR

A drinking straw of length ¢ is placed in a smooth hemispherical glass of
radius R resting on a horizontal table. Find its equilibrium position

(a)-if { < 2R,

(b) — if / > 2R, assuming that the straw does not fall out.

A woman lifts a mass M slowly by means of a pulley, placed at the height of
her hand (see Figure). Her forearm is /' = 24 cm long, and her biceps muscles
are attached to it 4 = 3 cm from the elbow joint. Estimate the tension T in
her biceps if her upper arm and forearm make angles #, ¢ to the vertical. If
she keeps & = ¢, does it get easier or barder to lift the mass as she raises 1t?
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P33.

A market stallholder erects an awning (see Figure) of mass M and breadth 2/.
The supports are placed a distance a from tlie rear edge, which is secured by a
vertical rope. Find the force F on the supports. If instead a second set of
supports is placed a distance z from the front of the awning and the rope is
removed, what is the new force F on each of the sets of supports? Compare
the two cases if M = 50 kg, {=1m, ¢ =10 cm.

——
e

\

B KINEMATICS

P34

P35S.

P36.

P37.

P38.

A train travels 50 km in half an hour. It then stops at a statioo for 20
minutes, before traveling for 2 hours at an average speed of 90 km/h.
What was the train’s average speed over the whole journey?

A car starts from rest and reaches a velocity of 100 km/h afier accelerating
uniformly for 10s. What distance has it traveled? What was its average
velocity?

A train travels a distance s in a straight line. For the first half of the distance
its velocity has the constant value ¢4, and for the second half it bas the
constant value ;. What is the average velocity? Is it larger or smaller than
(o +02)/2?

A police officer on a motorcycle chascs a speeding ear on a straight highway.
The car’s speed is constant at v, = 120 km/h, and the officer is a distance
d =500 m behind it when she slarts the chase with velocity v, = 180 km/h.
What is the police officer’s speed relative to the car? How long will it take her
to catch up with it?

Taking oft from a point on the Equator in the late aflernoon and flying due
West, passengers on the Concorde supersonic aistiner see the sun set and then
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P39.

P40.

P41,

P42

P43.

P44,

P4s.

P46.

P47.

P48.

rise again ahead of them. Estimate Concorde’s minimum speed. (Earth’s
mdius = 6400 km.)

The maximum straight-line deceleration of a racing car under braking is
Sms™2. What is the minimum stopping distance of the car from a velocity
of 100 km/h? What dnes this distance become if the velocity has twice this
value?

A rocket-powered sled accelerates from rest. After £ = 10 s it has traveled a
distance x =400 m. What s its speed in km/h at this point?

A ballis thrown vertically upwards with initsal speed 10 ms™! from the edge
of a roof of height # =20 m. How long does it tuke for the ball to hit the
ground? At what velocity does it hit the ground?

A stone is dropped from rest into a well. It is obscrved to hit the water after
2s. Find the distance down to the water surface. How fast must the stone be
thrown downwards in order to hit the surface after only 1s? What are the
impact velocities in the two cases?

A car and a truck start moving at the same time, hut the truck starts some
distance ahead. The car and the truck move with constant accelerations
a =2 ms 2, a=1 ms respectively, The car overtakes the truck after
the latter has moved 32 m. How long did it take the car to caich up with
the truck? What were the velocities of the car and the truck at that moment?
How far apart did the truck and the car start?

A rocket climbs vertically and is powered in such a way that it has constant
acceleration a. Tt reaches a height of 1 km with a velocity of 100 ms™'. What
is the value of a? How long does the rocket take to reach this | km height?

A bullet is fired verticaily from a toy pistol with muzzle velocity 30 ms™".

How high abovc the firing poiat docs the buliet go before falling back under
gravity? What is its velocity 4s after being fired? At what height is it then?

A body (alls freely from rest to the ground a distance % below. In the last 1 s
of its flight it falls a distance /2. What is #?

A man (alis from rest from the top of a building of height #/ = (00 m. A time
¢ = | s later, Superwoman swoops after hum with initial speed vy downwards,
subsequently falling freely. She catches the man at a hcight # = 20 m above
the ground. What was vy?

A boy in an elevator throws a ball vertically upwards with speed
vo =5 m s~ relative to the elevator. The elevator has constant upward
acceleration @ =2 m s™2. How long docs it take for the ball to return to
the boy's hand?
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P49.

P30

P51.

P52.

P53.

P54.

P55.

P56.

P57.

P58.

An artitlery shell is fired ffom a cannon with an elevation of @ = 30° and
muzzle velocity of v, = 300 ms~". Find the time of fili ght of the shell, and its
range.

A certain athlete consistently throws a javelin at a speed of 25 ms~'. What is
her best distance? On one occasion the athlcte released the javelin poorly, and
achieved only one half of this distance. At what elevation angle did she
release the javelin?

In the last problem. does the elevation angle for half distance depend on the
speed of the throw? Explain your answer.

A projectile is fired on level ground. Show that, for given range and initial
velocity the projection angle has two possible values, which are symmetrically
spaced each side of 45°.

In the movie Speed a hus has 1o lcap a gap in an elevated freeway. If the bus
had speed t = 100 km/h and the gap was x = 15 m,
(a) — assuming the takeofl and landing points were at the same level, find
the angle of projection of the bus's center of mass;
{b) — il the bus took off horizontally, how much lower must the landing
side have been than takeoff?

A rifleman aims directly and horizontally at a target at distance x on level
ground. and his bullet strikes a height /i too low. If k < x. show that in order
to hit the target, be should aim a height # above it.

A transport airplane fiies horizontally with a constant velocity of 600 km/h,
at a height of 2 km. Directly over a marker it releases an empty fuel tank.
How (ar ahead of the markerdocs the tank hit the ground? At this time, is
the airplane ahead or behind the tank?

An aiiplanein steady level flight with velocity v = 700 km/h releases a num-
ber of bombs at regular intervals Ar = | s. A photograph of the release is
taken from an accompanying airplane. Describe the relative position of the
first airplane and the bombs on the photograph. How far apart are tbe
impact points of the bombs on the ground?

A combat tank fires a shell while moving on horizontai ground with velocity
=10 m s". The gun is point'ng directly forwards with elevation a = 5°,
and the muzzle velocity is #o = 1000 m s~'. The shell hits a target which is
moving directly away from the tank at w = 15 m s~'. How far from the tank
is the target at the moment of impact? How far apart were the tank and the
target wben the shell was fired?

A softball is thrown at an angle of @ = 60° above the horizontal. It lands a
distance 4 = 2 m from the edge of a flat roof, whose height is /i = 20 m; the
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edge of theroof is / = 38 m from the thrower (sce Figure). At what speed was
the softball thrown?

P59. A projectiic is launched with horizontal and vertical velocity components i, v.
Show that its trajectory is a parabola, and that the maximum height and the
mnge (on level ground) are & = v’/g, r = 2uv/g, respectively.

P&0. An athlete can throw the javelin at four times the speed at which she can tun.
At what angle in her rcference frame should she launch the javelin for max-
imum range?

P61. A small boy uses a pea-shooter to hlow a pea directly at a cat in a tree. The
cat is startled by the noise of the boy blowing u:nd falls vertically oul of the
tree. Does the pea miss?

P62. A downhill skier approaches horizontally a hump of height # = | m which
levels out before steepening suddenly to an angle a = 25° to the horizontal
{see Figure). If her horizontai speed at the top of the hump is ¥ = 100 kmj/h,
how long does she spend in the ait before landing down theslope? If the skier
is ahle to jump vertically at speed v = S m s™', and she moves more quickly

when in contact with the snow than in the air, can you suggest a strategy for
improving her time?

P63. A man can swim at a speed v, = | m s™', and wishes to cross a river of width
L = 100 m flowing at v, = 05 m s~' to reach his girlfriend who is dircctly
opposite him on the other bank. In what direction should the man swim so as
to reach her as soon as possible? How long will it take him?
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P65.

Pé6.

Two trains A and B are traveling in opposite directions along straight parallel
tracks at the same speed v = 60 km/h. A light airplane crosses above them. A
person on train A sees it cross at sight angles, whilea person on train B sees it
cross the track at an angle § = 30°. At whatangle a does the airplane cross
the track as seen from the ground? What is its ground speed vg?

Rain falls vertically at speed # on a man who runs at horizontal speed v.
Show that he sees the rain falling towards him at speed (2 + v*)"? and angle
# = tan~' v/ to the vertical. Thc man leans into the rain as he runs, at angle
8 to the vertical. His total frontal area is A/, and his total area viewed from
abovc is A,. If 4, < Ay, show that hc gets least wet if hc leans so that 8 = ¢. If
he runs adistance fand there ismass p of water per unit volume of rain, show
that he absorbs a minimum tetal mass

mi= Adlp

(I(z + 1r2}”2
Warl® (a0)

of water.

A car rounds a bend in a road at a speed of 70 km/h and collides with a
second car that has emerged from a concealed side road 50 m from the bend.
Analysis of the damage to the cars shows that the collisyon took place at a
closing speed of 10 km/h or less. In making his insurance claim. the driver of
the firstcar asserts that the second car emerged from the side road in such
a way that the first car had only 4 m in which to brake. Is this version
plausible?

Bl NEWTON'S SECOND LAW

P67.

A mass i =1 kg lies on a smooth table and is attached by a stringand a
frictionless pulley to a mass m, = 0.0 kg hanging {rom the edge of the table
(see Figure). The system is released from rest. Calculate the distance the mass
ny moves across the table in the first 10s. How long will it take for this mass
to travel 1 m from its initial position?

my

m2
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. A mass m =20 kg is pulled upwards with constant acceleration by a cable

P&9.

F70.

P71.

P73

attached to a motor. The cable can withstand a maximal tension of 500 N.
Whatis the maximum acceleration d y, possible? If the acceleration has this
maximum value, what distance will the mass have moved aflter 2s, if it stars
from rest?

A smooth inclined plane has a slope of 30°. A body begins to move upwards
with initial velocity 5 ms~!. How long does it take for the body 10 begin to
slide down the plane again?

Two bodies are attached to the ends of a string hanging from a frictionless
pulley (see Figure). The masses of the two bodies are ») =5 kg and
m; = 10 kg. Find the accelerations of the masses and the tension in the stiing.

v/

A subway train hasconstani acceteration @ = 0.1g. In nne of the cars a mass
m hangs from the ceiling by means of a stiing. Find the angle the string
makes to the vertical and the tension in the string in terms of m and g.

. An elevator of mass M moves upwards with constant acceleration ¢ = 0.1g,

pulled by a cable. What is the normal force exerted by the elevator floor on a
person of mass r standing inside it? What is the tension in the cable? Express
your answer in terms of M, m,g.

Two masses m, M lie on eachside of a smooth wedge (see Figure), connected
by a string passing over a frictionless pulley. The wedge faces make angles
#) = 53° and 8, = 47° 10 the horizontal respectively. What value must the
ratio M /m take so that the masses remain statyonary? What is the tension in
the string in this case, in teris of m,g?
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P74.

P7s.

P76.

P78.

P79.

An experiment is performed to determine the value of the gravitat.onal accel-
eration g on Earth. Two equal masses M hang at rest from the ends of a
string on each side of a frictionless pulley (see Figure). A mass m = 0.01M is
placed on the left-hand mass. After the heavier side has moved down by

=1 m the small mass m is removed. The system continues to move for
the next Is, covering a distance of # = 0.312 m. Find the value of g irom
these data.

’

M

A rifleman holds his rifle at a height # = 1.5 m and fires horizontally over
level ground. The bullet lands at a distance s = 500 m from the muzzJe of the
gun. What was the muzzle velocity of the bullet? The rifle barrel has length
{ =0.5m, Assuming that the hullet has constant acceleration inside if, cai-
culate the force on the bullet, if its mass was 10 g.

A skydiver jumps from an airplanc and acquircs a falling velocity of 20 ms™'
bef ore opening her parachute. As a resuit her falling velocity drops to Sms=}
in 5s. The skydiver hasmass nt = 50 kg. Assuming that the deceleration was
constant. find the total tcnsionin the parachul cords and the resultant force
on the skydiver,

. The coefficient of sliding friction between the tires of a car and the road

surface is ¢ = 0.5. The driver brakes shatply and Jocks the wheels. H the
velocity of the car before braking was v = 60 km/h, how much time will
the car take to stop? What is the stopping distance?

The coefficient of kinetic friction between a sled of mass 77 = 10 kg and the
snow is s = 0.]. What horizontal force F is required to drug the sled at a
constant vetocity?

A skier is stationary on a ski slope of angie a = 15°, The pressure of his skis
gradually melts the snow and reduces the effective coefficient of static friction
#,. What is the value of this coefficient at the moment that the skier begins to
move? If the coefficient j¢ of kinetic friction between the skis and the snow is
0.1, what is his velocity after 55, and what distance has he then traveled?
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P81.

P82.

P83.

P85.

. A length of timber of mass M = 100 kg is dragged along the ground with a

force £ = 300 N by means of a rope. The rope makes an angle of @ = 30° to
the ground. The coefficient of friction between the timber and the ground is
# =0.2. Find the acceleration a of the timber. Find also the nonnal force N
exerted by the ground on thetimber.

A body is given an initial sliding velocity vy = 10 ms™' up an inclincd plane
of slope a = 20° to the horizontal. The coefficient of friction is 2 = 0.2. Find
the time ¢, the body spends sliding up the slope before reversing its motion,
the distance s traveled 10 this point, and the time (3oun tO return to the
starting point.

A mass m is placed on a rough inclined plane and attached by a string to a
hanging mass M over a [rictionless pulley (see Figure). The angle « of the
slope is such that sina = 0.6. The coefficient of static friction between the
mass r77 and the plane is g, = 0.2. Show that equilibrium is possible only if M
lies between two values M|, M and find the values of M, M3 in tenns of m.

A uniforin chain of total iength / lies partly on a horizontal table. with a
length /, overhanging the edge. if g, is the coefiicient of static friction, how
large can {, be if the chain is not to slide off the tabie?

. Two equal masses lie on each side of a rough wedge, connected by a string

passing over a Mictionless pulley. The wedge faces make angles & = 33° and
8, =47 to the horizontal. Find the coefficient of friction # for which the
masses move at constant velocity.

A mgss m is held at rest on an inclined plane, whose slope is & by means ofa
horizontal force F {see Figure). The coefficient of static friction is ¢¢,. Find the
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maximum F allowsd before the body starts to move up the plane. Express
your answer in terms of m, n, g, and g.

P86. A flatbed truck carries a box. The coefficient of static friction betwaco the
box and the truck is u .= 0.3. What is the maximum acceleration the truck
driver can allow so that the box does not slide? In the case where this max-
imum acceleration is just exceeded, find the distance the box travels with
respect to the truck in the first Is of the motion. Take the coefficient of sliding
friction as ;4= 0.2

P87. A computer monitorstands on a personal computer resting on a horizontal
table. The momr'tor and computer have masses m,M = 2m respectively. A
student pulls the monitor horiz.ontally with force F. The coefficients of fric-
tion between the computer and the 1able, and between the computer and the
monitor arc both ;.. What is the maximum allowed force F,,,, such that the
monitor does not move with respect 10 the computer? Will the computer
move with iespect to the table in this case? What happens if F = 2Fy,,?
Justify your answer quantitatively.

P88. A book of mass M rests on a long table, with a piece of paper of mass
m=0.IM in between. The coefficient of friction between all surfaces is
i = 0.}, The paper is pulled with honzontai force P (sce Figure). What is
the minimum vialue of P required to cause any motion? With what force must
the page be pulled in order to extract it from between the book and 1he tabie?
Express your answers in units of Mg.

Book
Paper
@’

B WORK, ENERGY, AND POWER

P89. A child pushes u toy cart from rest on a smooth horizontal surfacc with a
force F = 5 N, directed at an angle @ = 10° below the horizontal (see Figure).
Calculate the work done by the child in §s if the cart’s mass is m = 5 kg.
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PoI.

P93.

P95.

P9é.

. A train of mass m = 1000 metric tons acccleratcs trom rest to a spced

v= 72 km/h on a horizontal track. Calculate the work W done by the
locomotive engine, neglecting friction.

A bucket of water of mass m = 10 kg is raised f'rom rest through a height of
4 =10 m and placed on a platform. How much docs its potential energy
increase? What was the work done against gravity?

. A rollercoaster climbs to its mazimum height #; = 50 m above ground. which

it passes with speed v; = 0.5 ms~". It then rolls down to a minimum height
f2 =35 m before climbing again to a height of #; = 20 m (see Figure).
Neglecting friction, find the speed of the rollercoaster at these two points.

Vi

By

he

A tennis player’s serve gives the ball a kinetic energy Ty = 10 J. Assuming
that she serves from a height £ = 2 m above the level of the court, find the
speed with which the ball reaches the ground. Assume that the work done by
the ball against air resistance is W = § J. (Mass m of a tennis ball = 60 g.)

. Show that the kinematic formula »* = 1’54—711.\’ for uniforinly accelerated

straight-line motion can also be derived from cnergy conservation.

A high- jumper clears the bar at a height of # = 2 m with horizonial velocity
z) = 3 ms~". Using conservatian of energy, calculate the velocity with which
he hits the landing platform (I m above ground) and the direction of this
impact velocity.

An ambitious pole-vaulter wishes to clear a height i = 6.10 m. What is the
minimum velocity he must reach on the runway? Explain why this is a mini-
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P98

P100.

PIOI.

PI Q2.

P103.

P104.

PI0S.

A water-skier is towed by a boat with horizontal force £ =100 N. She
maintains a constant velocity v = 36 km/h. Find the work done against fric-
tional forces, such as waier and air resistance, in 10s.

. Police drivers are taught that doubling the speed quadruples the braking

distance, Why?

A suitcase of mass m = 20 ke is dragged with a constant force £ =150 N
along an airport ramp of slope & = 30° up to a height # = 5 m (see Figure).
Find the coefficient 1 of sliding friction if the suitcase’s velocity is increased
from zero at the bottom of ths ramp to v; = 1 ms~' at the height 4.

O]

-

®

Consider the pulley lifting arrangements of P27 and P28. Show that in each
case the fozol work done by the woman in raising the mass M through a
height # is the same, neglecting friction. Prove a similar result for the gear
wheet arrangeraent of P29. Is the neglect of friction rcalisti'c in practice?

A crane lifts a load of mass m = 500 kg vertically at constant spesd
v=2ms'. Find the power expended by the crane motor. What is the
work done by thc crane if the load is lifted through # =20 m? A sccond
crane is able to lift the same lead at twice the veriical speed. Find the power
cxpended and the work done in lifling the load through the same height.

An elcctric pump diaws water from a well of depthd = 50m ata rate of 2 m’
per second. The water is ejected from the pump with velocity v, = 10 m s~
Whatis the power consumption of the pump if its efficiency is 7 = 0.8 (80%
efficiency)?

A car of mass M = 1000 kg decelerates from a velocity v == 100 km/h to a
stop in 7 = 10 5. At what average rate must the braking surfaces losc heat if
their temperature is not to tise significantly?

Awnt'mais of similar types but very difierent sizes tend all to be able to jump to
roughly similar maximum heights (e.g. various types of dogs, or fleas and
grasshoppers), although larger animals need more room to take off, roughly
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P106.

P107.

in proportion to their size. What does this suggest about the rase of energy
release by muscles in larger arimals comparcd with smaller ones?

A mass m slides from rcst at height # down a smooth curved surface which
becomes horizontai at zero height (see Figure). A spring is fixed horizontally
on the level part of the suiface. Find the velocity of the mass immediately
before encountering the spring, in terms of g,k The spring constant is k.
When the mass encounters the spring it compcesses it by an amount
x = h/t0. Find k& in terms of m,g.#. What height does the mass reach on
returning to the curved part of the surface, if there are no energy losses in the
spring?

k

M

A mass m is projected upwards with initial velocity v along an inclined plane
of slope a, with sin @ = 1/V/2 (see Figure). The coefficient of sliding friction is
yt = 0.1. Using energy conservation, calculate the distance ¢ the mass travels
up the slope. Express your answer in terms of v,g. What must the minimum
value of the coefficient of static frietion g, be in order that the mass docs not
slide back? If u, is smaller than this value, with what velocity does the mass
retuen to its starting point? Express your answer in terms of v.

A
_
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B MOMENTUM AND IMPULSE

Pl08

P109.

P110.

PIII.

P12,

PI13.

Pl14.

PII5.

Pll6

. A bird and an insect fly directly towards each other on a horizontal irajec-
tory. The mass of the bird is M and that of the insect is m. The corresponding
{constant) velocities are V,1;. The bird swallows the insect and continucs to
glide in the same direction. Find its velocity U after swallowing the insect.
Find U in terms of V in the case m = 0.01M and v = 10V.

A rifle has mass M = 3 kg and fires a bullet of mass m = 10 g with muzzle
velocity « =700 w s~'. What is the recoil velocity v of the gun? Frum what
height /i would you have to drop thcrifle on to your shoulder to fect the same
kick?

A rocket works by reacting against the momentum of its ¢xhaust gases. Why
arc they often constructed with several stages?

A cue ball has velocity u# and collides head-on with a stationary pool ball of
equal mass m on a smooth horizontal table. The collision is perfectly elastic
(mechanical energy is conserved). What are the velocities v;, v, of the two
balls after the coilision?

In a one-dimensional collision, masses m, m, have velocities i), «, before the
collision and vy, v, afterwards. Show that if mechanical energy is conserved
vy —ty = —(4z — ), i.c. the bodies scparate at the same specd they
approached.

An elementary particle of massz my collidcs with a stationary proton of mass
m,. As a result of the collision the particle recoils along its direction of
approach, A sccond clementary particle of mass my continues 10 move
forward after colliding with a proton. Give limits on the ratios
my/mpmyfm,,

If the velocity of the incoming particle is v in cach case, find the finai
velocities of all the particles afler the collisions in terms of # in the cases
m =mp/2ms =2m,

An elementary particle of mass 17 and vclocity 1 collides with a stationary
proton of mass m,. Assuming that the total mcchanical cucrgy is conscrved,
calculate what fraction of the particlc's energy is transferred to the proton.

A mass m, moving with velocity u, collides with a stationary mass 5. If the
cocfficient of restitution is e{< 1}, find the velocity > of ni; after the colli-
sion. Show that very little of the oriiginal kinetic cnergy is transferred to m, if
my,m, are very dif'erent.

. If you want to knock a nail into the floor, why is it preferable 10 use a

hammer than jump on the nail?
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Pl1I8.

P19,

PI20.

Pl12J.

PI22.

PI23.

P124.

PI25S.

P126.

A physicist observes the cue ball make a direct collision with a stationary
pool ball and follow it with significant velocity. He concludes that the coefii-
cient of restitution of pool balls is significantly smaller than |. Is he correct?

A baseball player swings the bat with velocity ) and hits a ball traveling with
velocity u; (where u3 < 0 of course) directly back towards the pitcher. If the
bat and ball have masses m,m;, with my > m,, and the collisron is perfectly
elastic, show that the ball leaves the bat with velocity at most 2ty — w3,

A mao sits at oneend of a boxcar ofintcrnal length 4, which isstationary on
very smooth level rails. He tries to get the boxcar moving by throwing his
boot, of mass m, at the opposite end with velocity ¢ . Describe what happens,
assuming the collision of the boot with the wall is completely inelastic (i.c. it
does not rebound from the wall at all), and the total mass of the boxcar and
man minus boot is M.

In the previous question, what happens ifinstead of a boot the man throws a
very bouncy ball. whose coilision with the wall is completely clastic?

A basketball player bounces the ball (coefficient of testitution e) so that it hits
the floor vertically with velocity wg. At that moment hc falis over so that the
ball bounces freely. If no other player intervenes, how high wilt the ball rise
on the first bounce, and on the second bounce?

In the previous question, how long does the player have to regain control of
the ball before it stops bouncing?

An aniillery shell is fired at an angle § = 45° to the horizontal with velocity
vp = 450 ms~'. At the maximum height of its trajectory the shell explodes,
breaking into two parts of equal mass. One of these initially has zero velocity
with respect to the ground. How far from the firing point does the other part
fall back 10 the ground?

A ball of mass m = 0.1 kg hits a rigid vertical wall at right angles with
velocity ¢ = 20 ms™'. The impact is a height # = 4.9 m above the ground.
It rebounds and falls to the gmund a distance x = 5 m from the foot of the
wall. What is the impulse exerted by the wall on the ball? Was the collisior:
elastic?

A bullet of mass m = 10 g is firedt horizontaily into 1 wooden block of mass
M = 7 kg, which lies on a smooth horizontai table. The bullet isembedded in
the block, and the block slides with velocity ¥ = 0.5m s™ after the impact.
Find the muzzle velocity « of the gun firing the bullct, and the total mechan-
ieal energy lost in the impact.

A wooden block of mass M = 10 kg hangs freely and at rest from vertical
strings. A hullet of mass m =10 g is fired into it and it rises by #=3 cm.
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What was the velocity u of the bullet? Where does most of its kinetic energy
go?

A dart of mass m is thrown horizontally with velocity u and sticks into a
wooden block of mass M = 8m, which slides on a smooth horizontal table.
The block’s motion is resisted by an elastic spring with constant k (see
Figure). Find the maximum distance through which the block compresses
the spring. Express your answzr in terins of m, « and k.

K
u
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A freight train moves steadily on a level track with vclocity v = 108 km/h.
Snow falls vertically on to it. and accumulatcs on it at a constant rate
rm=10kgs™'. Calculatc the additional power the locomotive must expend
in order to maintain the train’s speed despite the snow.

A grain sack of mass M = 10 kg is dropped from a hcightof #=Imontoa
platform. Calculate the impulse on the platfonin. Assume that the impact is
short enough that gravity does not change the momentum during impact.
If the impact lasts Ar = 0.1 s, what is the average force on the platfonn
during the impact?
A steady stream of grain from a punctured sack falls vertically on a platform
from a height A = 1 m. Each grain lands without bouncing, and 1000 grains
land each second. Each grain has mass m = 10 g. What is the force on the
platform, assuming again that gravity does not change the momentum during
impact?
A soccer goalkeeper of mass m, = 80 kg punches a ball approaching him
hotizontally. The ball has mass m, = 0.5 kg and velocity « = 1 ms~'. imme-
diately after thc punch the ball moves horizontally away along the direction
of approach with velocity v = 0.84. Assume that the impact lasts At = 0.2s.
What is the minimum value of the coefticient 4, of static friction of the
goalkeeper and thc ground if hec does not slide backwards?

A boat and its occupant of total mass M, = 200 kg contains 10 sacks of coal
each of mass m = 5 kg. The boat is stationary because of engine failure. The
cccupant tries to reach land by throwing the sacks horizoatally out of the
boat. He throws each sack with a vclocity v, relative to the boat. Assuming
no friction. what is the velocity after the first sack is thrown out? After the
second sack is thrown out? Express your result in terms of ..

Two cars of masses m; = 1000kg and m, = 500kg, and velocities
#) = 18 km/h and u; = 36km/h collide at a right-angled intersection. After
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the collision they slide together as one. What direction (with cespect to the
first car's motion) do they move after the collision? With what velocity do
they move? How much mechanical energy was lost on the collision?

A cue ball hits a stationary pool ball of equal mass. After the coliision the
velocities of the balls make angles &,¢ to the original direction of motion of
the cue ball. Find a relation between @ and ¢, if the collision is regarded as
elastic and the balls slide rather than rolling.

A stationary spaceship of mass A is abandoncd in space and must be
destroyed by safety charges placed within it. The crew obscrve the explosion
from a safe distance, and see that it breaks the shup into three picces. All three:
pieces fly off in the same planc at angles 120° to cach other. The velocities of
the three fragments are measured to be v, 2v and 3v. What expressions will
the crew find for the masses of the three: fragments in terms of M? If ail ofthe
explosion energy E goes into the kinetic energy of the fragments, what was E
in terms of M, v?

Il CIRCULAR AND HARMONIC MOTION

PI36.

PI37.

P138.

P139.

P140.

A spaceship of mass n1= 18" kg is in uniform circular motion 4 = 200 km
above the surface of a planet of radius R = 5000 km. Each revolution 1akes
P = 2h. Calculate the tangential velocity v of the spaceship, its angular
velocity w, and the centripetal foroe aequired to keep it in this othit.

A toy car of mass r» = 0.] kg is constrained to move in a eircle of radius
r =1 m on a horizontal table by means of a string. Caiculate the tension in
the string if the car has constant angular velocity « = 1 rad s~'.

A plumbline hangs in equilibsium at latitude A. Express the angle & between
the plumblinc and the local vertical in termas of A, and the Earth's radius,
anguiar velocity and gravity R,w,g. (Use the fact that g >» RS o simplify
your answer.) Taking R = 6460 km. what is the maximum possible value of
a7

A sports car ailempts to take a bend which is an arc of a circic of radius
r= 100 m. The road is horizontal and the car has constant speed
v = 80 km/h. If the coeficent of static friction between the car tires and
the road surface is p; = 0.4, will the car stay on the road?

A mass m is antached to a string and whirled in a vertical circle at constant
speed. Calculate the difference between the tension at the lowest and highest
points of the circle.
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A mass m = 1 kg is attached to a string and whirled in a vertical circle at
constant speed. The radius of the circie is r = 1 m. Whatmustthe speed be to
keep the string taut?

In the arrangement described in P14] above, the string breaks whea the mass
is at its lowest point. In what direction and with what speed does tle mass
initially move?

A mass M moves in a vertical circle at the end of a string of length L. lts
velocity at the lowest point is 7. Showthat when the string makes an angle ¢
to the downward vertical its tension is

T= M(Sgcosﬂ-2g+%).

A conical pendulum consists of a string oflength / = 2 m and a bob of mass
n =05 kg. The pendulum retatcs at a frequency / = 2 turns per second
about the vertical. Calculate the tension T in the string and the angle n of
the string to the vertical.

An amusement park proprietor wishes to design a rollercoaster with a ver-
tical ciccular loop in the track. of radius R = 20 m. Before the cars reach the
loop, they descend from a maximum height #, at which they have zero
velocity (see Figure). Assuming that the cars roll freely (no motor and no
friction), how large must # be to keep the cars on the track?

A bobsleigh run consists of banked curves. One of the curves is circular and
has radius » = 10 m, and is banked at an angle @ = 60° to the horizontal.
Negtecting friction, what is th: maximum velocity at which a bobsleigh can
take the curve?

A fighter airplane has maximum level speed v = Mc¢,, where M is the Mach
number and ¢, ~ 348 m s~ is the speed of sound. The maxi mum acceleration
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the pilots can withstand without blacking out is a = 6g. How tight a turn can
the fighter make at top speed if M = 2? What if M =37

For the airplane of the previous question. what is the angle of banking to the
horiizontal in its tightest turns? If the pilot’s mass is m7 = 65 kg, what is his
apparent weight in the turns? (The lift on an airplane acts perpendicular to its
wings.)

A rail track has bends with radius of curvature as small as » = 4 km. If the
passengers complain when accelcrations cxceed @ = 0.05g, how fast can
trains travel? Commcnt on the feasibility of trains running at v = 400 km/h.

The dining car of a train uses water glasses of diameter ¢ =8 cm. If the
maximum centripetal acceleration of the train is a = 0.05g, how close to the
brim can these be filied without spilling?

(Hinr. Remember that pressure = force per unit area, and consider the
equilibria of the horizontal and vertical columns of water meeting at a
point on the outer side of the glass.)

Two equal masses m are attached by a siring. One mass lies at radial distance
r from the center of a horizontal turntable which rotates with constunt angu-
lar velocity w = 6 rad 5™\, while the second hangs from the string inside the
turntable’s hollow spindle {sece Figure). The coefficient of static friction
between the turntable and the mass lying on it is g, = 0.5. Find the maximum
and minimum values rous, 7y, Of r such that the mass lying on the turntable
does not slide.

The bends on a cycle track are semicircular, and the track is banked at an
angle a to the horizontal. At what speed iy, can a cycle and rider of mass M
take these bends in horizontal circular motion of radius r even if there is no
friction between thecycle tiresand the track? Find the value of the frictional
force f if the speed is vy = 2w, and also if it is v» = 1y/2. {Assume that the
rider can always lean the cycle to avoid overturning.)



CIRCULAR AND HARMONIC MOTION k{*]

PI53.

P54,

PI55.

Pi56.

PIS7.

A satellite is in a circular orbit whose height above the Earth is much less
than the latter’s radius R. = 6400 km. What is its period?

You are driving yourecar along a stra ght road at speed vy when you suddenly
come to a F-intersection a distance r ahead with a river along the far side (see
Figure). With maximum braking, the car would just stop without skidding
with ils nose overhanging the river bank. Should you attempt o take the
turn?

= S S i e s e

A pendulum has length ! = | m. How many swings (to the neacest whole
number) does it perform in one hour?

A pendulum is suspended from the ceiling of an clcvator and set swinging
while the elevator is at rest. A remote camerz monitors the swing rate. How
could you tell if the elcvator moves up or down?

When a mass m = 1 kg is hung vertically from a certain spring, it extends the
spring by Ax =0.1m. Find the period of oscillat'on of the mass-spring
system, if it lics on a smooth horizontal table.
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Two students have a spring (of unknown constant), two equal masses 7+ and
n string whose length can be ad justed. They wish to construct two oscillating
devices (a mass-spring system and a pendulum) with cxactly cqual periods.
What should they do?

A mass m = 0.2 kg and a spring with constant & = 0.5 N m ™' lie on a smooth
horizontel table. The mass is released a distanec xy = 0.1 m from the equili-
brium point. At what later time does the mass first pass through the point
x1 = 0.02 m from equilibrivm? What is its velocity then?

A pendulum of iength / = 9.8m hangs in equilibbium and is then given
velocity ve = 02ms™! at its lowest point. What is the amplitude of the sub-
sequent oscillation?

A spring of constant k = 0.5Nm™' and an attached mass m oscillate on a
smooth horizontal table. When the mass is at position x; = 0.1 m its velocity
is 1 =—1ms™', and at x; = —0.2 m it has velocity v; = 0.5ms~L. Find m
and the amplitude 4 of the motion.

A delicate piece of electronic equipment would be destroyed by vibration at
frequencies greater than v, = 10s™'. It is transported in a box supported by
four springs. The total mass ofthe equipment and the box is M = 5 kg. What
constant & would you recommend for the springs?

A mass M = | kg is connected to two springs 1. 2 of constants &) = INm ',
k2 =2Nm"! and slides on a smooth horizontal table (scc Figurc). In the
equilibrium position it is given a velocity v, = 0.5ms™' towards spring 2.
How long will it take to reach its maximum compression of spring 17 What
will this be?

In the previous questi'on, how long does it take for the mass to rcach the
point whcre it compresses spring i by x = —0.1 m for the first time?

When connccted to a spring, a mass oscillates on a smooth horizontal tabic
with period P. A second spring with the same constant is now connecied
between the first spring and the mass. What is the new oscillation petiod?

A small platform of mass m = 1 kg lies on a smooth table and is attached to a
wall by a spring. A biock of mass M = 4m lics on the platform. The plat-
form-block sysitem oscillates bodily with frequency 1= | s'and amplitude
A =0.1 m. Find the spring constant k¥ and the maximum horizontal force
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exerted on the block during the motion. If the coefficient of [riction between
the dlock and the platform is g, = 0.7, how large an amplitude can the
oscillation have without the block sliding from the platform?

Il GRAVITATION
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Compute the gravitational attraction force between the Sun and the Earth.
(The massof the Sun is 2 x 10* kg, that of the Earth is 6 x 10 kg, and their
separation is ¢ = 1.5 x 10" m.)

A ptanet has a circular orbit of radius @ about the Sun, of mass M. Whatis
the length P of the planet’s year in terms of these quantitics? (The planet's
mass is much smaller than the Sun’s.)

The effective gravity g4 at a point of the Earth's surface is defined by weigh-
ing an object and dividing the result by its known mass. What is the ratio of
the effective gravity between the Earth’s equator and the poles? (Assume the
Earth is a sphere of mass M, = 6 x 10** kg and radius R, = 6.4 x 10° m.)

What revolution period P, must a spherical celestial body of mass Af and
radius Rhave if the effective gravity is zero at its equator? Find this value for
the Eartb (mass M, = 6 x 10*' kg, radius R, = 6400 km).

1s it likely that a star can have a rotation period shorter than the value P,
defined in the previous question? The rotation periods of pu/sers are detect-
able by radio astronomy and are found to be as short as P, =5 x 10 3
Are they more likely to be white dwarfstars (mass M, = 2 x 10°° kg, radius
R. =5000km) or neutron stars (mass M,=2x 10 kg radius
R, = 10km)?

A certain planet has mass M ,, which is 1wice the mass M of the Earth. On
the planet the weight of any body is half the value it has on Earth. What is
the planet's radius in tertns of the Earth's radius R,”?

The Earth's distance from the Sun is known to be a = 1.5 x 10" m (the
astronomiical unit). Estimate the Sun's mass M,

Estimate the mass M, of the Earth from the facts that g =98 m 52 and
R, = 6400 km.

A toy pistol uses a spring to fire a plastic bullet. On Earth the gun can propel
the bullet to a maximum height A, above the firing point. The gun is taken 10
the Moon and fired by an astronaut, who obscrves that the bullet ean reach a
height An, = 6h.. Find the acceleration g, duc to gravity on the Moon. (The
heights #,, k., can be assumed much smaller than the radius of the Earth and
Moon respectively, and air resistance is to be neglected.)
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PI76. An artificial satellite is called geostationary if it orbits directly over the equa-
tor ai exactly the same angular velocity as the Earth. Find the height of such
a satellite above the Earth. (Earth's mass M, =6 x 107 kg, radius
R,=64x10°m.)

PI77. Clearly, it would be useful to have a geostationary eommunications satellite
placed directly over every large city. Yet there are none. Why not?

P178. A space shuttle is in a circular orbit at a height i above the Eaith. A small
satcllite is held above the shuttle i.c. directly away frem the Earth) by mcans
of a rod of length / and then released. What is its initial motion relative to the
shuttle?

P179. The space shuttle of the previous question fires a retro rocket, i.e. onc dircc-
ted with its exhaust pointing forward. What will happen to the shuttle?

P180. An artificial satellite is in a circular orbit of radius r about a planet of mass
M. Find its speed and angular momentum perunit mass. The planet’s atmo-
sphere exerts a drag on the satellite in such a way that its orbit remains
circular. Docs it slow down or speed up?

P181. Show that the Sun’s gravitational pull on the Moon is more than twice as

large as the Earth’s. Why does the Moon not fly off? (Mass of Sun

s=2X% 10*kg, mass of Earth M, =6x 10**kg; Sun-Earth distance
a=15x 10" m, Earth-Moon distance r = 3.9 x 108 m.)

P182. A non-rotating planet of radius R has a circular orbit of radius « about the
Sun (mass M). Show that on the planet’s surface, the effeciive imvard grav-
itational acceleration gy is lowest at the points nearest to and furthest from
the Sun, and highest on the circle squidistant from these two points: (see
Figure). Assuming a>» R, show that the difference in accelerations is
approximaiely 3GM R/d’.

Ta Sun A, 8 pointe of lowas\ g,.
C - cirtle of highesl g
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Ifin the previous problem the planet is completely covered by an ocean, what
is the ratio of its maximum to minimum depths? If the planet rotates, what
would the inhabitant of a small island observe?

Show that the Moon raises about twice the tide that the Sun does. When
would you expect the maximum and minimum tides to oocur? (Masses
M ¢.M,, of Sun and Moon arc 2 x 10,7 x 10%2 kg, Earth-Sun distance
a=1.5x 10" m, Earth-Moon distance & = 3.8 x 10° m.)

Why are no tides ohserved on the Great Lakes or the Mediterranean?

Because the Earth does not rotate synchronously with the Moon, dissipation
in tides cause angular momentum to be transferred from the Earth’s spin to
the Moon's orbit. Show that the Earth-Moon distance and the length of the
Earth day must be (slowly) increasing. If the process will stop when the
Earth-Moon distance is about 1.5 times its current value, what will the length
of the day be? (Earth’s mass M, = 6 x 10*! kg, current Earth-Moon distance
b=38x 108 m)

What is the escape velocity fiom Earth? (ie. the velocity with which an
object must be launched in order 10 escape to infnity)., (Earth mass
M.=6 x 10* kg, Earth radius R, = 6400 km.)

How does the escape velocity from Saturn compare with that from Earth
(eompare P187)? (Saturn mass M, = 95M,, Saturn radius R, = 9.4R,.)

A space probe is launched, but by mislkap achieves a vertical speed vy onty
three-quarters of the escape velocity. It then goes into a circular orbit: find Its
radius in terms of the Earth’s radius R..

A rocket is launched from Earth (mass M, radius R.) with velocity vy, and
reaches radial distance r = 6R, with velocity v = ty/10. Express v in terus
of M,, R,

What is the maximum height that the rocket of the previous problem could
reach if launched veitically?

A space station orbits the Earth (radius R,) at height R,/2 above its surface.
What is its speed? The astronauts on board launch a rocket. What minimum
speed with respect to the station does it need in order to leave the Earth's
gravitational field?

The escape velocity from a black hole of mass M equals the speed of light ¢.
What is its ra“dius? Evaluate this if (a) M = Sun’s mass Mg, (b) M = 3M,
Mg =2x 10% kg.)

Consider the 3M;, black hole of the previous question. How does its average
density compare with that of the atomi'c nucleus? (g, = 10 kg im=3.)
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PI95. The nuclei of some galaxies are thought to contain supermassive black holes
with M =3 x lO"M.. How do their average densittes compare with that of
aie? (e = 1.3 kgm™2)

B RIGID BODY MOTION

PI96. A car accelerates uniformly from rest for 10s, when its velocity is
v=10ms"'. Assuming that the wheels do not slip, find the final angular
velocity « of the whecls and the angular accelemtion a. The radius of the
wheels is R =0.5m.

P197. Four masses are attached to a massless circular hoop of radius R = | m as
shown in the Figure. Find the moment of inertia of the resulting configura-
tion about a perpendicular (z)} axis through the hoop's center (7, = | kg,
m> =2 kg, m3 =3 kg). Aforee F = 5 N is applied tangentially to the rim nf
the hoop. What is its angularacceleration a?

PI98. In the previous problem, what are the moments of inertia 7, 7, about the x
and y axes respectively?

y
\ -
P199. A uaiform circular cylinder of mass i, radius r and length / = r is allowed to

roll horizontally down an inclincd plane of angle a = 60° to the horizontal
(see Figure). It starts from rest with its center of mass at a height & + r above

g
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the base of the plane. Calculate the time ¢, for it to reach the bottom (i.e. to
roll through a height #). Compare your result with the corresponding time ¢,
for a uniforn sphere of mass 7 and radius r. Assume that there is no slipping
in cither casc. Compare ¢_,f, with the tiroe ¢y for a mass to slide through the
same height without friction.

A solid uniforin cylinder of mass m and radius r rolls without slipping down
an inclined plane with a vertical circular loop of radius R fixed at the bottom
(see Figure). Thecylinder starts to roll from rest at height #. Y oumay assume
that r € A, r << R. What is the minimum value 4, of 4 such that the cylinder
does not fall from the circular loop? A cylinder with the same mass m all
concentrated in a thin shell at radius r is released fromrest ai & = #,,. Docs
this cylinder complete the loop or not?

A body of mass M has moment of inertia / about an axis through its center
of mass. Show that its moment of inertia about a parallel axis a distance ¢
from the fust is 7 + Md” (parallel axes theorem).

A mass m hangs from a string whose other end is wound on a circular pulley
of mass M = 2m and radius R. The string does not stretch or slip. Find the
linear acceleration @ and the string tension T in terms of m,g, and R. If the
mass starts from rest, calculate the total angular momentum L about the
pulley’s center after the mass has desocended a height 7 = R,

A child's top is given angular momentum L about a vertical axis. Why does it
not fall over untit this has been lest? Explain qualitatively what happens if
one tries to push over a spinning top.

A rifie barrel has a spiral groove which imparts spin to the bullet. Why?

A turntable consists of a thin horizontal disc of mass M and radius R, and
rotates without {riction at constant angular speed w. At a cectain instant a
drop of glue of mass # = M /10 falls vcrtically on to the turniable and
adheres to a point at a distance r = 3R/4 from the axis. Find the new angular
velocity of the tumtable.
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P2I2.

A pendulum consisie of a wniforal rod AB of length / = 0.5 m and mass
M = | kg. Caleviate the penod Pof Ll pendulum in the quses

(2) - the pendulum is suspended from poinl 4,

(b)- itis suspended from a poinl C such that AC = I = /4.

. A skaler spins wilh aogulur velocity we =6 vads™' with his arms ex eaded.

How fast will he spin with his arms by his sides?

Trewl the skater's body asa unilorm cylinder of cadius R = 20 cmi; a pprox-
imate his ams a5 unifoim rods oflenglh L= 7¢8cm and mass m =4.5 kg.
His total mass cxcluding anins is M = 70 kg.

. A man of mase » =80 kg stands on a flat horizontal disk of mass

M =160 kg neas ils edge. ut cadius r=2.5 m. The disk is free to colate
abcut i avis. At o ccrtain jastanl the man begins to walk around Ihe disk
clge with constant velotly v=2m 9 ! with respecet (o the Earth, IFhis et
do not slip on the disk. how long willil take the man to retur to the same
point on lhe disk? What will happen if the man stops walking?

. A pool ball of mass m and radius R is given an initial diding velooty 1y (no

rotution) #n a horizenta] pool table. The coeflicient of friction bewween the
ball and the table i3 u. flow long will it take forthe ball to start a puse rolling
motion (no siding)? What will be its velocity v ut Ihat pome?

A baseball plzyes strikes the balt a distance x (rom the handle of the hat,
which has mass M and moment of incrtia £ about the ecnter of mass. If the
lstter lics a distance / from the handle, how should the player choosc i so that
his hands experience no reaction force?

A pool ball has radius f and mass M. A playcr hils it a honzontal blew with
her cucat height # above the table. How should she choose frso that the ball
rolls withoul sliding?

in £208, if there is fniction about the disk axis, what happcos when the man
stops walking?




CHAPTER TWO

ELECTRICITY AND
MAGNETISM

B SUMMARY OF THEORY
l. Coulombs Law

@ The force between two charges «;, g3 with separation r is

N2
= . 1
4regr? M
in vacuo (or air), where the charges are in coulombs (C). The force acts along
the linc joining the charges, and is repulsive forcharges of the same sign and
attractive for charges of opposite sign. ¢, is a constant, the permeability of
vacuum.

2. Edectric Field

. We define the efectric field E as the force on per unil static positive charge.
The units are N C~'. A general charge g experiences force ¢£ in the same
direction as £ if ¢ > @, and the opposite direction otherwt'se. The electric field
due to a point charge g is

L]
Ex—te
dregr?’

aud is radial. If certain charge distributions produce electric fields Ej, E3,. ..
at a point, the resuhant electric field has components

Ec=Ly+ £y (3)

and similarly for the other components £y, E..

)

47



48  PROBLEMS — CHAPTER 2. ELECTRICITY AND MAGNETISM

The electric charge and electric field vanish everywhere inside a perfeet
conductor: all charge must be confined 10 a thin layer at the surface.

@ Gauss's law states that the flux of electric field over a closed surface is 1/¢q
times the 1o1al charge enclosed. This agrees with (1) for a point charge, and
shows that for example

pa X .

Anegr

at distance r from a very long line of charge, distributed at A C m'.

3. Poeential

@ The potential arapointis the work done against electric forces in moving unit
positive charge from infinity 10 the point. The units are volts = J C™'. The
work done in moving a charge from one point 10 anothcr dcpends only on
the potential difference between the points, and not on thc path betwcen
them. The potential difference in a uniforn field £ between two points is

V = Ez, (5)

where z is the distance measured in the direction of the field. The potential at
distance r from a point charge q is

q
V= i
dregr ®

inside a perfect conductor the potential is constani, since the field vanishes.

4. Capacitance

@ A capacitor is a device for storing charge, consisting of conductors sur-
rounded by an insulator or diclectric. The capacitance C of a capacitor is a
measure of its ability to store charge and is defined as

gl
C=W' (7N

where g is the charge on either conductor and AV is the potential difference
causing the accumulation of this charge.

@ The capacitance of 2 paraliel plate capacitor is

A
C= Kn‘CoE. (8)
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where Ky is a dimensionless constant characteristic of the insulator between
the plates {the dielectric constant), A is the area of one plate. and  the plate
scparation. It is assumed that A >» &,

. If capacitances C1,C3.. .. are connected in series, the total capacitance is C,
where

1 1 i
—=—+—=+... 9
o C.+Cz+ ®)

If they are connected in parallel the total capacitance 15

C=C+Cr+... (10)
@ The electrostatic energy stored in a capacitor is

o vy 4
=73 =73 Ta¢ an

£. Current and Resistance

@ Eleciric current is defined ass (charge transported)/(time). The electromotive
Sforce, usually ahbreviated to eraf, of a battery is equal to the potentryal dif -
ference {or voltage drop) between its terminals when no current flows.

@ The resistance R of past of an clectsic circuit is defined as the potential
difference required to make unit current fiow. It is measured ir ohms (£2).
The voltage required to make current / flow is thus

V= IR, (12)
which is known as Ohm’s law.

@ The resistivity p of a medium is defined as

RA
=7 (13)

where R is the resistance of a length / of a cylinder of cross-sectional area 4
made of the medium. p is measured in 2 m.

. The power dissipated in a resistor is

v?
p— 2 p—
P=VI=I'R=—, (14)

which is lost as heat.
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@ If resistors Ry, R,, ... are connected in series the total resistance is
R=R +Ry+..., (15)

while if they are connected in parallel the total resistance is R, where

+—+... (16)

@ The flow of current in a direct current (DC) circuit is determined hy
Kirchho s laws. These state that:
(a) — The 101al net current at each junction of a circuit is zero.
(b) — The total potenti'al drop around any closed circuit is zero.
Note that in {a), currents are counted as having opposite signs when flowing
into and away fiom the junctyon. In (h) we must be careful 10 include all the
potential drops V = IR cansed hy resistors, as well as any emf sources.

6. Magnetic Forces and Fields

@ A magnetic field is present if a charge experiences a force resuiting from its
motion. The magnetic force F on a charge ¢ moving with velocity » at angle 8
10 the field direction is

F = quBsiné, (17)

where the direction of F is given by the right-hund rule: point the extended
fingers of the right hand in the direction of the field and the thumb in the
direction of motion of the charge. The palm then pushes in the directon of
the magnetic force on a positive charge. The force is reversed if the charge is
negative. The unit of magnetic field is the tesla (T), sometimes called the
weber per square meter. The Earth’s magnetic field is of the order 10°* T.
The total force on a charge due to both electric and magnetic fields is usually
called the Lorentz force.
The force on a short length A/ of wire carrying current 7 is

AF = [BAising, (18)

with the direction given as before. The force exerted by uniform field B on
any length / of a straight wire is

F=1IBl (19)
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@ A magnet of dipole moment g placed at angle # to the direction of a magnctic
field 8 will experience a torque

T = —uBsind (20)

trying to align it to the field direction.

@ All magnetic fields result from electric currents. The fields of permanent
magnets are caused by charge motions at a microscopic ievel.

Ampére’s law states that the sum of the products of the tangential magnetic

field with the length of each element of a clnsed curve is g times the total

current enclosed by the curve. gy is a constant, the permittivity of vacuum.

@ The field of a long straight wire caitying cucrent / is
p=tol (21

275’

at distance r from the wire. The fieldlines are circles centered on the wire with
planes perpendicular to it.
The field inside a long solenoid with n loops per unit length cariying
cuircnt / has the constant value
B = pgnl (22)

in the intcrior.
The field inside a toroidal coil with & loops carrying current 7 is
peNT

B =)
2ar

; (23)

where r is the rachal distance of the point from the center of the torus.

@ The magnetic force per unit length between two long parallel wices with
separation d carrying currents /|, /, is

T

F, = 2
i 2md

(24)
The force is attracu've if /; and /, are in the same direction and repulsive
otherwise.

7. Electromagnetic induction

@ The magnetic flux @ through a surface of area A is defined as

& = BAcos#, (25)

where & is the angle between the normal to the surface and the field direction,
and it is assumed that 8 and # do not vary appreciably over the surface.
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@ Faraday's law of magnetic induction states that the rate of change of magnetic
flux through a circuit is minus the induced emf in the circuit, i.e.

Ad
£= = A (26)
where A®,A¢ are the changes in flux and time.

The minus sign in this equation ¢xpresses what is sometimes called Lenz's
taw: the induced emf is always in the direction opposing the change in mag-
netic flux that produced it.

As a corollary, one can show that the emf induced between the ends of a
rod oflength { moving with unif orm velocity v petpendicular to itself and at
angle 8 1o the field is

£ = Blusin 8 27)

The dircction of the em{ is given by the right-hand rule.

@ A time-varying current in a circuit induces an emf’. This effect is calted se{f-
inductance. If a change A7 intime At induces emf V', we may write

Al
V=-L (28)
The minussign here again refiects Lenz's law. The coefficient L is determined
by the geometry of the circuit and is called iis self-inductance. The units of L
are henrics (H).
The self -inductance of a coil of N turns, cross-sectionat area A generating
magaetic field B from current’ is

=% 29)

B ELECTRIC FORCES AND FIELDS

P213. Twochargesq, =2 x 18~ Candq, = 4 x 10~° C are held a distanced = 1 m
apart. Calculate the force exerted by these two charges on a charge
Q= 1075C. if it is placed halfway betwecn them. Is there a point between
the two charges where the focce vanishes?

P214. Charges ¢; = 0.09 C, g = 0.01 C ate a distance / = | m apart. A charge Q is
held fixed on the line between them, a distance x from ¢,. What value must
0, x have for g, ¢; 1o feel no net force?
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p2is.

Pal6.

P217.

P218.

P219.

P2l.

A charge @ = L C is at the origin of coordinates (see Figure). Calculate the
magnitude and direction of the force exerted on it by the charges
g1 = —0.5 x 107%C a1 position (0, 3), and ¢, = 10°*C a1 position (4, 0),
where ali distances arc in meters.

Q

Charges ¢, = —2 x 107%Cand¢; = 3 x 10®Care fixed a11he points A,(8,0)
and A,(0,10) respectively in a Caitesiai coordinate system, with the length
units being centimeters. Calcutate the force on a charge g3 = -107%C placed
a1 the origin.

A small sphere carries charge Q and can slide freely on a horizontal insulating
rod of length /. Two furthersmall spheres have charges ¢,4g and are fixed to
the ends of the rod. Where docs the sliding spherc come to rcst?

Charges 4,4, 3, ¢4 are placed a1 the corners of a square of side 2 = 2 m. If
¢ =¢2=¢:=0Q=1C and ¢4 = —Q, find the eleciric field at the center of
the square.

In a hydrogen atom the electron is a1 a distance @ = 5.28 x 10™"' m from the
nucleus, which consists of a single proton. What is the electric field of the
nucleus at the position of the electron? What is the force on the electron? If
the electron is in a uniform circular orbit around the nucleus what arc its
speed and orbital period? (Treat the electron’s motion using classical
mechanics.)

. The elecinc field just above the Earth’s surface is known to be

E,= 130N C~'. Assuming that 1bis field results from a spherically sym-
metiical charge distribution over the Earth, find the 1o1al charge Q. on
the Earth. (Earth’s radius R, = 6400 km.)

Assuming that the Earth’s field mentroned in the last problem acts vertically,
what charge ¢ would a ball of mass» = 10 g have to have 10 hover in mid-air?

. Poinicharges ¢ and 9g are a distance / apart. Where should a third charge Q

be placed so that the net force on all three charges vanishes? What is the
required value of Q7
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P224,

. Two horizontal Flales of opposite charge create a constant electric field

Ey = 1000 N C' directed vertically downwards (see Figure). An electron
of mass m, and charge —e is fired horizontally with velocity vy =0.1¢
between the plates. Calculate the electron’s acccleration; if the plates have
length /¢ = | m, find the electron’s deflection from the horizontal when it
emerges. Neglect gravity in this calculation: is this justificd?

A beam of electrons is injected horizontally with velocity v, = 10* m s~ into

a vacuum tube in which there is a constant electric field £5 = 2000 N C™'

directed vertically upwards. Attheend of the tube the beam hits a lfuorescent

screen h = 10 cm lower than the injection point.

(a) If the polarity of the field is reversed what happens to the impact point?

(b) What is the horizontal distance / between the injection point and the
screen?

. In the cathode ray tube of a television set electrons are accelerated by a high

voltage ¥. They are then deflected by a pair ofhorizontal plates of scparation
d, length / and potentiat difference V) (see Figure). The electrons then hit a
fluorescent sereen at distanee L from the plates, How must ¥ » be chosen so
that the electrons just clear the plates? (Neglect gravity.)

screen

. In an experiment to measure the electron charge —e (a modern version of

Miltikan’s oil drop experiment) plastic balls of radius r = 107 cm and den-
sity p = 0.8gcm™ are placed in vacuum between two horizontal charged
plates. which create a uniform electric field E, directed vertically downwards.
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P233.

P235.

The field is gradually adjusted until some balls remain stationary. In
onc cxperiment, balls were found to remain stationary for fields
E =3.13x10°'NC™', E;,=369x 10°NC™". Assuming that the balls'
charges differ by exactly one electron, cstimate e.

. Two masses m = 1 kg with equal charges Q arc suspended by light strings of

length Z, = | m from a point. The strings hang at 30° to the vertical: what is

a?

. Two small metal balls are tied together by a taut string of length 4 = | m.

The balls are electrically neutral and the string can withstand a maximum
tension 7, = |€ON. Calculate how many electrons would have to be
added in equal numbers to each ball before the string breaks. s this a
large number compared to the nwnber in a metal ball of mass 10g?

. Two alpha particles (helium nuclei, charge ¢, =2e = 3.2x 107'°C, mass

m, =6.68 x 10737 kg) arc a distance 4 = 2 x 10~ "*m apart. Calculate their
electrostatic repulsion. How dees this force compare with their gravitational
attraction?

. What electric field £ is required to exert a focce on an electron equal to its

weight on Earth? Compare this field with that produced by a proton at a
distance of ¢ty = 10~'% m (o ~ typical size of an atom).

. A very long solid cylinder has radius R = 0.1 m and uniform charge density

po =102 Cm~. Find the electric field at distance r from the ax’s inside the
cylinder in terms of r/R.

. A charge g of mass m is constiained to move along the y-axis. Charges

Q = —4/2 are placed on the .x-axis at positions x = +a. Calculate the force
on the charge ¢ at any position y. Show that the osigin is an equilibrium
point. Prove thut for y < a the charge will oscillate about the origin. Find the
periiod of this oscillationif ¢= 10> C,m =1 kgand a =2 m.

Electric charge is distributed at a line density A = —2 C m™" along an infinite
line. A point charge ¢ = 0.01 C of mass m = t kg orbits in a circle whose
plane is perpendicular to the line. What is its velocity?

. Point charges ¢ and —¢ are located at points A(0, —a) and B(0,4) in a

cartesian coordinale system (this type of artangement is knowo as an electric
dipole). Find the electric field at any point on the x-axis. Show that for x 3 a
the field decays as x—°.

A large square insulating plate of side a and negligible thickness is uniformly
charged with total charge 100Q. The plate is placed in the p~z plane. A
spherical sheil of radius r is uniformly charged with total charge Q and has
its center at the point (4,0,0) (scc Figure). if @ = 1004 and r = 4/5. calculate
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z
the electric field at any point P, inside the shell, and at the point
Py =(d/2,d/2,0). Express your answer in terins of Q, ¢y and d.

P236. A uniformly charged insulating sphere of radius  is surrounded by a con-
centric conducting shell of inner and outer radii 2«,3a. The total charge of
the conducting shell is zero and that of the insulating sphere is Q. Find the
electric field at all ponts. Plot your result.

P237. A point charge ¢ is at the center of a thin spherical shell of radius R carrying
uniformly distributed charge —24. A second concentric shell of radius 2R has
uniformly distributed charge +4. Find the electric field E(r) for all values of
the radial coordinate r, and plot your results schematieally.

P238. A long coaxial cable consists of a uniforn cylindrical core of radius R with
uniform volume charge density p and a hollow cylindrical sheath of outer
radius 2R with sur face charge density o (see Figure). What value must ¢ take
(in terms of p, R) so that the external electric field vanishes?

" (Surface
charge)
density

2R
(Volume
P charge)

P239. A very long cylinder of radius R has uniform charge density p C m~*. Find
the magnitude and direction of the electric field £ everywhere. Plot £ as a
function of r, the distance from the axis of the cylinder.

P240. A point charge g of mass m is released from rest at a distance 4 from an

infinite plane layer of surface charge ¢ = 7q/d2. The point charge can pass
through the layer without disturbing it. Find the acceleration and velocity of
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P24l.

P242.

P243.

P244,

P245.

P246.

the charge as a function of position. Show that the motion is periodic and
find the period P.

ELECTROSTATIC POTENTIAL AND
CAPACITANCE

Two charges g, =5x 1078 Cand gy = —5x 10~® Care held a1 a distance of
d =12 m. Calculate the electrostatic potential at the points A and B in the
Figure.

In order to hold a small charged body in equilibrium against gravity an
electric field £ = 2 x 10° NC™' is needed. What potentiat difference would
be required between two plates held d = 2 cm apart in order to achieve this
field?

An elementary particle of charge ¢ = +e and mass m = 2m,, {m, is the proton
mass) falls from rest at infinity towards the Earth. assumed electrically
neutral. Find its kinetic energy 7 when it reaches a height A= 100 km
above the Earth's surface. (Mass A, of earth =6x 10%kg, radius
R, = 6400 km.)

The same particle is now projected from infinity towards the Earth with the
kinetic energy T lound above. What must the totalchargeQ, on ihe Earth be
if the particle never reaches its surface?

An elcmcntaty partiele of mass m and charge +e is projected with velocity v
at a much more massive particle of charge Ze, where Z > 0. What is the
closest possible approach distance 4 of the incident particle?

Two particles with eleciric charges ¢, = +2e and g,= —e have masses
m = 4m, and m; =m, respectively. (—e is the electron charge and m, the
proton mass.) The particles are released from rest when very far apart, and
approach each other under their mutual electrostatic attraction. Find their
relative velocity when they are at a distance L = 10~ m apart.

An electron volt (eV) is an energy unit equal to the kinelic energy acquired by
an electron acceterated through a potential difference of | volt. This is a
common energy unit in atomic and nuciear physics. Expsess the unit in
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P247.

P248.

P249.

P2SI.

joules, given that the electron charge is e = —1.6 x 10~'* C. What potentral
differenceis réquired to accelerate an alpha partycle (charge +2¢) to an cnergy
of 10° cv?

Charges ¢ = 19°¢cC, g2 =2%10"%C and g; = =3 x 107° C are held at the
points (x; =0,y =0),(x2 = 3,y; = 0),(x; = 1,y; =4) of a Cartesiancoor-
dinate system, ihe units of length being meters. Calculate the potential at the
point P with coordinates (2,2).

A uniform electric field £, = 1060 N C~' in the positive y-direction (see Fig-
ure} is maintained between the planes y = 0 and y = y, = 5 cm. What is the
potential difterence AV between the two planes? A charge @y = ! Cis moved
quasistatically from the upper plane [position (0,.v,)] along the 3-axis to the
lower plane. i.e. to (0,0). What is the mechanical work done? Show explicitly
that the same work is done if the cbarge is broughi to the lower plane along a
diagonal path to the point (x;, 0}, where x; = 5 cm (see Figure).

x

The electric potential at a certain distance from a point charge is 500 volis.
The electric field at that point is 1600NC~'. What is the value G, of the
charge, and what is the distance of the point from the charge?

. Two points A and B lie a distance d = 10m apait in the direction of a uni-

fornelectricfield E = 200 N C™'. What s the potential difference between A
and B'? What work is done moving a charge ¢ = —0.01 C from A to B
(a) — directly along the straight line AB; and
(b) — by moving | m from A to the left of the line, and then directly
towards B in a straight line?

A sphericaleonducting shell of radius @ = 10 m ischarged by attachingit to a
DC source of voltage & = 1000 V. Whatis its final charge? How much work
is done in bringing a test charge ¢ = 1 xC from infinity to the surface of the
shell? If the test charge can penetrate the shell, is extra work required to bring
it to thc center?
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. N = 1000 spherical drops of mercuty (which can be regarded as a perfect

conductor) each of radius r all have the same potential ¥ when they are far
apart. They merge and fonu one spherical drop. Find the original charge on
each drop, the charge Q on thc merged drop, and its potential V,. (Express
your results in terms of r, V and physical coustants.) How and why does the
total electrostatic energy change in the merging?

. In a Rutherford scattering experiment a bcam of alpha particles, each with

charge g, = 4e and energy £, = | MeV = 10° eV is incident on a gold foil,
See P246 for the definition of an electron volt {e¢V). What is the distance of
closest possible approach 4 of an alpha pariicle {0 a gold nucleus (charge
9au = 79¢)? What is the ratio of an alpha particle’s kinetic energy 7, and its
cleciric potential energy U when it is a distance 2d from a gold nucleus?

. An electron is accelerated through a potential difference of 1000 V, thus

acquiring kinetic energy E, = 1000 eV = | keV (see P246). What is its
vclocity? if 7 = 10", such electrons hit an electrode every sccond. What is
the force on the electrode? What is the force if the electrons are replaced by
protons of encrgy 1 keV?

. An accelerator creates an electron beam cquivalentto a current of / = 10'A

and energy E. = 10'°eV per electron. How many electrons would hit a target
in 1 s, and how much energy would be dcposited?

. A parallel plate capacitor of capacitance C = 107% F is connected through a

resistor R 10 a power supply £ = 1000 volts. What charge @ accumulates on
eaeh plate? What is the energy thereby stored in the capacitor? When the
capacitor is fully charged it is disconnected from the circuit and the distance
between its plates is doubled. What is the stored energy now? Where did the
exira energy come from?

. To measure the capacitancc of an electrometerit is first charged to a potential

Vo = 1350 V. It is then connected by a eonducting wire to a distant metal
sphere of radius r = 3 cm. As a result the electrometer’s potentyal drops 10
V|, = 900 V. What is the capacitance C of the electrometer. and the charges
@, @ on it before and after eonnecting it to the spheie?

. lo the circuit shown in the Figure, the capacitance C, has the value 8 iF. The

space between the plates of C is filled with material of dielectric constant

— ¢, = 24uF
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Ky =3, and as a result C; = 24 uF. Calculate the potential differences V', V>
across the capacitoss, and the tozal elecirostatic energy stored in them. Recal-
culatc these quantities if the dielectric matesial is removed from Ca.

. Two capacitors C; and C, =2C; are connected in a circuit with a switch

between them (see Figure). Init'ally the switchis open and C; holds charge Q.
The switch is closed and the svstem relaxes to a steady state. Find the poten-
tial V, clectrostatic energy U and charge for each capacitor. Compare the
total electrostatic energy before and after closing the switch, expeessed in
terms of Cy and Q.

QI |C|
+1 1=

Switch /

AMAA
VYV

| |
1
C2=2C,

. A capacitor has parallel square conducting plates of side / a distance

d =1/100 apart (see Figure). It is filled with liquid of dielectric constant
K; = 2 and connected 1o a fised voltage V. The liquid slowly leaks out so
that its level decreases with velocity v. Find the capacitancc C{r) and charge
Q(r) as a function of time ¢ after the leak begins. Express your answer in
terms of {, v and physical constants.

dielectric liquid I/
leaking
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P262.

P263.

P2es.

. A parallel plate capacitor has plate area A and holds charge Q. If the distance

between the plalcs is x, find the total electrostatic energy stored in the capa-
citor. Hence show that the force between the plates is F = —@7/2¢44. A
given capacitor has square plates of sidc { = 10 em and is filled with material
of dielectricconstant K; = 3. It is found that when the capacitoris uncharged
and lying on its side it can support a mass of no more than 200 kg before
collapsing. What is thc maximum charge the capacitor can ever in principle
hold? What happens to this maximum if X, is halved?

A parallel plate capacitor of area S and separation d (wm'th S 3 d°) is con-
nected to a voltage source ¥ through a switch. Calculate the charge Q on
each plate, the electric field £ between the plates, and the electrostatic energy
U in each of the three cases below.
{a) — The switch is closed and the system reaches a steady state.
{b) - The switch is closed, the plates separation is increased to 24 and the
system reaches a steady state.
(c) — The switch is open, the plate separation is increased to 24, the switch
is then elosed and the system rcaches steady state.
Express your answers in termns of S, 4 and V,

Two conducting spheres, of radii R, = 0.2 m and R, = 0.f m carry charges
g =6x10"C, g;=—2x10"% C and are placed at a distance > Ry, R,
from each other. They are then connected by a conducting wire: what are
their final charges?

. In the previous problem, find the total electrostatic energy of the two spheres

befure and after connection (neglect their interaction energy as they are very
distant). Is it smprising that the two cnergies arc not equal?

. A conducting sphere of radius R, = I m is charged by connecting it to a

potential V= 9 x 10* V. After it is Fully charged it is disconnected. An
uncharged conducting sphere of radius R; = 2 m is brought into electrical
contact with the first sphere at large distance by means of a long wire and
then disconnected. What are the charges on the two spheces now?

Two spherical conducting shells have radii R, =a,R; =3a and equal
charges g. What is the potential difTerence between them if they are:

(a) — far apart,

(b) — arranged with one concentsically inside the other?

. A point charge ¢; is placed at the center of a perfectly conducting spherical

shell of inner and outer 1adii R,2R (sce Figure). Find the electric ficld and
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P2é8.

P269.

P270.

potential at radii rqy > 2R,rp < R and r. with R <r. < 2R. Repeat the
calculation for the case where the shell is grounded (has zero potential).

A plane parallel capacitor has square plates of side « and separation d < «
kept initrally at a potential difference V. Material of dielectric constant
K4 =2 occupies half of the gap (see Figure). The material is now pulled
slowly out of the capacitor. Find the capacitance C(.x) when the edge of
the dielectric is a distance x from the ccnter of the capacitor (sec Figure).
What current 7 flows in the circuit if the dielectric is removed a1 constant
velocity u?

Two thin concentric spherical shells of radii R4 = R, Rg =2R each carry
unifonnly distributed charge ¢. A third shell of radius Rc = R and unifonnly
distributed charge —2g is at a distance >» R from A, B. Calculate the electro-
static potential of each shell. If B and C are connected by a conducting wire,
what will their potentials be once the system reaches a steady state?

Electriic fences are widely used in agriculture. If they are capable of giving a
large cow a noticeable sbock, how are small birds able to sit on them quite
safely?
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[l ELECTRIC CURRENTS AND CIRCUITS

P271.

P274.

P275.

P276.

P277.

A student uses a car battery (emf & = 12 V) 10 power his electric razor. The
buttery supplies charge Q = 0.5 C each second. What electron current flows
in the razor’s motor and what power does the battery supply?

. A battery of emf £ = 6 V is connected 10 a resistance R. The current in the

circuit is measured tobe / = 0.2 A and the voltage drop across the battery is
Vo = 58 V. Find the internal resistance R, of the battery.

. A battery of emf £ = 10 V and intemal resistance r = 1 §2is connected 10 two

resistors R = 2§}. Calculate the curreit drawn {rom the battery if the resis-
tors R are connected:

{a) - in series;

{b) — in parallel.

A copper pipe of length { =10 m has inn¢r and outer radii r; = 0.9 cm,
ry = | cm. The resistivity of copper is pe, = 1.75 x 107592 m. Find the resis-
tance of the pipe.

Find the resistance of a copper wirc of length / = 10 cm if the wire has:
(a) - cross-sectional area 4y = 3 mm?;
(b)- cylindrical radius r = 1 cm. (The resistivity p of copper is given in the
previous question.)

Consider the circuit shown in the Figure. R, is a variable resistor, and the
internal resistance of the balteries is negligible. 1 the emfs £ of the batteries
are 6 V and R, = Ry = 29, express the current 7, in the resistor R; in terms
of R,. Is there a value of R, for which this current vanishes?

[ :]-.
AAAR

Lidle

Calculate the currents in the circuit in the Figure, where £, =7V, ;=3 V.
R =48,R; =59, R; =8 Q, and the internal resistance of both batteries is
negligible.

>
AAA
YWY
I
A
YWYy
&
A
VYV
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P279.

Find the currents i}, i» and #3 at point A of the electrical circuit shown in the
Figure.

Ry =61 Ry =41

Ry=810Q

T T

YV

E, =BV E,=4V

A bulb and an emfsource are to be connected in parallel across points A and
B of the circuit shown in the Figuwre, What should the emf X be so that no
current passes through the bulb?

—M?w—ﬁ} Al —r
. R 28 ° " X

=

. An ammeter (of resistance R4) anda voltmeter (of resistance £,) are used to

calibrate a resistor. If the resistor is connected as in Figure |, the ammeter
and voltmeter give readings 7, ¥, while theyread /3, V', in tbe arrangement
of Figure 2. The emf is the same in botb cases. Express the resistance R in
terins of the measured curtent and voltage and R4, Ry in the two cases,
Under what conditions is it correct to say that both methods give the resis-
tance R as (measured voltage)/(measured current)?
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P281. An electric circuit consists of a power supply £ and two equal resistors R in
series (sec Figure). A voltmcter of intcrnal resistance r is used to measure the
potential difterences V y, ¥y, Find ¥4 V4, in tenns of £,R and r.

AR b A a
A AAA AAA
LA A A — YVvyY

P282. Consider thethreeciccwts (a, h, ¢) shown: in the Figure. kn which circuit is the
dissipated elcctric power greatest? You may ncglcct the internal resistance of
thc power supply £.

‘b
L RS R
R3S 1
s =
= £
> - -
> = >
fg e
[ ©

P283. An electric heater of resistance R = S0 is connected to a ¥ = 110 V power
supply for a time r = 1 h. How much energy is used?

P284. If the cost of 1 kWh of electrical energy is 30 cents, how much does it cost {0
use a £00 W lamp for 24 h?

P28S. The starter motor of a car draws a current 7 = 300 A from the ¥ =12 V
battery. Whatis the power consumption? If thecar startsonly after ¢ = 2min,
how much energy is drawn from the batiery?

P286. In the circuit shown in the Figure, the ammeter reading for the current is
taken
{a) — with both switchcs open;
{b) — with both switches closed.
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P287.

=31

As 3

Ry = 24

AAAA
YV

AR =34

£=12V

The readings are the same in the two cases. The power supply & has negligible
internal resistance; using the values R; =3, R, =290, Ry=3Q and
€ = 12V, find the resistance R.

Father and son disagree abaut how to light their Christmas tree with 8
identical bulbs, using a battery of emf £. The father wishes to connect the
bulbs in series, whi'le the son argues that the bulbs will be brighter if con-
nected in parallel. Who is right?

In a military exercise a field telephone is a distance d =5 km from the
command post. The wires have resistance 7 = 6 2km ™' and the telephone
has resistance Ry = 576 2. Hoping to capture the line intaet rather than
simply destroying it, the “enemy’’ disables it hy short<ircuiting the pair of
tclcphone wires with a metai rod of unknown resistance. To try to discover
the problem, technicians mcasurc the resistance R, of the circuit twice: with
the telephone connected they find R, = 120 2, and with it disconnected they
find Ry =158 Q. How far along the line from the command post is the
problem? What is the resistance R, of the metal rod causing the short?

. Two bulbs A, B of resistance R, 2R are available to light a shared office and

P2%0.

can be connected either in series or parallel. The clerk sitting under bulb A
insists on connecting them so as to maximize the light from thai bulb, while
the other clerk argues that it is better to maximize the total light output. Can
they agree on how to connect the bulbs? (Assume that the emitted light is
proportional io the dissipated power.)

Consider the circuit shown in the Figure. AB is a uniforin wire of resistance
R,g = 209 and length ! m. The point P is a moveable connection; when this

Ei=2V
L
1"

AAAAAAAAAAAAAAAAAARA
VWYYV VWV VYV B

>A= 3001




MAGNETIC FORCES AND FELDS 67

P29ol.

P292.

is placed 60 cro from A, ithe milliamme er registers zero current. Neglecting
the internal resistances of the power supplies &1, €2, find £; and the potenti'al
difference V g across the resistor R.

The connection P is moved so that it is S0 cm from 4. Find the current / in
the milliammeter, and the new value of Vg

In the circuit shown in the Figure, an emf source £ =12 V and internal
resistance =030 is conaccted to two resistors R, =15Q and
Ry = 1.2 Q. Two capacitors C; = 0.05 xF and C; =002 xF are connected
in patallel Lo the resislors, and the switch S is open. Caleulate (he current in
the circuit and the charges Q|,01 on the capacitors once a steady state is
reached. What values do these quantities take if the switch is closed and a
new steady statc is reached?

,i 4 L
1
L_§ 7T

Inthe circuit shown in the Figure, calculatethe currents /;,/;in R), R;. What
is the potential difference V5 and what are the charges on all three capa-
citors? (E=10V. R =1, B,=4 C, =1 pF.C;=5uF)

Ay A

__AAMA

-

T 'TT

v

C G

[AAAA]
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P293.

Two very long pamllel wires are a distance d = 1 m apart and carry equal
and opposite currents of strength / = 1 A. Find the magnetie field between
the wires in their plane. An electron moves with velocity v = ¢/2 along the
line exactly balfway between the two wires in their plane (i.e. parailel to one
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of the cusents). Find the magpetic force on it. What happens if the velocity is
reversed?

P294. Two very long parallcl conducbing wires carrycurrents /; = L A, /3 =2 A in

opposite directions. They hang horizontally from pylons by pairs of insulat-
ing cables, each of length ¢ = 1 m, and are a distance d < g apart. The wires
have mass m per unit length and the cables make angles @ to the vertical (sec
Figure). Find ¢ and the magnetic field at a point midway between the wires.

P295. A circular coil has N = 10,000 turns of wire arranged uniformly (sce Figure).

P296.

The wire carries current f = | A and the inner and outer radii of the coil are
a= 1| m, 6 =2 m. Desctibe the resuitant magnetic field everywhere on the
symmetry plane of the coil, and find the field strength at a distance r = 1.5 m
from the center of the coil.

circular coil

A slender solenoid of length /= | m is wound with two layers of wire. The
inner Jayer has Ny = 1000 tures and the outer one has N, = 2088 turns. Each
carries the same current / =2 A, but in opposite directions. What is the
magnetic field inside the solenoid?
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P297. A homeowner tries to set up a simple electric doorbell mechanism (see
Figure). A permanent magnet of moment i = 10~ A.m is suspended by
a wire that resisis twisting. A solenoid of length /= 10 cm lies in the plane
of the magnet, at an angle ¢ = 45° 1o its axis. Each loop of the solenoid has
resistance r = 107> 2, and the solenoid is connected to a battery of emf
£=12 V. A torque T, = 1075 N.m is sequired to moke the artn strike the
bell: will the moechanism function? {(Assume that the magnetic field of the
solenoid at the permanent magnet is 0.0] of its value inside the solenoid.)

P298. Parallelloops of radii ro, 2r¢ are a distance d = 4ro apart and cairy currents /
in opposite senses. Find the magnetic fieid B » at the point P halfway between
the loops as a function of /,ry and physical constants.

P299. A long wire carrying eurrent / = 10 A lies in the plane of a rigid rectangular
loop carrying current f; = 1 A (sec Figure), parallel to its longer sides. The
rectangle has sides 2= 0.2 m, # = 0.3m as shown, and the wire is d =025 m
from the loop. Find the magnitude and direction of the resultant foroe on the
loop.

e — b

P300. The arrangement of the previous problem is used in the design of a magne-
tically levitated train. Many vertical loops (a rectangular coil} are fixed in
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P301.

P302.

P303.

S

A

@)

coll
“',‘lp*"-‘ {viewed end-on)

cable

each carriage directly above a cable fixed to the track bed (sce Figure). The
coil and carriage have the same length &. The carriage has weight per unit
length w kg m ™', How shouid the dimensions d, @ be chosen s as to minimize
the power requirements? If 4 = | cm, w= 1000 kg m~' and the trackbed
cable and coil each carry currents of 100 A, how many turns would the coil
need?

in the magnetically levitated train of the previous prohlem, three footbail
players each weighing 100 kg take their seats in a particular 1 m section of a
carriage. What happens to &?

A long wire carrying a current / = | A is bent at its midpoint around one
quarter of a circle of radius r = 0.1 m, the siraight parts of the wire being
perpendicular to each other (see Figure). Find the magnetic field a1 the
point O.

A horizontal conducting rod of length L and mass m can slide on a vertical
track (see Figure) and is in equilibrium at height L above a long horizontal
wire when both the 70d and wire carry current {, hut in opposite directions.
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Find 7 in terms of m, L. If the current in the lower wiie is suddenly doubled,
what is the initial acocleration of the rod?

P304. A particle of charge g and mass » moves in Lhe plane perpendicular to a
uniforra magnetic field 8. Show that the particle moves in a circle, and find
the angular frequency of the motion. What happensif the particle’s velocity
does not lie in the plane perpendicular to the field?

P30S. A cyclotron is a device in which electrons gyrate in a uniform magnetic field
B. In so doing they emit radio wavcs at the cyclotron frequency (sec previous
problem). The inventor of the cyclotron, Ernest O. Lawrence, was able to teil
whether the apparatus was opcmung even when at home (and ihus keep his
graduate students up 10 ithe mark) by tuning a mdio receiver 10 the appro-
priate wavelength and listcning for the hum. Lawrence’s original cyclotron
bad B=4.1 x 10" T. What wavelength was his radio tuned 10?

P306. Threc long wires carry currents 7, = 8 A (horizontally), /> = /; A (horizon-
tally, but opposite to the first current), and 73 = [;/2 A (vertscally down-
wards, perpendicular to the first two). Find the magneiic fields at the point
P indicated in the Figurc, witha = | m,

P307. A particle of charge ¢ and mass m is accclemted from rest by a constant
electric field & acting over a length & (see Figure). It then encounters a region
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P308.

P309.

P3t0.

P3II.
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of constant magneti'c field B, perpendicular to its velocity. Ocscribe its sub-
sequcnt motion. For what value of By will the particle re<nter the region of
constant electric field a distance d from the point at which it left?

The arrangement of the previous problem can be used to measure the ratio
g/m for unknown particles (the apparatus is called a mass specirometer).
Using the resuits of the previous problem, find g/m for a particle whose
defiection 2R is measured to be D. If £, = 10° N/C, d = 10 cm, By =0T
and O = 9.1 cm, calculate ¢ /m and compare it with the values for elecirons
and protons.

Three types of particles are emitted by a certain radioactive sample. The
particles are accelerated by 2 very large poteotial differeoce V and then
enter a region of constant magnetic field & directed perpendicular to their
motion. The radii of the particle orbits are in the ratio Ry : Ry : R3 =1:2:3
and their charges are equal. What ¢an you infer about the particles’ masses?

A particle of mass /n and charge ¢ moves with constant velocity v along the
negative x-axis, towards increasing x (see Figure). Between x =0 and x = &
there is a region of uniform magnetic field 8 in the y-dircction. Under what
conditions will the particle reach the region x > 67 if it does, at what angle to
the x-axis will it enter this region?

x=0 x=b

A charged particle is injected with velocity v into a region containing electric
and magnetic fields E, B, which are gerpendicular to each other and also to
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P3I2.

P313.

—_—
m

the particle’s velocity (see Figure). £ and B are adjusted so that the particle is
undeflected. Find its velocity v in terms of £ and B. How can this arrange-
ment be used to select only particles of a particular speed from a beam with a
range of speeds?

A slender solenoid of length L = 2 m with N = 10,000 turns carries a current
I'=2 A. Inside the solenoid, near the midpoint, there is a rectangular con-
ducting loop 4BCD (see Figure) with plane parallel to the axis of the sole-
noid. The loop has A8 = 18cm, BC = 6cm, and carries current { = | A. Find
the resultant force and torque on the loop.

A rectangular wire loop carries current / and is free 10 rotate about its long
axis (length /} in a region of uniform magnetic field B. If its short axis has
length w, show that when the loop plane makes an angle # to the field (sce
Figure) the loop experiences a torque Bliwcosd about its axis. What
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happens if the current { is reversed each time the loop is perpendicular to
the field?

P3I4. A mass M with small electric charge g slides on a smooth inclined plane of
angle 6 to the horizontal. A magnetic field B is directed perpendicular to the
section of the plane (see Figure). Calculate the acceleration of the mass when
its velocity is w.

5@

M, q

B ELECTROMAGNETIC INDUCTION

P3I5. A rectangular wire loop with sides {; =0.5 m, /; = | m is removed with
constant velocity v =3 m 5™’ parallel to its longer sides from a region of
constant magnetic field By = 1 T perpendicular to its plane (see Figure). The
loop’s electrical resistance is R = 1.5 . Find the current in the loop as a

NP S S —
-

x
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P3i6.

P3I7.

P3I8.

P3I19.

function of the distance x of its leading edge from the boundary of the field
region.

A plane loop of wire of area A is rotated about an axis iying in its plane, in a
region of magnetic field B (see Figure). Show that a current flows alternately
in the wire in one direction and then reverses symmetrically each time the
loop is rotated. If the loop is rotated N times per second, show that the
average induced emf in one half ofthe cycle is 2VA8.

2]

Axis

An emf £ is used to drive a current /| through a long solenoid of cross-
sectional area A with » turns of wire per unit length and total resistance R;.
The emf alternates N times per second (sec previous problem), and the sole-
noid is surrounded by a coil of »t turns of wire per unit length. Show that
the average emf induced in the coil over one half of the cycle is
&y = ANApgnmé, [ R).

The ends 4, B of a conducting rod of length / = 1 m can slide freely while
maintaining electrical contact with a rectangular conducting loop KLMN
(sec Figure). A constant magnetic field 8y =2 T is directed perpendicular
to the plane of the loop (info the page). Sides KM and LN have resistance
Ryy =19 and R; v = 2 §2 respectively, and the rest of the loop has negli-
gible resistance. The rod 48 is moved with constant velocity v = Sms™'
towards LN. What force must be applied to maintain this motion?

A long conducting wite is bent at an angle of 60° and liesin a plane perpen-
dicular to a uniform magnetic ficid By = 1 T. A second very long conducting
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P320.

wire is pulled with velocity v = 2 m s~' while lying on top of the bent wire so
that the points of contact and the 60° vertex make an cquilateral triangle (see
Figure). At time ¢ = 0 the triangle has side /p = 0.5 m. Both wires have uni-
form resistance per unit length r = 0.1 & m~'. Assuming perfect contact
between the two wires, express the induced emf in the tiiangle as a lunction
oftimein terms of Bg,v,{ andt. What s the value of thisemfat s = Ss? Find
the current in the triangle at ¢his time.

An amusement park owner designs a new test-your-strength machine. Con-
testants propel a metal bob up a smooth vertical slide by means of a hammer
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P32l

P322.

P323.

P324.

P325.

P326.

P327.

P328,

P329.

(see Figure). To measure the initial speed they give 1o the bob, the owner
decidcs to use the induction effect in the Earth's magnetic field (B = 107" T):
the bob completes a circuit with the sides of the slide, and a voltmeter
mcasures the induced emf. If Ihe bob is w = 10 em wide, and contestants
typically manage to make lhe bob rise to hcigbts # = 10 m, how sensitive
must the voltmeter be?

A plane conducting circular wire loop lies peipendicular to a uniform mag-
netic ficld B, and its area S{¢) is changed as S{f) = So(l — ar)for0 < 1< 1/
(So, constant). The wire has resistance per unit Icngth p 2 m~'. Find the
current in the wire.

A conducting loop ofarea 4 = I m? and N = 200 turns whose resistance is
R = 12 Qissituatedin a region of constant external magneticfield B=0.6 T
parallel to its axis. The loop is removed from the feld region in a time
=102 s, Calculate the total work done.

A physicist works in a laboratory where the magnetic field is B, =2T. She
wears a necklace enclosing area 4 = 0.01 tm? of field and having a resistance
r =0.01 Q. Because of a power [ailure, thefield decays to B, =1 T in a time
1= 10""s. Estimate the current in her necklace and the total heat produccd.

To measure the field B between the poles of an electromagnet, a small test
loopofarca 4 = 10~* m? resistance R = 10 Q and ¥ = 20 turms is pulled oot
of it. A galvanometcr shows that a total charge Q = 2 x 107°C passed
through the loop. What is &7

A coil carries a current of / =10A When the circuit is broken the
current decays to zere in a time Ar = 0.253. The inductance of the coil is
L = 18 Henry. What is the average induced cmi?

When a current in a certain coil varies at a rate of 50 A s™' theinduced emfis
V = 20 volts. What is the inductance of the coil?

A coil of N = 100 turns carries a current / = S A and creates a magnetic flux
&= 10" T m’. What is its inductance L?

A rectangular loop of conducting wire has area 4 and N turns. It is free to
rotate about an axis of symmetry. A constant magnetic field B is present and
perpendicular to the axis. Find the induced emf as a function of time if The
loop is rotated at angular velocity w.

A device for measuring wind speed has two conical cups attached to a hor-
izontal rod oflcngth L = 0.5 m (see Figurc). The rod is attached to a vertical
axle, which rotates a vertical conducting wire loop of area 4 = 0.1 m® and
N =200 turws. The Earth’s magnetic field has horizonlal component
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B=10"* T at this point. Find the maximum voltage induced by 4 wind ef
speed v = 100 km/h, assuming that the cups rotate at exactly this speed.



CHAPTER THREE

MATTER AND WAVES

H SUMMARY OF THEORY

I. Pressure

@ A force F acting perpendicularly on an area A exerts (average) pressure
F
P=—.
= ()

@ The hydrostatic pressure at depth h below the surface of a fluid of mass
density p is

P = pgh 2)

The hydrostatic pressure of the atmosphere is always close to P, = 10° Nm™
at sea level. P, is called 1 atmosphere {1 atm).

() Archimedes’ principle states that a body partly or wholly immersed in a fluid
experiences a buoyaicy force cqual to the weight of the fluid it displaces. This
force acts vertically upwards through the center of mass of'the displaced fluid
(the center of flotation or buoyancy).

2. Membranes and SurfaceTension
Flexible enclosures such as balloons or tires exert a tension force resisting the
pressure of their contents.

[ I spherical enclosure of radius r made of material exerting tensian ¢ per unit
length supports a pressvre difference

79
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2t
P\—-P.=- [3)
r
between its interior and exterior. This is known as Laplace’s relation. For a
cylindrical enclosure the corresponding relation is
!
P P o= (4)
r
@ The free swiface of a liquid exeris a surface tension ~ per unit length. A
membrane made of such a liquid exerts tension per unit length ¢ = 2-y. The
force of the liquid surface on a container is ycos & per unit length, where 8 is
the contact angle, which depends on the liquid and the material of the con-
tainer.

3. BernoullisTheorem

An incompressible fluid is one whosc density p may be taken as constant.
Water is effectively incompressible under standard terrestrial conditions, and
so is air if we do not consider sonic or supersonic motions.

@ If the pressure in such a fluid is P at a point where the fluid velocity is v,
Bernoulli's theorem states that

£ |
_+§pu2 +g)» = constant {5)
p

along a streamline in the fluid. Here y is the vertical height above some
reference level in the fluid. Thi's can be thought of as an equation of con-
servation of mechanical energy for the fluid.

4. Ideal Gases

@ A mole of a substance is an amount whose mass is a number of grams equal
to the molecular mass divided by the muss of a hydrogen atom m;; (the molar
mass). Thus the molar mass of carbon 12 is 12 g. Note that the gram mole is
notan SI unit,

@ At conditrons far removed from those under which they liquefy or solidify,
most common geses {air, hydrogen, oxygen, nitrogen, helium, etc.) can be
regarded as ideal (or perfect): a fixed mass obeys the ideal {or per fect) gus faw

PV =nRT (6}

where P, }/, and T are the pressure, volume, and absolute temperature 7 of
the gas, and # is the number of moles of gas. R is the universal gas constant.
We also use alternative forms of this relation, such as
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k
P=——pT, 7
#-"ﬂrrp (

where pisthe mass density of the gas, k is Boftzmann’s constam and i is the
mean molecular mass, i.e. the mass of one molecule of the gas in units of the
mass my,; of a hydrogen atom. This is consistent with the earlier form using R
if it is remembered that the gram moleis not an ST unit. It is also sometimes
convenient to use the form PV = nRT with P in atm and V in liters. The
appropriate value of R can be {ound in the table of constants.

The absolute temperature T (measured in K) and the temperature ¢
(measured in °C) are related by T = ¢ + 273,

§. Heat and Thermodynamics

@ The coe ficien: of linear expansion « is the fractional length by which a solid
expands when heated through 1°C. The coe ficient of volume expansion v is
the fractional volume inercase when the solid is heated through I°C.

@ The specific heat of a substance is the amount of heat required to raise the
temperature of unit mass of it by 1*C.

@ Thc mechanical equivalent of hear is approximately 4184 J/kcal, where ! keal
(kilocalorie) is the amount of heat required to raise the temperature of 1 kg of
water through 1°C.

@ The first law of thermodynamics expresses the conservation of heat and
mechanical energy in the form

AQ =AU+ AW. (8)

Here AQ is the heat energy flowing into the system. AU is the increase in
internal energy of the system, and AW is the work done by the system on its
surroundings. For example, a gas of pressure P whose volume increases by
AV performs work AW = PAV.

In an adiahatic process no heat is transferred to or from the system, so
AU+A W=0.

@ The second low of thermod ynamics states that heat flows from hotrer to colder
hudies; reverse flows can be arranged, but only at the cost of supplying energy
to the system. When a system at absolute temperature T absorbs heat energy
AQ at equilibrium (i.e. slowly), its entrapy S changes by an amount

_aQ
AS==F (9)
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@ I a body of mass m1 and specific heat C per unit mass is heated from T} to T,
the total entropy change is

A.S‘:mCln(%z). (10)

@ Clearly theentropy remains constant in an adiabatic change. The second law
of therinodynamics czn be restated in the forin the enrropy of a closed system
can never decrease. The cntropy of an ideal gas of pressure P occupying
volume V remains constant if the quantity PV'" is constant, where 7 is the
ratio of specific heats at constant pressure and constant volume. For an ideal
monatomic gas ¥ = 5/3, and the full expression for the entrapy is

3k k
S=——IaT+—1InV. (m
2pmp pamiy

Using the ideal gas law to replace 7 by P,V this indeed shows that PV*/3 =
constant if S is constant. The internal energy of an ideal monatomic gas is
3k

2pang

nRT. (12)

For a diatomic gas (e.g. O,;) v = 7/5.

6. KineticTheoryofGases

@ Kinetic theory treats gases as composed of discrete particies or molecules in
random motion,

The ideal gas law can be derived from the assumption that collisions of the

gas particles are perfectly clastic. The average kinetic energy of the particles is

34T /2, where k is Boltzmann's constant, so their average (root-mean-square)

speed is
k /2
Vs = (iz) . (13)
Wy

7. Light

@ Refraction of light is governed by two laws:
1. — At a boundary between two media, the incident and refracted rays
and the no:mal to the boundary all lie in the same plane.
2. — The angles of incidence and refraction 6,,8; arc related by

ny sinf; = nysinfs, {14)
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(Snell’s law), where ny, n, are the refractive indices of the media contain-
ing the two rays, and the angles are measured from the normal to the
interface.

@ For spherical mirrors of curvature radius R we adopt the following conven-
tions: the focal length /= —R/2. where R < 0 for a concave mirror and
R > 0 for a convex mirror. The object distance is s from the front of the
mirror, and the imagedistanceis &' behind the mirror. These quantities are
related by the mirror equation

1 1 1

———=-. 15

s & f 13)
The image is virtuai ot imaginary if s' > 0 and reaf if 5" < 0. The magnifica-
tion m = 5'/s is positive for an upright image and negative for an inverted
image.

@ For thin lenses, we adopt the convention that tke focal length f > 0 for
converging lenses and f < 0 for diverging lenscs. The object distance s is
always positive and the image distance ¢ is positive when it is on the opposite
side of the lens. These quantities are related by the thin fens equation

—to==. (16)

A virtual image has ¢ < 0. The magnification m = —~/s is positive for an
upright image and negative for an inverted image.

@ The focal length/ of a thin lens made of material of refractive index # is given
by the lensmaker’s equation

1 1 1
S=(m-D[=+=), 17
Lwon(hed) o
where R), R, are the curvature radii of its two faces, counted positive if they
are convex and negative if concave.

@ The quantity P = 1/ fis called the power of a lens. and is measured in m' =

diopters.
A mirror or lens is denoted f /4 or //8,ete. ifits diameter is 14 or 1/8 ofits
focal length /.
@ A wave disturbance (eg. light, sound) propagating in the x-direction can bhe
represented 4s

v(x,t) = Asim [Zfrul—z—:x]. (18)
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Here A is the amplitude, v the f requency [measured in Hertz (Hz) = cycles s“']
and A the wavelengih. The combination in square brackets is the p#ase #(x. ¢).
The phase velocity vy = Av. One sometimes also uses the angular frequency
w = 2w, which is measured in radians s~'

@ A wave emitter in motron exhibits the Doppler effeci: the frequency of the
received waves is raised (lowered) if the motion is towards (away from) the
observer. For light waves the frequency change is

Av v

e 9

" 2 (19)
where ¢ is the phase velocity of thewaveand v is the velocity along the line
joining the observer to the emitter: v > 0 implies motion away from the
observer. The corresponding wavelength change is

Al v

—_—— 20
A e 20)
For sound waves the soutce velocity is added to the phase velocity, so a
stationary obscrver hears the freque ncy

v,

v= Vg“‘;‘-;*vv (21)
ar wavelength
A ,\at’-’_”‘ (22)
v,

Here v, is the velocity of sound, v is the velocity of the source away from the
observer, and the suffix O refess 10 the frequency and wavelength for a soucce
at rest.

@ Cokherent waves have the same frequency and a fixed phase diflerence. 7nrer-
ference oecurs when two or more coherent waves interact. If the waves have
the same phase where they are combined, we have constructive interference
(e.g. greater light intensity); if they have phases that differ by = radians =
180°. thisis destructive interference {reduced light intensity).

When parallel light rays of wavelength A are normally incident on two slits
separated by distance d, infer ference fringes are observed. Constructive inter-
ference occurs at angles &, 1o the original ray direction, where

dsinf, =nA n=0,1,2,... {23)

This s also true for a diff raction grating with spacing d.
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Diff raction from a single slit of width 2 produees dcstructive interference
at angles 6, 10 the original disection, where

Dsind, = +tmX, m= 1,2,3.... (24)

8. Atomic Physics

@ The energy of a photon of frequency v is £ = fu, where 4 is Planck’s con-
stant. The momentum of the photon is p = E/c = hv/c = h/ .

@ The de Brogiic wavelength of a body of momentum p is Ag=h/p.

@ The unceriainty principle states that the uncertainties Ax, Ap in position and
momentum obey the inequality

AxApzh, (25)
where /i = h/(3%).

@ In thc photoelectric effect. incident light of wavelength A releases a photos
electron of energy

he
E, = v B, (26)

where B is a constant called the work fimnction of the medium surface.

() Light scettered through an angle 6 by free electrons of mass m, has its
wavelength A changed to ', where

M= A+ 2( ~cosb). 27

Here X, = h/m,c = 0.024 A is the Compton wavelengrh of the electrnn, and
th“iS is called Compton scattering. The Angstsom unit (A) is defined by
1A=10""m.

@ The energy levels of the Bokr model of 1he hydrogen atom are

E,= _?‘ (28)

where Ej = 13.6 eV is the Rydberg and n is the principal quantum number,
which takes integer values. When the electron jumps between these levels, the
energy of the emitted or absnrbed photon is given by the difference £, - E,,
The transitions down to n = 1 give spectratiines called the Lyman sevies, and
those 10 n = 2 the Ba/mer series. The lines appear in absorption if there is a
cooler transparent medium in front of a hotter one. In the limit n = oo the
electron is no longer bound to the atom, which is thercfore ionized. The
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ionizatiun potential is the energy required to bring this about, whieh is
1, = Eo /v’ for ionization from the nth bound level.

@ !n radioacrive decay the number of radioactive nuclei decreases in time
according to

N(1) = Npe ™, (29)

where ) is the decay constant, characteristic of the nucleus, and ¢ = 2.718 is
the base of natural logarithms. The haif-fife t,/, is the time in which one-half
of a large sample of the nuclei will decay, It is related to A by Aryys = 0.693,
The activity of the nucleus is defined by

AN
jv
where AN is the change in the number of nuclei in time interval At: one can
show that 4 = AN(1).

Nuclei of the same charge number Z but dilferent mass number A are
called isotopes.

In beia decay a neutron disintegrates into a proton, an electron and an
antineutrino. This increases Z by one but leaves A unchanged.

A=— (30)

9. Relativity

The theory of relativity is based on the postulate that the velocity of light in
free space is the same for all observers. As a consequence, observers moving
relative to each other with velocity v assign different valucs to various
physical quantities. The relations between them involve the quantity

2(6) = (f ~§)-m. 31

@ Time ditation. A time interval 1 ona clock at rest with respect t o an observer
is scen as having the value ¢ when in motion, where

{=Ap- (32)
to is the proper time.

‘ Length contraction. An object of length /¢ when at rest with respeet to an
observer (/o= the proper length) appears shortened to length / when in
motion, where

b
=2, 33
¥ £
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[ ] Simufsaneiry. Events occurring at diflerent points but at the same instant for
one obsciver do not in general appear simultancous for another observer.

@ Relativistic velocity addition formula. If an object is seen by observer 1 to
move at velocity v, and observer | is seen by a second observer {2) to move
at velocity v, in the same direction, then ohscrver 2 sees the object moving
with velocity

]

= l+ﬂ1'U:,-’rL'2. (34]
Thus V can never exceed ¢, no object can be acceleratedio speeds > c.
@ The encrgy of a body of rest-mass ¢ moving at speed v is
E=ymd’. (335)

Tt therefore has rest-muss energy Eq = mc® when v = 0. The mamentum of the
body is

p = ynin. (36)
These two quantities arc related by

E = p¥® + mi (37

B LIQUIDS AND GASES

P330. Oil is added to the right-hand arm of a U-tube containing water. The oil
floats above the water to a height of £ = 10 cm. The top of the oil + water
column is a height d :=: 2 cm above the top of the water column in the other
arm (see Figure). Calculate the oil density py. Fluid of density p is added to
the water column in the left aim to a height / = #/2. If the fluid levels in the
two arms are now equal, calculate p..
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P33l

P332.

P333.

P334.

P335.

A hydraulic press contains oil of density g, = 880 kg m~>, and the areas of
the large and small cylinders are 4 = 0.5 m% A, = 107! m*. The mass of the
large piston is M; = 51 kg, while the small piston has an unknown mass m. If
an additional mass M = 510 kg is placed on the large piston, the press is in
balance with the small piston a height /=1 m above the large one (see
Figure). Find the mass m.

M, P 777 7772

ol

How could you decide if a wedding ring is made of pure gold using sensitive
scales, a liquid volume measure, a length of thread, and a sample of pure
gold?

A woman of mass M = 60 kg has height 2= 1.6 m and shoulder width
w=45 cm. She wears shoes of length /=25 cm and average breadth
b =17 cm. Approximating the relevant areas as rectangles, what average
pressure does she exert

(a) — on the ground when standing,

(b) — on a bed when lying fiat?
Why is it uncomfortable to liec on a hard floor? What pressure does the
woman exert if she puts her weight on stiletto heels of total area 4 = 2 cm®?

The tires on a racing bicycle are inflated to a pressure P = 7atm. Does the
pressure gauge on the pump read 7atm? The combined mass of the bicycle
and rider is m = 70 kg. What is the total tire area in contact with the road?

Two cylinders of cross-sectional area 4 = 10 m? are fitted smoothly together
as shown in the Figure, and then evacuated. Masses M are hung from cables
attached to each of the cylinders. How large can the masses A4 be made
before the cylinders are pulled apart?

T

L
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P336.

P337.

P338.

P339.

P340.

P34).

P342.

A payload m = 289kg is held stationary by a balloon at a certain height
above the ground. The volume of the balloon is ¥, = 1000 m?, and is far
larger than that of the payload. Express the gas density p» inside the batloon
in tenins of the air density p, at this height.

Early airships were filled with hydrogen rather than with helium, sometrmes
with tragic consequences (e.g. the destruction by fire of the German airship
Hindenburg in 1937). @ne sometimes reads thatthe reason for using hydro-
gen was that, since the density py. of helium is twice that of hydrogen {py;)
under the same conditi'ons, iwice the volume of helium would have been
needed 10 lift the same payload. Is this correct? (py = 0.09 kg m~*, air density
p, = 1.3kgm™?)

A ballofunifonn density 2/3 of that of water falls vertically into & pond from
a height # = 10 m above its surface. How deep below the surface can the ball
sink before buoyancy forces push it back? {Neglect the water diag on the
motion of the ball.)

A yacht is at rest on a small lake. What happens to the water fevel if lhe
yachtsman throws overboard (a) a booy, and (b) an anchor?

A plastic cube of density p = 800kgm™> and side a = Scm is floated in a
cylindrical water container of sorface acca A = 188cm?. Find the resulting
increase: # of the water height. A mass m is placed on the cube and just
submerges it. Find ai.

A wooden cube of side @ = 0.1 m is just submerged in water when pressed
down with a force F = 3.43 N. Caiculate the density p of the wood. What
depth of the cube is submerged if it floats freely?

A cube of side a is made of material of density p = 3p,,/4, where g, is the
density of water, It is placed in a container with a square cross-section whose
side is a + ¢, where ¢ € a, and whose height exceeds a (see Figure). Find the

o
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P343.

P344,

P345.

P346.

P347.

minimum volume V of water that must be poured into the container to float
the cube. Can ¥ be made arbitrarily small by reducing ¢?

A solid cube of side a = 0.1 m hangs from a dynamomcter (a spring measur-
ing force), and is submerged inside a container of liquid. The container bolds
water, with above it a layer 4 = 0.2 m of oil of density p, = .‘:O(Jkgm'3 .In
equilibiium the base of the eube is a distance # = 0.02 m below the water level
(see Figure), so that its upper face is below the surface of the oil. The
dynamometer reading is #p = 0.49N. Calculate the mass M of the eube
and the hydrostatic pressure £ at the base of the cube.

An iceberg has the shape of a cube and floats in seawater with //=2.5m
protruding above the surface. The dcnsitics of ice, scawater, and fresh
water are p; = 900 kg m >, p,= 1300 kg m? and pr = 1600 kg m™3 respec-
tively. Find

{a) — the submerged depth x, of the iccberg in the sca,

{b) - the submerged depth x; in fresh water.
What fraction of the iccberg would be above the surface in the second case?

A certain liquid has density p, and surface tension 7 and eontact angle # when
in contaet with glass and air. Find the height & of'the liguid in a glass tube of
cylindrical radius r immersed in this liquid.

Can capillary action account for sap 1ising in trees? (Assume surface tension
of sap is ¥ = 0.07Nm™, contaet angle # = 0, sap density p= 10 kgm™,
tree capillary radius = 1072 mm.)

A glass tube has a removable cap at one end, which tends to fall ofi'whcn the
tube isinverted. The capis made of material of density p = 788 kg m~ and is
d = 2mm thick. For what tube radii r will wetting the end of the tubc keep
the cap on when it is inverted? (Assume surfacc tension of watcr
5 =0.07Nm~ and eontaet angles 8 = 0 where appropriate.)
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P348.

P349.

P350.
P351.

P352.

P3S3.

P354.

P355.

The pressures inside and outside a spherical membrane of radius r are P;, P,,
with P; > P,. Show that the material of the membrane must exert lotal
tension per unit length ¢, where

Repeat the last question for the case of a cylindrical tube of radius r. Why do
boiling frankfurters lend to split lengthvrays rather than around their cross-
sections?

A tire on a racing bicycie isinfiated to a pressure P; = 7 atm. The radius of
the tire is r = 1.5 cm. Find the tension in the walls.

What is the radius r of the smallest droplel that can forin from water of
surface tension y =0.07 N m ™' and vapor pressure P, = 2300 N m™3?

A spherical balloon has interior pressure £, and radius r,, and is in equili-
brium inside an enclosure with pressure £, = 8P,/9. The enclosure is gradu-
ally evacuated. Assuming that the temperature is fixed and the tension ¢ per
unit length of the balloon material remains constant, show that the baltoon
radius never exceeds 7).

The air sacs in the lungs (alveoli) can be approximated as small spherical
membranes of radius  containing air at atmospheric pressure Py. The pres-
sure P, in the chest cavity (pleural pressure) increases when the person
breathes out. Simultaneously, muscle contraction decreases r. These changes
are reversed as the person breathes in. Show that the membrane tension per
unit length 1 must decrease as the person cxhales and increasc as he inhales.

Two identical small balloons are inflated, one much more than the other.
They are then connected by a pipe which is closed by a valve between them.
The whole apparatus is placed in an evacuated enclosure. What happens
when the valve is opened?

(You may assume that the surface tension of the balloon matertial is inde-
pendent ofthe balloon's size except when the balloon is smaller than a certain
spherical radius rg,. below which the surface tension decreases.)

A container is flled with water to a depth # = 2.5 m. The container is tightly
sealed and above the water is air at pressure P, = 1.34 x 10°Nm™? (see
Figure). A small hole is drilled at a height # =1 m above the bottom of
the container. What is the speed of the resulting jet of water? Compare
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P356.

£357.

P358.

P359.

T
i

your answer with the case of a container open at the top, bul otherwise
identical.

When a doctor measures a patient’s blood pressure, the cuff is always placed
around the arm, rather than the ankle or other part of the bady. Why?

A homeowner wishes to drain her swimming pool by siphoning the water,
whose depih is /1, into a nearby gully a distance # below it, where # is mueh
larger than # (see Figure). She uses a pipe of cross.sectional area a, and the
pool water has surface area 4. How long does it take to empty the pool if
h=2m H=20m, A4 =5m’a=>5cn®

Inthe siphon arrangement of the last question, the pipe develops a leak at a
point above the water surface. What happens to the water flow” If there is no
leak, what is the effect of having air trapped in the pipe?

Water is pumped at a constant rate » = 6 m>min~' through a pipe. Near the
pump the pipe diameter is <, =0.2 m, but this widens to a diameter
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P360.
P361.

P362.

P363.

P364.

d» = 04 m in a horizontal section at a height # = 20 m above the pump (see
Figure). This section diseharges into a container open to the atmosphere. At
what velocity does water leave the pipe?

In the last problem. what is the water pressure near the pump?

A wide container is filled with water up to a depth #. A small hole is drilled
in the container at a distance # below the water level, and a jet of water
emerges from it. How far from the container does the jet hit the ground?

A Venturi tube (see Figure) is used to measure the water speed vin a pipe by
comparing the pressures in the wide and narrow sections (cross-sectional
areas 4,4' = A/4). Find v if the difference in mereury levcls is # = 25 mm.
{The density of mereuty is pug = 13,600 kg m”.)

The window and door of a room are both open. The door opens inwards:
why does it tend to slam shut if only slightly ajar?

Air of density p =1 kg m™ flows smoothly and horizontally over the airfoil
shape shown in the Figure. The streamline path of air flowing above the
airflow is m times longer than that of the air flowing below it. which has
speed v. Show that the airfoil experiences an upward force

1, 9 2
L%i(m "I}m.l

per unit area. Assume that both streamlines pass through A and B.

An airplane of mass M = 500 kg has a total wingarea £ = 30 m?.and the
airfoil design is such that m = 1.1. Estimate the airplaoe's minimum takeofl
spead at sea level (p = 1 kgm™). How docs this ehange in high-altitude air-
ports?

N .

C
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P365.

P366.

P367.

P368.

P369.

At high altitude the aiplane of the last question can achieve a maximum
airspecd of Uy, = 70ms~'. The air density p dccreases with height - as
p=1x10"**" xgm™, where # = 23,000 m. What is the maximum height
that the airplane can in principle achieve?

in light of P364 can you suggest why the early airplanes (e.g. the Wright
brothers’) were all biplanes?

Two species of bird are very similar in every respect except that every dimen-
sion of one species is on average / times the corresponding dimension of the
other. How are their respective takeoff speeds for flight rclated?

A hydrofoil boat uses suhmerged fins with airfoil-type cross-sections to lift
the boat largely clear of the water and allow much higher speeds. Find the
condition for this to be achicved at water speed v and total hydrof oil arca Aj,
if the water streamline path ever the upper surface of the latter is m times
longer than over the lower surface and the boat has mass A. Show that 4,
can be much smaller than the wing area required for takeoli of an airplane of
the same mass, cven with slower speads @ (eompare P364).

When a yacht sails into the wind its sails adopt a curved shape as viewed
from abovc (scc Figurc). At asuitable angle to the wind direction the air on
the concave side of the sails moves much more slowly than that on the convex
side. If the average speed of the latter is w, the sails have total arca A, and the
yacht steers at angle 8 to the wind direction (see Figure), show that the yacht
experiences total wind force
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P370.

P371.

P372.

Fy = %p‘,urz sinfé

in the forward direction, wheie p, is the air density.

The same yacht now sails with the wind more nearly hehind it {sec Figure:
at an angle ¢ < 90° from directly astero). If the wind has velocity w and the
boat’s forward speed is much less than this, find the maximum forward (orce
F, on the yacht and compare it with F, in the case § = ¢ = 45°.

The yacht of the previous question has submerged frontal cross-sectional
area A, (see Figure). I the water density is p and the yacht moves at speed
v, show that it has to supply momenlum =~ 4 /pt} per unit time to the water,
and thus estimate the drag force on it. Estimate the boat's speed vy, »; in
terms of w, A, A7,p,.p,0 and ¢ in the cases where it (i) sarls into the wind,
and (2) has the wind behind it. Evaluate v,.t; for w = 30 km/h, 4 = 20 m?,
A;=03m% 8=p=45 usingp, =1 kgm™>, p=10" kgm™>

The yacht considercd in the last two problems has mass M, and the sub-
merged depth is approximately constant along its length /. The sails are
triangular and the mast has height / also (see Figure}. Show that
Ay~ Mg/pl, and hence that the yacht should be designed to maximize the
quantity /M to achicve high speeds.

A yacht, as considercd in the previous three problems, resists sidcways
motions by means of its keel, which pgives the boat total side-on
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P373.

P374.
P375.

P376.

P377.

P378.

cross-sectional area 4,. Show that the boat should be designed so that
A, » Ay, What is the usual way of achieving this?

A certain Grand Prix racing car has mass m = 1000 kg, and the coefficient of
sliding friction between its tires and the road is 4 = 0.5. What is the max-
imum speed at which it can take a level bend of radius of cuivature
r =100m?

A very efficient wing of area 4 = 2m? is now fitted to the car, sothat the air
passingabove the wing moves much more slowly than the car’s speed v, while
that passing below moves at v. What is the new maximum speed around the
bend? {Air density p= 1 kgm™>))

is the wing of the last question more of an advantage on slow, tight corners
or fast, relatively gentie ones?

An ideal gas at temperature ¢, = 16°C is heated untii its pressure and volume
arc douhled: what is its final temperature?

A closed container of volume V; = 12 liters holds a mass m| = 0.858kg of
oxygen. Itis known that the mass of a liter of oxygen at atmospheric pressure
is m; = 0.0015 kg at the same temperature. What is the pressure in the con-
tainer?

A cylindrical container is enclosed by a piston of mass » = 21 kg and holds a
mass my = 0.17g of molecular hydrogen. "The volume of hydrogen is
Vi = 1400cm’ and the height of the piston is # = 40 cm (see Figure). Find
the atmospheric pressure 2, outside the container if the absolute temperature
is T =300 K.

W

H;

L SR

A lass pipe of eonstant cross-sectional area A = 0% m! and length
{= 1.14 m is sealed at one end and closed by a cork at the other. inside

!
/
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P379.

P380.

the pipe there is a mercury column of length /; = 0.3 m. When the cork is
removed and the pipe held Liorizontally in tlie atmosphere, theair columns on
each side of the mercury have equal lengths /;, = /5 = 0.42 m (see Figure). The
pipe is now held vertically with the open end upwards. Find the iength /| of
the aircolumn at its sealed end. What would be the length /{ of this column if
instead the pipe had been corked in the horizontal position before being
turned vertical? Assume that the temperature remains constant throughout.
The density of mercury is gy, = 13,600kgm~2.

A glass bulb of radius R = 1.5 cm is attached to a glass tube of cross-sec-
tional area 4 = 02 cm?. A mercury drop of length /,; = 6 cm seals the air in
the bulb and a length Z, of the tube {see Figure). When the temperature is
t = 10°C and the tube is horizontal, we have /4, = 17 ¢cm; when the tempera-
ture is £ = 20°C and the tube is vertical with the bulb at the bottom, we have
#, = 133 cm. Find the atmospheric pressure P4, given that the density of
mercury is pyg = 13,600 kg m~>. (Assume constant temperature.)

Air Hg

—— ¢

A narrow glass tube of length / = 0.5 m is sealed at one end. The open end is
lowered vettically into a bath of mercury, which enters the tube and traps
some air in the upper end. When the sealed end of the tube is #; = 0.05 m
above the mercury level in the bath the mercury level in the tube is
hy=0.15 m below this level (see Figure 1). Tbe tube is now raised so
that the scaled end is #; = 0.45 m above the mercury level in the bath; the

R

Da

Fig 2
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P38I.

P382.

level in the tube is now /iy = 0.15 m above this level (see Figure 2). Find the
atmospheric pressure 24 At what height /1 must the sealed end of the tube be
placed so that the mercury in the tube is level with that in the bath? (Density
of mercury gy, = 13,600 kgm™*; assume constant temperature.)

A solid cylinder of radius R = 0.5 m and height # = 1 m is drilled at one end
to make a concentric cylindriical cavity of radiusr = R/2 and depth /i = H /2.
The cylinder s placed in a large mercury bath with the drilled end lowest, and
floats with its upper face exactly at the level of the mercury (see Figure). The
atmospheric pressure is P4 = 0.987 x 10° N. Caleulate the pressure P, of the
air trapped in the cavity, the height y of the mercuty in the cawvity above the
cylinder’s base, and the density p of the cylinder material. (Density of mer-
cury = 13,600kgm™>))

i

Two containers of volumes ¥, = 2V, ¥; = V¥ are connected by a narrow pipe
with a faucet (see Figure). With the faucet closed V), ¥; contain n, 2n moles
of a certain ideal gas respectively. The faucet is opened and the system
allowed to stabilize at constant temperature. Find the number of moles in
each container in terms of n.

_.-"
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P383.

Two containerss of volumes ¥, = 5 liters and ¥, = 3 liters are connected by a
narrow pipe with a faucet. The larger container has a valve, which releascs
gas if its pressure P exceeds a value P_;, = 3 atm. The absolute temperature
is T =275 K, and with 1he faucet closed the contarners hold ideal gas at
pressurcs P, = 2 atm, P, = 4 atm. What is the total number of moles in the
two containers? The faucet is now opened: does gas leak from the valve? if
the system is heated to 77 = 400 K how many moles of gas will remain in the
containers?

Hl HEAT AND THERMODYNAMICS

P384.

P385.

P386.

P387.

P388.

P389.

P390.

A car’s fuel tank is fitled t 0 97%0 of its capacity with a volume ¥;; of gasoline.
This process takes place at a temperature of ¢ = 0° C. The car is then trans-
ported by truck 10 a wann district, where the temperature is ¢ = 40° C. Is
there a danger that the fuel will overflow the tank? (The volume expansion
coefficients of the gasoline and the metal of the tank are v; =9 x 107*°c™!
and yr = 1073¢C™".
The coefficient of thennal linear expansion of copper is a =4 x 107%*C™!,
and its specific heat is C =0.386Jg™'°C~'. A square copper plate of side
10 ¢cm and mass 100 g is heated from 9°C to 100°C.

(a) -~ How much docs the plate’s area increase?

(b) — How much hcat docs the plate absorb?

A solid has thermal linear expansion coefficient . Show that its volume
expansion coefficient is v = 3e.

A steel cube floats in a bath of meicury. What happens as the temperature
rises? (Coefficient of linear expansion of steel = a, = 1.2 x 107 <C~', coefh-
cient of volume expansion of mercury = 7,, = 1.8 x 107¢°C™")

A heater is used to raise the temperature of water from ¢ =10°C to
17 =38° C. h has 10 supply I =1 m> of hot water per hour. What is the
minimum power that the heating element must supply? (The specific heat of
water is C,, = 4200 J kg™'°C™!)

Anelectric element of power P = | kW is used to heata room of dimensions
4 x 5 x 2.5 meters. Assuming that the efficiency of heating the air in the room
is 75%, and thai the air’s heat capacity is C, = 1500 J m~*C~', how long
docs it take 10 heat the air in the room from ¢, = 10°C to ¢; = 20°C?

To prepare coffee, water has 10 be boiled starting from room temperature
f = 15°C. Assuming that the electric ketile is 50% efficient, how much does
it cost 10 boil [ liter of water il electricity costs 10 cents per kWh?
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P391.

P392.

P393.

P394.

P395.

P39

P397.

P398.

A container holds a total mass m == 1 g of gas molecules, each with velocity
v =600 m s~". Find the total kinet'c energy of the gas molecules.

Anice cube of mass n; = 40 g and temperature f; = —1*C is added to a glass
of vokc {mass »1. = 200 g} at room temperature ¢ = 20°C. Neglecting any
heat exchange between the drink (coke + ice) and its surroundings (glass +
air), what will the temperature of the coke be once theice has melted com-
pletely? The specific heat of ice is C; = 2310 J kg™' “C™' and the latcnt heat
of mclting is L, = 3.36 x 10°Jkg™'. Assume that the coke has the same
specific heat as watcr.

Two animal species are similar in every respect except that every dimension
of one is / times the corresponding dimension of the other. The species
radiate excess heat from their surfaces and have plentiful supplies of the
same type of food. By considering the heat balance of cach species, explain
why few small mammals are found in polar regions.

A metal calorimeter has mass m_ = 0.25 kg and contains m,. = 5 kg of water,
and the whole system is at a temperature f = 10°C. A block of mass
m,, = 10 kg ofthe same mctal as the calorimeter tsremoved from a container
of boilingwater and piaced in the water inside the calorimeter. The insulated
calorimeter-water-metal system reaches therinal equilibrium at a tempera-
ture of ¢ = 51°C. Find the specific heat C,, of the metal.

A bullet of mass m = 0 g is fired with velocity v =800 m s~ into a block
of mass M = 10 kg of materiial with specific heat € =2000 J kg™ *C~".
Assuming that al} of the bullet’s kinetic energy is used to heat the block
(cf. P125, P126), by how much docs its temperature rise?

A copper calorimeter of mass m, = 125 g contains m; = 60 g of water at a
temperature of 1, = 24°C. A massm, =90 g of hoiter water with tempera-
ture ¢, = 63°C is added, and the temperature of the calorimeter and water
stabilizes at 1y = 45°C. The calorimeter is perfectly insulated from its sur-
roundings. Find the specific heai C of copper in kcal kg tecL

A mass m; =1 kg of cold water at temperature 1; = 7°C is mixed with a mass
my =2 kg of hot water at t, = 37°C. You may assume that no heat is
exchanged with the surroundings, and that the total volume of water does
not change. Find the temperature ¢ of the mixture. Did the total internal
energy of the water change? What was the total entropy change?

A mass m, = 0.05 kg of an ideal gas is held at a temperature of ¢, = 0°C in a
container of constant volume. The gas absorbs a quantity of heat
AQ =125 x10° J, and as a resull its pressure increases to three lmes its
inital value. What is the final temperature ¢, of the gas? What is its specific
heat at constant volume Cy (in J kg™')?
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A glassful of water of mass m,, = 0.25 kg is boiled at atmospheric pressure
and totally converted to steam. The latent heat of the water-steam transition
is L,, = 540 kcal kg™'. Find the change of entropy.

A certain mass of gas is held at a pressure P, = 2 x 10° Nm~?and occupies a
volume ¥, = 1 m>. The gas expands at constant pressure until its volume is
doubled (i.e. Py = Py, V3 =2Vy). Itisthen held at constant volume while its
pressure is halved (ie. Py = Py/2,Vy= V). A cyclic transformation (sec
Figure) is completed by an isobaric (constant pressure) compression
(P3=P3)to V; =V, followed by an isochoric (constant volume) transfor-
mation back to ¥, P,. What is the work AW done by the gas? What is the
absorbed heat AQ?

P

A= 1 2

P, 4 3
| !

Vi Ve v

A glass sphere of volume 7 liters containsair at 27°Cand is attached to a pipe
full of mercury as shown i1 the Figure. Initially the mercury i8 level with the
bottom of the sphere in both arms of the tube, and the outside pressure
is 760 mmHg. The air in the sphere is then heated so that the mercury
level is raised by S mm in the outer aim. If the cross-sectional area of the
pipe is 10 em?, what is the temperature of the air in the sphere?
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P4l 1.

An ideal gas of volume ¥, =400 em’ and temperature f = (5°C expands
adiabatrcally. As a result its temperature drops to ¢, =0°C, If the gas has
adiabatic index 'y = 1.4, what 5 the volume V3 of the gas afler the expansion?
The gas is then compressed isothermally unti! its pressure returas to the
initial value (before expansion). What is its volume now?

Five moles of an ideal monatomic gas expand adiabatically from an initial
temperature 7, = 400 K and pressure P, = 10 N m™? to a final pressute
P3 = 10° N m~2, Calculate the final temperature and the work done by the
2as,

The tices on a racing bicycle are generally inflated to pressures P ~ 6x atmo-
spheric. When the valve is sharply depressed, ice forms around it. Why?

Why does rain or snow tend to fall on the windward side of a mountain
range? Why is there often a warm dry wind on the other side? {e.g. the
Chinook on the eastern side of the Rockies.)

Consider the bailoon of P352 above. If instead of the temperature being
fixed, the monatomic gas inside the balloon expands adiabatically, sbow
that its maximum radius is smaller than in P352. Why?

A certain mass of ideal gas, with constant-volume specific heat
Cv = 0.6 Jmol~' K, is cooled at constant pressure Pg = 10° Nm=2. Asa
result its volume decreases from ¥, = | m? to half of this value. Find the
amount of heat lost by the gas in this process.

Two moles of an ideal monatomic gas expand isobarically (i.e. at constant
pressure) from an initial volume ¥, = 0.03 m’ to a final volume V', = 0.07 m>.
The pressure througbout is P= 1.52 x 10° N m™2. Calculate the initial and
final temperatures T, T of the gas, the 1otal amount of heat Q absorbed in
the process, and the change AS in the entropy of the gas.

Two solid bodies ofequal masses m and temperatures 7y and 7; = 2T are
brought into contact. If their heat capacities aie C) and C2 = [.5Cy, what is
their common temperature, T, when they reach thermnal equilibrium? Find
the entropy change A S for each body, and show that the total cntropy of the
system has increased. Express your results in terms of T,,C; and m.

A mass m = 0.16 kg of molecular oxygen (Q,) at a temperature T, = 300 K
and a pressure P, = latm = 10° N m~? is adiabatically compressed to a
pressure £, = 10atm. Calculate the final volume V> and temperature T; of
the oxygen. What quantity of work AW is performed in the compression,
and what is the change AU of internal energy?

The volume of an ideal gas is doubled in a quasistatic isothermal process.
Find the change in the pressure P, temperature T, internal energy U, and
entropy S. Express the changes AP, AT,AU,A.S in terms of the initial
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P4l6.

P4I7.

P418.

values P, To Uy, So, ¥ and 2, the number of molar masses of gas. (Use the
formula AW = nRT In(V/Vy) for the work done by an isothermal ideal gas
in expanding from volume ¥ to V).

A heat pump is used to heat a house by absorbing a certain heat quantity O,
from the outside air (temperature T'3) and supplying a quantity of heat O, to
the house (temperature T,), with T, < 7. The machine works cyclically, and
on each cycle a quantity W of work is pesformed (by an electric motor). Find
the relation between Q;, 0, and W. If the machine is completely efficient,
how much heat will be supplied to a house at 7', = 17°C with an outside
temperature T3 = —~5°C for every joule of output from the electric motor?
N gas molecules, each with mass m, are confined in a cube of volume V.
Show that the pressure on the walls is

Nm?
P= T-

where v is the root-mean-squase (rms) speed of the molecules, defined as

&=%w&+2@+mﬁ

Three gas molccules have speeds »; = 1,3 and 10 m s™' in the same direction.
Find {a) their average speed and (b) their imos speed ¢. where
2 l
= 5vf.
v =3y

Show that the rms speed of molecules of a gas is

4T\
v (_)
pmy

where T is the absolute temperature, R the gas constant. and g the mean
molecular mass.

Find the rms speed of oxygen molecules (mean molecular mass 4 = 32) and
hydrogen molecules (j: = 2) at room temperature (T = 300 K).

A bottle of perfume is openzd in one corner of a large room. Show that
typical molecular rms speeds do not give a good estumate of how soon you
would expect to notice the scent in a distant part of the room? Why not?

Showthat the specific heat per unit mass at constant volume for a monatomic
gas is 3k/2uniy,.

One kilojoule of eaergy is required to raise the temperature of a certain
mass of helium gas (2 = 4) through 30 K. How much is needed to raise the
temperature of the same mass of argon (# =40} by the same amount?
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Explain this result in terms of microscopic properties of the two gases. {Both
helium and argon are monoatomic.)

The gas in a cylinder is adiabatically compcessed by a piston. By considering
microscopic processes, explain qualitatively why its temperature and pressure
rise.

A box containing gas is weighed on a scale. Most ofthe gas molecules are not
in contact with the base. Why does the scale nevertheless register the weight
of the gas as well as the box?

The escape speed from the Earth (see SI87) is v, = 11.2 km s~'. At what
temperature would the following gases tend to escape from the Earth's atmo-
sphere: nitrogen {3 = 28}, oxygen (42 = 32} and hydrogen (i1 = 2)?

B LIGHT AND WAVES

P422.

P423.

The base angles of a triangular glass prism are o = 30°, and its refractive
index is n = 1.414 (see Figure). Parallel light rays 4 and B are normally
incident on its basc. What is the angie between the two emergent rays?

N

/

Alightrayisincident on side A8 of 2n equilateral triangular prism at angle a
(see Figure). If @ < 90° some of the ligbt emerges through side AC, but if
a > 99°, no light emerges through this side. Calculate the refractive index n
of the prism glass.

A
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A light ray is incident a1 40° on a glass plate of refractive index n = 1.3 and
width /# = | cm, and emerges from the other side of it. Find the linear dis-
placement of the light ray caused by refraction.

A swimming pool is illuminated by an underwater point source of light.
Viewed from above the water at a horizontal distance 4 = 1 m the light is
seen at an angle 8, = 30° (see Figure). How deep is i1? (Refractive index n of
water = 1.3.)

A light ray is incident on the end of a straight optical fiber at angle 8, and
enters the fiber at angle #, (see Figure). If the refractive index of the fiber is n,
what is the maximum valuc of §, such that the ray remains within the fiber?
(Express your answer in terns of r.)

A beam of white light is incident a1 angle o = 30° on a water droplet with
refractive index » = n(\) given as a function of wavelength A (see Figure). As
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the ray emerges from the far side of the droplet & has been deflected through
an angle 4 from its original path. Calculate ¢ as a function of A. If #2(A} is such
that »n = 1.53 for blue light and n = 1.52 for red light, by how much will the
corresponding deflections differ?

A candle is placed a distance s = 1.5 m along the axis of a convex spherical
mirror of curvature radius R = | m (see Figure). Find the position, nature,
and magnification of the image. Draw a schematic ray diagram.

; :

T
\

An object is on the axis of a concave spherical mirror of curvature radius
R = -2m. Its image is twice the object size and appcars in front of the
mirror. Find the positions of the ob ject and image, and supply a ray diagram,

An object is placed at a distance s = R/4 from a concave spherical mirror of
curvature radius R. Find the position and nature of the image. Draw a ray
diagram.

An experimenter wishes to produce an image of the coil of an electric lamp
on a wall, with the aid of a spherical mirror. The coil is a distance s = 0.1 m
from the mirror, which is itself @ = 3 m from the wall. What kind of mirror
{concave or convex, and what radius of curvature) should the experimenter
use? What is the image siz¢ if the coil is # = 9.5cm long? Givc a ray diagram.

Calculate the focal lengths of the following thin glass (# = 1.5) lenses:
(a) — biconvex, with radii R; = I m, R; = 1.3m,
(b)— biconcave, with the same radii,
(c) — concave—convex, with the same radii,
(d) — convex-concave. with the same radii,
(e) — one flat surface, the other convex with Ry = 1.3 m.

A converging lens with focal length f = 10 cm is used to observe an insect of
size h. Find the position, nature and size (in tesins of #) of the image if

(a) — the insect is s = 5 em lrom the lens, and

(b) — the insect is s = 15 cm from the lens.
Give a ray diagram in each casc.
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A bright object is placed a distance s = 1 m from a converging lens of focal
length / = 0.5 m. A plane mirror is placed perpendicular to the optical axis
on the opposite side of the lens. How many images are formed? Determine
whether each image is real or virtual, and upright or inverted. Check your
conclusions by mcans of drawings.

A point light source is a height #= 50cm above a table. An experimenter
wishes 0 obtain a sharp imagc of the source at the table, using a converging
lens of focal length /= 8 cm. At what heiglit x should she place the lens?

Show that the thin lens formula can be rewritien as

' =1

where p, p' are the distances of the object and image from the first and second
focal points.

Two thin lenses of focal lengths /), /> are placed in contaet. Show that they
are equivalent to a thin lens with focal length f given by

L k1

Sonh
Two lenses of power P, =2 diopters and 2, ={.5 diopters are placed in
contact. What is the power of the combined lens?

An optical doublet is formed from iwo lenses A, B made of glass of different
refractive indices n.4,77g. Lens A bas two convex sides of radius of curvature
R, and lens B has one flat side and one concave side of radius of curvature R.
Derive an expression for the power of the doublet.

Both refractive indices vary slightly with wavelength as follows:
n,=150,1.51,1.52 at ced, yellow, and blue respectively, while
ng = 1.60.1.62,1.64 at the same wavelengths. Show that the doublet has
constant power at all thcee wavelengths.

A simple camera has a converging lens offocal length f = 5cm and is used to
record sharp images of distant objects on film. if instead the objects are
s=1 m from the lens, by how much must the distance between the lens
and the film be changed?

Show that, except for extreme closeups. the magnification of a camera lens is
approximately proportional to the focal length of its lens. How are diff'erent
magnifications achieved in practice? Does this affect the field of view?

A photographer uses a camera with an f /8 lens and obtains a good pieture

with an exposure 0i'0.02 s. The diaphragm is now stopped down o f/16 and
the lighting conditions remain the same. What exposure is now 1equired?



108

PROBLEMS — CHAPTER 3. MATTER AND WAVES

P444.

P445,

P446.

P447.

P448.

P449.

P450.

P451.

. By changing the radii of its converging lens, and thus its focal length, the

human eye is able to produce a sharp image on the retina (at a fixed distance
from the lens) of objects at any distance from a certain minimum (the “least
distance of distinct vision™, or*‘near point™) up to infinity. If the neac point is
a distance d,, = 25 o from the eye’s lens, and the retina is 2.5 cm behind the
lens, by what factor must the eye muscles be able 1o change the lens’s focal
length?

A normal human eye can produce a sharp image of an objec! at any distance
beyond a near point {about 25 cm, see the previous problem) all the way out
to infinity. A certain person has an eye with a normal near point, but is
unable tn see clearly objects beyond a far point at d,= I m. How can her
vision be corrected?

A man has a near point at 4, = 0.6m from his eyes. What power glasses will
bring his ncar point to ¢} =025m?

The human eye can distinguish point objects down to angular separations
Bo~5x 10%r d (= 0.03°x 1.7'). If a person has a near pointd, = 25 cm,
what is the sia of the smallest detail that he can pick out?

A person with a near point d, = 25 emuses a convergng lens with a power of
10 diopters to view a very small object. Where must the object be placed with
respect to the lens for best resuits, and how large is the angular magnifiea-
tion?

A microscope has an objcctive lens of focal length /) = | cm and an ocular
lens of focal length/; = S cm. What is its angular magnification? It is used to
view a specimen at distance 5) = 1.1 em from the objective. What is the size
of the smallest detait that can be observed by a normal eye using the micro-
scope?

The focal length of a certain astronomical reflecting telescope s f = 15 m.
The image is viewed through an eyepiece of focal length f, = 3 cm. What is
the angular magnification? Why would it be difficuit to huiid a rcfracting
telesc:ope of the same magnification?

A wave is described by the formula

yixt) =0l sin[27r (ﬁ S %)]

where y and x are in meters and risin seconds. What are the amplitude A4,
wavelength A, phase velocity v, and frequency v?

A sinusoidal wave of frequency» = 10° Hz has phase velocity v; = 500ms™".
What is its wavelength A? Find the distance between any 1wo points with a
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pbase difference A¢ = 7/6 rad at any given time. At a fixed point, by how
much does the phase change over a time interval Ar = 10~*

A car driven by a physicist is stooped by a policeman who claims that it
passed a traffie lighton red. The physicist tries to convinee the policeman that
the light appeared as yellow because of the Doppler etfect. 1s the policeman
jusu'fied in giving the physicist a speeding ticket? (The wavelengths of red and
yellow light are 6900 A, 6000 A.)

A unif ormly moving train sounds its horn as is passes a stationary observer.
The obscrver hears the horn note a factor 1.2 lower in frequency after it passes
than before. What is the tiiin's speed (speed of sound v in air = 330ms~'y

A car horn moving at v = 40 m s~ towards a static pedestrian emits a sound
wave of fTequency 1y = 500 Hz. The sound speed is v, = 340 m s "

(a) — What is the wavelength A emitted by the horn?

{b) — At what frequency » does the pedestrian hear the horn?

An astronomer uses a telesc:ope and spectrograph to observe a set of absorp-
von lines in the spectrum of a star. All of them are shifted slightly to the red
compared with the same lines in the Sun. In particular the He line
(Mo=6562A in the Sun) appears at A = 6563 A. What can you conclude
about the motion of the star?

An astronomer uses a telescope and spectrograph to observe the spectrum of
one star of a hinary system (two stars orbiting about their common center of
mass). If he continues to observe for long enough, what will he notice?

Two identical sound sources A and B arc 1 m apart under water and emit
sound waves of frequency v = 3500 Hz in phase with each other. A micro-
phone is placed on a line parallel 10 A8 at a distance L = 1000 m from AB.
Where should it be positioned so that the sound intensity is a local
maximum? (Speed of sound in water = (500 m s™'))

In the arrangement of the prcvious problem, the mierophone is placed at
position x = 474.4 m. The emiltec frequency is now adjusted in the range
2500 < v < 5500 Hz. What value should it take so that the microphone now
detects zers sound intensity?

A Young's double slit experiment is perfortned using light of wavelength A=
5000 A, which emerges in phase ftom iwo slits a distance d =3 x 10°°
apart. A transparent shect of thickness ¢ = 1.5 x 10~ em is placed over one
of the slits. The refraetive index of the material of this sheet is n = 1.17.
Where docs the central maximum of the interference pattcrn now appear?

In aiwo-slitinterference pattern (Young's experiment) the slits. are a distance
d = 0.3 mm upart. A screen is placed at L = | m from the slits. which are
illuminated by light of one wavciength only (monochromatie beam). in the
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inter{ crence pattern on the screen the 8th maximum is a distance D = 1.46 cm
from the principal maximum. Find the wavclength A of the light in
nanometers.

A spectrometer makes use of a grating with 5000 lines em~ '. At what angles
will maxyma of light of wavelength A = 6563 A appear? If white light
(4980 A< A < 7000A) is analyzed by the spectrometer, over what range of
angles do the second- and third-order interference patterns overlap?

A laser bearn of light at A=6870 A passes through a slit of width
D =10"* ¢m. In what directions is the intensity zero? What happens if D
is doubled?

A paraltel beam of light of wavelength A = 7000 A passes through a narrow
slit in an opaque screen. it produces a ceutral intensity maximum of width
Az = 1.4 cm (beiween the 2eros on eaeh side of the maximum) on a second
parallel screen L = I'm from the first. What is the width of the slit?

A thin uniform layer of oil of refractive index »n = {25 lies on a perfectly
reflecting flat surface. A monochromatic light beam of wavelength A (in air) is
normally incident on the oil. In terms of A, for what thickness d of oil will the
rcflected intensity be (a) a minimum, (b) a maximum®?

A mob ofiicial wishes not 10 be seen through the windows of her Mercedes in
daylight (dominant wavelength A). The refractive index of the car's window
ghss is 7, = 1.4. To minimize light transmission, the mob’s engincer has the
windows coated with a thin layer of optical paint with refractive index
n,= 1.5. The width of the layer is chosen to be d = 71,/2, where A, is the
light wavelength in the paint. Speculate on the engincer's fate.

A soap film (refractive index n= 1.3) is illluminated by monochromatic
light of wavelength A = $200A. Initially the film has thickness dy and its
transparency is maximal, but it is gradually stretched until its thickness
reaches 4, and its transparency ceaches a minimum. Find the possible
values of d, and d,.

[l ATOMIC AND NUCLEAR PHYSICS

P467.

P468.

Calculate the de Broglie wavelength of electrons whose speed is
v, = 10" m s~ ). What experiment couid one perform to distinguish between
2 beam of such elecirons and a beam of photons having the same wavelength?

In a cerain mesal, the binding energy of electrons (the work function) is
B8=3x10""J. The metal is illluminated by a monoshromatic beam of
light of wavelength A, What is the maximum value of A such that photo-
electrons are emitted? If A= 4.4 x 10”7 m. calculate the maximum kinetic
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energy £, of the photoclectrons and the stopping potential V. How do
these two results depend on the intensity of the beam?

When illuminated by monochromatic light of wavelength A = 5500 A.acer-
tain metal emits electrons with a maxiroum energy of £, = 1.02eV. When the
metal is illuminated by monochromatic light of wavelength A’ = 4800 A, the
maximum electron energy is £7 = 1.35 eV. Find the value of Planck's con-
stant /2 from these data. Can such an cxperiment be performed using any
metal? Explain your answer.

Calculate the number of photons emilted per second by a radio transmitter
broadcasting at a frequency of v = 1| MHz with power P = {0kW,

in a cerlain experiment. the position of an electron is determined to an
accuracy Ax = 107 m. Assuming that the electron is non-relativistic, what
is the most accurate knowledge we can hope to have aboutits velocity in this
experiment’?

Find the energy (in both joules and electron volts) and momentum of an
X-ray photon of frequency v =S % 10'* Hz.

The electron current in an X-ray tube is / = 16 mA, and the potential dif-
ference is AF = 12,000V. What is the shortest wavelengith of the emilted
photons? How many electrons hit the anode per second?

What is the de Broglie wavelength of the Earth mowngin its orbit? Using the
Bohr model for tbe Sun-Earth system, find the quantum number n of the
orbit. (You may assume that the Earth has mass M, =6 x 10*! kg and
moves in a circular orbit of radius R = 1.5 x [8'' m.) What can you say
about the apptlicability of quantum versus classical mechanics in this case?

Electrons are accclerated in a cathode ray tube by a potential difference of
o= 5000 V.
{a) — What is the de Broglie wavelength of the electrons?
(b) — What is the shortest wavelength of photons emitted by the anode
when electrons hit it?

A photon of wavelength A = 02 A encounters a stationary electron and is
scattered directly backwards. Calculate the final wavelength A of the photon,
and the electron’s kinetic energy £, after the collision.

A gamma ray of wavelength A, = 0.0048 nm is Compton scattered at an
angle & from an elcctron at rest. After the scattering, the magnitudes of the
photon and electron momenta are equal. Find the angle 6 and the wivelength
A, of the photon after scatlering.

The quantization condition of Bohr's theory of the hydrogen atom is
muuare = 1, where v,,r, are the velocity and radius of the nth electron
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orbit. Show that this is equivalent to requiring the circumference of the orbit
to be 7 times the electron’s de Broglie wavelength.

Use Bohr's quantization condition (see previous question) and classical
mechanics to find the total energy of the /th orbit in the hydrogen atom.
Express the ground state energy in terms of physical constants.

An electron collides with a gas of atomic hydrogen, all of which is in the
ground state. What is the minimum energy (in eV) the electron must have to
cause the hydrogen to emit a Balmer line photon?

A hydrogen atom in the 7 = 4 state makes a trausition to the ground state,
emitting one photon. Calculate the wavelength of the emitted photon and the
recoil velocity of the atom.

Calculate the energy of levels n = 100 and n = 1000 in the Bohr model of the
hydrogen atom. What can you say about the hinding energy of the electron in
these orbits? Oescnibe the spectrum of radiation emitted when such states
make a transition to a given low-lying level.

Use the Bohr model of the hydrogen atom to show that when an electron
jumps from the ievel n to level n — 1 the frequency of the emitted photon is
close to the electron rotation frequency (in Hz) if n is very large.

Figure | represents the energy levels of a certain atom. if a gas of such atoms
is irradiuted by a beam of white light, what absorption lines are expected in
the spectrum, when the experiment is viewed along the beam axis (see Figure
2)?

53

|

eV}

35
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An atom of singly ionized helium has a single electron. whose energy levels
are given by an expression similar to tbat of a hydrogen atom. i.e.

i) @)
n
where Ey = 13.6eV. What is the minimum energy requiced to ionize a helium
atom completely?

A beam of electromagnetic radiation has a continuous spectrum extending
between Aow = 240 A and Apigh = 500 A it is incident on an ensemble of
singly ionized helium atoms. which are all in the ground state. Calculate
the wavelengtbs of the absorption lines involving transitions from the ground
state scen if the experiment is viewed along the beam axis. How many dif-
ferent emisision lines will be scen in this case? How many are seen if the
experiment is viewed from tbe side?

. A sample of sodium containing a certain concentiation of the .,N:l24 isotope

is prepared. After 60 hours this concentration has fallen to 7% of its original
value. Calculate the half-life ¢,;5 of 1{Na™,

An isotope of iron (Z =26,4 = 59) undergocs beta decay into a stable iso-
tope of cobalt. Find Zand A4 for the cobalt isotope. in 30 days the number of
radioactive iron atoms in a certain sample decreases from N, = 10% to
Ny =625 » 10", What is the half-life of the iron isotope?

The half-lives of the two uranium isotopes U, U™ are known to be
!1,3(U2”) =4.5x 10" yr, 11/3(Uw} =71 x 10" yr. If the Earth was formed
with equal amounts of the two isotopes, estimate its curcent age, given that
uranium ores are now 99.29% U** and 0.71% U™ by number.

The radioactive element '*C decays by beta emission. In a living organism the
activity of "'C(i.e. the number of decays per minute per gram) is known to be
15.3. In a certain archaeological excavation a human bone is found in which
the activity is 1.96. The half-life of "*C is 1)/, = 5568 y. Estimate the age of
the bone.

When a helium nucleus is formed from two deuterium nuclei an energy
of 23.8 MeV is released. In tbe fission of U™ an energy of approximately
200 MeV is rcleased. Compare the total amount of energy released in the
fusion of I g of deuterium with that released in tbe fission of 1 g of o™,

B RELATIVITY

P491.

A body moves unifonnly relative to an observer, whomeasures its length and
finds a value / = {y/2, where / is its proper length. What is the velocity v of
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P493.

P424

P495.

P496.

P497.

P498.

P499.

the body? A clock moving with the body measuses a time interval 79 =1 s
between two events. What does the observer measure for this interval?

An electron moves so that its otal energy is twice its rest-mass energy. What
is its velocity? A1 what velocity is. its momentum mec, where a7 is its rest-mass?

A certain elementary particle lives only a time 7o = 5 s before disintegrating.
What velocity muss the particle have if it is 10 reacli the Earth from the Sun
(distance / = .5 x 10" m) before disintegrating?

A spacestup S; moves with unif orin velocity v = 0.99¢ witli respect 10 a space
station Sz. The clocks in §; and S; are synchironiacd at zcro hours as the
spaceship passes the space slation. The captain of S; sends a radio signal to
S when his clock reads 1.00 br. What will S;'s clock read when the signal
reaches i1?

A spaceship moves wiih velocity v; = 0.6¢ directly 1owards a space station. It
fires a missile a1 the station with velocity v,, = 9.5¢ with respect 10 itself.
What is the missile’s velocity with respect to the station? Repeat the calcula-
tion for the case v, =0.001¢c. Compare your results in both cases with the
answer given by the non-relativistic velocity addition formula: does ihe latter
provide a good approximation in either case?

A particle of mass m moves with velocity v = 0.8¢ in the laboratory frame
and collides witb an identical stationary particle, combining with it to create
a new single particle of mass M and velocity V. Find A, V.

An electron and a positron (each of mass m, = 9.1 x 107> kg) collide with
velocities +v = +0.6¢ in the laboratory frame. and gamma radiation is
emitted. Show 1 at more than one photon must be cmiticd. If exacily two
photons are emitied show that they must move in opposite directions and
have #qual energies E. Caiculate E and the corresponding photon wavelength
A

A eosmie-ray source moves with velocity v, = 0.6¢c away from the Earth. In
its rest frame i1 emits protons with energy £ = 2000 MeV in all directions.
Calculatc the spced v, in the source frame and v;, in the Earth’s frame
of a proton emitted towards the Earth. How long {in the Earth’s frame)
will it take for a proton to reach the Earth if cmitted a1 a distance
t=10"" km? What is the corresponding time in the proton’s frame?

{mp=1.67x 107 kg

An alien spaceship moves with constant velocity v = 0.6¢ relative to the
Earth. It passes the Sun at a certain point on its way to the Earth (you
may neglect the Earth’s motion about the Sun in this problem). How long
docs the Sun—Earth journey take according to a terrestrial obscrver? How

long do the aliens measure the trip as taking? (Earth-Sun distance
=1.5x 10* km.)
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When a spaceship passes the Earth, an alienaged 20 Earth-years falls in love
with a terrestriial student whom she sees on her moniior screen. At the time
the student is also exactly 20 years old. The relationship is discouraged by the
alien authorities and the spaeeship continues to move at constant speed
v = 0.998¢. After one year (spaceship time) the alien is able to send a radio
message to the student. How old is the student when the message arrives at
Earth?
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Choosing the origin at the center of the Sun and the x-axis along the Sun-
planet direction, we have for the Earth-Sun system

_0+Md, M,
MEMo M, M,

d=3x10"x15%x10"=45x10 m,

which is well inside the Sun, i.e. xcp € R
For the Jupiter--Sun system

0+MJ¢1,~ M’d

e e o 107%%1.4% 102 =1.4%10° m.

Xem =

Thi's i8 outsyde the Sun (about 2R, from its center).

We choose the origin of coordinates at the center of the hoop and the x-axis
along the shaft (see Figure). The positions (xy,)),(xz2,y2) of the centers

-
&
2

Dy e
T

no
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S3.

of mass of the hoop and shaft are obviously given by x, =0,
1 =0,x2 =4y, =0, so the center of mass of the entire racket is given by

MpxX; + Maxs 1 !
Xy =—77"—T"7"7-—"= X -
my + 2m 2

with pepg = 0. The center of mass is where the shaft joins the hoop. This is
obvious by symmetry, as the hoop and shaft have equal masses and their
centers of mass are #qually spaced about that point.

In calculating xcyy we have to add a mass my; = m/2 with coordinates
xy = =1/2,y; = 0 to the expression in $2 above. This gives

_—méfa+m!t —ii
M=T5,2 10t

The new center of mass is inside the hoop, a distance //5 from the point
wheie the shaft joins it.

. The center of mass of a triangle of uniform density and thickness is at its

centroid, i.e. theintersection of the medians (see Figure). The centroid divides
each of the medians in the ratio of 2: 1, so the center of mass of the eaten slice
is at 2 position 2r/3 from the center of the pizza. Choosing the origin of
coordinates at the center of the pizza and the x-axis along the symmetry line
ofthe slice, the center of mass of the full pizza lies at x = 0, while those ofthe
slice and pizza minus slice lie at x, = 2r/3 and x,, respectively. Thus

_mxs +m X,
metm.

¥
/- X, ¥5)

(%, ¥o) x
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s7.

where m,,m, are the masses of the slice and pizza minus slice. Since the pizza
is uniform m, = (20/360)m = 0.056n:, and m, = m — m .= 0.944m, so

m,  0667r x 0.056

;"X, 0.944 = —0.04r.

Xo=—

Thusthe balance point is shifted away from the original center of the pizza by
only 4% of the radius.

The ballast lowers the center of mass. Thy's makes the boat more stabie: ifthe
center of mass is too bigh, the boat may even capsize.

. The board is placed across the two scales as shown in the Figure, and the

person lies on it. The extra weights W, W registered by the scales are noted.
If the scales are a distance d apartand the center of mass (CM) is a distance a
from the top of the lefl-hand scale, requiring £M ;5 = 0 about the CM gives
Wia= Wyd ~ a), ie.

o= W,d
_W|+W3.

We may regard this as the z coordinate of the CM.

The process is then repeated with the person standing facing a particular
direction, and then facing at right angles to it, giving also the x, y coordinates
of the CM.

o=

The forces acting on the body are its weight W, the static frictional force f;
and the normal reaction force N ofthe plane (see Figure). The latter two are
exerted by the inclined plane. The weight is a result of the Earth’s gravity. To
calculate the force we choose a Cartesian coordinate system with the y-axis
normal to the plane and the x-axis down it. [n equilibrium, as here, we have
LF,=%F, =0, or

Wsind—f, =0, (1

N—Wcosf=0. (2)
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With W =mg this gives f, = mgsinf=5x9.8xsin30° =245 N and
N = 5x98 xcos30° =424 N. The maximum value the (rictional foices
can have is f/{"* = Ny, =424 x 06 = 25.4 N, and this exceeds the actual
value of f; we have calculated above, which prevents the body sliding. In
general, equations (1) and (2) show that /; = mgsinf and Ny, = p,mgcos 6.
so that equilibrium i8 possible for f; < Ny, i.e. mgsind < jmgcosé, or
it > tan 6. Hese tan 30° = 0.58 < 0.6, as required.

S8. Choosing the origin of coordinates at the mass  with the x,y axes res-
pectively horizontal and vertical, the conditions for equilibrium are
$F, = 0,XF, = 0. With T, T, the tensions in the strings we have (see Figure)

T,cosa + Thcos3 —mg =0
T sina — Tysinf = 0.

The second equation can be rewritten as T = T, sin3/sina, allowing us to
eliminate T, from the first equation:

T5lcos cxsinB + sina cosf3] = mgsina,

h

mg
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so using the tigonnmetric identity for sin (o + 8).

mgsina

2 sin(la+ )
The relation between 7, and 75 shows that

mgsing

! =sin(u +8)

Now using a = 45,3 = 60° gives Ty = 0897mg, T2 =0.732mg. The equili-
brium of the two vertically hanging wcights requires 7| = mg, T; = mag,
and thus my = 0.897m = 8.97 kg, my; = 0.732n = 7.32 kg.

Let the string make an angle o 'o the wall. As the wall is smooth, there is only
a nortnal reaction force N between it and the bali. Taking the x and y axes
horizontal and vertical, the squilibrium conditions £F, = 0,ZF ; = 0 become
(see Figure)

N-Tsina=0 (1)

Tcosa—mg=0. (2)

Then from (2), T =mg/cesn = mgsece. Since tana=r/h=1/2/3, the
identity scc’a = 1 +tan’a shows that seca = 2/v3 so that T = 2mg/+/3.
Now (1) shows that N =mg tan @ = mg/V/3.

If the wall is rough, (2) above becomes instead

4N + Tcosax =mg. (3)
Eliminating N between (3) and (1) gives

B mg
jiesina + cosa’

\
{N x
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and (1) shows that

mgsina
~ u,sma + cosa

As can be seen, both Tand N are reduced by nonzero g;: the ctiect of friction
is 10 help support the sphere, reducing the required tension in the string and
thus the normal force on the wall.

Taking the x and y axes horizontal and vertical, we sec from the Figure that
the horizontal eguilibrium condition £F, = 0 is satisfied by symmetry. With
o the angle of the two rope sections to the horizontal, the vertical equilibrium
condition £F, = 0 is

2Tsina—mg = 0. m

The length of the stretched rope is / = /, / cosa {cach section is streiched by a
factor 1/cosa), so that

Tanll—ly)= m*o(L— 1)

cosa
Thus substituting for T in (1) shows that
2rlg(l — cos a} tan @ = mg. ®))

Thecritical (maximum) angle a, has tana, = h/ly = 1/6, so that a, = 9.46°,
and cosa, = 0.986. From (2) we thus find that x must havc at least the
value k, = mg[2fgtana.(1— cose,)]™ = 60 x 9.8(2x 6 x 1/6 x 0.014)""
=21 x10'Nm™". Ifthe performer hangs vertically from the rope, we must
have the equilibrium condition

mg=T =n(l-4),

so that the extension of the rope is /— /y = mg/s = 60 x 9.8/2.l x 10° =
0.028 m, i.e. less than 3 cm. The big difl'erence from the earlier case results
from the faet that there the rope was almost horizontal, so that a much larger
tension was needed to balance the performer’s weight.
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SI3.

This problem is a particutar case of P8, withnowa = 3,7, = T, = T. Using
the relation for 7y or 7, in S8

sina _ mg

sin2a  2cosa’

Thus

_me
cosa = 5.

A horizontal wire would have a =90° or cosa = 0. For a1 # 0 this is impos-

sible, however large T becomes. For T = 100mg we find a = 89.7°, i.e. the

wire makes an angle 0.3° to the horizontal.

The wire must always sag slightly in order to balance the weight of the
mass. Since the wire itself always has mass, it can never be stretched com-
pletely horizontal. This effect can be secn casily by looking at a tennis net.
The vertical equilibrium of the hanging weight, ZF, = 0, gives T = W, where
T is the tension in the cord. Using £F, = 0 at the anchoring point gives a pull

P =2Tcosn

ontheleg. With the data given. the nursc increases the pull from £, = 140 N
to P, =170 N.

Requiring XM = 0 for the pivot O (the elbow),

LWcos# -~ %wcosﬂ — IFeosd =0,

so that F = (L/N)W + (Lf2{pw = 20W + 10w. This greatly exceeds W +w
because the arm is (deliberately) an inefficient lever, as are most limbs. (An
efficient lever would require large muscle contractions for small movements.)
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Sl14. With the forces as shown in the Figure. the horizontal and vertical equili-

S15.

brium conditions arc
Pcos§—2mg =0 (n
and
Psin0+ N —mg =0, )

where A is the reaction force of the ground. If P is very slightly larger than
the value specified by these conditions, the box will begin to move towards
the first man. The condition specifying 6 = 6, is N = 0, i.e. (hat the vertical
component of the first man’s pull would almost lift the box from the ground.
Thus from (2), Psin8. = mg. Now eliminating £ from (1), with 8 = §, we get
tanf, = 0.5 or 6. = 26.57°. From (1) we get P =2mg/cosf, = 224wy,

¥

N

F=2mg F

As O is a fixed axis, we require $Afy = 0. The torques acting at O are the
moments of the rod's weight and the string iension 7. Since the weight acts
through the midpoint of the rod, we must have

. ¢
ITsmb — 3mgcosa = 0, ()

where / is the rod's length and 8 is the angle of the string to the rod (sec
Figure). Note that we must use the foree components acting perpendicular to
the rod in taking moments, otherwise we will introduce the internal forces
in the rod. Clearly §=90°-a -4, so (1) becomes Tcos (a+4)=
(1/2)mgcosa. From the vertical equilibrium of the hanging mass M we
have T = Mg, so

cosa cos4s5’
B 2cos(a + 8) o 2cos60° "

Let the ceaction force P at the axis make an angle v 10 the hosizontal (sec
Figure). With the x and y axes horizonial and vertical the equilibrium con-
ditions £F ; = 0,ZF, = 0 become
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Pcos-y— Tsin3=0,

Psiny + TcosF—mg=0.

WithT = Mg =0.7lmg and 3 = 15°, these arc
Pcosy=0.7lmg x0.26 = 0.185mg

Psincy=mg—0.7lmg x 0.97 = 0.31 Img.

Dividing the second

equation hy the first we get tan~y = 1.681, so

that v = 59.25°. Then from the first equation we get P = 0.185mg/cosy =

0.362mg.

S16. Let the wire make an angle a to the horizontal (see Figure). Then requiring
Mo = 0 aboul O gives

%Tsin a—Ilmg=0.

Thus T = 2mg/sina. Clearly sina = A/} + (1/2)2]1'/2. Writing x = Aif! we

have

When T = Ty, = 3mg

T -

rd

rfe+uz_

mg

1
T= 2([ +ﬁ)mg.

we have x? = 1/2. so that Ay, =//VZ =0.71.

T

h

g
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SI7. Let the upper hinge be at A and the lower one at B and let the forces they

SI8.

exert on the door be F 4, Fy, The center of mass of the door is at its center O,
Its weight acts vertically downwards through this point. Since hinge A carries
all of this weight, Fg must be purely horizontal, while £, must have both
horizontal and vertical components (see Figure). Requiring £M , = 0 gives

~%Mg+ (h— 2d)Fy = 0.

With d = w/4 and # = 3w, we get Fy = Mg/5. The horizontal and vertieal
equilibrium conditions £F , = 0, ZF, = 0 give

F cosa— Fg=0,

F sina - Mg =0.

Thus rearranging and dividing these 1w o equations gives tana = Mg/Fp = 5.
Henoe o = 78.7°. The last equation now gives £y = Mg/sina = 1.02Mg.

The forces Ny, Nj exerted by the wall and plane are normal to these two
surfaces respectively (no friction). Thus N, is horizontal and N, makes an
angle &, 10 the vertical (see Figure). Then the horizontal and vertical equili-
biium conditions £F, = 0, £F, = 0 imply

Niycosf, = mg, m
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N;sinﬁ‘g = N]. (2)
Dividing (2) by (1) gives 1ané, = N,/mg. Requiring TM , =0 about the
point 4 where the rod touches the inclined plane gives

{Ncosé, = %mgsinl).,

so that 1an8, = 2NV,/mg. Hence the required relation between the angles is
1ané; = 2tanf,. With 6, = 30°, this gives 1ané, = 1.155, so 8, = 49.1°.
From (1) we get N = mg/cos8; = 1.15mg, and substituting this into (2)
gives Ny = N;sindy = 1.15mg x (i/2) = 0.58mg.

Let N,N, be the normal reaction forces of the floor and wall, and f the
frictional force exerted by the fioor. Lt the ladder have mass M and length
L. Then the equilibrium conditions ZF, = 0,ZF , =0 are

N2 _f = 0! (l)
N, — Mg =0. (2)
Requiring ZM o = 0 about the point O where the ladderis in conmact with the
floor (see Figure) gives
—LN;sm@+ éMgmsG =0,

or
Nytand = Mg. (3

Thus using (1) in {3) we get f = Mg/21an 6. Equilibrium is possible as long as
/ is no larger than the maximum possible frictional force, i.e. / < Nyu. Now
Ny = Mgy, using (2). Hence equilibriuom requires tanf 2> 1/24, e
0, = tan~'(1/2p).

S20. The forces are as in the previous problem, with 1he addition of the worker's

weight 2Mg actng at the 1op end of the ladder (see Figure). The equilibrium
conditions £F, = 0, £F, = 0 thus become



30

SOWUTIONS - CHAPTERI. MECHANICS

S21.

Nz —f=0‘

N —2Mg - Mg =0,

or N; =/, N, = 3Mg. Requiring ZM = 0 about the contact point G now
gives

~LN3sinf + éMgcosG + L x2Mgcosf =0

or Njtand = (5/2)Mg. Thus f = SMg/2tand. As before we require f < N\u
if the ladder is not to slip, which here becomes f < 3M gy, Hence the condi-
tion determining 8, is tan® > 5/64. i.e. 6, = tao™ (5/61:), which is of course
more restrict've than before.

Let the mass of the platform be M, and let the load {(of mass Af; = 2M) be at
distance x €rom its let-hand edge. If the tensions in the two ropes are T, T3,
the equilibrium conditions ZF, = 0, £F, = 0 become

Tysinfy, — Tysinéy =0, 4]
T cosd, + Thcos8, — 3Mg = 0. (2)
{Sec Figure.)
Requiring £M o = 0 about the position O of the load:
L
—xTycos8), — (;—- x) Mg + (L — x)Tycos6; = 0. (3)

Substituting for the angles 8;,#; as given, and dividing (3) by L/2, equations
(i-3) become

LV3i=T, @

T V’i + T, = 6Mg, (5)

\/§£ﬂ+ (1-2%).-.;3: (1-%)72. (6)
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Solving (4, 5) for T, T; gives T, = (3V/3/2)Mg, T, = (3/2)M g. Substituting
these values in (6) and dividing by Mg we get

9x x 3 x
52*("Zz)=i(“z)'

with the solution x = L/8.

S22. If the cylinder is not to slidc we require tan® < g, (see e.g. P7 above). It will
overturn if and only ifits center of gravity lies vertically outside the base, i.e.
tan6 > r/(h/2) (see Figurc). Combining these two requirements shows that
for A > 2r/tand = 2r/p, the cylinder will overturn, Note that this require-
ment is independent of 6.

523. The reaction force at the pivot will vanish if the two muscle pairs are
arranged to be in vertical and horizontal equilibrium with the reaction
force C acu'ng downwards. £ F, = 0 requires

Ucosb, — Lecosf, =0,
where U is the force exerted by thz upper muscle pair. ZF, = 0 gives
Using, | Lsing; C =0.

Eliminating U between these two equations gives C = L(tanf, cosf; + sin ;)
= 1.56L with the data given. This arrangement allows a larger bit'ng or
chewing force than would be exerted by either muscle group alone, and
avoids creating large steesses on the jaw pivot.

S24. Horiizontal equilibrium F, = 0 requires

F+F—F =0 (1)
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S26.

Requiring M, = 0 about the root,
{(h+ L)F — bFy =0. (2

From (2), F, = (h + H)F/ly = 035 N. From (1), F, = F, = F = 0.15 N.
If the pushing force is Pand the player's mass is m, he will not overtum if the
torque of P around his feet is smaller than that of his weight, i.e. we require

(%h+ g)Pcos 8< 5T‘hmgsi'ns,

or tan @ > 7P/5Smg. Hosizontal equilibrium £F, = 0 requires P =/, where
J < mgiis the [rictional resistance at the player’s feet. Thus the player begins
to slide once P reaches the value mgp: he will not have overturned before this
happens provided that tan § > 7u/5. Hence the minimum angle of lean is
0,, = tan~'(7¢/5).

Assume that the batance is level. Let the force exerted by the woman on the
cord be F, and let the cord make an angle a to the vertical. Also, let the force
¢xerted by the woman on the foor because of her weight be N'. Clearly
N' = N, where N is the reaction force of the Aoor on the woman (sce Figure),
Requiring ©M g = 0 about the pivot O of the balance we have

IN +15Fcosa = IMg

where ! is the length of each arm of the balance. Canceling /,
N +}Fcos &= Mg ()

(the weights of each side of the balance cancel). The vertical equilibrium
condition 5F, = 0 for the woman is (see Figure)

N+ Feosa=mg 2
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S28,

S29.

as obviously 7' = F. Eliminating Fcosa between (1) and (2) gives
N = 2M - m)g, (3)
and thus from either (1) or (2) we get
Fcose = 2(m - M)g. (4)

We require N > 0 if the woman is to remain on the platfonn, i.e. 2M > n1.
Since she pulls the string we must have Fcose > 0, i.e. m > M. Combining
these two requirements, the balance can remain level {for a suitable force F
and angle a, <f. equation (4)] provided that m. M obey

M<m<2IM.

Forces on
beam balance

N Forces on woman

If the lifting is slow, the situat'on is quasistatic. The pulley and mass are
supported by mwa sections of rope, so ZF, =0gives Mg=2T or T = M g/2.
The woman only has 10 exert a force equal to one-half of the weight to be
lifted. To lift the mass a height 4, both the supporting section of rope must be
shortened by an amount /. Thus tle woman has to pull down a length 24 of
rope.

When the second pair of pulleys are added, the mass is supported by four
sections of rope, so the vertical equilibrium condition X#, =0 becomes
4T = Mg or T = Mg/A. The four sections each have 10 be shoriencd by
an amount 4 to 1aise the mass, so the woman now has to pull down a length
4h of rope.

At the point A where the two levers touch, a torque G, on the left-hand shaft
produces an upward force F; = Gy/a. To get the right-hand shaft just to turn
requires £F , = 0, i.e. F> must balance the resistive force Fy = G /b. Thus the
required torque is Gy = (a/b)G). The calculation is precisely the same for the
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two gear wheels, as the teeth cause them 10 bebave like a succession of levers,
and steady motion implies that the forces are again in balance a1 4.

As the gear wheels cannot slip relative to cach other, the upward velocities
at 4 must be equal. If the right-hand wheel has angular velocity w we have
af? = bw, so w = {a/6)N.

The last theee questions illustrate the principle of gearing: a smaller {larger)
required force or torque corresponds to moving the load more slowly
(rapidly).

As the motion is quasistatic the forces and torques are effectively in equili-
brium at ali times. Simple geometry shows that the rudius from the center of
the cylinder to the contact point O makes an angle & = 60° to the vertical (see
Figure). When the rope is pulled horizontally, requiring M, = 0 about O
gives

gRF,,, = Rmgsin8,

or F, = mgV3/3.

Ifthe reaction force ofthe eurb is G and it makes an angle @ to the
horizontal, the equilibrium conditions £F; =0, ZF, =0 are F = Geosa.
mg= Gsina. Dividing these equations shows that tana = mg/F = 3, or
a = 60° for F = F,, as above. As lifting proceeds, the leves arm of the rope
pull Finereascs, while that of the weight decreascs (see Figure), so we deduce
that F,, decreases during lilting.

If the direction of the pullis allowed to vary, the best angle is obviously the
one making the lever arin of the pull largest. i.e. perpendicular to the dia-
moeter passing through O. This is clearly at 60° 10 the horizontal (sce Figure).
Requiring ZM = 0 about O now gives

3
2RF, = ng%,

or Fp = (v3/4)mg.
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(a) If 1 < 2R the straw will slide until it reaches equilibrium, which by sym-
metry must occur when it is horizontal.

(o) If 7 > 2R the horizontal equilibrium position is unattainable, and part of
the straw will protrade from the glass (see Figure). Since the glass is smooth,
the forces N 4N p exerted at the lower and upper contact points must be
respectively perpendicular to the glass surface, i.e. directed towards the center
of curvature O of the glass, and perpendicular to the straw (see Figure).
Clearly the straw makes the same angle 3 with the horizontal and with N 4.
Further the length 4B is equal to 2Rcos 8. Now choosing the x-axis to lie
along the straw and the y-axis perpendicular to it, the equilibrium conditions
LF;=0,ZF, = 0 become

N scos3 = wsing, (1)

NasinB + Ny = wcosf, (2)

where w is the straw’s weight. Requiring A, = 0 about 4 gves
!
ZRCOSﬁNg - EWCOSﬁ =0

or Ny = (#/4R)w. Substituting this into (2) gives
N ,4sin 8 = wicos 3— ), (3
wherc we have written u = {/4R for convenience. Thus dividing (1} by (3)
gives
cosf _ sinf#
sing ~ (cos 8 —p)’

Multiplying out, and using the identity sin? 3 = 1 — cos? 3, we get a quadratie
equation for cosf3:

2cos’ 3 —pcosB—1 =0,

with the solution

cosfB =i+ Vil +8,
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S33.

The other solution has cos3 < 0, which requires 3> 90°, and is unphysical.
Hence in the equilibrium position 3 is specified by

12
cosﬂ:ﬁ{l+ [l A lzs(?) ] }

and the length 48 is 2Rcosj, i.e.

=t frems(®]7),

which should be targer than {/2 if the straw is not to fall out of the glass.

The woman lifts the mass slowly, so we can rcgard the situairon as close to
equilibrium. Using ZF, = 0 gives

Mg—R:O,

where R is the tension in the rope, so R = Mg. Requiring £ Mg = () about the
elbow joint E,

Tasin(8 +¢) =fRcosé.
Combining, we find

_ JRcos¢  8cose
T asin(f+9)  sn(@+o) &

With 6 = ¢ we have sin{@ + ¢) = sin20 = 2sinfcosf, so T o< 1/siné. The
required tension in the biceps incfeases rapidly as the mass is raised and @
decreases.

Lct the tension in the rope be 7. Using £F . =0 we get
T+Mg=F
Taking moments about the point where the supports join the awning,
oT ~(I-a)Mg =0.
From the first equation T = F — Mg, so eliminating from the second gives
F =Magl/a. If instead two symmetrical sets of supports are used, £F, =0

immediately shows that £ = Mg/2. With the data given, we get = 4900 N
in the first case and F = 245 N in the second.
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The average speed is the total distance divided by the tota] time. The distance
X, traveled afler the stop is found from x = vf as x; = 90 x 2 = 180 km.
Thus the totaldistanceis x = 50 4 180 = 230 km. The total time includes the
stopandis¢=1/2+1/3+2=17/6 h (20min = 1/3 h). Hence the average
speed is v = x/t = 230/(17/6) = 81 .2km/h.

To answer the question we need w find the car’s acceleration a. We must
convert the ear's velocity v to m s~*. This gives v = 100 x 1000,/3600 =
27.8m s~". Now using the kinematical formula v = v¢+ ar with vy = 0,1 =
10 s and v as above, we find @ = v/ = 2.78m " 2. The distance follows upon
substituting these values into the [ormula x =uet+ alz/Z, giving
x=278 x ]02/2 = 139 m. The average velocity is this distance divided by
the time 10s, i.e. 13.9ms™".

The average vciocity is vy, = $/¢, where ¢ isthetime to complete the journey.
Clearly ¢ = s/2uy + 5/2us = s(v) + v2)/2v 2. Thus

This is always less than ype = (v + v3)/2 as the ratio is

Upe _ duiin )
T ooy P
Umean () + v3)°
. ) 2
and  since (yy—1)?>0, we have 2um<u;+vi S50

4y, < vf + 20,03 +1,% ={v + cz)l, so the rhs of (1) is always < 1.

The rdative speed is z, = v, —v, = 60 km/h. The officer has to travel
d =05 km relative to the car to catch it. so the time required is
!:d/i»‘, :0.5/60 h = 30s.

Concordc flies at speed © from East to West, relative to the Earth's atmo-
sphere which turns with the Earth at speed « = 2#R/d from West to East,
where Ris the Earth’sradius and dis the length ot'the day. To make the Sun
rise again requires v > ¥ = 27 x 64)0/24 = 1675 km/h.

We wish to usc the formula v* = v?, + 2ax; however, we must convert
the velocity units first. Thus vy = 100 km/h = 27.8 m s~'. Then with
a=-5ms"? (deceleration = negative acceleration) and v =0 (the car
comes to a stop) we find x = —1g/2a = 77.3 m. If v is increascd by a factor
2, we sce that x increases by a factor 2° = 4. Thus the new stopping distance
is 309 m.
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. Using the kinematic formula x=vol+arz/2 with 1y,=0 we find

a=2x/P=2x400/10 =8 m s> Thus from v=vp+al we get
v=80m s~', or a speed of 288 km/h.

In the kinematic formula x = v + a/2 we measuie_x upwards: we choose
the roof level as x = 0, so the ground level is x = =20 m. Also a = —g. Thcn
with vy = 10 m s~ wc get —20 = 10¢ — 9.8!2/2, i.c.

492 — 10t — 20 = 0.

The solution of this quadratic equation is ¢ = (10 £ +/T00+ 392)/9.8. Thc
negative root is not meaningful for this problem, so the answcr required is the
pasitive root ¢ = 3.28 s. The impact velocity follows from the kinematic for-
mula v = vy + a£. With v, 4 as above and ¢ = 3.285 we find v = —22.2ms™',
i.e. the ball hits the ground at 22.2ms™' (the negative sign shows that the
ball’s motion is downwards).

Choosing the positive x-dircction downwards, we use the kinematic formula
x=vr+ alz/Z. Here a = g since the motion is downwards. 1n the first case
we have vy = 0, thus x = gr*/2 = 9.8 x 22/2 = 19.6 m; this is the distance to
the water surface. The impact velocity in this case is given by the formula
v=vp+ar=g =98 x2=19.6m s~'. To find the initial velocity vy in the
second case, we again use x = vof +a 22 /2, hut now with x set equal to 19.6
m,a=gand ¢ =1s. This gives 19.6 = vy x | +9.8x 12/2 = vy +4.9. Thus
vo=19.6—49 = 14.7ms™'. Here the impact velocity is givcn by
v=ve+at=147+9 8% 1 =245ms™ .

The time needed for the car to overtake the tiuck is the timc the truck
takcs to travel 32 m. From the kinematic formula x = vy + a{’/Z with
v =0, = a = I ms ™2, we get 32 = #/2 and thus ¢ = V64 = 8s. The velo-
cities of the car and truck follow from the formula v= u, + at. using the
value of ¢ above and @ = a), a = a3 respectively, with vy =0 in both cases.
We find 1 =2x8=16ms ' and v, =1 x8=8ms"'. We can find the
initial separation of the vehicles by subtracting 32 m (the distance travcled
by the tiuck) from the distance x; traveled by the car by the time
they are level. The latier is given by the formula x = wyt + a!2/2 with
to=0,a=a,=2ms % and  =8s. This gives x, =2 x 82/2 = 64 m, Thus
the initial separation was Ax = 64 —32=32m.

. From the kinematic formula «* = v + 2ay with vy = 0 (the rocket starts

from rest), »=1000 m and v= 100ms™' we find a= 112/2)' =
10,000/2000 = 5 ms~2. The time follows from v= vy + @ with 19 =0 as
aboveand a = 5Sms™' as deduced: this gives t =v/a=100/5 = 20s.

The bullet reaches its maximum height when its vertical velocity v = 0. Fram
the kinematic formula +* = v + 20y with vy =30 m/s, a = —g we find a
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maximum height y = v3/2g = 900/(2 x 9.8) = 4592 m. To find the velocity
after 4s we use the formula v= vy + ar with 2y,e as above, to find
v=30-98x4=-92ms'. The negative sign shows that the bullet has
passed its greatest height and is falling back. The corresponding height is
given by the formula y = ¢ + a11/2 with vg,a as above and ¢ = 4s. We get
y=30x4-98x16/2=120—-784=41.6m.

From the kinematic formula 7 =u§+2a}', with o =0,a=g,y=h/2 we
find the velocity v= \/gh as the body starts the second half of its fall.
Now using y =wr+ar’/2 with v, = v= J/gh a =g,y =h/2 we find i
falls the second half in a time ¢ salisfying

g = \/ght + %gr“.
Now we are told that t =1 s, so

h=2V938h+98,
implying

(h —9.8)" =39.2h

or k! — 58.8h + 96.04 = 0. This quadratic equation has two roots, namely
h =571m and h, = 1.68m. The latter solution is clearly impossible, as
we know that the body falls for longer than I s, in which time it will have
covered more than gr7/2 = 49 m. Thus h = 57.1m.

Using the kinematic formula y= vy +ar’/2 with y=H —h, y =0,
a=g the man falls for a time 1, where H —h=_gik/2, ie. lp,=
|2(i{-h)/g|”2=4.04 s. Superwoman falls the same distance in time
ta— 1= 304 s. Using the same kinematic formula again we have
H-h= uot+glz/2. or 80 = 3.04wp + 9.8 x 3.042/2, sothat vy = 11.4m s~ .

In the elevator frame the effective gravityisg.; =2 +a= 1.8 m 572, and the
ball simply rises and falls with respect to the elevator and boy under this
acceleration. Using the kinematic foimula

1
y=uvl— Egcl'f‘

where y is the vertical distance from the boy’s hand we see that y = 0 both at
t=0andat ¢ = 2uy/g.r = 0.85s.
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The time offiight is given simply by the vertical motion. This is governed by
the equation y = wg,t — g /2. Here vy, = sina with vy = 360ms™' the
muzzle velocity and a = 30° the elevation. The time of flight is given hy
setting y = 0, which gives 0= v.,,tfglz/Z, The root + =0 is trivial (the
shell starts from y = 0 also), so we can divide through by ¢ in this equation
10 get 2= Doy, /g =300 x 05/49 =30.6s. The range follows from the
horizontal motion, which is simply constant velocity at g, = ¥ cos 30° =
300 x 0.866 = 260m s™'. Thus the range is x = vy,7 = 7956m.

The maximum distance is achieved when the elevation angle is 45°. We find
the time of flight. as before, from the equation of vertical motion, finding
t=2u,/g =2x 255in45°/9.8 = 50 x 0.71/9.8 = 3.62s. The best distancc is
thus x = vg.f = 25¢0s45° x 3.62 =64m. To find the elevation of the faulty
throw, we nole that the range can be written quite generally as
X =ty =1y, X 2ty /8 = 2igsinacosa/g. Using the trigonometric identity
sin2a = 2sinacosa, this is x = v sin2a/g. With x = 32m for this throw
and vy = 25ms! as before, we find sin 2 = 0.5. This has nwo solutions,
a =15 and o = 90° — [5° = 75° It is of course much more likely that the
faulty throw was too flat than too steep, ie. & = 15°.

We can rewrite the general range formula x = vgsin 2a/g given in the last
solution as x = X4 Sin2a, where xpa, = v%/g is the maxirmui range. This
shows that the maximum range is achieved when sin2x = 1. ie. a = 457, and
that half the maximum range is achieved when xn,, sin2a = x,,,,/2, ie.
sin2e = 0.5, so that a = 15° or 75° for half the range, independent of 1.

From the general range formula x = 22 sinacosa/g used in the last two
answers, we sec that for given x and vy we have an cquation for a.
ie. sinacosa = gx/2|;|§. If we find a solution = e, of this equation, we
can sec that a;=90°— ¢, is also a solution. since sino, =cose;.
cosa1 = sinay. Clearly a; — 45° = 45° — 1.

(a) I the takeoff and landing pointsareat the same level we can use the range
formula (see Jast three answess) in the Torm sin 2a = xg/t3. With x = 15 m
and v = 100 ksn/h=27.8 m s™', this gives sin2¢ = 0.9, implying ¢ = §.5°
(the alternative possibility o = 84.5° is rather unlikely!).

(b) If the bus takes ofi horizontally, the time of flight across the gap is
t = x/vg. Using the kinematic formula y = v, + a12/2 during this time the
bus falls a verticat distance y = g7* /2, since it has 2ero vertical velocity initi-
ally. With the data given we find y =gx2/2vc1| =14m.

The time of flight follows from the horizontal motion as = x/vo, where vy is
the muzzle velocity. The kinematic formula y = vt + ar?/2 with vy, =0
shows that the bullet falls a distance # = gr*/2 = gx®/2u} below the horizon-
tal. 1f the rifle is asmed correctly at some angle o to the horizontal, the range
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forinula used in S50 above requires that x= Zt%sinocosor/g, so
sin acosn-:xg/zuf= h/x. For i << x, v is a small angle, so cosax [
and tana = sine = #/x. The rifleman should aim at a point xtane=+#
above the target.

The time of flight is given by the vertical free-fall time from the airplane’s
height, with zero initral vertical velocity. Using p = vg,t — g /2 with vy, = 0
and y = —/t we find r = +/2h/g. Herc /i is the height, and y is negative
because it is measured from the airplane’s position. With A=2 km =
2000 m we get + = 20.2s. The tank's horizontal velocity is the same as that
of the airplane and is thus v, =600km/h = 167ms ", The horizontal
distance traveled by the tank after release is thus x=1tgt=
167 x20.2=3370m. As the airplane and tank have exactly the same
horizontal velocity. the airplane is always direcily overhead the tank, includ-
ing ai the moment of impact.

Since the bombs all have the same horizontal velocity as the bomber they lie
on a verucal line directly underneath it at all times (sce Figurc). Each bomb
takes exactly the same time to hit the ground, so they do so at intervals
At =1 s. Their rclease points differed by »At= 194 m, hence so do their
impact points.

The time of flight is given by the vertical motionas ¢ = 2wy, /g (see $49). With
vy, = Yosina = 1000 x 0.087 = 87 ms™', we find # =2x 87/9.8= 17.79 s.
The horizontal veiocity of the shell with respect to the ground includes the
tank's velocity « and is vg, = Vo cosa + # = 1000 x 0.996 + 10 = 1006 ms™".
The range of the shell was therefore x = vo.s = 1006 x 17.79 = 17.897 m.
During the shell's flight, the tank advanced a distance wi=
10 x 17.79 = 177.9 m, so the scparation of the tank and targct at impact is
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the diflerence 17,897 — 177.9 = 17,719m. The separation of the tank and
target al thc moment of fiing is the shell's range minus the distance
traveled by the target during the shell’s fight, ie. 17,897 —wt=
17,897 ~ 15 x 17.79 = 17,630 m.

The horizontal distance traveled by the softball is x=/+d =38 +2 =
40 m. The time of flight is thus (= x/vg, where vy, = tycosa =
ve/2 (cos60° = 0.5) is the {constant) horizontal velocity of the ball, and v,
isthe unknown velocity of the throw. Hence ¢ = 2x/vy = 80/1y s. Substitut-
ing this expression into the equation for vertical motion ) = vy, —gr/2
w'th vy, = tosina = 0.866vp and ):=h =20m wc find

20 = 0.866ve x 80/ty — 9.8 x (80/vp)’ /2.
i.e. 20 = 69.3 — 31,360 /12, or 1y = V31.360/49.3 = 252ms"".
Using the kinematic formulae, after time ¢ we have horizontal and vertical

displacements

X =1, (1

y=vr-§ @

Using (1) to eliminate ¢ = x/u, (2} becomes
Y. 5.2
y= ux 207 X% (3)

This is a parabola. Clearly p =0 at x =0 and x =r = 2uv/g. The height
follows either directly hy putiing x = r/2 = uv/g into the equation (3) of the
parabola, giving A = v*/2g. or by using the kinematic formula v, = v —gi for
the vertical motion, which gives ¢ = v/g for the time at which the projectile
reaches its greatest height (v, = 0 there); giving ¢ this value in (2) gives the
same value for A.

. The athlete needs to launch the javelin at 45° to the ground (as viewed bya

stationary observer) for maximum range {see §5!). [fshe throws the javelin at
angle @ in her own frame, she has to ensure that the horizontal and vertical
components of its initial velocity seen by a stationarty observer are equal, i.e.

vsinf = vcosﬂ-{-;.

where v is the speed of the throw. Thus sin # — cos & = 0.25, which is satisfied
for § = 55°.
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Equations(1-3) of $59 hold here too. As the pea is aimed directly at the cat,
the boy chose the velocity eomponents «, v so that the straight line y/x = v/u
passes through the cat's initral position. Equation (2) shows that at time ¢ the
pea is a distance g/?/2 below this line. But the cat falls from rest on this line,
so at time ¢ it too is a distance g.‘2/2 below this line. Thus when the pea
reaches the line of the cat’s fall it will have the same ventical displacement
from the line, ie. it hits the cat.

The skier takes oft fram the 1op of the hump with horizontal and ventical
velocity components 4,0, From equations (1, 2) of Solution 6t we
have horizontal and vertical displacements x = ut,y = —grz/z at time .
This gives the dashed trajectory in thc Figurc. The skier lands when
y= —xtana, or —gf/2=—ultana, ie. = (2u/g)tana. Using u=
100km/h =278 m s, wefind ( = 56.7tan25° = 2.65 s.

The vertical velocity » = 5 m s~ allows the skier instead to “pre-jump”
the crest of the hump, i.c. takc the trajcctory indicated in the Figure by
the dotted curve, since 4 < vz/Zg‘ If executed rerfcctly, this trajectory
would have takeoft speed given by w = (2gh) 1<v and take a time
fore = /g = (21/g)"2. With the data given o = (2/9.8)> = 045 s. The
pre-jump trajectory saves more than 2 s of time in the air. The speed differ-
ence between skiing on snow and airborme implies a significant overall time
saving, and pre-jumping is a standird competition technique.

Thc man shouid arrangc that his velocity with respect to thc river banks
points directly towards his girlfriend. Thus he should swim at angle o to
the shortest distance across the river, partly into thecurrent so that he cancels
it, i.c. v,sina = v, (see Figurc). Thus sina = v, /v, = 0.5, or a = 30°. His
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velocity across the river is then v,cosa = 0.87m s~1, so the crossing takes a
time t = L/087 = 115s = 1.9 min.
S64. We have the two velocity triangles shown in the Figure. Here Up4, Vpg are the

S565.

airplane’s speed relative to trains A and B respectively. From that for A we
have that he sees the airplane’s speed as v,y = vtana. Using this in the
triangle for B we have vtana=2vtanf®, which gives tana=
2tan30° = 1.155 and thus o =49°. From the triangle for A we have
v, = v/cosa = 60/ cos49” = 91.5km/h.

In the runner’s reference frame the rain has a horizontal velocity compo-
nent exactly equal and opposite 1o the runner’s velocity (see Figure). The
total velocity of the rain is then («# + vz)"'z, at angle ¢ = tan~' v/u to the
vertical, If the runner leans forward at angle 6 he prescnts total effective
area A = Aysin(¢ — &) + 4,cos(¢ — 8) 10 the rain (see Figure), If 4 < 4,
this is obviously smaliest when # = ¢, so that 4 = 4,, i.e. all the sain falls
on the runner’s head and shoulders. As it falls with velocity (u? +v%)"/? and
effective density p, the total mass of water absorbed in unit time is
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Ap(id + ul)m. The runner spends a time //v in the rain, so the minimum
amount of water he absorbs is
/2
(II2 e “])I
m= Alp——"—.
ihp 7
Thus even if the runner could run much faster than the rain falls (v>® u} he
would still absorb at least a mass A4,/p of water (actually much more, as he
cannot lean forward at an angle 8 = ¢ =tan~'v/u ~90%). In practice
# < u, and m =~ Adpufv. This gives the answer to the oflen-asked question
as to whether running faster in rain merely gets the runner wet faster - on

the contrary, doubling the speed v actually halves thc mass of watcr
absorbed.

S66. The main problem in believing the man’s claim are the accelerations.
required to reduce the relative speed of the two cars 10 10 km/h or less.
If the second car did not manage to turn and accelerate significantly, the
first ear must have brakcd hard enough to reduce its speed from
vo=70 km/ h=19.44 m 5! to =10 km/h = 2.77m s~ in a distance
x =4m. Using the kinematic formula v = vﬁ + 2ax we find an acceleration
a=-46 m s™%, or a= —4.7g. This is far more rapid braking than is likely
(typically la| < g) even allowing for the first driver’s reaction time. If
instead the second ear managed to turn and accelerate to 60 lam/h in 4
m, the same formnla requires the car to have an acceleration @ = 3.5g. This
is again implausibly high. Obviously one can imagine a combination of
these two possibilities in which the first car slowed somewhat and the
second accelerated by some amount. However, in all cases the required
accelerations arc too large to be belicvable.

{J NEWTON®S SECOND LAW

S67. To find how the masses move we need their accelerations. In this problem
they have the same value a because the string is under tension. The only force
acting in the direction of motyon on the mass m is the string tenston T {see
Figure), so the equation of motion of n is

ma=T.
The forces acting on mass ny, are T and its own weight n1,g (see Figure), so
maa=nnag—T.
Adding these two equations climinates T, i.e.

() + my)a = myg,
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S0
my
= g,
my -+ m;

With the masses given we find a = 0.097m s™2. From the Kinemaiic formula
x = wi + ar’/2 with 1 = 0,7 = |®s, we get the distance traveled in the first
10 s as x = 485 m. The same formula gives the time to travel a distance
x =1 m fromrest as 1 = y/2x/a. Here this is 4.54s.

my

mg

The resultant vpward force nn the mass is ZF, = T —mg, where T is the
tension. From Newton’s sccond law we have a = LF,/m = T/m —g. The
maximum acceleration follows upon substituting the maximum allowed
tension 7 =500 N, giving Gpa, = 500/20 —9.8 = 15.2ms 2. Using this
acceleration in the kinematic fommula y = vyt +af/2 with vo=0 and
r=2s we get y= 15.2x22/2=30,4m for the distance the mass has
traveled.

The motion up the inclined plane is one-dimensional, and we define the
distance from the initral position to be x. To use the kinematic formulze
we first need the acceleration. The resultant force component on the body
in the x-direction is ~F, = —mgsino (see Figure), (The resultant foice
normal to the plane is zero as the component of weight in this direction is
balanced by the normal reaction force of the plane.) Thus the acceleration is
a=ZXLF,/m=—gsina. In this case @ =30° and thus a=-gx05=
—4.9ms™ 2. The kinematic formula to use here is v =1+ af. With v=0
(the turaing point) and vy = S m s~* we get £ = —p/a = 5/4.9 = 1.02s.
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We take the motion of the lighter body to define the positive x-direction.
(The heavier body moves downwards.) Considering each body separately, we
can use Newton's second {aw and the resultant forces on them (o write

ma=XF(l)=T-mg,

maa=EF(2) =mg T,
where a is the common acceleraticn of the two masses (see Figure). Adding
the two equations we find (m, +ma)a = {my — 7)g, and thus
_mp—m
Tmg4ma

giving ¢=5x98/15=327ms 2. From either of the equations we
can now find 7 by substituting for a. From the first equation we find
T=m {a+tg)=5x(327+9.8)= 6535 N.

x

/'_"\

I:F
Ect the angle we seek be 6 and the tension be 7. The resultant forces on the
mass in the x and y directions are then (see Figure) TF, = Tsind,

LF, = Tcosd — mg. There is no vertical motion, so £F, =0, but in the
hodzontal ditection, Newton’s second law requires £F, = ma. Thus

Tcos8-mg=10

Tsin® = ma
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Putting 4 =0.1g in the second equation and rearranging the first we get
T cos@ = mg, Tsiné = 0.lmg. Dividing the second cquation by the first we
get tanf = 0.1, with the solution 8 = 5.7°. Using this value in the first equa-
tion we find 7 = mg/ cos 5.7° = 1.005r1. Note that the tension is larger than
the weight, because the subway car accelerates the mass through the tension
in the string.

In the vertical direction, the forces acting on the person are £F , = N — mg,
where N is the normal force exerted by the elevator floor. By Newton's
second law, £F, = ma, so N = ml(a +g) = 1.Img. (Note: this is the person’s
cfiective weight.) The vertical forcc on the elevator and its contents is
LF,=T—-Mg—mg. By WNewton's second law this is equal to
(M +m)a=0.1(M+m)g. Thus T— (M+m)g =0.1(M+m)g, so T =
LM+ m)g.

The motion of each mass is one-dimemnsional, and they must move equal
amounts along the wedge faces. The resultant forces on the masses along
the wedge faces to the left can be written as

LF, =mgsind, - T

TF, = T — Mgsing-.

if the masses are to remain stationary, both resultant forces must vanish.
With sin53° = 0.8,sin37° = 0.6 this gives 08mg — T =0,7 — 0.6Mg = 0.
Eliminating T between these equations gives 0.8mg = 0.6Mg, so M/m =
0.8/0.6 = 1.33. The tension T follows from the first relation as 7 = 0.8mg.

After the additional mass m has been added, the resultant forces on
each mass are F) = (M + m)g - T, £F; = T — Mg Eaeh mass has the
same acceleration a, whieh by Newton's second law obeys F, =
(M +m)a, BFy; = Ma. Substituting these expressions into the first pair of
equations gives

(M +m)g~T = (M +m)a.

T —Mg=Ma.

Adding these equations eliminates 7, and we get (M +m)g —Mg=
(M+m)a+Ma, so mg=(Q2M+m)a or a=mg/2M +m)=
0.01Mg/(2M + 0.01A7) = 498 x 107 3g. After the extra mass is removed,
the masses move with a constant velocity (the forces balance) whose value
is v = f7/1 =0.312/t = 0.312ms™". This is also the velocity acquired afier
accelerating under the extra weight. Using the formula * = % + 2ax
with 1 =0,x=h=1m, and a as above, we get u’=2ah=
2% 498 x 1073g x 1 =9.96 x 10~7g. Using v =0.312ms™ " as found above
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gives g = 0.312%/9.96 x 107> = 9.77ms 2. (The deviation from the best
value g = 9.8l m s7% is a result of experimental error.)

The bullet’s time of Right is equal to the frec-fall time from rest at height 4,
since the bullet had zero initial vertical velocity. Thus using y = wyf — gl /2
with vy = 0,5 = —& we find 1 = \/2i/g = \/2 x 1.5/9.8 = 0.553s. The hor-
izontal range s and the time ¢ give the muzzle velocity from the selation
x=1uvt with x =5 =500 m and 1 =0.553s. Hence v =s/t =904ms . To
find the force on the bullet we need the acceleration it experiences inside the
gun. This s given by the formula v* = v + 2ax with g = 0 (the bullet accel-
erates from rest) and x=/=05 m. Thus a=v%/2/ = 90432 x 0.5 =
8.17x 10°ms ™. The force on the bullet is (by Newton’s second law)
F = ma, where m = 0.01 kg, so that F = 8170 N.

We choose the downward direction of motion as positive. We can find the
acceleration from the kinematic formula ¢ = vp + af with vy =20ms™', v=
Sms~ and 1= Ss. Thus a = (v—v,)/t = (5 - 20)/5= —15/5 = =3ms~>.
The minus sign shows that the skydiver decelerates. The forces acting on the
skydiver duting deceleration are her weight mgdownwards and the {(casion
T in the parachute cords upwards. Hence the resultant downward force is
LF, =mg—T. Using Newton's second law this is equal to ma, so
mg — T = ma. Hence T = m{g — a) = 50(9.8 — (-3)} = 50 x 12.8 = 640N.
The resultant force on the skydiver is £F, = mg—T = 50 x 9.8 — 640 =
—150N. Note that this is equal toma, as it must be according to Newton’s
second law. The force acts upwards, as the skydiver's downward motion is
decelerated.

During braking tbe resultant horizontal force on the car is

Srlz-f?

where f = uN is the frictional force and we have chosen the x-direction to lie
in the direction of motion. Here N is the normal force exerted by the road on
the ear tires. The vertical resulsant force on the car vanishes, i.e.

LF,=N-mg=0,

so thatf = uN = jumg. Newton’s sccond law for the horizontal motion gives
ma = EFy = —f = —jung. Thus @ = —g. The negative sign impliesdecelera-
tion.

Using the kinematic formula v = v + a? with v = 0 (complete stop) and a
as above, we get the stopping time ! = —vy/a=vy/(11g). Since =
60km/b = 16.67ms "' this gives the stopping time 1 = 16.67/(0.5x 9.8) =
3.4s. The stopping distance follows from the formula x = wvyf+ alz/l s
16.67 x 3.4 — 0.5 x 9.8 x 3.4°/2 =28.4m.
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S78. The horizontal and vertica] forces acting on the sled (see Figure) give the

resultant forces BF, = F — f, ©F, = N — mg where f is the frictional force
and N is the normal force exerted by the snow. For constant velocity both
resultait forces must vanish, so that F = f and N = mg. Thc frictional forcc
is given by f=uN, so using the value for N we find f = pumg; thus
F=f=mg=0.1x10x98=98N.

§79.

¥
N
| nemr— s | £
1 1
I=uN X
mg

Choosing the x-coordinate to run downwards along the slope and the y-
coordinate as its upward normnal, the cesultant forces on the static skier are
(see Figure) LF, =mgsina — f,EF, = N —mgcosa. Both resultant forces
vanish, so that

N = mgcosa,

f = mgsina.

Until the skier begins to move, [ is snizifer than p,N; the motion starts
when f = p,N. Substituting this into the second equation and dividing it
by the first, we find y, = tana = tan 15° = 0.268 (cf. P7). After the mation
staris, the coefficient of friction drops to a value g = 0.1, and f = uN always
halds. Now, LF, has the nonzero value mgsina — i«N, where N is the
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same as befere. Replacing N in the last expression, we get LF, =
mgsina — gpmgeosa. Newton's scoond law now gives the acceleration

a=XF [m=g(sine - pcosa) or

a=98 x {sin15° — 0.[ cos 15*) = 1.59 ms>.

The velocity v and distance x after Ss follow from the kinematic formulae
v=1vy+al, x = vyl + mz/Z respectively. With vy = 0 and @ as found above
these give v =159 x 5 =7.95ms"" and x = 1.59 x 5'/2=19.9 m.

. Using the Figurc, we sec that

TF,=Fcose —f,

IF = Fsina+ N - Mg,

where f is the frictional force given by f = 12N, with N the normal force on
the timber. Using Newton's second law, £, = Ma, where a is the accelera-
tion, and £F) = 0. (The rope docs not lift the timber completely off the
ground: if it did, N would become formally negative.) Substituting these
three relations into the pait of equations above, we get

Ma = Fcasa — N,

0=Fsina+N - Mg.

From the second equation, N = Mg — Fsino. Putting this into the first
equation gives

Mua = Fcosa — (Mg — Fsina) = F(cos & + usina) —~uMg.

Substituting the numerical values given we get @ = 3x 097 —-0.2 x 1 x 9.8,
i.e. ¢ =0.95m s . From the equation for N we find

N =100x 9.8~ 300 x 0.5 =830N.
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Note that this is positive, but smaller than the weight Mg of the timber, as the
dragging force has an upward component.

We take the x-direction to run up the slope, and the y-direction normal to the
slope. The resultant forces on the body in its upward motion are (see Figure 1)

TFe=~mgsina -~ [,

ZF, = N —mgcosa.

With ZF,=0 and f=pN as usual we get (eliminating N)
TF, = —mgsina —jungcose. The acceleration a; follows from
Newton’s second law ie. « =ZF,/m = —g(sina+ pcosa) ie.
a, = -9.8(0.342 +0.2x 0940) = —5.19ms"2 The negalive sign implies
that this is downwards. The time ¢ is given by the formula v = vy +ar
with =0 (lurning point), ¥ = 10ms™' and a=a; as above. We find
typ = —vg/ay = =10/(-5.19) = 1.93s. The distance s can be found from
s=x=1pr+al/2 with v=I10ms™'", a¢=a =-519ms-? and
t=t,p=193s. Wefind s= 10 x 1.93 - 5.19x (].93)2/2 =9.63 m.

In the downward motion, the resuitant force in the y-direction is the same,
but the frictional force f is reversed in the formula for £F , because friction
always opposes the mouon ({see Figure 2). This gives ZF =
—mg sina + wmgcos a, and thus the acceleration a2 = —g(sina — pu cosa)
in the downward motion. Hence a, =—9.8(0.342 —0.2 x 0.940) =
~1.51ms™2 The time t4om, follows from the formula x = vyr + af?/2 with
1 = 0 (turning point), x = —s (the motion is downwards, i.c. to ncgative x)
and ¢ = ¢3. Thus fgown = 1/2(—$)/ar = /2 x 9.63/1.51 = 3.57s.

Fig 1 Upward motien Fig 2 Downward motion

. I.et the tension in the string be 7. If T is too large the mass m moves

upwards. The maximum allowed value follows from 7T, =mgsina +/,
where f =uN =ung is the frictional force (see Figure). Thus
T) = mg(sina + pscosa).
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The resultant force on the other mass m is
BF, =mgsing — T — pmgcosf,.
Motion at constant velocity implies that both forces vanish. Adding the
two cquattons with IF, =ZF; =0 we get 0= mg(sin6 — sinb)
—punig(cosd) +coséz). Thus g = (0.8 — 0.6)/(0.8 + 0.6) = 0.2/1.4= 0,143,
$85. We 1ake the x.direction up the slope and the p-direction normal to it. A1 the
moment when the mass begins to move, F = F,,, and the resultant forces
(see Figure) are
LFy = Fparc0sa — mgsina — p,N,
EF, =N — Fpy,sina —mgcosa.
Boih forces must vanish, so we can use the second equation 10 write
N = Fguy sina+mgcosa
and thus
o sin@ + f4,c050
o " cosa — g sma”
$86. As tong as the box remains stationary on the accelerating truck their accel-

erations are the same. The only horizontal force acting on the box is friction
(see Figure). Hence in this case we must have f = ma, where [ is the friciional
force, m is the mass of the box and & is the acceleration. Since f has a
maximum value f,., = #,N = g,mg, we obtain the maximum allowed accel-
eration of the truck as a, = pg = 0.3 x 9.8 = 2.94ms™2.
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If this iseven slightly exceeded, the coefficient of friction drops to ¢ = 0.2.
Again the only horizontal force on the box is friction, but now this is too
small to prevent the box sliding backwards with respect to the truck. We now
have f = ma,, where f is now the sliding frictional force f = uN = umg
and a, is the acceleration of thc box with respect to the ground. Thus
ap=f/m=pg=02=196ms™.

The distances x..x, traveled by the trick and the box relative to the
ground in the first second are given by the formula x = gt +ait/2. The
initial velocity »y with respect to the ground is the same for the truck and
the bozx, so

a,f
X, = Ul + B

(1'5!2
Xp = vyt + T A

The distance traveled by the box with respect to the truck is Ax = x; — x,.
Subtracting the first squation from the second we gct Ax = (a; — a,}rz/z.
Note that a, —a, is the acceieration of the box with respect to the truck.
This gives Ax = (1.96 — 2.94)/2 = —0.49 m. Thus the box slides 0.49 m
backwards on the truck in time { = 1s.

Clearly the monitor cannot move with respect to the computer without also
moving with respect to the table. The condition thai the monitor should not
move with respect to the tabie is found from the balance of horizontal forces
on tbe monitor. This gives F — /| =0 (see Figure). Since ; has a maximum
value of pmg. this gives Fy;; = g, We can now show thatthc full monitor—
computer system does not move in this case. The external horizontal force
acting on this system is £F, = F —f,, wheref; is the {rictiona! force between
the computer and the table. For tht case F = Fr., = g, we sec that this is
less than the maximum allowed vatue 3p2ng of /5, so the system remains at
rest. Hence the monitor docs not move with respect 1o the computer either.
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Adding thec two equations and solving lor P gives
P =M +m)a+1g)

Now f| has a maximum valuef, (max) = uMg, so since /|, = Ma, a also has a
maximum value dp, =/ (max)/M = ;1g. Above this value the book cannot
accelerate as fast as the paper, which can there fore be extracted. Substituting
@ =ag,; into the equation for P above gives P= (M + m)(ug + yig) =
2i(M + m)g = 0.22Mg. Thus Pe > 0.22Mg.

] WORK, ENERGY AND POWER

$89.

$90.

S9l.

S92

Only the horizontal component of the force F docs work (there is no motion
in the vertical direction). The horizontal component is F, = Fcosé =
5x 0984 =4.92N. To find the work done we need the distance traveled
in 5 s. Newton’s second law gives the horizontal acceleration as u =
F/m=492/5 =098 ms2. The distance traveled follows from the formula
x =tof +af /2 =098 x 5/2 = 12.3m. Thus the work done is W = F.x =
492 x 12.3=605).

The train initially has no kinetic energy (71 = 0). but eventually acquires
a speed of v=72 kmth=20ms'. It therefore has kinet'c energy
Ty = m?/2 = 10° x 10° x 20*/2 = 2 x 10* J. This energy was all supplied
by the motor. which did no other work, so that W =T, — T, =2 x 10* J.

The incrcase AU in the gravitational potential energy is the difference
between the energies in the final and initial states. Thus AU =
mgyy — mgyy, = mgh, where m =10 kg is the mass of the bucket and
contents, yy,p, are the final and initial heights of the bucket measured
from an arbitrary origin, and 2= 10 m is their difference. Thus
AU == 10x98 x 10 = 980 J. The work donc against gravity must equal
the change of potential energy (there is no kinetic energy in either the initial
or final state). Thus W = AU =980 J.

We choose the ground as the zero-point of gravitational potential energy.
The totat energy of the rollercoaster remains fixed as friction is neglected.
its value can be found at the first point (maximum height) as £ =
T+ U = m171/2 + mgh;. At the secand (minimum height) point the energy
is E=Ty+ Uy =m}/2 +mgh, Equaling these two expressions we get
3 = vi +g{h, — h,). Thus
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Since the motion is uniform, the vertital forces on the load must balance, i.e.
F = mg, where F is the force exertcd by the crane on the load. The power
follows from the formula P = Fu, giving P = mgv = 500 x 9.8 x 2 = 9800W.
To find the work done by the crane we use W = F# since the force is con-
stant. Thus W = 500 x 20 = 1000 J.

Since the second crane lifts the load at twice the above speed, its power is
larger by a factor of 2. The work, however, has the same value, since both the
force and the height are the same as in the fissi aane.

The work done by the pump in ejecting a mass m of water is given
by conservation of energy W =E,-E=T-T\+U;-U=
mu%/Z + mgd, since: the water in the well is at rest and we can take its surface
as the zero-point of potential energy {we assume that the water level docs not
change significantly during pumping). Thus the elfective power Py of the
pump is given by

The fiow rate 2 m® per second implies m/r =2 x 10°kgs™', since 1m? of
water has a mass of 10° kg. Substituting also vy = 10 m s~ and 4 = 50 m,
we get Pgr =2 x 103(100/2 +9.8 x 50) = 1080kW. The efficiency 2= 0.8
implies that P, = 0.8P, so that the power consumed is P = P.q/08 =
1350 kW.

The car’s origrnal kinetic energy is T = mv2/2 has to be dissipated in time ¢,
so the average rate of working of the brakes is £ = nv? /2t = 10°x (27,8)2/
(2 x 10) = 38.6 kW. (100 km/h = 27.8 m s~*.) All of this goes initially into
heating thie braking surfaces, so they must lose at this rate in order not to
heat up.

Animals jumping to the same heights /4 gain tlhe same potential energy
V/m = mgh{m =gh per unit mass. Since their muscle masses scale with
their total masses, this suggests that the total energy supplied per unit muscle
mass is similar in similar animals. The vertical speed required is similar (of
order (2gh)'/ %), but larger animals need more room to achieve it, suggesting
that the rare of energy release is lower for larger animals, ronghly as /™',
where /is the size.

We write U,,U,, for the gravitational and elastic potential energies. The
energy of the mass-spring system is constant. Initially it is £ = U, = mgh,
since the mass is at rest and the spring is relaxed. On the level surface
E =m? 2. since the mass is at zero height and the spring is still relaxed.

Thus v = /2gh.
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Aflter the mass encounters the spring, it compresses it until all the energy is
in the form of clastic potential energy (maximal compression, 2ero velocity,
zero height). Thus E = U, = kx* /2. Equating this 1o the first expression for
E and using x = k/10 gives kif 1200 = mgh, ie. k =200mg/h. Since no
encrgy is lost, the mass returns to exactly the same height / after the spring
relaxes.

Energy conservation applied to the motson between the initial (1) and highest
(2) positions gives

E =E + W,

where W is the work done against friction. With E; = mvzl2,E; = mgh=
mgdsina =mgd/v/2, and W =fd = pNd = umgdcosa = O.Imgd/\/i this
gives

o' gd 0.gd 1.lgd

R, A, S,

Thus d = v?/(1.1v/2g).

As we saw in P7, the mass can only rest in equilibrium under gravity and
friction on an inclined plane if i, > tana. Here tana = 1. so that the
required x4, is |. In practice this is impossible.

Using energy conservation for the downward motion gives

Ey=E + W,

where Ej is the energy when the mass returns to its starting point, and W' is
the work done against friction on the descent. Because the normal force is the
same, the distance traveled is the same, and the coefficient of friction has not
changed, W' = W = O,Imgd/\/i :0.()454mv2, where we have substituted
d= vz/ (l.l\/ig) from above Further, E; =mg¢l/‘,/’§ —0.454mv’. Thus
E; = E,— W' =0409m*. Equating this to mv}/2 gives v; = 0.905v for
the return velocity. This is smaller than the initial velocity, since energy
has becn lost performing work against friiction.

] MOMENTUM AND IMPULSE

sl08.

Horizontal momentum is conserved as therc are no external horizontal
forces, i.c. the 1otal momenta before and aftcr the collision are equal. Choos-
ing the bird's motion to define the positive x-direction, we have

MV —mv = (M +m)U.
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Thus U=(MV —mv)/(M+m). For the case given we get U=
(MV —0.01M x 10V)/(M +0.01M) = 09MV/1.01M = 0.89V. Note that
energy is not conserved in this case: some is lost from the mechanical system.
Conservation of momentum implies AMv + mu = 0, where v is the velocity of
the gun after firing. Thus v= —mu/M = —23ms™'. The minus sign here
shows that the gun recoils, with recoil velacity [v] = 2.3ms"". To reach this
speed by being dropped from rest. the kinematic formula ¥ = 14 + 2ax
shows that an initial height & =v?/2g= 0.28 m is required.

To achieve the highest terminal velocity, conservation of momentum shows
that one needs to maximize the momentum of the exhaust fuel and minimize
the final mass of the rocket. Rockets thus use powerful fuels {high exhaust
velocity) and carry as large a mass of it as possible. Once a fuel tank is empty.
it is jettisoned, reducing the propelled mass and thus raising the final speed.

Momentum conservation gives
mu + 0 = mu) + nv,, Q)]

where 1), v; are the final velocities of the cue ball and pool ball respectively.
As there are two unknowns in this equation we must use a second relation.
This is supplied by mechanical energy conservation, i.e.

@ 4. 4

=m em2
m?+0—m2+n12. 2)

Rearranging and canceling m we get

v —u=—U, (3)
-1l =ik (4)

Dividing (4) by (3), we get
v U= (5)

Adding this to (3) we get 2v; = 0, so v, =0. Thus from (5) v, = 1. The cue
ball stops dead and the pool ball moves ofl” with the cue ball's original
velocity. Note that the restriction to pure sliding motion is unrealistic in
practice, as the energy in the rolling motion of the balls is usually significant
and causes them to behave differently (see Sii7).

Momentum conservation gives
mitty + mais = myy +ma.
Energy conservation gives

Ly + §myud = Empd +Impd.
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We can rewite these equations as

myuy = 1) = my(vg — iy),

mi(t — v )t + vy) = maley — w)(v2 + uy)-
Dividing these equations gives ¥y + v, = v; + u3, or
vy — vy = —{uy —u1)
as required.

We treat both cases simultaneously by writing m for the mass of the incoming
particle and «, v for its velocities before and after collision. The proton velo-
city afler collision is v,. We assumc that no external forces act on the parti-
cles, and that they collide elastically. Then both momentum and mechanical
energy are conserved.

iy = myv+myy, (1)
and
e F m_uz mpvﬁ
172 T2 @
Rearranging we get
-t = ';';ﬁv, 3)
and
5 m
£t Fhﬁ. 4
Dividing (4) by {3) gives
utu=u,. (5)

Adding (5) and (3) gives 2u = (1 + m,/m)v,. Thus

_m
T m+m,

Yp .
Using this in (5) gives
m—m,

) = i,
m-mp

Assume u# > 0 in both cases. In the first collision we have v = v, < 0. Thus
m=m <mpIn the second collision we have v = v; > 0,30 m=my >m,. A
lighter particle recoils from a stationary target, while a heavier one moves
forward af'ter collision.
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Using the last two equations twice, with m = my = m,,/2, m=m;= 2’"#‘
we get final velocities , = 2u/3, v = —u/3 and v, =4u/3, v =u/3,
SI14. From the previous problem, the protoo’s velocityafter collision is
2m "
v, = 5
P
m+m,
Its total energy (all kinetic, = mpvf,/2) is therefore
2m
E,= %ﬁ’"zﬁ, _
(m +my)”
All of this energy was transferred from the incoming particle. so AE = E,.
The incoming particle had energy £ = mu2/2, so
AE dmm,
— _——5 N
E  (m+m)
independent of ». Note that if the incoming particle is an electcon,
m = m, €« niy,, so this fraction becomes AE/E = 4m,/ni, < ). I the incom-
ing particle is much more massive than the proion, m > np, the transfer is
similarly inefficient. Only when the masses are comparable is the transter
significant.
SI15. Momentum conservation gives

My = myvy + mavs,
and the energy equation is now
vy — U] = euy. (1)
Eliminating v, between these equattons gives

_mfl+e)
= mlir e, @

so that the ratio of the kinetic energy of n:; afler the collision to that of m,
before it is

nyn,

(nn +m2)2>

=(1+e)?

For m, >» m, this ratio is (l+e)2mz/m, & 1, and for ;) € my it is
() + e)’mi)/my < 1. (Compare viith Si 14, where e = 1.)
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We must supply a fixed amount of energy to drive the nail in. From the
previous answer we sce that energy transfer in a collision is efficient only if
the bodics have similar masses. So jumping on a nail wastes a lot of energy.
The collision with your shoes is 2lso likely 10 be more inelasti'c (e < 1) than
hammering it, wasting even more energy.

Equation (2) of $115 gives

v =%(l + e)u;.

Equation (1) of S115 gives
1
v =1ty — ey = 5(1 — ¢y

for the velocity of the cue balt afier the collision, since m; = m,. At lirst sight
it appears that the physicist is right, since if e is ¢lose to |, »; must be much
smaller than v;. However, the argument is correct only if the cue ball was in
pure sliding motion, whereas in reality it is usually rolling. The spin of the
ball then causes the ball to continue 10 move after the collision. (A purely
sliding ball stops almost dead atimpact — thisis a szun shot. The ball must be
cued at exactly one-half of its height for this to happen. See §211.)

Momentum conservation gives
Mty + maky = My + #aty 1)

as before, where vy, v; are the velocities of the bat and ball respectively. We
can use the result of the last question to express the elastic (energy conserva-
tion) condition as

Uy =V =l — .
We wish to find 1 = vt + w; — us, s0 we need to eliminate the unknown vy
Using (i) we have
oy = M+ Moty = My
" s

]

50
my

vy =2 —ux + — (12— v3).
m

For m, > mj the term in brackets is negligible, and we gel vy = 2u; —u3. As
the teim in brackets is negative, this is the maximum value of v;. Faster
pitches can be hit further. However, even the slowest ball is of no use if
the hitter’s value of 2y is already large enough for a home run.
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position and some other point. Note that the center of mass of the system
remains stationary at all times.

Immediately before hitting the floor for tlie first time, the ball has velocity wg
downwards. The cocfficient of restitution e is defined so that (velocity of
scparation) = ¢ x {velocity of approach). Hcre the scparation velocity is
the upward velocity i) immediately after the bounce, so that #; = ew,. The
kinematic formula v* = v3 + 2ax now gives the beight ieached on the first
bounce as

X, =128 = e ) 2.

Clearly, the balt hits the ground for the sccond time with velocity u), and
leaves it with upward velocity «; = ex,. The same kinematic calculation now
shows that the ball reaches a height

Xy = u3/2g = €'uy/2g

on the second bounce. By the same reasoning, after n bounces the ball
reaches height x, = ¢*"xo, with xo = §/2g.

From the kinematic formula v = ¢y + ¢z with v = 0,29 = #; and e = —g the
time to redch the top of the first bounce is £;/2 =14/g, so the tolal time
between first and second impacts is ¢ = 2u,/g = 2e1,/g. After the second
impact the upward velocity is 2 = e = € tiy, so the ime between sccond
and third impacts is 1, = 2uy/g = 219/ g. In an exactly similar way, we see
that the time between the sthand (z + 1)th impactis £, = 2¢"uy/g. Hence the
total timc¢ before bouncing stops is

uye
rbmm.c:%( +f+(’2+f)+ ...... )
The quantity in brackets is an infinite geometric series, whose sum is
(1 —e)™". [If this result is unfamiliar, let S =14 e+¢*+¢ +..., then
eS=e+el+e..., so subtracting we find that S(1 —e¢) =1, hence the

result.] Thus

g e

Thounce = 7 I=Tes

The highest point is reached when the vertical veiocity v, =0. Using the
fomnula v, =v,o — gt with uy =vsing, this happens at time 1, =
vosind/g. The corresponding hor.zontal distance is x,, = tg,. since the
horizontal motion is uniform. Thus x,, = vﬁ sindcos@/g (note that this is
half the total range of the shell).
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S126.

SI27.

SI28.

Momcentum conservation requires that
mu=(M+m)V, (1

where V is the vclocity of the block and embedded bullet after impact. The
latter thus has kinctic cnergy 7= (M + m)V?/2, which is all converted to
gravitational potential cnergy (M + m)gh, i.c. V*=2gh. Using this in (1)
gives

M + m) (7 h)|.11
With thc data given we find u = 768 m s~ The kinetic energy T of the biock
and bullet can be rewritten, using (1), as

m |
T=trrmam
soonlya fraction m/M ~ 107> of thebullet’s kincticcnergy was used to raise
the block. Almost all of it cnded up hcat'ng the block slightly {cf. S114-
$116).

Conservation of horizontal mementum gives
my = (m+8m)V,

where ¥ is the velocity of the dart and block after impact (assumed to be
almost instantancous). Therefore V = /9. This is the initial velocity just
afier impact: the motion of the block and dart is resisted by the spring.
Total mechanical cnergy is conserved in the subsequent compression of the
spring, so £; = E), where E; 1s the total cnergy at maximum compression
and E, is the kinctic energy just after impact. Thus

Lyag 1.,
ik.\',zn—‘igmy ,

where x,, is thc maximum compression of the spring. With V as above, this

gives
. H\/}Fu
Xm=\[T3"

The locomotive must cxpend more power because the accumulating snow
increases the mass and hence the momentum of the train. In a very short
interval A¢, the accurnulated mass is Am = r,,At. Hence the momentum
change of the train is Ap = A(mv) = r, At v. The extraforce the locomotive
must exert is thus
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S129.

S{30.

SI131.

The power required to maintain the eonstant speed v with this F is P =
Fu = rp?. With =108 km/h = 30ms '.and r, = 10kgs™'. we find P =
9000 W = 9 kW.

We choose the downward vertical as the positive direction. The velocity of
the sack just before impact is given by the free-fall formula v = /2gh. Since
the sack comes to a stop, its entire momentum is lost. Thus the momentum
change of the sack is

Qp=ps—p, =0—Mu=-Mu

Henee the impulse on the sack is J;, = Ap = —Mv. The impulse on the
platform is J, = -J, = Mv (Newton's third law). From the data given
Jy=MyZgh=10xV2x98x1=443kgms".

The average force on the platform follows from FA: = J, where At is the
duration of the impact. With 41 = 0.1 s and J = J, as above, we find the
average force on the platform F, = J,/A1 =44.3 N.

Momentum conservation is not violated here: the sack and the Earth share
the final momentum. Because the mass of ithe Earth is so high, the recoil is
negligible. Momentum is afways conserved in collision problems: mechanical
energy need not be (as hee).

As in the previous problem, the impact velocity is v= /2gh. Thus the
momentum of each grain changes by —mv on landing; the momentum of
the plaiform therefore changes by mwv as each grain lands. Denote by R the
number rate at which giains are deposited on the platform. The correspond-
ing rate of momentum deposition is Ap/ At = Rmwv, and this is therefore the
impact force F exerted by the stream of grain. With the data given
F = Riny/2gh = (1000 x 0.01)v/2 x 9.8 =443 N.

We take the positive direction as that away from the goalkeeper. The
momentum change of the ball during impact is Ap=p2—p1 =
myv — my(—u) = nip(u + v). This is the impulse J, on the ball. The impulse
on the goalkeeper is equal and opposite, ie. J, = —Jy = —nig(u + v). Thus
the force exerted on the goalkeeper during the punch is Fy =J /At=
—nip(u +v)/A1.

1f the goalkeeper is not {o slide backwards, the resultant force on him
immediatcly after the punch must be zero. Thus f/ + F; = 0, where f is the
frictional force. Thusf = —F, = my(u + v)/ AL Since S < j1mg, We require
fe,mgg > my(u + v)/Ar Rearranging, this gives

ﬂ(u+:.r]_l niytt
B 2 m. gB1 ~  mggll’

because v = 0.8«, With the daia given this implies
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Si34.

Mosl of this energy goes into deforming the cars.

We take the x-dircction in the direction of the cue ball’s original motion, and
the y-direction at right angles te it (see Figure). Lel the cue bail's approach
velocity be # and the velociti'es of the cue ball and object ball after collision be

v,y
Conservation of x-momentum gives
iy = my; co8 8+ mvaco8¢ (m
and conservation of y-momentum gives
0 = ny sind — mu;y sin ¢. (2)
Conservation of energy (all kinetic) gives

limu2 = %mv% + %mv%. (3)

Note that the mass m of each ball cancels from all of the equations.
From (2) we gel

vsiné = vy sing, (4)
so eliminating v; from (1) gives

v18in@cos¢
u=vcosf4 2%
sin¢

Thus

__uysio(6 +¢)
T sing

)

ty
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N
= mer

F:mli
r

and substituting the values of m,w and r weget 7 = F =0.1 N,

SI38. The forces acting on the plumbline bob (mass m) arc its weight mg and the
iension 7 of the string. The resultant of these must provide the centripetal
force F, = mRucos) iowards the Earth's axis (see Figure). Taking the x-
and y-directions along the local horizontal (North) and vertical (towards the
center of the Earth) we have in the .x-direction

IF, = Tsin8,
and in the p-direction
EF, = mg - Tcosé.
In the x,y system, the centripetal force has components

F,. = mRw® cos AsinA,

F,, = mRulcos®A.
Hence setting TF, = F,,,LF, = F, gives
Tsind = mRu?eos)sin),

mg ~ Tcos® = mRufcos?A.
Eliminating 7 between these two equations gives

Ru cosAsin A

tanl = ———s———.
an g — Ru’cos? A

Hanging point
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LF = Tion —mg, (])
white at the highest point
BF = Tiygn +mg. 2
The value of TF is the same in both equations, so subtracting (2) from (1)
gives Tiow — Thigh = 2m&.
This is independent of the speed and the 1adius of the circle.

SI141. When the string makes an angle 6 to the vertical {see Figure) the centripetal
force is T + mgcos@. This must be constant in uniform circular motion, so
the minimum tension T is reached when cosd has its maximum value 1, i.e. at
the highest point. Here

&
T+mg=m =
Tokeep the stiing taut requ'res T > 0, i.e, ¥ > rg, or
v> T8
With the data given the velocity must exceed 3.13 m s~%.
S142. When the string breaks the mass is moving horizontally, so by Newton’s first

law it will initially continue to do so, with the velocity v it had before the
string broke. Thereafter it will fall under gravity and hit the ground. In a
recent survey, U.S. college students were asked a similar question. A majority
(including many science majors) believed that the mass would initially fly
radially outwards along the line of the string (here vertically downwards)!
Surveys in other countries give similar results. Remember, the string tension
is nef resisting a tendency of the mass to fly radially outwards, bui forcing the
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But the bob's speed is v =27nR/, and R = /sin c. so (2) gives
Tsin @ = 472 °*mR = 4 misin

so that T = 4n°f2ml = 158 N.

Equation (1) now gives cosa =ng/T =0.03} so that a =88.2°, i.e. the
pendulum is almost horizontal.

S14S5. Clearly the cars are in most danger of falling from the circular loop at its
highest point (see Figure). There

2
N+mg=mi, ()
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Sl46

where v is the velocity at this point and N is the track’s force on the car; this
is normal to the traek as there is no friction. In (1) v must be large cnough to
make N positive, or the cars will detach from the track. Thus we require

¥ > Rg. (2)

Mechanical energy is conserved, so equating its values at the high point # and
the top of the loop, we get

mgh = %rm,'?' + 2mgR,

or
UZ

h=
2g

+2R.

By (2). A> R/2+2R=25R
In practice /t mus1 be appreciably higher, because of frictional losses.

The forces on the bobsleigh are shown in the Figure. The resultant vestical
force must vanish, so that

ZF, = Neosa—mg =0, (n

where N is the force exerted by the track on the bobsleigh (normal to its
surface as there is no friction) and »z is the mass of the bobsleigh. The
resultant horizontal force must supply the centripetal force required to
keep the bobsleigh in circular motion. Thus

2
EF_,:NSina:m%< (2)

Eliminating N we get
¥ = rgtana.

With the data gven, the maximum « = 13.0 m s'.
If the speed exceeds this value, the bobsleigh moves outwardsand therefore

mg
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inner side {(point B). At B the water pressure is equal to the atmospheric value
Pp. To supply the centripetal acceleration to a horizontal column of water of
unit cross-sectional area requires a pressure

P =Py+ pda

where p is the water density (pressurc = force per unit area). To maintain the
vertical balance of the water above A (height 4) requires

P =Py + pgh.

Eliminating P — Py between these equations shows that da = gh With
2 < 0.05g we find & <0.054 = 0.4cm. Of course it would be advisable to
allow more room between water and brim than this to cover other possible
disturbances.

SI51. The resultant horizontal force on the mass on the turntable must equal the
centripetal force muw’r. At ry,, the Tictional force / opposes the tendency to
move outwards (see Figure), so

. 2
7+f=nl'.d Tinaxs (1)
at inner radius at outer radius
N N

poo——— [y
W = DO I

L i |

mg
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where T is the tension in the string. The latter must equal the weight of the
hanging mass, i.e. 7 = mg, while f = u,mg. Substituting in (1) wc get
mg+ pmg = nw’rmu,
so that
roan =55 (1 +41,).
[
At 7 =r g the mass on the turntablc is on the verge of moving inwards (see
Figure), so that the frictional force is rcversed as compared to (1}, i.e.
T —f = Wzrmin.
Substituting 7 = mg, [ = 4,;mg as before we find
£
Tmin = 3(] - P;)~
With the data given we find r,., = {9.8/36)(1+0.5) =041m, rmn=
(9.8/36)(1 — 0.5) = 0.14m.
SI152. in the case of no friction, the resultant horizontal and vertical forces on the

cycle and rider are (see Figure)
¥F, = Nsina,
XF, = Ncosa — mg,.

where /& is the normal force excrted by the track on the cycle tires. To supply
the centriipetal force as the cycle performs the turn requires £F, = m?:é/r.
while £F, must vanish as there is no verti'cal motion. Thus

1S

Nsina=m (1

r 1
Ncos a = mg. (2)
Dividing (1) by (2) gives tana = w/(rg), so that vy = (rgtana)l/z.
At speed v = vy the cycle and rider are in danger of sliding upwards, so
the frictional force f* acts downwards (see Figure). Thus

EszNsina-kfcosa:mlT'%, (3)

LF,= Ncosa - fsina —mg =0. 4)

From (4) we have ¥ = ftana +mg/{cosa), so substituting into (3} we find

. s
Stanasina + mgtana+ fcose = mTI.
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¥
V=W,
[=2'A
¥
v <y

b

sin’a . vy
f coa+"°50 =m7‘mg(ano.

Using the irigonometric identity sin’ o + cos? @ = 1, the cocfficient of f in
this equation is |/{cose), so we get

1 -
f = m—cosa — mgsina.
T
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SI53.

S154.

SIS5.

SIS6.

SIS7.

Sis8.

Substituting % = 2u, = 2(rgtana)’? we get
S =4mgsina — mgsine = 3mgsinc.

When the speed is v; = vp/2, the cycle and rider arein danger of sliding down
the banking so the frictional fotce f acts upwards (see Figure). Thus

. v
LF,=Nsina—~fcosa=m—=,
r

TF, = Ncosa + fsino — mg = 0.

Eliminat'ng N between these two eqnations similarly as in the previous case,
we get

. V2
f =mgsina — m—-cosa;
r

substituting v; = ve/2 = (rgtana)'/*/2 now gives
S = mgsina — %mgsina = }mgsin a.

Notc that to find thc ceefficiee of friction we would havc to divide the
expressions for f by those for N in each case.

If the satellite has mass m and speed v its weight mg must supply
the centripetal accelesation 1m7/R,. so that »= (gR.)?. The period is
2sR,/v = 2u(R,/g)""* = 85 min. Typically the period for low-Earth-orbit
satellites is nearer to 90 min.

No! The maximum controlled deceleration a of the car 1s given hy the kine-
matic formula v* = wW+2xasa= —!vﬁ/Zr. To turn the car in a curve of
radius 7 requires centripetal acceleration —1%/;', ie twice as much. (Clearly
turning the car also introduces additional risks such as skidding and over-
turning.)

The period of the pendulum is P = 21r(l/g)m. With/=1mwefindP =2s,
so it performs 1800 swings in one hour.

Acceicrating the elevator upwards by a increases the effective gravﬂy 8ert 10
g + a (sce 848 or 872). The pendulum period is proportional to gq’ 1% and
therefore shortens. The reverse happens if the elevator accelerates down-
wards.

Hooke's law states that the force F cxericd when the spring extension is x
is F = —kx. Here this becomes nmg=kAx, so the spring constant
k = mg/Ax = 98 Nm™'. The period of the sysiemis P = 2x(m/k)'"> = 0.63 s.
The students should first measure the spring constant by hanging a mass m
from ii. As in the previous answcr they get k = mg/A x, and the mass—spring
system has period P = 21:(m/k)1 2= 2sr(A.1/g)” 2 A pendulum formed by
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SI59.

S160.

Siel.

Sle2.

S163.

Sl64.

hanging a mass from the string has period 7 = 2n(//g)"%. They must
arrange the string length exactly equal to the spring extension, if possible.

The motion is described by
x{z) = xgcoswt,

where v = (k/m)'/z. {Note that we must expressa! in radians here.) [t thus
reaches x at time f = w™ cos"(x,/xo). With the data given we find
t, =087s.

The velocity follows from encrgy conservation:

5kxczs =1 kxt + 1A,
so that v = [k(x} — x})/m] > =0.16 ms~".
Energy conservation can be expressed as

v +uld? = C,

where w is the angular frequency, dis the distance traveled by the end of the
pendulum and C is a constant. Siace v =zo when d = 0, and v = 0 when
d = A (the amplitudc) we have 4 = up/w = ty///g = 02 m.

Energy conserv-ation requires that £ = zn?/2 + k.x*/2 remain constant. Thus

mv} + kxt = nnd + k3,

so that m = k(x3 ~ xf)/(vf —18) =0.02 kg. The amplitude is given by sciting
vy = 0,x2 = A, so that k4> = movl + k., leading to A4 = 0.22 m with the data
given.

The four springs can act together as a single spring of constant 44 and thus

oscillate at frequency
1 (4k\'"?
g (ﬁ) -

We must cnsure that this is smaller than v, = 10s™, so we require
k < 100xM = 4935N m~', Other modes of oscillation (c.g. rocking) will
Iave lower frequencies, so this is the required limit.

The two springs behave as one speng of constant k =k, +k; =3 N m~".
The maximum compression of spring 1 occurs after 3/4 of an oscillation
period, i.c. after a time 3P/4 = (3u/2)(M[k)"/? = 2.7s. The maximum com-
pression is the ampliiude 4, which from energy conservation (see SI169) is
A=vfw=v(M/k)' =029 m.

The motion of the mass is given by

x(t) = Asinwrt
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Sl6S.

S166.

with wt in radians. Here 4 =029 m (see previous answer), and w=
(k/M)m: |.73rads™!. Hence the time at which x=-01 m is t=
(1/w)sin™'(x/A). Because x < 0 we have to convert the negative value of
0 =sin"'(x/4) (in radians) to 2x— [¢|. With the data given we find
t=342s.

Two springs connected “in series™ in this way have an effective constant &’
given by

111 2
e e
so k'=kJ2. The oscillation period P =2a(m/k)"’> changes to P =
2i(m/k')'? = V2P.

The oscillation frequency is w = 2 = (k/m,o,)'/z, where mg =m + M =
Sm is the total oscillating mass. Thus here k = w?my, = 4n2* x Sm, which
gives k=197 Nm™'.

The maximum horiizontal force is exeried on the block when the accelcra-
tion a is a maximum, which happens at x = +A. Then |a|,,., = k4/5m, and
we have F,, = M| .« = 4kA/5. For the case 4 = 0.1 m given this implies
Fom = 15.8N.

inall cascs this force must be supplied by friction, f, i.e.f = 4kA4/5. Butf
i3 limited by /' < p,Mg = 4umg, o the maximum possible amplitude 4,, is
given by

4k A

= = dung
or A= Smp.glk =0174 m.
U0 GRAVITATION
S167. From the formnula
GM M.
F=—p—
with M| = Sun’s mass, QMZ = Earth's mass, and the data given, we find
F=6.7x10"" %2 x 10" x 6 x 10%/(1.5% 10")? = 357 x 102 N.
S168. The planet's angular velocity is w= 2x/P. If the planet has mass s, the

gravitational force F :GM@m/a” must supply the centripetal force
Fo=man® = ma(21r/l’)2 required to keep it in a circular orbit. Equating
F, F, gives
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Sle9.

Thusthe planet’s year is

L 2 /2
P"wMgWa'

This relation is true even if the planet’s orbit is elliptical and a is the semi-
major axis (in practice all planetary orbits are slightly elliptical), and is
known as Kepler's third law.

By definition the weight is equal to the normal forcc N that must be exerted
by the Earth's surface on the mass in equilibrium. At the equator the resul-
tant force on a mass m is

TF, =F, - N.

where F, is the gravitational focce on the mass (see Figure). This must supply

the centripetal force i’ R, needed to keep the mass in circular motrot: with
. . . 2

angular velocity w. Substituting F, = GM m/r;, we find

A
N=F,—SF,= G;Rgm

where M, is the Earth’s mass. By definition g.;- = N /m, so at the equator
GM,

ger(cq) = —R_f.i_ W’R.. (1)

- ﬂuqu,,

N smaller at equator than
at pole
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SI77.

Si78.

S179.

GM.m
Fo=—i

where a: is the mass of the satellite. This must equal the centripetal force
mu/ R required to keep the satellite in uniform circular motion with angular
velocity w = 2n/24 radh™' =727 x 10~* rad 5™/, ie.

Ghm _
Non_

so that we require R = (GM,/;J’)'/{ Inserting the values of M, and wwe find
R=424x10"m. Subtracting the Earth’s radius R,., we find the height of the
satelliteas A= R— R, = 3.60 x 10’ m.

This large value (almost 6R.) explains the high cost of launching such
satellites. Bocause they remain fixed over the Earth they arc nevertheless
indispensable for communications, etc.

The satellite must orbit the center of the Earth. A geostationary satellite over
a point not on the equator would not do this.

The shuttle’s orbit has radius @ = R.+ H, where R, is the Earth’s radius. If

its velocity and mass arc M,v, the gravitational and centripetal forces on it
(sce e.g. S176) are

2
mw R,

GM M M
Fo=—3— Fomnge

where M . is the Earth's mass. These forces arc in balance as the shuttleis.ina
cireular orbit, sov? = GM,/a. The satellite (mass #t) has the same angular
velocity w = v/a = (GM-/ )"’rz, but is held at a radius @ + 4, so the corre-
sponding forces on it are

GM m GM

= L =
fg—(a+h)2,f,—mu(a+h) p (a+h) >/

Gravity is therefore unable 10 supply the required centripetal force to keep
the satellite in an orbit of radius ¢ + 4, and the initial motion is outwards, i.e.
away from the shuitle and the Earth. (The satellite will go into a slightly
elliptical orbit.)

The retro rocket gives forward momentum to its exhaust gases. Since the
shuttle and rocket are a closed system, momentum is conserved and this must
slow the shuttlc slightly. Gravity will now be larger than the centripetal force
needed to hold the shuttle in its original orbit, and it will fall to a lower
altitude (in fact its orbit will become elliptical. as for the sateilite in the
previous question). This is the basic method for bringing the shuttle back
to Earth.
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S180.

Si8l.

S182.

The gravitational acceleration F = GM /r2 of the satellite must supply its
centripetal acceleration v*/r. Equating, we find v = (GM /)72, The angular
momentum per unit massis ff = rv = (GMr)'fZ, The atmospheric drag exerts
a torque on the satellite’s motion, which reduces its angular momentum per
unit mass 4. Since # o< 7'*? x 1/, this actually speeds the satellite up. This
occurs because the satellite goes into an orbit at smaller r. It is a general
property of gravitating systems that a loss of total (kinetic plus potential)
energy always leads to an increase of kinetic energy, while the potential
energy becomes more negative.

The ratio of the Sun's pull 10 the Earth’s is Ma_rleeaz = 2.3. In fact both
the Earth and the Moon are in nearly circular orbits about the Sun. They
perturb each other’s orbits — viewed from the Sun, the Moon performs a tiny
“rosettc” about the Earth's orbit (see Figure). The Moon cannot leave its
orbit (and us) because of its angular momentum about the Sun.

o)
/{}_rﬁ%
7

A point on the planet's surface has to move in a circle about the Sun with
angular vclocity w, so the effective gravity is gg = N/m, where N is the
normal force exerted by the ground on a body of mass m. From the Figure
we find

N +M —mg = muw’(a— R),
(e - R)
for Ihc point ncarest to the Sun, so that
GM
gar =8 —————+ (a— R)u’. 1)
ot (
For the paint furthest from the Sun we find

Mm

G
(a+ RI?

mg+ — N =m’(a+R),
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Si84.

SI8s.

S186.

P = pgexh,
where p is the density of water and P is the pressure at the bottom of the
ocean. If the ocean is static. P must be the same all over the planet, so
-1
h > Bert-

The ocean is thus deepest {# = d) at the nearest and furthest points to the
Sun, and shallowest (/i = s) on the eirele equidistant from them. The ratio of
depths i3

GMR) -l GMR MR’
=(g-3352 =1-32 o132
(g a & 3 ag 3mpa"'

R

where we have used g = Gm,/ R, with m, the planet’s mass, in the last siep.
As the planet rotates, an observer on a small island would notice the ocean
level rise and fall twicc per revolution (i.e. twicc per “day”), reaching iis
maximum height as the island passes through its nearest and furthest poinis
from the Sun.

From the last equation of the previous answer, the ratio of lunar and solar
tides is M,.,a‘/MGh" = 2.15. The tides are then highest when the Sun and
Moonline up on either the ssme or oppositc sides of the Earth, i.e. new moon
or full moon. These are the so<alled spring tides. The tides are lowest when
the Sun and Moon pull at right angles at the Earth, and give the so-called
neap tides. The answers given above predict the height of the tides on a planet
completely covered by water, and give a value of order .5 m. Far from land,
this is about the observed change in the height of the oceans. The tides
ohserved near coasts can be much larger, as they result from water moving
about in regions of varying depth in response to the change in gqy.

The Greal Lakes and the Mediterranean are much smaller than the Eaith’s
size, so g is practically constant over them. They are almost landlecked, so
as g varies over the day their base pressures P simply vary in response,
leaving their heights effectively unchanged, i.e. P « g¢y. This is impossible in
the oceans as waler flows to make 7 the same in regions with diffesent g.y.
The angular momentum of the Moonis L,, = llll,,,((,'M,b)”2 (see S180). The
Eairth’s spin angular momentum is L. = /2, where Q = 2= /{day) is its angu-
lar velocity in rads™' and / is the relevant moment of inertia. The angular
momentum of the Earth—-Moon system is conserved, so that L, + L,, = C or

IR+ M, (GM 6)'? =C. n

where Cis a constant. Since L, decreases, L,, must increase, so b increases.
Tidal dissipation will stop when the Earth spins synchronously with the
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SI190.

SI191.

Si92.

Energy conservation requires
1 GM.m 1 GM_ m
e L s B I
5 MY 3 5 m s (1)
where m is the rocket mass. Thus
2GM, R,
2 _ o « Wl
1 v —R, (] o ) (2)
At r= 6R, we have v = v,/10, se (1) gives
99 , SGM,
0™~ 3R,

or v = L3(GM,/R,)'".

The maximum height ris reached when v = §, i.e. all kinetie energy has been
convcrted into potential cnergy. Using energy conscrvation, expressed by
equation (1) of the previous solution, with ¢ =0 and vy = I.3(GM,/R,)”2,
we find

GM, _ GM,_l“ 3)IGM,
r R O2VTT R
or
[
- -E(I —0.845),

giving r = 6.45R,.
The Earth’s gravitational pull must supply the centripetal acceleration
neaded to keep the station in a circular orbit atany r, so

o _GM,
i
Thus with ¢ = 3R,/2 we find v = (2GM, /3R.)".

To achieve escape from 3R./2the minimum speed g with respectto the
Earth must satisfy

1, GM. _
257 3R, 27

0,

by energy conservation. Thus vy = (AGM,/SR,)’/Z. The most effieient way to
arrange this is to use the speed the station already has. Then only a speed
v, =vg —v=034(GM, /R,) 12 is needed. The rocket is fired in the direction
of the station's motion.
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SI193. using equation (1) of SI87 gives
2GM
R=——.
p3

S194.

S195.

Withthedata given we find R = 3 km and 9 km for the 1 M. and 3M, black
holes respectively. In reslity we need 10 use the General Theory of Relativity
1o evaluate R. However, the calculation given here, first performed by
Laplace and Michell at the end of the 18th century, gives essentially the
COFTect answer.

Using the previous solution, the average density is

_3M 18 -3
P—'m3—-2x 10" kgm

with the data given, so the densities are comparable. A neutron star has
R =10 km with M = M, and so also has nuciear density; the nucleons of
its matter are as tightly packed as in an atomic nucleus.

Since for black holes R oc M, the average density found in the previous
solution can be rewritten as

1.8 x 10'* .
p = —
(M/Ms)"

)

sowithM /Mg =3 x 10°Wegel p=2kg m™, i.e. less than twice the density
of air. Black holes are not necessaiily very dense!

O RIGID BODY MOTION

Si96.

S197.

Using v = wR, we get w = ¢/ R=10/0.5 =20rad s'. As the acceleration is
uniform. we have w = wp + af, so that o = (w ~ wp)/?. Withuy =0,1=10 s
and w as above, we find @ =2 rad s™2.

The moment of ingrtia is

I =Zm? = mR + myR* + 2m3R* = 9 kg m’.
Newton's second law applied to circular motion gives
'=ra,

where T is the torque. In our case I' = RF, so

S I LR 2
a=y 7 5 0.56 rad s7°.
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7
g - L
| &l

The angolar momeatum ufter the mass descends a height R s 2 =
far+mu R, where v is the mass's velocity and w (he sorresponding angular
velooiry of the pulley 3t this ume. Since @ =v/R (ao-slip) aod
I=MR2=mR as before. we have 2 =2meR. The velocity follows
from the kinematic formuals e = 1§ + 2ax with =0, a=g/2 and x= R.
This gives v = (gAY and thus L = 2mlg RN/

$203. By conservakion of angular momentara the tap musl maintain the value £ in
the vertical diseetion. If it is pushed through un anple @ vway (rom the
vertical. thiy component of sngular momentum becomes Loos 8, so the deficit
(1 —cos@}L has to be madeup snmelsow, The top achinves this by precessing,
ie. it rotalesits spin uxis uround the verticol, This retatienal motion rctums
the missing vertres) componcnt ol angular momentum. Onex L is reduced 1o
a small vatue (the ungular momentum is gradually transferved 10 the surface
on which thetop rcsts, through frlction at the point), the precession angle @
gets so latge thut the sides of the top hit the surfuce and it fulls over.

S204. Thc bullet acquires angular momentum ohout an azis paralicl to the barrcl.
Because angular momentum ig conserved (see previous solutien) this keeps
the bullct poiniing kably in this direction wid so improves accuracy.

5205, Conservation of sngulut momeniun Bives

I'Jnlc./é-m;d,

where o' is the aew angular velosity of the turntuble + glue. Thus
o =T +mP). With | = MR? 2. = M}10 and r = 3R{4, we find

; MK
™ . v = 0.9
“TIMR L MO R
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S206. A pendulum of moment of inertia / and mass M has petiod

I 172
P=2r——| .
(MSLC.\;)

where Lcyy i5 the distance of the center of mass from the pivot.

(@) Here /= MF/i2+MP/a= MP/3 (parallel axes theorem) and
Les = 1/2. Thus P=27(21/3g)"* = 1.16 5.

(b) The moment of incrtva here is given by / = £ ca + MR?, where R is the
distance of the pivot from the center of mass (parallel axes theorem). Thus

ME ! 2
f—-ﬁ'l-M(i—[c) )

since Iy = M£/12 for a uniform rod. Moreover Loy = R = 1/2 — I With
Ic = 1/4 we have

MP n? :
1=+ M(Z) = 0.146M!

and Lcy =1/4. Thus £ = 21(0.146//0.25g)"/* = 1.08 s.

S207. By the parallel axestheorem (see P201) the moment of inertia of an extended
arm about the skater's au’s is mL?/12 + m(L/2 + R)%. il the arms are by the
skater’s sidc, the moment of inertia is just mR%. Thus the moments of inertia
before and after he drops his arms arc

_ MR} mL?

/L
ly=——+2 W+m(?+R)2],
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S2l1.

S212.

—|®L' ™\

O-TV
x
]

If x > {, ttu's rotation produccs a lincar velocity at the bat’s basc in the
opposite direction from v (see Figure). The reaction force at the player’s
hands vanishes if the total velocity there is zero, i.e. the hal pivots about
the player’s hands. The condition for thisis v = fw, i.e. p/M = I{(x — )p/1, or
1
h=1{+ M

If the bat is regarded as a uniform rod of length 2¢, the appropriate value of /
isf{= M12/3, so x = 4//3, i.c. the player should aim to strike the bail about
two-ttu'rds of the length of the bat from the handle. This is the so-called
center of percussion or *‘sweet spot.” An impact here gives the feeling of
hitting the ball “ofl’ the meal,” i.c. without jarring the hands.

This is actually exactly the same physical problem as studicd in the previous
question. Herc the point where the ball rests on the table plays the role of the
baseball player’s hands. The condition that the ball should initially pivot
about this point is

I
h=/+m

as before. With 7 =2M1*/5 for a sphere, we find h = 71/5, ic. the player
should cue the ball 7/10 of a diameter above the table. The cushions on a
pool table are at this height so that a rolling ball rebounds without skidding.

If there is friction at the disk axis, angular momentum is lost by the disk to
thc Earth. When the man staps walking, the disk’s angular momentum is
now too small to cancel his angular momentum complctely, so he and the
disk rotate slowly in his forward dircction.



CHAPTER TWO

ELECTRICITY AND
MAGNETISM

J ELECTRIC FORCES AND FIELDS

S213. As @ has the same sign as ¢,.q, the forces on it are both repulsive. Thus
taking the direction from ¢, to¢; as positive (sec Figurc) the net force on Q is

g | N _ 2 ] (1)
dmepx®  dmey(d — x)° 4meg [P (d - x)

where x is the distancc of Q from gq;.
With x = /2 we find

Fafl=Tye @@ 00 2[4

4
:4_1refd1 (-9 =4x9Ix10°%x 107 x (-2x 107°)= —72 N,

The force acts on Q in the dirsction of g,. We can find the point where the
force vanishes by setting £ = 0 in equation (1}. Thus

q 92

e =0,
X (d—x)
or
(qz\m d—x d
= = =——
1/ x x
| d
| F; F
+ - 'S +
——Ea—
q. Q

Qz

205
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S2l14.

S2I5.

. d
U+ (g2/g)'?

Substituting we find x = 1/(1 +2"2) = 0.414 m.

The total forces £, > on g,,92 should vanish, i.e.

! (aa 0@ _

_ 1 fag @0 N\ _
Fz_“ﬂfn( & +(I—x)2) =2

Eliminating ¢, ,J’fz gives

m

Ul q2

2 (=5

_(n)"_,
i-x \q

and x = 3//4 = 0.75 m. Using (1) we get @ = —g,(3?/¥*) = =5.6 x 10° C.
The resultant force F is the sum of the electrostatic forces Fy, F> exerted by
each charge. We must add these forces component by component, so that

so that

Fy=F + Fy,

Fy = F|,. <+ f”z,p

Now £, = 0 (force only along the y-axis) and similarly F5, = 0. Thus

4
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S2le6.

S217.

-10¢q; -9x 10° x 107° .
4 r: 3
x 2% meo 3 6 563 N (repulsion)

- » 6
F,=F, '_l_.Q_q]__‘Jxl() x 0.5 x 10

= = =500 N (artraction).
T dmey pt 9

Thus F = (5007 + 563%)/2 = 753 N. From the Figure this force makes an
angle @ 10 the negative x-axis, where tane = |F\J/|F,|, i.c. a = 41.6°.

See the Figure. The first charge gives a force £, along the x-axis:

2% 10°¢ x 1078

Fo=N8 _gy10°" > = 2813 N,
4megxy (0.08)"
while the second charge gives a force along the y-axis:
-6 -6
Fo= B0 g 30 X107 Lo

YU dmegyd ©.1)

The total force is therefore £ = (F} -i—F;')l/2 = 3.9 N, acting at an angle
e=tan"' {F,/F,| =43.83" to the x-axis in ihe negative-x, positive-y direc-
tion.

This is essentially thesame as the second pari of S213, since the forces on the
sliding sphere are opposed whatever the sign ol Q. Substituting
d = {,42/q; = 4 into equation (1) of $213 shows tbat

N M-
4423

i.e. the sliding sphere will be in equilibrium at distance {/3 from the smaller
charge gy.
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S218.

S219.

$220.

S221.

S222.

The diagonals of ihe square cross at right angles, so we 1ake them as the axes
of a coordinate system with origin at the center (sce Figure). The field E at
the center is the sum of the 6elds produced by each charge. The latter are
directed radially about each charge, with sirength q/(4m0d2), where d. the
distance of each charge from the center, is half of the diagonal length, i.e.
d = aV/2 /2. Since the fields are radial, the x and y components of E are

1
E,=E;+E]=R(—%+%) =0,

_ ~-t(e 2>_ -0
By =E+E = (d2+d2 Sl

Substituting @ = 1C, etc. we find a field £ =9 x 10° N/C in the —y-direc-
tion, i.e. towards the charge —Q.

YN, rd
\\ S

S 0 a Q

1 2

Ey

£
E.
E,

L™

O
(=]

The proton has charge g= +e =1.6x 107'°C, so the electric field is
E = gq/(4neod®) = 5.17x 10'"NC™', and the force on the electron is
F=¢E=826x10"% N inwards. In circular motion this must supply the
centripetal force F =m,vf/a. where ni,,ve arc the eleciron’s mass and
velocity. Hence v, = ()uF Im)? =220 x 10°ms™' and the period is P =
2rafve = 2uc(m.afF)'/% = 1.51 x 1016 5.

By Gauss’s law the charge and field are connected by Q, = dncgR2E, =
592x 10°C.

Vertical force balance requires gE= mg or g = mig/E. Subslituting ni=
001 kgand E=E, =130 NC~' givesg=9.8 x 0.61/130 = 7.54 x 10 C.

As the first two charges have the same sign, the charge Q must lie on the line
joining them, as otherwise the component of force on Q towards that line
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s$223.

S224.

does not vanish. To overcome the electrostatic repulsion between the original
pair of charges, Q must clearly have the opposite sign and lie between them.
Let its distance from charge ¢ be x (sce Figure). Then the vanishing of the
clectrostatic forces on the charges ¢,9¢ and Q gives us the three equations

2
§+g%=0 (1)
9* 9
iiz+—“_“’%z=o )
90 90 _
(1—.\')2_?_0. (3)

We note that (3) is automatically satisfied if (1, 2) hold, as can be seen by
subtracting (1) from (2). From (3) we get 9x? = (/— x)’, or taking the square
root of each side, / — x = +3x. This leads to x = /4, —{/2. Only the first root
is physical, the second spurious root bceing introduced by the operation of
taking the square root above. With x =//4 we now find from (1) that
0= —9Jrzq/!2 = —9¢/16. As expected, O turns out to be negative.

F
q . Q 9g

The force on the electron is F = eZy upwards (as the electron’s charge is
negative). Thus its acceleration is a = eEg/m, = 1.76 x 10" m s=2. This is
far larger than g =9.8 m s3, so the neglect of gravity is justified. The
horiz.ontal motion is unifoim, so time of flight between the plates is
t =lyfve = 10lp/c, and the deficction is y =ar?/2 = 5[)(1!5/::2 =0.098 m
upwards.

A
|

No hotizontal forces act on the electrons in the beam, so at time ¢ after
injcction they arc at horizontal distance x = v . In the vertical direction
gravity is negligible in comparison with the Coulomb force ~eEq, which
produces a constant acceleration —eEqy/m,. The vertical displacerent at
time ¢ is thus y = —05012/2m,. Eliminating ¢ we find the path

eEn 2

2
2m

Hx) =~

(a) Reversing the field raises the heam symmetrically, so it hits the screen at
10 cm above the horizontal
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$225.

S226.

$227.

(b) At x=1{ we have y = —h(= - 10 cm), so substituting in the equation
above we find / = (2n.hfeEy) v, = 2.4 cm.

The electrons acquire horizontal velocity v, given by energy conseivation:
2
imevz=1-evl,

i.e.u, = (2e1"/m,)"/2. The potential difference V¥, between the plates gives an
electric field £ = ¥V »/d, which deflects the electrons. This implies constant
vertical acceleration @ =eE/m, = eV p/(m.d): the electrons spend a time
t=lfv,= l(m,/.’ZeV]lf2 passing hetween the plates, so using the kinematic
formula y = yp + 012/2 the deflection is

_efo_eV,, 3y M, _ﬁﬁ
Y= md2 md 3V ad v’

The maximum deflecti'on which still ailows the electrons to miss the plates is
y=d /2, and this requires Vp = 2(:!/1)2%

Let the balls have charges ¢,,42. Then vertical force balancc requires
—E\q, = mg,—E2q; = mg, where m = 47l'l}p/3 is thc ball’s mass. Using
p=08 g cm™ = MOkgm_] we find m=3.35%10"""kg, and hence
4 =-326x107°C, ¢,=-489x107C. Hence —c= (g, —q2)=
1.59 x 10~'°C. Note that in reality we cannot be sure that the charges differ
by exactly —e, rather than some multiple of it. In practice the experimenter
looks 1o find the smallest charge difference; all other differences should be
integer multiples of this one.

From the Figure, we have for each mass
Tsing =F,,
Tcosl=mg

so that the electrostatic repulsive force is

F, = mgtanf. n
But we have
e
¢ dmeg d?
and
d = 2lsinf.

Thus
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2rrlE(r) = l ﬁrz.!'po,
€0
or

E(r)_”°_RL_556x 10°Z NC™.
2¢9 R

$232. From the Figure we have the force components

F.=0, (by symmelry)

§ gl B y -1 Yy

¥ 2 % T Iney (@ +%) \Ja® + )7 e @+

Thus for v = 0 we have F, = F, =0, so that the origin is indesd an equili-

brium point. For y « a we can neg]ect the term 7 in the denominator, so
that

= 4meqa’ y
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S233.

S234.

S235.

This is the equation for simple harmonic motion, with frequency w given by
dividing the coefficient of y by the mass m and taking the squarc root, i.e.
w = (¢*/4mega®m)”'? = 335 rad s~'. Hence the period is P = 2w/w — 0.019s.
The electric field £ of the line charge is radial. We apply Gauss's law to a
cylinder of radius R and length / about the line charge. The flux of clectric
ficld is @ = 27R/E and must equal 1/¢, times the enclosed charge, g4 = X, so
that £ = A/{27¢oR). The resulting clectrostatic force onthe orbiting charge is
qE, which acts radially inwards, as A < 0. For this to supply the centripetal
force, mlf/ R, requires V= —Ag/(2meym). Note that the radius of the orbit
drops out. Inserting the values given shows that v = .9 x 10°ms™

On the x-axis the field components are (see Figure)

1 (qcosﬂ qcoso):()

o \d~F X+d
1 [—gsiné gsiné 1 q .
= - = -2 4
Ey 4reg (f +a8 o -sz) dregd + o? L

Now siné = a(x* +a°)~"2, so

_ 1 2gqa
T dre(2 +a)
Clearly, for x>> « we have E, & x 7.

¥
+q ;E‘“

a \\"\. -

X e e
a ”
-

_q (A

We can regard the platc as infinite with uniform surface charge density
o =100Q/4= IODQ/(IOOd): = lO_ZQ/dz. Then Gauss’s law shows that
the resulting eleciric field has components ES™ = ¢ /(2¢,) = 5 x 1073Q/
(eod®); E;’.’“‘ = 0. We must add to this the ficld of the shell. Thisis zera inside
the shell, and cqual to that of & point charge Q outside it (by Gauss's law).
Hence inside the shell
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E =Epl.nle= lo—li‘
X X Sx fndz
E, =0.
Qutside the shell (see Figure) for any point P(x,y)

!
E =EM 4 BN = g _ pileosa,

E=sx1032 .1 Q i

cod®  Ameg (d — x)* 4+ 37 [(d — x)* + 2]

and

_pbell _pebet g 1 Q ¥
Ey v ST ex dmeg (d—x)2+y"' [(d—x)2+}'3]”2-

This is the general result for any point (x,y) outside the shell but not very
close to the edges of the plate. Substituting x = y = /2 for point P;, we find

2

=-0.107 =,
E, 107 - %5
o
£,=0113 5.

The magnitude of the resultant field is thus

2
Eodz !

and it makes an angle 8 with the negative x-dircction, where

= (0.107% +0.113%)!72 % =0.156

Ewnetl

|
e N
N
1

o
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$237.

just as for a point charge. For 24 < r < 3a we have E(r) = 0. as this is the
interior of a perfect conductor; a charge —~Q will be induced on the inside of
the shell. For r > 3e we have

E(r) = —<
") 4megr’

as a charge +Q 13 induced on the outside of the shell, See Figure for a graph
of E(r).

E(r) follows in each regyon (see Figure) by using Gauss’s law. Inside the first
sphere. a surface of constant r encloses total charge g, while between the two
spheres the total enclosed charge is —2¢4 + g = —q. Outside both spheres the
enclosed charge is zero. Thus for 0 < r < R we have E(r) = q/(4meor); for
R < r < 2R we have E(r) = —q/(d4wey?); and for r > 2R we have E(r) =0.

i
4ne SR
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S238.

S239.

Note that £(r) is discontinuous at each of the spheres (see Figure). This is
characteristic of the effect of charge layers.

By Gauss's law (sec $233) the extemal electric field is £, = A/(2neqr). where
X is the total /inear charge density (ie. charge per unit length). Here
A = Acore + Ashestys and unit length of the core and sheath have charges

Acore = P R JAheots = 2mRe. To arrange that E(r) = 0 everywheie we must
choose ¢ so that A =0, i.e. ¢ = —pR/2.

By symmetry the field is directed radially ovtwards and depends only on r.
Gauss's law applied to a cylinder ¢of length L and radius r < R gives

2rrLE = 2 wrt Lp
L

so that E(r) = pr/2e,.
For r > R Gauss's law gives

2mrLE = (l 7rR2Lp
0

since the whole charge is included. Thus E(r) = R*p/(2¢4r). These results are
sketched in the Figure.

e
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.
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S242.

S243.

S244,

S245,

Substituting we fnd V=3 x9x 10° x (1/12) x (2.5x 107 %~ 5x 10°%) =
—56.3 volts.

For uniform fields we have AV = £4. With £=2 x 10° N/C and d = 2 cm
we find AV =2 x 10 x 0.02 = 400 volts.

If the Earth is elcctrically neutral, we have only kincti'c (7) and gravitational
potential energy (U). Conseivation of energy thus gives 7 + U = constant.
At infinity both T and U are zero, so the constant here is 2ro, and hence

Thus
T = 2GM m /(R + h)
=2x6.7x 107" x6x 10™ x .67 x 10727/(6.5 x 10%)
=2x107"J.
if the Earth is positively charged the particle must do work against the
electrical potential ¥ (r) = Q./4xcor, so conservation of energy now requires
T+ U+ qV = constant. At infinity we have 7=0,U =V =0, and the
particle will just fail to reach the Eactk's surface if 7 =0 at » = R,. Thus
the minimur charge Q. on the Earth is given by
_ Qe 2GM m,,
" 47eoR, R.
Using the expression for 7 found above we note that the second termn on the
ths is T(R, -+ h)/R,. This gives @, = 4n¢gT(2R, + f1)fe = 1.8 x 10~> C.

The closest approach is achieved when the particle is incident head-on: con-
servation of energy (cf. the previous answer) gives

1, 2z
vt =

2 4negh
where & is the closest approach distance. Thus

_ zZé

T reg?
The stationary particle behaves as if it had “size” b and cross-sectional area
o~ wb> In an electrically charged gas (a plasma) v can be related to the
temperature, and ¢ can be used to estimate properties such as thermal con-
ductivity, etc.
When the particles are at rest their total linear momentum and energy are
both sero {no kinetic encrgy and negligible potential energy). Momentum is
conserved as there are no external forces, so that
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$246.

$247.

$248.

muy + myy =0

where 1; and v; are the velocity components of the two particles when they
are a distance L apart. No work is done on the system, so the sum of the
kinetic and electrostatic potemial energies is conserved at zero, i.e.

q142

m|v2+ mzz/i+ ool

Substituting v, from the first eguation into the second we get:

m, 2 ~h%
a +m:)m1 A
and using the data given

eZ

% = SoreeT”

Thus, choosing ¢ > 0 we have v =525 x 10°ms™", v = —(mfon)vy =
=21 %10%ms . The particles' relative velocityis v) — v, =2.63 x 10°ms™".

From the definition, 1eV = 1.6x 10™'* x | = 1.6x 10™"J, we can find the
required potential difference AV from
AV = E'
q

where £ is the energy. Measuring £ ineV and g inelectron chargcs gives AV
in volts. Thus AV = 10%/2 = 5 x 10" volts.

The potential at P is
9
ve) =5l

where 4 is the distance of the charge g, from P. Since
d =[x, = 2%+ (0 - 2)))2, we find
10°¢ ( 1 .2 3

[22 + 22]I,r2 [12 + 21]1.-"2 []1 4. 22]”’1
Since the field is uniform we have AV = £4 = Epy,. With £, = 100 N/C and
yy=5cm = 0.05m, we find AV = 108x 0.05 = 5 volts.

We can calculate the work # using the formula W = Fd cosd, where £ is
the constant electrostatic force. d the strarght-line distance moved, and 6 the
angle between the path and the force. 1n the present case we must exert a
force F = £,Q to drag the charge guasistatically in the negative y-direction,
and the work done in the two cases is

= EyQoy1,

V(P) = ) =843 V.

dmey
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$249.

S250.

S251.

§252.

and

W; = EoQu(xi +37)/2cas0),
usingd = y, in the first ease and d = (,\'H-yf)'“ in the second. Substituting
cosf =y, (2 +y3)™2, we see that W = £xQqv;, so that in both cases the
work doneis W; = W, = £430Qp = 5 J. The same result follows immediately

from the energy conservation law W = Uy — U, where Uy, U, arc the final
and initial potential energies, as Uy — U; = QoA V.

For a point charge we have

1 o
D= s

Dividing these two equations gives V/E =r.so r = 500/100 = 5 m. Using
this value in the formula for V gives Qg = 4meqrd” = 2.78 x 10~ C.

The potential difference AV = Vg — V4 between A and B is just minus the
field multiplisd by the distance AB, i.e. AV = —&d = -2000 V.

(a) The charge g is negative, so aork must be done to move ii to lower
potential. The total work donc is W = (force)x(distance moved) =
|g&d| =|qAV| =201.

(b) The work done moving a charge in a static electric field depends only on
the endpoints of the path, and not an its shape, so the charge from A to B by
any other route, including the one specified here, is exactly the same as along
AB, i.e. 20].

The potential of the charged shell is ¥ = £ = 10* V. Since V = 0/(4=coa)
we have Q =4mba =11 x 10°C. The work done is W =qV =
10 x 10> = 10~% 1. If the charge penetrates the shell, no extra work is
required to bring it to the center, as the potential is constant inside the shell.
For a charged spherical shell we have V = g/(4megr) so g = 4reyVr. By con-
servation of eharge Q = 1000g = 4000wey ¥'r. The totai volume ofthe merged

drop must be the sum of the individual volumes. as mercury is incompres-
sible, so 47R’/3 = 1000 x 47 /3,i.c. R= 10r. Thus

Q _ 4000meyVr

= = = ,A
L 4megR A0mey .

The electrastatic cnergy of a spherical conductor is

qz

- Bmegr '

U
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$259.

$260.

(Note that these values sausfy ¥y + ¥;=E&, as they must.) The stored
electrostatic energy is

_9r
Ur =5-=0.011J.

After the dielectric is removed, tlie capacitance C, is decrcased by the factor
K, so that its new value €3 is €3 = C3/Ky = B 1F. The two capacitors are
now equal, making the calculation casier. Thus ¥, = ¥, = £/2 = 30 V. and
Up=2U, =2(C,¥¥/2)=72x 1077 3.

The fotal capacitance of the two capacitors connected in parallel after the
circur't isclosedis Cy = C, + C3 = C; + 2C, = 3C,. The total charge is con-
served, i.e. Q7 = 0, so the voltage on both capacitors will be

_y _9r_¢Q
V‘_Vz_cf‘sc.'
The charges on each are then
Qi =C¥, '—“%,
Oy =GV, =2GV, =¥'

and the cnergies arc

_ClVIZ_ @’
Ur==3 T I8¢,
_Gvi . O

U=-33=CV =g

Thus Uy = @¥/6C,. Initially we had Uy = U, = 0*/2C}, which was larger.
Energy was released in sharing the charge out between the two capacitors
(currents dissipate heat).
If the level of dielectric liquid has fallen a distance v = /i < 7 we have two
capacitors in parallel, i.e.

Ih
C(t) = (om= 100€guy,
1-h)t
Cy(t) = deo([/log = 200eg(7— vi).

Thus C(f) = C1 + C; = 1006 {2/ — v#) until# = [ /v. when C(¢) staysconstant
at C = 100ey/. The charge is just C(s) V.
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$263.

S264.

Afier the spheres are connected, charge will flow uniil the spheres are at the
same potential. The potential of a conducting sphere with charge Q and
radius R is ¥ = Q/4meyR, so charge flows until the charges on the spheres
are 0,,0,, with Q1/R, = Q2/R; or

0, = 2R /R,. (1)
Moreover charge must be conserved in the flow, so that
O+ =q +4a

Hence eliminating Q, we find
R\
Qz(l +?2) =i+ 4,
or

0 _lo+a)R
TR AR

Then (1) gives

(g + @)R
O, ="5—0—-
Ry +R;

With the values given we get @, = 2.67x 107°C, @ = 1.33 x 107 C.

Each conducting sphere is a capacitor. so that the stored electrical energy is
U=CV?2=0V/2, where C,V.Q are the capacitance, potentral and
charge. Since ¥ = Q/4m¢yR for a sphere of radius R, we have totai energy

U__;(i,ﬁ)

£= sﬂio R] Rz

before the spheres are connected, and

U =L g%.rg_i
"B \R, R,

after connection. Substituting the data from the previous problem and its
answer wefindU; =99 x107° 7, U/ =24 x 107 J. As can be seen, the final
energy is lewer. This is to be expected, as the currents flowing in the con-
nected system must dissipate some energy as heat.
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S265.

S266.

S267.

The firsl sphere will accumulate charge ¢, such that its potential
Vi = qi/4meoR; reaches the external potential V. Thus g, =4meVR, =
107% C. When the two spheres are connected, charge will flow until the
two potentials are equal, ie. they will have charges Q,,Q0, with
Qi/Ry = Qaf/R; and Q) +Q, = qy. Thus 0, =20, and 0, + 0, = 107° C,
implying @, =3.33% 1077 C, 0, = 6.66x 1077 C.

{a) Here the shells are independent, so

=4

' regn’

Vi= g
© 12nga’
and the potential difference is
’ q
AV=V-V= i

! ° bmega

(b) Sce the Figure. The potential of the inner sphere has the value
Vi = q/(4mequ) resulting from its own charge, plus the potentiai V, of the
outer sphere. Hence V| = V| + V3, so

q
dréon”

AV =V, —Vy=V|=

(The outer sphere behaves asifit had a total charge 2q, so that its potentral is
Va2 = (1/4n€)(29/3a))

(@)

The field inside a perfect conductor must vanish, so by Gauss’s law, charges
—q and +gq are induced on the inner and outer surfaces of the shell respec-
tively. Thus

E(-"oul)I = N E(l}) =0

.
dmeg r‘En.ll



228

SOWTIONS — CHAPTER 2. ELECTRICITY AND MAGNETISM

S268.

and

E(riq) =m-

The potentials follow by superposition, i.e.

V(roul) £ ro———— .

1 fg q 4 ) q
Vir)=— (32, 9\ __9
(re) ey (rc re IR 8repR’

and

1 (¢ g, .49 9 (4 ¢
Virp)=—|—-=+=)=—"{—-=—=).
(i) = 2es (ri,, RTIR) ~ine (rm R

If the shell is grounded its potential is zero, so that the charge on its outer
surface vanishes. However, Gauss's law stitl requires a charge —g on the inner
surface. The fields and potentials are calculated as above, but now with no
charge on the shell’s outer surface. Thus

Elrua) = ECJ =0, Elra) = 3=

and
V(foux) = V(fr) =0

0= 8)

We can regard the capacitor as the superposition of two paraliel capacitors at
the same voltage. with one containing the dielectric. Their capacitances are

c K25

and
afa
G = 7 (‘2" + .'C) .
Thus
€g az
Cls) = €1+ € =3[R+ 0+ axtt - £

With K; =2 this gives C(x) = (eo/d)(3c2/2 - ax), which reduces to
C = qd’/d for x = a/2 (all the dielectric removed) as it should.
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To find the current we need the charge

O(x)=C(x)V = % (;az - m:) .

In a time interval A¢ the dieleciric moves a distance Ax = uAf. The charge
changes by AQ = —¢yVaAx/d (i.c. it decreases). Thus
AQ cVadx _ eVau

I=&=""ada 4

$269. The large distance between C and the AB system allows us to assume that
they do not influence each other. Then

. S
4meg R 2regR’

Ve

1 1
Vg = — i 4 — g = L .
4reg2R  4m¢g2R  4negR

v,-.tea 1 9 _ 3

4= st e e = .
dreg R dmen 2R 8mepR

where we have used the fact that the potential is constant inside a spherical

shell in writing the last equation. After B and C are connected, chasge flows

between them unitil their potentials become equal. If the new charges are

Qg.0¢, conscrvation of charge gives

Os+Qc=q9-%=—q (1)
Since the new ¥pg, V¢ arc equal,
1 e+0Qs_ 1 Qc

dreg 2R 47y R
or
g+ 0p=20c 2)
(),2) are two equations for Qp,Q ¢. with the solution Q¢ = 0,Qg = —q. The
potentials become

1 |
v, a_ 1 a_ 4

| q—q_

Va= dreg 2R '

Ve =0.
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S278.

$279.

S280.

o
AAAN
LAJ
>
AAAA
vy
2

7=81+4l
3= sz = 8[3
Using (1) we find
7 =121 + 41, (2)
3 =51, -8 (3)

Multiplying (2) by 2 and (3) by 3 and adding gives / = | A, so from (2) or (3)
I; =025 A, and from (1) 7, = 1.25 A.

Using KirchhofPs laws
=i+
&) = iRy + 3R
—&5 = §| Ry + 3R,

With the values of Ry, R,,£),&; given, the first equatinn simplifies the other
two (o

4i, +Tia=3
3i| + 2!’2 L l s
which have the solution iy = =1 A, i; =1 A. There is no current in the

resistor R, as iy =4 +i, =0.

The current in the original circwt 8 7 = (2€ — £)/4R = £/4R clockwise.
Thus the voltage drop between A and B is V5 — Vg = —iR+ 2 = 7E/4.
The eml X must be in the same direction as the two in the original circuit,
with magaitude X = 7£/4.

For the case shown in Figure |, we have ¥V = ¥, But by Kirchhofi’s laws

Vap = (R4 + R),

50
Vi=5L(R4+ R),
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voltmeter will measure V., = R, To find I; we first calculate the equivalent
resistance of the whole cireuit:

1 2r+R

Rr=R+Rsifr =7+ R R

Thus
£ E(r+R)

“Rr RQr+R)
We can find 7, from the fact that the potential drop through the resistor
between ¢ and b must be the same as that through the voltmeter between the
same points, i.e.

(1)

Rh = J'U = 11).

Solving for 1, we get

Substituting for / from (1) we get
PR E(r+R) _ r
'“7+¥RR2r+R) “(2r+R)

and therefore
r
Vao=RH=E——.
i ! 2r+ R
By symmetry we get the same result for V.

Note that if 7 3> R we have V4, = V,, & £/2, very close to the vaiue in the
circuit without the voltmeter. However, if the internal resistance r is not
miich larger than the resisiances R, the voltmeter will draw a significant
current and thus reduce the voltage drnp V., or V,, below this value,

R b A
c AAAA AAAA
VWV WV
—
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$282,

$283.
S284.
$285.

S286.

The equivalent resistance in each of the three cases is
1 R
R= I/R+1/R_ 2°

Ry=R+R=2R,

and

1 3R

R=R+rvr=7

The dissipated power is

52
Thus

£ 162 282
fam¥gp =3+ =3x

The dissipated power is largest in circuit (a).

The power dissipated is P = /2R = V*/R =242 W. The total energy used is
E=P1=287x10°J = 0242 k<Wh.

The total energy used is £ = Pr=0.1 »x 24 = 2.4 kWh. The cost is therefore
2.4 x 30 = 72 cents.

The power is 2 =iV = 3.6 kW. The total energy is £ = P1=432 kJ or
0.12 kWh.

(a) When the switches are open, we have a single circuit with a current

£

(b} When both switches are closed. the resistor R: is shorted out, so the
equivalent circuit is as shown in the Figure. The current through the ammeter
is again [ = 1.5 A, so the potential difference between 2 and b is

Vs =1IRy =4.5V.

But since g and b are also connected through the power supply and resistor
R,, we also have

V‘;, 28— I|R1.
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S289.

5290.

' ~
o
2
:: Ry As
phone command post
<
short

With the data given we find x=30km. From (2) we find R =
R4—2xr =114 Q.

If the bulbs are connected in parallel the total resistance Ry is given by

11,13
Ry R 2R 2R’
so the total current is f = /Ry = 3€ /2R where £ is the mains voltage. The
currents {4, /g through the bulbs obey
I _2R

Is"R™2

and Kirchhoff's iaws require

3€

Ih+lg=1=—=

A ) 2R’
so I, =&/R and Iz=E/2R. The emitted powers are Py =El, = EI/R,
Py =Elg=E*2R and the total power is P = P4+ Pg=3E}/2R. If the
bulbs are connected in series, the total resistance is R = R + 2R = 3R,
and the current is f=E/3R. The powers are P, = I}, R= E’/9R,
Pg=132R =2E/9R, and the total power is P = £2/3R. Thus buib A is
brighter when the connection is in parallel, which also maximizes the total
power output. The two clerks can agree.
In the first case no current flows in the circuit involving £ the current in the
circuit involving & is

_&

L =—=0.1A.
' R

The resistance of the interval AP is
R, = R, 3{AP|AB) =20 % (60/100) = 12 Q,

so V,p = I|R,p = 1.2 V. This mustequal the potential diff erence £, given by
the power supply, i.e. £; = 1.2 V. Also ¥z = 0, since there is no curtent in R.
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But the capacitors are no longer connected in series, so we have
Vi=IRy =6 V and ¥;=IR,=48 V. Thus Q, =C\V, =03 uC and
Q: = Cz Vz =0.096 [I.C

$292. The current flowing in both resistors is the same:

The potential difference V, 5 follows fromn the voltage drop across Rz:
VAB = IRZ =8V. Thus Q: = CEVZ = C2V,4E = 40/£C Also Q| = Cl V| =
C] VAE =8 [IC.

] MAGNETIC FORCES AND FIiELDS

$293. We take the origin of coordinates half-way between the two wires, the x-axis
perpendicular to them and the y-axis parallel to them (see Figure). Each wire
produces a magnetic field acting in circles centered on it and thus in the +z-
direction at points in the x,) plane. With the orientations shown in the
Figure both fields point o the plane (—z-direction) between the two
wires, so the total field is the sum:

o 21 pg 2

B =5 55t a—2
i.e.
_Hey  4Md
Blx)= 2r d* —4x%'

for —d/2 < x < d/2. Withihe data given B(x) =8x 1077(t —4x’)"' T. At
x=0,B=8x10"" T and the force is #* = evB = ecB/2 =192 x 107" N,
acting in the x-direction if the vclocity is in the y-direction. [f the velocity is
reversad the force points in the —x-direction.

P Y 1
I 1

ar2
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S294.

S295.

Tbe magnetic force between the wites is F,, = poli1,/(2nd) per unit length,
and the weight per uait length is W = mg. In equilibrium (sec Figure) tbe
tension 7 in a cable must satisly Tcos# = W ,Tsinf= F,, so

Fm _ molif2
1 o = —— .
an mg 2mngd

m

We can eliminate d since sinf = d/(2a). Using the fact that d & a we see
that @ is also small, so that sinf= tan6. Hence substituting d ~ 2atané
into (1) gives tan®@ = poli/o/4wga. With the data given we find tand =
(2 x 1077/9.8)/2 = 1.43 x 107, so that 6 = 8.2 x 107>*. The magnetic field
at the midpoint is the superposi'tion of the fields produced by each wire, i.e.

_bo(h b
b= (dfz < dxz)-'
whbere both fields point vertically downwards. Using 4/2 = atané we find
B=2x10"x3/(143x 107 =42x10°T.

By Ampere’s law the field vanishes outside the coil. By symmetry it is circular
(clockwise, by the right hand rule) inside the coil, and its magnitude depends
only on r. Using Ampére’s law for a circular path inside the coil (see Figure)
gives

—]—B(r)21rr =Nk a<r<b.
m
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B tol”
P+

where 7 is theloop radius and x the distance along the axis from the center of
the loop (the sign is determined by thesight hand rule; see Figure). Using this
with the data given yields Bp,= B, — 8; =

pol(2r0)’ ol ( 4 1 )

4+ 47 2R +43)7 \2x®F 2x 5P

“L[=o,o44ﬂ,
o fo

§299. The magnetic field of the long wire points everywhere into the plane of the
loop (see Figure), with magnitude

o 1
B(x) =22~
(x) =522, 1)
where x is measuied from the wire to the loop. By symmetry the forces on
sides A8 and CD of the loop cancel out, and the forces £ 4¢,F gp on AC, BD
only have x-components. With the current dircctions shown (see Figure) we
find the resultant force

1]

Fac  Foo
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S$300

S301.

S302.

F=Fuc+ Fgp=18(d)d - 1,8(d +a)b.
Using (t) we find

_poldly |1 1
&= 2r 1t’[(fl' d+a] @
leading to a force F = 1.067 x 10- N directed away from tbe wire.

Ifthere are N turns on a coil, tbe rhs of equati'on (2) of the previous problem
is multiplied by N. Each coil must supply a force F = «b to balance the
weight of the train, so from the modified eguation (2) above we require

Since w is fixed, to minimize / and 7, we nced to maximize the teim in square
brackets. We can make the negative part of this term negligible by choosing
a®» d. Then the requirement simplifies to

v NI
T 2nd

(1)

Evidently we will minimize /.7, by making NV as large as possible and d as
small as possible. (The latter requirement makes it very easy to arrange that
a » d.) For the data given, (1) shows that N = 5 x 10%wd/1; = 5000.

From equation (1) of the previous Question. thc condition for balance is
d x 1/w. The football players increase w from 1000kgm™ to 1300kgm™',
so d decreases from | cm to 1 x 1000/1300 = 0.77 ¢cm.

The magnetic field at a distance » from a very long straight wire carrying
current / has circular symmetry about the wire and strength

po !

B= Iy
By symmetry it is clear that one half of the wire contributes cxactly one half
of this expression. The field at O is the superposition of two sach half-infinite
wircs {at right angles), giving total ficld B, = pyl/(2nr), together with the
field of a quarter-circie loop at itscenter. Since the field of a full circular loop
at the center is B = gl /(2r), the quarter loop adds a contribuir'on
B, = 1ol /(8r). Hence the total field at O is

11 gof 1.26 x 107° x 1
B=B+B8=|—+-|2"=028x—" = _ -6
s+ B (h+8) . 0.28 x i 353x10°°T

The direction of the field is fixed by the right hand rule (into the page).
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$303.

$304.

$305.

The magnetic force between the rod and the wire is

2
it wH R

F Hod- .
2rL 2n

so the equilibrium condition F = —mg + F£,, = 0 becomes
Ho 2

B2 mg =0,

27 e

so that § = (2ming /)"’

If the current in the wire is doubled, F, becomes i = jipf’/7. so
Newlon's second law £F = F,, — mg = ma gives ma = Ing —mg = mg, i.e
the initial acceleration a is exacily g, upwards.

The force on the particle is g8, directed perpendicular 10 the motion. This
force can do no work, so the particle must move at constant speed in a circle,
the magnetic force supplying the required centripetal force. If the radius of
the circle is R, we must have

g=qvﬂ. )

The angular frequency is defired as w = v/R, so from (1) we find dircctly that
w =¢B/m. This is called the gyrofrequency. Larmor frequency or cyclotron
Jrequency of the particle. Charged particles gyrate about magnetic fieldlines
at this characteristic frequency: note that it is independent of their velocity.

If the velocity is not in the piane perpendicular to the field. we can consider
the instantaneous components v,y perpendicular and parallel 10 it. The
parallel component v produces zero magnetic force, while v, as before
produces a force perpendicular 10 the field and always directed towards a
particular fieldline. Since there is no foree component along the fieldlinc, the
particle moves with constant velocity i along it while gyrating about it as
before. The combination of these two motions is a spiral centered on the
fieldline.

The angular frequency w (measured in rads™ is related 10 the circular fre-
quency v (measured in cyctes/s = Her1z) by w = 2mv. The wavelcngth X is
given by this frequency as A = c¢/r* with ¢ the speed of light (see Chapter 3).
Here w=e¢B/m, (sec previous problem), so » =eB/2rm, and hence
A = 2rm.c/eB. With the data given, A =26 m.
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S306. Taking P as the origin of the coordinate system shown in the Figure, at P we
have

I a

B, = B|sinf =
: ’"(u‘ +4a2)"2 (@ +a)?

1 1 2
B, =B, — Bycosg=1022_1 !

252a 2m(q? +4at)' (@ + 4a?)' P

Mk

T ra’

Thus

_ o h
* " 2nsa’

kel
B, = 27104’

M

T Tn2a

Subsmutmg the numetical values given we get B,=3.2x 107" T, B, =
1.6x107'T, B, =8x 107" T,s0 B= (B + B’+B’)"2—876 <101,

L]
W

L. &= = =

S307. The electric field exerts a constant force ¢ £y in the ditection on motion of the
particle, and so pcrforns total work g£¢d on it. This must all go into kineti'c
energy. so that the particle encounters the magnetic field region with velocity
v given by

5;}11'2 = qEyd,
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$308.

S309.

S3l0.

ie. v= (ZqEOd/m)” %, The magnetic force acts perpendicuiar to the particle’s
motion and thus does no work on it, so that its speed remains constant and it
moves in a circle (sce e.g. S384). The radius R of the circle is fixed by the
condition that the magnetic force gu8; should provide the centripetal force
m#/R. Thus quB = mv*/R or

my 2mEyd 12

5"
95 qB]

With B, as shown the particle will move up the page in a semi-cirele, re-
entering the electric field region at a point 2R above its entry point. For this
distance to be d we require 2R =d, ie. d= Z(ZmEud/qu)'/ 2 giving
By = BmE,/qd)' .

Using equation (1) of the last solution, we find D = 2R = 2(2:»:6],(1/:185)”2
or g/m = 8Eyd /(B D?). With the data given wefind g/m =9.67 x 10® C/ke.
For an electron the corresponding ratio is —e/m, = —1.76 x 10" C/kg. and
for a proton we get a ratio ¢/m, = 9.58 x i0® C/kg. The particle is probably a
proton, as the defiection D is similar to that expected (making due allowance
for experimental error). Note that the electron defiection would have the
opposite sign, ie. be on the opposite side of the inrtial track.

Let the particle masses be m,, m4,n2;. Their velocities 111, vz, v3 on entering the
magnetic field region are given by energy conservation, i.e.

1
5m|v;; =gV

sothatu, = (2qV/ ml)” 2 etc. Asthe magnetic force acts perpendicular to the
motion it does no work, so the velocities remain at these values. Each particle
moves in a circle {(see S304 and subsequent problems). The radii, etc. of the
orbits follow from the equations of motion, in which the Lorentz force g8,
etc. must supply the centripetal force m v} /Ry, so that

_M|U|_ 2V 12 142
Ry = 4B _(qB) my'” etc.

Thus the masses are in the ratios my :my:my= R} : R3: R3=1:4:9.

The particle will begin to move in a circle of radius R = mv/q8 (sce previous
problems). Obviousty if R < b the particle will not reach x =5, and the
condition for this is v < v, = bgB/m. If v is larger than this, the particle
will reach x = 4 and continue in a straight line. From the Figure showing
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S314.

angles, so the loop continues to revolve. This is the principle of the DC
electric motor.

The forces acting on the mass are shown in the Figurc. The magnetic Lorentz
force quB, where u is the velocity, acts nornal to the plane and the mass's
motion {as the magnetic force always does). Assuming that ¢ is small enough
that the mass does not leave the planc, the acceleration in the plane is
unaffected, and is givcn by Newton's second Jaw as

a=-7=gsin

if the plane is not smooth the magnetic force will change @ by changing N
and thus the frictional force.

[ ELECTROMAGNETIC INDUCTION

S3IS.

Let x be the distance of the Icading side of the joop from the boundary of the
magnetic field region. Then the magnetic flux through the loop is

@ = Byl (I, ~ x)

for 0 < x < {,. For x <0 alioftheloop is in the field region, so the flux has
the constant value @ = Bol;/3, and for x > 7, the flux is zero. Hence the flux
changes only for 0 < x < I3, and induces an emf

AdD

Ax
£= - = —Bgﬁm = —Byl\v
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$320.

$321.

$322.

$323.

$324.

The resistance of the triangular loop at any time s R = 3/r, which increases
with time in exacily the same way as £ oc /. Hence the current in the triangle is

and is independent of time.

With the bob at height x the magnetic flux is @ = Bwx, so the induced cm{is
& = —Bwv, where v is the speed. If the bob reaches height #, the kinematic
formula v* = «§ — 2gh shows that the initral speed is vy = v/2gh. The largest
induced emf is thus

Erax = —BW\/ZH.

Beannot exceed 107* T, and could be lower if the slide is not oriented exactly
perpendicular 10 the local magnetic field. With the values given for w, h we
find 1€ poxl = 1.4 x 107* V. The voltmeter must be able to measure voltages of
this order of magnitude. {Note that the magnetic force is always negligible
compared with gravity.)
The magnetic flux is ® = BS(¢) = BSy(1 — at), so the rate of change, and
thus the induced emf, is £ = —A®P/Ar = SyB«. The eurrent direetion is
determined by Lenz’s law. The strength of the current is /(z) = £/R, where
R = 2rr()p. With #(2) = [S(¢)/n )%, we find

aB[ S 17

20 [w(l —at)] '
A flux ®=NAB is removed in r=10""s, so the induced emf is
£= NAB/t =12 x10° V. This produces a currenmt / = £/R = NAB/(Rr)
and the dissipated power is P =E/R= (NAB)*/(R*?) = 1.2x 10'°W.
The total work done is W = Pr= (NAB)’ /(R’) =1.2x 107 ).

This shows the very large mechanicat power required 1o remove eonduc-
tors rapidly from magnetic field regions, and the dangers of rapidly decaying
fields.

We have A® = (B, —B;)4, so the induced emf is &= Ad/t=
1 x 0.01,/0.001 = 10 V. The current is 7 = E&/r =1000 A, the dissipated
power is P =& = 10 W and the total heat produced is Pr = 10 J. While
this is not large, it is extremely localized, and the very high curient

= 1000 A is very dangerous. People working in regions of high magnetic
field are strongly advised not 1o wear any conducting loops {e.g. bangles,
rings).

() =

The flux through the loop was ¢ = N BA and was reduced 10 zero in timoe ¢, so
the induced emfis £ = NBA/t. Thecurrentis I = £E/R = NBA/(Rt) and the
total charge passed was @ = /t = NBA/R, so
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QR 2x10°x10
fozo SR E B SETY
NA~ 20x 107

with the data given.
S32S. The induced emf V is given by

Al
V= LE'
where A7 = 10 A is thechange in the currentin time A¢. With the data given,
we find V = 18 % 10/0.25 — 720 V.

S$326. The relation

. AF
shows that L = V /(Al/Ar). Here L = 20/50= 0.4 H.
§327. Using
N
L=7
we find
-5
= m+m =2x 10" H=0.2mH.

S328. At time  the normal 10 the loop piane makes an angle § = wi to the magnetic
field direction (sec Figure), where we have chosen to measure ¢ from the
instant when the normal is parallel to the field. The magnetic flux through
the loop is thercfore

& = NABcoswt.

Theinduced emf £ is minus the rate of change of € with time 1. To find this
we consider the small change A% in & which occurs when ¢ increases to
t+ Ar. We have

® + A® = NABcosw(r + Af) = NAB(cosw! coswA! — sin we sinwAt),

using theidentity cos(a + &) = cosacos b —sinasind. Now since At is small,
we have

coswAr=1,

sinwAf = wiAt,

where wA' is measured in radians. Then the first term on the rhs above is just
® itself, so we find that in time At, © changes by an amount
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$330. In equilibrium the pressure of fluid in the left and right arms must be equal.
By symmetry the water columns below the level of the oil are in balance, so
we have to balance the oil column of height 4 against the remaining water
column of height (A — d) in the leR arin (see Figure in the Problem), i.e.

oohg = py(h —d)g,
where p, = 1000 kg m~ is the density of water. Thus

d
Po = pu—5— =08p, = 800 kg m3.

When the second fluid is added, we must balance the oil column ofheight 4
against a column of the same height, but which is hall water and half the
second fluid (see Figuie). Thus

ﬂ)gl_ﬂwgz pl‘gz'

253
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S331.

$332.

$333.

S334.

Multiplying each side by 2/ and rearrangyng we find
e =200 — p, = (1600 — 1000) = 600 kg m ™.

The hydrostatic pressure immediately below the large piston is Py =
Py + (M + M)g/A;, where P4 is the aunospheric pressure. In equilibrium
this must equal the hydrostatic pressurc P} a distance h below the small
piston. Since P = P 4+ mg/As+ pogh, setting Py; = Pj; gives

M+ M m
( g _me

A 4, + ok

Rcarranging, we find
m=(M+ M,)'-fi’- —pohA, = 561 x (107°/0.5)— 800 x 1 x 10~* = 0.032 kg.
/]

Any impurity will alter the density of the gold in the ring (usually lower it).
The balance gives the ring's weight. Filling the volume measure to the brim
and submerging the ring in it using the thread gives the ring volume when it is
removed, so the density can be found. Archimedes is said to have been led to
hr's principle by this type of experiment. (He was asked by the King of
Syracuse to determine the purity of his crown: when he found it impure,
the unfortuoate goldsmith was executed.)

(a) When standing, the woman's weight M g is distributed over her shoe soles,
of area roughly 2b/. The pressure is thus P~ Mg/2b! = 16,808 N m2

(b) When lying, the weight is distributed over an area = hw, so the pressure is
Pa~Mg/hv~820 N m 2. Lying on the floor is uncomfortable since much
less of the body is in contact with it than in a bed, so the pressure is much
higher on those areas.

The stiletto heels have area A=2x10"*m?, so the pressure is
P=Mg/A=~3x 10° Nm2 Even static pressures of this order are sufficient
to cause damage to floors.

The pressure gauge measurcs excess pressure. i.c. P— P4, where P, is atmo-
spheric pressure, so it reads 6 atm. (It reads P = 0 before inflating, when the
pressure inside the tire is clearly P,!)

In equilibrium the road exerts a reaction force P = 7P 4 per unit areaof tire
in contact with it. This reaction pressure batunces not only the weight per
unit area of the 1ider and cycle, but alsc that of the atmosphere abovc.
Exactly 1P is used for the latter purpose, so it is the excess pressure 6P ,
which halances the weight. The tires deform so that a total area A is in
contact with the road, and then

6P 44 =mg.
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$33s.

S336.

S337.

S338.

Thus A =mg/6P4 = 70 x 9.8/6x 10° = 1.1 x 10~ m%. i.e. A =1 cm?.
The cylinders are held together by the aimospheric pressure on their cross-
sections. When M is maximal, the reaction force between the two cylinders
vanishes, i.e. they are about to be pulled apart. Since the cables each have
tensions T = Mg, horizomal equilibrium IF, = 0 requires

APy = Mg,

soM = AP,/g =102 x 10° kg ~ 102 1onnes. For any other shape only the
projected cross-sectional arca is relevant (sec $348). 1n a famous cxperiment
teams of horses were unable to prise apart a pair of evacuated hemispheres
(“‘the Magdeburg spheres™).

The buoyancy force £y on the balloon and payload must balance their
combined weight W. By Archimedes’ principle Fy =p.V,g, and W =
(Mg +m)g = psVsg +mg. Thus

PV e tmg= p.V8,

or
Py = Pu— o= po— 02 kg m™>.
Vy

Note that thisis possihle only if p, > peri, = 0.2kgm >, i.e. the balloon cannot
be lifted to a height at which the air density is lower than the value p =
m/ V. (This is eflectively the average density of the balloon and payload.)

By Archimedes’ principle, the payload mass M plus the mass of supporting
gas (H or He) must equal the mass of air displaced if the balloon is to rise, i.e.

M= VH(pa e pH) = VHe(Pa o P‘He)»
when Vy;, Vi, are the required volumes of hydrogen and helium, so

ﬁ‘_pa-—m; 1.3-0.09

= = [.08.
VH  Po—PBHe 1.3-2x009 =

The volumes are not very difi’'erent. The main reason for using hydrogen was
the difficulty and expense of producing so much helium.

Above the surfacc the ball falls under gravity, so usingthe kinematic formula
# =1¢ — 2gy with u =0, we see that it enters the water (¥ = —~A) with
vclocity v = (2gh)|J 2. When the ball is under the susface the resultant upward
foree acting on it is F=p0g-p,g where V is its volume and
m = (2/3)p. its density (i.e. buoyancy minus weight). Since its mass is
m = Vp, its upward acceleration is
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S339.

$340.

a= i (’i_ )g:O.Sg‘
L Po

Using the kinemalic formula ¥ =@ +2ay with initial velocity
v = —(2gh)""?, we find that the ball’s downward motion is brought 1o a
halt (v = 0) at a depth

(a) By Archimedes’ principle, the buoy displaces its own weight of water
whether inside or outside the yacht, so the water level remains unchanged.
¢b) The anchor displaces its own weight of water when inside the boat, but
less when it sinks (it just displaces its own volume of water, which weighs
less). The watcr level drops.

Let the cube be submerged to a deptb x (see Figure). By Arcbimedes’ prin-
ciple the buoyancy force on the cube is Fg = V,p, g, where ¥, is the sub-
merged volume, i.e. V, = &’x, and p, is the density of water. In equilibrium
Fp must balance the cube's weight W = Vpg with V =a*. Thus from
Fg =W we find

Fxp, =@p,

ie. x={p/p,Ja =08 x0.05=0.04 m. The submerged volume is therefore
V,=d'x = (0.05)2 x 0.04 = 16" m*. This is also the volume of the water
displaced. The new height of the water is

VotV

Ayew = n
e y
whereas the original height was
V,
hoy = 7°,

Thus h=hyey, —hga= V,/A=10%/16"2=10"2 m,
When the mass m is added, the weight W is increased to W' =
W + mg= Vpg + mg. The buoyancy force becomes Fg = Vg asnow the
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wholc cubc is submerged. Requiring £ = W’ for equilibrium as before, we
find

Vo.g = Vg + mg,
so m = (p. — p)V = (1000 — 800} x (0.05)> =0.025 kg = 25 g

S34I. By Archimedes' principle, the buoyancy force Fgon the cube when it is just
submerged is (see Figure) Fgz = g. Vg, where p,, is the density of water and
V = & the volume of the submerged cube. This must balance the weight plus
the downward force F, i.e.

pVe+F=p,Ve
Thus
F 3.43
=pe———=1000———""__ =650kgm>.
p=pe = 3= 1000105535 .

When the cube floats freely, it is submerged only to a depth 4, say, so the
submerged velume is a4 and by Archimedes’ principle the buoyancy force
beeomes £ = #.a°hg. This now balances just the weight pa’g of the cube, so

pa’hg = pa'g,
or h= (p/pyJa = (650/1000) x 0) = 0.065 m.

$342. Thecube has total mass M = 3, /4, and wilt float whenit displaces a mass
M ofwater. Since ¢ < a. the base area of the container is very close to %, so
the water must reach a height 4 = 3a/4 (see Figure in the problem). The
rainimum volume of water needed to float the cube is thus

c 3
~ 4 —==
V xahz 2a2c‘

where we have considered only the water around the four sides of the cube.
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S343.

S344.

We see that V becomes arbitrarily small as we decrease c: the pressure at a
given depth below the surface of a continuous body of fluid is precisely the
same no matter how little of it there is. In practice the lower limit on the
volume of water occurs when there is so little of it that surface tension breaks
it up and it is no longer a continuous fiuid.

By Archimedes' principle the buoyancy force is given hy the combined
weights of water and oil displaced (see Figure in prohlem), i.e.
Fy=pd*hg + pd’(a - h)g

The dynamometer reading W), gives the force supplied by the spring, which
must equal the difference between the cube’s weight Mg and the buoyancy
force Fg, i.e.

Wy, = Mg— Fj.
Thus

WD+F5
4

M= =‘g_D+azlﬂwh+pa(a h)]

=0.05 + (0.1)%[1000 % 0.02 + 500 x 0.08] = 0.65 kg,

The hydrostatic pressure P at the base ofthe cubeis given by the depths of oil
and water above that level, i.c. P= pgd + p,gh=1176 Nm™.

{a) The iccberg’s volume is V = (h +x,)3, so that its mass is M = p; V =
pih +,\:,)’, and its weight is W = Mg&. By Archimedes' principle this must
equal the weight of scswater displaced, which is M'g = p,V'g, where
V' = x,(h + x,)’ is the submerged volume. Equating M and M’ we find

pdh+ )’ = px,(h+x,)!
which gives
Pu(h + x,;) = Prx:
so that

X, = L
Ps — P

and thus with the data given x, = 5.625 m.
(b) In fresh water the iceberg displaces a mass p/(h+x,) xs, which by
Archimedes' principle again must equal M =p,(h+ \’,) Thus x; =
0.9(2.5+x,)m, and using x, from the answer to (a), we find xp =17.313m.
Since the side of the icebergis 2.5 + x, = 8.125m, only 81.25cm or one-tenth
is above the surface.
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The upward force cxcrted by surface tensioo (sec Figure) is F, = 2wr-ycosé.
This must balance the weight W = 72hpg of the column of liquid, i.e.
F,= W. Thus

_ 2ycosd
pgr

()

r
-

a

Using equation (1) of the previous answer with & = 0, surface tension can
hold a column of sap of height /= 2 x 0.07/(10° x 9.8 x 10~°) = L4 m. As
trees grow considerably taller than this, capillary action canoot be sigaificant.

Assume that a very thin fiim of water fills the gap between the cap and the
tube. Neglceting the mass of the water, the upward surface tension force
F, = 2nry must balance tbe weight mg of the cap plus the reaction R of
the tube (see Figure). Now m = 7dp, so F, =mg+ R implics

)

F

4
L

mg
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2ary = wridpg + R.
or

= __R
T dpg  wrdpg’

r

Since R is positive, the largest r is given by R =0, i.e. when the surface
tension force just balances the weight of ihe cap. This gives fpes =
2v/(dpg) =2 x 0.07/(2x 1072 x 700 x 9.8) = 0.0l m = 1 em.

Imagine the sphere cut in balf. The total outward pressure force on one
hemisphere is given by the pressure difference Pi— £, multiplied by the
projected area m? of the hemisphete, because all components of thu's force
other than the pcrpendicular outward one cancel by symmctry. This outward
force must be balanced by the tension in the membrane, which by definition is
2rrt. Thus (P;— Po)nr® =2mrt, of

2
Pi-P,==. (n

Since the liquid walls have both an inner and an outer surface, thc total
tension ! is twice the surface tension, i.e. 7 = 2, and

4y
Y st (2

Consider a length / of the tube, the excess pressure inside the section of tube
being maintained by inserting bungs in either end. lmagine the tube now cut
in half along its axis. The net outward pressure force again invoivcs the
projected area, and is thus 2r/(P; - P,). The tension force in the walls is
2/t (the bungs exert no tension), so equilibrium requires 2r{(P; — P;) = 2it or

Pi—P, = (M

~ i~

As before, if we consider surface tension we have ¢ = 2y as there are two
surfaces, $0

2
P—P, =-:1. )

In both cases we sec that thc tension requited io eontain a given pressure
difference P, — P, varies as the curvature radius r. Along the cylinder we have
r = o0, so boiling frankfurters split here first. This is why boiling frankfurters
tend to split lengthways.

A short section of the tire can be regarded as straight, so the considerations
of the previous question apply. With P;=7 atm, P,=1 atm, we usc
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S3Sl.

§3s2.

S3s3.

equation (1) of the previous answer to get 1= (P;,—P.,)r= 6P 4=
6% 10° x 1.5x 1072 = 9000Nm™' with the data given.

When the droplet is on the point of evaporating the surface tenston force
just balances the vapor pressure force. As the droplet has only an outer
surface we use equation (1) of S348 with 1=-y to get 7 =29/(P, - P,) =
2v/P, =2 x0.07/2300 = 6.1 x 10°m = 6.1 x 10~>mmwiththedata given.

The pressure P; inside the balloon must obey

Pi-P, =2 m

Initially P, = P,,P,=8P,/9 and r= r,, so

Py _ 2

9
As P is reduced r increases. Its largest possible radius 7 is given by setting
P, =0 in (1). The pressure inside the balloon changes to P, beeause of

cxpansion, so

2
P =—.
r2

Dividing these two equations shows that

Py 9
=13 1
P M

But since the temperature is fixed, Pr’ = constant {perfect gas law), i.e.

Py .0
-P;—;l (2

Comparing these two equations we see that 7, = 3r,.

The tension in the membrane must balance the pressure excess of the air sac,
so from equation (1) of S348 we can write

(Py—-P)r =21

in breathing out, both r and P — P, decrease {the latter because P, increases
and P is fixed). Equilibrium cannot be maintained unless 7 decieases. These
changes are reversed in inbaling. so ¢ increases. (If equilibrium failed in cither
state, the air sacs would either collapse or rupture.) The adjustment in ? is
provided by a protein — surfactan! — which is very elastic. Asthma is asso-
ciated with a failure of this mechanism to work properly.
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One might expect air to flow along the pipe to equalize the size of the two
balloons. But amazingly, this is wrong: if the two balloons have sphericai
radii ry, . and interior air pressures P;;, P, we must have

2t
Pa —P‘,=7|1, (1)
Py—P, =22, 2)
r2

(cf. 8qn (1) of S348). here £, is the pressuie in the enclosurc and ¢, 2 the
surface tensions of the balloon material at radii ry, ,. These can be assumed
constant (4 = f, = ¢) provided that each balloon is larger than the minimum
radius rpin. Thus if ry > ry we must have P, < Py, i.e. the smaller balloon
has a larger interior pressure (remcmber that it is hardest to blow up a
balloon at the beginning, and this gets essier as the balloon expands!).
Thus once the valveis opened, air will rush from the smaller balloon {making
it smaller still) to the larger one (expanding it further). The air pressureinside
the two connected balloons will sequalize at some value P; with
P, < P; < Py, Equations (1, 2) then require 1,/ty = 75/r1 < 1.i.e. the smaller
balloon must contract below ., and make £, < 4 = 7.

Note that even if we had started with two balloons with egual interior
pressures P;;, P;;, a smail perturbation making one of the pressures (say
Py2) even slightly larger than the other would have started this process off,
and again we would have ended with one larger balloon (large r|) and one
small balloon with r; < ryin.

Bernoulli's theorem states that the quantity

Pl +gh
p 2

is constant along a streamline in a fluid, where P.p, v are the flid pressure,
density and velocity and 4 the height of the point considered. Thus consider-
ing a streamline from the water surface (where v is efl'ectively zero, P = Py
and A = H) 1o the hole in the container (where the pressure is atmospheric,
i.e. P = P,), we have

P AR,
—+gH=-"+ v +gh.
p p 2

Thus the jet velocity v is given by

nr"=2g(f1—h)+2p'+‘°“ (1)
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reduce its cross-sectional area a at some point, and hence reduce the flow
rate. Siphons work well only if the pipe has no leaks and all of the air is
carefully removed (e.g. here by filling the pipe from the lower end using a
hosepipe before submerging the upper end in the pool).

The water velocity follows from mass coaservation: in onc second the mass of
water flowing with velocity » past a point where the pipe cross-section is A is
Q = pvA = pr,where p is the water density. This must be constant in steady
flow. Since p is constant {water is incompressible), this requires r = v4 =
constant. Converting the water rate r to MKS units, r=6 m’ min~' =
0.1 m’s"', Further, the values of 4 at the two ends of the pipe ate 4, =
xd.z/4 = 0.03! m?® ncar the pump, and 4: = 7rd§/4 =0.126 m’ at the other
end. Thus v, =r/A; = 32 m s~', and water leaves the pipe at velocity
v=r/A,=08m s,

The pressure P, ncar the pump follows on using Bernoulli's theorem:

PI ] _PZ 1
7+iv2| —‘;’-+Eﬂ§+gllh

Since the upper end of the pipe is open to the atmosphere, P> = P4, so
1
Py=5p(13 — vi) + pgh+ P,

With the data given, the results of the previous problem, and p=
10°kgm™>. we find P, =1 x 1000 (0.82—3.2%)+ 1000 x 9.8 x 20+ 10° =
2.91 x 10° Nm™2.

Considering a streamline from the water surfacedowntothe hole, Bernoulli's
theorem gives

P 1
Zaiorgh=24202 10,
P p 2

where v is the (horizontal) velocity of the jet at the hole; this uses the facts
that the pressure at both places is close to atmospheric, and the water
velocity at the surface is very small because the container is wide. Thus
v=(2gh)"*.

Thejet is initially horizontal, but falls vertically from rest under gravity, so
we can treat it like a projectile. Using x = vt + ar’/2 with vp = 0,¢ = —g,
the uime to fall a distance x = ~(H — A} to the giound i§

[2( H - h}] 172
== 1

During this time the jet travels a horizontal distance
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s =vt = 2An(H — h)]".

Thus the jet has the biggest range (~ #7) when it is about halfway down the
filled part of the eontainer (h ~ H/2). Yety short ranges result from holes
near the water surface (k — 0 little pressure head to drive the jet) and near
the base of the container (2 — #: jet emerges too close to the ground).

From Bernoulli’s theorem we have

P+%p.-tf1 = P’+%p.-ﬂ". m
where #.1/ are the pressure and velocity in the narrow section. Mass con-
servation, i.e.

peAv=p AV
gives Y = v(A4/A’) = 4v, so substituting this into (1) and rcarranging we get

160° — # = 2(P-P)
Pn

or ¥ = (2/15)[(P = P')/p,). Bul hydrostatic equilibrium of the mereury
requites
P—yﬂﬂkggh‘

50

(2 ' (2x13,600x 9.8 x 2.5 x 10-3\ /7 .
v= (_I_szgh) = ( 15 = 1000 =0.67ms™".

Let the window and doorway have eflective open cross-sectional areas
A,.Aq. 1f Ay < A,, e.g. the door is only slightly ajar, any air draft entering
the window must produce an air current with higher velocity on the open
(outer) side of the door than the other side (see Figure). Hence by Bernoulli’s
theorem there is an excess pressure on the inside and the door slams. The

window >

atr current
"V/
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door will not slam if opened sufficiently wide as the pressure torque on the
door is smaller than the frictional torque at tie hinges.

The upward force {fif¢) arises because the air must flow more switily over the
airfoil than below it, lowering the air pressure there. The height difference
between the top and bottom paths is negligible, so Bernoulli's theorem gives

PP Py i
p 2 p 2"

where P, P, are the air pressures on the lower and upper surfaces. (Air is
effectively incompressible if v is subsonic.) The speed above the airfoil is mv
as the flow is steady. The pressure difference acting vertically upwards is thus

'"Z‘lvz
2, Aur

The airplane will take off once the totai lift force F; = A{P, — P,) exceeds its
weight M g. Hence the minimum takeofi speed is given by

PI—P1=

1
id(mz —Dptf = Mg,

or

. 2Mg
T (= A4p

With the data given, we find »=[2x 500 x 9.8/(0.21 x 30)]'/2 =
39.4ms' = 142 km/h. At high-altitude airports, p is significantly smaller,
and by (1) we see that the takcofi spesd has to risc as p~'2,

The applicati'on of Bernoulli’s theorem to airplane wings is subtle, as can
be seen by considering the fact that airplanes¢an fly upside-down! The angle
of the airplane to the horizontal (the angle of attack) is important in under-
standing this, as it determines the effective streamline rati'o m.

(1)

From equation (1) of the previous answer we have

_ Mg
P —nar

Selting v =y, gives the lowest density g, Wwhich gives enough lift
to support the airplane’s weight. With the data given we get puin =
2 %500 x 9.8/(0.21 x 30 x 70°) = 0.32kgm™'. Using the formula for p(2)
gives a mazimum height 25, = —H 108y fria- Thus zp, = 23,000 x 0.50 =
11,560 m = (1.5 km.

The main problem for early airplanes was ihe lack of sufficiently powerful
engines to produce high takeoff speeds v. From equation (1) of S364 we see
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that v is reduced by making A large. This could have been achieved by
increasing the wingspan. but it was difficult to produce a strong wing of
great length. The easiest way of increasing A was to stack shorter wings
above cach other, i.e. biplanes {or triplanes).

Asin P364 the lift force is F; > Av', where 4 is the wing arca. At takeofl'this
just equals the weight Mg, where M is the bird’s mass. Clearly A scales as 2,
while M scales as £, since the average densities of the specics are the same.
Thus Fy o« 417 oc 17, while Mgoc . Thecefore Fy = Mg requires v x {2,
Larger birds have higher takeofl speeds. and often have to run to achieve the
necessary lift (e.g. flamingoes).

This calculation here is essentially the same as in S364. The condition to lift
the boat from the water is [cf. equation (1) of S364]

2 2Mg

T DA,

The great difference here in comparison with P364 is that p, is 1000 times
larger than p for air. Thus even with « smaller than an airplane’s takeoff
sp#ed. A, can be made much smaller than 4, i.e. hydrofoils are much smaller
than airplane wings.

Applied 10 the sail, Bernoulli’s thesrem gives

Poolo_
P37

Pa

Pa’

where P, is the pressure on the convex side of the sail, P, is atmospheric
pressure, and t¢x w is the air speed along the convex side of the sail. This
produces a force F = (P, — P\)4 =~ Apan?/2 acting towards the convex
side (the air speed on the concave side is negligible), and so a force
F, = Fsin8 ~ (4p,+2/2) sind in the direction of the yacht's motion.

If the wind comes from behind the boat, the sails are best deployed per-
pendicular to the wind velocity (see Figure). Since the yacht usually moves
more slowly than the wind, essentrally all of the wind’s momcntum is lost to
the boat. Per unit arca of the sails, the wind momentum is pw, and this
arrives (and is lost) at velocity «v. Hence the total wind momentum trans-
ferred to the boat per unit time is = Apm?. By Newton’s second law, this is
the totsl force on the boat. The component F; of this in the forward direction
is just given by multiplying by cosp, giving F; ~ Apw? cos¢. For
6 = ¢ = 45°, we have sinf = cos¢= 1/v?2 and

Ap,w? F MAp“wz
—2ﬂ s 2 73

Fy =

so that Fy = F,/2.
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S373.

S374.

By Archimedes’ principle, the weight of the boat is equal to that of the water
displaced, i.e. Mg = A/lp. Also the sail area is A = {/2. Substituting for
Ays. A into (1, 2} of the previous solution shows that for any angles 8, ¢

Pp\ 2
), ¥ (A;") w.

Since p,,w are fixed, high sailing speeds are achieved by making /M as
large as possible. Long slender yachts are much faster than short stubby ones.

The drag force resisting the sideways motion is zA,ps’. where 5 is the
sideways velocity component. Equating this to the sideways forces
Ficos8,Fasing (ef. S369) shows that s will be as small as possible if
A,p» Ap,. To give high forward speed, equations (1, 2) of S370 show
that Ap, should be as large as possible in comparison with 4yp. These two
requirements are only compatible if 4, 3» A,. Again we see that an efficient
yacht should be slender. A, is made large in practice by making the keel deep,
as this also gives stability against the tendency of the wind pressure on the
sails to push the boat over.

The maximum speed v is fixed by the requirement that the inward frictional
force 1N should supply the centripetal force mn?/r, where N is the nornnal
reaction of the truck on the car. If there is no wing on the car, N =mg, and
we find

©¥(no wing) = prg.

If the wing is present we have an extra downforce given by Berooulli's
theorem:

P‘ P 1 2

— =—4,

pop 2
with P4 = atmospheric pressure and P the pressure below the wing. Thus
N =mg+ A(P4— P)=mg +%Apv2. With again mvz/r = uN we get
pmg (1)

N = e

which of course reduces to the previous formula if the downforce is absent
(formally if A =0). With the data given we find v(no wing) = 80 km/h,
v(wing) = 82 km/h. Although this is small, it is a significant advantage, so
the size and pitch of wings is strictly regulated in motor sport.

Tight comers have small r, while gentle ones have large r. From equation (1)

of the last answer we see that on gentle corners the “wing” term udp/2 is
more nearly comparable to the other tenn mi/r in the denominator, and thus
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S375.

S376.

S377.

has a greater eflect. Wings give less advantage on tight corners because the
lower speeds make the Bernoulli effect less important.

Using the ideal gas law in the form
PV, _ PV,
TN N

with ¥V, = 2V, Py = 2P,, we get T, = 4T, for the relation of absolute tem-
peratuces. With T) = ¢, + 273 = 289 K we find T> = 1156 K, or ¢, = 883°C.

The ideal gas law can be expressed as
P= EpT,
M

where (R/u)T is constant at a fixed temperature (4, the mean molecular
weight, is fixed by the gas composition}. Thus P/p = constant, or PV /m =
constant in our case. Hence, writing V4 for 1 liter,

PV _PdVa
ny - m, 4
or
ny V, 0.858 ) 5 6 _2
i Py — i =4. 0
P =7 P =goois1z ¥ 10 =477 x 10" Nm™
If the hydrogen pressure is Py we have
Py+E = P,
where S is the cross-sectional area of the container, i.e. S = V;;/h. Thus
mgh
Py= Py Vy

We can find the hydrogen pressure from the equation of state: under the
stated conditi'ons hydrogen behaves as an ideal gas, so

T
Py =t v
where R is the gas constant, m; the number of moles of molecular hydrogen
in my =0.17 g and T the temperature. Hence

Py = (ny RT — mgh) VL
H

Now #n; =0.17/2 = 0.085 as the molar mass of molecular hydrogen is 2 g.
Thus

P = (0.085 x 8.3] x 300 — 21 x 9.8 x 0.4)1—@3—4: 926 x 10° N m2.

x 10
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s382.

At the base of the cylinder th.e pressure given by the trapped air and the
column y of mescury must equal that in the mercury hath at depth H, i.e.
Py + pugey = Py -+ puggH. {1)

Also, the trapped air obeys Boyle’s law (ideal gas law at constant tempera-
ture), so

PVv="PV,
where ¥ = =k (the original air volume), and ¥, = (k- y), i.e.
Ph=y) — Pih (2)
Eliminating £, between () and (2) gives

Pk

h—jy + prggY = Pa + pugg H.
Multiplying through by {k — y) this gives a quadratic cquation for y, which
after simplification becomes

v - (:—" +h+ H)y+ Hh=0,
lgg

or with the data given
¥ -228y+05=0,
with the solutions y = 0.25, 2.0. Only the first is physical {the other has
y > h), so y=1025m. P follows easily from (2) as
Py=Puhfth—y)=2P, =197 x 10°Nm?
The density p follows from Archimedes' principle: the buoyancy force
Fp= Vapngg must equal the weight W = V pg, where ¥, is the dnsplaoed
fluid volume = (volume of solid cylinder + trapped air) = ~R2H — e %y,
and V', is the solid cylinder volume = wR*H — 5+%h. Setting Fz = W gives
Vy RH-Py 1 -0.25(y/H)

Py =g P T -025% 05
Using the result of the previous pait, this implies p = 13,600 x (0.94/0.88) =
14,600 kg m .
After the faucet is opened thetotal number of moles is the same as before, i.e.
R, = n + 2n = 3n. The total volume is 3¥ so thegasdensityis 3u/3V = n/V
molcs/unit volume. By the ideal gaslaw the pressure is

n
P=JRT (n

where R is the gas constant and T the absolute temperature. This must also
be the pressure in each of the containers, so applying the ideal gas law to
them in turn gives
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$386.
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Vr = (1 + 4780V 7 = 10004V 1.

Substituting V=097V into the first cquation, we {ind Vg =
1.036 x 0.97V; = 1.0049V ;.. Thus V¢ > V7 at40°C. The fuel will overflow,
Note that this result is independent of the volumes V4, V; of the tank and
gasoline, and depends only on their relative size.

(a) Each side of the plate increases by a factor (1 + eAT), where AT is the
temperature increase. Since aAT < 1, the arca incrcases by a factor
(14 c!AT)z =~ 1 +2aAT. Thus tbe coefficient 3 of surface expansion is
approximately twicc the linear cocfficient (8~ 20 =8 x 1074 °C™"). The
increase in surface area S = 108 cm? is therefore

AS = BSAT = 8 x 107° x 100 x 100 = 0.08 cm’.

(b) From the definition, the amount of heat absorbed is Q = CmAT, whese
m = 100 g is the mass. Thus

Q@=0.336x 100x 100)= 3860 J

Consider a cube of the solid. Ifthere is a small temperature rise AT, its sides
increase from a o a(i + @AT), so its volume increases from V = a’ to
V+AV =d(1+aAT). Since aAT < 1, the rhs is approximately
a’(1+ 3aAT). But by definition this is V(1 +YAT) = a’(1 + 7AT), so we
must bave ¥ = 3a.

By Archimedes’ principie the steel cube displaces itsown mass of mercury, so
it floats 1o a depth d given by m = a*pd. i.e.
d= {)
a‘p

where g is the density of mercury. Before heating, a has the value @y . and after
heating this becomes @ = (] + ,T), where T is the temperature rise.
Simultancously the density of mercury decreases from gy to gp(l + 7, T) !
because the same mass of mercury occupies a larger volume. The equilibrium
condition (1) becomes

_om 1y, T 1+9,T
aipo (1 + a,T) 1+2a,T

where 4y wasthe original depth, sincc &,7 < 1. With the data given we find

1+1.8x 107°'T
1+2.4x 10°°T
which is > d, and increases with 7. The level of the mercury bath rises

because of the expansion of mercury, and the cube floats slightly more deeply
than before.

d=dy
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mammals have to maintain constant body temperature, so it is preferable to
have large / in polar regions.

Conservation of lieat energy implies that the heat lost by the metal block is
gained by thc calorimeter and the water within it, i.e.
M Calin ~ 1) = mCft - Ly +m, C.(f = L),

where ¢,, = 100°C is the metal temperature before immersyon in thc calori-
meter, and C,, = 4200} kg"“C “!is the specific heat of water. Thus

10C,,,(100 — 51) = 0.25C,»(51 — 10) + 5x 4200(5) - 10),
or
479.75C,,, = 8.6 x 10°,

so that C,, = 1795J kg™’ <C~". This is about 0.43 of the specific heat of watcr.

If the temperature rise is At *C, the block’s heat energy increases by
Q = CM AL This is all supplied by the kinetic energy m?/2 of the bullet,
50 conservation of energy gives Ar = mvz/ZMC =0.16°C.

Since the calorimeter is insulated, no heat energy is lost, and the heat gained
by the calorimeter and contents must balance that lost by the hot water, i.e.

(mtccu +’“Icw)(13 - li) +m3Cw(f3 - 12) =0

Here C, is the specific heat of water, which is | kcal kg™' “C~" by the defini-
tion of the kilocalorie. With the data given we find

(0.125C,, + 0.06)(45 — 24} + 0.09(45 - 63) = 0,
giving C., = 0.137 keal kg™' =C"".
With C,, the specific heat of water, conservation of heat energy gives
(my +my)}C ot = mC1y +myC by,
since no heat is exchanged with the surroundings. Thus

r=m111+M112=lX7+2X37:27‘,C.
my +m, 3

The total internal energy change AU is zero since both W (the work done)
and AQ = AQ\ + AQ, (the total heat absorbed) are zero. However, there is
a nonzero entropy change AS = AS) + AS; (entropy of mixing), since the
hcat transfers AQ),AQ, = —AQ, are not performed at the same tempera-
tures. Thus using the sccond law of thernodynamics, TAS, =m,C,. AT,
etc, where 7 is the absolute temperature, leads to AS, = m,C In(T/T)},
etc, and hence
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The air in the tire expands and cools adiabatically as it rushes out of the
valve. Equation (1) of the previous problem gives a quantitative estimate;
with P, = P|/6.y = 1.4 (appropriate for air), and T, =290 K, we find
T =174 K, or =99°C! Of course there is very little cool air, so the icc
soon disappears. A similar effect causes the tiny cloud of water vapor seen
on opening coke or champagne bottles.

. On the windward side the air rises; here the pressure is lower, so the moisture-

laden air has expanded. The expansion is too rapid for much heat to be lost
or gained, so it is effectively adiabatic, and the air cools. causing the water
vapor to condense and fall as rain or snow. On the othcr side, the air falls and
is adiabaticaliy compressed, so its temperature rises. This gives a wann dry
wind. Another example is the Féhn north of the Alps.

The derivation of equation (1) is still valid, so

% i) ()
2N

but equation (2} is no longer valid, as the gas now expands adiabatically not
isothermally. We replace (2) using the adiahatic relation P¥” = constant.
Since v = 5/3 for a monatomic gas and ¥V & r*, this requires Pr’ = constant,
sa (2) is replaced by

P 7!’%

LU s 2
F=3 @)
Eliminating P,/P, between () and {2') now gives r, = v3r, as opposed 1o
r2 =3r in the isothermal case. The greater expansion in that case results
from the fact that energy is teing fed into the gas there to keep its tempera-

fure constant. This meant tiat more work could be done expanding the
balloon against the tension in the walls.

The change takes place at constant pressure, for which the specific heat is
Cp=Cy + R (the extra teyrm R comes from the work done against the
pressure). Then

Cy
AQ =nCpAT =n(Cy + R)(T2 = T)) = (Tj + l)(nRTz — nRT)).
Using the ideal gas law, we can replace nRT1, nRT| by Pg¥'5, PyV, respec-

tively, so

AQ— (%‘ + 1) PolVy - V) = (% + 1) 10°(0.5 — 1) = =5.36 x 10 J.

The negative sign shows that heat energy has been lost from the gas.
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S408. From the ideal gas law we have PV} = nRT), PV, = nRT,, with # = 2. Thus

S409.

S410.

Ty = PV /2R, T, = PV,/2R, and we find T, =2743 K, T, =6402 K.
Using the first law of thermodynamies we have

0=AU+AW,

where AU = U, — U, is the increase in internal energy, and AW =

—V,), the work done by the gas in the expansion. Since

=(3/2)aRT =3RT for an idecal monatomic gas, and PV =
ART =2RT, we have

O =3R(T;- T) +2RT1 - T) = SR(T, - T\)

=5 x 8.31(6402 — 274.3) = 1.52 x 10 ).

The entropy change of an idcal monatomic gasis
Z

3 T, €]
AS = iann T, +ARIn 7

so that here AS =3x8.31in(640.2/274.3) + 2 x 8.3l In(0.07/0.03) =
352 JK"
Heat flows from body 2 to 1 as 7, > T',. The heat absorbed by body 1 must
be exactly that lost by body 2, i.c.
0= AQ) + A0; = mC AT, +mC,AT,
where AT, =7 -T |, AT; =T =T, =T ~ 2T,. With C; = L.5C, we get
0= IMCl(T -T)+ I.SIMC)(T - 2Ty)

ie. T = L6T.
The entropy ehanges are

T
AS) =mC, ln-ﬁ,

a5 = ngln = 15mC, 1n27.
Substituting T= L6T;, we get AS, =wmCln 1.6 =047mC,, AS;=
1.5mC, In(1.6/2) = =0335:C,. Clearly AS = AS, + AS, > 0, as required
by the second law of thermodynamics. Note that this occurs because in the
expression AS = AQ/T it is the body with the smaller value of T which has
AQ > 0, i.e. heat flows from the hotter body to the cooler body.

The initral volume V, is given by using the ideal gas law P, ¥, = a#RT,
(n = number of moles, R = gas constant). For O, the molar mass is
niyy = 32 g, sothe number of moles here is mi/miy, = 160/32 = 5,
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4l

Thus

_ nRT)
|

v, =5x8.31 x 308/10° = 0.125 m’.

In an adiabatic process we have Py V] = P,V7, or using the ideal gas law,
T\¥7™' = T>¥7™', whese 4 = 7/5 for a diatomic gas. Thus

Vet
Vy= (%) Vi = (0.)%7 % 0.125 = 0.024 m’

and

AN
T:= (7‘) Ty = {0.125/0.024)5 x 300 = 580 K.
2,

As the process is adiabatic, there is no entropy change, i.e. AS =0. Then
using the second law of thermodynamics we have AU = —AW, i.e. all of the
work done in compressing the gas goes into raising the intetmal energy of the
oxygen. For a diatomic gas we have U = (5/2)nRT, so

AU :S-Z-nRA.T =2.5x5x8.31(580 — 300) =2.91 x 10* 1.

Thisis: also the work done in the compression.

Since the process is isothermal, T does not change, so
AT=0.

In an ideal gas at fixed temperature, we have PV = constant, so PV = PoV¢,
or P=Py(Vp/V) = Po/2 (since V = 2V,). Thus

AP = 2
The internal energy of a fixed mass of an ideal gas depends only on the
temperature (U = (3/2)nRT, with n the aumber of moles and R the gas
constant]. Thus U docs not change, i.e.

AU =0.

Using the first law of theimodynamics, we have AU = Q@ — AW, where
Q is the heat absorbed by the system and AW the work done by it. Here
AU =0, so Q=AW and we have @ = TAS (quasistatic process). Thus
AS = AW/T. Now we use AWV =nRTIn(V/V,) as given. In our case
ViVe =2, so

AS =nRIn2 =0.693#R,



286

SOWTONS — CHAPTER3. MATTER AND WAVES

S419.

$420.

S42l.

_ 3T
2umyy’
At constant volume the first law of thennodynamics implies AQ = AU, so
the specific heat per unit mass at constant volume is

AQ AUk

The energy required to heat thesame mass of helium and argon through the
same temperaiure is inversely proportional to the mean molecular mass u.
Thus the heat required for the argon sample is 1 x 4/40 = 0.1 k1. Physically
this lower value results from the fact 1that an argon atom is more massive
than a heliura atom, and so there are fewer argon atoms in the same mass,
Since each atom has the same energy 347 /2 at a given temperature,. less heat
is required to raise the temperature of the argon sample.

As the piston moves inwards, molecules bitting it rebound with greater
kinetic energies. 1f the piston moves in at speed u, it sees cach molecule
elastically reflected at speeds v, + u, so they have x-velocities v, + 2u in the
laboratory reference frame. Collisions between molecules share this extra
energy and rarse the nns speed @ and thus the temperature. 1f the compression
is adiabati’c, this bappens before any of this extra energy is lost to the sur-
roundings. in summary, the piston does work against the gas pressure, and
this heats the gas. The pressure is raised because thc momentum transfer
between the piston and the gas molecules is increased.

The gas molecules at the base have on avemge gained kinetic energy mgh
compared with those at the top (which have higher potential energy). This
raises the pressure at the base by Nmgh = pgh, where N is the number of
molecules per unit volume, i.e. by preciscly the amount required to bear the
total weight of the gas. Hence the full weight of the gas registers on the scale.
The same argument shows that the pressure at every height in the gas is
exactly that required to support the weight of the gas above that height.

Equation (1) of S415 shows that v = (BkT/;unH)"z, so the escape tempera-
ture T is given by setting this equal to v, i.¢.

2
Wi
T = T
Thus lighter compounds escape at lower temperatures. With the data given,
we find v=2787"2 m s for oxygen. For this to reach v requires
T = 1.6 x 10° K. Similarly for nitrogen we find 7 = 1.4 x 10° K, and for
hydrogen 7 = 1 x 10* K. This diffcrence is imporiant in explaining why the
Earth has lost most of the hydrogen in its original atmosphere, but retains the
oxygen and nitrogen.
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The focal length of a convex mirfor is /' = —R/2 = -0.5 m. The formula
t/s— I/s' = 1/f gives the image distance ¢ as

“| -

1 N 1
1.5 05 3
so that & = 0.375 m (i.e. theimage is behind the mirror). The magnification is
m=s'/s=0.375/1.5 = 0.25,s0the image is virtual. upright, and smaller. Sec

Figure for the ray diagram.

The mirror has focal length / = —R/2 = | m, so using I /s — 1/.5' = 1// with
§ = =25 (s < 0) (since || = |s'/s| = 2) gives

l+l =1

s 2
Thus s= 1.5 m, 5 = =25 = -3 m. Since m =5'/s < 8, the image is real and
inverted. See Figure for the ray diagram.

Since R <0, we have / > 0 and = R/2. Using the mirror formula with the
data given implies

x| -
b | —
- RN
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(R =1m, Ry=—-1.3m. s0

I f1 1Y i
f—OS(T—ﬁ)—OIHm ’

i.e. / = 8.67 m (converging lens).

(e) R, =00, Ry =1.3 m. We fmdf = 2.6 m (converging lens).

() Using 1/5 + 1/s' = l/f withf = 10cm ands = 5cm, we get s = —10cm.
The image is on the sameside of the lens (behind the insect) and is virtual. Its
size #' follows from m = —¢/s =2, i.e. # =2k It is twice the siaec and
upright.

(b) With f = 10 em and s = 15 em, the lens formula now gives s' = 30 cm.
The image is on the far side of the lens from the insect and is real. From
m= —s’/x = -2, we have #' = —~24, ic. the image is twice the size and
inverted. Note that the image suddenly shifts when the object reaches the
focal point. See Figures 1 and 2 for the ray diagrams for cases (a) and (b)
respectively.

Fig 1

Fig 2 |

We first find the image crented by the lens. Using i/s+ 1/ = 1/f with
S =05mands=1m, wefinds' = | m. This first image is real and inverted.
[t forms the object for the mirror, and ereates a second image a distance | m
behind the mirror. This image is virtual, and remasns inverted (sec Figure 1).
Thu's second image itself aels as an object for the lens, at a distance.s = 3 m,
The lens formula gives s’ = 0.6 m for the resulting image. This third image is
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thius on the same side of the lens as the object, reat, and upright (see Figure
2). In summary:

First image: veal, inverted, 1 m on the opposite side of the lens from
the object.
Second image: virtual, inveried, | m behind the mirror.

Third image: real, upright, 0.6m from the lens on the side of the
object.

S$435. Using the thin lens formula with object distance s = # — x, & = x gives

1)
h=x ' x f°
Substituting, we obtain a quadratic equation for x (expressed in cm):
¥ = 50x+ 400 =0.
This has the two solutions x| = 40 cm, x; = 10 cin. Both of thesc positions
produce a sharp image: exchanging x| and x, simply exchanges s and ¥,
which must be possible, since they appear symmetrically in the lens formula.

The case x = x| has s = [0 cm, ¥ = 40 and has magnification 4, while the
opposite case x = x; has 5 = 40 am, s’ = 10 and magnification 0.25.
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From the definitions, p =5 —f,p' =5 —f, so

pp =ss'— (s+5)f +/7

But multiplying through the thin lens formula by ss'f sbows that s¢' =
(s +5)f. Hence the first two terins above cancel, and pp' = f>. This fonn
of the thin lens fonnula was given by Newton.

We use the fact that the focal length is the image position for an object at
infinity (putting 5 = 0o in the lens formula implies s’ = /). Thus for the first
lens the image is at s} = f,. This forms the object for the second lens, with
position s, = —s) (sign conventrons ensure that this expression holds in al?
cases). Hence 55 = —f], so using

we find

But s} is the image position for an ob ject at infinity for the combined lens, i.e.
its focal length /. Thus

iR

S438. The power is I/f, where f is the focal length, and is measured in diopters

5439.

(meters™') if f is in meters. By the previous answer, the powers of lenses
piaced in coniact simply add, so the combined lens has power P =
Py + P, =25 diopters.

Using the lensmaker’s formula

P=

()

_2Ang—1)
T

!
f

we get

_{np-1)

P
4 R

P5=
and so
P=PA+}’B=%[2NA—IIH~]].

With tbe daia given, we see tbat P = 0.4/ R atall three wavelengths. Doublets
are often used to correct chromatic aberration, i.e. the variation of focal
length with color.
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Let the lens-film distance be ¢. With s = oo (distant objects), the lens for-
mula gives 5' = f = 5 cm if the image i5 to be in focus.

If the objects are at s = | m, the lens fonnula gives

Lo

PART NS
i.e. ¥ =526 cm. The lens must be moved 0.26 ¢cm away from the film,
If s> f we find from 1/s+ /s = 1/f that 5 = f (see previous solution}.
The magnification is thus m = —s'/s = —f /s (the minus sign means that the
‘image is inverted). Hence to change magrmfication we have to change lenses,
so cameras often have interchangeable lenses. For very high magnification,
we need very long focal length lenses (which have to be placed further from

the film}. As the film is the same siz¢, higher magnification lenses have smaller
fields of view.

. The cffective diameter of the lens has been reduced by a factor 2 and there-

fore the area by a factor 4. The rate at which light illuminates the film is
reduced by the same factor, so the photographer must increase the exposure
time from 0.02 s to 0.08 s.

We have & = 2.5 cm in all cases (fixed retina-lens distance), while s runges
over d, < s < 0a. Thus 1/s has the range l/d >, 1/s> 0. Using the lens
forinula /s = 1/ — 1/s" withf and «,, measured in cm, we find

1 < 1 < 1 " 1
257257 d,;
With d, = 25 cm, we get 2.27 cm < f < 2.50 cm. The eye muscles must be
able to alter / (and therefore the radius of curvature of the lens) by a factor
25/227 = L.1 (i.e. by 10%,).

The person is shon-sighted. Her vision can be corrected by placing a lens in
front of the eye such that an object at infinity producesanimage ata distance
< dy Thus for this lens 5 = oo, ¢ = —1 m (the image has to be in front of the
eye so as to serve as an object for its lens). The lens formula then gives
J/ =s"=—1 m. This is a diverging lens, with power P = —1 diopters (m ).

The manis long-sighted. When an object is atd, = 0.25 m, it mustappear to
be atd,,= 0.6 m, i.c. it must fonn a virtual image there. Using the thin lens
formula with s = d},s' = —d,,, we find the required focal length f or power P,

g —

P=7=a"a

= 2.33 diopters.
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Thus he needs glasses with converging lenses of focal length/ =043 m. In
most people the near point retreats with age. Reading glasses are required at
the latest by the age at which it reaches the length of the arms!

The distance between two objects subtends a larger angle the closer they are
to the eye; but the eye cannot focus properly if they are placed closer than the
near point. Thus the smallest scale s that the man can distinguish must
subtend the minimum angle @, at the ncar point, i.e. s =0gd, =0.125 mm.
Note that this formula is correct with #y in radians.

The object is placed just inside the focal point so that it produces a very
distant viitual image {see Figure), which can be viewed with comfort. The
angular magnification M = 6,/0,, where 0, is the angular size of the image as
seen through the lens. and 8, that seen by the unaidedeye at the near point.
From the Figure, and assuming that 4 < f,d,, we have 8, /A/f, while
0, = h/d,. (These results use the facts that tan&= 6 for very small angles ¢
expressed in radians and thatthe object is very close to the focal point.) Since
the power D = 1/ f, we have M =d,/f = d.D = 2.5 with the data given.

| [
u’.! ==y

. The specimen is very close to the focal point of the objeetive {see Figure}, so

the lincar magnification of the objective is

where & is the distance of the real image from the lens.

This magnified real image is the object for the ocular, arranged to be just
inside its focal point. The ocular acts as a simple magnifier (see the previous
solur'on), witb angular magnification M~ = d,/ f>, where d,, is the near point
of the user’s eye. Thus the overall angular magnification is
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6563 — 6562 -
_ foiatict B onion, 0 o) i
v=cx 6562 1.52 % 107",
i.e. v =46 km s~! away from the observer (v is counted positive for motion
away, i.e. redshifts). We can say nothing about the transverse motion.

The star’sradial velocity (see previous solution) will oscillate back and forth
periodically. The mean value gives the radial velocity of the center of mass of
the binary systera. The amplitude of the radial velocity oscillations and
Kepier’s laws can be combined to constrain or even measure the masses of
the stars of the hinary.

The wavelength of the emitted sound is A = v,/v = 1500/3508 = 0.4286 m.
Local maxima appear where coistructive interference occurs, i.e. when the
path lengths from A and B to the microphone differ by an integer number of
wavelengths. This happens at angles ¢ to the syrometry line (see Figure) such
thai

dsinf, = nA,

where n i3 a positive integer. (This fornula holds when ¢ <« L as is the case
here.) Since & = 1 m, we have sinf,, = 0.4286r. We thus have solutions up to

=2, ie. 8, = 0;sinf, = 0.4286 or & = 25.38°; sind, = 0.8572 or 6, = 59°,
The detector should thus be placed at distances x,, = Ltan 6, from the sym-
metry line, ie. at xo=0,x; =4744 m, or .x; = (664 m.

D {microphone}

We get destructive interference, i.e zero sound intensity, when the path
lengths from A and B differ by exactly half a wavelength, i.e.

2m -1

dsind,, = Ao om=1,2,3,...

(the paths dilfer by an odd number of half-wavelengths). With 4 = 1 m and
8, = 25.38° (specifying the paosition x =474.4 m), we get
2n — ]
2

A =0.4286 m,
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so using A = v,/v we have
2m — | 1500
2 04286
Form =1 and m > 3, v is respectively below the minimum frequency and
abeve the maximum frequency; form = 2, we havey = 5250 Hz, which is the
required answer.

= (2m — 1) x 1750 Wz,

Without the sheet the phase difference at the central maximum (on the sym-
metry line) is z¢ro, i.e. (2n/ A)dsin @ = 0, where @ = 0. With the sheet in place
(see Figure), this is no longer true because of the change of wavelength inside
the sheet. Let the angle at which the total phase difference A® is zero be @
(see Figure).

The total phase change has a geometiiical contribution

ad, = ?sme

and dispersion contribution (causcd by the different refractive index in the
sheet)

1 1
Ay =2x— | —
4TS (A r)
with A, = A/n. Thus
[
= ,-;_._ -
A® = A®, + A8y = [dsm (n I)]

Equating this to zero the central maximum appears at
dsinfcosé = t(m — 1),

or
sin26 =%’(ﬂ— 1).

With the data given, we find sin 26 = 0.17 or 6 = 4.9°.
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